xref: /openbmc/linux/net/mac80211/sta_info.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7  * Copyright (C) 2018-2021 Intel Corporation
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20 
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30 
31 /**
32  * DOC: STA information lifetime rules
33  *
34  * STA info structures (&struct sta_info) are managed in a hash table
35  * for faster lookup and a list for iteration. They are managed using
36  * RCU, i.e. access to the list and hash table is protected by RCU.
37  *
38  * Upon allocating a STA info structure with sta_info_alloc(), the caller
39  * owns that structure. It must then insert it into the hash table using
40  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41  * case (which acquires an rcu read section but must not be called from
42  * within one) will the pointer still be valid after the call. Note that
43  * the caller may not do much with the STA info before inserting it, in
44  * particular, it may not start any mesh peer link management or add
45  * encryption keys.
46  *
47  * When the insertion fails (sta_info_insert()) returns non-zero), the
48  * structure will have been freed by sta_info_insert()!
49  *
50  * Station entries are added by mac80211 when you establish a link with a
51  * peer. This means different things for the different type of interfaces
52  * we support. For a regular station this mean we add the AP sta when we
53  * receive an association response from the AP. For IBSS this occurs when
54  * get to know about a peer on the same IBSS. For WDS we add the sta for
55  * the peer immediately upon device open. When using AP mode we add stations
56  * for each respective station upon request from userspace through nl80211.
57  *
58  * In order to remove a STA info structure, various sta_info_destroy_*()
59  * calls are available.
60  *
61  * There is no concept of ownership on a STA entry, each structure is
62  * owned by the global hash table/list until it is removed. All users of
63  * the structure need to be RCU protected so that the structure won't be
64  * freed before they are done using it.
65  */
66 
67 static const struct rhashtable_params sta_rht_params = {
68 	.nelem_hint = 3, /* start small */
69 	.automatic_shrinking = true,
70 	.head_offset = offsetof(struct sta_info, hash_node),
71 	.key_offset = offsetof(struct sta_info, addr),
72 	.key_len = ETH_ALEN,
73 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
74 };
75 
76 /* Caller must hold local->sta_mtx */
77 static int sta_info_hash_del(struct ieee80211_local *local,
78 			     struct sta_info *sta)
79 {
80 	return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 			       sta_rht_params);
82 }
83 
84 static void __cleanup_single_sta(struct sta_info *sta)
85 {
86 	int ac, i;
87 	struct tid_ampdu_tx *tid_tx;
88 	struct ieee80211_sub_if_data *sdata = sta->sdata;
89 	struct ieee80211_local *local = sdata->local;
90 	struct ps_data *ps;
91 
92 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 			ps = &sdata->bss->ps;
98 		else if (ieee80211_vif_is_mesh(&sdata->vif))
99 			ps = &sdata->u.mesh.ps;
100 		else
101 			return;
102 
103 		clear_sta_flag(sta, WLAN_STA_PS_STA);
104 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
106 
107 		atomic_dec(&ps->num_sta_ps);
108 	}
109 
110 	if (sta->sta.txq[0]) {
111 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 			struct txq_info *txqi;
113 
114 			if (!sta->sta.txq[i])
115 				continue;
116 
117 			txqi = to_txq_info(sta->sta.txq[i]);
118 
119 			ieee80211_txq_purge(local, txqi);
120 		}
121 	}
122 
123 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
127 	}
128 
129 	if (ieee80211_vif_is_mesh(&sdata->vif))
130 		mesh_sta_cleanup(sta);
131 
132 	cancel_work_sync(&sta->drv_deliver_wk);
133 
134 	/*
135 	 * Destroy aggregation state here. It would be nice to wait for the
136 	 * driver to finish aggregation stop and then clean up, but for now
137 	 * drivers have to handle aggregation stop being requested, followed
138 	 * directly by station destruction.
139 	 */
140 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 		if (!tid_tx)
144 			continue;
145 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 		kfree(tid_tx);
147 	}
148 }
149 
150 static void cleanup_single_sta(struct sta_info *sta)
151 {
152 	struct ieee80211_sub_if_data *sdata = sta->sdata;
153 	struct ieee80211_local *local = sdata->local;
154 
155 	__cleanup_single_sta(sta);
156 	sta_info_free(local, sta);
157 }
158 
159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 					 const u8 *addr)
161 {
162 	return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
163 }
164 
165 /* protected by RCU */
166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 			      const u8 *addr)
168 {
169 	struct ieee80211_local *local = sdata->local;
170 	struct rhlist_head *tmp;
171 	struct sta_info *sta;
172 
173 	rcu_read_lock();
174 	for_each_sta_info(local, addr, sta, tmp) {
175 		if (sta->sdata == sdata) {
176 			rcu_read_unlock();
177 			/* this is safe as the caller must already hold
178 			 * another rcu read section or the mutex
179 			 */
180 			return sta;
181 		}
182 	}
183 	rcu_read_unlock();
184 	return NULL;
185 }
186 
187 /*
188  * Get sta info either from the specified interface
189  * or from one of its vlans
190  */
191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 				  const u8 *addr)
193 {
194 	struct ieee80211_local *local = sdata->local;
195 	struct rhlist_head *tmp;
196 	struct sta_info *sta;
197 
198 	rcu_read_lock();
199 	for_each_sta_info(local, addr, sta, tmp) {
200 		if (sta->sdata == sdata ||
201 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 			rcu_read_unlock();
203 			/* this is safe as the caller must already hold
204 			 * another rcu read section or the mutex
205 			 */
206 			return sta;
207 		}
208 	}
209 	rcu_read_unlock();
210 	return NULL;
211 }
212 
213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
214 				       const u8 *sta_addr, const u8 *vif_addr)
215 {
216 	struct rhlist_head *tmp;
217 	struct sta_info *sta;
218 
219 	for_each_sta_info(local, sta_addr, sta, tmp) {
220 		if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
221 			return sta;
222 	}
223 
224 	return NULL;
225 }
226 
227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
228 				     int idx)
229 {
230 	struct ieee80211_local *local = sdata->local;
231 	struct sta_info *sta;
232 	int i = 0;
233 
234 	list_for_each_entry_rcu(sta, &local->sta_list, list,
235 				lockdep_is_held(&local->sta_mtx)) {
236 		if (sdata != sta->sdata)
237 			continue;
238 		if (i < idx) {
239 			++i;
240 			continue;
241 		}
242 		return sta;
243 	}
244 
245 	return NULL;
246 }
247 
248 /**
249  * sta_info_free - free STA
250  *
251  * @local: pointer to the global information
252  * @sta: STA info to free
253  *
254  * This function must undo everything done by sta_info_alloc()
255  * that may happen before sta_info_insert(). It may only be
256  * called when sta_info_insert() has not been attempted (and
257  * if that fails, the station is freed anyway.)
258  */
259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
260 {
261 	/*
262 	 * If we had used sta_info_pre_move_state() then we might not
263 	 * have gone through the state transitions down again, so do
264 	 * it here now (and warn if it's inserted).
265 	 *
266 	 * This will clear state such as fast TX/RX that may have been
267 	 * allocated during state transitions.
268 	 */
269 	while (sta->sta_state > IEEE80211_STA_NONE) {
270 		int ret;
271 
272 		WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED));
273 
274 		ret = sta_info_move_state(sta, sta->sta_state - 1);
275 		if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret))
276 			break;
277 	}
278 
279 	if (sta->rate_ctrl)
280 		rate_control_free_sta(sta);
281 
282 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
283 
284 	if (sta->sta.txq[0])
285 		kfree(to_txq_info(sta->sta.txq[0]));
286 	kfree(rcu_dereference_raw(sta->sta.rates));
287 #ifdef CONFIG_MAC80211_MESH
288 	kfree(sta->mesh);
289 #endif
290 	free_percpu(sta->pcpu_rx_stats);
291 	kfree(sta);
292 }
293 
294 /* Caller must hold local->sta_mtx */
295 static int sta_info_hash_add(struct ieee80211_local *local,
296 			     struct sta_info *sta)
297 {
298 	return rhltable_insert(&local->sta_hash, &sta->hash_node,
299 			       sta_rht_params);
300 }
301 
302 static void sta_deliver_ps_frames(struct work_struct *wk)
303 {
304 	struct sta_info *sta;
305 
306 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
307 
308 	if (sta->dead)
309 		return;
310 
311 	local_bh_disable();
312 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
313 		ieee80211_sta_ps_deliver_wakeup(sta);
314 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
315 		ieee80211_sta_ps_deliver_poll_response(sta);
316 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
317 		ieee80211_sta_ps_deliver_uapsd(sta);
318 	local_bh_enable();
319 }
320 
321 static int sta_prepare_rate_control(struct ieee80211_local *local,
322 				    struct sta_info *sta, gfp_t gfp)
323 {
324 	if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
325 		return 0;
326 
327 	sta->rate_ctrl = local->rate_ctrl;
328 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
329 						     sta, gfp);
330 	if (!sta->rate_ctrl_priv)
331 		return -ENOMEM;
332 
333 	return 0;
334 }
335 
336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
337 				const u8 *addr, gfp_t gfp)
338 {
339 	struct ieee80211_local *local = sdata->local;
340 	struct ieee80211_hw *hw = &local->hw;
341 	struct sta_info *sta;
342 	int i;
343 
344 	sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
345 	if (!sta)
346 		return NULL;
347 
348 	if (ieee80211_hw_check(hw, USES_RSS)) {
349 		sta->pcpu_rx_stats =
350 			alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
351 		if (!sta->pcpu_rx_stats)
352 			goto free;
353 	}
354 
355 	spin_lock_init(&sta->lock);
356 	spin_lock_init(&sta->ps_lock);
357 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
358 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
359 	mutex_init(&sta->ampdu_mlme.mtx);
360 #ifdef CONFIG_MAC80211_MESH
361 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
362 		sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
363 		if (!sta->mesh)
364 			goto free;
365 		sta->mesh->plink_sta = sta;
366 		spin_lock_init(&sta->mesh->plink_lock);
367 		if (ieee80211_vif_is_mesh(&sdata->vif) &&
368 		    !sdata->u.mesh.user_mpm)
369 			timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
370 				    0);
371 		sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
372 	}
373 #endif
374 
375 	memcpy(sta->addr, addr, ETH_ALEN);
376 	memcpy(sta->sta.addr, addr, ETH_ALEN);
377 	sta->sta.max_rx_aggregation_subframes =
378 		local->hw.max_rx_aggregation_subframes;
379 
380 	/* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
381 	 * The Tx path starts to use a key as soon as the key slot ptk_idx
382 	 * references to is not NULL. To not use the initial Rx-only key
383 	 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
384 	 * which always will refer to a NULL key.
