1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 7 * Copyright (C) 2018-2021 Intel Corporation 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/codel.h> 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 static const struct rhashtable_params sta_rht_params = { 68 .nelem_hint = 3, /* start small */ 69 .automatic_shrinking = true, 70 .head_offset = offsetof(struct sta_info, hash_node), 71 .key_offset = offsetof(struct sta_info, addr), 72 .key_len = ETH_ALEN, 73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 74 }; 75 76 /* Caller must hold local->sta_mtx */ 77 static int sta_info_hash_del(struct ieee80211_local *local, 78 struct sta_info *sta) 79 { 80 return rhltable_remove(&local->sta_hash, &sta->hash_node, 81 sta_rht_params); 82 } 83 84 static void __cleanup_single_sta(struct sta_info *sta) 85 { 86 int ac, i; 87 struct tid_ampdu_tx *tid_tx; 88 struct ieee80211_sub_if_data *sdata = sta->sdata; 89 struct ieee80211_local *local = sdata->local; 90 struct ps_data *ps; 91 92 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 97 ps = &sdata->bss->ps; 98 else if (ieee80211_vif_is_mesh(&sdata->vif)) 99 ps = &sdata->u.mesh.ps; 100 else 101 return; 102 103 clear_sta_flag(sta, WLAN_STA_PS_STA); 104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 106 107 atomic_dec(&ps->num_sta_ps); 108 } 109 110 if (sta->sta.txq[0]) { 111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 112 struct txq_info *txqi; 113 114 if (!sta->sta.txq[i]) 115 continue; 116 117 txqi = to_txq_info(sta->sta.txq[i]); 118 119 ieee80211_txq_purge(local, txqi); 120 } 121 } 122 123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 127 } 128 129 if (ieee80211_vif_is_mesh(&sdata->vif)) 130 mesh_sta_cleanup(sta); 131 132 cancel_work_sync(&sta->drv_deliver_wk); 133 134 /* 135 * Destroy aggregation state here. It would be nice to wait for the 136 * driver to finish aggregation stop and then clean up, but for now 137 * drivers have to handle aggregation stop being requested, followed 138 * directly by station destruction. 139 */ 140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 141 kfree(sta->ampdu_mlme.tid_start_tx[i]); 142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 143 if (!tid_tx) 144 continue; 145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 146 kfree(tid_tx); 147 } 148 } 149 150 static void cleanup_single_sta(struct sta_info *sta) 151 { 152 struct ieee80211_sub_if_data *sdata = sta->sdata; 153 struct ieee80211_local *local = sdata->local; 154 155 __cleanup_single_sta(sta); 156 sta_info_free(local, sta); 157 } 158 159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 160 const u8 *addr) 161 { 162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 163 } 164 165 /* protected by RCU */ 166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 167 const u8 *addr) 168 { 169 struct ieee80211_local *local = sdata->local; 170 struct rhlist_head *tmp; 171 struct sta_info *sta; 172 173 rcu_read_lock(); 174 for_each_sta_info(local, addr, sta, tmp) { 175 if (sta->sdata == sdata) { 176 rcu_read_unlock(); 177 /* this is safe as the caller must already hold 178 * another rcu read section or the mutex 179 */ 180 return sta; 181 } 182 } 183 rcu_read_unlock(); 184 return NULL; 185 } 186 187 /* 188 * Get sta info either from the specified interface 189 * or from one of its vlans 190 */ 191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 192 const u8 *addr) 193 { 194 struct ieee80211_local *local = sdata->local; 195 struct rhlist_head *tmp; 196 struct sta_info *sta; 197 198 rcu_read_lock(); 199 for_each_sta_info(local, addr, sta, tmp) { 200 if (sta->sdata == sdata || 201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 202 rcu_read_unlock(); 203 /* this is safe as the caller must already hold 204 * another rcu read section or the mutex 205 */ 206 return sta; 207 } 208 } 209 rcu_read_unlock(); 210 return NULL; 211 } 212 213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, 214 const u8 *sta_addr, const u8 *vif_addr) 215 { 216 struct rhlist_head *tmp; 217 struct sta_info *sta; 218 219 for_each_sta_info(local, sta_addr, sta, tmp) { 220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr)) 221 return sta; 222 } 223 224 return NULL; 225 } 226 227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 228 int idx) 229 { 230 struct ieee80211_local *local = sdata->local; 231 struct sta_info *sta; 232 int i = 0; 233 234 list_for_each_entry_rcu(sta, &local->sta_list, list, 235 lockdep_is_held(&local->sta_mtx)) { 236 if (sdata != sta->sdata) 237 continue; 238 if (i < idx) { 239 ++i; 240 continue; 241 } 242 return sta; 243 } 244 245 return NULL; 246 } 247 248 /** 249 * sta_info_free - free STA 250 * 251 * @local: pointer to the global information 252 * @sta: STA info to free 253 * 254 * This function must undo everything done by sta_info_alloc() 255 * that may happen before sta_info_insert(). It may only be 256 * called when sta_info_insert() has not been attempted (and 257 * if that fails, the station is freed anyway.) 258 */ 259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 260 { 261 /* 262 * If we had used sta_info_pre_move_state() then we might not 263 * have gone through the state transitions down again, so do 264 * it here now (and warn if it's inserted). 265 * 266 * This will clear state such as fast TX/RX that may have been 267 * allocated during state transitions. 268 */ 269 while (sta->sta_state > IEEE80211_STA_NONE) { 270 int ret; 271 272 WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED)); 273 274 ret = sta_info_move_state(sta, sta->sta_state - 1); 275 if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret)) 276 break; 277 } 278 279 if (sta->rate_ctrl) 280 rate_control_free_sta(sta); 281 282 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 283 284 if (sta->sta.txq[0]) 285 kfree(to_txq_info(sta->sta.txq[0])); 286 kfree(rcu_dereference_raw(sta->sta.rates)); 287 #ifdef CONFIG_MAC80211_MESH 288 kfree(sta->mesh); 289 #endif 290 free_percpu(sta->pcpu_rx_stats); 291 kfree(sta); 292 } 293 294 /* Caller must hold local->sta_mtx */ 295 static int sta_info_hash_add(struct ieee80211_local *local, 296 struct sta_info *sta) 297 { 298 return rhltable_insert(&local->sta_hash, &sta->hash_node, 299 sta_rht_params); 300 } 301 302 static void sta_deliver_ps_frames(struct work_struct *wk) 303 { 304 struct sta_info *sta; 305 306 sta = container_of(wk, struct sta_info, drv_deliver_wk); 307 308 if (sta->dead) 309 return; 310 311 local_bh_disable(); 312 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 313 ieee80211_sta_ps_deliver_wakeup(sta); 314 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 315 ieee80211_sta_ps_deliver_poll_response(sta); 316 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 317 ieee80211_sta_ps_deliver_uapsd(sta); 318 local_bh_enable(); 319 } 320 321 static int sta_prepare_rate_control(struct ieee80211_local *local, 322 struct sta_info *sta, gfp_t gfp) 323 { 324 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 325 return 0; 326 327 sta->rate_ctrl = local->rate_ctrl; 328 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 329 sta, gfp); 330 if (!sta->rate_ctrl_priv) 331 return -ENOMEM; 332 333 return 0; 334 } 335 336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 337 const u8 *addr, gfp_t gfp) 338 { 339 struct ieee80211_local *local = sdata->local; 340 struct ieee80211_hw *hw = &local->hw; 341 struct sta_info *sta; 342 int i; 343 344 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 345 if (!sta) 346 return NULL; 347 348 if (ieee80211_hw_check(hw, USES_RSS)) { 349 sta->pcpu_rx_stats = 350 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); 351 if (!sta->pcpu_rx_stats) 352 goto free; 353 } 354 355 spin_lock_init(&sta->lock); 356 spin_lock_init(&sta->ps_lock); 357 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 358 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 359 mutex_init(&sta->ampdu_mlme.mtx); 360 #ifdef CONFIG_MAC80211_MESH 361 if (ieee80211_vif_is_mesh(&sdata->vif)) { 362 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 363 if (!sta->mesh) 364 goto free; 365 sta->mesh->plink_sta = sta; 366 spin_lock_init(&sta->mesh->plink_lock); 367 if (ieee80211_vif_is_mesh(&sdata->vif) && 368 !sdata->u.mesh.user_mpm) 369 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 370 0); 371 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 372 } 373 #endif 374 375 memcpy(sta->addr, addr, ETH_ALEN); 376 memcpy(sta->sta.addr, addr, ETH_ALEN); 377 sta->sta.max_rx_aggregation_subframes = 378 local->hw.max_rx_aggregation_subframes; 379 380 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only. 381 * The Tx path starts to use a key as soon as the key slot ptk_idx 382 * references to is not NULL. To not use the initial Rx-only key 383 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid 384 * which always will refer to a NULL key. 385 */ 386 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX); 387 sta->ptk_idx = INVALID_PTK_KEYIDX; 388 389 sta->local = local; 390 sta->sdata = sdata; 391 sta->rx_stats.last_rx = jiffies; 392 393 u64_stats_init(&sta->rx_stats.syncp); 394 395 ieee80211_init_frag_cache(&sta->frags); 396 397 sta->sta_state = IEEE80211_STA_NONE; 398 399 /* Mark TID as unreserved */ 400 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 401 402 sta->last_connected = ktime_get_seconds(); 403 ewma_signal_init(&sta->rx_stats_avg.signal); 404 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal); 405 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 406 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 407 408 if (local->ops->wake_tx_queue) { 409 void *txq_data; 410 int size = sizeof(struct txq_info) + 411 ALIGN(hw->txq_data_size, sizeof(void *)); 412 413 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 414 if (!txq_data) 415 goto free; 416 417 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 418 struct txq_info *txq = txq_data + i * size; 419 420 /* might not do anything for the bufferable MMPDU TXQ */ 421 ieee80211_txq_init(sdata, sta, txq, i); 422 } 423 } 424 425 if (sta_prepare_rate_control(local, sta, gfp)) 426 goto free_txq; 427 428 sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT; 429 430 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 431 skb_queue_head_init(&sta->ps_tx_buf[i]); 432 skb_queue_head_init(&sta->tx_filtered[i]); 433 sta->airtime[i].deficit = sta->airtime_weight; 434 atomic_set(&sta->airtime[i].aql_tx_pending, 0); 435 sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i]; 436 sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i]; 437 } 438 439 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 440 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 441 442 for (i = 0; i < NUM_NL80211_BANDS; i++) { 443 u32 mandatory = 0; 444 int r; 445 446 if (!hw->wiphy->bands[i]) 447 continue; 448 449 switch (i) { 450 case NL80211_BAND_2GHZ: 451 /* 452 * We use both here, even if we cannot really know for 453 * sure the station will support both, but the only use 454 * for this is when we don't know anything yet and send 455 * management frames, and then we'll pick the lowest 456 * possible rate anyway. 457 * If we don't include _G here, we cannot find a rate 458 * in P2P, and thus trigger the WARN_ONCE() in rate.c 459 */ 460 mandatory = IEEE80211_RATE_MANDATORY_B | 461 IEEE80211_RATE_MANDATORY_G; 462 break; 463 case NL80211_BAND_5GHZ: 464 mandatory = IEEE80211_RATE_MANDATORY_A; 465 break; 466 case NL80211_BAND_60GHZ: 467 WARN_ON(1); 468 mandatory = 0; 469 break; 470 } 471 472 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) { 473 struct ieee80211_rate *rate; 474 475 rate = &hw->wiphy->bands[i]->bitrates[r]; 476 477 if (!(rate->flags & mandatory)) 478 continue; 479 sta->sta.supp_rates[i] |= BIT(r); 480 } 481 } 482 483 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 484 if (sdata->vif.type == NL80211_IFTYPE_AP || 485 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 486 struct ieee80211_supported_band *sband; 487 u8 smps; 488 489 sband = ieee80211_get_sband(sdata); 490 if (!sband) 491 goto free_txq; 492 493 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 494 IEEE80211_HT_CAP_SM_PS_SHIFT; 495 /* 496 * Assume that hostapd advertises our caps in the beacon and 497 * this is the known_smps_mode for a station that just assciated 498 */ 499 switch (smps) { 500 case WLAN_HT_SMPS_CONTROL_DISABLED: 501 sta->known_smps_mode = IEEE80211_SMPS_OFF; 502 break; 503 case WLAN_HT_SMPS_CONTROL_STATIC: 504 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 505 break; 506 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 507 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 508 break; 509 default: 510 WARN_ON(1); 511 } 512 } 513 514 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 515 516 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; 517 sta->cparams.target = MS2TIME(20); 518 sta->cparams.interval = MS2TIME(100); 519 sta->cparams.ecn = true; 520 521 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 522 523 return sta; 524 525 free_txq: 526 if (sta->sta.txq[0]) 527 kfree(to_txq_info(sta->sta.txq[0])); 528 free: 529 free_percpu(sta->pcpu_rx_stats); 530 #ifdef CONFIG_MAC80211_MESH 531 kfree(sta->mesh); 532 #endif 533 kfree(sta); 534 return NULL; 535 } 536 537 static int sta_info_insert_check(struct sta_info *sta) 538 { 539 struct ieee80211_sub_if_data *sdata = sta->sdata; 540 541 /* 542 * Can't be a WARN_ON because it can be triggered through a race: 543 * something inserts a STA (on one CPU) without holding the RTNL 544 * and another CPU turns off the net device. 545 */ 546 if (unlikely(!ieee80211_sdata_running(sdata))) 547 return -ENETDOWN; 548 549 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 550 is_multicast_ether_addr(sta->sta.addr))) 551 return -EINVAL; 552 553 /* The RCU read lock is required by rhashtable due to 554 * asynchronous resize/rehash. We also require the mutex 555 * for correctness. 556 */ 557 rcu_read_lock(); 558 lockdep_assert_held(&sdata->local->sta_mtx); 559 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 560 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 561 rcu_read_unlock(); 562 return -ENOTUNIQ; 563 } 564 rcu_read_unlock(); 565 566 return 0; 567 } 568 569 static int sta_info_insert_drv_state(struct ieee80211_local *local, 570 struct ieee80211_sub_if_data *sdata, 571 struct sta_info *sta) 572 { 573 enum ieee80211_sta_state state; 574 int err = 0; 575 576 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 577 err = drv_sta_state(local, sdata, sta, state, state + 1); 578 if (err) 579 break; 580 } 581 582 if (!err) { 583 /* 584 * Drivers using legacy sta_add/sta_remove callbacks only 585 * get uploaded set to true after sta_add is called. 586 */ 587 if (!local->ops->sta_add) 588 sta->uploaded = true; 589 return 0; 590 } 591 592 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 593 sdata_info(sdata, 594 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 595 sta->sta.addr, state + 1, err); 596 err = 0; 597 } 598 599 /* unwind on error */ 600 for (; state > IEEE80211_STA_NOTEXIST; state--) 601 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 602 603 return err; 604 } 605 606 static void 607 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 608 { 609 struct ieee80211_local *local = sdata->local; 610 bool allow_p2p_go_ps = sdata->vif.p2p; 611 struct sta_info *sta; 612 613 rcu_read_lock(); 614 list_for_each_entry_rcu(sta, &local->sta_list, list) { 615 if (sdata != sta->sdata || 616 !test_sta_flag(sta, WLAN_STA_ASSOC)) 617 continue; 618 if (!sta->sta.support_p2p_ps) { 619 allow_p2p_go_ps = false; 620 break; 621 } 622 } 623 rcu_read_unlock(); 624 625 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 626 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 627 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 628 } 629 } 630 631 /* 632 * should be called with sta_mtx locked 633 * this function replaces the mutex lock 634 * with a RCU lock 635 */ 636 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 637 { 638 struct ieee80211_local *local = sta->local; 639 struct ieee80211_sub_if_data *sdata = sta->sdata; 640 struct station_info *sinfo = NULL; 641 int err = 0; 642 643 lockdep_assert_held(&local->sta_mtx); 644 645 /* check if STA exists already */ 646 if (sta_info_get_bss(sdata, sta->sta.addr)) { 647 err = -EEXIST; 648 goto out_err; 649 } 650 651 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 652 if (!sinfo) { 653 err = -ENOMEM; 654 goto out_err; 655 } 656 657 local->num_sta++; 658 local->sta_generation++; 659 smp_mb(); 660 661 /* simplify things and don't accept BA sessions yet */ 662 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 663 664 /* make the station visible */ 665 err = sta_info_hash_add(local, sta); 666 if (err) 667 goto out_drop_sta; 668 669 list_add_tail_rcu(&sta->list, &local->sta_list); 670 671 /* notify driver */ 672 err = sta_info_insert_drv_state(local, sdata, sta); 673 if (err) 674 goto out_remove; 675 676 set_sta_flag(sta, WLAN_STA_INSERTED); 677 678 if (sta->sta_state >= IEEE80211_STA_ASSOC) { 679 ieee80211_recalc_min_chandef(sta->sdata); 680 if (!sta->sta.support_p2p_ps) 681 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 682 } 683 684 /* accept BA sessions now */ 685 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 686 687 ieee80211_sta_debugfs_add(sta); 688 rate_control_add_sta_debugfs(sta); 689 690 sinfo->generation = local->sta_generation; 691 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 692 kfree(sinfo); 693 694 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 695 696 /* move reference to rcu-protected */ 697 rcu_read_lock(); 698 mutex_unlock(&local->sta_mtx); 699 700 if (ieee80211_vif_is_mesh(&sdata->vif)) 701 mesh_accept_plinks_update(sdata); 702 703 return 0; 704 out_remove: 705 sta_info_hash_del(local, sta); 706 list_del_rcu(&sta->list); 707 out_drop_sta: 708 local->num_sta--; 709 synchronize_net(); 710 cleanup_single_sta(sta); 711 out_err: 712 mutex_unlock(&local->sta_mtx); 713 kfree(sinfo); 714 rcu_read_lock(); 715 return err; 716 } 717 718 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 719 { 720 struct ieee80211_local *local = sta->local; 721 int err; 722 723 might_sleep(); 724 725 mutex_lock(&local->sta_mtx); 726 727 err = sta_info_insert_check(sta); 728 if (err) { 729 sta_info_free(local, sta); 730 mutex_unlock(&local->sta_mtx); 731 rcu_read_lock(); 732 return err; 733 } 734 735 return sta_info_insert_finish(sta); 736 } 737 738 int sta_info_insert(struct sta_info *sta) 739 { 740 int err = sta_info_insert_rcu(sta); 741 742 rcu_read_unlock(); 743 744 return err; 745 } 746 747 static inline void __bss_tim_set(u8 *tim, u16 id) 748 { 749 /* 750 * This format has been mandated by the IEEE specifications, 751 * so this line may not be changed to use the __set_bit() format. 