1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * Copyright 2013-2014 Intel Mobile Communications GmbH 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/etherdevice.h> 14 #include <linux/netdevice.h> 15 #include <linux/types.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/if_arp.h> 19 #include <linux/timer.h> 20 #include <linux/rtnetlink.h> 21 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 static const struct rhashtable_params sta_rht_params = { 68 .nelem_hint = 3, /* start small */ 69 .automatic_shrinking = true, 70 .head_offset = offsetof(struct sta_info, hash_node), 71 .key_offset = offsetof(struct sta_info, sta.addr), 72 .key_len = ETH_ALEN, 73 .hashfn = sta_addr_hash, 74 }; 75 76 /* Caller must hold local->sta_mtx */ 77 static int sta_info_hash_del(struct ieee80211_local *local, 78 struct sta_info *sta) 79 { 80 return rhashtable_remove_fast(&local->sta_hash, &sta->hash_node, 81 sta_rht_params); 82 } 83 84 static void __cleanup_single_sta(struct sta_info *sta) 85 { 86 int ac, i; 87 struct tid_ampdu_tx *tid_tx; 88 struct ieee80211_sub_if_data *sdata = sta->sdata; 89 struct ieee80211_local *local = sdata->local; 90 struct ps_data *ps; 91 92 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 97 ps = &sdata->bss->ps; 98 else if (ieee80211_vif_is_mesh(&sdata->vif)) 99 ps = &sdata->u.mesh.ps; 100 else 101 return; 102 103 clear_sta_flag(sta, WLAN_STA_PS_STA); 104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 106 107 atomic_dec(&ps->num_sta_ps); 108 } 109 110 if (sta->sta.txq[0]) { 111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 112 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); 113 int n = skb_queue_len(&txqi->queue); 114 115 ieee80211_purge_tx_queue(&local->hw, &txqi->queue); 116 atomic_sub(n, &sdata->txqs_len[txqi->txq.ac]); 117 } 118 } 119 120 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 121 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 122 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 123 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 124 } 125 126 if (ieee80211_vif_is_mesh(&sdata->vif)) 127 mesh_sta_cleanup(sta); 128 129 cancel_work_sync(&sta->drv_deliver_wk); 130 131 /* 132 * Destroy aggregation state here. It would be nice to wait for the 133 * driver to finish aggregation stop and then clean up, but for now 134 * drivers have to handle aggregation stop being requested, followed 135 * directly by station destruction. 136 */ 137 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 138 kfree(sta->ampdu_mlme.tid_start_tx[i]); 139 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 140 if (!tid_tx) 141 continue; 142 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 143 kfree(tid_tx); 144 } 145 } 146 147 static void cleanup_single_sta(struct sta_info *sta) 148 { 149 struct ieee80211_sub_if_data *sdata = sta->sdata; 150 struct ieee80211_local *local = sdata->local; 151 152 __cleanup_single_sta(sta); 153 sta_info_free(local, sta); 154 } 155 156 /* protected by RCU */ 157 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 158 const u8 *addr) 159 { 160 struct ieee80211_local *local = sdata->local; 161 struct sta_info *sta; 162 struct rhash_head *tmp; 163 const struct bucket_table *tbl; 164 165 rcu_read_lock(); 166 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 167 168 for_each_sta_info(local, tbl, addr, sta, tmp) { 169 if (sta->sdata == sdata) { 170 rcu_read_unlock(); 171 /* this is safe as the caller must already hold 172 * another rcu read section or the mutex 173 */ 174 return sta; 175 } 176 } 177 rcu_read_unlock(); 178 return NULL; 179 } 180 181 /* 182 * Get sta info either from the specified interface 183 * or from one of its vlans 184 */ 185 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 186 const u8 *addr) 187 { 188 struct ieee80211_local *local = sdata->local; 189 struct sta_info *sta; 190 struct rhash_head *tmp; 191 const struct bucket_table *tbl; 192 193 rcu_read_lock(); 194 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 195 196 for_each_sta_info(local, tbl, addr, sta, tmp) { 197 if (sta->sdata == sdata || 198 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 199 rcu_read_unlock(); 200 /* this is safe as the caller must already hold 201 * another rcu read section or the mutex 202 */ 203 return sta; 204 } 205 } 206 rcu_read_unlock(); 207 return NULL; 208 } 209 210 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 211 int idx) 212 { 213 struct ieee80211_local *local = sdata->local; 214 struct sta_info *sta; 215 int i = 0; 216 217 list_for_each_entry_rcu(sta, &local->sta_list, list) { 218 if (sdata != sta->sdata) 219 continue; 220 if (i < idx) { 221 ++i; 222 continue; 223 } 224 return sta; 225 } 226 227 return NULL; 228 } 229 230 /** 231 * sta_info_free - free STA 232 * 233 * @local: pointer to the global information 234 * @sta: STA info to free 235 * 236 * This function must undo everything done by sta_info_alloc() 237 * that may happen before sta_info_insert(). It may only be 238 * called when sta_info_insert() has not been attempted (and 239 * if that fails, the station is freed anyway.) 240 */ 241 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 242 { 243 if (sta->rate_ctrl) 244 rate_control_free_sta(sta); 245 246 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 247 248 if (sta->sta.txq[0]) 249 kfree(to_txq_info(sta->sta.txq[0])); 250 kfree(rcu_dereference_raw(sta->sta.rates)); 251 kfree(sta); 252 } 253 254 /* Caller must hold local->sta_mtx */ 255 static void sta_info_hash_add(struct ieee80211_local *local, 256 struct sta_info *sta) 257 { 258 rhashtable_insert_fast(&local->sta_hash, &sta->hash_node, 259 sta_rht_params); 260 } 261 262 static void sta_deliver_ps_frames(struct work_struct *wk) 263 { 264 struct sta_info *sta; 265 266 sta = container_of(wk, struct sta_info, drv_deliver_wk); 267 268 if (sta->dead) 269 return; 270 271 local_bh_disable(); 272 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 273 ieee80211_sta_ps_deliver_wakeup(sta); 274 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 275 ieee80211_sta_ps_deliver_poll_response(sta); 276 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 277 ieee80211_sta_ps_deliver_uapsd(sta); 278 local_bh_enable(); 279 } 280 281 static int sta_prepare_rate_control(struct ieee80211_local *local, 282 struct sta_info *sta, gfp_t gfp) 283 { 284 if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL) 285 return 0; 286 287 sta->rate_ctrl = local->rate_ctrl; 288 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 289 &sta->sta, gfp); 290 if (!sta->rate_ctrl_priv) 291 return -ENOMEM; 292 293 return 0; 294 } 295 296 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 297 const u8 *addr, gfp_t gfp) 298 { 299 struct ieee80211_local *local = sdata->local; 300 struct ieee80211_hw *hw = &local->hw; 301 struct sta_info *sta; 302 struct timespec uptime; 303 int i; 304 305 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 306 if (!sta) 307 return NULL; 308 309 spin_lock_init(&sta->lock); 310 spin_lock_init(&sta->ps_lock); 311 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 312 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 313 