385 	 */
386 	BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
387 	sta->ptk_idx = INVALID_PTK_KEYIDX;
388 
389 	sta->local = local;
390 	sta->sdata = sdata;
391 	sta->rx_stats.last_rx = jiffies;
392 
393 	u64_stats_init(&sta->rx_stats.syncp);
394 
395 	ieee80211_init_frag_cache(&sta->frags);
396 
397 	sta->sta_state = IEEE80211_STA_NONE;
398 
399 	/* Mark TID as unreserved */
400 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
401 
402 	sta->last_connected = ktime_get_seconds();
403 	ewma_signal_init(&sta->rx_stats_avg.signal);
404 	ewma_avg_signal_init(&sta->status_stats.avg_ack_signal);
405 	for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
406 		ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
407 
408 	if (local->ops->wake_tx_queue) {
409 		void *txq_data;
410 		int size = sizeof(struct txq_info) +
411 			   ALIGN(hw->txq_data_size, sizeof(void *));
412 
413 		txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
414 		if (!txq_data)
415 			goto free;
416 
417 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
418 			struct txq_info *txq = txq_data + i * size;
419 
420 			/* might not do anything for the bufferable MMPDU TXQ */
421 			ieee80211_txq_init(sdata, sta, txq, i);
422 		}
423 	}
424 
425 	if (sta_prepare_rate_control(local, sta, gfp))
426 		goto free_txq;
427 
428 	sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT;
429 
430 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
431 		skb_queue_head_init(&sta->ps_tx_buf[i]);
432 		skb_queue_head_init(&sta->tx_filtered[i]);
433 		sta->airtime[i].deficit = sta->airtime_weight;
434 		atomic_set(&sta->airtime[i].aql_tx_pending, 0);
435 		sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i];
436 		sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i];
437 	}
438 
439 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
440 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
441 
442 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
443 		u32 mandatory = 0;
444 		int r;
445 
446 		if (!hw->wiphy->bands[i])
447 			continue;
448 
449 		switch (i) {
450 		case NL80211_BAND_2GHZ:
451 			/*
452 			 * We use both here, even if we cannot really know for
453 			 * sure the station will support both, but the only use
454 			 * for this is when we don't know anything yet and send
455 			 * management frames, and then we'll pick the lowest
456 			 * possible rate anyway.
457 			 * If we don't include _G here, we cannot find a rate
458 			 * in P2P, and thus trigger the WARN_ONCE() in rate.c
459 			 */
460 			mandatory = IEEE80211_RATE_MANDATORY_B |
461 				    IEEE80211_RATE_MANDATORY_G;
462 			break;
463 		case NL80211_BAND_5GHZ:
464 			mandatory = IEEE80211_RATE_MANDATORY_A;
465 			break;
466 		case NL80211_BAND_60GHZ:
467 			WARN_ON(1);
468 			mandatory = 0;
469 			break;
470 		}
471 
472 		for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
473 			struct ieee80211_rate *rate;
474 
475 			rate = &hw->wiphy->bands[i]->bitrates[r];
476 
477 			if (!(rate->flags & mandatory))
478 				continue;
479 			sta->sta.supp_rates[i] |= BIT(r);
480 		}
481 	}
482 
483 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
484 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
485 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
486 		struct ieee80211_supported_band *sband;
487 		u8 smps;
488 
489 		sband = ieee80211_get_sband(sdata);
490 		if (!sband)
491 			goto free_txq;
492 
493 		smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
494 			IEEE80211_HT_CAP_SM_PS_SHIFT;
495 		/*
496 		 * Assume that hostapd advertises our caps in the beacon and
497 		 * this is the known_smps_mode for a station that just assciated
498 		 */
499 		switch (smps) {
500 		case WLAN_HT_SMPS_CONTROL_DISABLED:
501 			sta->known_smps_mode = IEEE80211_SMPS_OFF;
502 			break;
503 		case WLAN_HT_SMPS_CONTROL_STATIC:
504 			sta->known_smps_mode = IEEE80211_SMPS_STATIC;
505 			break;
506 		case WLAN_HT_SMPS_CONTROL_DYNAMIC:
507 			sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
508 			break;
509 		default:
510 			WARN_ON(1);
511 		}
512 	}
513 
514 	sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
515 
516 	sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
517 	sta->cparams.target = MS2TIME(20);
518 	sta->cparams.interval = MS2TIME(100);
519 	sta->cparams.ecn = true;
520 
521 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
522 
523 	return sta;
524 
525 free_txq:
526 	if (sta->sta.txq[0])
527 		kfree(to_txq_info(sta->sta.txq[0]));
528 free:
529 	free_percpu(sta->pcpu_rx_stats);
530 #ifdef CONFIG_MAC80211_MESH
531 	kfree(sta->mesh);
532 #endif
533 	kfree(sta);
534 	return NULL;
535 }
536 
537 static int sta_info_insert_check(struct sta_info *sta)
538 {
539 	struct ieee80211_sub_if_data *sdata = sta->sdata;
540 
541 	/*
542 	 * Can't be a WARN_ON because it can be triggered through a race:
543 	 * something inserts a STA (on one CPU) without holding the RTNL
544 	 * and another CPU turns off the net device.
545 	 */
546 	if (unlikely(!ieee80211_sdata_running(sdata)))
547 		return -ENETDOWN;
548 
549 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
550 		    is_multicast_ether_addr(sta->sta.addr)))
551 		return -EINVAL;
552 
553 	/* The RCU read lock is required by rhashtable due to
554 	 * asynchronous resize/rehash.  We also require the mutex
555 	 * for correctness.
556 	 */
557 	rcu_read_lock();
558 	lockdep_assert_held(&sdata->local->sta_mtx);
559 	if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
560 	    ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
561 		rcu_read_unlock();
562 		return -ENOTUNIQ;
563 	}
564 	rcu_read_unlock();
565 
566 	return 0;
567 }
568 
569 static int sta_info_insert_drv_state(struct ieee80211_local *local,
570 				     struct ieee80211_sub_if_data *sdata,
571 				     struct sta_info *sta)
572 {
573 	enum ieee80211_sta_state state;
574 	int err = 0;
575 
576 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
577 		err = drv_sta_state(local, sdata, sta, state, state + 1);
578 		if (err)
579 			break;
580 	}
581 
582 	if (!err) {
583 		/*
584 		 * Drivers using legacy sta_add/sta_remove callbacks only
585 		 * get uploaded set to true after sta_add is called.
