1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 7 * Copyright (C) 2018-2021 Intel Corporation 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/codel.h> 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 static const struct rhashtable_params sta_rht_params = { 68 .nelem_hint = 3, /* start small */ 69 .automatic_shrinking = true, 70 .head_offset = offsetof(struct sta_info, hash_node), 71 .key_offset = offsetof(struct sta_info, addr), 72 .key_len = ETH_ALEN, 73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 74 }; 75 76 /* Caller must hold local->sta_mtx */ 77 static int sta_info_hash_del(struct ieee80211_local *local, 78 struct sta_info *sta) 79 { 80 return rhltable_remove(&local->sta_hash, &sta->hash_node, 81 sta_rht_params); 82 } 83 84 static void __cleanup_single_sta(struct sta_info *sta) 85 { 86 int ac, i; 87 struct tid_ampdu_tx *tid_tx; 88 struct ieee80211_sub_if_data *sdata = sta->sdata; 89 struct ieee80211_local *local = sdata->local; 90 struct ps_data *ps; 91 92 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 97 ps = &sdata->bss->ps; 98 else if (ieee80211_vif_is_mesh(&sdata->vif)) 99 ps = &sdata->u.mesh.ps; 100 else 101 return; 102 103 clear_sta_flag(sta, WLAN_STA_PS_STA); 104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 106 107 atomic_dec(&ps->num_sta_ps); 108 } 109 110 if (sta->sta.txq[0]) { 111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 112 struct txq_info *txqi; 113 114 if (!sta->sta.txq[i]) 115 continue; 116 117 txqi = to_txq_info(sta->sta.txq[i]); 118 119 ieee80211_txq_purge(local, txqi); 120 } 121 } 122 123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 127 } 128 129 if (ieee80211_vif_is_mesh(&sdata->vif)) 130 mesh_sta_cleanup(sta); 131 132 cancel_work_sync(&sta->drv_deliver_wk); 133 134 /* 135 * Destroy aggregation state here. It would be nice to wait for the 136 * driver to finish aggregation stop and then clean up, but for now 137 * drivers have to handle aggregation stop being requested, followed 138 * directly by station destruction. 139 */ 140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 141 kfree(sta->ampdu_mlme.tid_start_tx[i]); 142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 143 if (!tid_tx) 144 continue; 145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 146 kfree(tid_tx); 147 } 148 } 149 150 static void cleanup_single_sta(struct sta_info *sta) 151 { 152 struct ieee80211_sub_if_data *sdata = sta->sdata; 153 struct ieee80211_local *local = sdata->local; 154 155 __cleanup_single_sta(sta); 156 sta_info_free(local, sta); 157 } 158 159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 160 const u8 *addr) 161 { 162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 163 } 164 165 /* protected by RCU */ 166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 167 const u8 *addr) 168 { 169 struct ieee80211_local *local = sdata->local; 170 struct rhlist_head *tmp; 171 struct sta_info *sta; 172 173 rcu_read_lock(); 174 for_each_sta_info(local, addr, sta, tmp) { 175 if (sta->sdata == sdata) { 176 rcu_read_unlock(); 177 /* this is safe as the caller must already hold 178 * another rcu read section or the mutex 179 */ 180 return sta; 181 } 182 } 183 rcu_read_unlock(); 184 return NULL; 185 } 186 187 /* 188 * Get sta info either from the specified interface 189 * or from one of its vlans 190 */ 191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 192 const u8 *addr) 193 { 194 struct ieee80211_local *local = sdata->local; 195 struct rhlist_head *tmp; 196 struct sta_info *sta; 197 198 rcu_read_lock(); 199 for_each_sta_info(local, addr, sta, tmp) { 200 if (sta->sdata == sdata || 201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 202 rcu_read_unlock(); 203 /* this is safe as the caller must already hold 204 * another rcu read section or the mutex 205 */ 206 return sta; 207 } 208 } 209 rcu_read_unlock(); 210 return NULL; 211 } 212 213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, 214 const u8 *sta_addr, const u8 *vif_addr) 215 { 216 struct rhlist_head *tmp; 217 struct sta_info *sta; 218 219 for_each_sta_info(local, sta_addr, sta, tmp) { 220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr)) 221 return sta; 222 } 223 224 return NULL; 225 } 226 227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 228 int idx) 229 { 230 struct ieee80211_local *local = sdata->local; 231 struct sta_info *sta; 232 int i = 0; 233 234 list_for_each_entry_rcu(sta, &local->sta_list, list, 235 lockdep_is_held(&local->sta_mtx)) { 236 if (sdata != sta->sdata) 237 continue; 238 if (i < idx) { 239 ++i; 240 continue; 241 } 242 return sta; 243 } 244 245 return NULL; 246 } 247 248 /** 249 * sta_info_free - free STA 250 * 251 * @local: pointer to the global information 252 * @sta: STA info to free 253 * 254 * This function must undo everything done by sta_info_alloc() 255 * that may happen before sta_info_insert(). It may only be 256 * called when sta_info_insert() has not been attempted (and 257 * if that fails, the station is freed anyway.) 258 */ 259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 260 { 261 /* 262 * If we had used sta_info_pre_move_state() then we might not 263 * have gone through the state transitions down again, so do 264 * it here now (and warn if it's inserted). 265 * 266 * This will clear state such as fast TX/RX that may have been 267 * allocated during state transitions. 268 */ 269 while (sta->sta_state > IEEE80211_STA_NONE) { 270 int ret; 271 272 WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED)); 273 274 ret = sta_info_move_state(sta, sta->sta_state - 1); 275 if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret)) 276 break; 277 } 278 279 if (sta->rate_ctrl) 280 rate_control_free_sta(sta); 281 282 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 283 284 if (sta->sta.txq[0]) 285 kfree(to_txq_info(sta->sta.txq[0])); 286 kfree(rcu_dereference_raw(sta->sta.rates)); 287 #ifdef CONFIG_MAC80211_MESH 288 kfree(sta->mesh); 289 #endif 290 free_percpu(sta->deflink.pcpu_rx_stats); 291 kfree(sta); 292 } 293 294 /* Caller must hold local->sta_mtx */ 295 static int sta_info_hash_add(struct ieee80211_local *local, 296 struct sta_info *sta) 297 { 298 return rhltable_insert(&local->sta_hash, &sta->hash_node, 299 sta_rht_params); 300 } 301 302 static void sta_deliver_ps_frames(struct work_struct *wk) 303 { 304 struct sta_info *sta; 305 306 sta = container_of(wk, struct sta_info, drv_deliver_wk); 307 308 if (sta->dead) 309 return; 310 311 local_bh_disable(); 312 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 313 ieee80211_sta_ps_deliver_wakeup(sta); 314 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 315 ieee80211_sta_ps_deliver_poll_response(sta); 316 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 317 ieee80211_sta_ps_deliver_uapsd(sta); 318 local_bh_enable(); 319 } 320 321 static int sta_prepare_rate_control(struct ieee80211_local *local, 322 struct sta_info *sta, gfp_t gfp) 323 { 324 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 325 return 0; 326 327 sta->rate_ctrl = local->rate_ctrl; 328 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 329 sta, gfp); 330 if (!sta->rate_ctrl_priv) 331 return -ENOMEM; 332 333 return 0; 334 } 335 336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 337 const u8 *addr, gfp_t gfp) 338 { 339 struct ieee80211_local *local = sdata->local; 340 struct ieee80211_hw *hw = &local->hw; 341 struct sta_info *sta; 342 int i; 343 344 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 345 if (!sta) 346 return NULL; 347 348 if (ieee80211_hw_check(hw, USES_RSS)) { 349 sta->deflink.pcpu_rx_stats = 350 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); 351 if (!sta->deflink.pcpu_rx_stats) 352 goto free; 353 } 354 355 spin_lock_init(&sta->lock); 356 spin_lock_init(&sta->ps_lock); 357 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 358 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 359 mutex_init(&sta->ampdu_mlme.mtx); 360 #ifdef CONFIG_MAC80211_MESH 361 if (ieee80211_vif_is_mesh(&sdata->vif)) { 362 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 363 if (!sta->mesh) 364 goto free; 365 sta->mesh->plink_sta = sta; 366 spin_lock_init(&sta->mesh->plink_lock); 367 if (!sdata->u.mesh.user_mpm) 368 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 369 0); 370 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 371 } 372 #endif 373 374 memcpy(sta->addr, addr, ETH_ALEN); 375 memcpy(sta->sta.addr, addr, ETH_ALEN); 376 sta->sta.max_rx_aggregation_subframes = 377 local->hw.max_rx_aggregation_subframes; 378 379 /* TODO link specific alloc and assignments for MLO Link STA */ 380 381 /* For non MLO STA, link info can be accessed either via deflink 382 * or link[0] 383 */ 384 sta->link[0] = &sta->deflink; 385 sta->sta.link[0] = &sta->sta.deflink; 386 387 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only. 388 * The Tx path starts to use a key as soon as the key slot ptk_idx 389 * references to is not NULL. To not use the initial Rx-only key 390 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid 391 * which always will refer to a NULL key. 392 */ 393 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX); 394 sta->ptk_idx = INVALID_PTK_KEYIDX; 395 396 sta->local = local; 397 sta->sdata = sdata; 398 sta->deflink.rx_stats.last_rx = jiffies; 399 400 u64_stats_init(&sta->deflink.rx_stats.syncp); 401 402 ieee80211_init_frag_cache(&sta->frags); 403 404 sta->sta_state = IEEE80211_STA_NONE; 405 406 /* Mark TID as unreserved */ 407 