1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * 12 * Transmit and frame generation functions. 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/etherdevice.h> 19 #include <linux/bitmap.h> 20 #include <linux/rcupdate.h> 21 #include <net/net_namespace.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <net/cfg80211.h> 24 #include <net/mac80211.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* misc utils */ 37 38 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr, 39 int next_frag_len) 40 { 41 int rate, mrate, erp, dur, i; 42 struct ieee80211_rate *txrate; 43 struct ieee80211_local *local = tx->local; 44 struct ieee80211_supported_band *sband; 45 struct ieee80211_hdr *hdr; 46 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 47 48 /* assume HW handles this */ 49 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS) 50 return 0; 51 52 /* uh huh? */ 53 if (WARN_ON_ONCE(info->control.rates[0].idx < 0)) 54 return 0; 55 56 sband = local->hw.wiphy->bands[tx->channel->band]; 57 txrate = &sband->bitrates[info->control.rates[0].idx]; 58 59 erp = txrate->flags & IEEE80211_RATE_ERP_G; 60 61 /* 62 * data and mgmt (except PS Poll): 63 * - during CFP: 32768 64 * - during contention period: 65 * if addr1 is group address: 0 66 * if more fragments = 0 and addr1 is individual address: time to 67 * transmit one ACK plus SIFS 68 * if more fragments = 1 and addr1 is individual address: time to 69 * transmit next fragment plus 2 x ACK plus 3 x SIFS 70 * 71 * IEEE 802.11, 9.6: 72 * - control response frame (CTS or ACK) shall be transmitted using the 73 * same rate as the immediately previous frame in the frame exchange 74 * sequence, if this rate belongs to the PHY mandatory rates, or else 75 * at the highest possible rate belonging to the PHY rates in the 76 * BSSBasicRateSet 77 */ 78 hdr = (struct ieee80211_hdr *)tx->skb->data; 79 if (ieee80211_is_ctl(hdr->frame_control)) { 80 /* TODO: These control frames are not currently sent by 81 * mac80211, but should they be implemented, this function 82 * needs to be updated to support duration field calculation. 83 * 84 * RTS: time needed to transmit pending data/mgmt frame plus 85 * one CTS frame plus one ACK frame plus 3 x SIFS 86 * CTS: duration of immediately previous RTS minus time 87 * required to transmit CTS and its SIFS 88 * ACK: 0 if immediately previous directed data/mgmt had 89 * more=0, with more=1 duration in ACK frame is duration 90 * from previous frame minus time needed to transmit ACK 91 * and its SIFS 92 * PS Poll: BIT(15) | BIT(14) | aid 93 */ 94 return 0; 95 } 96 97 /* data/mgmt */ 98 if (0 /* FIX: data/mgmt during CFP */) 99 return cpu_to_le16(32768); 100 101 if (group_addr) /* Group address as the destination - no ACK */ 102 return 0; 103 104 /* Individual destination address: 105 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) 106 * CTS and ACK frames shall be transmitted using the highest rate in 107 * basic rate set that is less than or equal to the rate of the 108 * immediately previous frame and that is using the same modulation 109 * (CCK or OFDM). If no basic rate set matches with these requirements, 110 * the highest mandatory rate of the PHY that is less than or equal to 111 * the rate of the previous frame is used. 112 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps 113 */ 114 rate = -1; 115 /* use lowest available if everything fails */ 116 mrate = sband->bitrates[0].bitrate; 117 for (i = 0; i < sband->n_bitrates; i++) { 118 struct ieee80211_rate *r = &sband->bitrates[i]; 119 120 if (r->bitrate > txrate->bitrate) 121 break; 122 123 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i)) 124 rate = r->bitrate; 125 126 switch (sband->band) { 127 case IEEE80211_BAND_2GHZ: { 128 u32 flag; 129 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 130 flag = IEEE80211_RATE_MANDATORY_G; 131 else 132 flag = IEEE80211_RATE_MANDATORY_B; 133 if (r->flags & flag) 134 mrate = r->bitrate; 135 break; 136 } 137 case IEEE80211_BAND_5GHZ: 138 if (r->flags & IEEE80211_RATE_MANDATORY_A) 139 mrate = r->bitrate; 140 break; 141 case IEEE80211_NUM_BANDS: 142 WARN_ON(1); 143 break; 144 } 145 } 146 if (rate == -1) { 147 /* No matching basic rate found; use highest suitable mandatory 148 * PHY rate */ 149 rate = mrate; 150 } 151 152 /* Time needed to transmit ACK 153 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up 154 * to closest integer */ 155 156 dur = ieee80211_frame_duration(local, 10, rate, erp, 157 tx->sdata->vif.bss_conf.use_short_preamble); 158 159 if (next_frag_len) { 160 /* Frame is fragmented: duration increases with time needed to 161 * transmit next fragment plus ACK and 2 x SIFS. */ 162 dur *= 2; /* ACK + SIFS */ 163 /* next fragment */ 164 dur += ieee80211_frame_duration(local, next_frag_len, 165 txrate->bitrate, erp, 166 tx->sdata->vif.bss_conf.use_short_preamble); 167 } 168 169 return cpu_to_le16(dur); 170 } 171 172 static inline int is_ieee80211_device(struct ieee80211_local *local, 173 struct net_device *dev) 174 { 175 return local == wdev_priv(dev->ieee80211_ptr); 176 } 177 178 /* tx handlers */ 179 static ieee80211_tx_result debug_noinline 180 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx) 181 { 182 struct ieee80211_local *local = tx->local; 183 struct ieee80211_if_managed *ifmgd; 184 185 /* driver doesn't support power save */ 186 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS)) 187 return TX_CONTINUE; 188 189 /* hardware does dynamic power save */ 190 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS) 191 return TX_CONTINUE; 192 193 /* dynamic power save disabled */ 194 if (local->hw.conf.dynamic_ps_timeout <= 0) 195 return TX_CONTINUE; 196 197 /* we are scanning, don't enable power save */ 198 if (local->scanning) 199 return TX_CONTINUE; 200 201 if (!local->ps_sdata) 202 return TX_CONTINUE; 203 204 /* No point if we're going to suspend */ 205 if (local->quiescing) 206 return TX_CONTINUE; 207 208 /* dynamic ps is supported only in managed mode */ 209 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION) 210 return TX_CONTINUE; 211 212 ifmgd = &tx->sdata->u.mgd; 213 214 /* 215 * Don't wakeup from power save if u-apsd is enabled, voip ac has 216 * u-apsd enabled and the frame is in voip class. This effectively 217 * means that even if all access categories have u-apsd enabled, in 218 * practise u-apsd is only used with the voip ac. This is a 219 * workaround for the case when received voip class packets do not 220 * have correct qos tag for some reason, due the network or the 221 * peer application. 222 * 223 * Note: local->uapsd_queues access is racy here. If the value is 224 * changed via debugfs, user needs to reassociate manually to have 225 * everything in sync. 226 */ 227 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) 228 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) 229 && skb_get_queue_mapping(tx->skb) == 0) 230 return TX_CONTINUE; 231 232 if (local->hw.conf.flags & IEEE80211_CONF_PS) { 233 ieee80211_stop_queues_by_reason(&local->hw, 234 IEEE80211_QUEUE_STOP_REASON_PS); 235 ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED; 236 ieee80211_queue_work(&local->hw, 237 &local->dynamic_ps_disable_work); 238 } 239 240 /* Don't restart the timer if we're not disassociated */ 241 if (!ifmgd->associated) 242 return TX_CONTINUE; 243 244 mod_timer(&local->dynamic_ps_timer, jiffies + 245 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 246 247 return TX_CONTINUE; 248 } 249 250 static ieee80211_tx_result debug_noinline 251 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) 252 { 253 254 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 255 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 256 u32 sta_flags; 257 258 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) 259 return TX_CONTINUE; 260 261 if (unlikely(test_bit(SCAN_SW_SCANNING, &tx->local->scanning)) && 262 test_bit(SDATA_STATE_OFFCHANNEL, &tx->sdata->state) && 263 !ieee80211_is_probe_req(hdr->frame_control) && 264 !ieee80211_is_nullfunc(hdr->frame_control)) 265 /* 266 * When software scanning only nullfunc frames (to notify 267 * the sleep state to the AP) and probe requests (for the 268 * active scan) are allowed, all other frames should not be 269 * sent and we should not get here, but if we do 270 * nonetheless, drop them to avoid sending them 271 * off-channel. See the link below and 272 * ieee80211_start_scan() for more. 273 * 274 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089 275 */ 276 return TX_DROP; 277 278 if (tx->sdata->vif.type == NL80211_IFTYPE_WDS) 279 return TX_CONTINUE; 280 281 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 282 return TX_CONTINUE; 283 284 if (tx->flags & IEEE80211_TX_PS_BUFFERED) 285 return TX_CONTINUE; 286 287 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; 288 289 if (likely(tx->flags & IEEE80211_TX_UNICAST)) { 290 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && 291 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 292 ieee80211_is_data(hdr->frame_control))) { 293 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 294 printk(KERN_DEBUG "%s: dropped data frame to not " 295 "associated station %pM\n", 296 tx->sdata->name, hdr->addr1); 297 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 298 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); 299 return TX_DROP; 300 } 301 } else { 302 if (unlikely(ieee80211_is_data(hdr->frame_control) && 303 tx->local->num_sta == 0 && 304 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) { 305 /* 306 * No associated STAs - no need to send multicast 307 * frames. 