586 		 */
587 		if (!local->ops->sta_add)
588 			sta->uploaded = true;
589 		return 0;
590 	}
591 
592 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
593 		sdata_info(sdata,
594 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
595 			   sta->sta.addr, state + 1, err);
596 		err = 0;
597 	}
598 
599 	/* unwind on error */
600 	for (; state > IEEE80211_STA_NOTEXIST; state--)
601 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
602 
603 	return err;
604 }
605 
606 static void
607 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
608 {
609 	struct ieee80211_local *local = sdata->local;
610 	bool allow_p2p_go_ps = sdata->vif.p2p;
611 	struct sta_info *sta;
612 
613 	rcu_read_lock();
614 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
615 		if (sdata != sta->sdata ||
616 		    !test_sta_flag(sta, WLAN_STA_ASSOC))
617 			continue;
618 		if (!sta->sta.support_p2p_ps) {
619 			allow_p2p_go_ps = false;
620 			break;
621 		}
622 	}
623 	rcu_read_unlock();
624 
625 	if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
626 		sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
627 		ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
628 	}
629 }
630 
631 /*
632  * should be called with sta_mtx locked
633  * this function replaces the mutex lock
634  * with a RCU lock
635  */
636 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
637 {
638 	struct ieee80211_local *local = sta->local;
639 	struct ieee80211_sub_if_data *sdata = sta->sdata;
640 	struct station_info *sinfo = NULL;
641 	int err = 0;
642 
643 	lockdep_assert_held(&local->sta_mtx);
644 
645 	/* check if STA exists already */
646 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
647 		err = -EEXIST;
648 		goto out_err;
649 	}
650 
651 	sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
652 	if (!sinfo) {
653 		err = -ENOMEM;
654 		goto out_err;
655 	}
656 
657 	local->num_sta++;
658 	local->sta_generation++;
659 	smp_mb();
660 
661 	/* simplify things and don't accept BA sessions yet */
662 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
663 
664 	/* make the station visible */
665 	err = sta_info_hash_add(local, sta);
666 	if (err)
667 		goto out_drop_sta;
668 
669 	list_add_tail_rcu(&sta->list, &local->sta_list);
670 
671 	/* notify driver */
672 	err = sta_info_insert_drv_state(local, sdata, sta);
673 	if (err)
674 		goto out_remove;
675 
676 	set_sta_flag(sta, WLAN_STA_INSERTED);
677 
678 	if (sta->sta_state >= IEEE80211_STA_ASSOC) {
679 		ieee80211_recalc_min_chandef(sta->sdata);
680 		if (!sta->sta.support_p2p_ps)
681 			ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
682 	}
683 
684 	/* accept BA sessions now */
685 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
686 
687 	ieee80211_sta_debugfs_add(sta);
688 	rate_control_add_sta_debugfs(sta);
689 
690 	sinfo->generation = local->sta_generation;
691 	cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
692 	kfree(sinfo);
693 
694 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
695 
696 	/* move reference to rcu-protected */
697 	rcu_read_lock();
698 	mutex_unlock(&local->sta_mtx);
699 
700 	if (ieee80211_vif_is_mesh(&sdata->vif))
701 		mesh_accept_plinks_update(sdata);
702 
703 	return 0;
704  out_remove:
705 	sta_info_hash_del(local, sta);
706 	list_del_rcu(&sta->list);
707  out_drop_sta:
708 	local->num_sta--;
709 	synchronize_net();
710 	cleanup_single_sta(sta);
711  out_err:
712 	mutex_unlock(&local->sta_mtx);
713 	kfree(sinfo);
714 	rcu_read_lock();
715 	return err;
716 }
717 
718 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
719 {
720 	struct ieee80211_local *local = sta->local;
721 	int err;
722 
723 	might_sleep();
724 
725 	mutex_lock(&local->sta_mtx);
726 
727 	err = sta_info_insert_check(sta);
728 	if (err) {
729 		sta_info_free(local, sta);
730 		mutex_unlock(&local->sta_mtx);
731 		rcu_read_lock();
732 		return err;
733 	}
734 
735 	return sta_info_insert_finish(sta);
736 }
737 
738 int sta_info_insert(struct sta_info *sta)
739 {
740 	int err = sta_info_insert_rcu(sta);
741 
742 	rcu_read_unlock();
743 
744 	return err;
745 }
746 
747 static inline void __bss_tim_set(u8 *tim, u16 id)
748 {
749 	/*
750 	 * This format has been mandated by the IEEE specifications,
751 	 * so this line may not be changed to use the __set_bit() format.
752 	 */
753 	tim[id / 8] |= (1 << (id % 8));
754 }
755 
756 static inline void __bss_tim_clear(u8 *tim, u16 id)
757 {
758 	/*
759 	 * This format has been mandated by the IEEE specifications,
760 	 * so this line may not be changed to use the __clear_bit() format.
761 	 */
762 	tim[id / 8] &= ~(1 << (id % 8));
763 }
764 
765 static inline bool __bss_tim_get(u8 *tim, u16 id)
766 {
767 	/*
768 	 * This format has been mandated by the IEEE specifications,
769 	 * so this line may not be changed to use the test_bit() format.
770 	 */
771 	return tim[id / 8] & (1 << (id % 8));
772 }
773 
774 static unsigned long ieee80211_tids_for_ac(int ac)
775 {
776 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
777 	switch (ac) {
778 	case IEEE80211_AC_VO:
779 		return BIT(6) | BIT(7);
780 	case IEEE80211_AC_VI:
781 		return BIT(4) | BIT(5);
782 	case IEEE80211_AC_BE:
783 		return BIT(0) | BIT(3);
784 	case IEEE80211_AC_BK:
785 		return BIT(1) | BIT(2);
786 	default:
787 		WARN_ON(1);
788 		return 0;
789 	}
790 }
791 
792 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
793 {
794 	struct ieee80211_local *local = sta->local;
795 	struct ps_data *ps;
796 	bool indicate_tim = false;
797 	u8 ignore_for_tim = sta->sta.uapsd_queues;
798 	int ac;
799 	u16 id = sta->sta.aid;
800 
801 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
802 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
803 		if (WARN_ON_ONCE(!sta->sdata->bss))
804 			return;
805 
806 		ps = &sta->sdata->bss->ps;
807 #ifdef CONFIG_MAC80211_MESH
808 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
809 		ps = &sta->sdata->u.mesh.ps;
810 #endif
811 	} else {
812 		return;
813 	}
814 
815 	/* No need to do anything if the driver does all */
816 	if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
817 		return;
818 
819 	if (sta->dead)
820 		goto done;
821 
822 	/*
823 	 * If all ACs are delivery-enabled then we should build
824 	 * the TIM bit for all ACs anyway; if only some are then
825 	 * we ignore those and build the TIM bit using only the
826 	 * non-enabled ones.
827 	 */
828 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
829 		ignore_for_tim = 0;
830 
831 	if (ignore_pending)
832 		ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
833 
834 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
835 		unsigned long tids;
836 
837 		if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
838 			continue;
839 
840 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
841 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
842 		if (indicate_tim)
843 			break;
844 
845 		tids = ieee80211_tids_for_ac(ac);
846 
847 		indicate_tim |=
848 			sta->driver_buffered_tids & tids;
849 		indicate_tim |=
850 			sta->txq_buffered_tids & tids;
851 	}
852 
853  done:
854 	spin_lock_bh(&local->tim_lock);
855 
856 	if (indicate_tim == __bss_tim_get(ps->tim, id))
857 		goto out_unlock;
858 
859 	if (indicate_tim)
860 		__bss_tim_set(ps->tim, id);
861 	else
862 		__bss_tim_clear(ps->tim, id);
863 
864 	if (local->ops->set_tim && !WARN_ON(sta->dead)) {
865 		local->tim_in_locked_section = true;
866 		drv_set_tim(local, &sta->sta, indicate_tim);
867 		local->tim_in_locked_section = false;
868 	}
869 
870 out_unlock:
871 	spin_unlock_bh(&local->tim_lock);
872 }
873 
874 void sta_info_recalc_tim(struct sta_info *sta)
875 {
876 	__sta_info_recalc_tim(sta, false);
877 }
878 
879 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
880 {
881 	struct ieee80211_tx_info *info;
882 	int timeout;
883 
884 	if (!skb)
885 		return false;
886 
887 	info = IEEE80211_SKB_CB(skb);
888 
889 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
890 	timeout = (sta->listen_interval *
891 		   sta->sdata->vif.bss_conf.beacon_int *
892 		   32 / 15625) * HZ;
893 	if (timeout < STA_TX_BUFFER_EXPIRE)
894 		timeout = STA_TX_BUFFER_EXPIRE;
895 	return time_after(jiffies, info->control.jiffies + timeout);
896 }
897 
898 
899 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
900 						struct sta_info *sta, int ac)
901 {
902 	unsigned long flags;
903 	struct sk_buff *skb;
904 
905 	/*
906 	 * First check for frames that should expire on the filtered
907 	 * queue. Frames here were rejected by the driver and are on
908 	 * a separate queue to avoid reordering with normal PS-buffered
909 	 * frames. They also aren't accounted for right now in the
910 	 * total_ps_buffered counter.
911 	 */
912 	for (;;) {
913 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
914 		skb = skb_peek(&sta->tx_filtered[ac]);
915 		if (sta_info_buffer_expired(sta, skb))
916 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
917 		else
918 			skb = NULL;
919 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
920 
921 		/*
922 		 * Frames are queued in order, so if this one
923 		 * hasn't expired yet we can stop testing. If
924 		 * we actually reached the end of the queue we
925 		 * also need to stop, of course.
926 		 */
927 		if (!skb)
928 			break;
929 		ieee80211_free_txskb(&local->hw, skb);
930 	}
931 
932 	/*
933 	 * Now also check the normal PS-buffered queue, this will
934 	 * only find something if the filtered queue was emptied
935 	 * since the filtered frames are all before the normal PS
936 	 * buffered frames.
937 	 */
938 	for (;;) {
939 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
940 		skb = skb_peek(&sta->ps_tx_buf[ac]);
941 		if (sta_info_buffer_expired(sta, skb))
942 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
943 		else
944 			skb = NULL;
945 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
946 
947 		/*
948 		 * frames are queued in order, so if this one
949 		 * hasn't expired yet (or we reached the end of
950 		 * the queue) we can stop testing
951 		 */
952 		if (!skb)
953 			break;
954 
955 		local->total_ps_buffered--;
956 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
957 		       sta->sta.addr);
958 		ieee80211_free_txskb(&local->hw, skb);
959 	}
960 
961 	/*
962 	 * Finally, recalculate the TIM bit for this station -- it might
963 	 * now be clear because the station was too slow to retrieve its
964 	 * frames.
