xref: /openbmc/linux/net/mac80211/sta_info.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7  * Copyright (C) 2018-2020 Intel Corporation
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20 
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30 
31 /**
32  * DOC: STA information lifetime rules
33  *
34  * STA info structures (&struct sta_info) are managed in a hash table
35  * for faster lookup and a list for iteration. They are managed using
36  * RCU, i.e. access to the list and hash table is protected by RCU.
37  *
38  * Upon allocating a STA info structure with sta_info_alloc(), the caller
39  * owns that structure. It must then insert it into the hash table using
40  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41  * case (which acquires an rcu read section but must not be called from
42  * within one) will the pointer still be valid after the call. Note that
43  * the caller may not do much with the STA info before inserting it, in
44  * particular, it may not start any mesh peer link management or add
45  * encryption keys.
46  *
47  * When the insertion fails (sta_info_insert()) returns non-zero), the
48  * structure will have been freed by sta_info_insert()!
49  *
50  * Station entries are added by mac80211 when you establish a link with a
51  * peer. This means different things for the different type of interfaces
52  * we support. For a regular station this mean we add the AP sta when we
53  * receive an association response from the AP. For IBSS this occurs when
54  * get to know about a peer on the same IBSS. For WDS we add the sta for
55  * the peer immediately upon device open. When using AP mode we add stations
56  * for each respective station upon request from userspace through nl80211.
57  *
58  * In order to remove a STA info structure, various sta_info_destroy_*()
59  * calls are available.
60  *
61  * There is no concept of ownership on a STA entry, each structure is
62  * owned by the global hash table/list until it is removed. All users of
63  * the structure need to be RCU protected so that the structure won't be
64  * freed before they are done using it.
65  */
66 
67 static const struct rhashtable_params sta_rht_params = {
68 	.nelem_hint = 3, /* start small */
69 	.automatic_shrinking = true,
70 	.head_offset = offsetof(struct sta_info, hash_node),
71 	.key_offset = offsetof(struct sta_info, addr),
72 	.key_len = ETH_ALEN,
73 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
74 };
75 
76 /* Caller must hold local->sta_mtx */
77 static int sta_info_hash_del(struct ieee80211_local *local,
78 			     struct sta_info *sta)
79 {
80 	return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 			       sta_rht_params);
82 }
83 
84 static void __cleanup_single_sta(struct sta_info *sta)
85 {
86 	int ac, i;
87 	struct tid_ampdu_tx *tid_tx;
88 	struct ieee80211_sub_if_data *sdata = sta->sdata;
89 	struct ieee80211_local *local = sdata->local;
90 	struct ps_data *ps;
91 
92 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 			ps = &sdata->bss->ps;
98 		else if (ieee80211_vif_is_mesh(&sdata->vif))
99 			ps = &sdata->u.mesh.ps;
100 		else
101 			return;
102 
103 		clear_sta_flag(sta, WLAN_STA_PS_STA);
104 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
106 
107 		atomic_dec(&ps->num_sta_ps);
108 	}
109 
110 	if (sta->sta.txq[0]) {
111 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 			struct txq_info *txqi;
113 
114 			if (!sta->sta.txq[i])
115 				continue;
116 
117 			txqi = to_txq_info(sta->sta.txq[i]);
118 
119 			ieee80211_txq_purge(local, txqi);
120 		}
121 	}
122 
123 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
127 	}
128 
129 	if (ieee80211_vif_is_mesh(&sdata->vif))
130 		mesh_sta_cleanup(sta);
131 
132 	cancel_work_sync(&sta->drv_deliver_wk);
133 
134 	/*
135 	 * Destroy aggregation state here. It would be nice to wait for the
136 	 * driver to finish aggregation stop and then clean up, but for now
137 	 * drivers have to handle aggregation stop being requested, followed
138 	 * directly by station destruction.
139 	 */
140 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 		if (!tid_tx)
144 			continue;
145 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 		kfree(tid_tx);
147 	}
148 }
149 
150 static void cleanup_single_sta(struct sta_info *sta)
151 {
152 	struct ieee80211_sub_if_data *sdata = sta->sdata;
153 	struct ieee80211_local *local = sdata->local;
154 
155 	__cleanup_single_sta(sta);
156 	sta_info_free(local, sta);
157 }
158 
159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 					 const u8 *addr)
161 {
162 	return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
163 }
164 
165 /* protected by RCU */
166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 			      const u8 *addr)
168 {
169 	struct ieee80211_local *local = sdata->local;
170 	struct rhlist_head *tmp;
171 	struct sta_info *sta;
172 
173 	rcu_read_lock();
174 	for_each_sta_info(local, addr, sta, tmp) {
175 		if (sta->sdata == sdata) {
176 			rcu_read_unlock();
177 			/* this is safe as the caller must already hold
178 			 * another rcu read section or the mutex
179 			 */
180 			return sta;
181 		}
182 	}
183 	rcu_read_unlock();
184 	return NULL;
185 }
186 
187 /*
188  * Get sta info either from the specified interface
189  * or from one of its vlans
190  */
191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 				  const u8 *addr)
193 {
194 	struct ieee80211_local *local = sdata->local;
195 	struct rhlist_head *tmp;
196 	struct sta_info *sta;
197 
198 	rcu_read_lock();
199 	for_each_sta_info(local, addr, sta, tmp) {
200 		if (sta->sdata == sdata ||
201 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 			rcu_read_unlock();
203 			/* this is safe as the caller must already hold
204 			 * another rcu read section or the mutex
205 			 */
206 			return sta;
207 		}
208 	}
209 	rcu_read_unlock();
210 	return NULL;
211 }
212 
213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
214 				       const u8 *sta_addr, const u8 *vif_addr)
215 {
216 	struct rhlist_head *tmp;
217 	struct sta_info *sta;
218 
219 	for_each_sta_info(local, sta_addr, sta, tmp) {
220 		if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
221 			return sta;
222 	}
223 
224 	return NULL;
225 }
226 
227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
228 				     int idx)
229 {
230 	struct ieee80211_local *local = sdata->local;
231 	struct sta_info *sta;
232 	int i = 0;
233 
234 	list_for_each_entry_rcu(sta, &local->sta_list, list,
235 				lockdep_is_held(&local->sta_mtx)) {
236 		if (sdata != sta->sdata)
237 			continue;
238 		if (i < idx) {
239 			++i;
240 			continue;
241 		}
242 		return sta;
243 	}
244 
245 	return NULL;
246 }
247 
248 /**
249  * sta_info_free - free STA
250  *
251  * @local: pointer to the global information
252  * @sta: STA info to free
253  *
254  * This function must undo everything done by sta_info_alloc()
255  * that may happen before sta_info_insert(). It may only be
256  * called when sta_info_insert() has not been attempted (and
257  * if that fails, the station is freed anyway.)
258  */
259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
260 {
261 	if (sta->rate_ctrl)
262 		rate_control_free_sta(sta);
263 
264 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
265 
266 	if (sta->sta.txq[0])
267 		kfree(to_txq_info(sta->sta.txq[0]));
268 	kfree(rcu_dereference_raw(sta->sta.rates));
269 #ifdef CONFIG_MAC80211_MESH
270 	kfree(sta->mesh);
271 #endif
272 	free_percpu(sta->pcpu_rx_stats);
273 	kfree(sta);
274 }
275 
276 /* Caller must hold local->sta_mtx */
277 static int sta_info_hash_add(struct ieee80211_local *local,
278 			     struct sta_info *sta)
279 {
280 	return rhltable_insert(&local->sta_hash, &sta->hash_node,
281 			       sta_rht_params);
282 }
283 
284 static void sta_deliver_ps_frames(struct work_struct *wk)
285 {
286 	struct sta_info *sta;
287 
288 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
289 
290 	if (sta->dead)
291 		return;
292 
293 	local_bh_disable();
294 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
295 		ieee80211_sta_ps_deliver_wakeup(sta);
296 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
297 		ieee80211_sta_ps_deliver_poll_response(sta);
298 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
299 		ieee80211_sta_ps_deliver_uapsd(sta);
300 	local_bh_enable();
301 }
302 
303 static int sta_prepare_rate_control(struct ieee80211_local *local,
304 				    struct sta_info *sta, gfp_t gfp)
305 {
306 	if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
307 		return 0;
308 
309 	sta->rate_ctrl = local->rate_ctrl;
310 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
311 						     sta, gfp);
312 	if (!sta->rate_ctrl_priv)
313 		return -ENOMEM;
314 
315 	return 0;
316 }
317 
318 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
319 				const u8 *addr, gfp_t gfp)
320 {
321 	struct ieee80211_local *local = sdata->local;
322 	struct ieee80211_hw *hw = &local->hw;
323 	struct sta_info *sta;
324 	int i;
325 
326 	sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
327 	if (!sta)
328 		return NULL;
329 
330 	if (ieee80211_hw_check(hw, USES_RSS)) {
331 		sta->pcpu_rx_stats =
332 			alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
333 		if (!sta->pcpu_rx_stats)
334 			goto free;
335 	}
336 
337 	spin_lock_init(&sta->lock);
338 	spin_lock_init(&sta->ps_lock);
339 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
340 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
341 	mutex_init(&sta->ampdu_mlme.mtx);
342 #ifdef CONFIG_MAC80211_MESH
343 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
344 		sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
345 		if (!sta->mesh)
346 			goto free;
347 		sta->mesh->plink_sta = sta;
348 		spin_lock_init(&sta->mesh->plink_lock);
349 		if (ieee80211_vif_is_mesh(&sdata->vif) &&
350 		    !sdata->u.mesh.user_mpm)
351 			timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
352 				    0);
353 		sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
354 	}
355 #endif
356 
357 	memcpy(sta->addr, addr, ETH_ALEN);
358 	memcpy(sta->sta.addr, addr, ETH_ALEN);
359 	sta->sta.max_rx_aggregation_subframes =
360 		local->hw.max_rx_aggregation_subframes;
361 
362 	/* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
363 	 * The Tx path starts to use a key as soon as the key slot ptk_idx
364 	 * references to is not NULL. To not use the initial Rx-only key
365 	 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
366 	 * which always will refer to a NULL key.