308 */ 309 return TX_DROP; 310 } 311 return TX_CONTINUE; 312 } 313 314 return TX_CONTINUE; 315 } 316 317 /* This function is called whenever the AP is about to exceed the maximum limit 318 * of buffered frames for power saving STAs. This situation should not really 319 * happen often during normal operation, so dropping the oldest buffered packet 320 * from each queue should be OK to make some room for new frames. */ 321 static void purge_old_ps_buffers(struct ieee80211_local *local) 322 { 323 int total = 0, purged = 0; 324 struct sk_buff *skb; 325 struct ieee80211_sub_if_data *sdata; 326 struct sta_info *sta; 327 328 /* 329 * virtual interfaces are protected by RCU 330 */ 331 rcu_read_lock(); 332 333 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 334 struct ieee80211_if_ap *ap; 335 if (sdata->vif.type != NL80211_IFTYPE_AP) 336 continue; 337 ap = &sdata->u.ap; 338 skb = skb_dequeue(&ap->ps_bc_buf); 339 if (skb) { 340 purged++; 341 dev_kfree_skb(skb); 342 } 343 total += skb_queue_len(&ap->ps_bc_buf); 344 } 345 346 list_for_each_entry_rcu(sta, &local->sta_list, list) { 347 skb = skb_dequeue(&sta->ps_tx_buf); 348 if (skb) { 349 purged++; 350 dev_kfree_skb(skb); 351 } 352 total += skb_queue_len(&sta->ps_tx_buf); 353 } 354 355 rcu_read_unlock(); 356 357 local->total_ps_buffered = total; 358 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 359 wiphy_debug(local->hw.wiphy, "PS buffers full - purged %d frames\n", 360 purged); 361 #endif 362 } 363 364 static ieee80211_tx_result 365 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) 366 { 367 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 368 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 369 370 /* 371 * broadcast/multicast frame 372 * 373 * If any of the associated stations is in power save mode, 374 * the frame is buffered to be sent after DTIM beacon frame. 375 * This is done either by the hardware or us. 376 */ 377 378 /* powersaving STAs only in AP/VLAN mode */ 379 if (!tx->sdata->bss) 380 return TX_CONTINUE; 381 382 /* no buffering for ordered frames */ 383 if (ieee80211_has_order(hdr->frame_control)) 384 return TX_CONTINUE; 385 386 /* no stations in PS mode */ 387 if (!atomic_read(&tx->sdata->bss->num_sta_ps)) 388 return TX_CONTINUE; 389 390 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; 391 392 /* device releases frame after DTIM beacon */ 393 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING)) 394 return TX_CONTINUE; 395 396 /* buffered in mac80211 */ 397 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 398 purge_old_ps_buffers(tx->local); 399 400 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) { 401 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 402 if (net_ratelimit()) 403 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n", 404 tx->sdata->name); 405 #endif 406 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); 407 } else 408 tx->local->total_ps_buffered++; 409 410 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); 411 412 return TX_QUEUED; 413 } 414 415 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta, 416 struct sk_buff *skb) 417 { 418 if (!ieee80211_is_mgmt(fc)) 419 return 0; 420 421 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP)) 422 return 0; 423 424 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) 425 skb->data)) 426 return 0; 427 428 return 1; 429 } 430 431 static ieee80211_tx_result 432 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) 433 { 434 struct sta_info *sta = tx->sta; 435 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 436 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 437 struct ieee80211_local *local = tx->local; 438 u32 staflags; 439 440 if (unlikely(!sta || 441 ieee80211_is_probe_resp(hdr->frame_control) || 442 ieee80211_is_auth(hdr->frame_control) || 443 ieee80211_is_assoc_resp(hdr->frame_control) || 444 ieee80211_is_reassoc_resp(hdr->frame_control))) 445 return TX_CONTINUE; 446 447 staflags = get_sta_flags(sta); 448 449 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) && 450 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) { 451 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 452 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries " 453 "before %d)\n", 454 sta->sta.addr, sta->sta.aid, 455 skb_queue_len(&sta->ps_tx_buf)); 456 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 457 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 458 purge_old_ps_buffers(tx->local); 459 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { 460 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); 461 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 462 if (net_ratelimit()) { 463 printk(KERN_DEBUG "%s: STA %pM TX " 464 "buffer full - dropping oldest frame\n", 465 tx->sdata->name, sta->sta.addr); 466 } 467 #endif 468 dev_kfree_skb(old); 469 } else 470 tx->local->total_ps_buffered++; 471 472 /* 473 * Queue frame to be sent after STA wakes up/polls, 474 * but don't set the TIM bit if the driver is blocking 475 * wakeup or poll response transmissions anyway. 476 */ 477 if (skb_queue_empty(&sta->ps_tx_buf) && 478 !(staflags & WLAN_STA_PS_DRIVER)) 479 sta_info_set_tim_bit(sta); 480 481 info->control.jiffies = jiffies; 482 info->control.vif = &tx->sdata->vif; 483 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 484 skb_queue_tail(&sta->ps_tx_buf, tx->skb); 485 486 if (!timer_pending(&local->sta_cleanup)) 487 mod_timer(&local->sta_cleanup, 488 round_jiffies(jiffies + 489 STA_INFO_CLEANUP_INTERVAL)); 490 491 return TX_QUEUED; 492 } 493 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 494 else if (unlikely(staflags & WLAN_STA_PS_STA)) { 495 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll " 496 "set -> send frame\n", tx->sdata->name, 497 sta->sta.addr); 498 } 499 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 500 501 return TX_CONTINUE; 502 } 503 504 static ieee80211_tx_result debug_noinline 505 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) 506 { 507 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) 508 return TX_CONTINUE; 509 510 if (tx->flags & IEEE80211_TX_UNICAST) 511 return ieee80211_tx_h_unicast_ps_buf(tx); 512 else 513 return ieee80211_tx_h_multicast_ps_buf(tx); 514 } 515 516 static ieee80211_tx_result debug_noinline 517 ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx) 518 { 519 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 520 521 if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol && 522 tx->sdata->control_port_no_encrypt)) 523 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 524 525 return TX_CONTINUE; 526 } 527 528 static ieee80211_tx_result debug_noinline 529 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) 530 { 531 struct ieee80211_key *key = NULL; 532 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 533 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 534 535 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT)) 536 tx->key = NULL; 537 else if (tx->sta && (key = rcu_dereference(tx->sta->ptk))) 538 tx->key = key; 539 else if (ieee80211_is_mgmt(hdr->frame_control) && 540 is_multicast_ether_addr(hdr->addr1) && 541 ieee80211_is_robust_mgmt_frame(hdr) && 542 (key = rcu_dereference(tx->sdata->default_mgmt_key))) 543 tx->key = key; 544 else if (is_multicast_ether_addr(hdr->addr1) && 545 (key = rcu_dereference(tx->sdata->default_multicast_key))) 546 tx->key = key; 547 else if (!is_multicast_ether_addr(hdr->addr1) && 548 (key = rcu_dereference(tx->sdata->default_unicast_key))) 549 tx->key = key; 550 else if (tx->sdata->drop_unencrypted && 551 (tx->skb->protocol != tx->sdata->control_port_protocol) && 552 !(info->flags & IEEE80211_TX_CTL_INJECTED) && 553 (!ieee80211_is_robust_mgmt_frame(hdr) || 554 (ieee80211_is_action(hdr->frame_control) && 555 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) { 556 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); 557 return TX_DROP; 558 } else 559 tx->key = NULL; 560 561 if (tx->key) { 562 bool skip_hw = false; 563 564 tx->key->tx_rx_count++; 565 /* TODO: add threshold stuff again */ 566 567 switch (tx->key->conf.cipher) { 568 case WLAN_CIPHER_SUITE_WEP40: 569 case WLAN_CIPHER_SUITE_WEP104: 570 if (ieee80211_is_auth(hdr->frame_control)) 571 break; 572 case WLAN_CIPHER_SUITE_TKIP: 573 if (!ieee80211_is_data_present(hdr->frame_control)) 574 tx->key = NULL; 575 break; 576 case WLAN_CIPHER_SUITE_CCMP: 577 if (!ieee80211_is_data_present(hdr->frame_control) && 578 !ieee80211_use_mfp(hdr->frame_control, tx->sta, 579 tx->skb)) 580 tx->key = NULL; 581 else 582 skip_hw = (tx->key->conf.flags & 583 IEEE80211_KEY_FLAG_SW_MGMT) && 584 ieee80211_is_mgmt(hdr->frame_control); 585 break; 586 case WLAN_CIPHER_SUITE_AES_CMAC: 587 if (!ieee80211_is_mgmt(hdr->frame_control)) 588 tx->key = NULL; 589 break; 590 } 591 592 if (unlikely(tx->key && tx->key->flags & KEY_FLAG_TAINTED)) 593 return TX_DROP; 594 595 if (!skip_hw && tx->key && 596 tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) 597 info->control.hw_key = &tx->key->conf; 598 } 599 600 return TX_CONTINUE; 601 } 602 603 static ieee80211_tx_result debug_noinline 604 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) 605 { 606 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 607 struct ieee80211_hdr *hdr = (void *)tx->skb->data; 608 struct ieee80211_supported_band *sband; 609 struct ieee80211_rate *rate; 610 int i; 611 u32 len; 612 bool inval = false, rts = false, short_preamble = false; 613 struct ieee80211_tx_rate_control txrc; 614 u32 sta_flags; 615 616 memset(&txrc, 0, sizeof(txrc)); 617 618 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 619 620 len = min_t(u32, tx->skb->len + FCS_LEN, 621 tx->local->hw.wiphy->frag_threshold); 622 623 /* set up the tx rate control struct we give the RC algo */ 624 txrc.hw = local_to_hw(tx->local); 625 txrc.sband = sband; 626 txrc.bss_conf = &tx->sdata->vif.bss_conf; 627 txrc.skb = tx->skb; 628 txrc.reported_rate.idx = -1; 629 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band]; 630 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1) 631 txrc.max_rate_idx = -1; 632 else 633 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; 634 txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP || 635 tx->sdata->vif.type == NL80211_IFTYPE_ADHOC); 636 637 /* set up RTS protection if desired */ 638 if (len > tx->local->hw.wiphy->rts_threshold) { 639 txrc.rts = rts = true; 640 } 641 642 /* 643 * Use short preamble if the BSS can handle it, but not for 644 * management frames unless we know the receiver can handle 645 * that -- the management frame might be to a station that 646 * just wants a probe response. 