xref: /openbmc/linux/net/mac80211/sta_info.c (revision d08295f5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7  * Copyright (C) 2018-2021 Intel Corporation
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20 
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30 
31 /**
32  * DOC: STA information lifetime rules
33  *
34  * STA info structures (&struct sta_info) are managed in a hash table
35  * for faster lookup and a list for iteration. They are managed using
36  * RCU, i.e. access to the list and hash table is protected by RCU.
37  *
38  * Upon allocating a STA info structure with sta_info_alloc(), the caller
39  * owns that structure. It must then insert it into the hash table using
40  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41  * case (which acquires an rcu read section but must not be called from
42  * within one) will the pointer still be valid after the call. Note that
43  * the caller may not do much with the STA info before inserting it, in
44  * particular, it may not start any mesh peer link management or add
45  * encryption keys.
46  *
47  * When the insertion fails (sta_info_insert()) returns non-zero), the
48  * structure will have been freed by sta_info_insert()!
49  *
50  * Station entries are added by mac80211 when you establish a link with a
51  * peer. This means different things for the different type of interfaces
52  * we support. For a regular station this mean we add the AP sta when we
53  * receive an association response from the AP. For IBSS this occurs when
54  * get to know about a peer on the same IBSS. For WDS we add the sta for
55  * the peer immediately upon device open. When using AP mode we add stations
56  * for each respective station upon request from userspace through nl80211.
57  *
58  * In order to remove a STA info structure, various sta_info_destroy_*()
59  * calls are available.
60  *
61  * There is no concept of ownership on a STA entry, each structure is
62  * owned by the global hash table/list until it is removed. All users of
63  * the structure need to be RCU protected so that the structure won't be
64  * freed before they are done using it.
65  */
66 
67 struct sta_link_alloc {
68 	struct link_sta_info info;
69 	struct ieee80211_link_sta sta;
70 	struct rcu_head rcu_head;
71 };
72 
73 static const struct rhashtable_params sta_rht_params = {
74 	.nelem_hint = 3, /* start small */
75 	.automatic_shrinking = true,
76 	.head_offset = offsetof(struct sta_info, hash_node),
77 	.key_offset = offsetof(struct sta_info, addr),
78 	.key_len = ETH_ALEN,
79 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
80 };
81 
82 static const struct rhashtable_params link_sta_rht_params = {
83 	.nelem_hint = 3, /* start small */
84 	.automatic_shrinking = true,
85 	.head_offset = offsetof(struct link_sta_info, link_hash_node),
86 	.key_offset = offsetof(struct link_sta_info, addr),
87 	.key_len = ETH_ALEN,
88 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
89 };
90 
91 /* Caller must hold local->sta_mtx */
92 static int sta_info_hash_del(struct ieee80211_local *local,
93 			     struct sta_info *sta)
94 {
95 	return rhltable_remove(&local->sta_hash, &sta->hash_node,
96 			       sta_rht_params);
97 }
98 
99 static int link_sta_info_hash_del(struct ieee80211_local *local,
100 				  struct link_sta_info *link_sta)
101 {
102 	return rhltable_remove(&local->link_sta_hash,
103 			       &link_sta->link_hash_node,
104 			       link_sta_rht_params);
105 }
106 
107 static void __cleanup_single_sta(struct sta_info *sta)
108 {
109 	int ac, i;
110 	struct tid_ampdu_tx *tid_tx;
111 	struct ieee80211_sub_if_data *sdata = sta->sdata;
112 	struct ieee80211_local *local = sdata->local;
113 	struct ps_data *ps;
114 
115 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
116 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
117 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
118 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
119 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
120 			ps = &sdata->bss->ps;
121 		else if (ieee80211_vif_is_mesh(&sdata->vif))
122 			ps = &sdata->u.mesh.ps;
123 		else
124 			return;
125 
126 		clear_sta_flag(sta, WLAN_STA_PS_STA);
127 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
128 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
129 
130 		atomic_dec(&ps->num_sta_ps);
131 	}
132 
133 	if (sta->sta.txq[0]) {
134 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
135 			struct txq_info *txqi;
136 
137 			if (!sta->sta.txq[i])
138 				continue;
139 
140 			txqi = to_txq_info(sta->sta.txq[i]);
141 
142 			ieee80211_txq_purge(local, txqi);
143 		}
144 	}
145 
146 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
147 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
148 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
149 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
150 	}
151 
152 	if (ieee80211_vif_is_mesh(&sdata->vif))
153 		mesh_sta_cleanup(sta);
154 
155 	cancel_work_sync(&sta->drv_deliver_wk);
156 
157 	/*
158 	 * Destroy aggregation state here. It would be nice to wait for the
159 	 * driver to finish aggregation stop and then clean up, but for now
160 	 * drivers have to handle aggregation stop being requested, followed
161 	 * directly by station destruction.