752 */ 753 tim[id / 8] |= (1 << (id % 8)); 754 } 755 756 static inline void __bss_tim_clear(u8 *tim, u16 id) 757 { 758 /* 759 * This format has been mandated by the IEEE specifications, 760 * so this line may not be changed to use the __clear_bit() format. 761 */ 762 tim[id / 8] &= ~(1 << (id % 8)); 763 } 764 765 static inline bool __bss_tim_get(u8 *tim, u16 id) 766 { 767 /* 768 * This format has been mandated by the IEEE specifications, 769 * so this line may not be changed to use the test_bit() format. 770 */ 771 return tim[id / 8] & (1 << (id % 8)); 772 } 773 774 static unsigned long ieee80211_tids_for_ac(int ac) 775 { 776 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 777 switch (ac) { 778 case IEEE80211_AC_VO: 779 return BIT(6) | BIT(7); 780 case IEEE80211_AC_VI: 781 return BIT(4) | BIT(5); 782 case IEEE80211_AC_BE: 783 return BIT(0) | BIT(3); 784 case IEEE80211_AC_BK: 785 return BIT(1) | BIT(2); 786 default: 787 WARN_ON(1); 788 return 0; 789 } 790 } 791 792 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 793 { 794 struct ieee80211_local *local = sta->local; 795 struct ps_data *ps; 796 bool indicate_tim = false; 797 u8 ignore_for_tim = sta->sta.uapsd_queues; 798 int ac; 799 u16 id = sta->sta.aid; 800 801 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 802 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 803 if (WARN_ON_ONCE(!sta->sdata->bss)) 804 return; 805 806 ps = &sta->sdata->bss->ps; 807 #ifdef CONFIG_MAC80211_MESH 808 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 809 ps = &sta->sdata->u.mesh.ps; 810 #endif 811 } else { 812 return; 813 } 814 815 /* No need to do anything if the driver does all */ 816 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 817 return; 818 819 if (sta->dead) 820 goto done; 821 822 /* 823 * If all ACs are delivery-enabled then we should build 824 * the TIM bit for all ACs anyway; if only some are then 825 * we ignore those and build the TIM bit using only the 826 * non-enabled ones. 827 */ 828 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 829 ignore_for_tim = 0; 830 831 if (ignore_pending) 832 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 833 834 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 835 unsigned long tids; 836 837 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 838 continue; 839 840 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 841 !skb_queue_empty(&sta->ps_tx_buf[ac]); 842 if (indicate_tim) 843 break; 844 845 tids = ieee80211_tids_for_ac(ac); 846 847 indicate_tim |= 848 sta->driver_buffered_tids & tids; 849 indicate_tim |= 850 sta->txq_buffered_tids & tids; 851 } 852 853 done: 854 spin_lock_bh(&local->tim_lock); 855 856 if (indicate_tim == __bss_tim_get(ps->tim, id)) 857 goto out_unlock; 858 859 if (indicate_tim) 860 __bss_tim_set(ps->tim, id); 861 else 862 __bss_tim_clear(ps->tim, id); 863 864 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 865 local->tim_in_locked_section = true; 866 drv_set_tim(local, &sta->sta, indicate_tim); 867 local->tim_in_locked_section = false; 868 } 869 870 out_unlock: 871 spin_unlock_bh(&local->tim_lock); 872 } 873 874 void sta_info_recalc_tim(struct sta_info *sta) 875 { 876 __sta_info_recalc_tim(sta, false); 877 } 878 879 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 880 { 881 struct ieee80211_tx_info *info; 882 int timeout; 883 884 if (!skb) 885 return false; 886 887 info = IEEE80211_SKB_CB(skb); 888 889 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 890 timeout = (sta->listen_interval * 891 sta->sdata->vif.bss_conf.beacon_int * 892 32 / 15625) * HZ; 893 if (timeout < STA_TX_BUFFER_EXPIRE) 894 timeout = STA_TX_BUFFER_EXPIRE; 895 return time_after(jiffies, info->control.jiffies + timeout); 896 } 897 898 899 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 900 struct sta_info *sta, int ac) 901 { 902 unsigned long flags; 903 struct sk_buff *skb; 904 905 /* 906 * First check for frames that should expire on the filtered 907 * queue. Frames here were rejected by the driver and are on 908 * a separate queue to avoid reordering with normal PS-buffered 909 * frames. They also aren't accounted for right now in the 910 * total_ps_buffered counter. 911 */ 912 for (;;) { 913 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 914 skb = skb_peek(&sta->tx_filtered[ac]); 915 if (sta_info_buffer_expired(sta, skb)) 916 skb = __skb_dequeue(&sta->tx_filtered[ac]); 917 else 918 skb = NULL; 919 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 920 921 /* 922 * Frames are queued in order, so if this one 923 * hasn't expired yet we can stop testing. If 924 * we actually reached the end of the queue we 925 * also need to stop, of course. 926 */ 927 if (!skb) 928 break; 929 ieee80211_free_txskb(&local->hw, skb); 930 } 931 932 /* 933 * Now also check the normal PS-buffered queue, this will 934 * only find something if the filtered queue was emptied 935 * since the filtered frames are all before the normal PS 936 * buffered frames. 937 */ 938 for (;;) { 939 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 940 skb = skb_peek(&sta->ps_tx_buf[ac]); 941 if (sta_info_buffer_expired(sta, skb)) 942 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 943 else 944 skb = NULL; 945 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 946 947 /* 948 * frames are queued in order, so if this one 949 * hasn't expired yet (or we reached the end of 950 * the queue) we can stop testing 951 */ 952 if (!skb) 953 break; 954 955 local->total_ps_buffered--; 956 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 957 sta->sta.addr); 958 ieee80211_free_txskb(&local->hw, skb); 959 } 960 961 /* 962 * Finally, recalculate the TIM bit for this station -- it might 963 * now be clear because the station was too slow to retrieve its 964 * frames. 965 */ 966 sta_info_recalc_tim(sta); 967 968 /* 969 * Return whether there are any frames still buffered, this is 970 * used to check whether the cleanup timer still needs to run, 971 * if there are no frames we don't need to rearm the timer. 972 */ 973 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 974 skb_queue_empty(&sta->tx_filtered[ac])); 975 } 976 977 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 978 struct sta_info *sta) 979 { 980 bool have_buffered = false; 981 int ac; 982 983 /* This is only necessary for stations on BSS/MBSS interfaces */ 984 if (!sta->sdata->bss && 985 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 986 return false; 987 988 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 989 have_buffered |= 990 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 991 992 return have_buffered; 993 } 994 995 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 996 { 997 struct ieee80211_local *local; 998 struct ieee80211_sub_if_data *sdata; 999 int ret; 1000 1001 might_sleep(); 1002 1003 if (!sta) 1004 return -ENOENT; 1005 1006 local = sta->local; 1007 sdata = sta->sdata; 1008 1009 lockdep_assert_held(&local->sta_mtx); 1010 1011 /* 1012 * Before removing the station from the driver and 1013 * rate control, it might still start new aggregation 1014 * sessions -- block that to make sure the tear-down 1015 * will be sufficient. 1016 */ 1017 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 1018 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 1019 1020 /* 1021 * Before removing the station from the driver there might be pending 1022 * rx frames on RSS queues sent prior to the disassociation - wait for 1023 * all such frames to be processed. 1024 */ 1025 drv_sync_rx_queues(local, sta); 1026 1027 ret = sta_info_hash_del(local, sta); 1028 if (WARN_ON(ret)) 1029 return ret; 1030 1031 /* 1032 * for TDLS peers, make sure to return to the base channel before 1033 * removal. 1034 */ 1035 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 1036 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 1037 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 1038 } 1039 1040 list_del_rcu(&sta->list); 1041 sta->removed = true; 1042 1043 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 1044 1045 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1046 rcu_access_pointer(sdata->u.vlan.sta) == sta) 1047 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 1048 1049 return 0; 1050 } 1051 1052 static void __sta_info_destroy_part2(struct sta_info *sta) 1053 { 1054 struct ieee80211_local *local = sta->local; 1055 struct ieee80211_sub_if_data *sdata = sta->sdata; 1056 struct station_info *sinfo; 1057 int ret; 1058 1059 /* 1060 * NOTE: This assumes at least synchronize_net() was done 1061 * after _part1 and before _part2! 