367 	 */
368 	BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
369 	sta->ptk_idx = INVALID_PTK_KEYIDX;
370 
371 	sta->local = local;
372 	sta->sdata = sdata;
373 	sta->rx_stats.last_rx = jiffies;
374 
375 	u64_stats_init(&sta->rx_stats.syncp);
376 
377 	sta->sta_state = IEEE80211_STA_NONE;
378 
379 	/* Mark TID as unreserved */
380 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
381 
382 	sta->last_connected = ktime_get_seconds();
383 	ewma_signal_init(&sta->rx_stats_avg.signal);
384 	ewma_avg_signal_init(&sta->status_stats.avg_ack_signal);
385 	for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
386 		ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
387 
388 	if (local->ops->wake_tx_queue) {
389 		void *txq_data;
390 		int size = sizeof(struct txq_info) +
391 			   ALIGN(hw->txq_data_size, sizeof(void *));
392 
393 		txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
394 		if (!txq_data)
395 			goto free;
396 
397 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
398 			struct txq_info *txq = txq_data + i * size;
399 
400 			/* might not do anything for the bufferable MMPDU TXQ */
401 			ieee80211_txq_init(sdata, sta, txq, i);
402 		}
403 	}
404 
405 	if (sta_prepare_rate_control(local, sta, gfp))
406 		goto free_txq;
407 
408 	sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT;
409 
410 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
411 		skb_queue_head_init(&sta->ps_tx_buf[i]);
412 		skb_queue_head_init(&sta->tx_filtered[i]);
413 		sta->airtime[i].deficit = sta->airtime_weight;
414 		atomic_set(&sta->airtime[i].aql_tx_pending, 0);
415 		sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i];
416 		sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i];
417 	}
418 
419 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
420 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
421 
422 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
423 		u32 mandatory = 0;
424 		int r;
425 
426 		if (!hw->wiphy->bands[i])
427 			continue;
428 
429 		switch (i) {
430 		case NL80211_BAND_2GHZ:
431 			/*
432 			 * We use both here, even if we cannot really know for
433 			 * sure the station will support both, but the only use
434 			 * for this is when we don't know anything yet and send
435 			 * management frames, and then we'll pick the lowest
436 			 * possible rate anyway.
437 			 * If we don't include _G here, we cannot find a rate
438 			 * in P2P, and thus trigger the WARN_ONCE() in rate.c
439 			 */
440 			mandatory = IEEE80211_RATE_MANDATORY_B |
441 				    IEEE80211_RATE_MANDATORY_G;
442 			break;
443 		case NL80211_BAND_5GHZ:
444 			mandatory = IEEE80211_RATE_MANDATORY_A;
445 			break;
446 		case NL80211_BAND_60GHZ:
447 			WARN_ON(1);
448 			mandatory = 0;
449 			break;
450 		}
451 
452 		for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
453 			struct ieee80211_rate *rate;
454 
455 			rate = &hw->wiphy->bands[i]->bitrates[r];
456 
457 			if (!(rate->flags & mandatory))
458 				continue;
459 			sta->sta.supp_rates[i] |= BIT(r);
460 		}
461 	}
462 
463 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
464 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
465 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
466 		struct ieee80211_supported_band *sband;
467 		u8 smps;
468 
469 		sband = ieee80211_get_sband(sdata);
470 		if (!sband)
471 			goto free_txq;
472 
473 		smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
474 			IEEE80211_HT_CAP_SM_PS_SHIFT;
475 		/*
476 		 * Assume that hostapd advertises our caps in the beacon and
477 		 * this is the known_smps_mode for a station that just assciated
478 		 */
479 		switch (smps) {
480 		case WLAN_HT_SMPS_CONTROL_DISABLED:
481 			sta->known_smps_mode = IEEE80211_SMPS_OFF;
482 			break;
483 		case WLAN_HT_SMPS_CONTROL_STATIC:
484 			sta->known_smps_mode = IEEE80211_SMPS_STATIC;
485 			break;
486 		case WLAN_HT_SMPS_CONTROL_DYNAMIC:
487 			sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
488 			break;
489 		default:
490 			WARN_ON(1);
491 		}
492 	}
493 
494 	sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
495 
496 	sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
497 	sta->cparams.target = MS2TIME(20);
498 	sta->cparams.interval = MS2TIME(100);
499 	sta->cparams.ecn = true;
500 
501 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
502 
503 	return sta;
504 
505 free_txq:
506 	if (sta->sta.txq[0])
507 		kfree(to_txq_info(sta->sta.txq[0]));
508 free:
509 	free_percpu(sta->pcpu_rx_stats);
510 #ifdef CONFIG_MAC80211_MESH
511 	kfree(sta->mesh);
512 #endif
513 	kfree(sta);
514 	return NULL;
515 }
516 
517 static int sta_info_insert_check(struct sta_info *sta)
518 {
519 	struct ieee80211_sub_if_data *sdata = sta->sdata;
520 
521 	/*
522 	 * Can't be a WARN_ON because it can be triggered through a race:
523 	 * something inserts a STA (on one CPU) without holding the RTNL
524 	 * and another CPU turns off the net device.
525 	 */
526 	if (unlikely(!ieee80211_sdata_running(sdata)))
527 		return -ENETDOWN;
528 
529 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
530 		    is_multicast_ether_addr(sta->sta.addr)))
531 		return -EINVAL;
532 
533 	/* The RCU read lock is required by rhashtable due to
534 	 * asynchronous resize/rehash.  We also require the mutex
535 	 * for correctness.
536 	 */
537 	rcu_read_lock();
538 	lockdep_assert_held(&sdata->local->sta_mtx);
539 	if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
540 	    ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
541 		rcu_read_unlock();
542 		return -ENOTUNIQ;
543 	}
544 	rcu_read_unlock();
545 
546 	return 0;
547 }
548 
549 static int sta_info_insert_drv_state(struct ieee80211_local *local,
550 				     struct ieee80211_sub_if_data *sdata,
551 				     struct sta_info *sta)
552 {
553 	enum ieee80211_sta_state state;
554 	int err = 0;
555 
556 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
557 		err = drv_sta_state(local, sdata, sta, state, state + 1);
558 		if (err)
559 			break;
560 	}
561 
562 	if (!err) {
563 		/*
564 		 * Drivers using legacy sta_add/sta_remove callbacks only
565 		 * get uploaded set to true after sta_add is called.
