1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2004, Instant802 Networks, Inc. 4 * Copyright 2005, Devicescape Software, Inc. 5 * Copyright (C) 2016 Intel Deutschland GmbH 6 */ 7 #include <linux/kernel.h> 8 #include <linux/bitops.h> 9 #include <linux/types.h> 10 #include <linux/netdevice.h> 11 #include <linux/export.h> 12 #include <asm/unaligned.h> 13 14 #include <net/mac80211.h> 15 #include "driver-ops.h" 16 #include "key.h" 17 #include "tkip.h" 18 #include "wep.h" 19 20 #define PHASE1_LOOP_COUNT 8 21 22 /* 23 * 2-byte by 2-byte subset of the full AES S-box table; second part of this 24 * table is identical to first part but byte-swapped 25 */ 26 static const u16 tkip_sbox[256] = 27 { 28 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154, 29 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A, 30 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B, 31 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B, 32 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F, 33 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F, 34 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5, 35 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F, 36 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB, 37 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397, 38 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED, 39 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A, 40 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194, 41 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3, 42 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104, 43 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D, 44 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39, 45 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695, 46 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83, 47 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76, 48 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4, 49 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B, 50 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0, 51 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018, 52 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751, 53 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85, 54 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12, 55 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9, 56 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7, 57 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A, 58 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8, 59 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A, 60 }; 61 62 static u16 tkipS(u16 val) 63 { 64 return tkip_sbox[val & 0xff] ^ swab16(tkip_sbox[val >> 8]); 65 } 66 67 static u8 *write_tkip_iv(u8 *pos, u16 iv16) 68 { 69 *pos++ = iv16 >> 8; 70 *pos++ = ((iv16 >> 8) | 0x20) & 0x7f; 71 *pos++ = iv16 & 0xFF; 72 return pos; 73 } 74 75 /* 76 * P1K := Phase1(TA, TK, TSC) 77 * TA = transmitter address (48 bits) 78 * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits) 79 * TSC = TKIP sequence counter (48 bits, only 32 msb bits used) 80 * P1K: 80 bits 81 */ 82 static void tkip_mixing_phase1(const u8 *tk, struct tkip_ctx *ctx, 83 const u8 *ta, u32 tsc_IV32) 84 { 85 int i, j; 86 u16 *p1k = ctx->p1k; 87 88 p1k[0] = tsc_IV32 & 0xFFFF; 89 p1k[1] = tsc_IV32 >> 16; 90 p1k[2] = get_unaligned_le16(ta + 0); 91 p1k[3] = get_unaligned_le16(ta + 2); 92 p1k[4] = get_unaligned_le16(ta + 4); 93 94 for (i = 0; i < PHASE1_LOOP_COUNT; i++) { 95 j = 2 * (i & 1); 96 p1k[0] += tkipS(p1k[4] ^ get_unaligned_le16(tk + 0 + j)); 97 p1k[1] += tkipS(p1k[0] ^ get_unaligned_le16(tk + 4 + j)); 98 p1k[2] += tkipS(p1k[1] ^ get_unaligned_le16(tk + 8 + j)); 99 