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 408 409 sta->last_connected = ktime_get_seconds(); 410 ewma_signal_init(&sta->deflink.rx_stats_avg.signal); 411 ewma_avg_signal_init(&sta->deflink.status_stats.avg_ack_signal); 412 for (i = 0; i < ARRAY_SIZE(sta->deflink.rx_stats_avg.chain_signal); i++) 413 ewma_signal_init(&sta->deflink.rx_stats_avg.chain_signal[i]); 414 415 if (local->ops->wake_tx_queue) { 416 void *txq_data; 417 int size = sizeof(struct txq_info) + 418 ALIGN(hw->txq_data_size, sizeof(void *)); 419 420 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 421 if (!txq_data) 422 goto free; 423 424 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 425 struct txq_info *txq = txq_data + i * size; 426 427 /* might not do anything for the bufferable MMPDU TXQ */ 428 ieee80211_txq_init(sdata, sta, txq, i); 429 } 430 } 431 432 if (sta_prepare_rate_control(local, sta, gfp)) 433 goto free_txq; 434 435 436 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 437 skb_queue_head_init(&sta->ps_tx_buf[i]); 438 skb_queue_head_init(&sta->tx_filtered[i]); 439 init_airtime_info(&sta->airtime[i], &local->airtime[i]); 440 } 441 442 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 443 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 444 445 for (i = 0; i < NUM_NL80211_BANDS; i++) { 446 u32 mandatory = 0; 447 int r; 448 449 if (!hw->wiphy->bands[i]) 450 continue; 451 452 switch (i) { 453 case NL80211_BAND_2GHZ: 454 case NL80211_BAND_LC: 455 /* 456 * We use both here, even if we cannot really know for 457 * sure the station will support both, but the only use 458 * for this is when we don't know anything yet and send 459 * management frames, and then we'll pick the lowest 460 * possible rate anyway. 461 * If we don't include _G here, we cannot find a rate 462 * in P2P, and thus trigger the WARN_ONCE() in rate.c 463 */ 464 mandatory = IEEE80211_RATE_MANDATORY_B | 465 IEEE80211_RATE_MANDATORY_G; 466 break; 467 case NL80211_BAND_5GHZ: 468 mandatory = IEEE80211_RATE_MANDATORY_A; 469 break; 470 case NL80211_BAND_60GHZ: 471 WARN_ON(1); 472 mandatory = 0; 473 break; 474 } 475 476 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) { 477 struct ieee80211_rate *rate; 478 479 rate = &hw->wiphy->bands[i]->bitrates[r]; 480 481 if (!(rate->flags & mandatory)) 482 continue; 483 sta->sta.deflink.supp_rates[i] |= BIT(r); 484 } 485 } 486 487 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 488 if (sdata->vif.type == NL80211_IFTYPE_AP || 489 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 490 struct ieee80211_supported_band *sband; 491 u8 smps; 492 493 sband = ieee80211_get_sband(sdata); 494 if (!sband) 495 goto free_txq; 496 497 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 498 IEEE80211_HT_CAP_SM_PS_SHIFT; 499 /* 500 * Assume that hostapd advertises our caps in the beacon and 501 * this is the known_smps_mode for a station that just assciated 502 */ 503 switch (smps) { 504 case WLAN_HT_SMPS_CONTROL_DISABLED: 505 sta->known_smps_mode = IEEE80211_SMPS_OFF; 506 break; 507 case WLAN_HT_SMPS_CONTROL_STATIC: 508 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 509 break; 510 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 511 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 512 break; 513 default: 514 WARN_ON(1); 515 } 516 } 517 518 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 519 520 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; 521 sta->cparams.target = MS2TIME(20); 522 sta->cparams.interval = MS2TIME(100); 523 sta->cparams.ecn = true; 524 sta->cparams.ce_threshold_selector = 0; 525 sta->cparams.ce_threshold_mask = 0; 526 527 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 528 529 return sta; 530 531 free_txq: 532 if (sta->sta.txq[0]) 533 kfree(to_txq_info(sta->sta.txq[0])); 534 free: 535 free_percpu(sta->deflink.pcpu_rx_stats); 536 #ifdef CONFIG_MAC80211_MESH 537 kfree(sta->mesh); 538 #endif 539 kfree(sta); 540 return NULL; 541 } 542 543 static int sta_info_insert_check(struct sta_info *sta) 544 { 545 struct ieee80211_sub_if_data *sdata = sta->sdata; 546 547 /* 548 * Can't be a WARN_ON because it can be triggered through a race: 549 * something inserts a STA (on one CPU) without holding the RTNL 550 * and another CPU turns off the net device. 551 */ 552 if (unlikely(!ieee80211_sdata_running(sdata))) 553 return -ENETDOWN; 554 555 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 556 !is_valid_ether_addr(sta->sta.addr))) 557 return -EINVAL; 558 559 /* The RCU read lock is required by rhashtable due to 560 * asynchronous resize/rehash. We also require the mutex 561 * for correctness. 562 */ 563 rcu_read_lock(); 564 lockdep_assert_held(&sdata->local->sta_mtx); 565 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 566 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 567 rcu_read_unlock(); 568 return -ENOTUNIQ; 569 } 570 rcu_read_unlock(); 571 572 return 0; 573 } 574 575 static int sta_info_insert_drv_state(struct ieee80211_local *local, 576 struct ieee80211_sub_if_data *sdata, 577 struct sta_info *sta) 578 { 579 enum ieee80211_sta_state state; 580 int err = 0; 581 582 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 583 err = drv_sta_state(local, sdata, sta, state, state + 1); 584 if (err) 585 break; 586 } 587 588 if (!err) { 589 /* 590 * Drivers using legacy sta_add/sta_remove callbacks only 591 * get uploaded set to true after sta_add is called. 592 */ 593 if (!local->ops->sta_add) 594 sta->uploaded = true; 595 return 0; 596 } 597 598 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 599 sdata_info(sdata, 600 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 601 sta->sta.addr, state + 1, err); 602 err = 0; 603 } 604 605 /* unwind on error */ 606 for (; state > IEEE80211_STA_NOTEXIST; state--) 607 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 608 609 return err; 610 } 611 612 static void 613 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 614 { 615 struct ieee80211_local *local = sdata->local; 616 bool allow_p2p_go_ps = sdata->vif.p2p; 617 struct sta_info *sta; 618 619 rcu_read_lock(); 620 list_for_each_entry_rcu(sta, &local->sta_list, list) { 621 if (sdata != sta->sdata || 622 !test_sta_flag(sta, WLAN_STA_ASSOC)) 623 continue; 624 if (!sta->sta.support_p2p_ps) { 625 allow_p2p_go_ps = false; 626 break; 627 } 628 } 629 rcu_read_unlock(); 630 631 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 632 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 633 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 634 } 635 } 636 637 /* 638 * should be called with sta_mtx locked 639 * this function replaces the mutex lock 640 * with a RCU lock 641 */ 642 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 643 { 644 struct ieee80211_local *local = sta->local; 645 struct ieee80211_sub_if_data *sdata = sta->sdata; 646 struct station_info *sinfo = NULL; 647 int err = 0; 648 649 lockdep_assert_held(&local->sta_mtx); 650 651 /* check if STA exists already */ 652 if (sta_info_get_bss(sdata, sta->sta.addr)) { 653 err = -EEXIST; 654 goto out_cleanup; 655 } 656 657 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 658 if (!sinfo) { 659 err = -ENOMEM; 660 goto out_cleanup; 661 } 662 663 local->num_sta++; 664 local->sta_generation++; 665 smp_mb(); 666 667 /* simplify things and don't accept BA sessions yet */ 668 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 669 670 /* make the station visible */ 671 err = sta_info_hash_add(local, sta); 672 if (err) 673 goto out_drop_sta; 674 675 list_add_tail_rcu(&sta->list, &local->sta_list); 676 677 /* update channel context before notifying the driver about state 678 * change, this enables driver using the updated channel context right away. 679 */ 680 if (sta->sta_state >= IEEE80211_STA_ASSOC) { 681 ieee80211_recalc_min_chandef(sta->sdata); 682 if (!sta->sta.support_p2p_ps) 683 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 684 } 685 686 /* notify driver */ 687 err = sta_info_insert_drv_state(local, sdata, sta); 688 if (err) 689 goto out_remove; 690 691 set_sta_flag(sta, WLAN_STA_INSERTED); 692 693 /* accept BA sessions now */ 694 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 695 696 ieee80211_sta_debugfs_add(sta); 697 rate_control_add_sta_debugfs(sta); 698 699 sinfo->generation = local->sta_generation; 700 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 701 kfree(sinfo); 702 703 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 704 705 /* move reference to rcu-protected */ 706 rcu_read_lock(); 707 mutex_unlock(&local->sta_mtx); 708 709 if (ieee80211_vif_is_mesh(&sdata->vif)) 710 mesh_accept_plinks_update(sdata); 711 712 return 0; 713 out_remove: 714 sta_info_hash_del(local, sta); 715 list_del_rcu(&sta->list); 716 out_drop_sta: 717 local->num_sta--; 718 synchronize_net(); 719 out_cleanup: 720 cleanup_single_sta(sta); 721 mutex_unlock(&local->sta_mtx); 722 kfree(sinfo); 723 rcu_read_lock(); 724 return err; 725 } 726 727 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 728 { 729 struct ieee80211_local *local = sta->local; 730 int err; 731 732 might_sleep(); 733 734 mutex_lock(&local->sta_mtx); 735 736 err = sta_info_insert_check(sta); 737 if (err) { 738 sta_info_free(local, sta); 739 mutex_unlock(&local->sta_mtx); 740 rcu_read_lock(); 741 return err; 742 } 743 744 return sta_info_insert_finish(sta); 745 } 746 747 int sta_info_insert(struct sta_info *sta) 748 { 749 int err = sta_info_insert_rcu(sta); 750 751 rcu_read_unlock(); 752 753 return err; 754 } 755 756 static inline void __bss_tim_set(u8 *tim, u16 id) 757 { 758 /* 759 * This format has been mandated by the IEEE specifications, 760 * so this line may not be changed to use the __set_bit() format. 