566 		 */
567 		if (!local->ops->sta_add)
568 			sta->uploaded = true;
569 		return 0;
570 	}
571 
572 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
573 		sdata_info(sdata,
574 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
575 			   sta->sta.addr, state + 1, err);
576 		err = 0;
577 	}
578 
579 	/* unwind on error */
580 	for (; state > IEEE80211_STA_NOTEXIST; state--)
581 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
582 
583 	return err;
584 }
585 
586 static void
587 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
588 {
589 	struct ieee80211_local *local = sdata->local;
590 	bool allow_p2p_go_ps = sdata->vif.p2p;
591 	struct sta_info *sta;
592 
593 	rcu_read_lock();
594 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
595 		if (sdata != sta->sdata ||
596 		    !test_sta_flag(sta, WLAN_STA_ASSOC))
597 			continue;
598 		if (!sta->sta.support_p2p_ps) {
599 			allow_p2p_go_ps = false;
600 			break;
601 		}
602 	}
603 	rcu_read_unlock();
604 
605 	if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
606 		sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
607 		ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
608 	}
609 }
610 
611 /*
612  * should be called with sta_mtx locked
613  * this function replaces the mutex lock
614  * with a RCU lock
615  */
616 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
617 {
618 	struct ieee80211_local *local = sta->local;
619 	struct ieee80211_sub_if_data *sdata = sta->sdata;
620 	struct station_info *sinfo = NULL;
621 	int err = 0;
622 
623 	lockdep_assert_held(&local->sta_mtx);
624 
625 	/* check if STA exists already */
626 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
627 		err = -EEXIST;
628 		goto out_err;
629 	}
630 
631 	sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
632 	if (!sinfo) {
633 		err = -ENOMEM;
634 		goto out_err;
635 	}
636 
637 	local->num_sta++;
638 	local->sta_generation++;
639 	smp_mb();
640 
641 	/* simplify things and don't accept BA sessions yet */
642 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
643 
644 	/* make the station visible */
645 	err = sta_info_hash_add(local, sta);
646 	if (err)
647 		goto out_drop_sta;
648 
649 	list_add_tail_rcu(&sta->list, &local->sta_list);
650 
651 	/* notify driver */
652 	err = sta_info_insert_drv_state(local, sdata, sta);
653 	if (err)
654 		goto out_remove;
655 
656 	set_sta_flag(sta, WLAN_STA_INSERTED);
657 
658 	if (sta->sta_state >= IEEE80211_STA_ASSOC) {
659 		ieee80211_recalc_min_chandef(sta->sdata);
660 		if (!sta->sta.support_p2p_ps)
661 			ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
662 	}
663 
664 	/* accept BA sessions now */
665 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
666 
667 	ieee80211_sta_debugfs_add(sta);
668 	rate_control_add_sta_debugfs(sta);
669 
670 	sinfo->generation = local->sta_generation;
671 	cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
672 	kfree(sinfo);
673 
674 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
675 
676 	/* move reference to rcu-protected */
677 	rcu_read_lock();
678 	mutex_unlock(&local->sta_mtx);
679 
680 	if (ieee80211_vif_is_mesh(&sdata->vif))
681 		mesh_accept_plinks_update(sdata);
682 
683 	return 0;
684  out_remove:
685 	sta_info_hash_del(local, sta);
686 	list_del_rcu(&sta->list);
687  out_drop_sta:
688 	local->num_sta--;
689 	synchronize_net();
690 	__cleanup_single_sta(sta);
691  out_err:
692 	mutex_unlock(&local->sta_mtx);
693 	kfree(sinfo);
694 	rcu_read_lock();
695 	return err;
696 }
697 
698 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
699 {
700 	struct ieee80211_local *local = sta->local;
701 	int err;
702 
703 	might_sleep();
704 
705 	mutex_lock(&local->sta_mtx);
706 
707 	err = sta_info_insert_check(sta);
708 	if (err) {
709 		mutex_unlock(&local->sta_mtx);
710 		rcu_read_lock();
711 		goto out_free;
712 	}
713 
714 	err = sta_info_insert_finish(sta);
715 	if (err)
716 		goto out_free;
717 
718 	return 0;
719  out_free:
720 	sta_info_free(local, sta);
721 	return err;
722 }
723 
724 int sta_info_insert(struct sta_info *sta)
725 {
726 	int err = sta_info_insert_rcu(sta);
727 
728 	rcu_read_unlock();
729 
730 	return err;
731 }
732 
733 static inline void __bss_tim_set(u8 *tim, u16 id)
734 {
735 	/*
736 	 * This format has been mandated by the IEEE specifications,
737 	 * so this line may not be changed to use the __set_bit() format.
738 	 */
739 	tim[id / 8] |= (1 << (id % 8));
740 }
741 
742 static inline void __bss_tim_clear(u8 *tim, u16 id)
743 {
744 	/*
745 	 * This format has been mandated by the IEEE specifications,
746 	 * so this line may not be changed to use the __clear_bit() format.
747 	 */
748 	tim[id / 8] &= ~(1 << (id % 8));
749 }
750 
751 static inline bool __bss_tim_get(u8 *tim, u16 id)
752 {
753 	/*
754 	 * This format has been mandated by the IEEE specifications,
755 	 * so this line may not be changed to use the test_bit() format.
756 	 */
757 	return tim[id / 8] & (1 << (id % 8));
758 }
759 
760 static unsigned long ieee80211_tids_for_ac(int ac)
761 {
762 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
763 	switch (ac) {
764 	case IEEE80211_AC_VO:
765 		return BIT(6) | BIT(7);
766 	case IEEE80211_AC_VI:
767 		return BIT(4) | BIT(5);
768 	case IEEE80211_AC_BE:
769 		return BIT(0) | BIT(3);
770 	case IEEE80211_AC_BK:
771 		return BIT(1) | BIT(2);
772 	default:
773 		WARN_ON(1);
774 		return 0;
775 	}
776 }
777 
778 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
779 {
780 	struct ieee80211_local *local = sta->local;
781 	struct ps_data *ps;
782 	bool indicate_tim = false;
783 	u8 ignore_for_tim = sta->sta.uapsd_queues;
784 	int ac;
785 	u16 id = sta->sta.aid;
786 
787 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
788 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
789 		if (WARN_ON_ONCE(!sta->sdata->bss))
790 			return;
791 
792 		ps = &sta->sdata->bss->ps;
793 #ifdef CONFIG_MAC80211_MESH
794 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
795 		ps = &sta->sdata->u.mesh.ps;
796 #endif
797 	} else {
798 		return;
799 	}
800 
801 	/* No need to do anything if the driver does all */
802 	if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
803 		return;
804 
805 	if (sta->dead)
806 		goto done;
807 
808 	/*
809 	 * If all ACs are delivery-enabled then we should build
810 	 * the TIM bit for all ACs anyway; if only some are then
811 	 * we ignore those and build the TIM bit using only the
812 	 * non-enabled ones.
813 	 */
814 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
815 		ignore_for_tim = 0;
816 
817 	if (ignore_pending)
818 		ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
819 
820 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
821 		unsigned long tids;
822 
823 		if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
824 			continue;
825 
826 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
827 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
828 		if (indicate_tim)
829 			break;
830 
831 		tids = ieee80211_tids_for_ac(ac);
832 
833 		indicate_tim |=
834 			sta->driver_buffered_tids & tids;
835 		indicate_tim |=
836 			sta->txq_buffered_tids & tids;
837 	}
838 
839  done:
840 	spin_lock_bh(&local->tim_lock);
841 
842 	if (indicate_tim == __bss_tim_get(ps->tim, id))
843 		goto out_unlock;
844 
845 	if (indicate_tim)
846 		__bss_tim_set(ps->tim, id);
847 	else
848 		__bss_tim_clear(ps->tim, id);
849 
850 	if (local->ops->set_tim && !WARN_ON(sta->dead)) {
851 		local->tim_in_locked_section = true;
852 		drv_set_tim(local, &sta->sta, indicate_tim);
853 		local->tim_in_locked_section = false;
854 	}
855 
856 out_unlock:
857 	spin_unlock_bh(&local->tim_lock);
858 }
859 
860 void sta_info_recalc_tim(struct sta_info *sta)
861 {
862 	__sta_info_recalc_tim(sta, false);
863 }
864 
865 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
866 {
867 	struct ieee80211_tx_info *info;
868 	int timeout;
869 
870 	if (!skb)
871 		return false;
872 
873 	info = IEEE80211_SKB_CB(skb);
874 
875 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
876 	timeout = (sta->listen_interval *
877 		   sta->sdata->vif.bss_conf.beacon_int *
878 		   32 / 15625) * HZ;
879 	if (timeout < STA_TX_BUFFER_EXPIRE)
880 		timeout = STA_TX_BUFFER_EXPIRE;
881 	return time_after(jiffies, info->control.jiffies + timeout);
882 }
883 
884 
885 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
886 						struct sta_info *sta, int ac)
887 {
888 	unsigned long flags;
889 	struct sk_buff *skb;
890 
891 	/*
892 	 * First check for frames that should expire on the filtered
893 	 * queue. Frames here were rejected by the driver and are on
894 	 * a separate queue to avoid reordering with normal PS-buffered
895 	 * frames. They also aren't accounted for right now in the
896 	 * total_ps_buffered counter.
897 	 */
898 	for (;;) {
899 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
900 		skb = skb_peek(&sta->tx_filtered[ac]);
901 		if (sta_info_buffer_expired(sta, skb))
902 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
903 		else
904 			skb = NULL;
905 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
906 
907 		/*
908 		 * Frames are queued in order, so if this one
909 		 * hasn't expired yet we can stop testing. If
910 		 * we actually reached the end of the queue we
911 		 * also need to stop, of course.
912 		 */
913 		if (!skb)
914 			break;
915 		ieee80211_free_txskb(&local->hw, skb);
916 	}
917 
918 	/*
919 	 * Now also check the normal PS-buffered queue, this will
920 	 * only find something if the filtered queue was emptied
921 	 * since the filtered frames are all before the normal PS
922 	 * buffered frames.
923 	 */
924 	for (;;) {
925 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
926 		skb = skb_peek(&sta->ps_tx_buf[ac]);
927 		if (sta_info_buffer_expired(sta, skb))
928 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
929 		else
930 			skb = NULL;
931 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
932 
933 		/*
934 		 * frames are queued in order, so if this one
935 		 * hasn't expired yet (or we reached the end of
936 		 * the queue) we can stop testing
937 		 */
938 		if (!skb)
939 			break;
940 
941 		local->total_ps_buffered--;
942 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
943 		       sta->sta.addr);
944 		ieee80211_free_txskb(&local->hw, skb);
945 	}
946 
947 	/*
948 	 * Finally, recalculate the TIM bit for this station -- it might
949 	 * now be clear because the station was too slow to retrieve its
950 	 * frames.
951 	 */
952 	sta_info_recalc_tim(sta);
953 
954 	/*
955 	 * Return whether there are any frames still buffered, this is
956 	 * used to check whether the cleanup timer still needs to run,
957 	 * if there are no frames we don't need to rearm the timer.