647 */ 648 if (tx->sdata->vif.bss_conf.use_short_preamble && 649 (ieee80211_is_data(hdr->frame_control) || 650 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE)))) 651 txrc.short_preamble = short_preamble = true; 652 653 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; 654 655 /* 656 * Lets not bother rate control if we're associated and cannot 657 * talk to the sta. This should not happen. 658 */ 659 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && 660 (sta_flags & WLAN_STA_ASSOC) && 661 !rate_usable_index_exists(sband, &tx->sta->sta), 662 "%s: Dropped data frame as no usable bitrate found while " 663 "scanning and associated. Target station: " 664 "%pM on %d GHz band\n", 665 tx->sdata->name, hdr->addr1, 666 tx->channel->band ? 5 : 2)) 667 return TX_DROP; 668 669 /* 670 * If we're associated with the sta at this point we know we can at 671 * least send the frame at the lowest bit rate. 672 */ 673 rate_control_get_rate(tx->sdata, tx->sta, &txrc); 674 675 if (unlikely(info->control.rates[0].idx < 0)) 676 return TX_DROP; 677 678 if (txrc.reported_rate.idx < 0) { 679 txrc.reported_rate = info->control.rates[0]; 680 if (tx->sta && ieee80211_is_data(hdr->frame_control)) 681 tx->sta->last_tx_rate = txrc.reported_rate; 682 } else if (tx->sta) 683 tx->sta->last_tx_rate = txrc.reported_rate; 684 685 if (unlikely(!info->control.rates[0].count)) 686 info->control.rates[0].count = 1; 687 688 if (WARN_ON_ONCE((info->control.rates[0].count > 1) && 689 (info->flags & IEEE80211_TX_CTL_NO_ACK))) 690 info->control.rates[0].count = 1; 691 692 if (is_multicast_ether_addr(hdr->addr1)) { 693 /* 694 * XXX: verify the rate is in the basic rateset 695 */ 696 return TX_CONTINUE; 697 } 698 699 /* 700 * set up the RTS/CTS rate as the fastest basic rate 701 * that is not faster than the data rate 702 * 703 * XXX: Should this check all retry rates? 704 */ 705 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) { 706 s8 baserate = 0; 707 708 rate = &sband->bitrates[info->control.rates[0].idx]; 709 710 for (i = 0; i < sband->n_bitrates; i++) { 711 /* must be a basic rate */ 712 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i))) 713 continue; 714 /* must not be faster than the data rate */ 715 if (sband->bitrates[i].bitrate > rate->bitrate) 716 continue; 717 /* maximum */ 718 if (sband->bitrates[baserate].bitrate < 719 sband->bitrates[i].bitrate) 720 baserate = i; 721 } 722 723 info->control.rts_cts_rate_idx = baserate; 724 } 725 726 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 727 /* 728 * make sure there's no valid rate following 729 * an invalid one, just in case drivers don't 730 * take the API seriously to stop at -1. 731 */ 732 if (inval) { 733 info->control.rates[i].idx = -1; 734 continue; 735 } 736 if (info->control.rates[i].idx < 0) { 737 inval = true; 738 continue; 739 } 740 741 /* 742 * For now assume MCS is already set up correctly, this 743 * needs to be fixed. 744 */ 745 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) { 746 WARN_ON(info->control.rates[i].idx > 76); 747 continue; 748 } 749 750 /* set up RTS protection if desired */ 751 if (rts) 752 info->control.rates[i].flags |= 753 IEEE80211_TX_RC_USE_RTS_CTS; 754 755 /* RC is busted */ 756 if (WARN_ON_ONCE(info->control.rates[i].idx >= 757 sband->n_bitrates)) { 758 info->control.rates[i].idx = -1; 759 continue; 760 } 761 762 rate = &sband->bitrates[info->control.rates[i].idx]; 763 764 /* set up short preamble */ 765 if (short_preamble && 766 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE) 767 info->control.rates[i].flags |= 768 IEEE80211_TX_RC_USE_SHORT_PREAMBLE; 769 770 /* set up G protection */ 771 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot && 772 rate->flags & IEEE80211_RATE_ERP_G) 773 info->control.rates[i].flags |= 774 IEEE80211_TX_RC_USE_CTS_PROTECT; 775 } 776 777 return TX_CONTINUE; 778 } 779 780 static ieee80211_tx_result debug_noinline 781 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) 782 { 783 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 784 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 785 u16 *seq; 786 u8 *qc; 787 int tid; 788 789 /* 790 * Packet injection may want to control the sequence 791 * number, if we have no matching interface then we 792 * neither assign one ourselves nor ask the driver to. 793 */ 794 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR)) 795 return TX_CONTINUE; 796 797 if (unlikely(ieee80211_is_ctl(hdr->frame_control))) 798 return TX_CONTINUE; 799 800 if (ieee80211_hdrlen(hdr->frame_control) < 24) 801 return TX_CONTINUE; 802 803 /* 804 * Anything but QoS data that has a sequence number field 805 * (is long enough) gets a sequence number from the global 806 * counter. 807 */ 808 if (!ieee80211_is_data_qos(hdr->frame_control)) { 809 /* driver should assign sequence number */ 810 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; 811 /* for pure STA mode without beacons, we can do it */ 812 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number); 813 tx->sdata->sequence_number += 0x10; 814 return TX_CONTINUE; 815 } 816 817 /* 818 * This should be true for injected/management frames only, for 819 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ 820 * above since they are not QoS-data frames. 821 */ 822 if (!tx->sta) 823 return TX_CONTINUE; 824 825 /* include per-STA, per-TID sequence counter */ 826 827 qc = ieee80211_get_qos_ctl(hdr); 828 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 829 seq = &tx->sta->tid_seq[tid]; 830 831 hdr->seq_ctrl = cpu_to_le16(*seq); 832 833 /* Increase the sequence number. */ 834 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; 835 836 return TX_CONTINUE; 837 } 838 839 static int ieee80211_fragment(struct ieee80211_local *local, 840 struct sk_buff *skb, int hdrlen, 841 int frag_threshold) 842 { 843 struct sk_buff *tail = skb, *tmp; 844 int per_fragm = frag_threshold - hdrlen - FCS_LEN; 845 int pos = hdrlen + per_fragm; 846 int rem = skb->len - hdrlen - per_fragm; 847 848 if (WARN_ON(rem < 0)) 849 return -EINVAL; 850 851 while (rem) { 852 int fraglen = per_fragm; 853 854 if (fraglen > rem) 855 fraglen = rem; 856 rem -= fraglen; 857 tmp = dev_alloc_skb(local->tx_headroom + 858 frag_threshold + 859 IEEE80211_ENCRYPT_HEADROOM + 860 IEEE80211_ENCRYPT_TAILROOM); 861 if (!tmp) 862 return -ENOMEM; 863 tail->next = tmp; 864 tail = tmp; 865 skb_reserve(tmp, local->tx_headroom + 866 IEEE80211_ENCRYPT_HEADROOM); 867 /* copy control information */ 868 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb)); 869 skb_copy_queue_mapping(tmp, skb); 870 tmp->priority = skb->priority; 871 tmp->dev = skb->dev; 872 873 /* copy header and data */ 874 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen); 875 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen); 876 877 pos += fraglen; 878 } 879 880 skb->len = hdrlen + per_fragm; 881 return 0; 882 } 883 884 static ieee80211_tx_result debug_noinline 885 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) 886 { 887 struct sk_buff *skb = tx->skb; 888 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 889 struct ieee80211_hdr *hdr = (void *)skb->data; 890 int frag_threshold = tx->local->hw.wiphy->frag_threshold; 891 int hdrlen; 892 int fragnum; 893 894 if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) 895 return TX_CONTINUE; 896 897 /* 898 * Warn when submitting a fragmented A-MPDU frame and drop it. 899 * This scenario is handled in ieee80211_tx_prepare but extra 900 * caution taken here as fragmented ampdu may cause Tx stop. 901 */ 902 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) 903 return TX_DROP; 904 905 hdrlen = ieee80211_hdrlen(hdr->frame_control); 906 907 /* internal error, why is TX_FRAGMENTED set? */ 908 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold)) 909 return TX_DROP; 910 911 /* 912 * Now fragment the frame. This will allocate all the fragments and 913 * chain them (using skb as the first fragment) to skb->next. 914 * During transmission, we will remove the successfully transmitted 915 * fragments from this list. When the low-level driver rejects one 916 * of the fragments then we will simply pretend to accept the skb 917 * but store it away as pending. 