162 	 */
163 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
164 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
165 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
166 		if (!tid_tx)
167 			continue;
168 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
169 		kfree(tid_tx);
170 	}
171 }
172 
173 static void cleanup_single_sta(struct sta_info *sta)
174 {
175 	struct ieee80211_sub_if_data *sdata = sta->sdata;
176 	struct ieee80211_local *local = sdata->local;
177 
178 	__cleanup_single_sta(sta);
179 	sta_info_free(local, sta);
180 }
181 
182 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
183 					 const u8 *addr)
184 {
185 	return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
186 }
187 
188 /* protected by RCU */
189 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
190 			      const u8 *addr)
191 {
192 	struct ieee80211_local *local = sdata->local;
193 	struct rhlist_head *tmp;
194 	struct sta_info *sta;
195 
196 	rcu_read_lock();
197 	for_each_sta_info(local, addr, sta, tmp) {
198 		if (sta->sdata == sdata) {
199 			rcu_read_unlock();
200 			/* this is safe as the caller must already hold
201 			 * another rcu read section or the mutex
202 			 */
203 			return sta;
204 		}
205 	}
206 	rcu_read_unlock();
207 	return NULL;
208 }
209 
210 /*
211  * Get sta info either from the specified interface
212  * or from one of its vlans
213  */
214 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
215 				  const u8 *addr)
216 {
217 	struct ieee80211_local *local = sdata->local;
218 	struct rhlist_head *tmp;
219 	struct sta_info *sta;
220 
221 	rcu_read_lock();
222 	for_each_sta_info(local, addr, sta, tmp) {
223 		if (sta->sdata == sdata ||
224 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
225 			rcu_read_unlock();
226 			/* this is safe as the caller must already hold
227 			 * another rcu read section or the mutex
228 			 */
229 			return sta;
230 		}
231 	}
232 	rcu_read_unlock();
233 	return NULL;
234 }
235 
236 struct rhlist_head *link_sta_info_hash_lookup(struct ieee80211_local *local,
237 					      const u8 *addr)
238 {
239 	return rhltable_lookup(&local->link_sta_hash, addr,
240 			       link_sta_rht_params);
241 }
242 
243 struct link_sta_info *
244 link_sta_info_get_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr)
245 {
246 	struct ieee80211_local *local = sdata->local;
247 	struct rhlist_head *tmp;
248 	struct link_sta_info *link_sta;
249 
250 	rcu_read_lock();
251 	for_each_link_sta_info(local, addr, link_sta, tmp) {
252 		struct sta_info *sta = link_sta->sta;
253 
254 		if (sta->sdata == sdata ||
255 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
256 			rcu_read_unlock();
257 			/* this is safe as the caller must already hold
258 			 * another rcu read section or the mutex
259 			 */
260 			return link_sta;
261 		}
262 	}
263 	rcu_read_unlock();
264 	return NULL;
265 }
266 
267 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
268 				       const u8 *sta_addr, const u8 *vif_addr)
269 {
270 	struct rhlist_head *tmp;
271 	struct sta_info *sta;
272 
273 	for_each_sta_info(local, sta_addr, sta, tmp) {
274 		if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
275 			return sta;
276 	}
277 
278 	return NULL;
279 }
280 
281 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
282 				     int idx)
283 {
284 	struct ieee80211_local *local = sdata->local;
285 	struct sta_info *sta;
286 	int i = 0;
287 
288 	list_for_each_entry_rcu(sta, &local->sta_list, list,
289 				lockdep_is_held(&local->sta_mtx)) {
290 		if (sdata != sta->sdata)
291 			continue;
292 		if (i < idx) {
293 			++i;
294 			continue;
295 		}
296 		return sta;
297 	}
298 
299 	return NULL;
300 }
301 
302 static void sta_info_free_link(struct link_sta_info *link_sta)
303 {
304 	free_percpu(link_sta->pcpu_rx_stats);
305 }
306 
307 static void sta_remove_link(struct sta_info *sta, unsigned int link_id,
308 			    bool unhash)
309 {
310 	struct sta_link_alloc *alloc = NULL;
311 	struct link_sta_info *link_sta;
312 
313 	link_sta = rcu_dereference_protected(sta->link[link_id],
314 					     lockdep_is_held(&sta->local->sta_mtx));
315 
316 	if (WARN_ON(!link_sta))
317 		return;
318 
319 	if (unhash)
320 		link_sta_info_hash_del(sta->local, link_sta);
321 
322 	if (link_sta != &sta->deflink)
323 		alloc = container_of(link_sta, typeof(*alloc), info);
324 
325 	sta->sta.valid_links &= ~BIT(link_id);
326 	RCU_INIT_POINTER(sta->link[link_id], NULL);
327 	RCU_INIT_POINTER(sta->sta.link[link_id], NULL);
328 	if (alloc) {
329 		sta_info_free_link(&alloc->info);
330 		kfree_rcu(alloc, rcu_head);
331 	}
332 }
333 
334 /**
335  * sta_info_free - free STA
336  *
337  * @local: pointer to the global information
338  * @sta: STA info to free
339  *
340  * This function must undo everything done by sta_info_alloc()
341  * that may happen before sta_info_insert(). It may only be
342  * called when sta_info_insert() has not been attempted (and
343  * if that fails, the station is freed anyway.)
344  */
345 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
346 {
347 	int i;
348 
349 	for (i = 0; i < ARRAY_SIZE(sta->link); i++) {
350 		if (!(sta->sta.valid_links & BIT(i)))
351 			continue;
352 
353 		sta_remove_link(sta, i, true);
354 	}
355 
356 	/*
357 	 * If we had used sta_info_pre_move_state() then we might not
358 	 * have gone through the state transitions down again, so do
359 	 * it here now (and warn if it's inserted).
360 	 *
361 	 * This will clear state such as fast TX/RX that may have been
362 	 * allocated during state transitions.