p1k[3] += tkipS(p1k[2] ^ get_unaligned_le16(tk + 12 + j)); 100 p1k[4] += tkipS(p1k[3] ^ get_unaligned_le16(tk + 0 + j)) + i; 101 } 102 ctx->state = TKIP_STATE_PHASE1_DONE; 103 ctx->p1k_iv32 = tsc_IV32; 104 } 105 106 static void tkip_mixing_phase2(const u8 *tk, struct tkip_ctx *ctx, 107 u16 tsc_IV16, u8 *rc4key) 108 { 109 u16 ppk[6]; 110 const u16 *p1k = ctx->p1k; 111 int i; 112 113 ppk[0] = p1k[0]; 114 ppk[1] = p1k[1]; 115 ppk[2] = p1k[2]; 116 ppk[3] = p1k[3]; 117 ppk[4] = p1k[4]; 118 ppk[5] = p1k[4] + tsc_IV16; 119 120 ppk[0] += tkipS(ppk[5] ^ get_unaligned_le16(tk + 0)); 121 ppk[1] += tkipS(ppk[0] ^ get_unaligned_le16(tk + 2)); 122 ppk[2] += tkipS(ppk[1] ^ get_unaligned_le16(tk + 4)); 123 ppk[3] += tkipS(ppk[2] ^ get_unaligned_le16(tk + 6)); 124 ppk[4] += tkipS(ppk[3] ^ get_unaligned_le16(tk + 8)); 125 ppk[5] += tkipS(ppk[4] ^ get_unaligned_le16(tk + 10)); 126 ppk[0] += ror16(ppk[5] ^ get_unaligned_le16(tk + 12), 1); 127 ppk[1] += ror16(ppk[0] ^ get_unaligned_le16(tk + 14), 1); 128 ppk[2] += ror16(ppk[1], 1); 129 ppk[3] += ror16(ppk[2], 1); 130 ppk[4] += ror16(ppk[3], 1); 131 ppk[5] += ror16(ppk[4], 1); 132 133 rc4key = write_tkip_iv(rc4key, tsc_IV16); 134 *rc4key++ = ((ppk[5] ^ get_unaligned_le16(tk)) >> 1) & 0xFF; 135 136 for (i = 0; i < 6; i++) 137 put_unaligned_le16(ppk[i], rc4key + 2 * i); 138 } 139 140 /* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets 141 * of the IV. Returns pointer to the octet following IVs (i.e., beginning of 142 * the packet payload). */ 143 u8 *ieee80211_tkip_add_iv(u8 *pos, struct ieee80211_key_conf *keyconf, u64 pn) 144 { 145 pos = write_tkip_iv(pos, TKIP_PN_TO_IV16(pn)); 146 *pos++ = (keyconf->keyidx << 6) | (1 << 5) /* Ext IV */; 147 put_unaligned_le32(TKIP_PN_TO_IV32(pn), pos); 148 return pos + 4; 149 } 150 EXPORT_SYMBOL_GPL(ieee80211_tkip_add_iv); 151 152 static void ieee80211_compute_tkip_p1k(struct ieee80211_key *key, u32 iv32) 153 { 154 struct ieee80211_sub_if_data *sdata = key->sdata; 155 struct tkip_ctx *ctx = &key->u.tkip.tx; 156 const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY]; 157 158 lockdep_assert_held(&key->u.tkip.txlock); 159 160 /* 161 * Update the P1K when the IV32 is different from the value it 162 * had when we last computed it (or when not initialised yet). 163 * This might flip-flop back and forth if packets are processed 164 * out-of-order due to the different ACs, but then we have to 165 * just compute the P1K more often. 166 */ 167 if (ctx->p1k_iv32 != iv32 || ctx->state == TKIP_STATE_NOT_INIT) 168 tkip_mixing_phase1(tk, ctx, sdata->vif.addr, iv32); 169 } 170 171 void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf *keyconf, 172 u32 iv32, u16 *p1k) 173 { 174 struct ieee80211_key *key = (struct ieee80211_key *) 175 container_of(keyconf, struct ieee80211_key, conf); 176 struct tkip_ctx *ctx = &key->u.tkip.tx; 177 178 spin_lock_bh(&key->u.tkip.txlock); 179 ieee80211_compute_tkip_p1k(key, iv32); 180 memcpy(p1k, ctx->p1k, sizeof(ctx->p1k)); 181 spin_unlock_bh(&key->u.tkip.txlock); 182 } 183 EXPORT_SYMBOL(ieee80211_get_tkip_p1k_iv); 184 185 void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf *keyconf, 186 const u8 *ta, u32 iv32, u16 *p1k) 187 { 188 const u8 *tk = &keyconf->key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY]; 189 struct tkip_ctx ctx; 190 191 tkip_mixing_phase1(tk, &ctx, ta, iv32); 192 memcpy(p1k, ctx.p1k, sizeof(ctx.p1k)); 193 } 194 EXPORT_SYMBOL(ieee80211_get_tkip_rx_p1k); 195 196 void ieee80211_get_tkip_p2k(struct ieee80211_key_conf *keyconf, 197 struct sk_buff *skb, u8 *p2k) 198 { 199 struct ieee80211_key *key = (struct ieee80211_key *) 200 container_of(keyconf, struct ieee80211_key, conf); 201 const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY]; 