mutex_init(&sta->ampdu_mlme.mtx); 314 #ifdef CONFIG_MAC80211_MESH 315 if (ieee80211_vif_is_mesh(&sdata->vif) && 316 !sdata->u.mesh.user_mpm) 317 init_timer(&sta->plink_timer); 318 sta->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 319 #endif 320 321 memcpy(sta->sta.addr, addr, ETH_ALEN); 322 sta->local = local; 323 sta->sdata = sdata; 324 sta->last_rx = jiffies; 325 326 sta->sta_state = IEEE80211_STA_NONE; 327 328 /* Mark TID as unreserved */ 329 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 330 331 ktime_get_ts(&uptime); 332 sta->last_connected = uptime.tv_sec; 333 ewma_init(&sta->avg_signal, 1024, 8); 334 for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++) 335 ewma_init(&sta->chain_signal_avg[i], 1024, 8); 336 337 if (local->ops->wake_tx_queue) { 338 void *txq_data; 339 int size = sizeof(struct txq_info) + 340 ALIGN(hw->txq_data_size, sizeof(void *)); 341 342 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 343 if (!txq_data) 344 goto free; 345 346 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 347 struct txq_info *txq = txq_data + i * size; 348 349 ieee80211_init_tx_queue(sdata, sta, txq, i); 350 } 351 } 352 353 if (sta_prepare_rate_control(local, sta, gfp)) 354 goto free_txq; 355 356 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 357 /* 358 * timer_to_tid must be initialized with identity mapping 359 * to enable session_timer's data differentiation. See 360 * sta_rx_agg_session_timer_expired for usage. 361 */ 362 sta->timer_to_tid[i] = i; 363 } 364 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 365 skb_queue_head_init(&sta->ps_tx_buf[i]); 366 skb_queue_head_init(&sta->tx_filtered[i]); 367 } 368 369 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 370 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 371 372 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 373 if (sdata->vif.type == NL80211_IFTYPE_AP || 374 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 375 struct ieee80211_supported_band *sband = 376 hw->wiphy->bands[ieee80211_get_sdata_band(sdata)]; 377 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 378 IEEE80211_HT_CAP_SM_PS_SHIFT; 379 /* 380 * Assume that hostapd advertises our caps in the beacon and 381 * this is the known_smps_mode for a station that just assciated 382 */ 383 switch (smps) { 384 case WLAN_HT_SMPS_CONTROL_DISABLED: 385 sta->known_smps_mode = IEEE80211_SMPS_OFF; 386 break; 387 case WLAN_HT_SMPS_CONTROL_STATIC: 388 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 389 break; 390 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 391 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 392 break; 393 default: 394 WARN_ON(1); 395 } 396 } 397 398 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 399 400 return sta; 401 402 free_txq: 403 if (sta->sta.txq[0]) 404 kfree(to_txq_info(sta->sta.txq[0])); 405 free: 406 kfree(sta); 407 return NULL; 408 } 409 410 static int sta_info_insert_check(struct sta_info *sta) 411 { 412 struct ieee80211_sub_if_data *sdata = sta->sdata; 413 414 /* 415 * Can't be a WARN_ON because it can be triggered through a race: 416 * something inserts a STA (on one CPU) without holding the RTNL 417 * and another CPU turns off the net device. 418 */ 419 if (unlikely(!ieee80211_sdata_running(sdata))) 420 return -ENETDOWN; 421 422 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 423 is_multicast_ether_addr(sta->sta.addr))) 424 return -EINVAL; 425 426 return 0; 427 } 428 429 static int sta_info_insert_drv_state(struct ieee80211_local *local, 430 struct ieee80211_sub_if_data *sdata, 431 struct sta_info *sta) 432 { 433 enum ieee80211_sta_state state; 434 int err = 0; 435 436 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 437 err = drv_sta_state(local, sdata, sta, state, state + 1); 438 if (err) 439 break; 440 } 441 442 if (!err) { 443 /* 444 * Drivers using legacy sta_add/sta_remove callbacks only 445 * get uploaded set to true after sta_add is called. 446 */ 447 if (!local->ops->sta_add) 448 sta->uploaded = true; 449 return 0; 450 } 451 452 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 453 sdata_info(sdata, 454 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 455 sta->sta.addr, state + 1, err); 456 err = 0; 457 } 458 459 /* unwind on error */ 460 for (; state > IEEE80211_STA_NOTEXIST; state--) 461 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 462 463 return err; 464 } 465 466 /* 467 * should be called with sta_mtx locked 468 * this function replaces the mutex lock 469 * with a RCU lock 470 */ 471 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 472 { 473 struct ieee80211_local *local = sta->local; 474 struct ieee80211_sub_if_data *sdata = sta->sdata; 475 struct station_info sinfo; 476 int err = 0; 477 478 lockdep_assert_held(&local->sta_mtx); 479 480 /* check if STA exists already */ 481 if (sta_info_get_bss(sdata, sta->sta.addr)) { 482 err = -EEXIST; 483 goto out_err; 484 } 485 486 local->num_sta++; 487 local->sta_generation++; 488 smp_mb(); 489 490 /* simplify things and don't accept BA sessions yet */ 491 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 492 493 /* make the station visible */ 494 sta_info_hash_add(local, sta); 495 496 list_add_tail_rcu(&sta->list, &local->sta_list); 497 498 /* notify driver */ 499 err = sta_info_insert_drv_state(local, sdata, sta); 500 if (err) 501 goto out_remove; 502 503 set_sta_flag(sta, WLAN_STA_INSERTED); 504 /* accept BA sessions now */ 505 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 506 507 ieee80211_recalc_min_chandef(sdata); 508 ieee80211_sta_debugfs_add(sta); 509 rate_control_add_sta_debugfs(sta); 510 511 memset(&sinfo, 0, sizeof(sinfo)); 512 sinfo.filled = 0; 513 sinfo.generation = local->sta_generation; 514 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 515 516 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 517 518 /* move reference to rcu-protected */ 519 rcu_read_lock(); 520 mutex_unlock(&local->sta_mtx); 521 522 if (ieee80211_vif_is_mesh(&sdata->vif)) 523 mesh_accept_plinks_update(sdata); 524 525 return 0; 526 out_remove: 527 sta_info_hash_del(local, sta); 528 list_del_rcu(&sta->list); 529 local->num_sta--; 530 synchronize_net(); 531 __cleanup_single_sta(sta); 532 out_err: 533 mutex_unlock(&local->sta_mtx); 534 rcu_read_lock(); 535 return err; 536 } 537 538 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 539 { 540 struct ieee80211_local *local = sta->local; 541 int err; 542 543 might_sleep(); 544 545 err = sta_info_insert_check(sta); 546 if (err) { 547 rcu_read_lock(); 548 goto out_free; 549 } 550 551 mutex_lock(&local->sta_mtx); 552 553 err = sta_info_insert_finish(sta); 554 if (err) 555 goto out_free; 556 557 return 0; 558 out_free: 559 sta_info_free(local, sta); 560 return err; 561 } 562 563 int sta_info_insert(struct sta_info *sta) 564 { 565 int err = sta_info_insert_rcu(sta); 566 567 rcu_read_unlock(); 568 569 return err; 570 } 571 572 static inline void __bss_tim_set(u8 *tim, u16 id) 573 { 574 /* 575 * This format has been mandated by the IEEE specifications, 576 * so this line may not be changed to use the __set_bit() format. 