1062 */ 1063 1064 might_sleep(); 1065 lockdep_assert_held(&local->sta_mtx); 1066 1067 if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1068 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC); 1069 WARN_ON_ONCE(ret); 1070 } 1071 1072 /* now keys can no longer be reached */ 1073 ieee80211_free_sta_keys(local, sta); 1074 1075 /* disable TIM bit - last chance to tell driver */ 1076 __sta_info_recalc_tim(sta, true); 1077 1078 sta->dead = true; 1079 1080 local->num_sta--; 1081 local->sta_generation++; 1082 1083 while (sta->sta_state > IEEE80211_STA_NONE) { 1084 ret = sta_info_move_state(sta, sta->sta_state - 1); 1085 if (ret) { 1086 WARN_ON_ONCE(1); 1087 break; 1088 } 1089 } 1090 1091 if (sta->uploaded) { 1092 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 1093 IEEE80211_STA_NOTEXIST); 1094 WARN_ON_ONCE(ret != 0); 1095 } 1096 1097 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 1098 1099 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 1100 if (sinfo) 1101 sta_set_sinfo(sta, sinfo, true); 1102 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 1103 kfree(sinfo); 1104 1105 ieee80211_sta_debugfs_remove(sta); 1106 1107 ieee80211_destroy_frag_cache(&sta->frags); 1108 1109 cleanup_single_sta(sta); 1110 } 1111 1112 int __must_check __sta_info_destroy(struct sta_info *sta) 1113 { 1114 int err = __sta_info_destroy_part1(sta); 1115 1116 if (err) 1117 return err; 1118 1119 synchronize_net(); 1120 1121 __sta_info_destroy_part2(sta); 1122 1123 return 0; 1124 } 1125 1126 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1127 { 1128 struct sta_info *sta; 1129 int ret; 1130 1131 mutex_lock(&sdata->local->sta_mtx); 1132 sta = sta_info_get(sdata, addr); 1133 ret = __sta_info_destroy(sta); 1134 mutex_unlock(&sdata->local->sta_mtx); 1135 1136 return ret; 1137 } 1138 1139 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1140 const u8 *addr) 1141 { 1142 struct sta_info *sta; 1143 int ret; 1144 1145 mutex_lock(&sdata->local->sta_mtx); 1146 sta = sta_info_get_bss(sdata, addr); 1147 ret = __sta_info_destroy(sta); 1148 mutex_unlock(&sdata->local->sta_mtx); 1149 1150 return ret; 1151 } 1152 1153 static void sta_info_cleanup(struct timer_list *t) 1154 { 1155 struct ieee80211_local *local = from_timer(local, t, sta_cleanup); 1156 struct sta_info *sta; 1157 bool timer_needed = false; 1158 1159 rcu_read_lock(); 1160 list_for_each_entry_rcu(sta, &local->sta_list, list) 1161 if (sta_info_cleanup_expire_buffered(local, sta)) 1162 timer_needed = true; 1163 rcu_read_unlock(); 1164 1165 if (local->quiescing) 1166 return; 1167 1168 if (!timer_needed) 1169 return; 1170 1171 mod_timer(&local->sta_cleanup, 1172 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1173 } 1174 1175 int sta_info_init(struct ieee80211_local *local) 1176 { 1177 int err; 1178 1179 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1180 if (err) 1181 return err; 1182 1183 spin_lock_init(&local->tim_lock); 1184 mutex_init(&local->sta_mtx); 1185 INIT_LIST_HEAD(&local->sta_list); 1186 1187 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); 1188 return 0; 1189 } 1190 1191 void sta_info_stop(struct ieee80211_local *local) 1192 { 1193 del_timer_sync(&local->sta_cleanup); 1194 rhltable_destroy(&local->sta_hash); 1195 } 1196 1197 1198 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1199 { 1200 struct ieee80211_local *local = sdata->local; 1201 struct sta_info *sta, *tmp; 1202 LIST_HEAD(free_list); 1203 int ret = 0; 1204 1205 might_sleep(); 1206 1207 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1208 WARN_ON(vlans && !sdata->bss); 1209 1210 mutex_lock(&local->sta_mtx); 1211 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1212 if (sdata == sta->sdata || 1213 (vlans && sdata->bss == sta->sdata->bss)) { 1214 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1215 list_add(&sta->free_list, &free_list); 1216 ret++; 1217 } 1218 } 1219 1220 if (!list_empty(&free_list)) { 1221 synchronize_net(); 1222 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1223 __sta_info_destroy_part2(sta); 1224 } 1225 mutex_unlock(&local->sta_mtx); 1226 1227 return ret; 1228 } 1229 1230 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1231 unsigned long exp_time) 1232 { 1233 struct ieee80211_local *local = sdata->local; 1234 struct sta_info *sta, *tmp; 1235 1236 mutex_lock(&local->sta_mtx); 1237 1238 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1239 unsigned long last_active = ieee80211_sta_last_active(sta); 1240 1241 if (sdata != sta->sdata) 1242 continue; 1243 1244 if (time_is_before_jiffies(last_active + exp_time)) { 1245 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1246 sta->sta.addr); 1247 1248 if (ieee80211_vif_is_mesh(&sdata->vif) && 1249 test_sta_flag(sta, WLAN_STA_PS_STA)) 1250 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1251 1252 WARN_ON(__sta_info_destroy(sta)); 1253 } 1254 } 1255 1256 mutex_unlock(&local->sta_mtx); 1257 } 1258 1259 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1260 const u8 *addr, 1261 const u8 *localaddr) 1262 { 1263 struct ieee80211_local *local = hw_to_local(hw); 1264 struct rhlist_head *tmp; 1265 struct sta_info *sta; 1266 1267 /* 1268 * Just return a random station if localaddr is NULL 1269 * ... first in list. 1270 */ 1271 for_each_sta_info(local, addr, sta, tmp) { 1272 if (localaddr && 1273 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1274 continue; 1275 if (!sta->uploaded) 1276 return NULL; 1277 return &sta->sta; 1278 } 1279 1280 return NULL; 1281 } 1282 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1283 1284 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1285 const u8 *addr) 1286 { 1287 struct sta_info *sta; 1288 1289 if (!vif) 1290 return NULL; 1291 1292 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1293 if (!sta) 1294 return NULL; 1295 1296 if (!sta->uploaded) 1297 return NULL; 1298 1299 return &sta->sta; 1300 } 1301 EXPORT_SYMBOL(ieee80211_find_sta); 1302 1303 /* powersave support code */ 1304 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1305 { 1306 struct ieee80211_sub_if_data *sdata = sta->sdata; 1307 struct ieee80211_local *local = sdata->local; 1308 struct sk_buff_head pending; 1309 int filtered = 0, buffered = 0, ac, i; 1310 unsigned long flags; 1311 struct ps_data *ps; 1312 1313 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1314 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1315 u.ap); 1316 1317 if (sdata->vif.type == NL80211_IFTYPE_AP) 1318 ps = &sdata->bss->ps; 1319 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1320 ps = &sdata->u.mesh.ps; 1321 else 1322 return; 1323 1324 clear_sta_flag(sta, WLAN_STA_SP); 1325 1326 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1327 sta->driver_buffered_tids = 0; 1328 sta->txq_buffered_tids = 0; 1329 1330 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1331 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1332 1333 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1334 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) 1335 continue; 1336 1337 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); 1338 } 1339 1340 skb_queue_head_init(&pending); 1341 1342 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1343 spin_lock(&sta->ps_lock); 1344 /* Send all buffered frames to the station */ 1345 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1346 int count = skb_queue_len(&pending), tmp; 1347 1348 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1349 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1350 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1351 tmp = skb_queue_len(&pending); 1352 filtered += tmp - count; 1353 count = tmp; 1354 1355 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1356 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1357 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1358 tmp = skb_queue_len(&pending); 1359 buffered += tmp - count; 1360 } 1361 1362 ieee80211_add_pending_skbs(local, &pending); 1363 1364 /* now we're no longer in the deliver code */ 1365 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1366 1367 /* The station might have polled and then woken up before we responded, 1368 * so clear these flags now to avoid them sticking around. 1369 */ 1370 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1371 clear_sta_flag(sta, WLAN_STA_UAPSD); 1372 spin_unlock(&sta->ps_lock); 1373 1374 atomic_dec(&ps->num_sta_ps); 1375 1376 local->total_ps_buffered -= buffered; 1377 1378 sta_info_recalc_tim(sta); 1379 1380 ps_dbg(sdata, 1381 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1382 sta->sta.addr, sta->sta.aid, filtered, buffered); 1383 1384 ieee80211_check_fast_xmit(sta); 1385 } 1386 1387 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1388 enum ieee80211_frame_release_type reason, 1389 bool call_driver, bool more_data) 1390 { 1391 struct ieee80211_sub_if_data *sdata = sta->sdata; 1392 struct ieee80211_local *local = sdata->local; 1393 struct ieee80211_qos_hdr *nullfunc; 1394 struct sk_buff *skb; 1395 int size = sizeof(*nullfunc); 1396 __le16 fc; 1397 bool qos = sta->sta.wme; 1398 struct ieee80211_tx_info *info; 1399 struct ieee80211_chanctx_conf *chanctx_conf; 1400 1401 /* Don't send NDPs when STA is connected HE */ 1402 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1403 !