958 	 */
959 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
960 		 skb_queue_empty(&sta->tx_filtered[ac]));
961 }
962 
963 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
964 					     struct sta_info *sta)
965 {
966 	bool have_buffered = false;
967 	int ac;
968 
969 	/* This is only necessary for stations on BSS/MBSS interfaces */
970 	if (!sta->sdata->bss &&
971 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
972 		return false;
973 
974 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
975 		have_buffered |=
976 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
977 
978 	return have_buffered;
979 }
980 
981 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
982 {
983 	struct ieee80211_local *local;
984 	struct ieee80211_sub_if_data *sdata;
985 	int ret;
986 
987 	might_sleep();
988 
989 	if (!sta)
990 		return -ENOENT;
991 
992 	local = sta->local;
993 	sdata = sta->sdata;
994 
995 	lockdep_assert_held(&local->sta_mtx);
996 
997 	/*
998 	 * Before removing the station from the driver and
999 	 * rate control, it might still start new aggregation
1000 	 * sessions -- block that to make sure the tear-down
1001 	 * will be sufficient.
1002 	 */
1003 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1004 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1005 
1006 	/*
1007 	 * Before removing the station from the driver there might be pending
1008 	 * rx frames on RSS queues sent prior to the disassociation - wait for
1009 	 * all such frames to be processed.
1010 	 */
1011 	drv_sync_rx_queues(local, sta);
1012 
1013 	ret = sta_info_hash_del(local, sta);
1014 	if (WARN_ON(ret))
1015 		return ret;
1016 
1017 	/*
1018 	 * for TDLS peers, make sure to return to the base channel before
1019 	 * removal.
1020 	 */
1021 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1022 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1023 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1024 	}
1025 
1026 	list_del_rcu(&sta->list);
1027 	sta->removed = true;
1028 
1029 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1030 
1031 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1032 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
1033 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1034 
1035 	return 0;
1036 }
1037 
1038 static void __sta_info_destroy_part2(struct sta_info *sta)
1039 {
1040 	struct ieee80211_local *local = sta->local;
1041 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1042 	struct station_info *sinfo;
1043 	int ret;
1044 
1045 	/*
1046 	 * NOTE: This assumes at least synchronize_net() was done
1047 	 *	 after _part1 and before _part2!
1048 	 */
1049 
1050 	might_sleep();
1051 	lockdep_assert_held(&local->sta_mtx);
1052 
1053 	while (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1054 		ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1055 		WARN_ON_ONCE(ret);
1056 	}
1057 
1058 	/* now keys can no longer be reached */
1059 	ieee80211_free_sta_keys(local, sta);
1060 
1061 	/* disable TIM bit - last chance to tell driver */
1062 	__sta_info_recalc_tim(sta, true);
1063 
1064 	sta->dead = true;
1065 
1066 	local->num_sta--;
1067 	local->sta_generation++;
1068 
1069 	while (sta->sta_state > IEEE80211_STA_NONE) {
1070 		ret = sta_info_move_state(sta, sta->sta_state - 1);
1071 		if (ret) {
1072 			WARN_ON_ONCE(1);
1073 			break;
1074 		}
1075 	}
1076 
1077 	if (sta->uploaded) {
1078 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1079 				    IEEE80211_STA_NOTEXIST);
1080 		WARN_ON_ONCE(ret != 0);
1081 	}
1082 
1083 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1084 
1085 	sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1086 	if (sinfo)
1087 		sta_set_sinfo(sta, sinfo, true);
1088 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1089 	kfree(sinfo);
1090 
1091 	ieee80211_sta_debugfs_remove(sta);
1092 
1093 	cleanup_single_sta(sta);
1094 }
1095 
1096 int __must_check __sta_info_destroy(struct sta_info *sta)
1097 {
1098 	int err = __sta_info_destroy_part1(sta);
1099 
1100 	if (err)
1101 		return err;
1102 
1103 	synchronize_net();
1104 
1105 	__sta_info_destroy_part2(sta);
1106 
1107 	return 0;
1108 }
1109 
1110 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1111 {
1112 	struct sta_info *sta;
1113 	int ret;
1114 
1115 	mutex_lock(&sdata->local->sta_mtx);
1116 	sta = sta_info_get(sdata, addr);
1117 	ret = __sta_info_destroy(sta);
1118 	mutex_unlock(&sdata->local->sta_mtx);
1119 
1120 	return ret;
1121 }
1122 
1123 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1124 			      const u8 *addr)
1125 {
1126 	struct sta_info *sta;
1127 	int ret;
1128 
1129 	mutex_lock(&sdata->local->sta_mtx);
1130 	sta = sta_info_get_bss(sdata, addr);
1131 	ret = __sta_info_destroy(sta);
1132 	mutex_unlock(&sdata->local->sta_mtx);
1133 
1134 	return ret;
1135 }
1136 
1137 static void sta_info_cleanup(struct timer_list *t)
1138 {
1139 	struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1140 	struct sta_info *sta;
1141 	bool timer_needed = false;
1142 
1143 	rcu_read_lock();
1144 	list_for_each_entry_rcu(sta, &local->sta_list, list)
1145 		if (sta_info_cleanup_expire_buffered(local, sta))
1146 			timer_needed = true;
1147 	rcu_read_unlock();
1148 
1149 	if (local->quiescing)
1150 		return;
1151 
1152 	if (!timer_needed)
1153 		return;
1154 
1155 	mod_timer(&local->sta_cleanup,
1156 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1157 }
1158 
1159 int sta_info_init(struct ieee80211_local *local)
1160 {
1161 	int err;
1162 
1163 	err = rhltable_init(&local->sta_hash, &sta_rht_params);
1164 	if (err)
1165 		return err;
1166 
1167 	spin_lock_init(&local->tim_lock);
1168 	mutex_init(&local->sta_mtx);
1169 	INIT_LIST_HEAD(&local->sta_list);
1170 
1171 	timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1172 	return 0;
1173 }
1174 
1175 void sta_info_stop(struct ieee80211_local *local)
1176 {
1177 	del_timer_sync(&local->sta_cleanup);
1178 	rhltable_destroy(&local->sta_hash);
1179 }
1180 
1181 
1182 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1183 {
1184 	struct ieee80211_local *local = sdata->local;
1185 	struct sta_info *sta, *tmp;
1186 	LIST_HEAD(free_list);
1187 	int ret = 0;
1188 
1189 	might_sleep();
1190 
1191 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1192 	WARN_ON(vlans && !sdata->bss);
1193 
1194 	mutex_lock(&local->sta_mtx);
1195 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1196 		if (sdata == sta->sdata ||
1197 		    (vlans && sdata->bss == sta->sdata->bss)) {
1198 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1199 				list_add(&sta->free_list, &free_list);
1200 			ret++;
1201 		}
1202 	}
1203 
1204 	if (!list_empty(&free_list)) {
1205 		synchronize_net();
1206 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1207 			__sta_info_destroy_part2(sta);
1208 	}
1209 	mutex_unlock(&local->sta_mtx);
1210 
1211 	return ret;
1212 }
1213 
1214 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1215 			  unsigned long exp_time)
1216 {
1217 	struct ieee80211_local *local = sdata->local;
1218 	struct sta_info *sta, *tmp;
1219 
1220 	mutex_lock(&local->sta_mtx);
1221 
1222 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1223 		unsigned long last_active = ieee80211_sta_last_active(sta);
1224 
1225 		if (sdata != sta->sdata)
1226 			continue;
1227 
1228 		if (time_is_before_jiffies(last_active + exp_time)) {
1229 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1230 				sta->sta.addr);
1231 
1232 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1233 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1234 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1235 
1236 			WARN_ON(__sta_info_destroy(sta));
1237 		}
1238 	}
1239 
1240 	mutex_unlock(&local->sta_mtx);
1241 }
1242 
1243 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1244 						   const u8 *addr,
1245 						   const u8 *localaddr)
1246 {
1247 	struct ieee80211_local *local = hw_to_local(hw);
1248 	struct rhlist_head *tmp;
1249 	struct sta_info *sta;
1250 
1251 	/*
1252 	 * Just return a random station if localaddr is NULL
1253 	 * ... first in list.