965 	 */
966 	sta_info_recalc_tim(sta);
967 
968 	/*
969 	 * Return whether there are any frames still buffered, this is
970 	 * used to check whether the cleanup timer still needs to run,
971 	 * if there are no frames we don't need to rearm the timer.
972 	 */
973 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
974 		 skb_queue_empty(&sta->tx_filtered[ac]));
975 }
976 
977 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
978 					     struct sta_info *sta)
979 {
980 	bool have_buffered = false;
981 	int ac;
982 
983 	/* This is only necessary for stations on BSS/MBSS interfaces */
984 	if (!sta->sdata->bss &&
985 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
986 		return false;
987 
988 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
989 		have_buffered |=
990 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
991 
992 	return have_buffered;
993 }
994 
995 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
996 {
997 	struct ieee80211_local *local;
998 	struct ieee80211_sub_if_data *sdata;
999 	int ret;
1000 
1001 	might_sleep();
1002 
1003 	if (!sta)
1004 		return -ENOENT;
1005 
1006 	local = sta->local;
1007 	sdata = sta->sdata;
1008 
1009 	lockdep_assert_held(&local->sta_mtx);
1010 
1011 	/*
1012 	 * Before removing the station from the driver and
1013 	 * rate control, it might still start new aggregation
1014 	 * sessions -- block that to make sure the tear-down
1015 	 * will be sufficient.
1016 	 */
1017 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1018 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1019 
1020 	/*
1021 	 * Before removing the station from the driver there might be pending
1022 	 * rx frames on RSS queues sent prior to the disassociation - wait for
1023 	 * all such frames to be processed.
1024 	 */
1025 	drv_sync_rx_queues(local, sta);
1026 
1027 	ret = sta_info_hash_del(local, sta);
1028 	if (WARN_ON(ret))
1029 		return ret;
1030 
1031 	/*
1032 	 * for TDLS peers, make sure to return to the base channel before
1033 	 * removal.
1034 	 */
1035 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1036 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1037 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1038 	}
1039 
1040 	list_del_rcu(&sta->list);
1041 	sta->removed = true;
1042 
1043 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1044 
1045 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1046 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
1047 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1048 
1049 	return 0;
1050 }
1051 
1052 static void __sta_info_destroy_part2(struct sta_info *sta)
1053 {
1054 	struct ieee80211_local *local = sta->local;
1055 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1056 	struct station_info *sinfo;
1057 	int ret;
1058 
1059 	/*
1060 	 * NOTE: This assumes at least synchronize_net() was done
1061 	 *	 after _part1 and before _part2!
1062 	 */
1063 
1064 	might_sleep();
1065 	lockdep_assert_held(&local->sta_mtx);
1066 
1067 	if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1068 		ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1069 		WARN_ON_ONCE(ret);
1070 	}
1071 
1072 	/* now keys can no longer be reached */
1073 	ieee80211_free_sta_keys(local, sta);
1074 
1075 	/* disable TIM bit - last chance to tell driver */
1076 	__sta_info_recalc_tim(sta, true);
1077 
1078 	sta->dead = true;
1079 
1080 	local->num_sta--;
1081 	local->sta_generation++;
1082 
1083 	while (sta->sta_state > IEEE80211_STA_NONE) {
1084 		ret = sta_info_move_state(sta, sta->sta_state - 1);
1085 		if (ret) {
1086 			WARN_ON_ONCE(1);
1087 			break;
1088 		}
1089 	}
1090 
1091 	if (sta->uploaded) {
1092 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1093 				    IEEE80211_STA_NOTEXIST);
1094 		WARN_ON_ONCE(ret != 0);
1095 	}
1096 
1097 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1098 
1099 	sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1100 	if (sinfo)
1101 		sta_set_sinfo(sta, sinfo, true);
1102 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1103 	kfree(sinfo);
1104 
1105 	ieee80211_sta_debugfs_remove(sta);
1106 
1107 	ieee80211_destroy_frag_cache(&sta->frags);
1108 
1109 	cleanup_single_sta(sta);
1110 }
1111 
1112 int __must_check __sta_info_destroy(struct sta_info *sta)
1113 {
1114 	int err = __sta_info_destroy_part1(sta);
1115 
1116 	if (err)
1117 		return err;
1118 
1119 	synchronize_net();
1120 
1121 	__sta_info_destroy_part2(sta);
1122 
1123 	return 0;
1124 }
1125 
1126 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1127 {
1128 	struct sta_info *sta;
1129 	int ret;
1130 
1131 	mutex_lock(&sdata->local->sta_mtx);
1132 	sta = sta_info_get(sdata, addr);
1133 	ret = __sta_info_destroy(sta);
1134 	mutex_unlock(&sdata->local->sta_mtx);
1135 
1136 	return ret;
1137 }
1138 
1139 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1140 			      const u8 *addr)
1141 {
1142 	struct sta_info *sta;
1143 	int ret;
1144 
1145 	mutex_lock(&sdata->local->sta_mtx);
1146 	sta = sta_info_get_bss(sdata, addr);
1147 	ret = __sta_info_destroy(sta);
1148 	mutex_unlock(&sdata->local->sta_mtx);
1149 
1150 	return ret;
1151 }
1152 
1153 static void sta_info_cleanup(struct timer_list *t)
1154 {
1155 	struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1156 	struct sta_info *sta;
1157 	bool timer_needed = false;
1158 
1159 	rcu_read_lock();
1160 	list_for_each_entry_rcu(sta, &local->sta_list, list)
1161 		if (sta_info_cleanup_expire_buffered(local, sta))
1162 			timer_needed = true;
1163 	rcu_read_unlock();
1164 
1165 	if (local->quiescing)
1166 		return;
1167 
1168 	if (!timer_needed)
1169 		return;
1170 
1171 	mod_timer(&local->sta_cleanup,
1172 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1173 }
1174 
1175 int sta_info_init(struct ieee80211_local *local)
1176 {
1177 	int err;
1178 
1179 	err = rhltable_init(&local->sta_hash, &sta_rht_params);
1180 	if (err)
1181 		return err;
1182 
1183 	spin_lock_init(&local->tim_lock);
1184 	mutex_init(&local->sta_mtx);
1185 	INIT_LIST_HEAD(&local->sta_list);
1186 
1187 	timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1188 	return 0;
1189 }
1190 
1191 void sta_info_stop(struct ieee80211_local *local)
1192 {
1193 	del_timer_sync(&local->sta_cleanup);
1194 	rhltable_destroy(&local->sta_hash);
1195 }
1196 
1197 
1198 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1199 {
1200 	struct ieee80211_local *local = sdata->local;
1201 	struct sta_info *sta, *tmp;
1202 	LIST_HEAD(free_list);
1203 	int ret = 0;
1204 
1205 	might_sleep();
1206 
1207 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1208 	WARN_ON(vlans && !sdata->bss);
1209 
1210 	mutex_lock(&local->sta_mtx);
1211 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1212 		if (sdata == sta->sdata ||
1213 		    (vlans && sdata->bss == sta->sdata->bss)) {
1214 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1215 				list_add(&sta->free_list, &free_list);
1216 			ret++;
1217 		}
1218 	}
1219 
1220 	if (!list_empty(&free_list)) {
1221 		synchronize_net();
1222 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1223 			__sta_info_destroy_part2(sta);
1224 	}
1225 	mutex_unlock(&local->sta_mtx);
1226 
1227 	return ret;
1228 }
1229 
1230 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1231 			  unsigned long exp_time)
1232 {
1233 	struct ieee80211_local *local = sdata->local;
1234 	struct sta_info *sta, *tmp;
1235 
1236 	mutex_lock(&local->sta_mtx);
1237 
1238 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1239 		unsigned long last_active = ieee80211_sta_last_active(sta);
1240 
1241 		if (sdata != sta->sdata)
1242 			continue;
1243 
1244 		if (time_is_before_jiffies(last_active + exp_time)) {
1245 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1246 				sta->sta.addr);
1247 
1248 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1249 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1250 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1251 
1252 			WARN_ON(__sta_info_destroy(sta));
1253 		}
1254 	}
1255 
1256 	mutex_unlock(&local->sta_mtx);
1257 }
1258 
1259 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1260 						   const u8 *addr,
1261 						   const u8 *localaddr)
1262 {
1263 	struct ieee80211_local *local = hw_to_local(hw);
1264 	struct rhlist_head *tmp;
1265 	struct sta_info *sta;
1266 
1267 	/*
1268 	 * Just return a random station if localaddr is NULL
1269 	 * ... first in list.