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE)) 1404 return; 1405 1406 if (qos) { 1407 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1408 IEEE80211_STYPE_QOS_NULLFUNC | 1409 IEEE80211_FCTL_FROMDS); 1410 } else { 1411 size -= 2; 1412 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1413 IEEE80211_STYPE_NULLFUNC | 1414 IEEE80211_FCTL_FROMDS); 1415 } 1416 1417 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1418 if (!skb) 1419 return; 1420 1421 skb_reserve(skb, local->hw.extra_tx_headroom); 1422 1423 nullfunc = skb_put(skb, size); 1424 nullfunc->frame_control = fc; 1425 nullfunc->duration_id = 0; 1426 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1427 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1428 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1429 nullfunc->seq_ctrl = 0; 1430 1431 skb->priority = tid; 1432 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1433 if (qos) { 1434 nullfunc->qos_ctrl = cpu_to_le16(tid); 1435 1436 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1437 nullfunc->qos_ctrl |= 1438 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1439 if (more_data) 1440 nullfunc->frame_control |= 1441 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1442 } 1443 } 1444 1445 info = IEEE80211_SKB_CB(skb); 1446 1447 /* 1448 * Tell TX path to send this frame even though the 1449 * STA may still remain is PS mode after this frame 1450 * exchange. Also set EOSP to indicate this packet 1451 * ends the poll/service period. 1452 */ 1453 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1454 IEEE80211_TX_STATUS_EOSP | 1455 IEEE80211_TX_CTL_REQ_TX_STATUS; 1456 1457 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1458 1459 if (call_driver) 1460 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1461 reason, false); 1462 1463 skb->dev = sdata->dev; 1464 1465 rcu_read_lock(); 1466 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1467 if (WARN_ON(!chanctx_conf)) { 1468 rcu_read_unlock(); 1469 kfree_skb(skb); 1470 return; 1471 } 1472 1473 info->band = chanctx_conf->def.chan->band; 1474 ieee80211_xmit(sdata, sta, skb); 1475 rcu_read_unlock(); 1476 } 1477 1478 static int find_highest_prio_tid(unsigned long tids) 1479 { 1480 /* lower 3 TIDs aren't ordered perfectly */ 1481 if (tids & 0xF8) 1482 return fls(tids) - 1; 1483 /* TID 0 is BE just like TID 3 */ 1484 if (tids & BIT(0)) 1485 return 0; 1486 return fls(tids) - 1; 1487 } 1488 1489 /* Indicates if the MORE_DATA bit should be set in the last 1490 * frame obtained by ieee80211_sta_ps_get_frames. 1491 * Note that driver_release_tids is relevant only if 1492 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1493 */ 1494 static bool 1495 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1496 enum ieee80211_frame_release_type reason, 1497 unsigned long driver_release_tids) 1498 { 1499 int ac; 1500 1501 /* If the driver has data on more than one TID then 1502 * certainly there's more data if we release just a 1503 * single frame now (from a single TID). This will 1504 * only happen for PS-Poll. 1505 */ 1506 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1507 hweight16(driver_release_tids) > 1) 1508 return true; 1509 1510 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1511 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1512 continue; 1513 1514 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1515 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1516 return true; 1517 } 1518 1519 return false; 1520 } 1521 1522 static void 1523 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1524 enum ieee80211_frame_release_type reason, 1525 struct sk_buff_head *frames, 1526 unsigned long *driver_release_tids) 1527 { 1528 struct ieee80211_sub_if_data *sdata = sta->sdata; 1529 struct ieee80211_local *local = sdata->local; 1530 int ac; 1531 1532 /* Get response frame(s) and more data bit for the last one. */ 1533 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1534 unsigned long tids; 1535 1536 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1537 continue; 1538 1539 tids = ieee80211_tids_for_ac(ac); 1540 1541 /* if we already have frames from software, then we can't also 1542 * release from hardware queues 1543 */ 1544 if (skb_queue_empty(frames)) { 1545 *driver_release_tids |= 1546 sta->driver_buffered_tids & tids; 1547 *driver_release_tids |= sta->txq_buffered_tids & tids; 1548 } 1549 1550 if (!*driver_release_tids) { 1551 struct sk_buff *skb; 1552 1553 while (n_frames > 0) { 1554 skb = skb_dequeue(&sta->tx_filtered[ac]); 1555 if (!skb) { 1556 skb = skb_dequeue( 1557 &sta->ps_tx_buf[ac]); 1558 if (skb) 1559 local->total_ps_buffered--; 1560 } 1561 if (!skb) 1562 break; 1563 n_frames--; 1564 __skb_queue_tail(frames, skb); 1565 } 1566 } 1567 1568 /* If we have more frames buffered on this AC, then abort the 1569 * loop since we can't send more data from other ACs before 1570 * the buffered frames from this. 1571 */ 1572 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1573 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1574 break; 1575 } 1576 } 1577 1578 static void 1579 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1580 int n_frames, u8 ignored_acs, 1581 enum ieee80211_frame_release_type reason) 1582 { 1583 struct ieee80211_sub_if_data *sdata = sta->sdata; 1584 struct ieee80211_local *local = sdata->local; 1585 unsigned long driver_release_tids = 0; 1586 struct sk_buff_head frames; 1587 bool more_data; 1588 1589 /* Service or PS-Poll period starts */ 1590 set_sta_flag(sta, WLAN_STA_SP); 1591 1592 __skb_queue_head_init(&frames); 1593 1594 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1595 &frames, &driver_release_tids); 1596 1597 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1598 1599 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1600 driver_release_tids = 1601 BIT(find_highest_prio_tid(driver_release_tids)); 1602 1603 if (skb_queue_empty(&frames) && !driver_release_tids) { 1604 int tid, ac; 1605 1606 /* 1607 * For PS-Poll, this can only happen due to a race condition 1608 * when we set the TIM bit and the station notices it, but 1609 * before it can poll for the frame we expire it. 1610 * 1611 * For uAPSD, this is said in the standard (11.2.1.5 h): 1612 * At each unscheduled SP for a non-AP STA, the AP shall 1613 * attempt to transmit at least one MSDU or MMPDU, but no 1614 * more than the value specified in the Max SP Length field 1615 * in the QoS Capability element from delivery-enabled ACs, 1616 * that are destined for the non-AP STA. 1617 * 1618 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1619 */ 1620 1621 /* This will evaluate to 1, 3, 5 or 7. */ 1622 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1623 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1624 break; 1625 tid = 7 - 2 * ac; 1626 1627 ieee80211_send_null_response(sta, tid, reason, true, false); 1628 } else if (!driver_release_tids) { 1629 struct sk_buff_head pending; 1630 struct sk_buff *skb; 1631 int num = 0; 1632 u16 tids = 0; 1633 bool need_null = false; 1634 1635 skb_queue_head_init(&pending); 1636 1637 while ((skb = __skb_dequeue(&frames))) { 1638 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1639 struct ieee80211_hdr *hdr = (void *) skb->data; 1640 u8 *qoshdr = NULL; 1641 1642 num++; 1643 1644 /* 1645 * Tell TX path to send this frame even though the 1646 * STA may still remain is PS mode after this frame 1647 * exchange. 1648 */ 1649 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1650 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1651 1652 /* 1653 * Use MoreData flag to indicate whether there are 1654 * more buffered frames for this STA 1655 */ 1656 if (more_data || !skb_queue_empty(&frames)) 1657 hdr->frame_control |= 1658 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1659 else 1660 hdr->frame_control &= 1661 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1662 1663 if (ieee80211_is_data_qos(hdr->frame_control) || 1664 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1665 qoshdr = ieee80211_get_qos_ctl(hdr); 1666 1667 tids |= BIT(skb->priority); 1668 1669 __skb_queue_tail(&pending, skb); 1670 1671 /* end service period after last frame or add one */ 1672 if (!skb_queue_empty(&frames)) 1673 continue; 1674 1675 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1676 /* for PS-Poll, there's only one frame */ 1677 info->flags |= IEEE80211_TX_STATUS_EOSP | 1678 IEEE80211_TX_CTL_REQ_TX_STATUS; 1679 break; 1680 } 1681 1682 /* For uAPSD, things are a bit more complicated. If the 1683 * last frame has a QoS header (i.e. is a QoS-data or 1684 * QoS-nulldata frame) then just set the EOSP bit there 1685 * and be done. 1686 * If the frame doesn't have a QoS header (which means 1687 * it should be a bufferable MMPDU) then we can't set 1688 * the EOSP bit in the QoS header; add a QoS-nulldata 1689 * frame to the list to send it after the MMPDU. 1690 * 1691 * Note that this code is only in the mac80211-release 1692 * code path, we assume that the driver will not buffer 1693 * anything but QoS-data frames, or if it does, will 1694 * create the QoS-nulldata frame by itself if needed. 1695 * 1696 * Cf. 802.11-2012 10.2.1.10 (c). 1697 */ 1698 if (qoshdr) { 1699 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1700 1701 info->flags |= IEEE80211_TX_STATUS_EOSP | 1702 IEEE80211_TX_CTL_REQ_TX_STATUS; 1703 } else { 1704 /* The standard isn't completely clear on this 1705 * as it says the more-data bit should be set 1706 * if there are more BUs. The QoS-Null frame 1707 * we're about to send isn't buffered yet, we 1708 * only create it below, but let's pretend it 1709 * was buffered just in case some clients only 1710 * expect more-data=0 when eosp=1. 