918 */ 919 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold)) 920 return TX_DROP; 921 922 /* update duration/seq/flags of fragments */ 923 fragnum = 0; 924 do { 925 int next_len; 926 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); 927 928 hdr = (void *)skb->data; 929 info = IEEE80211_SKB_CB(skb); 930 931 if (skb->next) { 932 hdr->frame_control |= morefrags; 933 next_len = skb->next->len; 934 /* 935 * No multi-rate retries for fragmented frames, that 936 * would completely throw off the NAV at other STAs. 937 */ 938 info->control.rates[1].idx = -1; 939 info->control.rates[2].idx = -1; 940 info->control.rates[3].idx = -1; 941 info->control.rates[4].idx = -1; 942 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5); 943 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; 944 } else { 945 hdr->frame_control &= ~morefrags; 946 next_len = 0; 947 } 948 hdr->duration_id = ieee80211_duration(tx, 0, next_len); 949 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG); 950 fragnum++; 951 } while ((skb = skb->next)); 952 953 return TX_CONTINUE; 954 } 955 956 static ieee80211_tx_result debug_noinline 957 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) 958 { 959 struct sk_buff *skb = tx->skb; 960 961 if (!tx->sta) 962 return TX_CONTINUE; 963 964 tx->sta->tx_packets++; 965 do { 966 tx->sta->tx_fragments++; 967 tx->sta->tx_bytes += skb->len; 968 } while ((skb = skb->next)); 969 970 return TX_CONTINUE; 971 } 972 973 static ieee80211_tx_result debug_noinline 974 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) 975 { 976 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 977 978 if (!tx->key) 979 return TX_CONTINUE; 980 981 switch (tx->key->conf.cipher) { 982 case WLAN_CIPHER_SUITE_WEP40: 983 case WLAN_CIPHER_SUITE_WEP104: 984 return ieee80211_crypto_wep_encrypt(tx); 985 case WLAN_CIPHER_SUITE_TKIP: 986 return ieee80211_crypto_tkip_encrypt(tx); 987 case WLAN_CIPHER_SUITE_CCMP: 988 return ieee80211_crypto_ccmp_encrypt(tx); 989 case WLAN_CIPHER_SUITE_AES_CMAC: 990 return ieee80211_crypto_aes_cmac_encrypt(tx); 991 default: 992 /* handle hw-only algorithm */ 993 if (info->control.hw_key) { 994 ieee80211_tx_set_protected(tx); 995 return TX_CONTINUE; 996 } 997 break; 998 999 } 1000 1001 return TX_DROP; 1002 } 1003 1004 static ieee80211_tx_result debug_noinline 1005 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) 1006 { 1007 struct sk_buff *skb = tx->skb; 1008 struct ieee80211_hdr *hdr; 1009 int next_len; 1010 bool group_addr; 1011 1012 do { 1013 hdr = (void *) skb->data; 1014 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) 1015 break; /* must not overwrite AID */ 1016 next_len = skb->next ? skb->next->len : 0; 1017 group_addr = is_multicast_ether_addr(hdr->addr1); 1018 1019 hdr->duration_id = 1020 ieee80211_duration(tx, group_addr, next_len); 1021 } while ((skb = skb->next)); 1022 1023 return TX_CONTINUE; 1024 } 1025 1026 /* actual transmit path */ 1027 1028 /* 1029 * deal with packet injection down monitor interface 1030 * with Radiotap Header -- only called for monitor mode interface 1031 */ 1032 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx, 1033 struct sk_buff *skb) 1034 { 1035 /* 1036 * this is the moment to interpret and discard the radiotap header that 1037 * must be at the start of the packet injected in Monitor mode 1038 * 1039 * Need to take some care with endian-ness since radiotap 1040 * args are little-endian 1041 */ 1042 1043 struct ieee80211_radiotap_iterator iterator; 1044 struct ieee80211_radiotap_header *rthdr = 1045 (struct ieee80211_radiotap_header *) skb->data; 1046 bool hw_frag; 1047 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1048 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len, 1049 NULL); 1050 1051 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1052 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 1053 1054 /* packet is fragmented in HW if we have a non-NULL driver callback */ 1055 hw_frag = (tx->local->ops->set_frag_threshold != NULL); 1056 1057 /* 1058 * for every radiotap entry that is present 1059 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more 1060 * entries present, or -EINVAL on error) 1061 */ 1062 1063 while (!ret) { 1064 ret = ieee80211_radiotap_iterator_next(&iterator); 1065 1066 if (ret) 1067 continue; 1068 1069 /* see if this argument is something we can use */ 1070 switch (iterator.this_arg_index) { 1071 /* 1072 * You must take care when dereferencing iterator.this_arg 1073 * for multibyte types... the pointer is not aligned. Use 1074 * get_unaligned((type *)iterator.this_arg) to dereference 1075 * iterator.this_arg for type "type" safely on all arches. 1076 */ 1077 case IEEE80211_RADIOTAP_FLAGS: 1078 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { 1079 /* 1080 * this indicates that the skb we have been 1081 * handed has the 32-bit FCS CRC at the end... 1082 * we should react to that by snipping it off 1083 * because it will be recomputed and added 1084 * on transmission 1085 */ 1086 if (skb->len < (iterator._max_length + FCS_LEN)) 1087 return false; 1088 1089 skb_trim(skb, skb->len - FCS_LEN); 1090 } 1091 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) 1092 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT; 1093 if ((*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) && 1094 !hw_frag) 1095 tx->flags |= IEEE80211_TX_FRAGMENTED; 1096 break; 1097 1098 /* 1099 * Please update the file 1100 * Documentation/networking/mac80211-injection.txt 1101 * when parsing new fields here. 1102 */ 1103 1104 default: 1105 break; 1106 } 1107 } 1108 1109 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ 1110 return false; 1111 1112 /* 1113 * remove the radiotap header 1114 * iterator->_max_length was sanity-checked against 1115 * skb->len by iterator init 1116 */ 1117 skb_pull(skb, iterator._max_length); 1118 1119 return true; 1120 } 1121 1122 static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx, 1123 struct sk_buff *skb, 1124 struct ieee80211_tx_info *info, 1125 struct tid_ampdu_tx *tid_tx, 1126 int tid) 1127 { 1128 bool queued = false; 1129 1130 if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { 1131 info->flags |= IEEE80211_TX_CTL_AMPDU; 1132 } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) { 1133 /* 1134 * nothing -- this aggregation session is being started 1135 * but that might still fail with the driver 1136 */ 1137 } else { 1138 spin_lock(&tx->sta->lock); 1139 /* 1140 * Need to re-check now, because we may get here 1141 * 1142 * 1) in the window during which the setup is actually 1143 * already done, but not marked yet because not all 1144 * packets are spliced over to the driver pending 1145 * queue yet -- if this happened we acquire the lock 1146 * either before or after the splice happens, but 1147 * need to recheck which of these cases happened. 1148 * 1149 * 2) during session teardown, if the OPERATIONAL bit 1150 * was cleared due to the teardown but the pointer 1151 * hasn't been assigned NULL yet (or we loaded it 1152 * before it was assigned) -- in this case it may 1153 * now be NULL which means we should just let the 1154 * packet pass through because splicing the frames 1155 * back is already done. 1156 */ 1157 tid_tx = rcu_dereference_protected_tid_tx(tx->sta, tid); 1158 1159 if (!tid_tx) { 1160 /* do nothing, let packet pass through */ 1161 } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { 1162 info->flags |= IEEE80211_TX_CTL_AMPDU; 1163 } else { 1164 queued = true; 1165 info->control.vif = &tx->sdata->vif; 1166 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1167 __skb_queue_tail(&tid_tx->pending, skb); 1168 } 1169 spin_unlock(&tx->sta->lock); 1170 } 1171 1172 return queued; 1173 } 1174 1175 /* 1176 * initialises @tx 1177 */ 1178 static ieee80211_tx_result 1179 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata, 1180 struct ieee80211_tx_data *tx, 1181 struct sk_buff *skb) 1182 { 1183 struct ieee80211_local *local = sdata->local; 1184 struct ieee80211_hdr *hdr; 1185 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1186 int hdrlen, tid; 1187 u8 *qc; 1188 1189 memset(tx, 0, sizeof(*tx)); 1190 tx->skb = skb; 1191 tx->local = local; 1192 tx->sdata = sdata; 1193 tx->channel = local->hw.conf.channel; 1194 /* 1195 * Set this flag (used below to indicate "automatic fragmentation"), 1196 * it will be cleared/left by radiotap as desired. 1197 * Only valid when fragmentation is done by the stack. 1198 */ 1199 if (!local->ops->set_frag_threshold) 1200 tx->flags |= IEEE80211_TX_FRAGMENTED; 1201 1202 /* process and remove the injection radiotap header */ 1203 if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) { 1204 if (!__ieee80211_parse_tx_radiotap(tx, skb)) 1205 return TX_DROP; 1206 1207 /* 1208 * __ieee80211_parse_tx_radiotap has now removed 1209 * the radiotap header that was present and pre-filled 1210 * 'tx' with tx control information. 1211 */ 1212 info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP; 1213 } 1214 1215 /* 1216 * If this flag is set to true anywhere, and we get here, 1217 * we are doing the needed processing, so remove the flag 1218 * now. 1219 */ 1220 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1221 1222 hdr = (struct ieee80211_hdr *) skb->data; 1223 1224 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 1225 tx->sta = rcu_dereference(sdata->u.vlan.sta); 1226 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr) 1227 return TX_DROP; 1228 } else if (info->flags & IEEE80211_TX_CTL_INJECTED) { 1229 tx->sta = sta_info_get_bss(sdata, hdr->addr1); 1230 } 1231 if (!tx->sta) 1232 tx->sta = sta_info_get(sdata, hdr->addr1); 1233 1234 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) && 1235 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) { 1236 struct tid_ampdu_tx *tid_tx; 1237 1238 qc = ieee80211_get_qos_ctl(hdr); 1239 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 1240 1241 tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]); 1242 if (tid_tx) { 1243 bool queued; 1244 1245 queued = ieee80211_tx_prep_agg(tx, skb, info, 1246 tid_tx, tid); 1247 1248 if (unlikely(queued)) 1249 return TX_QUEUED; 1250 } 1251 } 1252 1253 if (is_multicast_ether_addr(hdr->addr1)) { 1254 tx->flags &= ~IEEE80211_TX_UNICAST; 1255 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1256 } else { 1257 tx->flags |= IEEE80211_TX_UNICAST; 1258 if (unlikely(local->wifi_wme_noack_test)) 1259 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1260 else 1261 info->flags &= ~IEEE80211_TX_CTL_NO_ACK; 1262 } 1263 1264 if (tx->flags & IEEE80211_TX_FRAGMENTED) { 1265 if ((tx->flags & IEEE80211_TX_UNICAST) && 1266 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold && 1267 !