1270 	 */
1271 	for_each_sta_info(local, addr, sta, tmp) {
1272 		if (localaddr &&
1273 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1274 			continue;
1275 		if (!sta->uploaded)
1276 			return NULL;
1277 		return &sta->sta;
1278 	}
1279 
1280 	return NULL;
1281 }
1282 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1283 
1284 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1285 					 const u8 *addr)
1286 {
1287 	struct sta_info *sta;
1288 
1289 	if (!vif)
1290 		return NULL;
1291 
1292 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1293 	if (!sta)
1294 		return NULL;
1295 
1296 	if (!sta->uploaded)
1297 		return NULL;
1298 
1299 	return &sta->sta;
1300 }
1301 EXPORT_SYMBOL(ieee80211_find_sta);
1302 
1303 /* powersave support code */
1304 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1305 {
1306 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1307 	struct ieee80211_local *local = sdata->local;
1308 	struct sk_buff_head pending;
1309 	int filtered = 0, buffered = 0, ac, i;
1310 	unsigned long flags;
1311 	struct ps_data *ps;
1312 
1313 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1314 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1315 				     u.ap);
1316 
1317 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1318 		ps = &sdata->bss->ps;
1319 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1320 		ps = &sdata->u.mesh.ps;
1321 	else
1322 		return;
1323 
1324 	clear_sta_flag(sta, WLAN_STA_SP);
1325 
1326 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1327 	sta->driver_buffered_tids = 0;
1328 	sta->txq_buffered_tids = 0;
1329 
1330 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1331 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1332 
1333 	for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1334 		if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1335 			continue;
1336 
1337 		schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1338 	}
1339 
1340 	skb_queue_head_init(&pending);
1341 
1342 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1343 	spin_lock(&sta->ps_lock);
1344 	/* Send all buffered frames to the station */
1345 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1346 		int count = skb_queue_len(&pending), tmp;
1347 
1348 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1349 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1350 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1351 		tmp = skb_queue_len(&pending);
1352 		filtered += tmp - count;
1353 		count = tmp;
1354 
1355 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1356 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1357 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1358 		tmp = skb_queue_len(&pending);
1359 		buffered += tmp - count;
1360 	}
1361 
1362 	ieee80211_add_pending_skbs(local, &pending);
1363 
1364 	/* now we're no longer in the deliver code */
1365 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1366 
1367 	/* The station might have polled and then woken up before we responded,
1368 	 * so clear these flags now to avoid them sticking around.
1369 	 */
1370 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1371 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1372 	spin_unlock(&sta->ps_lock);
1373 
1374 	atomic_dec(&ps->num_sta_ps);
1375 
1376 	local->total_ps_buffered -= buffered;
1377 
1378 	sta_info_recalc_tim(sta);
1379 
1380 	ps_dbg(sdata,
1381 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1382 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1383 
1384 	ieee80211_check_fast_xmit(sta);
1385 }
1386 
1387 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1388 					 enum ieee80211_frame_release_type reason,
1389 					 bool call_driver, bool more_data)
1390 {
1391 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1392 	struct ieee80211_local *local = sdata->local;
1393 	struct ieee80211_qos_hdr *nullfunc;
1394 	struct sk_buff *skb;
1395 	int size = sizeof(*nullfunc);
1396 	__le16 fc;
1397 	bool qos = sta->sta.wme;
1398 	struct ieee80211_tx_info *info;
1399 	struct ieee80211_chanctx_conf *chanctx_conf;
1400 
1401 	/* Don't send NDPs when STA is connected HE */
1402 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1403 	    !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE))
1404 		return;
1405 
1406 	if (qos) {
1407 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1408 				 IEEE80211_STYPE_QOS_NULLFUNC |
1409 				 IEEE80211_FCTL_FROMDS);
1410 	} else {
1411 		size -= 2;
1412 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1413 				 IEEE80211_STYPE_NULLFUNC |
1414 				 IEEE80211_FCTL_FROMDS);
1415 	}
1416 
1417 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1418 	if (!skb)
1419 		return;
1420 
1421 	skb_reserve(skb, local->hw.extra_tx_headroom);
1422 
1423 	nullfunc = skb_put(skb, size);
1424 	nullfunc->frame_control = fc;
1425 	nullfunc->duration_id = 0;
1426 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1427 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1428 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1429 	nullfunc->seq_ctrl = 0;
1430 
1431 	skb->priority = tid;
1432 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1433 	if (qos) {
1434 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1435 
1436 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1437 			nullfunc->qos_ctrl |=
1438 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1439 			if (more_data)
1440 				nullfunc->frame_control |=
1441 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1442 		}
1443 	}
1444 
1445 	info = IEEE80211_SKB_CB(skb);
1446 
1447 	/*
1448 	 * Tell TX path to send this frame even though the
1449 	 * STA may still remain is PS mode after this frame
1450 	 * exchange. Also set EOSP to indicate this packet
1451 	 * ends the poll/service period.
1452 	 */
1453 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1454 		       IEEE80211_TX_STATUS_EOSP |
1455 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1456 
1457 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1458 
1459 	if (call_driver)
1460 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1461 					  reason, false);
1462 
1463 	skb->dev = sdata->dev;
1464 
1465 	rcu_read_lock();
1466 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1467 	if (WARN_ON(!chanctx_conf)) {
1468 		rcu_read_unlock();
1469 		kfree_skb(skb);
1470 		return;
1471 	}
1472 
1473 	info->band = chanctx_conf->def.chan->band;
1474 	ieee80211_xmit(sdata, sta, skb);
1475 	rcu_read_unlock();
1476 }
1477 
1478 static int find_highest_prio_tid(unsigned long tids)
1479 {
1480 	/* lower 3 TIDs aren't ordered perfectly */
1481 	if (tids & 0xF8)
1482 		return fls(tids) - 1;
1483 	/* TID 0 is BE just like TID 3 */
1484 	if (tids & BIT(0))
1485 		return 0;
1486 	return fls(tids) - 1;
1487 }
1488 
1489 /* Indicates if the MORE_DATA bit should be set in the last
1490  * frame obtained by ieee80211_sta_ps_get_frames.
1491  * Note that driver_release_tids is relevant only if
1492  * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1493  */
1494 static bool
1495 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1496 			   enum ieee80211_frame_release_type reason,
1497 			   unsigned long driver_release_tids)
1498 {
1499 	int ac;
1500 
1501 	/* If the driver has data on more than one TID then
1502 	 * certainly there's more data if we release just a
1503 	 * single frame now (from a single TID). This will
1504 	 * only happen for PS-Poll.
1505 	 */
1506 	if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1507 	    hweight16(driver_release_tids) > 1)
1508 		return true;
1509 
1510 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1511 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1512 			continue;
1513 
1514 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1515 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1516 			return true;
1517 	}
1518 
1519 	return false;
1520 }
1521 
1522 static void
1523 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1524 			    enum ieee80211_frame_release_type reason,
1525 			    struct sk_buff_head *frames,
1526 			    unsigned long *driver_release_tids)
1527 {
1528 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1529 	struct ieee80211_local *local = sdata->local;
1530 	int ac;
1531 
1532 	/* Get response frame(s) and more data bit for the last one. */
1533 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1534 		unsigned long tids;
1535 
1536 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1537 			continue;
1538 
1539 		tids = ieee80211_tids_for_ac(ac);
1540 
1541 		/* if we already have frames from software, then we can't also
1542 		 * release from hardware queues
1543 		 */
1544 		if (skb_queue_empty(frames)) {
1545 			*driver_release_tids |=
1546 				sta->driver_buffered_tids & tids;
1547 			*driver_release_tids |= sta->txq_buffered_tids & tids;
1548 		}
1549 
1550 		if (!*driver_release_tids) {
1551 			struct sk_buff *skb;
1552 
1553 			while (n_frames > 0) {
1554 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1555 				if (!skb) {
1556 					skb = skb_dequeue(
1557 						&sta->ps_tx_buf[ac]);
1558 					if (skb)
1559 						local->total_ps_buffered--;
1560 				}
1561 				if (!skb)
1562 					break;
1563 				n_frames--;
1564 				__skb_queue_tail(frames, skb);
1565 			}
1566 		}
1567 
1568 		/* If we have more frames buffered on this AC, then abort the
1569 		 * loop since we can't send more data from other ACs before
1570 		 * the buffered frames from this.
1571 		 */
1572 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1573 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1574 			break;
1575 	}
1576 }
1577 
1578 static void
1579 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1580 				  int n_frames, u8 ignored_acs,
1581 				  enum ieee80211_frame_release_type reason)
1582 {
1583 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1584 	struct ieee80211_local *local = sdata->local;
1585 	unsigned long driver_release_tids = 0;
1586 	struct sk_buff_head frames;
1587 	bool more_data;
1588 
1589 	/* Service or PS-Poll period starts */
1590 	set_sta_flag(sta, WLAN_STA_SP);
1591 
1592 	__skb_queue_head_init(&frames);
1593 
1594 	ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1595 				    &frames, &driver_release_tids);
1596 
1597 	more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1598 
1599 	if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1600 		driver_release_tids =
1601 			BIT(find_highest_prio_tid(driver_release_tids));
1602 
1603 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1604 		int tid, ac;
1605 
1606 		/*
1607 		 * For PS-Poll, this can only happen due to a race condition
1608 		 * when we set the TIM bit and the station notices it, but
1609 		 * before it can poll for the frame we expire it.
1610 		 *
1611 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1612 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1613 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1614 		 *	more than the value specified in the Max SP Length field
1615 		 *	in the QoS Capability element from delivery-enabled ACs,
1616 		 *	that are destined for the non-AP STA.