1711 */ 1712 hdr->frame_control |= 1713 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1714 need_null = true; 1715 num++; 1716 } 1717 break; 1718 } 1719 1720 drv_allow_buffered_frames(local, sta, tids, num, 1721 reason, more_data); 1722 1723 ieee80211_add_pending_skbs(local, &pending); 1724 1725 if (need_null) 1726 ieee80211_send_null_response( 1727 sta, find_highest_prio_tid(tids), 1728 reason, false, false); 1729 1730 sta_info_recalc_tim(sta); 1731 } else { 1732 int tid; 1733 1734 /* 1735 * We need to release a frame that is buffered somewhere in the 1736 * driver ... it'll have to handle that. 1737 * Note that the driver also has to check the number of frames 1738 * on the TIDs we're releasing from - if there are more than 1739 * n_frames it has to set the more-data bit (if we didn't ask 1740 * it to set it anyway due to other buffered frames); if there 1741 * are fewer than n_frames it has to make sure to adjust that 1742 * to allow the service period to end properly. 1743 */ 1744 drv_release_buffered_frames(local, sta, driver_release_tids, 1745 n_frames, reason, more_data); 1746 1747 /* 1748 * Note that we don't recalculate the TIM bit here as it would 1749 * most likely have no effect at all unless the driver told us 1750 * that the TID(s) became empty before returning here from the 1751 * release function. 1752 * Either way, however, when the driver tells us that the TID(s) 1753 * became empty or we find that a txq became empty, we'll do the 1754 * TIM recalculation. 1755 */ 1756 1757 if (!sta->sta.txq[0]) 1758 return; 1759 1760 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1761 if (!sta->sta.txq[tid] || 1762 !(driver_release_tids & BIT(tid)) || 1763 txq_has_queue(sta->sta.txq[tid])) 1764 continue; 1765 1766 sta_info_recalc_tim(sta); 1767 break; 1768 } 1769 } 1770 } 1771 1772 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1773 { 1774 u8 ignore_for_response = sta->sta.uapsd_queues; 1775 1776 /* 1777 * If all ACs are delivery-enabled then we should reply 1778 * from any of them, if only some are enabled we reply 1779 * only from the non-enabled ones. 1780 */ 1781 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1782 ignore_for_response = 0; 1783 1784 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1785 IEEE80211_FRAME_RELEASE_PSPOLL); 1786 } 1787 1788 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1789 { 1790 int n_frames = sta->sta.max_sp; 1791 u8 delivery_enabled = sta->sta.uapsd_queues; 1792 1793 /* 1794 * If we ever grow support for TSPEC this might happen if 1795 * the TSPEC update from hostapd comes in between a trigger 1796 * frame setting WLAN_STA_UAPSD in the RX path and this 1797 * actually getting called. 1798 */ 1799 if (!delivery_enabled) 1800 return; 1801 1802 switch (sta->sta.max_sp) { 1803 case 1: 1804 n_frames = 2; 1805 break; 1806 case 2: 1807 n_frames = 4; 1808 break; 1809 case 3: 1810 n_frames = 6; 1811 break; 1812 case 0: 1813 /* XXX: what is a good value? */ 1814 n_frames = 128; 1815 break; 1816 } 1817 1818 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1819 IEEE80211_FRAME_RELEASE_UAPSD); 1820 } 1821 1822 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1823 struct ieee80211_sta *pubsta, bool block) 1824 { 1825 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1826 1827 trace_api_sta_block_awake(sta->local, pubsta, block); 1828 1829 if (block) { 1830 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1831 ieee80211_clear_fast_xmit(sta); 1832 return; 1833 } 1834 1835 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1836 return; 1837 1838 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1839 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1840 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1841 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1842 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1843 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1844 /* must be asleep in this case */ 1845 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1846 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1847 } else { 1848 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1849 ieee80211_check_fast_xmit(sta); 1850 } 1851 } 1852 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1853 1854 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1855 { 1856 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1857 struct ieee80211_local *local = sta->local; 1858 1859 trace_api_eosp(local, pubsta); 1860 1861 clear_sta_flag(sta, WLAN_STA_SP); 1862 } 1863 EXPORT_SYMBOL(ieee80211_sta_eosp); 1864 1865 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1866 { 1867 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1868 enum ieee80211_frame_release_type reason; 1869 bool more_data; 1870 1871 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1872 1873 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1874 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1875 reason, 0); 1876 1877 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1878 } 1879 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1880 1881 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1882 u8 tid, bool buffered) 1883 { 1884 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1885 1886 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1887 return; 1888 1889 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1890 1891 if (buffered) 1892 set_bit(tid, &sta->driver_buffered_tids); 1893 else 1894 clear_bit(tid, &sta->driver_buffered_tids); 1895 1896 sta_info_recalc_tim(sta); 1897 } 1898 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1899 1900 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, 1901 u32 tx_airtime, u32 rx_airtime) 1902 { 1903 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1904 struct ieee80211_local *local = sta->sdata->local; 1905 u8 ac = ieee80211_ac_from_tid(tid); 1906 u32 airtime = 0; 1907 1908 if (sta->local->airtime_flags & AIRTIME_USE_TX) 1909 airtime += tx_airtime; 1910 if (sta->local->airtime_flags & AIRTIME_USE_RX) 1911 airtime += rx_airtime; 1912 1913 spin_lock_bh(&local->active_txq_lock[ac]); 1914 sta->airtime[ac].tx_airtime += tx_airtime; 1915 sta->airtime[ac].rx_airtime += rx_airtime; 1916 sta->airtime[ac].deficit -= airtime; 1917 spin_unlock_bh(&local->active_txq_lock[ac]); 1918 } 1919 EXPORT_SYMBOL(ieee80211_sta_register_airtime); 1920 1921 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, 1922 struct sta_info *sta, u8 ac, 1923 u16 tx_airtime, bool tx_completed) 1924 { 1925 int tx_pending; 1926 1927 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) 1928 return; 1929 1930 if (!tx_completed) { 1931 if (sta) 1932 atomic_add(tx_airtime, 1933 &sta->airtime[ac].aql_tx_pending); 1934 1935 atomic_add(tx_airtime, &local->aql_total_pending_airtime); 1936 return; 1937 } 1938 1939 if (sta) { 1940 tx_pending = atomic_sub_return(tx_airtime, 1941 &sta->airtime[ac].aql_tx_pending); 1942 if (tx_pending < 0) 1943 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending, 1944 tx_pending, 0); 1945 } 1946 1947 tx_pending = atomic_sub_return(tx_airtime, 1948 &local->aql_total_pending_airtime); 1949 if (WARN_ONCE(tx_pending < 0, 1950 "Device %s AC %d pending airtime underflow: %u, %u", 1951 wiphy_name(local->hw.wiphy), ac, tx_pending, 1952 tx_airtime)) 1953 atomic_cmpxchg(&local->aql_total_pending_airtime, 1954 tx_pending, 0); 1955 } 1956 1957 int sta_info_move_state(struct sta_info *sta, 1958 enum ieee80211_sta_state new_state) 1959 { 1960 might_sleep(); 1961 1962 if (sta->sta_state == new_state) 1963 return 0; 1964 1965 /* check allowed transitions first */ 1966 1967 switch (new_state) { 1968 case IEEE80211_STA_NONE: 1969 if (sta->sta_state != IEEE80211_STA_AUTH) 1970 return -EINVAL; 1971 break; 1972 case IEEE80211_STA_AUTH: 1973 if (sta->sta_state != IEEE80211_STA_NONE && 1974 sta->sta_state != IEEE80211_STA_ASSOC) 1975 return -EINVAL; 1976 break; 1977 case IEEE80211_STA_ASSOC: 1978 if (sta->sta_state != IEEE80211_STA_AUTH && 1979 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1980 return -EINVAL; 1981 break; 1982 case IEEE80211_STA_AUTHORIZED: 1983 if (sta->sta_state != IEEE80211_STA_ASSOC) 1984 return -EINVAL; 1985 break; 1986 default: 1987 WARN(1, "invalid state %d", new_state); 1988 return -EINVAL; 1989 } 1990 1991 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1992 sta->sta.addr, new_state); 1993 1994 /* 1995 * notify the driver before the actual changes so it can 1996 * fail the transition 1997 */ 1998 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1999 int err = drv_sta_state(sta->local, sta->sdata, sta, 2000 sta->sta_state, new_state); 2001 if (err) 2002 return err; 2003 } 2004 2005 /* reflect the change in all state variables */ 2006 2007 switch (new_state) { 2008 case IEEE80211_STA_NONE: 2009 if (sta->sta_state == IEEE80211_STA_AUTH) 2010 clear_bit(WLAN_STA_AUTH, &sta->_flags); 2011 break; 2012 case IEEE80211_STA_AUTH: 2013 if (sta->sta_state == IEEE80211_STA_NONE) { 2014 set_bit(WLAN_STA_AUTH, &sta->_flags); 2015 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 2016 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 2017 ieee80211_recalc_min_chandef(sta->sdata); 2018 if (!sta->sta.support_p2p_ps) 2019 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2020 } 2021 break; 2022 case IEEE80211_STA_ASSOC: 2023 if (sta->sta_state == IEEE80211_STA_AUTH) { 2024 set_bit(WLAN_STA_ASSOC, &sta->_flags); 2025 sta->assoc_at = ktime_get_boottime_ns(); 2026 ieee80211_recalc_min_chandef(sta->sdata); 