(info->flags & IEEE80211_TX_CTL_AMPDU)) 1268 tx->flags |= IEEE80211_TX_FRAGMENTED; 1269 else 1270 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 1271 } 1272 1273 if (!tx->sta) 1274 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1275 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT)) 1276 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1277 1278 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1279 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { 1280 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; 1281 tx->ethertype = (pos[0] << 8) | pos[1]; 1282 } 1283 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; 1284 1285 return TX_CONTINUE; 1286 } 1287 1288 /* 1289 * Returns false if the frame couldn't be transmitted but was queued instead. 1290 */ 1291 static bool __ieee80211_tx(struct ieee80211_local *local, struct sk_buff **skbp, 1292 struct sta_info *sta, bool txpending) 1293 { 1294 struct sk_buff *skb = *skbp, *next; 1295 struct ieee80211_tx_info *info; 1296 struct ieee80211_sub_if_data *sdata; 1297 unsigned long flags; 1298 int len; 1299 bool fragm = false; 1300 1301 while (skb) { 1302 int q = skb_get_queue_mapping(skb); 1303 __le16 fc; 1304 1305 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 1306 if (local->queue_stop_reasons[q] || 1307 (!txpending && !skb_queue_empty(&local->pending[q]))) { 1308 /* 1309 * Since queue is stopped, queue up frames for later 1310 * transmission from the tx-pending tasklet when the 1311 * queue is woken again. 1312 */ 1313 1314 do { 1315 next = skb->next; 1316 skb->next = NULL; 1317 /* 1318 * NB: If txpending is true, next must already 1319 * be NULL since we must've gone through this 1320 * loop before already; therefore we can just 1321 * queue the frame to the head without worrying 1322 * about reordering of fragments. 1323 */ 1324 if (unlikely(txpending)) 1325 __skb_queue_head(&local->pending[q], 1326 skb); 1327 else 1328 __skb_queue_tail(&local->pending[q], 1329 skb); 1330 } while ((skb = next)); 1331 1332 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 1333 flags); 1334 return false; 1335 } 1336 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 1337 1338 info = IEEE80211_SKB_CB(skb); 1339 1340 if (fragm) 1341 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | 1342 IEEE80211_TX_CTL_FIRST_FRAGMENT); 1343 1344 next = skb->next; 1345 len = skb->len; 1346 1347 if (next) 1348 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES; 1349 1350 sdata = vif_to_sdata(info->control.vif); 1351 1352 switch (sdata->vif.type) { 1353 case NL80211_IFTYPE_MONITOR: 1354 info->control.vif = NULL; 1355 break; 1356 case NL80211_IFTYPE_AP_VLAN: 1357 info->control.vif = &container_of(sdata->bss, 1358 struct ieee80211_sub_if_data, u.ap)->vif; 1359 break; 1360 default: 1361 /* keep */ 1362 break; 1363 } 1364 1365 if (sta && sta->uploaded) 1366 info->control.sta = &sta->sta; 1367 else 1368 info->control.sta = NULL; 1369 1370 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 1371 drv_tx(local, skb); 1372 1373 ieee80211_tpt_led_trig_tx(local, fc, len); 1374 *skbp = skb = next; 1375 ieee80211_led_tx(local, 1); 1376 fragm = true; 1377 } 1378 1379 return true; 1380 } 1381 1382 /* 1383 * Invoke TX handlers, return 0 on success and non-zero if the 1384 * frame was dropped or queued. 1385 */ 1386 static int invoke_tx_handlers(struct ieee80211_tx_data *tx) 1387 { 1388 struct sk_buff *skb = tx->skb; 1389 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1390 ieee80211_tx_result res = TX_DROP; 1391 1392 #define CALL_TXH(txh) \ 1393 do { \ 1394 res = txh(tx); \ 1395 if (res != TX_CONTINUE) \ 1396 goto txh_done; \ 1397 } while (0) 1398 1399 CALL_TXH(ieee80211_tx_h_dynamic_ps); 1400 CALL_TXH(ieee80211_tx_h_check_assoc); 1401 CALL_TXH(ieee80211_tx_h_ps_buf); 1402 CALL_TXH(ieee80211_tx_h_check_control_port_protocol); 1403 CALL_TXH(ieee80211_tx_h_select_key); 1404 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)) 1405 CALL_TXH(ieee80211_tx_h_rate_ctrl); 1406 1407 if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION)) 1408 goto txh_done; 1409 1410 CALL_TXH(ieee80211_tx_h_michael_mic_add); 1411 CALL_TXH(ieee80211_tx_h_sequence); 1412 CALL_TXH(ieee80211_tx_h_fragment); 1413 /* handlers after fragment must be aware of tx info fragmentation! */ 1414 CALL_TXH(ieee80211_tx_h_stats); 1415 CALL_TXH(ieee80211_tx_h_encrypt); 1416 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)) 1417 CALL_TXH(ieee80211_tx_h_calculate_duration); 1418 #undef CALL_TXH 1419 1420 txh_done: 1421 if (unlikely(res == TX_DROP)) { 1422 I802_DEBUG_INC(tx->local->tx_handlers_drop); 1423 while (skb) { 1424 struct sk_buff *next; 1425 1426 next = skb->next; 1427 dev_kfree_skb(skb); 1428 skb = next; 1429 } 1430 return -1; 1431 } else if (unlikely(res == TX_QUEUED)) { 1432 I802_DEBUG_INC(tx->local->tx_handlers_queued); 1433 return -1; 1434 } 1435 1436 return 0; 1437 } 1438 1439 /* 1440 * Returns false if the frame couldn't be transmitted but was queued instead. 1441 */ 1442 static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata, 1443 struct sk_buff *skb, bool txpending) 1444 { 1445 struct ieee80211_local *local = sdata->local; 1446 struct ieee80211_tx_data tx; 1447 ieee80211_tx_result res_prepare; 1448 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1449 bool result = true; 1450 1451 if (unlikely(skb->len < 10)) { 1452 dev_kfree_skb(skb); 1453 return true; 1454 } 1455 1456 rcu_read_lock(); 1457 1458 /* initialises tx */ 1459 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb); 1460 1461 if (unlikely(res_prepare == TX_DROP)) { 1462 dev_kfree_skb(skb); 1463 goto out; 1464 } else if (unlikely(res_prepare == TX_QUEUED)) { 1465 goto out; 1466 } 1467 1468 tx.channel = local->hw.conf.channel; 1469 info->band = tx.channel->band; 1470 1471 if (!invoke_tx_handlers(&tx)) 1472 result = __ieee80211_tx(local, &tx.skb, tx.sta, txpending); 1473 out: 1474 rcu_read_unlock(); 1475 return result; 1476 } 1477 1478 /* device xmit handlers */ 1479 1480 static int ieee80211_skb_resize(struct ieee80211_sub_if_data *sdata, 1481 struct sk_buff *skb, 1482 int head_need, bool may_encrypt) 1483 { 1484 struct ieee80211_local *local = sdata->local; 1485 int tail_need = 0; 1486 1487 if (may_encrypt && sdata->crypto_tx_tailroom_needed_cnt) { 1488 tail_need = IEEE80211_ENCRYPT_TAILROOM; 1489 tail_need -= skb_tailroom(skb); 1490 tail_need = max_t(int, tail_need, 0); 1491 } 1492 1493 if (head_need || tail_need) { 1494 /* Sorry. Can't account for this any more */ 1495 skb_orphan(skb); 1496 } 1497 1498 if (skb_cloned(skb)) 1499 I802_DEBUG_INC(local->tx_expand_skb_head_cloned); 1500 else if (head_need || tail_need) 1501 I802_DEBUG_INC(local->tx_expand_skb_head); 1502 else 1503 return 0; 1504 1505 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { 1506 wiphy_debug(local->hw.wiphy, 1507 "failed to reallocate TX buffer\n"); 1508 return -ENOMEM; 1509 } 1510 1511 /* update truesize too */ 1512 skb->truesize += head_need + tail_need; 1513 1514 return 0; 1515 } 1516 1517 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, 1518 struct sk_buff *skb) 1519 { 1520 struct ieee80211_local *local = sdata->local; 1521 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1522 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1523 struct ieee80211_sub_if_data *tmp_sdata; 1524 int headroom; 1525 bool may_encrypt; 1526 1527 rcu_read_lock(); 1528 1529 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) { 1530 int hdrlen; 1531 u16 len_rthdr; 1532 1533 info->flags |= IEEE80211_TX_CTL_INJECTED | 1534 IEEE80211_TX_INTFL_HAS_RADIOTAP; 1535 1536 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1537 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr); 1538 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1539 1540 /* check the header is complete in the frame */ 1541 if (likely(skb->len >= len_rthdr + hdrlen)) { 1542 /* 1543 * We process outgoing injected frames that have a 1544 * local address we handle as though they are our 1545 * own frames. 1546 * This code here isn't entirely correct, the local 1547 * MAC address is not necessarily enough to find 1548 * the interface to use; for that proper VLAN/WDS 1549 * support we will need a different mechanism. 1550 */ 1551 1552 list_for_each_entry_rcu(tmp_sdata, &local->interfaces, 1553 list) { 1554 if (!ieee80211_sdata_running(tmp_sdata)) 1555 continue; 1556 if (tmp_sdata->vif.type == 1557 NL80211_IFTYPE_MONITOR || 1558 tmp_sdata->vif.type == 1559 NL80211_IFTYPE_AP_VLAN || 1560 tmp_sdata->vif.type == 1561 NL80211_IFTYPE_WDS) 1562 continue; 1563 if (compare_ether_addr(tmp_sdata->vif.addr, 1564 hdr->addr2) == 0) { 1565 sdata = tmp_sdata; 1566 break; 1567 } 1568 } 1569 } 1570 } 1571 1572 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT); 1573 1574 headroom = local->tx_headroom; 1575 if (may_encrypt) 1576 headroom += IEEE80211_ENCRYPT_HEADROOM; 1577 headroom -= skb_headroom(skb); 1578 headroom = max_t(int, 0, headroom); 1579 1580 if (ieee80211_skb_resize(sdata, skb, headroom, may_encrypt)) { 1581 dev_kfree_skb(skb); 1582 rcu_read_unlock(); 1583 return; 1584 } 1585 1586 hdr = (struct ieee80211_hdr *) skb->data; 1587 info->control.vif = &sdata->vif; 1588 1589 if (ieee80211_vif_is_mesh(&sdata->vif) && 1590 ieee80211_is_data(hdr->frame_control) && 1591 !is_multicast_ether_addr(hdr->addr1)) 1592 if (mesh_nexthop_lookup(skb, sdata)) { 1593 /* skb queued: don't free */ 1594 rcu_read_unlock(); 1595 return; 1596 } 1597 1598 ieee80211_set_qos_hdr(local, skb); 1599 ieee80211_tx(sdata, skb, false); 1600 rcu_read_unlock(); 1601 } 1602 1603 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, 1604 struct net_device *dev) 1605 { 1606 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1607 struct ieee80211_channel *chan = local->hw.conf.channel; 1608 struct ieee80211_radiotap_header *prthdr = 1609 (struct ieee80211_radiotap_header *)skb->data; 1610 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1611 u16 len_rthdr; 1612 1613 /* 1614 * Frame injection is not allowed if beaconing is not allowed 1615 * or if we need radar detection. Beaconing is usually not allowed when 1616 * the mode or operation (Adhoc, AP, Mesh) does not support DFS. 1617 * Passive scan is also used in world regulatory domains where 1618 * your country is not known and as such it should be treated as 1619 * NO TX unless the channel is explicitly allowed in which case 1620 * your current regulatory domain would not have the passive scan 1621 * flag. 1622 * 1623 * Since AP mode uses monitor interfaces to inject/TX management 1624 * frames we can make AP mode the exception to this rule once it 1625 * supports radar detection as its implementation can deal with 1626 * radar detection by itself. We can do that later by adding a 1627 * monitor flag interfaces used for AP support. 