1254 	 */
1255 	for_each_sta_info(local, addr, sta, tmp) {
1256 		if (localaddr &&
1257 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1258 			continue;
1259 		if (!sta->uploaded)
1260 			return NULL;
1261 		return &sta->sta;
1262 	}
1263 
1264 	return NULL;
1265 }
1266 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1267 
1268 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1269 					 const u8 *addr)
1270 {
1271 	struct sta_info *sta;
1272 
1273 	if (!vif)
1274 		return NULL;
1275 
1276 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1277 	if (!sta)
1278 		return NULL;
1279 
1280 	if (!sta->uploaded)
1281 		return NULL;
1282 
1283 	return &sta->sta;
1284 }
1285 EXPORT_SYMBOL(ieee80211_find_sta);
1286 
1287 /* powersave support code */
1288 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1289 {
1290 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1291 	struct ieee80211_local *local = sdata->local;
1292 	struct sk_buff_head pending;
1293 	int filtered = 0, buffered = 0, ac, i;
1294 	unsigned long flags;
1295 	struct ps_data *ps;
1296 
1297 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1298 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1299 				     u.ap);
1300 
1301 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1302 		ps = &sdata->bss->ps;
1303 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1304 		ps = &sdata->u.mesh.ps;
1305 	else
1306 		return;
1307 
1308 	clear_sta_flag(sta, WLAN_STA_SP);
1309 
1310 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1311 	sta->driver_buffered_tids = 0;
1312 	sta->txq_buffered_tids = 0;
1313 
1314 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1315 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1316 
1317 	for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1318 		if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1319 			continue;
1320 
1321 		schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1322 	}
1323 
1324 	skb_queue_head_init(&pending);
1325 
1326 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1327 	spin_lock(&sta->ps_lock);
1328 	/* Send all buffered frames to the station */
1329 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1330 		int count = skb_queue_len(&pending), tmp;
1331 
1332 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1333 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1334 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1335 		tmp = skb_queue_len(&pending);
1336 		filtered += tmp - count;
1337 		count = tmp;
1338 
1339 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1340 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1341 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1342 		tmp = skb_queue_len(&pending);
1343 		buffered += tmp - count;
1344 	}
1345 
1346 	ieee80211_add_pending_skbs(local, &pending);
1347 
1348 	/* now we're no longer in the deliver code */
1349 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1350 
1351 	/* The station might have polled and then woken up before we responded,
1352 	 * so clear these flags now to avoid them sticking around.
1353 	 */
1354 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1355 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1356 	spin_unlock(&sta->ps_lock);
1357 
1358 	atomic_dec(&ps->num_sta_ps);
1359 
1360 	local->total_ps_buffered -= buffered;
1361 
1362 	sta_info_recalc_tim(sta);
1363 
1364 	ps_dbg(sdata,
1365 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1366 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1367 
1368 	ieee80211_check_fast_xmit(sta);
1369 }
1370 
1371 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1372 					 enum ieee80211_frame_release_type reason,
1373 					 bool call_driver, bool more_data)
1374 {
1375 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1376 	struct ieee80211_local *local = sdata->local;
1377 	struct ieee80211_qos_hdr *nullfunc;
1378 	struct sk_buff *skb;
1379 	int size = sizeof(*nullfunc);
1380 	__le16 fc;
1381 	bool qos = sta->sta.wme;
1382 	struct ieee80211_tx_info *info;
1383 	struct ieee80211_chanctx_conf *chanctx_conf;
1384 
1385 	/* Don't send NDPs when STA is connected HE */
1386 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1387 	    !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE))
1388 		return;
1389 
1390 	if (qos) {
1391 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1392 				 IEEE80211_STYPE_QOS_NULLFUNC |
1393 				 IEEE80211_FCTL_FROMDS);
1394 	} else {
1395 		size -= 2;
1396 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1397 				 IEEE80211_STYPE_NULLFUNC |
1398 				 IEEE80211_FCTL_FROMDS);
1399 	}
1400 
1401 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1402 	if (!skb)
1403 		return;
1404 
1405 	skb_reserve(skb, local->hw.extra_tx_headroom);
1406 
1407 	nullfunc = skb_put(skb, size);
1408 	nullfunc->frame_control = fc;
1409 	nullfunc->duration_id = 0;
1410 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1411 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1412 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1413 	nullfunc->seq_ctrl = 0;
1414 
1415 	skb->priority = tid;
1416 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1417 	if (qos) {
1418 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1419 
1420 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1421 			nullfunc->qos_ctrl |=
1422 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1423 			if (more_data)
1424 				nullfunc->frame_control |=
1425 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1426 		}
1427 	}
1428 
1429 	info = IEEE80211_SKB_CB(skb);
1430 
1431 	/*
1432 	 * Tell TX path to send this frame even though the
1433 	 * STA may still remain is PS mode after this frame
1434 	 * exchange. Also set EOSP to indicate this packet
1435 	 * ends the poll/service period.
1436 	 */
1437 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1438 		       IEEE80211_TX_STATUS_EOSP |
1439 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1440 
1441 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1442 
1443 	if (call_driver)
1444 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1445 					  reason, false);
1446 
1447 	skb->dev = sdata->dev;
1448 
1449 	rcu_read_lock();
1450 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1451 	if (WARN_ON(!chanctx_conf)) {
1452 		rcu_read_unlock();
1453 		kfree_skb(skb);
1454 		return;
1455 	}
1456 
1457 	info->band = chanctx_conf->def.chan->band;
1458 	ieee80211_xmit(sdata, sta, skb, 0);
1459 	rcu_read_unlock();
1460 }
1461 
1462 static int find_highest_prio_tid(unsigned long tids)
1463 {
1464 	/* lower 3 TIDs aren't ordered perfectly */
1465 	if (tids & 0xF8)
1466 		return fls(tids) - 1;
1467 	/* TID 0 is BE just like TID 3 */
1468 	if (tids & BIT(0))
1469 		return 0;
1470 	return fls(tids) - 1;
1471 }
1472 
1473 /* Indicates if the MORE_DATA bit should be set in the last
1474  * frame obtained by ieee80211_sta_ps_get_frames.
1475  * Note that driver_release_tids is relevant only if
1476  * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1477  */
1478 static bool
1479 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1480 			   enum ieee80211_frame_release_type reason,
1481 			   unsigned long driver_release_tids)
1482 {
1483 	int ac;
1484 
1485 	/* If the driver has data on more than one TID then
1486 	 * certainly there's more data if we release just a
1487 	 * single frame now (from a single TID). This will
1488 	 * only happen for PS-Poll.
1489 	 */
1490 	if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1491 	    hweight16(driver_release_tids) > 1)
1492 		return true;
1493 
1494 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1495 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1496 			continue;
1497 
1498 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1499 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1500 			return true;
1501 	}
1502 
1503 	return false;
1504 }
1505 
1506 static void
1507 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1508 			    enum ieee80211_frame_release_type reason,
1509 			    struct sk_buff_head *frames,
1510 			    unsigned long *driver_release_tids)
1511 {
1512 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1513 	struct ieee80211_local *local = sdata->local;
1514 	int ac;
1515 
1516 	/* Get response frame(s) and more data bit for the last one. */
1517 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1518 		unsigned long tids;
1519 
1520 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1521 			continue;
1522 
1523 		tids = ieee80211_tids_for_ac(ac);
1524 
1525 		/* if we already have frames from software, then we can't also
1526 		 * release from hardware queues
1527 		 */
1528 		if (skb_queue_empty(frames)) {
1529 			*driver_release_tids |=
1530 				sta->driver_buffered_tids & tids;
1531 			*driver_release_tids |= sta->txq_buffered_tids & tids;
1532 		}
1533 
1534 		if (!*driver_release_tids) {
1535 			struct sk_buff *skb;
1536 
1537 			while (n_frames > 0) {
1538 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1539 				if (!skb) {
1540 					skb = skb_dequeue(
1541 						&sta->ps_tx_buf[ac]);
1542 					if (skb)
1543 						local->total_ps_buffered--;
1544 				}
1545 				if (!skb)
1546 					break;
1547 				n_frames--;
1548 				__skb_queue_tail(frames, skb);
1549 			}
1550 		}
1551 
1552 		/* If we have more frames buffered on this AC, then abort the
1553 		 * loop since we can't send more data from other ACs before
1554 		 * the buffered frames from this.
1555 		 */
1556 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1557 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1558 			break;
1559 	}
1560 }
1561 
1562 static void
1563 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1564 				  int n_frames, u8 ignored_acs,
1565 				  enum ieee80211_frame_release_type reason)
1566 {
1567 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1568 	struct ieee80211_local *local = sdata->local;
1569 	unsigned long driver_release_tids = 0;
1570 	struct sk_buff_head frames;
1571 	bool more_data;
1572 
1573 	/* Service or PS-Poll period starts */
1574 	set_sta_flag(sta, WLAN_STA_SP);
1575 
1576 	__skb_queue_head_init(&frames);
1577 
1578 	ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1579 				    &frames, &driver_release_tids);
1580 
1581 	more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1582 
1583 	if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1584 		driver_release_tids =
1585 			BIT(find_highest_prio_tid(driver_release_tids));
1586 
1587 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1588 		int tid, ac;
1589 
1590 		/*
1591 		 * For PS-Poll, this can only happen due to a race condition
1592 		 * when we set the TIM bit and the station notices it, but
1593 		 * before it can poll for the frame we expire it.
1594 		 *
1595 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1596 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1597 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1598 		 *	more than the value specified in the Max SP Length field
1599 		 *	in the QoS Capability element from delivery-enabled ACs,
1600 		 *	that are destined for the non-AP STA.
1601 		 *
1602 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1603 		 */
1604 
1605 		/* This will evaluate to 1, 3, 5 or 7. */
1606 		for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1607 			if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1608 				break;
1609 		tid = 7 - 2 * ac;
1610 
1611 		ieee80211_send_null_response(sta, tid, reason, true, false);
1612 	} else if (!driver_release_tids) {
1613 		struct sk_buff_head pending;
1614 		struct sk_buff *skb;
1615 		int num = 0;
1616 		u16 tids = 0;
1617 		bool need_null = false;
1618 
1619 		skb_queue_head_init(&pending);
1620 
1621 		while ((skb = __skb_dequeue(&frames))) {
1622 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1623 			struct ieee80211_hdr *hdr = (void *) skb->data;
1624 			u8 *qoshdr = NULL;
1625 
1626 			num++;
1627 
1628 			/*
1629 			 * Tell TX path to send this frame even though the
1630 			 * STA may still remain is PS mode after this frame
1631 			 * exchange.