1617 		 *
1618 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1619 		 */
1620 
1621 		/* This will evaluate to 1, 3, 5 or 7. */
1622 		for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1623 			if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1624 				break;
1625 		tid = 7 - 2 * ac;
1626 
1627 		ieee80211_send_null_response(sta, tid, reason, true, false);
1628 	} else if (!driver_release_tids) {
1629 		struct sk_buff_head pending;
1630 		struct sk_buff *skb;
1631 		int num = 0;
1632 		u16 tids = 0;
1633 		bool need_null = false;
1634 
1635 		skb_queue_head_init(&pending);
1636 
1637 		while ((skb = __skb_dequeue(&frames))) {
1638 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1639 			struct ieee80211_hdr *hdr = (void *) skb->data;
1640 			u8 *qoshdr = NULL;
1641 
1642 			num++;
1643 
1644 			/*
1645 			 * Tell TX path to send this frame even though the
1646 			 * STA may still remain is PS mode after this frame
1647 			 * exchange.
1648 			 */
1649 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1650 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1651 
1652 			/*
1653 			 * Use MoreData flag to indicate whether there are
1654 			 * more buffered frames for this STA
1655 			 */
1656 			if (more_data || !skb_queue_empty(&frames))
1657 				hdr->frame_control |=
1658 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1659 			else
1660 				hdr->frame_control &=
1661 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1662 
1663 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1664 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1665 				qoshdr = ieee80211_get_qos_ctl(hdr);
1666 
1667 			tids |= BIT(skb->priority);
1668 
1669 			__skb_queue_tail(&pending, skb);
1670 
1671 			/* end service period after last frame or add one */
1672 			if (!skb_queue_empty(&frames))
1673 				continue;
1674 
1675 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1676 				/* for PS-Poll, there's only one frame */
1677 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1678 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1679 				break;
1680 			}
1681 
1682 			/* For uAPSD, things are a bit more complicated. If the
1683 			 * last frame has a QoS header (i.e. is a QoS-data or
1684 			 * QoS-nulldata frame) then just set the EOSP bit there
1685 			 * and be done.
1686 			 * If the frame doesn't have a QoS header (which means
1687 			 * it should be a bufferable MMPDU) then we can't set
1688 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1689 			 * frame to the list to send it after the MMPDU.
1690 			 *
1691 			 * Note that this code is only in the mac80211-release
1692 			 * code path, we assume that the driver will not buffer
1693 			 * anything but QoS-data frames, or if it does, will
1694 			 * create the QoS-nulldata frame by itself if needed.
1695 			 *
1696 			 * Cf. 802.11-2012 10.2.1.10 (c).
1697 			 */
1698 			if (qoshdr) {
1699 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1700 
1701 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1702 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1703 			} else {
1704 				/* The standard isn't completely clear on this
1705 				 * as it says the more-data bit should be set
1706 				 * if there are more BUs. The QoS-Null frame
1707 				 * we're about to send isn't buffered yet, we
1708 				 * only create it below, but let's pretend it
1709 				 * was buffered just in case some clients only
1710 				 * expect more-data=0 when eosp=1.
1711 				 */
1712 				hdr->frame_control |=
1713 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1714 				need_null = true;
1715 				num++;
1716 			}
1717 			break;
1718 		}
1719 
1720 		drv_allow_buffered_frames(local, sta, tids, num,
1721 					  reason, more_data);
1722 
1723 		ieee80211_add_pending_skbs(local, &pending);
1724 
1725 		if (need_null)
1726 			ieee80211_send_null_response(
1727 				sta, find_highest_prio_tid(tids),
1728 				reason, false, false);
1729 
1730 		sta_info_recalc_tim(sta);
1731 	} else {
1732 		int tid;
1733 
1734 		/*
1735 		 * We need to release a frame that is buffered somewhere in the
1736 		 * driver ... it'll have to handle that.
1737 		 * Note that the driver also has to check the number of frames
1738 		 * on the TIDs we're releasing from - if there are more than
1739 		 * n_frames it has to set the more-data bit (if we didn't ask
1740 		 * it to set it anyway due to other buffered frames); if there
1741 		 * are fewer than n_frames it has to make sure to adjust that
1742 		 * to allow the service period to end properly.
1743 		 */
1744 		drv_release_buffered_frames(local, sta, driver_release_tids,
1745 					    n_frames, reason, more_data);
1746 
1747 		/*
1748 		 * Note that we don't recalculate the TIM bit here as it would
1749 		 * most likely have no effect at all unless the driver told us
1750 		 * that the TID(s) became empty before returning here from the
1751 		 * release function.
1752 		 * Either way, however, when the driver tells us that the TID(s)
1753 		 * became empty or we find that a txq became empty, we'll do the
1754 		 * TIM recalculation.
1755 		 */
1756 
1757 		if (!sta->sta.txq[0])
1758 			return;
1759 
1760 		for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1761 			if (!sta->sta.txq[tid] ||
1762 			    !(driver_release_tids & BIT(tid)) ||
1763 			    txq_has_queue(sta->sta.txq[tid]))
1764 				continue;
1765 
1766 			sta_info_recalc_tim(sta);
1767 			break;
1768 		}
1769 	}
1770 }
1771 
1772 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1773 {
1774 	u8 ignore_for_response = sta->sta.uapsd_queues;
1775 
1776 	/*
1777 	 * If all ACs are delivery-enabled then we should reply
1778 	 * from any of them, if only some are enabled we reply
1779 	 * only from the non-enabled ones.
1780 	 */
1781 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1782 		ignore_for_response = 0;
1783 
1784 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1785 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1786 }
1787 
1788 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1789 {
1790 	int n_frames = sta->sta.max_sp;
1791 	u8 delivery_enabled = sta->sta.uapsd_queues;
1792 
1793 	/*
1794 	 * If we ever grow support for TSPEC this might happen if
1795 	 * the TSPEC update from hostapd comes in between a trigger
1796 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1797 	 * actually getting called.
1798 	 */
1799 	if (!delivery_enabled)
1800 		return;
1801 
1802 	switch (sta->sta.max_sp) {
1803 	case 1:
1804 		n_frames = 2;
1805 		break;
1806 	case 2:
1807 		n_frames = 4;
1808 		break;
1809 	case 3:
1810 		n_frames = 6;
1811 		break;
1812 	case 0:
1813 		/* XXX: what is a good value? */
1814 		n_frames = 128;
1815 		break;
1816 	}
1817 
1818 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1819 					  IEEE80211_FRAME_RELEASE_UAPSD);
1820 }
1821 
1822 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1823 			       struct ieee80211_sta *pubsta, bool block)
1824 {
1825 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1826 
1827 	trace_api_sta_block_awake(sta->local, pubsta, block);
1828 
1829 	if (block) {
1830 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1831 		ieee80211_clear_fast_xmit(sta);
1832 		return;
1833 	}
1834 
1835 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1836 		return;
1837 
1838 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1839 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1840 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1841 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1842 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1843 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
1844 		/* must be asleep in this case */
1845 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1846 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1847 	} else {
1848 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1849 		ieee80211_check_fast_xmit(sta);
1850 	}
1851 }
1852 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1853 
1854 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1855 {
1856 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1857 	struct ieee80211_local *local = sta->local;
1858 
1859 	trace_api_eosp(local, pubsta);
1860 
1861 	clear_sta_flag(sta, WLAN_STA_SP);
1862 }
1863 EXPORT_SYMBOL(ieee80211_sta_eosp);
1864 
1865 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1866 {
1867 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1868 	enum ieee80211_frame_release_type reason;
1869 	bool more_data;
1870 
1871 	trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1872 
1873 	reason = IEEE80211_FRAME_RELEASE_UAPSD;
1874 	more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1875 					       reason, 0);
1876 
1877 	ieee80211_send_null_response(sta, tid, reason, false, more_data);
1878 }
1879 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1880 
1881 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1882 				u8 tid, bool buffered)
1883 {
1884 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1885 
1886 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1887 		return;
1888 
1889 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1890 
1891 	if (buffered)
1892 		set_bit(tid, &sta->driver_buffered_tids);
1893 	else
1894 		clear_bit(tid, &sta->driver_buffered_tids);
1895 
1896 	sta_info_recalc_tim(sta);
1897 }
1898 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1899 
1900 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1901 				    u32 tx_airtime, u32 rx_airtime)
1902 {
1903 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1904 	struct ieee80211_local *local = sta->sdata->local;
1905 	u8 ac = ieee80211_ac_from_tid(tid);
1906 	u32 airtime = 0;
1907 
1908 	if (sta->local->airtime_flags & AIRTIME_USE_TX)
1909 		airtime += tx_airtime;
1910 	if (sta->local->airtime_flags & AIRTIME_USE_RX)
1911 		airtime += rx_airtime;
1912 
1913 	spin_lock_bh(&local->active_txq_lock[ac]);
1914 	sta->airtime[ac].tx_airtime += tx_airtime;
1915 	sta->airtime[ac].rx_airtime += rx_airtime;
1916 	sta->airtime[ac].deficit -= airtime;
1917 	spin_unlock_bh(&local->active_txq_lock[ac]);
1918 }
1919 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1920 
1921 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
1922 					  struct sta_info *sta, u8 ac,
1923 					  u16 tx_airtime, bool tx_completed)
1924 {
1925 	int tx_pending;
1926 
1927 	if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
1928 		return;
1929 
1930 	if (!tx_completed) {
1931 		if (sta)
1932 			atomic_add(tx_airtime,
1933 				   &sta->airtime[ac].aql_tx_pending);
1934 
1935 		atomic_add(tx_airtime, &local->aql_total_pending_airtime);
1936 		return;
1937 	}
1938 
1939 	if (sta) {
1940 		tx_pending = atomic_sub_return(tx_airtime,
1941 					       &sta->airtime[ac].aql_tx_pending);
1942 		if (tx_pending < 0)
1943 			atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
1944 				       tx_pending, 0);
1945 	}
1946 
1947 	tx_pending = atomic_sub_return(tx_airtime,