1628 */ 1629 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR | 1630 IEEE80211_CHAN_PASSIVE_SCAN))) 1631 goto fail; 1632 1633 /* check for not even having the fixed radiotap header part */ 1634 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) 1635 goto fail; /* too short to be possibly valid */ 1636 1637 /* is it a header version we can trust to find length from? */ 1638 if (unlikely(prthdr->it_version)) 1639 goto fail; /* only version 0 is supported */ 1640 1641 /* then there must be a radiotap header with a length we can use */ 1642 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1643 1644 /* does the skb contain enough to deliver on the alleged length? */ 1645 if (unlikely(skb->len < len_rthdr)) 1646 goto fail; /* skb too short for claimed rt header extent */ 1647 1648 /* 1649 * fix up the pointers accounting for the radiotap 1650 * header still being in there. We are being given 1651 * a precooked IEEE80211 header so no need for 1652 * normal processing 1653 */ 1654 skb_set_mac_header(skb, len_rthdr); 1655 /* 1656 * these are just fixed to the end of the rt area since we 1657 * don't have any better information and at this point, nobody cares 1658 */ 1659 skb_set_network_header(skb, len_rthdr); 1660 skb_set_transport_header(skb, len_rthdr); 1661 1662 memset(info, 0, sizeof(*info)); 1663 1664 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; 1665 1666 /* pass the radiotap header up to xmit */ 1667 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb); 1668 return NETDEV_TX_OK; 1669 1670 fail: 1671 dev_kfree_skb(skb); 1672 return NETDEV_TX_OK; /* meaning, we dealt with the skb */ 1673 } 1674 1675 /** 1676 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type 1677 * subinterfaces (wlan#, WDS, and VLAN interfaces) 1678 * @skb: packet to be sent 1679 * @dev: incoming interface 1680 * 1681 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will 1682 * not be freed, and caller is responsible for either retrying later or freeing 1683 * skb). 1684 * 1685 * This function takes in an Ethernet header and encapsulates it with suitable 1686 * IEEE 802.11 header based on which interface the packet is coming in. The 1687 * encapsulated packet will then be passed to master interface, wlan#.11, for 1688 * transmission (through low-level driver). 1689 */ 1690 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb, 1691 struct net_device *dev) 1692 { 1693 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1694 struct ieee80211_local *local = sdata->local; 1695 struct ieee80211_tx_info *info; 1696 int ret = NETDEV_TX_BUSY, head_need; 1697 u16 ethertype, hdrlen, meshhdrlen = 0; 1698 __le16 fc; 1699 struct ieee80211_hdr hdr; 1700 struct ieee80211s_hdr mesh_hdr __maybe_unused; 1701 struct mesh_path __maybe_unused *mppath = NULL; 1702 const u8 *encaps_data; 1703 int encaps_len, skip_header_bytes; 1704 int nh_pos, h_pos; 1705 struct sta_info *sta = NULL; 1706 u32 sta_flags = 0; 1707 struct sk_buff *tmp_skb; 1708 1709 if (unlikely(skb->len < ETH_HLEN)) { 1710 ret = NETDEV_TX_OK; 1711 goto fail; 1712 } 1713 1714 /* convert Ethernet header to proper 802.11 header (based on 1715 * operation mode) */ 1716 ethertype = (skb->data[12] << 8) | skb->data[13]; 1717 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 1718 1719 switch (sdata->vif.type) { 1720 case NL80211_IFTYPE_AP_VLAN: 1721 rcu_read_lock(); 1722 sta = rcu_dereference(sdata->u.vlan.sta); 1723 if (sta) { 1724 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1725 /* RA TA DA SA */ 1726 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN); 1727 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1728 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1729 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1730 hdrlen = 30; 1731 sta_flags = get_sta_flags(sta); 1732 } 1733 rcu_read_unlock(); 1734 if (sta) 1735 break; 1736 /* fall through */ 1737 case NL80211_IFTYPE_AP: 1738 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 1739 /* DA BSSID SA */ 1740 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1741 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1742 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 1743 hdrlen = 24; 1744 break; 1745 case NL80211_IFTYPE_WDS: 1746 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1747 /* RA TA DA SA */ 1748 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); 1749 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1750 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1751 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1752 hdrlen = 30; 1753 break; 1754 #ifdef CONFIG_MAC80211_MESH 1755 case NL80211_IFTYPE_MESH_POINT: 1756 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) { 1757 /* Do not send frames with mesh_ttl == 0 */ 1758 sdata->u.mesh.mshstats.dropped_frames_ttl++; 1759 ret = NETDEV_TX_OK; 1760 goto fail; 1761 } 1762 rcu_read_lock(); 1763 if (!is_multicast_ether_addr(skb->data)) 1764 mppath = mpp_path_lookup(skb->data, sdata); 1765 1766 /* 1767 * Use address extension if it is a packet from 1768 * another interface or if we know the destination 1769 * is being proxied by a portal (i.e. portal address 1770 * differs from proxied address) 1771 */ 1772 if (compare_ether_addr(sdata->vif.addr, 1773 skb->data + ETH_ALEN) == 0 && 1774 !(mppath && compare_ether_addr(mppath->mpp, skb->data))) { 1775 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, 1776 skb->data, skb->data + ETH_ALEN); 1777 rcu_read_unlock(); 1778 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, 1779 sdata, NULL, NULL); 1780 } else { 1781 int is_mesh_mcast = 1; 1782 const u8 *mesh_da; 1783 1784 if (is_multicast_ether_addr(skb->data)) 1785 /* DA TA mSA AE:SA */ 1786 mesh_da = skb->data; 1787 else { 1788 static const u8 bcast[ETH_ALEN] = 1789 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1790 if (mppath) { 1791 /* RA TA mDA mSA AE:DA SA */ 1792 mesh_da = mppath->mpp; 1793 is_mesh_mcast = 0; 1794 } else { 1795 /* DA TA mSA AE:SA */ 1796 mesh_da = bcast; 1797 } 1798 } 1799 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, 1800 mesh_da, sdata->vif.addr); 1801 rcu_read_unlock(); 1802 if (is_mesh_mcast) 1803 meshhdrlen = 1804 ieee80211_new_mesh_header(&mesh_hdr, 1805 sdata, 1806 skb->data + ETH_ALEN, 1807 NULL); 1808 else 1809 meshhdrlen = 1810 ieee80211_new_mesh_header(&mesh_hdr, 1811 sdata, 1812 skb->data, 1813 skb->data + ETH_ALEN); 1814 1815 } 1816 break; 1817 #endif 1818 case NL80211_IFTYPE_STATION: 1819 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN); 1820 if (sdata->u.mgd.use_4addr && 1821 cpu_to_be16(ethertype) != sdata->control_port_protocol) { 1822 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1823 /* RA TA DA SA */ 1824 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1825 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1826 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1827 hdrlen = 30; 1828 } else { 1829 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 1830 /* BSSID SA DA */ 1831 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1832 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1833 hdrlen = 24; 1834 } 1835 break; 1836 case NL80211_IFTYPE_ADHOC: 1837 /* DA SA BSSID */ 1838 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1839 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1840 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN); 1841 hdrlen = 24; 1842 break; 1843 default: 1844 ret = NETDEV_TX_OK; 1845 goto fail; 1846 } 1847 1848 /* 1849 * There's no need to try to look up the destination 1850 * if it is a multicast address (which can only happen 1851 * in AP mode) 1852 */ 1853 if (!is_multicast_ether_addr(hdr.addr1)) { 1854 rcu_read_lock(); 1855 sta = sta_info_get(sdata, hdr.addr1); 1856 if (sta) 1857 sta_flags = get_sta_flags(sta); 1858 rcu_read_unlock(); 1859 } 1860 1861 /* receiver and we are QoS enabled, use a QoS type frame */ 1862 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) { 1863 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1864 hdrlen += 2; 1865 } 1866 1867 /* 1868 * Drop unicast frames to unauthorised stations unless they are 1869 * EAPOL frames from the local station. 1870 */ 1871 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1872 unlikely(!is_multicast_ether_addr(hdr.addr1) && 1873 !(sta_flags & WLAN_STA_AUTHORIZED) && 1874 !