761 */ 762 tim[id / 8] |= (1 << (id % 8)); 763 } 764 765 static inline void __bss_tim_clear(u8 *tim, u16 id) 766 { 767 /* 768 * This format has been mandated by the IEEE specifications, 769 * so this line may not be changed to use the __clear_bit() format. 770 */ 771 tim[id / 8] &= ~(1 << (id % 8)); 772 } 773 774 static inline bool __bss_tim_get(u8 *tim, u16 id) 775 { 776 /* 777 * This format has been mandated by the IEEE specifications, 778 * so this line may not be changed to use the test_bit() format. 779 */ 780 return tim[id / 8] & (1 << (id % 8)); 781 } 782 783 static unsigned long ieee80211_tids_for_ac(int ac) 784 { 785 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 786 switch (ac) { 787 case IEEE80211_AC_VO: 788 return BIT(6) | BIT(7); 789 case IEEE80211_AC_VI: 790 return BIT(4) | BIT(5); 791 case IEEE80211_AC_BE: 792 return BIT(0) | BIT(3); 793 case IEEE80211_AC_BK: 794 return BIT(1) | BIT(2); 795 default: 796 WARN_ON(1); 797 return 0; 798 } 799 } 800 801 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 802 { 803 struct ieee80211_local *local = sta->local; 804 struct ps_data *ps; 805 bool indicate_tim = false; 806 u8 ignore_for_tim = sta->sta.uapsd_queues; 807 int ac; 808 u16 id = sta->sta.aid; 809 810 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 811 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 812 if (WARN_ON_ONCE(!sta->sdata->bss)) 813 return; 814 815 ps = &sta->sdata->bss->ps; 816 #ifdef CONFIG_MAC80211_MESH 817 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 818 ps = &sta->sdata->u.mesh.ps; 819 #endif 820 } else { 821 return; 822 } 823 824 /* No need to do anything if the driver does all */ 825 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 826 return; 827 828 if (sta->dead) 829 goto done; 830 831 /* 832 * If all ACs are delivery-enabled then we should build 833 * the TIM bit for all ACs anyway; if only some are then 834 * we ignore those and build the TIM bit using only the 835 * non-enabled ones. 836 */ 837 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 838 ignore_for_tim = 0; 839 840 if (ignore_pending) 841 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 842 843 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 844 unsigned long tids; 845 846 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 847 continue; 848 849 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 850 !skb_queue_empty(&sta->ps_tx_buf[ac]); 851 if (indicate_tim) 852 break; 853 854 tids = ieee80211_tids_for_ac(ac); 855 856 indicate_tim |= 857 sta->driver_buffered_tids & tids; 858 indicate_tim |= 859 sta->txq_buffered_tids & tids; 860 } 861 862 done: 863 spin_lock_bh(&local->tim_lock); 864 865 if (indicate_tim == __bss_tim_get(ps->tim, id)) 866 goto out_unlock; 867 868 if (indicate_tim) 869 __bss_tim_set(ps->tim, id); 870 else 871 __bss_tim_clear(ps->tim, id); 872 873 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 874 local->tim_in_locked_section = true; 875 drv_set_tim(local, &sta->sta, indicate_tim); 876 local->tim_in_locked_section = false; 877 } 878 879 out_unlock: 880 spin_unlock_bh(&local->tim_lock); 881 } 882 883 void sta_info_recalc_tim(struct sta_info *sta) 884 { 885 __sta_info_recalc_tim(sta, false); 886 } 887 888 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 889 { 890 struct ieee80211_tx_info *info; 891 int timeout; 892 893 if (!skb) 894 return false; 895 896 info = IEEE80211_SKB_CB(skb); 897 898 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 899 timeout = (sta->listen_interval * 900 sta->sdata->vif.bss_conf.beacon_int * 901 32 / 15625) * HZ; 902 if (timeout < STA_TX_BUFFER_EXPIRE) 903 timeout = STA_TX_BUFFER_EXPIRE; 904 return time_after(jiffies, info->control.jiffies + timeout); 905 } 906 907 908 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 909 struct sta_info *sta, int ac) 910 { 911 unsigned long flags; 912 struct sk_buff *skb; 913 914 /* 915 * First check for frames that should expire on the filtered 916 * queue. Frames here were rejected by the driver and are on 917 * a separate queue to avoid reordering with normal PS-buffered 918 * frames. They also aren't accounted for right now in the 919 * total_ps_buffered counter. 920 */ 921 for (;;) { 922 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 923 skb = skb_peek(&sta->tx_filtered[ac]); 924 if (sta_info_buffer_expired(sta, skb)) 925 skb = __skb_dequeue(&sta->tx_filtered[ac]); 926 else 927 skb = NULL; 928 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 929 930 /* 931 * Frames are queued in order, so if this one 932 * hasn't expired yet we can stop testing. If 933 * we actually reached the end of the queue we 934 * also need to stop, of course. 935 */ 936 if (!skb) 937 break; 938 ieee80211_free_txskb(&local->hw, skb); 939 } 940 941 /* 942 * Now also check the normal PS-buffered queue, this will 943 * only find something if the filtered queue was emptied 944 * since the filtered frames are all before the normal PS 945 * buffered frames. 946 */ 947 for (;;) { 948 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 949 skb = skb_peek(&sta->ps_tx_buf[ac]); 950 if (sta_info_buffer_expired(sta, skb)) 951 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 952 else 953 skb = NULL; 954 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 955 956 /* 957 * frames are queued in order, so if this one 958 * hasn't expired yet (or we reached the end of 959 * the queue) we can stop testing 960 */ 961 if (!skb) 962 break; 963 964 local->total_ps_buffered--; 965 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 966 sta->sta.addr); 967 ieee80211_free_txskb(&local->hw, skb); 968 } 969 970 /* 971 * Finally, recalculate the TIM bit for this station -- it might 972 * now be clear because the station was too slow to retrieve its 973 * frames. 974 */ 975 sta_info_recalc_tim(sta); 976 977 /* 978 * Return whether there are any frames still buffered, this is 979 * used to check whether the cleanup timer still needs to run, 980 * if there are no frames we don't need to rearm the timer. 981 */ 982 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 983 skb_queue_empty(&sta->tx_filtered[ac])); 984 } 985 986 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 987 struct sta_info *sta) 988 { 989 bool have_buffered = false; 990 int ac; 991 992 /* This is only necessary for stations on BSS/MBSS interfaces */ 993 if (!sta->sdata->bss && 994 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 995 return false; 996 997 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 998 have_buffered |= 999 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 1000 1001 return have_buffered; 1002 } 1003 1004 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 1005 { 1006 struct ieee80211_local *local; 1007 struct ieee80211_sub_if_data *sdata; 1008 int ret; 1009 1010 might_sleep(); 1011 1012 if (!sta) 1013 return -ENOENT; 1014 1015 local = sta->local; 1016 sdata = sta->sdata; 1017 1018 lockdep_assert_held(&local->sta_mtx); 1019 1020 /* 1021 * Before removing the station from the driver and 1022 * rate control, it might still start new aggregation 1023 * sessions -- block that to make sure the tear-down 1024 * will be sufficient. 1025 */ 1026 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 1027 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 1028 1029 /* 1030 * Before removing the station from the driver there might be pending 1031 * rx frames on RSS queues sent prior to the disassociation - wait for 1032 * all such frames to be processed. 1033 */ 1034 drv_sync_rx_queues(local, sta); 1035 1036 ret = sta_info_hash_del(local, sta); 1037 if (WARN_ON(ret)) 1038 return ret; 1039 1040 /* 1041 * for TDLS peers, make sure to return to the base channel before 1042 * removal. 1043 */ 1044 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 1045 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 1046 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 1047 } 1048 1049 list_del_rcu(&sta->list); 1050 sta->removed = true; 1051 1052 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 1053 1054 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1055 rcu_access_pointer(sdata->u.vlan.sta) == sta) 1056 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 1057 1058 return 0; 1059 } 1060 1061 static void __sta_info_destroy_part2(struct sta_info *sta) 1062 { 1063 struct ieee80211_local *local = sta->local; 1064 struct ieee80211_sub_if_data *sdata = sta->sdata; 1065 struct station_info *sinfo; 1066 int ret; 1067 1068 /* 1069 * NOTE: This assumes at least synchronize_net() was done 1070 * after _part1 and before _part2! 