577 */ 578 tim[id / 8] |= (1 << (id % 8)); 579 } 580 581 static inline void __bss_tim_clear(u8 *tim, u16 id) 582 { 583 /* 584 * This format has been mandated by the IEEE specifications, 585 * so this line may not be changed to use the __clear_bit() format. 586 */ 587 tim[id / 8] &= ~(1 << (id % 8)); 588 } 589 590 static inline bool __bss_tim_get(u8 *tim, u16 id) 591 { 592 /* 593 * This format has been mandated by the IEEE specifications, 594 * so this line may not be changed to use the test_bit() format. 595 */ 596 return tim[id / 8] & (1 << (id % 8)); 597 } 598 599 static unsigned long ieee80211_tids_for_ac(int ac) 600 { 601 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 602 switch (ac) { 603 case IEEE80211_AC_VO: 604 return BIT(6) | BIT(7); 605 case IEEE80211_AC_VI: 606 return BIT(4) | BIT(5); 607 case IEEE80211_AC_BE: 608 return BIT(0) | BIT(3); 609 case IEEE80211_AC_BK: 610 return BIT(1) | BIT(2); 611 default: 612 WARN_ON(1); 613 return 0; 614 } 615 } 616 617 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 618 { 619 struct ieee80211_local *local = sta->local; 620 struct ps_data *ps; 621 bool indicate_tim = false; 622 u8 ignore_for_tim = sta->sta.uapsd_queues; 623 int ac; 624 u16 id; 625 626 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 627 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 628 if (WARN_ON_ONCE(!sta->sdata->bss)) 629 return; 630 631 ps = &sta->sdata->bss->ps; 632 id = sta->sta.aid; 633 #ifdef CONFIG_MAC80211_MESH 634 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 635 ps = &sta->sdata->u.mesh.ps; 636 /* TIM map only for 1 <= PLID <= IEEE80211_MAX_AID */ 637 id = sta->plid % (IEEE80211_MAX_AID + 1); 638 #endif 639 } else { 640 return; 641 } 642 643 /* No need to do anything if the driver does all */ 644 if (local->hw.flags & IEEE80211_HW_AP_LINK_PS) 645 return; 646 647 if (sta->dead) 648 goto done; 649 650 /* 651 * If all ACs are delivery-enabled then we should build 652 * the TIM bit for all ACs anyway; if only some are then 653 * we ignore those and build the TIM bit using only the 654 * non-enabled ones. 655 */ 656 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 657 ignore_for_tim = 0; 658 659 if (ignore_pending) 660 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 661 662 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 663 unsigned long tids; 664 665 if (ignore_for_tim & BIT(ac)) 666 continue; 667 668 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 669 !skb_queue_empty(&sta->ps_tx_buf[ac]); 670 if (indicate_tim) 671 break; 672 673 tids = ieee80211_tids_for_ac(ac); 674 675 indicate_tim |= 676 sta->driver_buffered_tids & tids; 677 indicate_tim |= 678 sta->txq_buffered_tids & tids; 679 } 680 681 done: 682 spin_lock_bh(&local->tim_lock); 683 684 if (indicate_tim == __bss_tim_get(ps->tim, id)) 685 goto out_unlock; 686 687 if (indicate_tim) 688 __bss_tim_set(ps->tim, id); 689 else 690 __bss_tim_clear(ps->tim, id); 691 692 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 693 local->tim_in_locked_section = true; 694 drv_set_tim(local, &sta->sta, indicate_tim); 695 local->tim_in_locked_section = false; 696 } 697 698 out_unlock: 699 spin_unlock_bh(&local->tim_lock); 700 } 701 702 void sta_info_recalc_tim(struct sta_info *sta) 703 { 704 __sta_info_recalc_tim(sta, false); 705 } 706 707 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 708 { 709 struct ieee80211_tx_info *info; 710 int timeout; 711 712 if (!skb) 713 return false; 714 715 info = IEEE80211_SKB_CB(skb); 716 717 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 718 timeout = (sta->listen_interval * 719 sta->sdata->vif.bss_conf.beacon_int * 720 32 / 15625) * HZ; 721 if (timeout < STA_TX_BUFFER_EXPIRE) 722 timeout = STA_TX_BUFFER_EXPIRE; 723 return time_after(jiffies, info->control.jiffies + timeout); 724 } 725 726 727 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 728 struct sta_info *sta, int ac) 729 { 730 unsigned long flags; 731 struct sk_buff *skb; 732 733 /* 734 * First check for frames that should expire on the filtered 735 * queue. Frames here were rejected by the driver and are on 736 * a separate queue to avoid reordering with normal PS-buffered 737 * frames. They also aren't accounted for right now in the 738 * total_ps_buffered counter. 739 */ 740 for (;;) { 741 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 742 skb = skb_peek(&sta->tx_filtered[ac]); 743 if (sta_info_buffer_expired(sta, skb)) 744 skb = __skb_dequeue(&sta->tx_filtered[ac]); 745 else 746 skb = NULL; 747 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 748 749 /* 750 * Frames are queued in order, so if this one 751 * hasn't expired yet we can stop testing. If 752 * we actually reached the end of the queue we 753 * also need to stop, of course. 754 */ 755 if (!skb) 756 break; 757 ieee80211_free_txskb(&local->hw, skb); 758 } 759 760 /* 761 * Now also check the normal PS-buffered queue, this will 762 * only find something if the filtered queue was emptied 763 * since the filtered frames are all before the normal PS 764 * buffered frames. 765 */ 766 for (;;) { 767 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 768 skb = skb_peek(&sta->ps_tx_buf[ac]); 769 if (sta_info_buffer_expired(sta, skb)) 770 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 771 else 772 skb = NULL; 773 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 774 775 /* 776 * frames are queued in order, so if this one 777 * hasn't expired yet (or we reached the end of 778 * the queue) we can stop testing 779 */ 780 if (!skb) 781 break; 782 783 local->total_ps_buffered--; 784 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 785 sta->sta.addr); 786 ieee80211_free_txskb(&local->hw, skb); 787 } 788 789 /* 790 * Finally, recalculate the TIM bit for this station -- it might 791 * now be clear because the station was too slow to retrieve its 792 * frames. 793 */ 794 sta_info_recalc_tim(sta); 795 796 /* 797 * Return whether there are any frames still buffered, this is 798 * used to check whether the cleanup timer still needs to run, 799 * if there are no frames we don't need to rearm the timer. 800 */ 801 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 802 skb_queue_empty(&sta->tx_filtered[ac])); 803 } 804 805 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 806 struct sta_info *sta) 807 { 808 bool have_buffered = false; 809 int ac; 810 811 /* This is only necessary for stations on BSS/MBSS interfaces */ 812 if (!sta->sdata->bss && 813 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 814 return false; 815 816 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 817 have_buffered |= 818 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 819 820 return have_buffered; 821 } 822 823 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 824 { 825 struct ieee80211_local *local; 826 struct ieee80211_sub_if_data *sdata; 827 int ret; 828 829 might_sleep(); 830 831 if (!sta) 832 return -ENOENT; 833 834 local = sta->local; 835 sdata = sta->sdata; 836 837 lockdep_assert_held(&local->sta_mtx); 838 839 /* 840 * Before removing the station from the driver and 841 * rate control, it might still start new aggregation 842 * sessions -- block that to make sure the tear-down 843 * will be sufficient. 