(cpu_to_be16(ethertype) == sdata->control_port_protocol && 1875 compare_ether_addr(sdata->vif.addr, 1876 skb->data + ETH_ALEN) == 0))) { 1877 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1878 if (net_ratelimit()) 1879 printk(KERN_DEBUG "%s: dropped frame to %pM" 1880 " (unauthorized port)\n", dev->name, 1881 hdr.addr1); 1882 #endif 1883 1884 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); 1885 1886 ret = NETDEV_TX_OK; 1887 goto fail; 1888 } 1889 1890 /* 1891 * If the skb is shared we need to obtain our own copy. 1892 */ 1893 if (skb_shared(skb)) { 1894 tmp_skb = skb; 1895 skb = skb_clone(skb, GFP_ATOMIC); 1896 kfree_skb(tmp_skb); 1897 1898 if (!skb) { 1899 ret = NETDEV_TX_OK; 1900 goto fail; 1901 } 1902 } 1903 1904 hdr.frame_control = fc; 1905 hdr.duration_id = 0; 1906 hdr.seq_ctrl = 0; 1907 1908 skip_header_bytes = ETH_HLEN; 1909 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 1910 encaps_data = bridge_tunnel_header; 1911 encaps_len = sizeof(bridge_tunnel_header); 1912 skip_header_bytes -= 2; 1913 } else if (ethertype >= 0x600) { 1914 encaps_data = rfc1042_header; 1915 encaps_len = sizeof(rfc1042_header); 1916 skip_header_bytes -= 2; 1917 } else { 1918 encaps_data = NULL; 1919 encaps_len = 0; 1920 } 1921 1922 nh_pos = skb_network_header(skb) - skb->data; 1923 h_pos = skb_transport_header(skb) - skb->data; 1924 1925 skb_pull(skb, skip_header_bytes); 1926 nh_pos -= skip_header_bytes; 1927 h_pos -= skip_header_bytes; 1928 1929 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); 1930 1931 /* 1932 * So we need to modify the skb header and hence need a copy of 1933 * that. The head_need variable above doesn't, so far, include 1934 * the needed header space that we don't need right away. If we 1935 * can, then we don't reallocate right now but only after the 1936 * frame arrives at the master device (if it does...) 1937 * 1938 * If we cannot, however, then we will reallocate to include all 1939 * the ever needed space. Also, if we need to reallocate it anyway, 1940 * make it big enough for everything we may ever need. 1941 */ 1942 1943 if (head_need > 0 || skb_cloned(skb)) { 1944 head_need += IEEE80211_ENCRYPT_HEADROOM; 1945 head_need += local->tx_headroom; 1946 head_need = max_t(int, 0, head_need); 1947 if (ieee80211_skb_resize(sdata, skb, head_need, true)) 1948 goto fail; 1949 } 1950 1951 if (encaps_data) { 1952 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 1953 nh_pos += encaps_len; 1954 h_pos += encaps_len; 1955 } 1956 1957 #ifdef CONFIG_MAC80211_MESH 1958 if (meshhdrlen > 0) { 1959 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); 1960 nh_pos += meshhdrlen; 1961 h_pos += meshhdrlen; 1962 } 1963 #endif 1964 1965 if (ieee80211_is_data_qos(fc)) { 1966 __le16 *qos_control; 1967 1968 qos_control = (__le16*) skb_push(skb, 2); 1969 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); 1970 /* 1971 * Maybe we could actually set some fields here, for now just 1972 * initialise to zero to indicate no special operation. 1973 */ 1974 *qos_control = 0; 1975 } else 1976 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 1977 1978 nh_pos += hdrlen; 1979 h_pos += hdrlen; 1980 1981 dev->stats.tx_packets++; 1982 dev->stats.tx_bytes += skb->len; 1983 1984 /* Update skb pointers to various headers since this modified frame 1985 * is going to go through Linux networking code that may potentially 1986 * need things like pointer to IP header. */ 1987 skb_set_mac_header(skb, 0); 1988 skb_set_network_header(skb, nh_pos); 1989 skb_set_transport_header(skb, h_pos); 1990 1991 info = IEEE80211_SKB_CB(skb); 1992 memset(info, 0, sizeof(*info)); 1993 1994 dev->trans_start = jiffies; 1995 ieee80211_xmit(sdata, skb); 1996 1997 return NETDEV_TX_OK; 1998 1999 fail: 2000 if (ret == NETDEV_TX_OK) 2001 dev_kfree_skb(skb); 2002 2003 return ret; 2004 } 2005 2006 2007 /* 2008 * ieee80211_clear_tx_pending may not be called in a context where 2009 * it is possible that it packets could come in again. 2010 */ 2011 void ieee80211_clear_tx_pending(struct ieee80211_local *local) 2012 { 2013 int i; 2014 2015 for (i = 0; i < local->hw.queues; i++) 2016 skb_queue_purge(&local->pending[i]); 2017 } 2018 2019 /* 2020 * Returns false if the frame couldn't be transmitted but was queued instead, 2021 * which in this case means re-queued -- take as an indication to stop sending 2022 * more pending frames. 2023 */ 2024 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local, 2025 struct sk_buff *skb) 2026 { 2027 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2028 struct ieee80211_sub_if_data *sdata; 2029 struct sta_info *sta; 2030 struct ieee80211_hdr *hdr; 2031 bool result; 2032 2033 sdata = vif_to_sdata(info->control.vif); 2034 2035 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) { 2036 result = ieee80211_tx(sdata, skb, true); 2037 } else { 2038 hdr = (struct ieee80211_hdr *)skb->data; 2039 sta = sta_info_get(sdata, hdr->addr1); 2040 2041 result = __ieee80211_tx(local, &skb, sta, true); 2042 } 2043 2044 return result; 2045 } 2046 2047 /* 2048 * Transmit all pending packets. Called from tasklet. 2049 */ 2050 void ieee80211_tx_pending(unsigned long data) 2051 { 2052 struct ieee80211_local *local = (struct ieee80211_local *)data; 2053 struct ieee80211_sub_if_data *sdata; 2054 unsigned long flags; 2055 int i; 2056 bool txok; 2057 2058 rcu_read_lock(); 2059 2060 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 2061 for (i = 0; i < local->hw.queues; i++) { 2062 /* 2063 * If queue is stopped by something other than due to pending 2064 * frames, or we have no pending frames, proceed to next queue. 2065 */ 2066 if (local->queue_stop_reasons[i] || 2067 skb_queue_empty(&local->pending[i])) 2068 continue; 2069 2070 while (!skb_queue_empty(&local->pending[i])) { 2071 struct sk_buff *skb = __skb_dequeue(&local->pending[i]); 2072 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2073 2074 if (WARN_ON(!info->control.vif)) { 2075 kfree_skb(skb); 2076 continue; 2077 } 2078 2079 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 2080 flags); 2081 2082 txok = ieee80211_tx_pending_skb(local, skb); 2083 spin_lock_irqsave(&local->queue_stop_reason_lock, 2084 flags); 2085 if (!txok) 2086 break; 2087 } 2088 2089 if (skb_queue_empty(&local->pending[i])) 2090 list_for_each_entry_rcu(sdata, &local->interfaces, list) 2091 netif_wake_subqueue(sdata->dev, i); 2092 } 2093 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 2094 2095 rcu_read_unlock(); 2096 } 2097 2098 /* functions for drivers to get certain frames */ 2099 2100 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss, 2101 struct sk_buff *skb, 2102 struct beacon_data *beacon) 2103 { 2104 u8 *pos, *tim; 2105 int aid0 = 0; 2106 int i, have_bits = 0, n1, n2; 2107 2108 /* Generate bitmap for TIM only if there are any STAs in power save 2109 * mode. */ 2110 if (atomic_read(&bss->num_sta_ps) > 0) 2111 /* in the hope that this is faster than 2112 * checking byte-for-byte */ 2113 have_bits = !bitmap_empty((unsigned long*)bss->tim, 2114 IEEE80211_MAX_AID+1); 2115 2116 if (bss->dtim_count == 0) 2117 bss->dtim_count = beacon->dtim_period - 1; 2118 else 2119 bss->dtim_count--; 2120 2121 tim = pos = (u8 *) skb_put(skb, 6); 2122 *pos++ = WLAN_EID_TIM; 2123 *pos++ = 4; 2124 *pos++ = bss->dtim_count; 2125 *pos++ = beacon->dtim_period; 2126 2127 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) 2128 aid0 = 1; 2129 2130 bss->dtim_bc_mc = aid0 == 1; 2131 2132 if (have_bits) { 2133 /* Find largest even number N1 so that bits numbered 1 through 2134 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits 2135 * (N2 + 1) x 8 through 2007 are 0. */ 2136 n1 = 0; 2137 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { 2138 if (bss->tim[i]) { 2139 n1 = i & 0xfe; 2140 break; 2141 } 2142 } 2143 n2 = n1; 2144 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { 2145 if (bss->tim[i]) { 2146 n2 = i; 2147 break; 2148 } 2149 } 2150 2151 /* Bitmap control */ 2152 *pos++ = n1 | aid0; 2153 /* Part Virt Bitmap */ 2154 memcpy(pos, bss->tim + n1, n2 - n1 + 1); 2155 2156 tim[1] = n2 - n1 + 4; 2157 skb_put(skb, n2 - n1); 2158 } else { 2159 *pos++ = aid0; /* Bitmap control */ 2160 *pos++ = 0; /* Part Virt Bitmap */ 2161 } 2162 } 2163 2164 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, 2165 struct ieee80211_vif *vif, 2166 u16 *tim_offset, u16 *tim_length) 2167 { 2168 struct ieee80211_local *local = hw_to_local(hw); 2169 struct sk_buff *skb = NULL; 2170 struct ieee80211_tx_info *info; 2171 struct ieee80211_sub_if_data *sdata = NULL; 2172 struct ieee80211_if_ap *ap = NULL; 2173 struct beacon_data *beacon; 2174 struct ieee80211_supported_band *sband; 2175 enum ieee80211_band band = local->hw.conf.channel->band; 2176 struct ieee80211_tx_rate_control txrc; 2177 2178 sband = local->hw.wiphy->bands[band]; 2179 2180 rcu_read_lock(); 2181 2182 sdata = vif_to_sdata(vif); 2183 2184 if (!ieee80211_sdata_running(sdata)) 2185 goto out; 2186 2187 if (tim_offset) 2188 *tim_offset = 0; 2189 if (tim_length) 2190 *tim_length = 0; 2191 2192 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2193 ap = &sdata->u.ap; 2194 beacon = rcu_dereference(ap->beacon); 2195 if (beacon) { 2196 /* 2197 * headroom, head length, 2198 * tail length and maximum TIM length 2199 */ 2200 skb = dev_alloc_skb(local->tx_headroom + 2201 beacon->head_len + 2202 beacon->tail_len + 256); 2203 if (!skb) 2204 goto out; 2205 2206 skb_reserve(skb, local->tx_headroom); 2207 memcpy(skb_put(skb, beacon->head_len), beacon->head, 2208 beacon->head_len); 2209 2210 /* 2211 * Not very nice, but we want to allow the driver to call 2212 * ieee80211_beacon_get() as a response to the set_tim() 2213 * callback. That, however, is already invoked under the 2214 * sta_lock to guarantee consistent and race-free update 2215 * of the tim bitmap in mac80211 and the driver. 