363 	 */
364 	while (sta->sta_state > IEEE80211_STA_NONE) {
365 		int ret;
366 
367 		WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED));
368 
369 		ret = sta_info_move_state(sta, sta->sta_state - 1);
370 		if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret))
371 			break;
372 	}
373 
374 	if (sta->rate_ctrl)
375 		rate_control_free_sta(sta);
376 
377 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
378 
379 	if (sta->sta.txq[0])
380 		kfree(to_txq_info(sta->sta.txq[0]));
381 	kfree(rcu_dereference_raw(sta->sta.rates));
382 #ifdef CONFIG_MAC80211_MESH
383 	kfree(sta->mesh);
384 #endif
385 
386 	sta_info_free_link(&sta->deflink);
387 	kfree(sta);
388 }
389 
390 /* Caller must hold local->sta_mtx */
391 static int sta_info_hash_add(struct ieee80211_local *local,
392 			     struct sta_info *sta)
393 {
394 	return rhltable_insert(&local->sta_hash, &sta->hash_node,
395 			       sta_rht_params);
396 }
397 
398 static void sta_deliver_ps_frames(struct work_struct *wk)
399 {
400 	struct sta_info *sta;
401 
402 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
403 
404 	if (sta->dead)
405 		return;
406 
407 	local_bh_disable();
408 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
409 		ieee80211_sta_ps_deliver_wakeup(sta);
410 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
411 		ieee80211_sta_ps_deliver_poll_response(sta);
412 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
413 		ieee80211_sta_ps_deliver_uapsd(sta);
414 	local_bh_enable();
415 }
416 
417 static int sta_prepare_rate_control(struct ieee80211_local *local,
418 				    struct sta_info *sta, gfp_t gfp)
419 {
420 	if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
421 		return 0;
422 
423 	sta->rate_ctrl = local->rate_ctrl;
424 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
425 						     sta, gfp);
426 	if (!sta->rate_ctrl_priv)
427 		return -ENOMEM;
428 
429 	return 0;
430 }
431 
432 static int sta_info_alloc_link(struct ieee80211_local *local,
433 			       struct link_sta_info *link_info,
434 			       gfp_t gfp)
435 {
436 	struct ieee80211_hw *hw = &local->hw;
437 	int i;
438 
439 	if (ieee80211_hw_check(hw, USES_RSS)) {
440 		link_info->pcpu_rx_stats =
441 			alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
442 		if (!link_info->pcpu_rx_stats)
443 			return -ENOMEM;
444 	}
445 
446 	link_info->rx_stats.last_rx = jiffies;
447 	u64_stats_init(&link_info->rx_stats.syncp);
448 
449 	ewma_signal_init(&link_info->rx_stats_avg.signal);
450 	ewma_avg_signal_init(&link_info->status_stats.avg_ack_signal);
451 	for (i = 0; i < ARRAY_SIZE(link_info->rx_stats_avg.chain_signal); i++)
452 		ewma_signal_init(&link_info->rx_stats_avg.chain_signal[i]);
453 
454 	return 0;
455 }
456 
457 static void sta_info_add_link(struct sta_info *sta,
458 			      unsigned int link_id,
459 			      struct link_sta_info *link_info,
460 			      struct ieee80211_link_sta *link_sta)
461 {
462 	link_info->sta = sta;
463 	link_info->link_id = link_id;
464 	link_info->pub = link_sta;
465 	rcu_assign_pointer(sta->link[link_id], link_info);
466 	rcu_assign_pointer(sta->sta.link[link_id], link_sta);
467 }
468 
469 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
470 				const u8 *addr, int link_id, gfp_t gfp)
471 {
472 	struct ieee80211_local *local = sdata->local;
473 	struct ieee80211_hw *hw = &local->hw;
474 	struct sta_info *sta;
475 	int i;
476 
477 	sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
478 	if (!sta)
479 		return NULL;
480 
481 	sta->local = local;
482 	sta->sdata = sdata;
483 
484 	if (sta_info_alloc_link(local, &sta->deflink, gfp))
485 		return NULL;
486 
487 	if (link_id >= 0) {
488 		sta_info_add_link(sta, link_id, &sta->deflink,
489 				  &sta->sta.deflink);
490 		sta->sta.valid_links = BIT(link_id);
491 	} else {
492 		sta_info_add_link(sta, 0, &sta->deflink, &sta->sta.deflink);
493 	}
494 
495 	spin_lock_init(&sta->lock);
496 	spin_lock_init(&sta->ps_lock);
497 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
498 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
499 	mutex_init(&sta->ampdu_mlme.mtx);
500 #ifdef CONFIG_MAC80211_MESH
501 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
502 		sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
503 		if (!sta->mesh)
504 			goto free;
505 		sta->mesh->plink_sta = sta;
506 		spin_lock_init(&sta->mesh->plink_lock);
507 		if (!sdata->u.mesh.user_mpm)
508 			timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
509 				    0);
510 		sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
511 	}
512 #endif
513 
514 	memcpy(sta->addr, addr, ETH_ALEN);
515 	memcpy(sta->sta.addr, addr, ETH_ALEN);
516 	memcpy(sta->deflink.addr, addr, ETH_ALEN);
517 	memcpy(sta->sta.deflink.addr, addr, ETH_ALEN);
518 	sta->sta.max_rx_aggregation_subframes =
519 		local->hw.max_rx_aggregation_subframes;
520 
521 	/* TODO link specific alloc and assignments for MLO Link STA */
522 
523 	/* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
524 	 * The Tx path starts to use a key as soon as the key slot ptk_idx
525 	 * references to is not NULL. To not use the initial Rx-only key
526 	 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
527 	 * which always will refer to a NULL key.