1632 			 */
1633 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1634 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1635 
1636 			/*
1637 			 * Use MoreData flag to indicate whether there are
1638 			 * more buffered frames for this STA
1639 			 */
1640 			if (more_data || !skb_queue_empty(&frames))
1641 				hdr->frame_control |=
1642 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1643 			else
1644 				hdr->frame_control &=
1645 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1646 
1647 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1648 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1649 				qoshdr = ieee80211_get_qos_ctl(hdr);
1650 
1651 			tids |= BIT(skb->priority);
1652 
1653 			__skb_queue_tail(&pending, skb);
1654 
1655 			/* end service period after last frame or add one */
1656 			if (!skb_queue_empty(&frames))
1657 				continue;
1658 
1659 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1660 				/* for PS-Poll, there's only one frame */
1661 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1662 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1663 				break;
1664 			}
1665 
1666 			/* For uAPSD, things are a bit more complicated. If the
1667 			 * last frame has a QoS header (i.e. is a QoS-data or
1668 			 * QoS-nulldata frame) then just set the EOSP bit there
1669 			 * and be done.
1670 			 * If the frame doesn't have a QoS header (which means
1671 			 * it should be a bufferable MMPDU) then we can't set
1672 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1673 			 * frame to the list to send it after the MMPDU.
1674 			 *
1675 			 * Note that this code is only in the mac80211-release
1676 			 * code path, we assume that the driver will not buffer
1677 			 * anything but QoS-data frames, or if it does, will
1678 			 * create the QoS-nulldata frame by itself if needed.
1679 			 *
1680 			 * Cf. 802.11-2012 10.2.1.10 (c).
1681 			 */
1682 			if (qoshdr) {
1683 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1684 
1685 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1686 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1687 			} else {
1688 				/* The standard isn't completely clear on this
1689 				 * as it says the more-data bit should be set
1690 				 * if there are more BUs. The QoS-Null frame
1691 				 * we're about to send isn't buffered yet, we
1692 				 * only create it below, but let's pretend it
1693 				 * was buffered just in case some clients only
1694 				 * expect more-data=0 when eosp=1.
1695 				 */
1696 				hdr->frame_control |=
1697 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1698 				need_null = true;
1699 				num++;
1700 			}
1701 			break;
1702 		}
1703 
1704 		drv_allow_buffered_frames(local, sta, tids, num,
1705 					  reason, more_data);
1706 
1707 		ieee80211_add_pending_skbs(local, &pending);
1708 
1709 		if (need_null)
1710 			ieee80211_send_null_response(
1711 				sta, find_highest_prio_tid(tids),
1712 				reason, false, false);
1713 
1714 		sta_info_recalc_tim(sta);
1715 	} else {
1716 		int tid;
1717 
1718 		/*
1719 		 * We need to release a frame that is buffered somewhere in the
1720 		 * driver ... it'll have to handle that.
1721 		 * Note that the driver also has to check the number of frames
1722 		 * on the TIDs we're releasing from - if there are more than
1723 		 * n_frames it has to set the more-data bit (if we didn't ask
1724 		 * it to set it anyway due to other buffered frames); if there
1725 		 * are fewer than n_frames it has to make sure to adjust that
1726 		 * to allow the service period to end properly.
1727 		 */
1728 		drv_release_buffered_frames(local, sta, driver_release_tids,
1729 					    n_frames, reason, more_data);
1730 
1731 		/*
1732 		 * Note that we don't recalculate the TIM bit here as it would
1733 		 * most likely have no effect at all unless the driver told us
1734 		 * that the TID(s) became empty before returning here from the
1735 		 * release function.
1736 		 * Either way, however, when the driver tells us that the TID(s)
1737 		 * became empty or we find that a txq became empty, we'll do the
1738 		 * TIM recalculation.
1739 		 */
1740 
1741 		if (!sta->sta.txq[0])
1742 			return;
1743 
1744 		for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1745 			if (!sta->sta.txq[tid] ||
1746 			    !(driver_release_tids & BIT(tid)) ||
1747 			    txq_has_queue(sta->sta.txq[tid]))
1748 				continue;
1749 
1750 			sta_info_recalc_tim(sta);
1751 			break;
1752 		}
1753 	}
1754 }
1755 
1756 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1757 {
1758 	u8 ignore_for_response = sta->sta.uapsd_queues;
1759 
1760 	/*
1761 	 * If all ACs are delivery-enabled then we should reply
1762 	 * from any of them, if only some are enabled we reply
1763 	 * only from the non-enabled ones.
1764 	 */
1765 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1766 		ignore_for_response = 0;
1767 
1768 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1769 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1770 }
1771 
1772 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1773 {
1774 	int n_frames = sta->sta.max_sp;
1775 	u8 delivery_enabled = sta->sta.uapsd_queues;
1776 
1777 	/*
1778 	 * If we ever grow support for TSPEC this might happen if
1779 	 * the TSPEC update from hostapd comes in between a trigger
1780 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1781 	 * actually getting called.
1782 	 */
1783 	if (!delivery_enabled)
1784 		return;
1785 
1786 	switch (sta->sta.max_sp) {
1787 	case 1:
1788 		n_frames = 2;
1789 		break;
1790 	case 2:
1791 		n_frames = 4;
1792 		break;
1793 	case 3:
1794 		n_frames = 6;
1795 		break;
1796 	case 0:
1797 		/* XXX: what is a good value? */
1798 		n_frames = 128;
1799 		break;
1800 	}
1801 
1802 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1803 					  IEEE80211_FRAME_RELEASE_UAPSD);
1804 }
1805 
1806 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1807 			       struct ieee80211_sta *pubsta, bool block)
1808 {
1809 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1810 
1811 	trace_api_sta_block_awake(sta->local, pubsta, block);
1812 
1813 	if (block) {
1814 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1815 		ieee80211_clear_fast_xmit(sta);
1816 		return;
1817 	}
1818 
1819 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1820 		return;
1821 
1822 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1823 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1824 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1825 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1826 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1827 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
1828 		/* must be asleep in this case */
1829 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1830 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1831 	} else {
1832 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1833 		ieee80211_check_fast_xmit(sta);
1834 	}
1835 }
1836 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1837 
1838 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1839 {
1840 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1841 	struct ieee80211_local *local = sta->local;
1842 
1843 	trace_api_eosp(local, pubsta);
1844 
1845 	clear_sta_flag(sta, WLAN_STA_SP);
1846 }
1847 EXPORT_SYMBOL(ieee80211_sta_eosp);
1848 
1849 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1850 {
1851 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1852 	enum ieee80211_frame_release_type reason;
1853 	bool more_data;
1854 
1855 	trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1856 
1857 	reason = IEEE80211_FRAME_RELEASE_UAPSD;
1858 	more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1859 					       reason, 0);
1860 
1861 	ieee80211_send_null_response(sta, tid, reason, false, more_data);
1862 }
1863 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1864 
1865 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1866 				u8 tid, bool buffered)
1867 {
1868 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1869 
1870 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1871 		return;
1872 
1873 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1874 
1875 	if (buffered)
1876 		set_bit(tid, &sta->driver_buffered_tids);
1877 	else
1878 		clear_bit(tid, &sta->driver_buffered_tids);
1879 
1880 	sta_info_recalc_tim(sta);
1881 }
1882 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1883 
1884 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1885 				    u32 tx_airtime, u32 rx_airtime)
1886 {
1887 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1888 	struct ieee80211_local *local = sta->sdata->local;
1889 	u8 ac = ieee80211_ac_from_tid(tid);
1890 	u32 airtime = 0;
1891 
1892 	if (sta->local->airtime_flags & AIRTIME_USE_TX)
1893 		airtime += tx_airtime;
1894 	if (sta->local->airtime_flags & AIRTIME_USE_RX)
1895 		airtime += rx_airtime;
1896 
1897 	spin_lock_bh(&local->active_txq_lock[ac]);
1898 	sta->airtime[ac].tx_airtime += tx_airtime;
1899 	sta->airtime[ac].rx_airtime += rx_airtime;
1900 	sta->airtime[ac].deficit -= airtime;
1901 	spin_unlock_bh(&local->active_txq_lock[ac]);
1902 }
1903 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1904 
1905 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
1906 					  struct sta_info *sta, u8 ac,
1907 					  u16 tx_airtime, bool tx_completed)
1908 {
1909 	int tx_pending;
1910 
1911 	if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
1912 		return;
1913 
1914 	if (!tx_completed) {
1915 		if (sta)
1916 			atomic_add(tx_airtime,
1917 				   &sta->airtime[ac].aql_tx_pending);
1918 
1919 		atomic_add(tx_airtime, &local->aql_total_pending_airtime);
1920 		return;
1921 	}
1922 
1923 	if (sta) {
1924 		tx_pending = atomic_sub_return(tx_airtime,
1925 					       &sta->airtime[ac].aql_tx_pending);
1926 		if (WARN_ONCE(tx_pending < 0,
1927 			      "STA %pM AC %d txq pending airtime underflow: %u, %u",
1928 			      sta->addr, ac, tx_pending, tx_airtime))
1929 			atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
1930 				       tx_pending, 0);
1931 	}
1932 
1933 	tx_pending = atomic_sub_return(tx_airtime,
1934 				       &local->aql_total_pending_airtime);
1935 	if (WARN_ONCE(tx_pending < 0,
1936 		      "Device %s AC %d pending airtime underflow: %u, %u",
1937 		      wiphy_name(local->hw.wiphy), ac, tx_pending,
1938 		      tx_airtime))
1939 		atomic_cmpxchg(&local->aql_total_pending_airtime,
1940 			       tx_pending, 0);
1941 }
1942 
1943 int sta_info_move_state(struct sta_info *sta,
1944 			enum ieee80211_sta_state new_state)
1945 {
1946 	might_sleep();
1947 