1071 */ 1072 1073 might_sleep(); 1074 lockdep_assert_held(&local->sta_mtx); 1075 1076 if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1077 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC); 1078 WARN_ON_ONCE(ret); 1079 } 1080 1081 /* now keys can no longer be reached */ 1082 ieee80211_free_sta_keys(local, sta); 1083 1084 /* disable TIM bit - last chance to tell driver */ 1085 __sta_info_recalc_tim(sta, true); 1086 1087 sta->dead = true; 1088 1089 local->num_sta--; 1090 local->sta_generation++; 1091 1092 while (sta->sta_state > IEEE80211_STA_NONE) { 1093 ret = sta_info_move_state(sta, sta->sta_state - 1); 1094 if (ret) { 1095 WARN_ON_ONCE(1); 1096 break; 1097 } 1098 } 1099 1100 if (sta->uploaded) { 1101 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 1102 IEEE80211_STA_NOTEXIST); 1103 WARN_ON_ONCE(ret != 0); 1104 } 1105 1106 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 1107 1108 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 1109 if (sinfo) 1110 sta_set_sinfo(sta, sinfo, true); 1111 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 1112 kfree(sinfo); 1113 1114 ieee80211_sta_debugfs_remove(sta); 1115 1116 ieee80211_destroy_frag_cache(&sta->frags); 1117 1118 cleanup_single_sta(sta); 1119 } 1120 1121 int __must_check __sta_info_destroy(struct sta_info *sta) 1122 { 1123 int err = __sta_info_destroy_part1(sta); 1124 1125 if (err) 1126 return err; 1127 1128 synchronize_net(); 1129 1130 __sta_info_destroy_part2(sta); 1131 1132 return 0; 1133 } 1134 1135 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1136 { 1137 struct sta_info *sta; 1138 int ret; 1139 1140 mutex_lock(&sdata->local->sta_mtx); 1141 sta = sta_info_get(sdata, addr); 1142 ret = __sta_info_destroy(sta); 1143 mutex_unlock(&sdata->local->sta_mtx); 1144 1145 return ret; 1146 } 1147 1148 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1149 const u8 *addr) 1150 { 1151 struct sta_info *sta; 1152 int ret; 1153 1154 mutex_lock(&sdata->local->sta_mtx); 1155 sta = sta_info_get_bss(sdata, addr); 1156 ret = __sta_info_destroy(sta); 1157 mutex_unlock(&sdata->local->sta_mtx); 1158 1159 return ret; 1160 } 1161 1162 static void sta_info_cleanup(struct timer_list *t) 1163 { 1164 struct ieee80211_local *local = from_timer(local, t, sta_cleanup); 1165 struct sta_info *sta; 1166 bool timer_needed = false; 1167 1168 rcu_read_lock(); 1169 list_for_each_entry_rcu(sta, &local->sta_list, list) 1170 if (sta_info_cleanup_expire_buffered(local, sta)) 1171 timer_needed = true; 1172 rcu_read_unlock(); 1173 1174 if (local->quiescing) 1175 return; 1176 1177 if (!timer_needed) 1178 return; 1179 1180 mod_timer(&local->sta_cleanup, 1181 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1182 } 1183 1184 int sta_info_init(struct ieee80211_local *local) 1185 { 1186 int err; 1187 1188 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1189 if (err) 1190 return err; 1191 1192 spin_lock_init(&local->tim_lock); 1193 mutex_init(&local->sta_mtx); 1194 INIT_LIST_HEAD(&local->sta_list); 1195 1196 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); 1197 return 0; 1198 } 1199 1200 void sta_info_stop(struct ieee80211_local *local) 1201 { 1202 del_timer_sync(&local->sta_cleanup); 1203 rhltable_destroy(&local->sta_hash); 1204 } 1205 1206 1207 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1208 { 1209 struct ieee80211_local *local = sdata->local; 1210 struct sta_info *sta, *tmp; 1211 LIST_HEAD(free_list); 1212 int ret = 0; 1213 1214 might_sleep(); 1215 1216 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1217 WARN_ON(vlans && !sdata->bss); 1218 1219 mutex_lock(&local->sta_mtx); 1220 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1221 if (sdata == sta->sdata || 1222 (vlans && sdata->bss == sta->sdata->bss)) { 1223 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1224 list_add(&sta->free_list, &free_list); 1225 ret++; 1226 } 1227 } 1228 1229 if (!list_empty(&free_list)) { 1230 synchronize_net(); 1231 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1232 __sta_info_destroy_part2(sta); 1233 } 1234 mutex_unlock(&local->sta_mtx); 1235 1236 return ret; 1237 } 1238 1239 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1240 unsigned long exp_time) 1241 { 1242 struct ieee80211_local *local = sdata->local; 1243 struct sta_info *sta, *tmp; 1244 1245 mutex_lock(&local->sta_mtx); 1246 1247 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1248 unsigned long last_active = ieee80211_sta_last_active(sta); 1249 1250 if (sdata != sta->sdata) 1251 continue; 1252 1253 if (time_is_before_jiffies(last_active + exp_time)) { 1254 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1255 sta->sta.addr); 1256 1257 if (ieee80211_vif_is_mesh(&sdata->vif) && 1258 test_sta_flag(sta, WLAN_STA_PS_STA)) 1259 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1260 1261 WARN_ON(__sta_info_destroy(sta)); 1262 } 1263 } 1264 1265 mutex_unlock(&local->sta_mtx); 1266 } 1267 1268 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1269 const u8 *addr, 1270 const u8 *localaddr) 1271 { 1272 struct ieee80211_local *local = hw_to_local(hw); 1273 struct rhlist_head *tmp; 1274 struct sta_info *sta; 1275 1276 /* 1277 * Just return a random station if localaddr is NULL 1278 * ... first in list. 1279 */ 1280 for_each_sta_info(local, addr, sta, tmp) { 1281 if (localaddr && 1282 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1283 continue; 1284 if (!sta->uploaded) 1285 return NULL; 1286 return &sta->sta; 1287 } 1288 1289 return NULL; 1290 } 1291 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1292 1293 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1294 const u8 *addr) 1295 { 1296 struct sta_info *sta; 1297 1298 if (!vif) 1299 return NULL; 1300 1301 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1302 if (!sta) 1303 return NULL; 1304 1305 if (!sta->uploaded) 1306 return NULL; 1307 1308 return &sta->sta; 1309 } 1310 EXPORT_SYMBOL(ieee80211_find_sta); 1311 1312 /* powersave support code */ 1313 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1314 { 1315 struct ieee80211_sub_if_data *sdata = sta->sdata; 1316 struct ieee80211_local *local = sdata->local; 1317 struct sk_buff_head pending; 1318 int filtered = 0, buffered = 0, ac, i; 1319 unsigned long flags; 1320 struct ps_data *ps; 1321 1322 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1323 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1324 u.ap); 1325 1326 if (sdata->vif.type == NL80211_IFTYPE_AP) 1327 ps = &sdata->bss->ps; 1328 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1329 ps = &sdata->u.mesh.ps; 1330 else 1331 return; 1332 1333 clear_sta_flag(sta, WLAN_STA_SP); 1334 1335 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1336 sta->driver_buffered_tids = 0; 1337 sta->txq_buffered_tids = 0; 1338 1339 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1340 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1341 1342 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1343 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) 1344 continue; 1345 1346 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); 1347 } 1348 1349 skb_queue_head_init(&pending); 1350 1351 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1352 spin_lock(&sta->ps_lock); 1353 /* Send all buffered frames to the station */ 1354 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1355 int count = skb_queue_len(&pending), tmp; 1356 1357 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1358 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1359 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1360 tmp = skb_queue_len(&pending); 1361 filtered += tmp - count; 1362 count = tmp; 1363 1364 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1365 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1366 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1367 tmp = skb_queue_len(&pending); 1368 buffered += tmp - count; 1369 } 1370 1371 ieee80211_add_pending_skbs(local, &pending); 1372 1373 /* now we're no longer in the deliver code */ 1374 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1375 1376 /* The station might have polled and then woken up before we responded, 1377 * so clear these flags now to avoid them sticking around. 1378 */ 1379 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1380 clear_sta_flag(sta, WLAN_STA_UAPSD); 1381 spin_unlock(&sta->ps_lock); 1382 1383 atomic_dec(&ps->num_sta_ps); 1384 1385 local->total_ps_buffered -= buffered; 1386 1387 sta_info_recalc_tim(sta); 1388 1389 ps_dbg(sdata, 1390 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1391 sta->sta.addr, sta->sta.aid, filtered, buffered); 1392 1393 ieee80211_check_fast_xmit(sta); 1394 } 1395 1396 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1397 enum ieee80211_frame_release_type reason, 1398 bool call_driver, bool more_data) 1399 { 1400 struct ieee80211_sub_if_data *sdata = sta->sdata; 1401 struct ieee80211_local *local = sdata->local; 1402 struct ieee80211_qos_hdr *nullfunc; 1403 struct sk_buff *skb; 1404 int size = sizeof(*nullfunc); 1405 __le16 fc; 1406 bool qos = sta->sta.wme; 1407 struct ieee80211_tx_info *info; 1408 struct ieee80211_chanctx_conf *chanctx_conf; 1409 1410 if (qos) { 1411 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1412 IEEE80211_STYPE_QOS_NULLFUNC | 1413 IEEE80211_FCTL_FROMDS); 1414 } else { 1415 size -= 2; 1416 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1417 IEEE80211_STYPE_NULLFUNC | 1418 IEEE80211_FCTL_FROMDS); 1419 } 1420 1421 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1422 if (!skb) 1423 return; 1424 1425 skb_reserve(skb, local->hw.extra_tx_headroom); 1426 1427 nullfunc = skb_put(skb, size); 1428 nullfunc->frame_control = fc; 1429 nullfunc->duration_id = 0; 1430 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1431 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1432 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1433 nullfunc->seq_ctrl = 0; 1434 1435 skb->priority = tid; 1436 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1437 if (qos) { 1438 nullfunc->qos_ctrl = cpu_to_le16(tid); 1439 1440 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1441 nullfunc->qos_ctrl |= 1442 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1443 if (more_data) 1444 nullfunc->frame_control |= 1445 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1446 } 1447 } 1448 1449 info = IEEE80211_SKB_CB(skb); 1450 1451 /* 1452 * Tell TX path to send this frame even though the 1453 * STA may still remain is PS mode after this frame 1454 * exchange. Also set EOSP to indicate this packet 1455 * ends the poll/service period. 