844 */ 845 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 846 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 847 848 ret = sta_info_hash_del(local, sta); 849 if (WARN_ON(ret)) 850 return ret; 851 852 /* 853 * for TDLS peers, make sure to return to the base channel before 854 * removal. 855 */ 856 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 857 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 858 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 859 } 860 861 list_del_rcu(&sta->list); 862 863 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 864 865 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 866 rcu_access_pointer(sdata->u.vlan.sta) == sta) 867 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 868 869 return 0; 870 } 871 872 static void __sta_info_destroy_part2(struct sta_info *sta) 873 { 874 struct ieee80211_local *local = sta->local; 875 struct ieee80211_sub_if_data *sdata = sta->sdata; 876 struct station_info sinfo = {}; 877 int ret; 878 879 /* 880 * NOTE: This assumes at least synchronize_net() was done 881 * after _part1 and before _part2! 882 */ 883 884 might_sleep(); 885 lockdep_assert_held(&local->sta_mtx); 886 887 /* now keys can no longer be reached */ 888 ieee80211_free_sta_keys(local, sta); 889 890 /* disable TIM bit - last chance to tell driver */ 891 __sta_info_recalc_tim(sta, true); 892 893 sta->dead = true; 894 895 local->num_sta--; 896 local->sta_generation++; 897 898 while (sta->sta_state > IEEE80211_STA_NONE) { 899 ret = sta_info_move_state(sta, sta->sta_state - 1); 900 if (ret) { 901 WARN_ON_ONCE(1); 902 break; 903 } 904 } 905 906 if (sta->uploaded) { 907 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 908 IEEE80211_STA_NOTEXIST); 909 WARN_ON_ONCE(ret != 0); 910 } 911 912 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 913 914 sta_set_sinfo(sta, &sinfo); 915 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 916 917 rate_control_remove_sta_debugfs(sta); 918 ieee80211_sta_debugfs_remove(sta); 919 ieee80211_recalc_min_chandef(sdata); 920 921 cleanup_single_sta(sta); 922 } 923 924 int __must_check __sta_info_destroy(struct sta_info *sta) 925 { 926 int err = __sta_info_destroy_part1(sta); 927 928 if (err) 929 return err; 930 931 synchronize_net(); 932 933 __sta_info_destroy_part2(sta); 934 935 return 0; 936 } 937 938 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 939 { 940 struct sta_info *sta; 941 int ret; 942 943 mutex_lock(&sdata->local->sta_mtx); 944 sta = sta_info_get(sdata, addr); 945 ret = __sta_info_destroy(sta); 946 mutex_unlock(&sdata->local->sta_mtx); 947 948 return ret; 949 } 950 951 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 952 const u8 *addr) 953 { 954 struct sta_info *sta; 955 int ret; 956 957 mutex_lock(&sdata->local->sta_mtx); 958 sta = sta_info_get_bss(sdata, addr); 959 ret = __sta_info_destroy(sta); 960 mutex_unlock(&sdata->local->sta_mtx); 961 962 return ret; 963 } 964 965 static void sta_info_cleanup(unsigned long data) 966 { 967 struct ieee80211_local *local = (struct ieee80211_local *) data; 968 struct sta_info *sta; 969 bool timer_needed = false; 970 971 rcu_read_lock(); 972 list_for_each_entry_rcu(sta, &local->sta_list, list) 973 if (sta_info_cleanup_expire_buffered(local, sta)) 974 timer_needed = true; 975 rcu_read_unlock(); 976 977 if (local->quiescing) 978 return; 979 980 if (!timer_needed) 981 return; 982 983 mod_timer(&local->sta_cleanup, 984 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 985 } 986 987 u32 sta_addr_hash(const void *key, u32 length, u32 seed) 988 { 989 return jhash(key, ETH_ALEN, seed); 990 } 991 992 int sta_info_init(struct ieee80211_local *local) 993 { 994 int err; 995 996 err = rhashtable_init(&local->sta_hash, &sta_rht_params); 997 if (err) 998 return err; 999 1000 spin_lock_init(&local->tim_lock); 1001 mutex_init(&local->sta_mtx); 1002 INIT_LIST_HEAD(&local->sta_list); 1003 1004 setup_timer(&local->sta_cleanup, sta_info_cleanup, 1005 (unsigned long)local); 1006 return 0; 1007 } 1008 1009 void sta_info_stop(struct ieee80211_local *local) 1010 { 1011 del_timer_sync(&local->sta_cleanup); 1012 rhashtable_destroy(&local->sta_hash); 1013 } 1014 1015 1016 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1017 { 1018 struct ieee80211_local *local = sdata->local; 1019 struct sta_info *sta, *tmp; 1020 LIST_HEAD(free_list); 1021 int ret = 0; 1022 1023 might_sleep(); 1024 1025 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1026 WARN_ON(vlans && !sdata->bss); 1027 1028 mutex_lock(&local->sta_mtx); 1029 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1030 if (sdata == sta->sdata || 1031 (vlans && sdata->bss == sta->sdata->bss)) { 1032 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1033 list_add(&sta->free_list, &free_list); 1034 ret++; 1035 } 1036 } 1037 1038 if (!list_empty(&free_list)) { 1039 synchronize_net(); 1040 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1041 __sta_info_destroy_part2(sta); 1042 } 1043 mutex_unlock(&local->sta_mtx); 1044 1045 return ret; 1046 } 1047 1048 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1049 unsigned long exp_time) 1050 { 1051 struct ieee80211_local *local = sdata->local; 1052 struct sta_info *sta, *tmp; 1053 1054 mutex_lock(&local->sta_mtx); 1055 1056 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1057 if (sdata != sta->sdata) 1058 continue; 1059 1060 if (time_after(jiffies, sta->last_rx + exp_time)) { 1061 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1062 sta->sta.addr); 1063 1064 if (ieee80211_vif_is_mesh(&sdata->vif) && 1065 test_sta_flag(sta, WLAN_STA_PS_STA)) 1066 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1067 1068 WARN_ON(__sta_info_destroy(sta)); 1069 } 1070 } 1071 1072 mutex_unlock(&local->sta_mtx); 1073 } 1074 1075 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1076 const u8 *addr, 1077 const u8 *localaddr) 1078 { 1079 struct ieee80211_local *local = hw_to_local(hw); 1080 struct sta_info *sta; 1081 struct rhash_head *tmp; 1082 const struct bucket_table *tbl; 1083 1084 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 1085 1086 /* 1087 * Just return a random station if localaddr is NULL 1088 * ... first in list. 1089 */ 1090 for_each_sta_info(local, tbl, addr, sta, tmp) { 1091 if (localaddr && 1092 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1093 continue; 1094 if (!sta->uploaded) 1095 return NULL; 1096 return &sta->sta; 1097 } 1098 1099 return NULL; 1100 } 1101 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1102 1103 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1104 const u8 *addr) 1105 { 1106 struct sta_info *sta; 1107 1108 if (!vif) 1109 return NULL; 1110 1111 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1112 if (!sta) 1113 return NULL; 1114 1115 if (!sta->uploaded) 1116 return NULL; 1117 1118 return &sta->sta; 1119 } 1120 EXPORT_SYMBOL(ieee80211_find_sta); 1121 1122 /* powersave support code */ 1123 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1124 { 1125 struct ieee80211_sub_if_data *sdata = sta->sdata; 1126 struct ieee80211_local *local = sdata->local; 1127 struct sk_buff_head pending; 1128 int filtered = 0, buffered = 0, ac, i; 1129 unsigned