1948 				       &local->aql_total_pending_airtime);
1949 	if (WARN_ONCE(tx_pending < 0,
1950 		      "Device %s AC %d pending airtime underflow: %u, %u",
1951 		      wiphy_name(local->hw.wiphy), ac, tx_pending,
1952 		      tx_airtime))
1953 		atomic_cmpxchg(&local->aql_total_pending_airtime,
1954 			       tx_pending, 0);
1955 }
1956 
1957 int sta_info_move_state(struct sta_info *sta,
1958 			enum ieee80211_sta_state new_state)
1959 {
1960 	might_sleep();
1961 
1962 	if (sta->sta_state == new_state)
1963 		return 0;
1964 
1965 	/* check allowed transitions first */
1966 
1967 	switch (new_state) {
1968 	case IEEE80211_STA_NONE:
1969 		if (sta->sta_state != IEEE80211_STA_AUTH)
1970 			return -EINVAL;
1971 		break;
1972 	case IEEE80211_STA_AUTH:
1973 		if (sta->sta_state != IEEE80211_STA_NONE &&
1974 		    sta->sta_state != IEEE80211_STA_ASSOC)
1975 			return -EINVAL;
1976 		break;
1977 	case IEEE80211_STA_ASSOC:
1978 		if (sta->sta_state != IEEE80211_STA_AUTH &&
1979 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
1980 			return -EINVAL;
1981 		break;
1982 	case IEEE80211_STA_AUTHORIZED:
1983 		if (sta->sta_state != IEEE80211_STA_ASSOC)
1984 			return -EINVAL;
1985 		break;
1986 	default:
1987 		WARN(1, "invalid state %d", new_state);
1988 		return -EINVAL;
1989 	}
1990 
1991 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1992 		sta->sta.addr, new_state);
1993 
1994 	/*
1995 	 * notify the driver before the actual changes so it can
1996 	 * fail the transition
1997 	 */
1998 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1999 		int err = drv_sta_state(sta->local, sta->sdata, sta,
2000 					sta->sta_state, new_state);
2001 		if (err)
2002 			return err;
2003 	}
2004 
2005 	/* reflect the change in all state variables */
2006 
2007 	switch (new_state) {
2008 	case IEEE80211_STA_NONE:
2009 		if (sta->sta_state == IEEE80211_STA_AUTH)
2010 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
2011 		break;
2012 	case IEEE80211_STA_AUTH:
2013 		if (sta->sta_state == IEEE80211_STA_NONE) {
2014 			set_bit(WLAN_STA_AUTH, &sta->_flags);
2015 		} else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2016 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2017 			ieee80211_recalc_min_chandef(sta->sdata);
2018 			if (!sta->sta.support_p2p_ps)
2019 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2020 		}
2021 		break;
2022 	case IEEE80211_STA_ASSOC:
2023 		if (sta->sta_state == IEEE80211_STA_AUTH) {
2024 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
2025 			sta->assoc_at = ktime_get_boottime_ns();
2026 			ieee80211_recalc_min_chandef(sta->sdata);
2027 			if (!sta->sta.support_p2p_ps)
2028 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2029 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2030 			ieee80211_vif_dec_num_mcast(sta->sdata);
2031 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2032 			ieee80211_clear_fast_xmit(sta);
2033 			ieee80211_clear_fast_rx(sta);
2034 		}
2035 		break;
2036 	case IEEE80211_STA_AUTHORIZED:
2037 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
2038 			ieee80211_vif_inc_num_mcast(sta->sdata);
2039 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2040 			ieee80211_check_fast_xmit(sta);
2041 			ieee80211_check_fast_rx(sta);
2042 		}
2043 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2044 		    sta->sdata->vif.type == NL80211_IFTYPE_AP)
2045 			cfg80211_send_layer2_update(sta->sdata->dev,
2046 						    sta->sta.addr);
2047 		break;
2048 	default:
2049 		break;
2050 	}
2051 
2052 	sta->sta_state = new_state;
2053 
2054 	return 0;
2055 }
2056 
2057 u8 sta_info_tx_streams(struct sta_info *sta)
2058 {
2059 	struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
2060 	u8 rx_streams;
2061 
2062 	if (!sta->sta.ht_cap.ht_supported)
2063 		return 1;
2064 
2065 	if (sta->sta.vht_cap.vht_supported) {
2066 		int i;
2067 		u16 tx_mcs_map =
2068 			le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
2069 
2070 		for (i = 7; i >= 0; i--)
2071 			if ((tx_mcs_map & (0x3 << (i * 2))) !=
2072 			    IEEE80211_VHT_MCS_NOT_SUPPORTED)
2073 				return i + 1;
2074 	}
2075 
2076 	if (ht_cap->mcs.rx_mask[3])
2077 		rx_streams = 4;
2078 	else if (ht_cap->mcs.rx_mask[2])
2079 		rx_streams = 3;
2080 	else if (ht_cap->mcs.rx_mask[1])
2081 		rx_streams = 2;
2082 	else
2083 		rx_streams = 1;
2084 
2085 	if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2086 		return rx_streams;
2087 
2088 	return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2089 			>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2090 }
2091 
2092 static struct ieee80211_sta_rx_stats *
2093 sta_get_last_rx_stats(struct sta_info *sta)
2094 {
2095 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
2096 	struct ieee80211_local *local = sta->local;
2097 	int cpu;
2098 
2099 	if (!ieee80211_hw_check(&local->hw, USES_RSS))
2100 		return stats;
2101 
2102 	for_each_possible_cpu(cpu) {
2103 		struct ieee80211_sta_rx_stats *cpustats;
2104 
2105 		cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2106 
2107 		if (time_after(cpustats->last_rx, stats->last_rx))
2108 			stats = cpustats;
2109 	}
2110 
2111 	return stats;
2112 }
2113 
2114 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2115 				  struct rate_info *rinfo)
2116 {
2117 	rinfo->bw = STA_STATS_GET(BW, rate);
2118 
2119 	switch (STA_STATS_GET(TYPE, rate)) {
2120 	case STA_STATS_RATE_TYPE_VHT:
2121 		rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2122 		rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2123 		rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2124 		if (STA_STATS_GET(SGI, rate))
2125 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2126 		break;
2127 	case STA_STATS_RATE_TYPE_HT:
2128 		rinfo->flags = RATE_INFO_FLAGS_MCS;
2129 		rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2130 		if (STA_STATS_GET(SGI, rate))
2131 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2132 		break;
2133 	case STA_STATS_RATE_TYPE_LEGACY: {
2134 		struct ieee80211_supported_band *sband;
2135 		u16 brate;
2136 		unsigned int shift;
2137 		int band = STA_STATS_GET(LEGACY_BAND, rate);
2138 		int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2139 
2140 		sband = local->hw.wiphy->bands[band];
2141 
2142 		if (WARN_ON_ONCE(!sband->bitrates))
2143 			break;
2144 
2145 		brate = sband->bitrates[rate_idx].bitrate;
2146 		if (rinfo->bw == RATE_INFO_BW_5)
2147 			shift = 2;
2148 		else if (rinfo->bw == RATE_INFO_BW_10)
2149 			shift = 1;
2150 		else
2151 			shift = 0;
2152 		rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2153 		break;
2154 		}
2155 	case STA_STATS_RATE_TYPE_HE:
2156 		rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2157 		rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2158 		rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2159 		rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2160 		rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2161 		rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2162 		break;
2163 	}
2164 }
2165 
2166 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2167 {
2168 	u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2169 
2170 	if (rate == STA_STATS_RATE_INVALID)
2171 		return -EINVAL;
2172 
2173 	sta_stats_decode_rate(sta->local, rate, rinfo);
2174 	return 0;
2175 }
2176 
2177 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats,
2178 					int tid)
2179 {
2180 	unsigned int start;
2181 	u64 value;
2182 
2183 	do {
2184 		start = u64_stats_fetch_begin(&rxstats->syncp);
2185 		value = rxstats->msdu[tid];
2186 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2187 
2188 	return value;
2189 }
2190 
2191 static void sta_set_tidstats(struct sta_info *sta,
2192 			     struct cfg80211_tid_stats *tidstats,
2193 			     int tid)
2194 {
2195 	struct ieee80211_local *local = sta->local;
2196 	int cpu;
2197 
2198 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2199 		if (!ieee80211_hw_check(&local->hw, USES_RSS))
2200 			tidstats->rx_msdu +=
2201 				sta_get_tidstats_msdu(&sta->rx_stats, tid);
2202 
2203 		if (sta->pcpu_rx_stats) {
2204 			for_each_possible_cpu(cpu) {
2205 				struct ieee80211_sta_rx_stats *cpurxs;
2206 
2207 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2208 				tidstats->rx_msdu +=
2209 					sta_get_tidstats_msdu(cpurxs, tid);
2210 			}
2211 		}
2212 
2213 		tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2214 	}
2215 
2216 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2217 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2218 		tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2219 	}
2220 
2221 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2222 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2223 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2224 		tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2225 	}
2226 
2227 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2228 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2229 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2230 		tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2231 	}
2232 
2233 	if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2234 		spin_lock_bh(&local->fq.lock);
2235 		rcu_read_lock();
2236 
2237 		tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2238 		ieee80211_fill_txq_stats(&tidstats->txq_stats,
2239 					 to_txq_info(sta->sta.txq[tid]));
2240 
2241 		rcu_read_unlock();
2242 		spin_unlock_bh(&local->fq.lock);
2243 	}
2244 }
2245 
2246 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2247 {
2248 	unsigned int start;
2249 	u64 value;
2250 
2251 	do {
2252 		start = u64_stats_fetch_begin(&rxstats->syncp);
2253 		value = rxstats->bytes;
2254 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2255 
2256 	return value;
2257 }
2258 
2259 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2260 		   bool tidstats)
2261 {
2262 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2263 	struct ieee80211_local *local = sdata->local;
2264 	u32 thr = 0;
2265 	int i, ac, cpu;
2266 	struct ieee80211_sta_rx_stats *last_rxstats;
2267 
2268 	last_rxstats = sta_get_last_rx_stats(sta);
2269 
2270 	sinfo->generation = sdata->local->sta_generation;
2271 
2272 	/* do before driver, so beacon filtering drivers have a
2273 	 * chance to e.g. just add the number of filtered beacons
2274 	 * (or just modify the value entirely, of course)
2275 	 */
2276 	if (sdata->vif.type == NL80211_IFTYPE_STATION)
2277 		sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2278 
2279 	drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2280 
2281 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2282 			 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2283 			 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2284 			 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2285 			 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2286 			 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2287 