2216 */ 2217 if (local->tim_in_locked_section) { 2218 ieee80211_beacon_add_tim(ap, skb, beacon); 2219 } else { 2220 unsigned long flags; 2221 2222 spin_lock_irqsave(&local->sta_lock, flags); 2223 ieee80211_beacon_add_tim(ap, skb, beacon); 2224 spin_unlock_irqrestore(&local->sta_lock, flags); 2225 } 2226 2227 if (tim_offset) 2228 *tim_offset = beacon->head_len; 2229 if (tim_length) 2230 *tim_length = skb->len - beacon->head_len; 2231 2232 if (beacon->tail) 2233 memcpy(skb_put(skb, beacon->tail_len), 2234 beacon->tail, beacon->tail_len); 2235 } else 2236 goto out; 2237 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 2238 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 2239 struct ieee80211_hdr *hdr; 2240 struct sk_buff *presp = rcu_dereference(ifibss->presp); 2241 2242 if (!presp) 2243 goto out; 2244 2245 skb = skb_copy(presp, GFP_ATOMIC); 2246 if (!skb) 2247 goto out; 2248 2249 hdr = (struct ieee80211_hdr *) skb->data; 2250 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2251 IEEE80211_STYPE_BEACON); 2252 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 2253 struct ieee80211_mgmt *mgmt; 2254 u8 *pos; 2255 2256 #ifdef CONFIG_MAC80211_MESH 2257 if (!sdata->u.mesh.mesh_id_len) 2258 goto out; 2259 #endif 2260 2261 /* headroom, head length, tail length and maximum TIM length */ 2262 skb = dev_alloc_skb(local->tx_headroom + 400 + 2263 sdata->u.mesh.ie_len); 2264 if (!skb) 2265 goto out; 2266 2267 skb_reserve(skb, local->hw.extra_tx_headroom); 2268 mgmt = (struct ieee80211_mgmt *) 2269 skb_put(skb, 24 + sizeof(mgmt->u.beacon)); 2270 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon)); 2271 mgmt->frame_control = 2272 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); 2273 memset(mgmt->da, 0xff, ETH_ALEN); 2274 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 2275 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 2276 mgmt->u.beacon.beacon_int = 2277 cpu_to_le16(sdata->vif.bss_conf.beacon_int); 2278 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */ 2279 2280 pos = skb_put(skb, 2); 2281 *pos++ = WLAN_EID_SSID; 2282 *pos++ = 0x0; 2283 2284 mesh_mgmt_ies_add(skb, sdata); 2285 } else { 2286 WARN_ON(1); 2287 goto out; 2288 } 2289 2290 info = IEEE80211_SKB_CB(skb); 2291 2292 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2293 info->flags |= IEEE80211_TX_CTL_NO_ACK; 2294 info->band = band; 2295 2296 memset(&txrc, 0, sizeof(txrc)); 2297 txrc.hw = hw; 2298 txrc.sband = sband; 2299 txrc.bss_conf = &sdata->vif.bss_conf; 2300 txrc.skb = skb; 2301 txrc.reported_rate.idx = -1; 2302 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band]; 2303 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1) 2304 txrc.max_rate_idx = -1; 2305 else 2306 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; 2307 txrc.bss = true; 2308 rate_control_get_rate(sdata, NULL, &txrc); 2309 2310 info->control.vif = vif; 2311 2312 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT | 2313 IEEE80211_TX_CTL_ASSIGN_SEQ | 2314 IEEE80211_TX_CTL_FIRST_FRAGMENT; 2315 out: 2316 rcu_read_unlock(); 2317 return skb; 2318 } 2319 EXPORT_SYMBOL(ieee80211_beacon_get_tim); 2320 2321 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, 2322 struct ieee80211_vif *vif) 2323 { 2324 struct ieee80211_sub_if_data *sdata; 2325 struct ieee80211_if_managed *ifmgd; 2326 struct ieee80211_pspoll *pspoll; 2327 struct ieee80211_local *local; 2328 struct sk_buff *skb; 2329 2330 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2331 return NULL; 2332 2333 sdata = vif_to_sdata(vif); 2334 ifmgd = &sdata->u.mgd; 2335 local = sdata->local; 2336 2337 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll)); 2338 if (!skb) { 2339 printk(KERN_DEBUG "%s: failed to allocate buffer for " 2340 "pspoll template\n", sdata->name); 2341 return NULL; 2342 } 2343 skb_reserve(skb, local->hw.extra_tx_headroom); 2344 2345 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll)); 2346 memset(pspoll, 0, sizeof(*pspoll)); 2347 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | 2348 IEEE80211_STYPE_PSPOLL); 2349 pspoll->aid = cpu_to_le16(ifmgd->aid); 2350 2351 /* aid in PS-Poll has its two MSBs each set to 1 */ 2352 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14); 2353 2354 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN); 2355 memcpy(pspoll->ta, vif->addr, ETH_ALEN); 2356 2357 return skb; 2358 } 2359 EXPORT_SYMBOL(ieee80211_pspoll_get); 2360 2361 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, 2362 struct ieee80211_vif *vif) 2363 { 2364 struct ieee80211_hdr_3addr *nullfunc; 2365 struct ieee80211_sub_if_data *sdata; 2366 struct ieee80211_if_managed *ifmgd; 2367 struct ieee80211_local *local; 2368 struct sk_buff *skb; 2369 2370 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2371 return NULL; 2372 2373 sdata = vif_to_sdata(vif); 2374 ifmgd = &sdata->u.mgd; 2375 local = sdata->local; 2376 2377 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc)); 2378 if (!skb) { 2379 printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc " 2380 "template\n", sdata->name); 2381 return NULL; 2382 } 2383 skb_reserve(skb, local->hw.extra_tx_headroom); 2384 2385 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb, 2386 sizeof(*nullfunc)); 2387 memset(nullfunc, 0, sizeof(*nullfunc)); 2388 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA | 2389 IEEE80211_STYPE_NULLFUNC | 2390 IEEE80211_FCTL_TODS); 2391 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN); 2392 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN); 2393 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN); 2394 2395 return skb; 2396 } 2397 EXPORT_SYMBOL(ieee80211_nullfunc_get); 2398 2399 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, 2400 struct ieee80211_vif *vif, 2401 const u8 *ssid, size_t ssid_len, 2402 const u8 *ie, size_t ie_len) 2403 { 2404 struct ieee80211_sub_if_data *sdata; 2405 struct ieee80211_local *local; 2406 struct ieee80211_hdr_3addr *hdr; 2407 struct sk_buff *skb; 2408 size_t ie_ssid_len; 2409 u8 *pos; 2410 2411 sdata = vif_to_sdata(vif); 2412 local = sdata->local; 2413 ie_ssid_len = 2 + ssid_len; 2414 2415 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) + 2416 ie_ssid_len + ie_len); 2417 if (!skb) { 2418 printk(KERN_DEBUG "%s: failed to allocate buffer for probe " 2419 "request template\n", sdata->name); 2420 return NULL; 2421 } 2422 2423 skb_reserve(skb, local->hw.extra_tx_headroom); 2424 2425 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr)); 2426 memset(hdr, 0, sizeof(*hdr)); 2427 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2428 IEEE80211_STYPE_PROBE_REQ); 2429 memset(hdr->addr1, 0xff, ETH_ALEN); 2430 memcpy(hdr->addr2, vif->addr, ETH_ALEN); 2431 memset(hdr->addr3, 0xff, ETH_ALEN); 2432 2433 pos = skb_put(skb, ie_ssid_len); 2434 *pos++ = WLAN_EID_SSID; 2435 *pos++ = ssid_len; 2436 if (ssid) 2437 memcpy(pos, ssid, ssid_len); 2438 pos += ssid_len; 2439 2440 if (ie) { 2441 pos = skb_put(skb, ie_len); 2442 memcpy(pos, ie, ie_len); 2443 } 2444 2445 return skb; 2446 } 2447 EXPORT_SYMBOL(ieee80211_probereq_get); 2448 2449 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2450 const void *frame, size_t frame_len, 2451 const struct ieee80211_tx_info *frame_txctl, 2452 struct ieee80211_rts *rts) 2453 { 2454 const struct ieee80211_hdr *hdr = frame; 2455 2456 rts->frame_control = 2457 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); 2458 rts->duration = ieee80211_rts_duration(hw, vif, frame_len, 2459 frame_txctl); 2460 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); 2461 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); 2462 } 2463 EXPORT_SYMBOL(ieee80211_rts_get); 2464 2465 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2466 const void *frame, size_t frame_len, 2467 const struct ieee80211_tx_info *frame_txctl, 2468 struct ieee80211_cts *cts) 2469 { 2470 const struct ieee80211_hdr *hdr = frame; 2471 2472 cts->frame_control = 2473 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); 2474 cts->duration = ieee80211_ctstoself_duration(hw, vif, 2475 frame_len, frame_txctl); 2476 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); 2477 } 2478 EXPORT_SYMBOL(ieee80211_ctstoself_get); 2479 2480 struct sk_buff * 2481 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, 2482 struct ieee80211_vif *vif) 2483 { 2484 struct ieee80211_local *local = hw_to_local(hw); 2485 struct sk_buff *skb = NULL; 2486 struct ieee80211_tx_data tx; 2487 struct ieee80211_sub_if_data *sdata; 2488 struct ieee80211_if_ap *bss = NULL; 2489 struct beacon_data *beacon; 2490 struct ieee80211_tx_info *info; 2491 2492 sdata = vif_to_sdata(vif); 2493 bss = &sdata->u.ap; 2494 2495 rcu_read_lock(); 2496 beacon = rcu_dereference(bss->beacon); 2497 2498 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head) 2499 goto out; 2500 2501 if (bss->dtim_count != 0 || !bss->dtim_bc_mc) 2502 goto out; /* send buffered bc/mc only after DTIM beacon */ 2503 2504 while (1) { 2505 skb = skb_dequeue(&bss->ps_bc_buf); 2506 if (!skb) 2507 goto out; 2508 local->total_ps_buffered--; 2509 2510 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { 2511 struct ieee80211_hdr *hdr = 2512 (struct ieee80211_hdr *) skb->data; 2513 /* more buffered multicast/broadcast frames ==> set 2514 * MoreData flag in IEEE 802.11 header to inform PS 2515 * STAs */ 2516 hdr->frame_control |= 2517 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 2518 } 2519 2520 if (!ieee80211_tx_prepare(sdata, &tx, skb)) 2521 break; 2522 dev_kfree_skb_any(skb); 2523 } 2524 2525 info = IEEE80211_SKB_CB(skb); 2526 2527 tx.flags |= IEEE80211_TX_PS_BUFFERED; 2528 tx.channel = local->hw.conf.channel; 2529 info->band = tx.channel->band; 2530 2531 if (invoke_tx_handlers(&tx)) 2532 skb = NULL; 2533 out: 2534 rcu_read_unlock(); 2535 2536 return skb; 2537 } 2538 EXPORT_SYMBOL(ieee80211_get_buffered_bc); 2539 2540 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) 2541 { 2542 skb_set_mac_header(skb, 0); 2543 skb_set_network_header(skb, 0); 2544 skb_set_transport_header(skb, 0); 2545 2546 /* Send all internal mgmt frames on VO. Accordingly set TID to 7. */ 2547 skb_set_queue_mapping(skb, IEEE80211_AC_VO); 2548 skb->priority = 7; 2549 2550 /* 2551 * The other path calling ieee80211_xmit is from the tasklet, 2552 * and while we can handle concurrent transmissions locking 2553 * requirements are that we do not come into tx with bhs on. 2554 */ 2555 local_bh_disable(); 2556 ieee80211_xmit(sdata, skb); 2557 local_bh_enable(); 2558 } 2559