2027 if (!sta->sta.support_p2p_ps) 2028 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2029 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 2030 ieee80211_vif_dec_num_mcast(sta->sdata); 2031 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2032 ieee80211_clear_fast_xmit(sta); 2033 ieee80211_clear_fast_rx(sta); 2034 } 2035 break; 2036 case IEEE80211_STA_AUTHORIZED: 2037 if (sta->sta_state == IEEE80211_STA_ASSOC) { 2038 ieee80211_vif_inc_num_mcast(sta->sdata); 2039 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2040 ieee80211_check_fast_xmit(sta); 2041 ieee80211_check_fast_rx(sta); 2042 } 2043 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 2044 sta->sdata->vif.type == NL80211_IFTYPE_AP) 2045 cfg80211_send_layer2_update(sta->sdata->dev, 2046 sta->sta.addr); 2047 break; 2048 default: 2049 break; 2050 } 2051 2052 sta->sta_state = new_state; 2053 2054 return 0; 2055 } 2056 2057 u8 sta_info_tx_streams(struct sta_info *sta) 2058 { 2059 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 2060 u8 rx_streams; 2061 2062 if (!sta->sta.ht_cap.ht_supported) 2063 return 1; 2064 2065 if (sta->sta.vht_cap.vht_supported) { 2066 int i; 2067 u16 tx_mcs_map = 2068 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 2069 2070 for (i = 7; i >= 0; i--) 2071 if ((tx_mcs_map & (0x3 << (i * 2))) != 2072 IEEE80211_VHT_MCS_NOT_SUPPORTED) 2073 return i + 1; 2074 } 2075 2076 if (ht_cap->mcs.rx_mask[3]) 2077 rx_streams = 4; 2078 else if (ht_cap->mcs.rx_mask[2]) 2079 rx_streams = 3; 2080 else if (ht_cap->mcs.rx_mask[1]) 2081 rx_streams = 2; 2082 else 2083 rx_streams = 1; 2084 2085 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 2086 return rx_streams; 2087 2088 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 2089 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 2090 } 2091 2092 static struct ieee80211_sta_rx_stats * 2093 sta_get_last_rx_stats(struct sta_info *sta) 2094 { 2095 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 2096 struct ieee80211_local *local = sta->local; 2097 int cpu; 2098 2099 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 2100 return stats; 2101 2102 for_each_possible_cpu(cpu) { 2103 struct ieee80211_sta_rx_stats *cpustats; 2104 2105 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2106 2107 if (time_after(cpustats->last_rx, stats->last_rx)) 2108 stats = cpustats; 2109 } 2110 2111 return stats; 2112 } 2113 2114 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, 2115 struct rate_info *rinfo) 2116 { 2117 rinfo->bw = STA_STATS_GET(BW, rate); 2118 2119 switch (STA_STATS_GET(TYPE, rate)) { 2120 case STA_STATS_RATE_TYPE_VHT: 2121 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 2122 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 2123 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 2124 if (STA_STATS_GET(SGI, rate)) 2125 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2126 break; 2127 case STA_STATS_RATE_TYPE_HT: 2128 rinfo->flags = RATE_INFO_FLAGS_MCS; 2129 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 2130 if (STA_STATS_GET(SGI, rate)) 2131 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2132 break; 2133 case STA_STATS_RATE_TYPE_LEGACY: { 2134 struct ieee80211_supported_band *sband; 2135 u16 brate; 2136 unsigned int shift; 2137 int band = STA_STATS_GET(LEGACY_BAND, rate); 2138 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 2139 2140 sband = local->hw.wiphy->bands[band]; 2141 2142 if (WARN_ON_ONCE(!sband->bitrates)) 2143 break; 2144 2145 brate = sband->bitrates[rate_idx].bitrate; 2146 if (rinfo->bw == RATE_INFO_BW_5) 2147 shift = 2; 2148 else if (rinfo->bw == RATE_INFO_BW_10) 2149 shift = 1; 2150 else 2151 shift = 0; 2152 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 2153 break; 2154 } 2155 case STA_STATS_RATE_TYPE_HE: 2156 rinfo->flags = RATE_INFO_FLAGS_HE_MCS; 2157 rinfo->mcs = STA_STATS_GET(HE_MCS, rate); 2158 rinfo->nss = STA_STATS_GET(HE_NSS, rate); 2159 rinfo->he_gi = STA_STATS_GET(HE_GI, rate); 2160 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); 2161 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); 2162 break; 2163 } 2164 } 2165 2166 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2167 { 2168 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2169 2170 if (rate == STA_STATS_RATE_INVALID) 2171 return -EINVAL; 2172 2173 sta_stats_decode_rate(sta->local, rate, rinfo); 2174 return 0; 2175 } 2176 2177 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats, 2178 int tid) 2179 { 2180 unsigned int start; 2181 u64 value; 2182 2183 do { 2184 start = u64_stats_fetch_begin(&rxstats->syncp); 2185 value = rxstats->msdu[tid]; 2186 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2187 2188 return value; 2189 } 2190 2191 static void sta_set_tidstats(struct sta_info *sta, 2192 struct cfg80211_tid_stats *tidstats, 2193 int tid) 2194 { 2195 struct ieee80211_local *local = sta->local; 2196 int cpu; 2197 2198 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2199 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 2200 tidstats->rx_msdu += 2201 sta_get_tidstats_msdu(&sta->rx_stats, tid); 2202 2203 if (sta->pcpu_rx_stats) { 2204 for_each_possible_cpu(cpu) { 2205 struct ieee80211_sta_rx_stats *cpurxs; 2206 2207 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2208 tidstats->rx_msdu += 2209 sta_get_tidstats_msdu(cpurxs, tid); 2210 } 2211 } 2212 2213 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2214 } 2215 2216 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2217 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2218 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2219 } 2220 2221 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2222 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2223 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2224 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2225 } 2226 2227 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2228 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2229 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2230 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2231 } 2232 2233 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) { 2234 spin_lock_bh(&local->fq.lock); 2235 rcu_read_lock(); 2236 2237 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); 2238 ieee80211_fill_txq_stats(&tidstats->txq_stats, 2239 to_txq_info(sta->sta.txq[tid])); 2240 2241 rcu_read_unlock(); 2242 spin_unlock_bh(&local->fq.lock); 2243 } 2244 } 2245 2246 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2247 { 2248 unsigned int start; 2249 u64 value; 2250 2251 do { 2252 start = u64_stats_fetch_begin(&rxstats->syncp); 2253 value = rxstats->bytes; 2254 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2255 2256 return value; 2257 } 2258 2259 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, 2260 bool tidstats) 2261 { 2262 struct ieee80211_sub_if_data *sdata = sta->sdata; 2263 struct ieee80211_local *local = sdata->local; 2264 u32 thr = 0; 2265 int i, ac, cpu; 2266 struct ieee80211_sta_rx_stats *last_rxstats; 2267 2268 last_rxstats = sta_get_last_rx_stats(sta); 2269 2270 sinfo->generation = sdata->local->sta_generation; 2271 2272 /* do before driver, so beacon filtering drivers have a 2273 * chance to e.g. just add the number of filtered beacons 2274 * (or just modify the value entirely, of course) 2275 */ 2276 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2277 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2278 2279 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2280 2281 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | 2282 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | 2283 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | 2284 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | 2285 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) | 2286 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); 2287 2288 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2289 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2290 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); 2291 } 2292 2293 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2294 sinfo->assoc_at = sta->assoc_at; 2295 sinfo->inactive_time = 2296 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2297 2298 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | 2299 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { 2300 sinfo->tx_bytes = 0; 2301 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2302 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2303 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); 2304 } 2305 2306 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { 2307 sinfo->tx_packets = 0; 2308 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2309 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2310 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); 2311 } 2312 2313 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | 2314 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { 2315 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 2316 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2317 2318 if (sta->pcpu_rx_stats) { 2319 for_each_possible_cpu(cpu) { 2320 struct ieee80211_sta_rx_stats *cpurxs; 2321 2322 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2323 