202 struct tkip_ctx *ctx = &key->u.tkip.tx; 203 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 204 const u8 *data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 205 u32 iv32 = get_unaligned_le32(&data[4]); 206 u16 iv16 = data[2] | (data[0] << 8); 207 208 spin_lock(&key->u.tkip.txlock); 209 ieee80211_compute_tkip_p1k(key, iv32); 210 tkip_mixing_phase2(tk, ctx, iv16, p2k); 211 spin_unlock(&key->u.tkip.txlock); 212 } 213 EXPORT_SYMBOL(ieee80211_get_tkip_p2k); 214 215 /* 216 * Encrypt packet payload with TKIP using @key. @pos is a pointer to the 217 * beginning of the buffer containing payload. This payload must include 218 * the IV/Ext.IV and space for (taildroom) four octets for ICV. 219 * @payload_len is the length of payload (_not_ including IV/ICV length). 220 * @ta is the transmitter addresses. 221 */ 222 int ieee80211_tkip_encrypt_data(struct arc4_ctx *ctx, 223 struct ieee80211_key *key, 224 struct sk_buff *skb, 225 u8 *payload, size_t payload_len) 226 { 227 u8 rc4key[16]; 228 229 ieee80211_get_tkip_p2k(&key->conf, skb, rc4key); 230 231 return ieee80211_wep_encrypt_data(ctx, rc4key, 16, 232 payload, payload_len); 233 } 234 235 /* Decrypt packet payload with TKIP using @key. @pos is a pointer to the 236 * beginning of the buffer containing IEEE 802.11 header payload, i.e., 237 * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the 238 * length of payload, including IV, Ext. IV, MIC, ICV. */ 239 int ieee80211_tkip_decrypt_data(struct arc4_ctx *ctx, 240 struct ieee80211_key *key, 241 u8 *payload, size_t payload_len, u8 *ta, 242 u8 *ra, int only_iv, int queue, 243 u32 *out_iv32, u16 *out_iv16) 244 { 245 u32 iv32; 246 u32 iv16; 247 u8 rc4key[16], keyid, *pos = payload; 248 int res; 249 const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY]; 250 struct tkip_ctx_rx *rx_ctx = &key->u.tkip.rx[queue]; 251 252 if (payload_len < 12) 253 return -1; 254 255 iv16 = (pos[0] << 8) | pos[2]; 256 keyid = pos[3]; 257 iv32 = get_unaligned_le32(pos + 4); 258 pos += 8; 259 260 if (!(keyid & (1 << 5))) 261 return TKIP_DECRYPT_NO_EXT_IV; 262 263 if ((keyid >> 6) != key->conf.keyidx) 264 return TKIP_DECRYPT_INVALID_KEYIDX; 265 266 if (rx_ctx->ctx.state != TKIP_STATE_NOT_INIT && 267 (iv32 < rx_ctx->iv32 || 268 (iv32 == rx_ctx->iv32 && iv16 <= rx_ctx->iv16))) 269 return TKIP_DECRYPT_REPLAY; 270 271 if (only_iv) { 272 res = TKIP_DECRYPT_OK; 273 rx_ctx->ctx.state = TKIP_STATE_PHASE1_HW_UPLOADED; 274 goto done; 275 } 276 277 if (rx_ctx->ctx.state == TKIP_STATE_NOT_INIT || 278 rx_ctx->iv32 != iv32) { 279 /* IV16 wrapped around - perform TKIP phase 1 */ 280 tkip_mixing_phase1(tk, &rx_ctx->ctx, ta, iv32); 281 } 282 if (key->local->ops->update_tkip_key && 283 key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE && 284 rx_ctx->ctx.state != TKIP_STATE_PHASE1_HW_UPLOADED) { 285 struct ieee80211_sub_if_data *sdata = key->sdata; 286 287 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 288 sdata = container_of(key->sdata->bss, 289 struct ieee80211_sub_if_data, u.ap); 290 drv_update_tkip_key(key->local, sdata, &key->conf, key->sta, 291 iv32, rx_ctx->ctx.p1k); 292 rx_ctx->ctx.state = TKIP_STATE_PHASE1_HW_UPLOADED; 293 } 294 295 tkip_mixing_phase2(tk, &rx_ctx->ctx, iv16, rc4key); 296 297 res = ieee80211_wep_decrypt_data(ctx, rc4key, 16, pos, payload_len - 12); 298 done: 299 if (res == TKIP_DECRYPT_OK) { 300 /* 301 * Record previously received IV, will be copied into the 302 * key information after MIC verification. It is possible 303 * that we don't catch replays of fragments but that's ok 304 * because the Michael MIC verication will then fail. 305 */ 306 *out_iv32 = iv32; 307 *out_iv16 = iv16; 308 } 309 310 return res; 311 } 312