528 	 */
529 	BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
530 	sta->ptk_idx = INVALID_PTK_KEYIDX;
531 
532 
533 	ieee80211_init_frag_cache(&sta->frags);
534 
535 	sta->sta_state = IEEE80211_STA_NONE;
536 
537 	/* Mark TID as unreserved */
538 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
539 
540 	sta->last_connected = ktime_get_seconds();
541 
542 	if (local->ops->wake_tx_queue) {
543 		void *txq_data;
544 		int size = sizeof(struct txq_info) +
545 			   ALIGN(hw->txq_data_size, sizeof(void *));
546 
547 		txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
548 		if (!txq_data)
549 			goto free;
550 
551 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
552 			struct txq_info *txq = txq_data + i * size;
553 
554 			/* might not do anything for the bufferable MMPDU TXQ */
555 			ieee80211_txq_init(sdata, sta, txq, i);
556 		}
557 	}
558 
559 	if (sta_prepare_rate_control(local, sta, gfp))
560 		goto free_txq;
561 
562 	sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT;
563 
564 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
565 		skb_queue_head_init(&sta->ps_tx_buf[i]);
566 		skb_queue_head_init(&sta->tx_filtered[i]);
567 		sta->airtime[i].deficit = sta->airtime_weight;
568 		atomic_set(&sta->airtime[i].aql_tx_pending, 0);
569 		sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i];
570 		sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i];
571 	}
572 
573 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
574 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
575 
576 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
577 		u32 mandatory = 0;
578 		int r;
579 
580 		if (!hw->wiphy->bands[i])
581 			continue;
582 
583 		switch (i) {
584 		case NL80211_BAND_2GHZ:
585 		case NL80211_BAND_LC:
586 			/*
587 			 * We use both here, even if we cannot really know for
588 			 * sure the station will support both, but the only use
589 			 * for this is when we don't know anything yet and send
590 			 * management frames, and then we'll pick the lowest
591 			 * possible rate anyway.
592 			 * If we don't include _G here, we cannot find a rate
593 			 * in P2P, and thus trigger the WARN_ONCE() in rate.c
594 			 */
595 			mandatory = IEEE80211_RATE_MANDATORY_B |
596 				    IEEE80211_RATE_MANDATORY_G;
597 			break;
598 		case NL80211_BAND_5GHZ:
599 			mandatory = IEEE80211_RATE_MANDATORY_A;
600 			break;
601 		case NL80211_BAND_60GHZ:
602 			WARN_ON(1);
603 			mandatory = 0;
604 			break;
605 		}
606 
607 		for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
608 			struct ieee80211_rate *rate;
609 
610 			rate = &hw->wiphy->bands[i]->bitrates[r];
611 
612 			if (!(rate->flags & mandatory))
613 				continue;
614 			sta->sta.deflink.supp_rates[i] |= BIT(r);
615 		}
616 	}
617 
618 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
619 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
620 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
621 		struct ieee80211_supported_band *sband;
622 		u8 smps;
623 
624 		sband = ieee80211_get_sband(sdata);
625 		if (!sband)
626 			goto free_txq;
627 
628 		smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
629 			IEEE80211_HT_CAP_SM_PS_SHIFT;
630 		/*
631 		 * Assume that hostapd advertises our caps in the beacon and
632 		 * this is the known_smps_mode for a station that just assciated
633 		 */
634 		switch (smps) {
635 		case WLAN_HT_SMPS_CONTROL_DISABLED:
636 			sta->known_smps_mode = IEEE80211_SMPS_OFF;
637 			break;
638 		case WLAN_HT_SMPS_CONTROL_STATIC:
639 			sta->known_smps_mode = IEEE80211_SMPS_STATIC;
640 			break;
641 		case WLAN_HT_SMPS_CONTROL_DYNAMIC:
642 			sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
643 			break;
644 		default:
645 			WARN_ON(1);
646 		}
647 	}
648 
649 	sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
650 
651 	sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
652 	sta->cparams.target = MS2TIME(20);
653 	sta->cparams.interval = MS2TIME(100);
654 	sta->cparams.ecn = true;
655 	sta->cparams.ce_threshold_selector = 0;
656 	sta->cparams.ce_threshold_mask = 0;
657 
658 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
659 
660 	return sta;
661 
662 free_txq:
663 	if (sta->sta.txq[0])
664 		kfree(to_txq_info(sta->sta.txq[0]));
665 free:
666 	sta_info_free_link(&sta->deflink);
667 #ifdef CONFIG_MAC80211_MESH
668 	kfree(sta->mesh);
669 #endif
670 	kfree(sta);
671 	return NULL;
672 }
673 
674 static int sta_info_insert_check(struct sta_info *sta)
675 {
676 	struct ieee80211_sub_if_data *sdata = sta->sdata;
677 
678 	/*
679 	 * Can't be a WARN_ON because it can be triggered through a race:
680 	 * something inserts a STA (on one CPU) without holding the RTNL
681 	 * and another CPU turns off the net device.