long flags; 1130 struct ps_data *ps; 1131 1132 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1133 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1134 u.ap); 1135 1136 if (sdata->vif.type == NL80211_IFTYPE_AP) 1137 ps = &sdata->bss->ps; 1138 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1139 ps = &sdata->u.mesh.ps; 1140 else 1141 return; 1142 1143 clear_sta_flag(sta, WLAN_STA_SP); 1144 1145 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1146 sta->driver_buffered_tids = 0; 1147 sta->txq_buffered_tids = 0; 1148 1149 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1150 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1151 1152 if (sta->sta.txq[0]) { 1153 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1154 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); 1155 1156 if (!skb_queue_len(&txqi->queue)) 1157 continue; 1158 1159 drv_wake_tx_queue(local, txqi); 1160 } 1161 } 1162 1163 skb_queue_head_init(&pending); 1164 1165 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1166 spin_lock(&sta->ps_lock); 1167 /* Send all buffered frames to the station */ 1168 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1169 int count = skb_queue_len(&pending), tmp; 1170 1171 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1172 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1173 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1174 tmp = skb_queue_len(&pending); 1175 filtered += tmp - count; 1176 count = tmp; 1177 1178 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1179 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1180 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1181 tmp = skb_queue_len(&pending); 1182 buffered += tmp - count; 1183 } 1184 1185 ieee80211_add_pending_skbs(local, &pending); 1186 1187 /* now we're no longer in the deliver code */ 1188 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1189 1190 /* The station might have polled and then woken up before we responded, 1191 * so clear these flags now to avoid them sticking around. 1192 */ 1193 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1194 clear_sta_flag(sta, WLAN_STA_UAPSD); 1195 spin_unlock(&sta->ps_lock); 1196 1197 atomic_dec(&ps->num_sta_ps); 1198 1199 /* This station just woke up and isn't aware of our SMPS state */ 1200 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1201 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1202 sdata->smps_mode) && 1203 sta->known_smps_mode != sdata->bss->req_smps && 1204 sta_info_tx_streams(sta) != 1) { 1205 ht_dbg(sdata, 1206 "%pM just woke up and MIMO capable - update SMPS\n", 1207 sta->sta.addr); 1208 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1209 sta->sta.addr, 1210 sdata->vif.bss_conf.bssid); 1211 } 1212 1213 local->total_ps_buffered -= buffered; 1214 1215 sta_info_recalc_tim(sta); 1216 1217 ps_dbg(sdata, 1218 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n", 1219 sta->sta.addr, sta->sta.aid, filtered, buffered); 1220 } 1221 1222 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata, 1223 struct sta_info *sta, int tid, 1224 enum ieee80211_frame_release_type reason, 1225 bool call_driver) 1226 { 1227 struct ieee80211_local *local = sdata->local; 1228 struct ieee80211_qos_hdr *nullfunc; 1229 struct sk_buff *skb; 1230 int size = sizeof(*nullfunc); 1231 __le16 fc; 1232 bool qos = sta->sta.wme; 1233 struct ieee80211_tx_info *info; 1234 struct ieee80211_chanctx_conf *chanctx_conf; 1235 1236 if (qos) { 1237 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1238 IEEE80211_STYPE_QOS_NULLFUNC | 1239 IEEE80211_FCTL_FROMDS); 1240 } else { 1241 size -= 2; 1242 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1243 IEEE80211_STYPE_NULLFUNC | 1244 IEEE80211_FCTL_FROMDS); 1245 } 1246 1247 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1248 if (!skb) 1249 return; 1250 1251 skb_reserve(skb, local->hw.extra_tx_headroom); 1252 1253 nullfunc = (void *) skb_put(skb, size); 1254 nullfunc->frame_control = fc; 1255 nullfunc->duration_id = 0; 1256 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1257 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1258 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1259 nullfunc->seq_ctrl = 0; 1260 1261 skb->priority = tid; 1262 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1263 if (qos) { 1264 nullfunc->qos_ctrl = cpu_to_le16(tid); 1265 1266 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) 1267 nullfunc->qos_ctrl |= 1268 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1269 } 1270 1271 info = IEEE80211_SKB_CB(skb); 1272 1273 /* 1274 * Tell TX path to send this frame even though the 1275 * STA may still remain is PS mode after this frame 1276 * exchange. Also set EOSP to indicate this packet 1277 * ends the poll/service period. 1278 */ 1279 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1280 IEEE80211_TX_STATUS_EOSP | 1281 IEEE80211_TX_CTL_REQ_TX_STATUS; 1282 1283 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1284 1285 if (call_driver) 1286 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1287 reason, false); 1288 1289 skb->dev = sdata->dev; 1290 1291 rcu_read_lock(); 1292 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1293 if (WARN_ON(!chanctx_conf)) { 1294 rcu_read_unlock(); 1295 kfree_skb(skb); 1296 return; 1297 } 1298 1299 info->band = chanctx_conf->def.chan->band; 1300 ieee80211_xmit(sdata, sta, skb); 1301 rcu_read_unlock(); 1302 } 1303 1304 static int find_highest_prio_tid(unsigned long tids) 1305 { 1306 /* lower 3 TIDs aren't ordered perfectly */ 1307 if (tids & 0xF8) 1308 return fls(tids) - 1; 1309 /* TID 0 is BE just like TID 3 */ 1310 if (tids & BIT(0)) 1311 return 0; 1312 return fls(tids) - 1; 1313 } 1314 1315 static void 1316 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1317 int n_frames, u8 ignored_acs, 1318 enum ieee80211_frame_release_type reason) 1319 { 1320 struct ieee80211_sub_if_data *sdata = sta->sdata; 1321 struct ieee80211_local *local = sdata->local; 1322 bool more_data = false; 1323 int ac; 1324 unsigned long driver_release_tids = 0; 1325 struct sk_buff_head frames; 1326 1327 /* Service or PS-Poll period starts */ 1328 set_sta_flag(sta, WLAN_STA_SP); 1329 1330 __skb_queue_head_init(&frames); 1331 1332 /* Get response frame(s) and more data bit for the last one. */ 1333 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1334 unsigned long tids; 1335 1336 if (ignored_acs & BIT(ac)) 1337 continue; 1338 1339 tids = ieee80211_tids_for_ac(ac); 1340 1341 /* if we already have frames from software, then we can't also 1342 * release from hardware queues 1343 */ 1344 if (skb_queue_empty(&frames)) { 1345 driver_release_tids |= sta->driver_buffered_tids & tids; 1346 driver_release_tids |= sta->txq_buffered_tids & tids; 1347 } 1348 1349 if (driver_release_tids) { 1350 /* If the driver has data on more than one TID then 1351 * certainly there's more data if we release just a 1352 * single frame now (from a single TID). This will 1353 * only happen for PS-Poll. 1354 */ 1355 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1356 hweight16(driver_release_tids) > 1) { 1357 more_data = true; 1358 driver_release_tids = 1359 BIT(find_highest_prio_tid( 