1948 	if (sta->sta_state == new_state)
1949 		return 0;
1950 
1951 	/* check allowed transitions first */
1952 
1953 	switch (new_state) {
1954 	case IEEE80211_STA_NONE:
1955 		if (sta->sta_state != IEEE80211_STA_AUTH)
1956 			return -EINVAL;
1957 		break;
1958 	case IEEE80211_STA_AUTH:
1959 		if (sta->sta_state != IEEE80211_STA_NONE &&
1960 		    sta->sta_state != IEEE80211_STA_ASSOC)
1961 			return -EINVAL;
1962 		break;
1963 	case IEEE80211_STA_ASSOC:
1964 		if (sta->sta_state != IEEE80211_STA_AUTH &&
1965 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
1966 			return -EINVAL;
1967 		break;
1968 	case IEEE80211_STA_AUTHORIZED:
1969 		if (sta->sta_state != IEEE80211_STA_ASSOC)
1970 			return -EINVAL;
1971 		break;
1972 	default:
1973 		WARN(1, "invalid state %d", new_state);
1974 		return -EINVAL;
1975 	}
1976 
1977 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1978 		sta->sta.addr, new_state);
1979 
1980 	/*
1981 	 * notify the driver before the actual changes so it can
1982 	 * fail the transition
1983 	 */
1984 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1985 		int err = drv_sta_state(sta->local, sta->sdata, sta,
1986 					sta->sta_state, new_state);
1987 		if (err)
1988 			return err;
1989 	}
1990 
1991 	/* reflect the change in all state variables */
1992 
1993 	switch (new_state) {
1994 	case IEEE80211_STA_NONE:
1995 		if (sta->sta_state == IEEE80211_STA_AUTH)
1996 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
1997 		break;
1998 	case IEEE80211_STA_AUTH:
1999 		if (sta->sta_state == IEEE80211_STA_NONE) {
2000 			set_bit(WLAN_STA_AUTH, &sta->_flags);
2001 		} else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2002 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2003 			ieee80211_recalc_min_chandef(sta->sdata);
2004 			if (!sta->sta.support_p2p_ps)
2005 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2006 		}
2007 		break;
2008 	case IEEE80211_STA_ASSOC:
2009 		if (sta->sta_state == IEEE80211_STA_AUTH) {
2010 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
2011 			sta->assoc_at = ktime_get_boottime_ns();
2012 			ieee80211_recalc_min_chandef(sta->sdata);
2013 			if (!sta->sta.support_p2p_ps)
2014 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2015 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2016 			ieee80211_vif_dec_num_mcast(sta->sdata);
2017 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2018 			ieee80211_clear_fast_xmit(sta);
2019 			ieee80211_clear_fast_rx(sta);
2020 		}
2021 		break;
2022 	case IEEE80211_STA_AUTHORIZED:
2023 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
2024 			ieee80211_vif_inc_num_mcast(sta->sdata);
2025 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2026 			ieee80211_check_fast_xmit(sta);
2027 			ieee80211_check_fast_rx(sta);
2028 		}
2029 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2030 		    sta->sdata->vif.type == NL80211_IFTYPE_AP)
2031 			cfg80211_send_layer2_update(sta->sdata->dev,
2032 						    sta->sta.addr);
2033 		break;
2034 	default:
2035 		break;
2036 	}
2037 
2038 	sta->sta_state = new_state;
2039 
2040 	return 0;
2041 }
2042 
2043 u8 sta_info_tx_streams(struct sta_info *sta)
2044 {
2045 	struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
2046 	u8 rx_streams;
2047 
2048 	if (!sta->sta.ht_cap.ht_supported)
2049 		return 1;
2050 
2051 	if (sta->sta.vht_cap.vht_supported) {
2052 		int i;
2053 		u16 tx_mcs_map =
2054 			le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
2055 
2056 		for (i = 7; i >= 0; i--)
2057 			if ((tx_mcs_map & (0x3 << (i * 2))) !=
2058 			    IEEE80211_VHT_MCS_NOT_SUPPORTED)
2059 				return i + 1;
2060 	}
2061 
2062 	if (ht_cap->mcs.rx_mask[3])
2063 		rx_streams = 4;
2064 	else if (ht_cap->mcs.rx_mask[2])
2065 		rx_streams = 3;
2066 	else if (ht_cap->mcs.rx_mask[1])
2067 		rx_streams = 2;
2068 	else
2069 		rx_streams = 1;
2070 
2071 	if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2072 		return rx_streams;
2073 
2074 	return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2075 			>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2076 }
2077 
2078 static struct ieee80211_sta_rx_stats *
2079 sta_get_last_rx_stats(struct sta_info *sta)
2080 {
2081 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
2082 	struct ieee80211_local *local = sta->local;
2083 	int cpu;
2084 
2085 	if (!ieee80211_hw_check(&local->hw, USES_RSS))
2086 		return stats;
2087 
2088 	for_each_possible_cpu(cpu) {
2089 		struct ieee80211_sta_rx_stats *cpustats;
2090 
2091 		cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2092 
2093 		if (time_after(cpustats->last_rx, stats->last_rx))
2094 			stats = cpustats;
2095 	}
2096 
2097 	return stats;
2098 }
2099 
2100 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2101 				  struct rate_info *rinfo)
2102 {
2103 	rinfo->bw = STA_STATS_GET(BW, rate);
2104 
2105 	switch (STA_STATS_GET(TYPE, rate)) {
2106 	case STA_STATS_RATE_TYPE_VHT:
2107 		rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2108 		rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2109 		rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2110 		if (STA_STATS_GET(SGI, rate))
2111 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2112 		break;
2113 	case STA_STATS_RATE_TYPE_HT:
2114 		rinfo->flags = RATE_INFO_FLAGS_MCS;
2115 		rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2116 		if (STA_STATS_GET(SGI, rate))
2117 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2118 		break;
2119 	case STA_STATS_RATE_TYPE_LEGACY: {
2120 		struct ieee80211_supported_band *sband;
2121 		u16 brate;
2122 		unsigned int shift;
2123 		int band = STA_STATS_GET(LEGACY_BAND, rate);
2124 		int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2125 
2126 		sband = local->hw.wiphy->bands[band];
2127 		brate = sband->bitrates[rate_idx].bitrate;
2128 		if (rinfo->bw == RATE_INFO_BW_5)
2129 			shift = 2;
2130 		else if (rinfo->bw == RATE_INFO_BW_10)
2131 			shift = 1;
2132 		else
2133 			shift = 0;
2134 		rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2135 		break;
2136 		}
2137 	case STA_STATS_RATE_TYPE_HE:
2138 		rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2139 		rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2140 		rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2141 		rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2142 		rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2143 		rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2144 		break;
2145 	}
2146 }
2147 
2148 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2149 {
2150 	u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2151 
2152 	if (rate == STA_STATS_RATE_INVALID)
2153 		return -EINVAL;
2154 
2155 	sta_stats_decode_rate(sta->local, rate, rinfo);
2156 	return 0;
2157 }
2158 
2159 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats,
2160 					int tid)
2161 {
2162 	unsigned int start;
2163 	u64 value;
2164 
2165 	do {
2166 		start = u64_stats_fetch_begin(&rxstats->syncp);
2167 		value = rxstats->msdu[tid];
2168 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2169 
2170 	return value;
2171 }
2172 
2173 static void sta_set_tidstats(struct sta_info *sta,
2174 			     struct cfg80211_tid_stats *tidstats,
2175 			     int tid)
2176 {
2177 	struct ieee80211_local *local = sta->local;
2178 	int cpu;
2179 
2180 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2181 		if (!ieee80211_hw_check(&local->hw, USES_RSS))
2182 			tidstats->rx_msdu +=
2183 				sta_get_tidstats_msdu(&sta->rx_stats, tid);
2184 
2185 		if (sta->pcpu_rx_stats) {
2186 			for_each_possible_cpu(cpu) {
2187 				struct ieee80211_sta_rx_stats *cpurxs;
2188 
2189 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2190 				tidstats->rx_msdu +=
2191 					sta_get_tidstats_msdu(cpurxs, tid);
2192 			}
2193 		}
2194 
2195 		tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2196 	}
2197 
2198 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2199 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2200 		tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2201 	}
2202 
2203 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2204 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2205 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2206 		tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2207 	}
2208 
2209 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2210 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2211 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2212 		tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2213 	}
2214 
2215 	if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2216 		spin_lock_bh(&local->fq.lock);
2217 		rcu_read_lock();
2218 
2219 		tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2220 		ieee80211_fill_txq_stats(&tidstats->txq_stats,
2221 					 to_txq_info(sta->sta.txq[tid]));
2222 
2223 		rcu_read_unlock();
2224 		spin_unlock_bh(&local->fq.lock);
2225 	}
2226 }
2227 
2228 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2229 {
2230 	unsigned int start;
2231 	u64 value;
2232 
2233 	do {
2234 		start = u64_stats_fetch_begin(&rxstats->syncp);
2235 		value = rxstats->bytes;
2236 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2237 
2238 	return value;
2239 }
2240 
2241 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2242 		   bool tidstats)
2243 {
2244 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2245 	struct ieee80211_local *local = sdata->local;
2246 	u32 thr = 0;
2247 	int i, ac, cpu;
2248 	struct ieee80211_sta_rx_stats *last_rxstats;
2249 
2250 	last_rxstats = sta_get_last_rx_stats(sta);
2251 
2252 	sinfo->generation = sdata->local->sta_generation;
2253 
2254 	/* do before driver, so beacon filtering drivers have a
2255 	 * chance to e.g. just add the number of filtered beacons
2256 	 * (or just modify the value entirely, of course)
2257 	 */
2258 	if (sdata->vif.type == NL80211_IFTYPE_STATION)
2259 		sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2260 
2261 	drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2262 
2263 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2264 			 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2265 			 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2266 			 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2267 			 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2268 			 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2269 
2270 	if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2271 		sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2272 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2273 	}
2274 
2275 	sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2276 	sinfo->assoc_at = sta->assoc_at;