682 	 */
683 	if (unlikely(!ieee80211_sdata_running(sdata)))
684 		return -ENETDOWN;
685 
686 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
687 		    !is_valid_ether_addr(sta->sta.addr)))
688 		return -EINVAL;
689 
690 	/* The RCU read lock is required by rhashtable due to
691 	 * asynchronous resize/rehash.  We also require the mutex
692 	 * for correctness.
693 	 */
694 	rcu_read_lock();
695 	lockdep_assert_held(&sdata->local->sta_mtx);
696 	if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
697 	    ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
698 		rcu_read_unlock();
699 		return -ENOTUNIQ;
700 	}
701 	rcu_read_unlock();
702 
703 	return 0;
704 }
705 
706 static int sta_info_insert_drv_state(struct ieee80211_local *local,
707 				     struct ieee80211_sub_if_data *sdata,
708 				     struct sta_info *sta)
709 {
710 	enum ieee80211_sta_state state;
711 	int err = 0;
712 
713 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
714 		err = drv_sta_state(local, sdata, sta, state, state + 1);
715 		if (err)
716 			break;
717 	}
718 
719 	if (!err) {
720 		/*
721 		 * Drivers using legacy sta_add/sta_remove callbacks only
722 		 * get uploaded set to true after sta_add is called.
723 		 */
724 		if (!local->ops->sta_add)
725 			sta->uploaded = true;
726 		return 0;
727 	}
728 
729 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
730 		sdata_info(sdata,
731 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
732 			   sta->sta.addr, state + 1, err);
733 		err = 0;
734 	}
735 
736 	/* unwind on error */
737 	for (; state > IEEE80211_STA_NOTEXIST; state--)
738 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
739 
740 	return err;
741 }
742 
743 static void
744 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
745 {
746 	struct ieee80211_local *local = sdata->local;
747 	bool allow_p2p_go_ps = sdata->vif.p2p;
748 	struct sta_info *sta;
749 
750 	rcu_read_lock();
751 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
752 		if (sdata != sta->sdata ||
753 		    !test_sta_flag(sta, WLAN_STA_ASSOC))
754 			continue;
755 		if (!sta->sta.support_p2p_ps) {
756 			allow_p2p_go_ps = false;
757 			break;
758 		}
759 	}
760 	rcu_read_unlock();
761 
762 	if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
763 		sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
764 		ieee80211_link_info_change_notify(sdata, 0, BSS_CHANGED_P2P_PS);
765 	}
766 }
767 
768 /*
769  * should be called with sta_mtx locked
770  * this function replaces the mutex lock
771  * with a RCU lock
772  */
773 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
774 {
775 	struct ieee80211_local *local = sta->local;
776 	struct ieee80211_sub_if_data *sdata = sta->sdata;
777 	struct station_info *sinfo = NULL;
778 	int err = 0;
779 
780 	lockdep_assert_held(&local->sta_mtx);
781 
782 	/* check if STA exists already */
783 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
784 		err = -EEXIST;
785 		goto out_cleanup;
786 	}
787 
788 	sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
789 	if (!sinfo) {
790 		err = -ENOMEM;
791 		goto out_cleanup;
792 	}
793 
794 	local->num_sta++;
795 	local->sta_generation++;
796 	smp_mb();
797 
798 	/* simplify things and don't accept BA sessions yet */
799 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
800 
801 	/* make the station visible */
802 	err = sta_info_hash_add(local, sta);
803 	if (err)
804 		goto out_drop_sta;
805 
806 	list_add_tail_rcu(&sta->list, &local->sta_list);
807 
808 	/* update channel context before notifying the driver about state
809 	 * change, this enables driver using the updated channel context right away.
810 	 */
811 	if (sta->sta_state >= IEEE80211_STA_ASSOC) {
812 		ieee80211_recalc_min_chandef(sta->sdata);
813 		if (!sta->sta.support_p2p_ps)
814 			ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
815 	}
816 
817 	/* notify driver */
818 	err = sta_info_insert_drv_state(local, sdata, sta);
819 	if (err)
820 		goto out_remove;
821 
822 	set_sta_flag(sta, WLAN_STA_INSERTED);
823 
824 	/* accept BA sessions now */
825 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
826 
827 	ieee80211_sta_debugfs_add(sta);
828 	rate_control_add_sta_debugfs(sta);
829 
830 	sinfo->generation = local->sta_generation;
831 	cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
832 	kfree(sinfo);
833 
834 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
835 
836 	/* move reference to rcu-protected */
837 	rcu_read_lock();
838 	mutex_unlock(&local->sta_mtx);
839 
840 	if (ieee80211_vif_is_mesh(&sdata->vif))
841 		mesh_accept_plinks_update(sdata);
842 
843 	return 0;
844  out_remove:
845 	sta_info_hash_del(local, sta);
846 	list_del_rcu(&sta->list);
847  out_drop_sta:
848 	local->num_sta--;
849 	synchronize_net();
850  out_cleanup:
851 	cleanup_single_sta(sta);
852 	mutex_unlock(&local->sta_mtx);
853 	kfree(sinfo);
854 	rcu_read_lock();
855 	return err;
856 }
857 
858 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
859 {
860 	struct ieee80211_local *local = sta->local;
861 	int err;
862 
863 	might_sleep();
864 
865 	mutex_lock(&local->sta_mtx);
866 
867 	err = sta_info_insert_check(sta);
868 	if (err) {
869 		sta_info_free(local, sta);
870 		mutex_unlock(&local->sta_mtx);
871 		rcu_read_lock();
872 		return err;
873 	}
874 
875 	return sta_info_insert_finish(sta);
876 }
877 
878 int sta_info_insert(struct sta_info *sta)
879 {
880 	int err = sta_info_insert_rcu(sta);
881 
882 	rcu_read_unlock();
883 
884 	return err;
885 }
886 
887 static inline void __bss_tim_set(u8 *tim, u16 id)
888 {
889 	/*
890 	 * This format has been mandated by the IEEE specifications,
891 	 * so this line may not be changed to use the __set_bit() format.