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2324 } 2325 } 2326 2327 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); 2328 } 2329 2330 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { 2331 sinfo->rx_packets = sta->rx_stats.packets; 2332 if (sta->pcpu_rx_stats) { 2333 for_each_possible_cpu(cpu) { 2334 struct ieee80211_sta_rx_stats *cpurxs; 2335 2336 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2337 sinfo->rx_packets += cpurxs->packets; 2338 } 2339 } 2340 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 2341 } 2342 2343 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { 2344 sinfo->tx_retries = sta->status_stats.retry_count; 2345 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); 2346 } 2347 2348 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { 2349 sinfo->tx_failed = sta->status_stats.retry_failed; 2350 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); 2351 } 2352 2353 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { 2354 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2355 sinfo->rx_duration += sta->airtime[ac].rx_airtime; 2356 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 2357 } 2358 2359 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { 2360 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2361 sinfo->tx_duration += sta->airtime[ac].tx_airtime; 2362 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 2363 } 2364 2365 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { 2366 sinfo->airtime_weight = sta->airtime_weight; 2367 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); 2368 } 2369 2370 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2371 if (sta->pcpu_rx_stats) { 2372 for_each_possible_cpu(cpu) { 2373 struct ieee80211_sta_rx_stats *cpurxs; 2374 2375 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2376 sinfo->rx_dropped_misc += cpurxs->dropped; 2377 } 2378 } 2379 2380 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2381 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2382 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | 2383 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2384 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2385 } 2386 2387 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2388 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2389 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { 2390 sinfo->signal = (s8)last_rxstats->last_signal; 2391 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 2392 } 2393 2394 if (!sta->pcpu_rx_stats && 2395 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { 2396 sinfo->signal_avg = 2397 -ewma_signal_read(&sta->rx_stats_avg.signal); 2398 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 2399 } 2400 } 2401 2402 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2403 * the sta->rx_stats struct, so the check here is fine with and without 2404 * pcpu statistics 2405 */ 2406 if (last_rxstats->chains && 2407 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | 2408 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2409 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 2410 if (!sta->pcpu_rx_stats) 2411 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2412 2413 sinfo->chains = last_rxstats->chains; 2414 2415 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2416 sinfo->chain_signal[i] = 2417 last_rxstats->chain_signal_last[i]; 2418 sinfo->chain_signal_avg[i] = 2419 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2420 } 2421 } 2422 2423 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) { 2424 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2425 &sinfo->txrate); 2426 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 2427 } 2428 2429 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) { 2430 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2431 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); 2432 } 2433 2434 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { 2435 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 2436 sta_set_tidstats(sta, &sinfo->pertid[i], i); 2437 } 2438 2439 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2440 #ifdef CONFIG_MAC80211_MESH 2441 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | 2442 BIT_ULL(NL80211_STA_INFO_PLID) | 2443 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | 2444 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | 2445 BIT_ULL(NL80211_STA_INFO_PEER_PM) | 2446 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | 2447 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) | 2448 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS); 2449 2450 sinfo->llid = sta->mesh->llid; 2451 sinfo->plid = sta->mesh->plid; 2452 sinfo->plink_state = sta->mesh->plink_state; 2453 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2454 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); 2455 sinfo->t_offset = sta->mesh->t_offset; 2456 } 2457 sinfo->local_pm = sta->mesh->local_pm; 2458 sinfo->peer_pm = sta->mesh->peer_pm; 2459 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2460 sinfo->connected_to_gate = sta->mesh->connected_to_gate; 2461 sinfo->connected_to_as = sta->mesh->connected_to_as; 2462 #endif 2463 } 2464 2465 sinfo->bss_param.flags = 0; 2466 if (sdata->vif.bss_conf.use_cts_prot) 2467 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2468 if (sdata->vif.bss_conf.use_short_preamble) 2469 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2470 if (sdata->vif.bss_conf.use_short_slot) 2471 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2472 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2473 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2474 2475 sinfo->sta_flags.set = 0; 2476 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2477 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2478 BIT(NL80211_STA_FLAG_WME) | 2479 BIT(NL80211_STA_FLAG_MFP) | 2480 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2481 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2482 BIT(NL80211_STA_FLAG_TDLS_PEER); 2483 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2484 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2485 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2486 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2487 if (sta->sta.wme) 2488 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2489 if (test_sta_flag(sta, WLAN_STA_MFP)) 2490 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2491 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2492 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2493 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2494 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2495 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2496 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2497 2498 thr = sta_get_expected_throughput(sta); 2499 2500 if (thr != 0) { 2501 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2502 sinfo->expected_throughput = thr; 2503 } 2504 2505 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && 2506 sta->status_stats.ack_signal_filled) { 2507 sinfo->ack_signal = sta->status_stats.last_ack_signal; 2508 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); 2509 } 2510 2511 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && 2512 sta->status_stats.ack_signal_filled) { 2513 sinfo->avg_ack_signal = 2514 -(s8)ewma_avg_signal_read( 2515 &sta->status_stats.avg_ack_signal); 2516 sinfo->filled |= 2517 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); 2518 } 2519 2520 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2521 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC); 2522 sinfo->airtime_link_metric = 2523 airtime_link_metric_get(local, sta); 2524 } 2525 } 2526 2527 u32 sta_get_expected_throughput(struct sta_info *sta) 2528 { 2529 struct ieee80211_sub_if_data *sdata = sta->sdata; 2530 struct ieee80211_local *local = sdata->local; 2531 struct rate_control_ref *ref = NULL; 2532 u32 thr = 0; 2533 2534 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2535 ref = local->rate_ctrl; 2536 2537 /* check if the driver has a SW RC implementation */ 2538 if (ref && ref->ops->get_expected_throughput) 2539 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2540 else 2541 thr = drv_get_expected_throughput(local, sta); 2542 2543 return thr; 2544 } 2545 2546 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2547 { 2548 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2549 2550 if (!sta->status_stats.last_ack || 2551 time_after(stats->last_rx, sta->status_stats.last_ack)) 2552 return stats->last_rx; 2553 return sta->status_stats.last_ack; 2554 } 2555 2556 static void sta_update_codel_params(struct sta_info *sta, u32 thr) 2557 { 2558 if (!sta->sdata->local->ops->wake_tx_queue) 2559 return; 2560 2561 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { 2562 sta->cparams.target = MS2TIME(50); 2563 sta->cparams.interval = MS2TIME(300); 2564 sta->cparams.ecn = false; 2565 } else { 2566 sta->cparams.target = MS2TIME(20); 2567 sta->cparams.interval = MS2TIME(100); 2568 sta->cparams.ecn = true; 2569 } 2570 } 2571 2572 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, 2573 u32 thr) 2574 { 2575 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2576 2577 sta_update_codel_params(sta, thr); 2578 } 2579