2288 	if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2289 		sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2290 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2291 	}
2292 
2293 	sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2294 	sinfo->assoc_at = sta->assoc_at;
2295 	sinfo->inactive_time =
2296 		jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2297 
2298 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2299 			       BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2300 		sinfo->tx_bytes = 0;
2301 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2302 			sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2303 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2304 	}
2305 
2306 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2307 		sinfo->tx_packets = 0;
2308 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2309 			sinfo->tx_packets += sta->tx_stats.packets[ac];
2310 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2311 	}
2312 
2313 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2314 			       BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2315 		if (!ieee80211_hw_check(&local->hw, USES_RSS))
2316 			sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2317 
2318 		if (sta->pcpu_rx_stats) {
2319 			for_each_possible_cpu(cpu) {
2320 				struct ieee80211_sta_rx_stats *cpurxs;
2321 
2322 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2323 				sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2324 			}
2325 		}
2326 
2327 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2328 	}
2329 
2330 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2331 		sinfo->rx_packets = sta->rx_stats.packets;
2332 		if (sta->pcpu_rx_stats) {
2333 			for_each_possible_cpu(cpu) {
2334 				struct ieee80211_sta_rx_stats *cpurxs;
2335 
2336 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2337 				sinfo->rx_packets += cpurxs->packets;
2338 			}
2339 		}
2340 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2341 	}
2342 
2343 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2344 		sinfo->tx_retries = sta->status_stats.retry_count;
2345 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2346 	}
2347 
2348 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2349 		sinfo->tx_failed = sta->status_stats.retry_failed;
2350 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2351 	}
2352 
2353 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2354 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2355 			sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2356 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2357 	}
2358 
2359 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2360 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2361 			sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2362 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2363 	}
2364 
2365 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2366 		sinfo->airtime_weight = sta->airtime_weight;
2367 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2368 	}
2369 
2370 	sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2371 	if (sta->pcpu_rx_stats) {
2372 		for_each_possible_cpu(cpu) {
2373 			struct ieee80211_sta_rx_stats *cpurxs;
2374 
2375 			cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2376 			sinfo->rx_dropped_misc += cpurxs->dropped;
2377 		}
2378 	}
2379 
2380 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2381 	    !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2382 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2383 				 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2384 		sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2385 	}
2386 
2387 	if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2388 	    ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2389 		if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2390 			sinfo->signal = (s8)last_rxstats->last_signal;
2391 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2392 		}
2393 
2394 		if (!sta->pcpu_rx_stats &&
2395 		    !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2396 			sinfo->signal_avg =
2397 				-ewma_signal_read(&sta->rx_stats_avg.signal);
2398 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2399 		}
2400 	}
2401 
2402 	/* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2403 	 * the sta->rx_stats struct, so the check here is fine with and without
2404 	 * pcpu statistics
2405 	 */
2406 	if (last_rxstats->chains &&
2407 	    !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2408 			       BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2409 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2410 		if (!sta->pcpu_rx_stats)
2411 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2412 
2413 		sinfo->chains = last_rxstats->chains;
2414 
2415 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2416 			sinfo->chain_signal[i] =
2417 				last_rxstats->chain_signal_last[i];
2418 			sinfo->chain_signal_avg[i] =
2419 				-ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2420 		}
2421 	}
2422 
2423 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2424 		sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2425 				     &sinfo->txrate);
2426 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2427 	}
2428 
2429 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2430 		if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2431 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2432 	}
2433 
2434 	if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2435 		for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2436 			sta_set_tidstats(sta, &sinfo->pertid[i], i);
2437 	}
2438 
2439 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2440 #ifdef CONFIG_MAC80211_MESH
2441 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2442 				 BIT_ULL(NL80211_STA_INFO_PLID) |
2443 				 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2444 				 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2445 				 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2446 				 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2447 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) |
2448 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS);
2449 
2450 		sinfo->llid = sta->mesh->llid;
2451 		sinfo->plid = sta->mesh->plid;
2452 		sinfo->plink_state = sta->mesh->plink_state;
2453 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2454 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2455 			sinfo->t_offset = sta->mesh->t_offset;
2456 		}
2457 		sinfo->local_pm = sta->mesh->local_pm;
2458 		sinfo->peer_pm = sta->mesh->peer_pm;
2459 		sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2460 		sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2461 		sinfo->connected_to_as = sta->mesh->connected_to_as;
2462 #endif
2463 	}
2464 
2465 	sinfo->bss_param.flags = 0;
2466 	if (sdata->vif.bss_conf.use_cts_prot)
2467 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2468 	if (sdata->vif.bss_conf.use_short_preamble)
2469 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2470 	if (sdata->vif.bss_conf.use_short_slot)
2471 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2472 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2473 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2474 
2475 	sinfo->sta_flags.set = 0;
2476 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2477 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2478 				BIT(NL80211_STA_FLAG_WME) |
2479 				BIT(NL80211_STA_FLAG_MFP) |
2480 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2481 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
2482 				BIT(NL80211_STA_FLAG_TDLS_PEER);
2483 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2484 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2485 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2486 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2487 	if (sta->sta.wme)
2488 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2489 	if (test_sta_flag(sta, WLAN_STA_MFP))
2490 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2491 	if (test_sta_flag(sta, WLAN_STA_AUTH))
2492 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2493 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
2494 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2495 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2496 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2497 
2498 	thr = sta_get_expected_throughput(sta);
2499 
2500 	if (thr != 0) {
2501 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2502 		sinfo->expected_throughput = thr;
2503 	}
2504 
2505 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2506 	    sta->status_stats.ack_signal_filled) {
2507 		sinfo->ack_signal = sta->status_stats.last_ack_signal;
2508 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2509 	}
2510 
2511 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2512 	    sta->status_stats.ack_signal_filled) {
2513 		sinfo->avg_ack_signal =
2514 			-(s8)ewma_avg_signal_read(
2515 				&sta->status_stats.avg_ack_signal);
2516 		sinfo->filled |=
2517 			BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2518 	}
2519 
2520 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2521 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2522 		sinfo->airtime_link_metric =
2523 			airtime_link_metric_get(local, sta);
2524 	}
2525 }
2526 
2527 u32 sta_get_expected_throughput(struct sta_info *sta)
2528 {
2529 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2530 	struct ieee80211_local *local = sdata->local;
2531 	struct rate_control_ref *ref = NULL;
2532 	u32 thr = 0;
2533 
2534 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2535 		ref = local->rate_ctrl;
2536 
2537 	/* check if the driver has a SW RC implementation */
2538 	if (ref && ref->ops->get_expected_throughput)
2539 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2540 	else
2541 		thr = drv_get_expected_throughput(local, sta);
2542 
2543 	return thr;
2544 }
2545 
2546 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2547 {
2548 	struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2549 
2550 	if (!sta->status_stats.last_ack ||
2551 	    time_after(stats->last_rx, sta->status_stats.last_ack))
2552 		return stats->last_rx;
2553 	return sta->status_stats.last_ack;
2554 }
2555 
2556 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2557 {
2558 	if (!sta->sdata->local->ops->wake_tx_queue)
2559 		return;
2560 
2561 	if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2562 		sta->cparams.target = MS2TIME(50);
2563 		sta->cparams.interval = MS2TIME(300);
2564 		sta->cparams.ecn = false;
2565 	} else {
2566 		sta->cparams.target = MS2TIME(20);
2567 		sta->cparams.interval = MS2TIME(100);
2568 		sta->cparams.ecn = true;
2569 	}
2570 }
2571 
2572 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2573 					   u32 thr)
2574 {
2575 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2576 
2577 	sta_update_codel_params(sta, thr);
2578 }
2579