892 	 */
893 	tim[id / 8] |= (1 << (id % 8));
894 }
895 
896 static inline void __bss_tim_clear(u8 *tim, u16 id)
897 {
898 	/*
899 	 * This format has been mandated by the IEEE specifications,
900 	 * so this line may not be changed to use the __clear_bit() format.
901 	 */
902 	tim[id / 8] &= ~(1 << (id % 8));
903 }
904 
905 static inline bool __bss_tim_get(u8 *tim, u16 id)
906 {
907 	/*
908 	 * This format has been mandated by the IEEE specifications,
909 	 * so this line may not be changed to use the test_bit() format.
910 	 */
911 	return tim[id / 8] & (1 << (id % 8));
912 }
913 
914 static unsigned long ieee80211_tids_for_ac(int ac)
915 {
916 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
917 	switch (ac) {
918 	case IEEE80211_AC_VO:
919 		return BIT(6) | BIT(7);
920 	case IEEE80211_AC_VI:
921 		return BIT(4) | BIT(5);
922 	case IEEE80211_AC_BE:
923 		return BIT(0) | BIT(3);
924 	case IEEE80211_AC_BK:
925 		return BIT(1) | BIT(2);
926 	default:
927 		WARN_ON(1);
928 		return 0;
929 	}
930 }
931 
932 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
933 {
934 	struct ieee80211_local *local = sta->local;
935 	struct ps_data *ps;
936 	bool indicate_tim = false;
937 	u8 ignore_for_tim = sta->sta.uapsd_queues;
938 	int ac;
939 	u16 id = sta->sta.aid;
940 
941 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
942 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
943 		if (WARN_ON_ONCE(!sta->sdata->bss))
944 			return;
945 
946 		ps = &sta->sdata->bss->ps;
947 #ifdef CONFIG_MAC80211_MESH
948 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
949 		ps = &sta->sdata->u.mesh.ps;
950 #endif
951 	} else {
952 		return;
953 	}
954 
955 	/* No need to do anything if the driver does all */
956 	if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
957 		return;
958 
959 	if (sta->dead)
960 		goto done;
961 
962 	/*
963 	 * If all ACs are delivery-enabled then we should build
964 	 * the TIM bit for all ACs anyway; if only some are then
965 	 * we ignore those and build the TIM bit using only the
966 	 * non-enabled ones.
967 	 */
968 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
969 		ignore_for_tim = 0;
970 
971 	if (ignore_pending)
972 		ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
973 
974 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
975 		unsigned long tids;
976 
977 		if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
978 			continue;
979 
980 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
981 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
982 		if (indicate_tim)
983 			break;
984 
985 		tids = ieee80211_tids_for_ac(ac);
986 
987 		indicate_tim |=
988 			sta->driver_buffered_tids & tids;
989 		indicate_tim |=
990 			sta->txq_buffered_tids & tids;
991 	}
992 
993  done:
994 	spin_lock_bh(&local->tim_lock);
995 
996 	if (indicate_tim == __bss_tim_get(ps->tim, id))
997 		goto out_unlock;
998 
999 	if (indicate_tim)
1000 		__bss_tim_set(ps->tim, id);
1001 	else
1002 		__bss_tim_clear(ps->tim, id);
1003 
1004 	if (local->ops->set_tim && !WARN_ON(sta->dead)) {
1005 		local->tim_in_locked_section = true;
1006 		drv_set_tim(local, &sta->sta, indicate_tim);
1007 		local->tim_in_locked_section = false;
1008 	}
1009 
1010 out_unlock:
1011 	spin_unlock_bh(&local->tim_lock);
1012 }
1013 
1014 void sta_info_recalc_tim(struct sta_info *sta)
1015 {
1016 	__sta_info_recalc_tim(sta, false);
1017 }
1018 
1019 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
1020 {
1021 	struct ieee80211_tx_info *info;
1022 	int timeout;
1023 
1024 	if (!skb)
1025 		return false;
1026 
1027 	info = IEEE80211_SKB_CB(skb);
1028 
1029 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
1030 	timeout = (sta->listen_interval *
1031 		   sta->sdata->vif.bss_conf.beacon_int *
1032 		   32 / 15625) * HZ;
1033 	if (timeout < STA_TX_BUFFER_EXPIRE)
1034 		timeout = STA_TX_BUFFER_EXPIRE;
1035 	return time_after(jiffies, info->control.jiffies + timeout);
1036 }
1037 
1038 
1039 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
1040 						struct sta_info *sta, int ac)
1041 {
1042 	unsigned long flags;
1043 	struct sk_buff *skb;
1044 
1045 	/*
1046 	 * First check for frames that should expire on the filtered
1047 	 * queue. Frames here were rejected by the driver and are on
1048 	 * a separate queue to avoid reordering with normal PS-buffered
1049 	 * frames. They also aren't accounted for right now in the
1050 	 * total_ps_buffered counter.