1360 driver_release_tids)); 1361 break; 1362 } 1363 } else { 1364 struct sk_buff *skb; 1365 1366 while (n_frames > 0) { 1367 skb = skb_dequeue(&sta->tx_filtered[ac]); 1368 if (!skb) { 1369 skb = skb_dequeue( 1370 &sta->ps_tx_buf[ac]); 1371 if (skb) 1372 local->total_ps_buffered--; 1373 } 1374 if (!skb) 1375 break; 1376 n_frames--; 1377 __skb_queue_tail(&frames, skb); 1378 } 1379 } 1380 1381 /* If we have more frames buffered on this AC, then set the 1382 * more-data bit and abort the loop since we can't send more 1383 * data from other ACs before the buffered frames from this. 1384 */ 1385 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1386 !skb_queue_empty(&sta->ps_tx_buf[ac])) { 1387 more_data = true; 1388 break; 1389 } 1390 } 1391 1392 if (skb_queue_empty(&frames) && !driver_release_tids) { 1393 int tid; 1394 1395 /* 1396 * For PS-Poll, this can only happen due to a race condition 1397 * when we set the TIM bit and the station notices it, but 1398 * before it can poll for the frame we expire it. 1399 * 1400 * For uAPSD, this is said in the standard (11.2.1.5 h): 1401 * At each unscheduled SP for a non-AP STA, the AP shall 1402 * attempt to transmit at least one MSDU or MMPDU, but no 1403 * more than the value specified in the Max SP Length field 1404 * in the QoS Capability element from delivery-enabled ACs, 1405 * that are destined for the non-AP STA. 1406 * 1407 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1408 */ 1409 1410 /* This will evaluate to 1, 3, 5 or 7. */ 1411 tid = 7 - ((ffs(~ignored_acs) - 1) << 1); 1412 1413 ieee80211_send_null_response(sdata, sta, tid, reason, true); 1414 } else if (!driver_release_tids) { 1415 struct sk_buff_head pending; 1416 struct sk_buff *skb; 1417 int num = 0; 1418 u16 tids = 0; 1419 bool need_null = false; 1420 1421 skb_queue_head_init(&pending); 1422 1423 while ((skb = __skb_dequeue(&frames))) { 1424 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1425 struct ieee80211_hdr *hdr = (void *) skb->data; 1426 u8 *qoshdr = NULL; 1427 1428 num++; 1429 1430 /* 1431 * Tell TX path to send this frame even though the 1432 * STA may still remain is PS mode after this frame 1433 * exchange. 1434 */ 1435 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1436 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1437 1438 /* 1439 * Use MoreData flag to indicate whether there are 1440 * more buffered frames for this STA 1441 */ 1442 if (more_data || !skb_queue_empty(&frames)) 1443 hdr->frame_control |= 1444 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1445 else 1446 hdr->frame_control &= 1447 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1448 1449 if (ieee80211_is_data_qos(hdr->frame_control) || 1450 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1451 qoshdr = ieee80211_get_qos_ctl(hdr); 1452 1453 tids |= BIT(skb->priority); 1454 1455 __skb_queue_tail(&pending, skb); 1456 1457 /* end service period after last frame or add one */ 1458 if (!skb_queue_empty(&frames)) 1459 continue; 1460 1461 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1462 /* for PS-Poll, there's only one frame */ 1463 info->flags |= IEEE80211_TX_STATUS_EOSP | 1464 IEEE80211_TX_CTL_REQ_TX_STATUS; 1465 break; 1466 } 1467 1468 /* For uAPSD, things are a bit more complicated. If the 1469 * last frame has a QoS header (i.e. is a QoS-data or 1470 * QoS-nulldata frame) then just set the EOSP bit there 1471 * and be done. 1472 * If the frame doesn't have a QoS header (which means 1473 * it should be a bufferable MMPDU) then we can't set 1474 * the EOSP bit in the QoS header; add a QoS-nulldata 1475 * frame to the list to send it after the MMPDU. 1476 * 1477 * Note that this code is only in the mac80211-release 1478 * code path, we assume that the driver will not buffer 1479 * anything but QoS-data frames, or if it does, will 1480 * create the QoS-nulldata frame by itself if needed. 1481 * 1482 * Cf. 802.11-2012 10.2.1.10 (c). 1483 */ 1484 if (qoshdr) { 1485 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1486 1487 info->flags |= IEEE80211_TX_STATUS_EOSP | 1488 IEEE80211_TX_CTL_REQ_TX_STATUS; 1489 } else { 1490 /* The standard isn't completely clear on this 1491 * as it says the more-data bit should be set 1492 * if there are more BUs. The QoS-Null frame 1493 * we're about to send isn't buffered yet, we 1494 * only create it below, but let's pretend it 1495 * was buffered just in case some clients only 1496 * expect more-data=0 when eosp=1. 1497 */ 1498 hdr->frame_control |= 1499 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1500 need_null = true; 1501 num++; 1502 } 1503 break; 1504 } 1505 1506 drv_allow_buffered_frames(local, sta, tids, num, 1507 reason, more_data); 1508 1509 ieee80211_add_pending_skbs(local, &pending); 1510 1511 if (need_null) 1512 ieee80211_send_null_response( 1513 sdata, sta, find_highest_prio_tid(tids), 1514 reason, false); 1515 1516 sta_info_recalc_tim(sta); 1517 } else { 1518 unsigned long tids = sta->txq_buffered_tids & driver_release_tids; 1519 int tid; 1520 1521 /* 1522 * We need to release a frame that is buffered somewhere in the 1523 * driver ... it'll have to handle that. 1524 * Note that the driver also has to check the number of frames 1525 * on the TIDs we're releasing from - if there are more than 1526 * n_frames it has to set the more-data bit (if we didn't ask 1527 * it to set it anyway due to other buffered frames); if there 1528 * are fewer than n_frames it has to make sure to adjust that 1529 * to allow the service period to end properly. 1530 */ 1531 drv_release_buffered_frames(local, sta, driver_release_tids, 1532 n_frames, reason, more_data); 1533 1534 /* 1535 * Note that we don't recalculate the TIM bit here as it would 1536 * most likely have no effect at all unless the driver told us 1537 * that the TID(s) became empty before returning here from the 1538 * release function. 1539 * Either way, however, when the driver tells us that the TID(s) 1540 * became empty or we find that a txq became empty, we'll do the 1541 * TIM recalculation. 1542 */ 1543 1544 if (!sta->sta.txq[0]) 1545 return; 1546 1547 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1548 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]); 1549 1550 if (!(tids & BIT(tid)) || skb_queue_len(&txqi->queue)) 1551 continue; 1552 1553 sta_info_recalc_tim(sta); 1554 break; 1555 } 1556 } 1557 } 1558 1559 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1560 { 1561 u8 ignore_for_response = sta->sta.uapsd_queues; 1562 1563 /* 1564 * If all ACs are delivery-enabled then we should reply 1565 * from any of them, if only some are enabled we reply 1566 * only from the non-enabled ones. 1567 */ 1568 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1569 ignore_for_response = 0; 1570 1571 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1572 IEEE80211_FRAME_RELEASE_PSPOLL); 1573 } 1574 1575 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1576 { 1577 int n_frames = sta->sta.max_sp; 1578 u8 delivery_enabled = sta->sta.uapsd_queues; 1579 1580 /* 1581 * If we ever grow support for TSPEC this might happen if 1582 * the TSPEC update from hostapd comes in between a trigger 1583 * frame setting WLAN_STA_UAPSD in the RX path and this 1584 * actually getting called. 