1456 */ 1457 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1458 IEEE80211_TX_STATUS_EOSP | 1459 IEEE80211_TX_CTL_REQ_TX_STATUS; 1460 1461 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1462 1463 if (call_driver) 1464 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1465 reason, false); 1466 1467 skb->dev = sdata->dev; 1468 1469 rcu_read_lock(); 1470 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1471 if (WARN_ON(!chanctx_conf)) { 1472 rcu_read_unlock(); 1473 kfree_skb(skb); 1474 return; 1475 } 1476 1477 info->band = chanctx_conf->def.chan->band; 1478 ieee80211_xmit(sdata, sta, skb); 1479 rcu_read_unlock(); 1480 } 1481 1482 static int find_highest_prio_tid(unsigned long tids) 1483 { 1484 /* lower 3 TIDs aren't ordered perfectly */ 1485 if (tids & 0xF8) 1486 return fls(tids) - 1; 1487 /* TID 0 is BE just like TID 3 */ 1488 if (tids & BIT(0)) 1489 return 0; 1490 return fls(tids) - 1; 1491 } 1492 1493 /* Indicates if the MORE_DATA bit should be set in the last 1494 * frame obtained by ieee80211_sta_ps_get_frames. 1495 * Note that driver_release_tids is relevant only if 1496 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1497 */ 1498 static bool 1499 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1500 enum ieee80211_frame_release_type reason, 1501 unsigned long driver_release_tids) 1502 { 1503 int ac; 1504 1505 /* If the driver has data on more than one TID then 1506 * certainly there's more data if we release just a 1507 * single frame now (from a single TID). This will 1508 * only happen for PS-Poll. 1509 */ 1510 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1511 hweight16(driver_release_tids) > 1) 1512 return true; 1513 1514 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1515 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1516 continue; 1517 1518 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1519 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1520 return true; 1521 } 1522 1523 return false; 1524 } 1525 1526 static void 1527 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1528 enum ieee80211_frame_release_type reason, 1529 struct sk_buff_head *frames, 1530 unsigned long *driver_release_tids) 1531 { 1532 struct ieee80211_sub_if_data *sdata = sta->sdata; 1533 struct ieee80211_local *local = sdata->local; 1534 int ac; 1535 1536 /* Get response frame(s) and more data bit for the last one. */ 1537 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1538 unsigned long tids; 1539 1540 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1541 continue; 1542 1543 tids = ieee80211_tids_for_ac(ac); 1544 1545 /* if we already have frames from software, then we can't also 1546 * release from hardware queues 1547 */ 1548 if (skb_queue_empty(frames)) { 1549 *driver_release_tids |= 1550 sta->driver_buffered_tids & tids; 1551 *driver_release_tids |= sta->txq_buffered_tids & tids; 1552 } 1553 1554 if (!*driver_release_tids) { 1555 struct sk_buff *skb; 1556 1557 while (n_frames > 0) { 1558 skb = skb_dequeue(&sta->tx_filtered[ac]); 1559 if (!skb) { 1560 skb = skb_dequeue( 1561 &sta->ps_tx_buf[ac]); 1562 if (skb) 1563 local->total_ps_buffered--; 1564 } 1565 if (!skb) 1566 break; 1567 n_frames--; 1568 __skb_queue_tail(frames, skb); 1569 } 1570 } 1571 1572 /* If we have more frames buffered on this AC, then abort the 1573 * loop since we can't send more data from other ACs before 1574 * the buffered frames from this. 1575 */ 1576 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1577 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1578 break; 1579 } 1580 } 1581 1582 static void 1583 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1584 int n_frames, u8 ignored_acs, 1585 enum ieee80211_frame_release_type reason) 1586 { 1587 struct ieee80211_sub_if_data *sdata = sta->sdata; 1588 struct ieee80211_local *local = sdata->local; 1589 unsigned long driver_release_tids = 0; 1590 struct sk_buff_head frames; 1591 bool more_data; 1592 1593 /* Service or PS-Poll period starts */ 1594 set_sta_flag(sta, WLAN_STA_SP); 1595 1596 __skb_queue_head_init(&frames); 1597 1598 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1599 &frames, &driver_release_tids); 1600 1601 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1602 1603 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1604 driver_release_tids = 1605 BIT(find_highest_prio_tid(driver_release_tids)); 1606 1607 if (skb_queue_empty(&frames) && !driver_release_tids) { 1608 int tid, ac; 1609 1610 /* 1611 * For PS-Poll, this can only happen due to a race condition 1612 * when we set the TIM bit and the station notices it, but 1613 * before it can poll for the frame we expire it. 1614 * 1615 * For uAPSD, this is said in the standard (11.2.1.5 h): 1616 * At each unscheduled SP for a non-AP STA, the AP shall 1617 * attempt to transmit at least one MSDU or MMPDU, but no 1618 * more than the value specified in the Max SP Length field 1619 * in the QoS Capability element from delivery-enabled ACs, 1620 * that are destined for the non-AP STA. 1621 * 1622 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1623 */ 1624 1625 /* This will evaluate to 1, 3, 5 or 7. */ 1626 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1627 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1628 break; 1629 tid = 7 - 2 * ac; 1630 1631 ieee80211_send_null_response(sta, tid, reason, true, false); 1632 } else if (!driver_release_tids) { 1633 struct sk_buff_head pending; 1634 struct sk_buff *skb; 1635 int num = 0; 1636 u16 tids = 0; 1637 bool need_null = false; 1638 1639 skb_queue_head_init(&pending); 1640 1641 while ((skb = __skb_dequeue(&frames))) { 1642 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1643 struct ieee80211_hdr *hdr = (void *) skb->data; 1644 u8 *qoshdr = NULL; 1645 1646 num++; 1647 1648 /* 1649 * Tell TX path to send this frame even though the 1650 * STA may still remain is PS mode after this frame 1651 * exchange. 1652 */ 1653 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1654 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1655 1656 /* 1657 * Use MoreData flag to indicate whether there are 1658 * more buffered frames for this STA 1659 */ 1660 if (more_data || !skb_queue_empty(&frames)) 1661 hdr->frame_control |= 1662 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1663 else 1664 hdr->frame_control &= 1665 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1666 1667 if (ieee80211_is_data_qos(hdr->frame_control) || 1668 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1669 qoshdr = ieee80211_get_qos_ctl(hdr); 1670 1671 tids |= BIT(skb->priority); 1672 1673 __skb_queue_tail(&pending, skb); 1674 1675 /* end service period after last frame or add one */ 1676 if (!skb_queue_empty(&frames)) 1677 continue; 1678 1679 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1680 /* for PS-Poll, there's only one frame */ 1681 info->flags |= IEEE80211_TX_STATUS_EOSP | 1682 IEEE80211_TX_CTL_REQ_TX_STATUS; 1683 break; 1684 } 1685 1686 /* For uAPSD, things are a bit more complicated. If the 1687 * last frame has a QoS header (i.e. is a QoS-data or 1688 * QoS-nulldata frame) then just set the EOSP bit there 1689 * and be done. 1690 * If the frame doesn't have a QoS header (which means 1691 * it should be a bufferable MMPDU) then we can't set 1692 * the EOSP bit in the QoS header; add a QoS-nulldata 1693 * frame to the list to send it after the MMPDU. 1694 * 1695 * Note that this code is only in the mac80211-release 1696 * code path, we assume that the driver will not buffer 1697 * anything but QoS-data frames, or if it does, will 1698 * create the QoS-nulldata frame by itself if needed. 1699 * 1700 * Cf. 802.11-2012 10.2.1.10 (c). 1701 */ 1702 if (qoshdr) { 1703 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1704 1705 info->flags |= IEEE80211_TX_STATUS_EOSP | 1706 IEEE80211_TX_CTL_REQ_TX_STATUS; 1707 } else { 1708 /* The standard isn't completely clear on this 1709 * as it says the more-data bit should be set 1710 * if there are more BUs. The QoS-Null frame 1711 * we're about to send isn't buffered yet, we 1712 * only create it below, but let's pretend it 1713 * was buffered just in case some clients only 1714 * expect more-data=0 when eosp=1. 1715 */ 1716 hdr->frame_control |= 1717 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1718 need_null = true; 1719 num++; 1720 } 1721 break; 1722 } 1723 1724 drv_allow_buffered_frames(local, sta, tids, num, 1725 reason, more_data); 1726 1727 ieee80211_add_pending_skbs(local, &pending); 1728 1729 if (need_null) 1730 ieee80211_send_null_response( 1731 sta, find_highest_prio_tid(tids), 1732 reason, false, false); 1733 1734 sta_info_recalc_tim(sta); 1735 } else { 1736 int tid; 1737 1738 /* 1739 * We need to release a frame that is buffered somewhere in the 1740 * driver ... it'll have to handle that. 1741 * Note that the driver also has to check the number of frames 1742 * on the TIDs we're releasing from - if there are more than 1743 * n_frames it has to set the more-data bit (if we didn't ask 1744 * it to set it anyway due to other buffered frames); if there 1745 * are fewer than n_frames it has to make sure to adjust that 1746 * to allow the service period to end properly. 