1051 	 */
1052 	for (;;) {
1053 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1054 		skb = skb_peek(&sta->tx_filtered[ac]);
1055 		if (sta_info_buffer_expired(sta, skb))
1056 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
1057 		else
1058 			skb = NULL;
1059 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1060 
1061 		/*
1062 		 * Frames are queued in order, so if this one
1063 		 * hasn't expired yet we can stop testing. If
1064 		 * we actually reached the end of the queue we
1065 		 * also need to stop, of course.
1066 		 */
1067 		if (!skb)
1068 			break;
1069 		ieee80211_free_txskb(&local->hw, skb);
1070 	}
1071 
1072 	/*
1073 	 * Now also check the normal PS-buffered queue, this will
1074 	 * only find something if the filtered queue was emptied
1075 	 * since the filtered frames are all before the normal PS
1076 	 * buffered frames.
1077 	 */
1078 	for (;;) {
1079 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1080 		skb = skb_peek(&sta->ps_tx_buf[ac]);
1081 		if (sta_info_buffer_expired(sta, skb))
1082 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
1083 		else
1084 			skb = NULL;
1085 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1086 
1087 		/*
1088 		 * frames are queued in order, so if this one
1089 		 * hasn't expired yet (or we reached the end of
1090 		 * the queue) we can stop testing
1091 		 */
1092 		if (!skb)
1093 			break;
1094 
1095 		local->total_ps_buffered--;
1096 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
1097 		       sta->sta.addr);
1098 		ieee80211_free_txskb(&local->hw, skb);
1099 	}
1100 
1101 	/*
1102 	 * Finally, recalculate the TIM bit for this station -- it might
1103 	 * now be clear because the station was too slow to retrieve its
1104 	 * frames.
1105 	 */
1106 	sta_info_recalc_tim(sta);
1107 
1108 	/*
1109 	 * Return whether there are any frames still buffered, this is
1110 	 * used to check whether the cleanup timer still needs to run,
1111 	 * if there are no frames we don't need to rearm the timer.
1112 	 */
1113 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
1114 		 skb_queue_empty(&sta->tx_filtered[ac]));
1115 }
1116 
1117 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
1118 					     struct sta_info *sta)
1119 {
1120 	bool have_buffered = false;
1121 	int ac;
1122 
1123 	/* This is only necessary for stations on BSS/MBSS interfaces */
1124 	if (!sta->sdata->bss &&
1125 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
1126 		return false;
1127 
1128 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
1129 		have_buffered |=
1130 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
1131 
1132 	return have_buffered;
1133 }
1134 
1135 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
1136 {
1137 	struct ieee80211_local *local;
1138 	struct ieee80211_sub_if_data *sdata;
1139 	int ret;
1140 
1141 	might_sleep();
1142 
1143 	if (!sta)
1144 		return -ENOENT;
1145 
1146 	local = sta->local;
1147 	sdata = sta->sdata;
1148 
1149 	lockdep_assert_held(&local->sta_mtx);
1150 
1151 	/*
1152 	 * Before removing the station from the driver and
1153 	 * rate control, it might still start new aggregation
1154 	 * sessions -- block that to make sure the tear-down
1155 	 * will be sufficient.
1156 	 */
1157 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1158 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1159 
1160 	/*
1161 	 * Before removing the station from the driver there might be pending
1162 	 * rx frames on RSS queues sent prior to the disassociation - wait for
1163 	 * all such frames to be processed.
1164 	 */
1165 	drv_sync_rx_queues(local, sta);
1166 
1167 	ret = sta_info_hash_del(local, sta);
1168 	if (WARN_ON(ret))
1169 		return ret;
1170 
1171 	/*
1172 	 * for TDLS peers, make sure to return to the base channel before
1173 	 * removal.
1174 	 */
1175 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1176 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1177 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1178 	}
1179 
1180 	list_del_rcu(&sta->list);
1181 	sta->removed = true;
1182 
1183 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1184 
1185 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1186 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
1187 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1188 
1189 	return 0;
1190 }
1191 
1192 static void __sta_info_destroy_part2(struct sta_info *sta)
1193 {
1194 	struct ieee80211_local *local = sta->local;
1195 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1196 	struct station_info *sinfo;
1197 	int ret;
1198 
1199 	/*
1200 	 * NOTE: This assumes at least synchronize_net() was done
1201 	 *	 after _part1 and before _part2!