2277 	sinfo->inactive_time =
2278 		jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2279 
2280 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2281 			       BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2282 		sinfo->tx_bytes = 0;
2283 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2284 			sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2285 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2286 	}
2287 
2288 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2289 		sinfo->tx_packets = 0;
2290 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2291 			sinfo->tx_packets += sta->tx_stats.packets[ac];
2292 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2293 	}
2294 
2295 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2296 			       BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2297 		if (!ieee80211_hw_check(&local->hw, USES_RSS))
2298 			sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2299 
2300 		if (sta->pcpu_rx_stats) {
2301 			for_each_possible_cpu(cpu) {
2302 				struct ieee80211_sta_rx_stats *cpurxs;
2303 
2304 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2305 				sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2306 			}
2307 		}
2308 
2309 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2310 	}
2311 
2312 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2313 		sinfo->rx_packets = sta->rx_stats.packets;
2314 		if (sta->pcpu_rx_stats) {
2315 			for_each_possible_cpu(cpu) {
2316 				struct ieee80211_sta_rx_stats *cpurxs;
2317 
2318 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2319 				sinfo->rx_packets += cpurxs->packets;
2320 			}
2321 		}
2322 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2323 	}
2324 
2325 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2326 		sinfo->tx_retries = sta->status_stats.retry_count;
2327 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2328 	}
2329 
2330 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2331 		sinfo->tx_failed = sta->status_stats.retry_failed;
2332 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2333 	}
2334 
2335 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2336 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2337 			sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2338 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2339 	}
2340 
2341 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2342 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2343 			sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2344 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2345 	}
2346 
2347 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2348 		sinfo->airtime_weight = sta->airtime_weight;
2349 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2350 	}
2351 
2352 	sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2353 	if (sta->pcpu_rx_stats) {
2354 		for_each_possible_cpu(cpu) {
2355 			struct ieee80211_sta_rx_stats *cpurxs;
2356 
2357 			cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2358 			sinfo->rx_dropped_misc += cpurxs->dropped;
2359 		}
2360 	}
2361 
2362 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2363 	    !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2364 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2365 				 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2366 		sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2367 	}
2368 
2369 	if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2370 	    ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2371 		if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2372 			sinfo->signal = (s8)last_rxstats->last_signal;
2373 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2374 		}
2375 
2376 		if (!sta->pcpu_rx_stats &&
2377 		    !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2378 			sinfo->signal_avg =
2379 				-ewma_signal_read(&sta->rx_stats_avg.signal);
2380 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2381 		}
2382 	}
2383 
2384 	/* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2385 	 * the sta->rx_stats struct, so the check here is fine with and without
2386 	 * pcpu statistics
2387 	 */
2388 	if (last_rxstats->chains &&
2389 	    !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2390 			       BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2391 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2392 		if (!sta->pcpu_rx_stats)
2393 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2394 
2395 		sinfo->chains = last_rxstats->chains;
2396 
2397 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2398 			sinfo->chain_signal[i] =
2399 				last_rxstats->chain_signal_last[i];
2400 			sinfo->chain_signal_avg[i] =
2401 				-ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2402 		}
2403 	}
2404 
2405 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2406 		sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2407 				     &sinfo->txrate);
2408 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2409 	}
2410 
2411 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2412 		if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2413 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2414 	}
2415 
2416 	if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2417 		for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2418 			sta_set_tidstats(sta, &sinfo->pertid[i], i);
2419 	}
2420 
2421 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2422 #ifdef CONFIG_MAC80211_MESH
2423 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2424 				 BIT_ULL(NL80211_STA_INFO_PLID) |
2425 				 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2426 				 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2427 				 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2428 				 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2429 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE);
2430 
2431 		sinfo->llid = sta->mesh->llid;
2432 		sinfo->plid = sta->mesh->plid;
2433 		sinfo->plink_state = sta->mesh->plink_state;
2434 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2435 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2436 			sinfo->t_offset = sta->mesh->t_offset;
2437 		}
2438 		sinfo->local_pm = sta->mesh->local_pm;
2439 		sinfo->peer_pm = sta->mesh->peer_pm;
2440 		sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2441 		sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2442 #endif
2443 	}
2444 
2445 	sinfo->bss_param.flags = 0;
2446 	if (sdata->vif.bss_conf.use_cts_prot)
2447 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2448 	if (sdata->vif.bss_conf.use_short_preamble)
2449 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2450 	if (sdata->vif.bss_conf.use_short_slot)
2451 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2452 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2453 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2454 
2455 	sinfo->sta_flags.set = 0;
2456 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2457 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2458 				BIT(NL80211_STA_FLAG_WME) |
2459 				BIT(NL80211_STA_FLAG_MFP) |
2460 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2461 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
2462 				BIT(NL80211_STA_FLAG_TDLS_PEER);
2463 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2464 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2465 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2466 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2467 	if (sta->sta.wme)
2468 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2469 	if (test_sta_flag(sta, WLAN_STA_MFP))
2470 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2471 	if (test_sta_flag(sta, WLAN_STA_AUTH))
2472 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2473 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
2474 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2475 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2476 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2477 
2478 	thr = sta_get_expected_throughput(sta);
2479 
2480 	if (thr != 0) {
2481 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2482 		sinfo->expected_throughput = thr;
2483 	}
2484 
2485 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2486 	    sta->status_stats.ack_signal_filled) {
2487 		sinfo->ack_signal = sta->status_stats.last_ack_signal;
2488 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2489 	}
2490 
2491 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2492 	    sta->status_stats.ack_signal_filled) {
2493 		sinfo->avg_ack_signal =
2494 			-(s8)ewma_avg_signal_read(
2495 				&sta->status_stats.avg_ack_signal);
2496 		sinfo->filled |=
2497 			BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2498 	}
2499 
2500 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2501 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2502 		sinfo->airtime_link_metric =
2503 			airtime_link_metric_get(local, sta);
2504 	}
2505 }
2506 
2507 u32 sta_get_expected_throughput(struct sta_info *sta)
2508 {
2509 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2510 	struct ieee80211_local *local = sdata->local;
2511 	struct rate_control_ref *ref = NULL;
2512 	u32 thr = 0;
2513 
2514 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2515 		ref = local->rate_ctrl;
2516 
2517 	/* check if the driver has a SW RC implementation */
2518 	if (ref && ref->ops->get_expected_throughput)
2519 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2520 	else
2521 		thr = drv_get_expected_throughput(local, sta);
2522 
2523 	return thr;
2524 }
2525 
2526 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2527 {
2528 	struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2529 
2530 	if (!sta->status_stats.last_ack ||
2531 	    time_after(stats->last_rx, sta->status_stats.last_ack))
2532 		return stats->last_rx;
2533 	return sta->status_stats.last_ack;
2534 }
2535 
2536 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2537 {
2538 	if (!sta->sdata->local->ops->wake_tx_queue)
2539 		return;
2540 
2541 	if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2542 		sta->cparams.target = MS2TIME(50);
2543 		sta->cparams.interval = MS2TIME(300);
2544 		sta->cparams.ecn = false;
2545 	} else {
2546 		sta->cparams.target = MS2TIME(20);
2547 		sta->cparams.interval = MS2TIME(100);
2548 		sta->cparams.ecn = true;
2549 	}
2550 }
2551 
2552 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2553 					   u32 thr)
2554 {
2555 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2556 
2557 	sta_update_codel_params(sta, thr);
2558 }
2559