1747 */ 1748 drv_release_buffered_frames(local, sta, driver_release_tids, 1749 n_frames, reason, more_data); 1750 1751 /* 1752 * Note that we don't recalculate the TIM bit here as it would 1753 * most likely have no effect at all unless the driver told us 1754 * that the TID(s) became empty before returning here from the 1755 * release function. 1756 * Either way, however, when the driver tells us that the TID(s) 1757 * became empty or we find that a txq became empty, we'll do the 1758 * TIM recalculation. 1759 */ 1760 1761 if (!sta->sta.txq[0]) 1762 return; 1763 1764 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1765 if (!sta->sta.txq[tid] || 1766 !(driver_release_tids & BIT(tid)) || 1767 txq_has_queue(sta->sta.txq[tid])) 1768 continue; 1769 1770 sta_info_recalc_tim(sta); 1771 break; 1772 } 1773 } 1774 } 1775 1776 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1777 { 1778 u8 ignore_for_response = sta->sta.uapsd_queues; 1779 1780 /* 1781 * If all ACs are delivery-enabled then we should reply 1782 * from any of them, if only some are enabled we reply 1783 * only from the non-enabled ones. 1784 */ 1785 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1786 ignore_for_response = 0; 1787 1788 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1789 IEEE80211_FRAME_RELEASE_PSPOLL); 1790 } 1791 1792 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1793 { 1794 int n_frames = sta->sta.max_sp; 1795 u8 delivery_enabled = sta->sta.uapsd_queues; 1796 1797 /* 1798 * If we ever grow support for TSPEC this might happen if 1799 * the TSPEC update from hostapd comes in between a trigger 1800 * frame setting WLAN_STA_UAPSD in the RX path and this 1801 * actually getting called. 1802 */ 1803 if (!delivery_enabled) 1804 return; 1805 1806 switch (sta->sta.max_sp) { 1807 case 1: 1808 n_frames = 2; 1809 break; 1810 case 2: 1811 n_frames = 4; 1812 break; 1813 case 3: 1814 n_frames = 6; 1815 break; 1816 case 0: 1817 /* XXX: what is a good value? */ 1818 n_frames = 128; 1819 break; 1820 } 1821 1822 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1823 IEEE80211_FRAME_RELEASE_UAPSD); 1824 } 1825 1826 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1827 struct ieee80211_sta *pubsta, bool block) 1828 { 1829 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1830 1831 trace_api_sta_block_awake(sta->local, pubsta, block); 1832 1833 if (block) { 1834 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1835 ieee80211_clear_fast_xmit(sta); 1836 return; 1837 } 1838 1839 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1840 return; 1841 1842 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1843 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1844 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1845 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1846 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1847 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1848 /* must be asleep in this case */ 1849 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1850 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1851 } else { 1852 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1853 ieee80211_check_fast_xmit(sta); 1854 } 1855 } 1856 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1857 1858 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1859 { 1860 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1861 struct ieee80211_local *local = sta->local; 1862 1863 trace_api_eosp(local, pubsta); 1864 1865 clear_sta_flag(sta, WLAN_STA_SP); 1866 } 1867 EXPORT_SYMBOL(ieee80211_sta_eosp); 1868 1869 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1870 { 1871 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1872 enum ieee80211_frame_release_type reason; 1873 bool more_data; 1874 1875 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1876 1877 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1878 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1879 reason, 0); 1880 1881 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1882 } 1883 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1884 1885 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1886 u8 tid, bool buffered) 1887 { 1888 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1889 1890 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1891 return; 1892 1893 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1894 1895 if (buffered) 1896 set_bit(tid, &sta->driver_buffered_tids); 1897 else 1898 clear_bit(tid, &sta->driver_buffered_tids); 1899 1900 sta_info_recalc_tim(sta); 1901 } 1902 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1903 1904 void ieee80211_register_airtime(struct ieee80211_txq *txq, 1905 u32 tx_airtime, u32 rx_airtime) 1906 { 1907 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 1908 struct ieee80211_local *local = sdata->local; 1909 u64 weight_sum, weight_sum_reciprocal; 1910 struct airtime_sched_info *air_sched; 1911 struct airtime_info *air_info; 1912 u32 airtime = 0; 1913 1914 air_sched = &local->airtime[txq->ac]; 1915 air_info = to_airtime_info(txq); 1916 1917 if (local->airtime_flags & AIRTIME_USE_TX) 1918 airtime += tx_airtime; 1919 if (local->airtime_flags & AIRTIME_USE_RX) 1920 airtime += rx_airtime; 1921 1922 /* Weights scale so the unit weight is 256 */ 1923 airtime <<= 8; 1924 1925 spin_lock_bh(&air_sched->lock); 1926 1927 air_info->tx_airtime += tx_airtime; 1928 air_info->rx_airtime += rx_airtime; 1929 1930 if (air_sched->weight_sum) { 1931 weight_sum = air_sched->weight_sum; 1932 weight_sum_reciprocal = air_sched->weight_sum_reciprocal; 1933 } else { 1934 weight_sum = air_info->weight; 1935 weight_sum_reciprocal = air_info->weight_reciprocal; 1936 } 1937 1938 /* Round the calculation of global vt */ 1939 air_sched->v_t += (u64)((airtime + (weight_sum >> 1)) * 1940 weight_sum_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_64; 1941 air_info->v_t += (u32)((airtime + (air_info->weight >> 1)) * 1942 air_info->weight_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_32; 1943 ieee80211_resort_txq(&local->hw, txq); 1944 1945 spin_unlock_bh(&air_sched->lock); 1946 } 1947 1948 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, 1949 u32 tx_airtime, u32 rx_airtime) 1950 { 1951 struct ieee80211_txq *txq = pubsta->txq[tid]; 1952 1953 if (!txq) 1954 return; 1955 1956 ieee80211_register_airtime(txq, tx_airtime, rx_airtime); 1957 } 1958 EXPORT_SYMBOL(ieee80211_sta_register_airtime); 1959 1960 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, 1961 struct sta_info *sta, u8 ac, 1962 u16 tx_airtime, bool tx_completed) 1963 { 1964 int tx_pending; 1965 1966 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) 1967 return; 1968 1969 if (!tx_completed) { 1970 if (sta) 1971 atomic_add(tx_airtime, 1972 &sta->airtime[ac].aql_tx_pending); 1973 1974 atomic_add(tx_airtime, &local->aql_total_pending_airtime); 1975 return; 1976 } 1977 1978 if (sta) { 1979 tx_pending = atomic_sub_return(tx_airtime, 1980 &sta->airtime[ac].aql_tx_pending); 1981 if (tx_pending < 0) 1982 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending, 1983 tx_pending, 0); 1984 } 1985 1986 tx_pending = atomic_sub_return(tx_airtime, 1987 &local->aql_total_pending_airtime); 1988 if (WARN_ONCE(tx_pending < 0, 1989 "Device %s AC %d pending airtime underflow: %u, %u", 1990 wiphy_name(local->hw.wiphy), ac, tx_pending, 1991 tx_airtime)) 1992 atomic_cmpxchg(&local->aql_total_pending_airtime, 1993 tx_pending, 0); 1994 } 1995 1996 int sta_info_move_state(struct sta_info *sta, 1997 enum ieee80211_sta_state new_state) 1998 { 1999 might_sleep(); 2000 2001 if (sta->sta_state == new_state) 2002 return 0; 2003 2004 /* check allowed transitions first */ 2005 2006 switch (new_state) { 2007 case IEEE80211_STA_NONE: 2008 if (sta->sta_state != IEEE80211_STA_AUTH) 2009 return -EINVAL; 2010 break; 2011 case IEEE80211_STA_AUTH: 2012 if (sta->sta_state != IEEE80211_STA_NONE && 2013 sta->sta_state != IEEE80211_STA_ASSOC) 2014 return -EINVAL; 2015 break; 2016 case IEEE80211_STA_ASSOC: 2017 if (sta->sta_state != IEEE80211_STA_AUTH && 2018 sta->sta_state != IEEE80211_STA_AUTHORIZED) 2019 return -EINVAL; 2020 break; 2021 case IEEE80211_STA_AUTHORIZED: 2022 if (sta->sta_state != IEEE80211_STA_ASSOC) 2023 return -EINVAL; 2024 break; 2025 default: 2026 WARN(1, "invalid state %d", new_state); 2027 return -EINVAL; 2028 } 2029 2030 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 2031 sta->sta.addr, new_state); 2032 2033 /* 2034 * notify the driver before the actual changes so it can 2035 * fail the transition 2036 */ 2037 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 2038 int err = drv_sta_state(sta->local, sta->sdata, sta, 2039 sta->sta_state, new_state); 2040 if (err) 2041 return err; 2042 } 2043 2044 /* reflect the change in all state variables */ 2045 2046 switch (new_state) { 2047 case IEEE80211_STA_NONE: 2048 if (sta->sta_state == IEEE80211_STA_AUTH) 2049 clear_bit(WLAN_STA_AUTH, &sta->_flags); 2050 break; 2051 case IEEE80211_STA_AUTH: 2052 if (sta->sta_state == IEEE80211_STA_NONE) { 2053 set_bit(WLAN_STA_AUTH, &sta->_flags); 2054 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 2055 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 2056 ieee80211_recalc_min_chandef(sta->sdata); 2057 if (!sta->sta.support_p2p_ps) 2058 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2059 } 2060 