1585 */ 1586 if (!delivery_enabled) 1587 return; 1588 1589 switch (sta->sta.max_sp) { 1590 case 1: 1591 n_frames = 2; 1592 break; 1593 case 2: 1594 n_frames = 4; 1595 break; 1596 case 3: 1597 n_frames = 6; 1598 break; 1599 case 0: 1600 /* XXX: what is a good value? */ 1601 n_frames = 128; 1602 break; 1603 } 1604 1605 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1606 IEEE80211_FRAME_RELEASE_UAPSD); 1607 } 1608 1609 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1610 struct ieee80211_sta *pubsta, bool block) 1611 { 1612 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1613 1614 trace_api_sta_block_awake(sta->local, pubsta, block); 1615 1616 if (block) { 1617 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1618 return; 1619 } 1620 1621 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1622 return; 1623 1624 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1625 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1626 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1627 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1628 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1629 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1630 /* must be asleep in this case */ 1631 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1632 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1633 } else { 1634 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1635 } 1636 } 1637 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1638 1639 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1640 { 1641 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1642 struct ieee80211_local *local = sta->local; 1643 1644 trace_api_eosp(local, pubsta); 1645 1646 clear_sta_flag(sta, WLAN_STA_SP); 1647 } 1648 EXPORT_SYMBOL(ieee80211_sta_eosp); 1649 1650 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1651 u8 tid, bool buffered) 1652 { 1653 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1654 1655 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1656 return; 1657 1658 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1659 1660 if (buffered) 1661 set_bit(tid, &sta->driver_buffered_tids); 1662 else 1663 clear_bit(tid, &sta->driver_buffered_tids); 1664 1665 sta_info_recalc_tim(sta); 1666 } 1667 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1668 1669 int sta_info_move_state(struct sta_info *sta, 1670 enum ieee80211_sta_state new_state) 1671 { 1672 might_sleep(); 1673 1674 if (sta->sta_state == new_state) 1675 return 0; 1676 1677 /* check allowed transitions first */ 1678 1679 switch (new_state) { 1680 case IEEE80211_STA_NONE: 1681 if (sta->sta_state != IEEE80211_STA_AUTH) 1682 return -EINVAL; 1683 break; 1684 case IEEE80211_STA_AUTH: 1685 if (sta->sta_state != IEEE80211_STA_NONE && 1686 sta->sta_state != IEEE80211_STA_ASSOC) 1687 return -EINVAL; 1688 break; 1689 case IEEE80211_STA_ASSOC: 1690 if (sta->sta_state != IEEE80211_STA_AUTH && 1691 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1692 return -EINVAL; 1693 break; 1694 case IEEE80211_STA_AUTHORIZED: 1695 if (sta->sta_state != IEEE80211_STA_ASSOC) 1696 return -EINVAL; 1697 break; 1698 default: 1699 WARN(1, "invalid state %d", new_state); 1700 return -EINVAL; 1701 } 1702 1703 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1704 sta->sta.addr, new_state); 1705 1706 /* 1707 * notify the driver before the actual changes so it can 1708 * fail the transition 1709 */ 1710 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1711 int err = drv_sta_state(sta->local, sta->sdata, sta, 1712 sta->sta_state, new_state); 1713 if (err) 1714 return err; 1715 } 1716 1717 /* reflect the change in all state variables */ 1718 1719 switch (new_state) { 1720 case IEEE80211_STA_NONE: 1721 if (sta->sta_state == IEEE80211_STA_AUTH) 1722 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1723 break; 1724 case IEEE80211_STA_AUTH: 1725 if (sta->sta_state == IEEE80211_STA_NONE) 1726 set_bit(WLAN_STA_AUTH, &sta->_flags); 1727 else if (sta->sta_state == IEEE80211_STA_ASSOC) 1728 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1729 break; 1730 case IEEE80211_STA_ASSOC: 1731 if (sta->sta_state == IEEE80211_STA_AUTH) { 1732 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1733 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1734 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1735 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1736 !sta->sdata->u.vlan.sta)) 1737 atomic_dec(&sta->sdata->bss->num_mcast_sta); 1738 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1739 } 1740 break; 1741 case IEEE80211_STA_AUTHORIZED: 1742 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1743 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1744 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1745 !sta->sdata->u.vlan.sta)) 1746 atomic_inc(&sta->sdata->bss->num_mcast_sta); 1747 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1748 } 1749 break; 1750 default: 1751 break; 1752 } 1753 1754 sta->sta_state = new_state; 1755 1756 return 0; 1757 } 1758 1759 u8 sta_info_tx_streams(struct sta_info *sta) 1760 { 1761 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1762 u8 rx_streams; 1763 1764 if (!sta->sta.ht_cap.ht_supported) 1765 return 1; 1766 1767 if (sta->sta.vht_cap.vht_supported) { 1768 int i; 1769 u16 tx_mcs_map = 1770 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1771 1772 for (i = 7; i >= 0; i--) 1773 if ((tx_mcs_map & (0x3 << (i * 2))) != 1774 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1775 return i + 1; 1776 } 1777 1778 if (ht_cap->mcs.rx_mask[3]) 1779 rx_streams = 4; 1780 else if (ht_cap->mcs.rx_mask[2]) 1781 rx_streams = 3; 1782 else if (ht_cap->mcs.rx_mask[1]) 1783 rx_streams = 2; 1784 else 1785 rx_streams = 1; 1786 1787 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1788 return rx_streams; 1789 1790 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1791 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1792 } 1793 1794 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo) 1795 { 1796 struct ieee80211_sub_if_data *sdata = sta->sdata; 1797 struct ieee80211_local *local = sdata->local; 1798 struct rate_control_ref *ref = NULL; 1799 struct timespec uptime; 1800 u32 thr = 0; 1801 int i, ac; 1802 1803 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 1804 ref = local->rate_ctrl; 1805 1806 sinfo->generation = sdata->local->sta_generation; 1807 1808 /* do before driver, so beacon filtering drivers have a 1809 * chance to e.g. just add the number of filtered beacons 1810 * (or just modify the value entirely, of course) 1811 */ 1812 if (sdata->vif.type == NL80211_IFTYPE_STATION) 1813 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 1814 1815 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 1816 1817 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) | 1818 BIT(NL80211_STA_INFO_STA_FLAGS) | 1819 BIT(NL80211_STA_INFO_BSS_PARAM) | 1820 BIT(NL80211_STA_INFO_CONNECTED_TIME) | 1821 BIT(NL80211_STA_INFO_RX_DROP_MISC) | 1822 BIT(NL80211_STA_INFO_BEACON_LOSS); 1823 1824 ktime_get_ts(&uptime); 1825 sinfo->connected_time = uptime.tv_sec - sta->last_connected; 1826 sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx); 1827 1828 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) | 1829 BIT(NL80211_STA_INFO_TX_BYTES)))) { 1830 sinfo->tx_bytes = 0; 1831 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 1832 sinfo->tx_bytes += sta->tx_bytes[ac]; 1833 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64); 1834 } 1835 1836 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) { 1837 sinfo->tx_packets = 0; 1838 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 1839 sinfo->tx_packets += sta->tx_packets[ac]; 1840 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS); 1841 } 1842 1843 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) | 1844 BIT(NL80211_STA_INFO_RX_BYTES)))) { 1845 sinfo->rx_bytes = sta->rx_bytes; 1846 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64); 1847 } 1848 1849 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) { 1850 sinfo->rx_packets = sta->rx_packets; 1851 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS); 1852 } 1853 1854 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) { 1855 sinfo->tx_retries = sta->tx_retry_count; 1856 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES); 1857 } 1858 1859 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) { 1860 sinfo->tx_failed = sta->tx_retry_failed; 1861 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED); 1862 } 1863 1864 sinfo->rx_dropped_misc = sta->rx_dropped; 1865 sinfo->beacon_loss_count = sta->beacon_loss_count; 1866 1867 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1868 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 1869 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) | 1870 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 1871 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 1872 } 1873 1874 if ((sta->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) || 1875 (sta->local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)) { 1876 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) { 1877 sinfo->signal = (s8)sta->last_signal; 1878 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL); 1879 } 1880 1881 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) { 1882 sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal); 1883 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG); 1884 } 1885 } 1886 1887 if (sta->chains && 1888 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) | 1889 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 1890 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL) | 1891 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 1892 1893 sinfo->chains = sta->chains; 1894 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 1895 sinfo->chain_signal[i] = sta->chain_signal_last[i]; 1896 sinfo->chain_signal_avg[i] = 1897 (s8) -ewma_read(&sta->chain_signal_avg[i]); 1898 } 1899 } 1900 1901 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) { 1902 sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate); 1903 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE); 1904 } 1905 1906 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) { 1907 sta_set_rate_info_rx(sta, &sinfo->rxrate); 1908 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE); 1909 } 1910 1911 sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS); 1912 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) { 1913 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i]; 1914 1915 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 1916 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 1917 tidstats->rx_msdu = sta->rx_msdu[i]; 1918 } 1919 1920 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 1921 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 1922 tidstats->tx_msdu = sta->tx_msdu[i]; 1923 } 1924 1925 if (!(tidstats->filled & 1926 BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 1927 local->hw.flags & IEEE80211_HW_REPORTS_TX_ACK_STATUS) { 1928 tidstats->filled |= 1929 BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 1930 tidstats->tx_msdu_retries = sta->tx_msdu_retries[i]; 1931 } 1932 1933 if (!(tidstats->filled & 1934 BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 1935 local->hw.flags & IEEE80211_HW_REPORTS_TX_ACK_STATUS) { 1936 tidstats->filled |= 1937 BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 1938 tidstats->tx_msdu_failed = sta->tx_msdu_failed[i]; 1939 } 1940 } 1941 1942 if (ieee80211_vif_is_mesh(&sdata->vif)) { 1943 #ifdef CONFIG_MAC80211_MESH 1944 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) | 1945 BIT(NL80211_STA_INFO_PLID) | 1946 BIT(NL80211_STA_INFO_PLINK_STATE) | 1947 BIT(NL80211_STA_INFO_LOCAL_PM) | 1948 BIT(NL80211_STA_INFO_PEER_PM) | 1949 BIT(NL80211_STA_INFO_NONPEER_PM); 1950 1951 sinfo->llid = sta->llid; 1952 sinfo->plid = sta->plid; 1953 sinfo->plink_state = sta->plink_state; 1954 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 1955 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET); 1956 sinfo->t_offset = sta->t_offset; 1957 } 1958 sinfo->local_pm = sta->local_pm; 1959 sinfo->peer_pm = sta->peer_pm; 1960 sinfo->nonpeer_pm = sta->nonpeer_pm; 1961 #endif 1962 } 1963 1964 sinfo->bss_param.flags = 0; 1965 if (sdata->vif.bss_conf.use_cts_prot) 1966 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 1967 if (sdata->vif.bss_conf.use_short_preamble) 1968 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 1969 if (sdata->vif.bss_conf.use_short_slot) 1970 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 1971 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 1972 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 1973 1974 sinfo->sta_flags.set = 0; 1975 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 1976 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 1977 BIT(NL80211_STA_FLAG_WME) | 1978 BIT(NL80211_STA_FLAG_MFP) | 1979 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 1980 BIT(NL80211_STA_FLAG_ASSOCIATED) | 1981 BIT(NL80211_STA_FLAG_TDLS_PEER); 1982 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 1983 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 1984 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 1985 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 1986 if (sta->sta.wme) 1987 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 1988 if (test_sta_flag(sta, WLAN_STA_MFP)) 1989 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 1990 if (test_sta_flag(sta, WLAN_STA_AUTH)) 1991 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 1992 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 1993 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 1994 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 1995 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 1996 1997 /* check if the driver has a SW RC implementation */ 1998 if (ref && ref->ops->get_expected_throughput) 1999 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2000 else 2001 thr = drv_get_expected_throughput(local, &sta->sta); 2002 2003 if (thr != 0) { 2004 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2005 sinfo->expected_throughput = thr; 2006 } 2007 } 2008