break; 2061 case IEEE80211_STA_ASSOC: 2062 if (sta->sta_state == IEEE80211_STA_AUTH) { 2063 set_bit(WLAN_STA_ASSOC, &sta->_flags); 2064 sta->assoc_at = ktime_get_boottime_ns(); 2065 ieee80211_recalc_min_chandef(sta->sdata); 2066 if (!sta->sta.support_p2p_ps) 2067 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2068 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 2069 ieee80211_vif_dec_num_mcast(sta->sdata); 2070 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2071 ieee80211_clear_fast_xmit(sta); 2072 ieee80211_clear_fast_rx(sta); 2073 } 2074 break; 2075 case IEEE80211_STA_AUTHORIZED: 2076 if (sta->sta_state == IEEE80211_STA_ASSOC) { 2077 ieee80211_vif_inc_num_mcast(sta->sdata); 2078 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2079 ieee80211_check_fast_xmit(sta); 2080 ieee80211_check_fast_rx(sta); 2081 } 2082 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 2083 sta->sdata->vif.type == NL80211_IFTYPE_AP) 2084 cfg80211_send_layer2_update(sta->sdata->dev, 2085 sta->sta.addr); 2086 break; 2087 default: 2088 break; 2089 } 2090 2091 sta->sta_state = new_state; 2092 2093 return 0; 2094 } 2095 2096 u8 sta_info_tx_streams(struct sta_info *sta) 2097 { 2098 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.deflink.ht_cap; 2099 u8 rx_streams; 2100 2101 if (!sta->sta.deflink.ht_cap.ht_supported) 2102 return 1; 2103 2104 if (sta->sta.deflink.vht_cap.vht_supported) { 2105 int i; 2106 u16 tx_mcs_map = 2107 le16_to_cpu(sta->sta.deflink.vht_cap.vht_mcs.tx_mcs_map); 2108 2109 for (i = 7; i >= 0; i--) 2110 if ((tx_mcs_map & (0x3 << (i * 2))) != 2111 IEEE80211_VHT_MCS_NOT_SUPPORTED) 2112 return i + 1; 2113 } 2114 2115 if (ht_cap->mcs.rx_mask[3]) 2116 rx_streams = 4; 2117 else if (ht_cap->mcs.rx_mask[2]) 2118 rx_streams = 3; 2119 else if (ht_cap->mcs.rx_mask[1]) 2120 rx_streams = 2; 2121 else 2122 rx_streams = 1; 2123 2124 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 2125 return rx_streams; 2126 2127 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 2128 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 2129 } 2130 2131 static struct ieee80211_sta_rx_stats * 2132 sta_get_last_rx_stats(struct sta_info *sta) 2133 { 2134 struct ieee80211_sta_rx_stats *stats = &sta->deflink.rx_stats; 2135 int cpu; 2136 2137 if (!sta->deflink.pcpu_rx_stats) 2138 return stats; 2139 2140 for_each_possible_cpu(cpu) { 2141 struct ieee80211_sta_rx_stats *cpustats; 2142 2143 cpustats = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu); 2144 2145 if (time_after(cpustats->last_rx, stats->last_rx)) 2146 stats = cpustats; 2147 } 2148 2149 return stats; 2150 } 2151 2152 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, 2153 struct rate_info *rinfo) 2154 { 2155 rinfo->bw = STA_STATS_GET(BW, rate); 2156 2157 switch (STA_STATS_GET(TYPE, rate)) { 2158 case STA_STATS_RATE_TYPE_VHT: 2159 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 2160 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 2161 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 2162 if (STA_STATS_GET(SGI, rate)) 2163 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2164 break; 2165 case STA_STATS_RATE_TYPE_HT: 2166 rinfo->flags = RATE_INFO_FLAGS_MCS; 2167 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 2168 if (STA_STATS_GET(SGI, rate)) 2169 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2170 break; 2171 case STA_STATS_RATE_TYPE_LEGACY: { 2172 struct ieee80211_supported_band *sband; 2173 u16 brate; 2174 unsigned int shift; 2175 int band = STA_STATS_GET(LEGACY_BAND, rate); 2176 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 2177 2178 sband = local->hw.wiphy->bands[band]; 2179 2180 if (WARN_ON_ONCE(!sband->bitrates)) 2181 break; 2182 2183 brate = sband->bitrates[rate_idx].bitrate; 2184 if (rinfo->bw == RATE_INFO_BW_5) 2185 shift = 2; 2186 else if (rinfo->bw == RATE_INFO_BW_10) 2187 shift = 1; 2188 else 2189 shift = 0; 2190 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 2191 break; 2192 } 2193 case STA_STATS_RATE_TYPE_HE: 2194 rinfo->flags = RATE_INFO_FLAGS_HE_MCS; 2195 rinfo->mcs = STA_STATS_GET(HE_MCS, rate); 2196 rinfo->nss = STA_STATS_GET(HE_NSS, rate); 2197 rinfo->he_gi = STA_STATS_GET(HE_GI, rate); 2198 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); 2199 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); 2200 break; 2201 } 2202 } 2203 2204 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2205 { 2206 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2207 2208 if (rate == STA_STATS_RATE_INVALID) 2209 return -EINVAL; 2210 2211 sta_stats_decode_rate(sta->local, rate, rinfo); 2212 return 0; 2213 } 2214 2215 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats, 2216 int tid) 2217 { 2218 unsigned int start; 2219 u64 value; 2220 2221 do { 2222 start = u64_stats_fetch_begin(&rxstats->syncp); 2223 value = rxstats->msdu[tid]; 2224 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2225 2226 return value; 2227 } 2228 2229 static void sta_set_tidstats(struct sta_info *sta, 2230 struct cfg80211_tid_stats *tidstats, 2231 int tid) 2232 { 2233 struct ieee80211_local *local = sta->local; 2234 int cpu; 2235 2236 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2237 tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->deflink.rx_stats, 2238 tid); 2239 2240 if (sta->deflink.pcpu_rx_stats) { 2241 for_each_possible_cpu(cpu) { 2242 struct ieee80211_sta_rx_stats *cpurxs; 2243 2244 cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, 2245 cpu); 2246 tidstats->rx_msdu += 2247 sta_get_tidstats_msdu(cpurxs, tid); 2248 } 2249 } 2250 2251 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2252 } 2253 2254 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2255 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2256 tidstats->tx_msdu = sta->deflink.tx_stats.msdu[tid]; 2257 } 2258 2259 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2260 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2261 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2262 tidstats->tx_msdu_retries = sta->deflink.status_stats.msdu_retries[tid]; 2263 } 2264 2265 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2266 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2267 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2268 tidstats->tx_msdu_failed = sta->deflink.status_stats.msdu_failed[tid]; 2269 } 2270 2271 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) { 2272 spin_lock_bh(&local->fq.lock); 2273 rcu_read_lock(); 2274 2275 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); 2276 ieee80211_fill_txq_stats(&tidstats->txq_stats, 2277 to_txq_info(sta->sta.txq[tid])); 2278 2279 rcu_read_unlock(); 2280 spin_unlock_bh(&local->fq.lock); 2281 } 2282 } 2283 2284 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2285 { 2286 unsigned int start; 2287 u64 value; 2288 2289 do { 2290 start = u64_stats_fetch_begin(&rxstats->syncp); 2291 value = rxstats->bytes; 2292 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2293 2294 return value; 2295 } 2296 2297 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, 2298 bool tidstats) 2299 { 2300 struct ieee80211_sub_if_data *sdata = sta->sdata; 2301 struct ieee80211_local *local = sdata->local; 2302 u32 thr = 0; 2303 int i, ac, cpu; 2304 struct ieee80211_sta_rx_stats *last_rxstats; 2305 2306 last_rxstats = sta_get_last_rx_stats(sta); 2307 2308 sinfo->generation = sdata->local->sta_generation; 2309 2310 /* do before driver, so beacon filtering drivers have a 2311 * chance to e.g. just add the number of filtered beacons 2312 * (or just modify the value entirely, of course) 2313 */ 2314 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2315 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2316 2317 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2318 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | 2319 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | 2320 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | 2321 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | 2322 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) | 2323 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); 2324 2325 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2326 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2327 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); 2328 } 2329 2330 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2331 sinfo->assoc_at = sta->assoc_at; 2332 sinfo->inactive_time = 2333 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2334 2335 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | 2336 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { 2337 sinfo->tx_bytes = 0; 2338 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2339 sinfo->tx_bytes += sta->deflink.tx_stats.bytes[ac]; 2340 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); 2341 } 2342 2343 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { 2344 sinfo->tx_packets = 0; 2345 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2346 sinfo->tx_packets += sta->deflink.tx_stats.packets[ac]; 2347 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); 2348 } 2349 2350 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | 2351 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { 2352 sinfo->rx_bytes += sta_get_stats_bytes(&sta->deflink.rx_stats); 2353 2354 if (sta->deflink.pcpu_rx_stats) { 2355 for_each_possible_cpu(cpu) { 2356 struct ieee80211_sta_rx_stats *cpurxs; 2357 2358 cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, 2359 cpu); 2360 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2361 } 2362 } 2363 2364 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); 2365 } 2366 2367 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { 2368 sinfo->rx_packets = sta->deflink.rx_stats.packets; 2369 if (sta->deflink.pcpu_rx_stats) { 2370 for_each_possible_cpu(cpu) { 2371 struct ieee80211_sta_rx_stats *cpurxs; 2372 2373 cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, 2374 cpu); 2375 sinfo->rx_packets += cpurxs->packets; 2376 } 2377 } 2378 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 2379 } 2380 2381 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { 2382 sinfo->tx_retries = sta->deflink.status_stats.retry_count; 2383 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); 2384 } 2385 2386 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { 2387 sinfo->tx_failed = sta->deflink.status_stats.retry_failed; 2388 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); 2389 } 2390 2391 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { 2392 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2393 sinfo->rx_duration += sta->airtime[ac].rx_airtime; 2394 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 2395 } 2396 2397 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { 2398 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2399 sinfo->tx_duration += sta->airtime[ac].tx_airtime; 2400 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 2401 } 2402 2403 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { 2404 sinfo->airtime_weight = sta->airtime[0].weight; 2405 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); 2406 } 2407 2408 sinfo->rx_dropped_misc = sta->deflink.rx_stats.dropped; 2409 if (sta->deflink.pcpu_rx_stats) { 2410 for_each_possible_cpu(cpu) { 2411 struct ieee80211_sta_rx_stats *cpurxs; 2412 2413 cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu); 2414 sinfo->rx_dropped_misc += cpurxs->dropped; 2415 } 2416 } 2417 2418 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2419 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2420 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | 2421 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2422 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2423 } 2424 2425 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2426 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2427 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { 2428 sinfo->signal = (s8)last_rxstats->last_signal; 2429 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 2430 } 2431 2432 if (!sta->deflink.pcpu_rx_stats && 2433 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { 2434 sinfo->signal_avg = 2435 -ewma_signal_read(&sta->deflink.rx_stats_avg.signal); 2436 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 2437 } 2438 } 2439 2440 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2441 * the sta->rx_stats struct, so the check here is fine with and without 2442 * pcpu statistics 2443 */ 2444 if (last_rxstats->chains && 2445 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | 2446 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2447 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 2448 if (!sta->deflink.pcpu_rx_stats) 2449 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2450 2451 sinfo->chains = last_rxstats->chains; 2452 2453 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2454 sinfo->chain_signal[i] = 2455 last_rxstats->chain_signal_last[i]; 2456 sinfo->chain_signal_avg[i] = 2457 -ewma_signal_read(&sta->deflink.rx_stats_avg.chain_signal[i]); 2458 } 2459 } 2460 2461 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) { 2462 sta_set_rate_info_tx(sta, &sta->deflink.tx_stats.last_rate, 2463 &sinfo->txrate); 2464 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 2465 } 2466 2467 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) { 2468 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2469 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); 2470 } 2471 2472 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { 2473 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 2474 sta_set_tidstats(sta, &sinfo->pertid[i], i); 2475 } 2476 2477 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2478 #ifdef CONFIG_MAC80211_MESH 2479 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | 2480 BIT_ULL(NL80211_STA_INFO_PLID) | 2481 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | 2482 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | 2483 BIT_ULL(NL80211_STA_INFO_PEER_PM) | 2484 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | 2485 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) | 2486 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS); 2487 2488 sinfo->llid = sta->mesh->llid; 2489 sinfo->plid = sta->mesh->plid; 2490 sinfo->plink_state = sta->mesh->plink_state; 2491 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2492 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); 2493 sinfo->t_offset = sta->mesh->t_offset; 2494 } 2495 sinfo->local_pm = sta->mesh->local_pm; 2496 sinfo->peer_pm = sta->mesh->peer_pm; 2497 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2498 sinfo->connected_to_gate = sta->mesh->connected_to_gate; 2499 sinfo->connected_to_as = sta->mesh->connected_to_as; 2500 #endif 2501 } 2502 2503 sinfo->bss_param.flags = 0; 2504 if (sdata->vif.bss_conf.use_cts_prot) 2505 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2506 if (sdata->vif.bss_conf.use_short_preamble) 2507 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2508 if (sdata->vif.bss_conf.use_short_slot) 2509 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2510 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2511 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2512 2513 sinfo->sta_flags.set = 0; 2514 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2515 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2516 BIT(NL80211_STA_FLAG_WME) | 2517 BIT(NL80211_STA_FLAG_MFP) | 2518 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2519 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2520 BIT(NL80211_STA_FLAG_TDLS_PEER); 2521 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2522 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2523 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2524 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2525 if (sta->sta.wme) 2526 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2527 if (test_sta_flag(sta, WLAN_STA_MFP)) 2528 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2529 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2530 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2531 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2532 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2533 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2534 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2535 2536 thr = sta_get_expected_throughput(sta); 2537 2538 if (thr != 0) { 2539 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2540 sinfo->expected_throughput = thr; 2541 } 2542 2543 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && 2544 sta->deflink.status_stats.ack_signal_filled) { 2545 sinfo->ack_signal = sta->deflink.status_stats.last_ack_signal; 2546 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); 2547 } 2548 2549 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && 2550 sta->deflink.status_stats.ack_signal_filled) { 2551 sinfo->avg_ack_signal = 2552 -(s8)ewma_avg_signal_read( 2553 &sta->deflink.status_stats.avg_ack_signal); 2554 sinfo->filled |= 2555 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); 2556 } 2557 2558 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2559 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC); 2560 sinfo->airtime_link_metric = 2561 airtime_link_metric_get(local, sta); 2562 } 2563 } 2564 2565 u32 sta_get_expected_throughput(struct sta_info *sta) 2566 { 2567 struct ieee80211_sub_if_data *sdata = sta->sdata; 2568 struct ieee80211_local *local = sdata->local; 2569 struct rate_control_ref *ref = NULL; 2570 u32 thr = 0; 2571 2572 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2573 ref = local->rate_ctrl; 2574 2575 /* check if the driver has a SW RC implementation */ 2576 if (ref && ref->ops->get_expected_throughput) 2577 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2578 else 2579 thr = drv_get_expected_throughput(local, sta); 2580 2581 return thr; 2582 } 2583 2584 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2585 { 2586 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2587 2588 if (!sta->deflink.status_stats.last_ack || 2589 time_after(stats->last_rx, sta->deflink.status_stats.last_ack)) 2590 return stats->last_rx; 2591 return sta->deflink.status_stats.last_ack; 2592 } 2593 2594 static void sta_update_codel_params(struct sta_info *sta, u32 thr) 2595 { 2596 if (!sta->sdata->local->ops->wake_tx_queue) 2597 return; 2598 2599 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { 2600 sta->cparams.target = MS2TIME(50); 2601 sta->cparams.interval = MS2TIME(300); 2602 sta->cparams.ecn = false; 2603 } else { 2604 sta->cparams.target = MS2TIME(20); 2605 sta->cparams.interval = MS2TIME(100); 2606 sta->cparams.ecn = true; 2607 } 2608 } 2609 2610 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, 2611 u32 thr) 2612 { 2613 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2614 2615 sta_update_codel_params(sta, thr); 2616 } 2617