1202 	 */
1203 
1204 	might_sleep();
1205 	lockdep_assert_held(&local->sta_mtx);
1206 
1207 	if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1208 		ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1209 		WARN_ON_ONCE(ret);
1210 	}
1211 
1212 	/* now keys can no longer be reached */
1213 	ieee80211_free_sta_keys(local, sta);
1214 
1215 	/* disable TIM bit - last chance to tell driver */
1216 	__sta_info_recalc_tim(sta, true);
1217 
1218 	sta->dead = true;
1219 
1220 	local->num_sta--;
1221 	local->sta_generation++;
1222 
1223 	while (sta->sta_state > IEEE80211_STA_NONE) {
1224 		ret = sta_info_move_state(sta, sta->sta_state - 1);
1225 		if (ret) {
1226 			WARN_ON_ONCE(1);
1227 			break;
1228 		}
1229 	}
1230 
1231 	if (sta->uploaded) {
1232 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1233 				    IEEE80211_STA_NOTEXIST);
1234 		WARN_ON_ONCE(ret != 0);
1235 	}
1236 
1237 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1238 
1239 	sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1240 	if (sinfo)
1241 		sta_set_sinfo(sta, sinfo, true);
1242 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1243 	kfree(sinfo);
1244 
1245 	ieee80211_sta_debugfs_remove(sta);
1246 
1247 	ieee80211_destroy_frag_cache(&sta->frags);
1248 
1249 	cleanup_single_sta(sta);
1250 }
1251 
1252 int __must_check __sta_info_destroy(struct sta_info *sta)
1253 {
1254 	int err = __sta_info_destroy_part1(sta);
1255 
1256 	if (err)
1257 		return err;
1258 
1259 	synchronize_net();
1260 
1261 	__sta_info_destroy_part2(sta);
1262 
1263 	return 0;
1264 }
1265 
1266 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1267 {
1268 	struct sta_info *sta;
1269 	int ret;
1270 
1271 	mutex_lock(&sdata->local->sta_mtx);
1272 	sta = sta_info_get(sdata, addr);
1273 	ret = __sta_info_destroy(sta);
1274 	mutex_unlock(&sdata->local->sta_mtx);
1275 
1276 	return ret;
1277 }
1278 
1279 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1280 			      const u8 *addr)
1281 {
1282 	struct sta_info *sta;
1283 	int ret;
1284 
1285 	mutex_lock(&sdata->local->sta_mtx);
1286 	sta = sta_info_get_bss(sdata, addr);
1287 	ret = __sta_info_destroy(sta);
1288 	mutex_unlock(&sdata->local->sta_mtx);
1289 
1290 	return ret;
1291 }
1292 
1293 static void sta_info_cleanup(struct timer_list *t)
1294 {
1295 	struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1296 	struct sta_info *sta;
1297 	bool timer_needed = false;
1298 
1299 	rcu_read_lock();
1300 	list_for_each_entry_rcu(sta, &local->sta_list, list)
1301 		if (sta_info_cleanup_expire_buffered(local, sta))
1302 			timer_needed = true;
1303 	rcu_read_unlock();
1304 
1305 	if (local->quiescing)
1306 		return;
1307 
1308 	if (!timer_needed)
1309 		return;
1310 
1311 	mod_timer(&local->sta_cleanup,
1312 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1313 }
1314 
1315 int sta_info_init(struct ieee80211_local *local)
1316 {
1317 	int err;
1318 
1319 	err = rhltable_init(&local->sta_hash, &sta_rht_params);
1320 	if (err)
1321 		return err;
1322 
1323 	err = rhltable_init(&local->link_sta_hash, &link_sta_rht_params);
1324 	if (err) {
1325 		rhltable_destroy(&local->sta_hash);
1326 		return err;
1327 	}
1328 
1329 	spin_lock_init(&local->tim_lock);
1330 	mutex_init(&local->sta_mtx);
1331 	INIT_LIST_HEAD(&local->sta_list);
1332 
1333 	timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1334 	return 0;
1335 }
1336 
1337 void sta_info_stop(struct ieee80211_local *local)
1338 {
1339 	del_timer_sync(&local->sta_cleanup);
1340 	rhltable_destroy(&local->sta_hash);
1341 	rhltable_destroy(&local->link_sta_hash);
1342 }
1343 
1344 
1345 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1346 {
1347 	struct ieee80211_local *local = sdata->local;
1348 	struct sta_info *sta, *tmp;
1349 	LIST_HEAD(free_list);
1350 	int ret = 0;
1351 
1352 	might_sleep();
1353 
1354 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1355 	WARN_ON(vlans && !sdata->bss);
1356 
1357 	mutex_lock(&local->sta_mtx);
1358 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1359 		if (sdata == sta->sdata ||
1360 		    (vlans && sdata->bss == sta->sdata->bss)) {
1361 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1362 				list_add(&sta->free_list, &free_list);
1363 			ret++;
1364 		}
1365 	}
1366 
1367 	if (!list_empty(&free_list)) {
1368 		synchronize_net();
1369 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1370 			__sta_info_destroy_part2(sta);
1371 	}
1372 	mutex_unlock(&local->sta_mtx);
1373 
1374 	return ret;
1375 }
1376 
1377 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1378 			  unsigned long exp_time)
1379 {
1380 	struct ieee80211_local *local = sdata->local;
1381 	struct sta_info *sta, *tmp;
1382 
1383 	mutex_lock(&local->sta_mtx);
1384 
1385 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1386 		unsigned long last_active = ieee80211_sta_last_active(sta);
1387 
1388 		if (sdata != sta->sdata)
1389 			continue;
1390 
1391 		if (time_is_before_jiffies(last_active + exp_time)) {
1392 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1393 				sta->sta.addr);
1394 
1395 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1396 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1397 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1398 
1399 			WARN_ON(__sta_info_destroy(sta));
1400 		}
1401 	}
1402 
1403 	mutex_unlock(&local->sta_mtx);
1404 }
1405 
1406 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1407 						   const u8 *addr,
1408 						   const u8 *localaddr)
1409 {
1410 	struct ieee80211_local *local = hw_to_local(hw);
1411 	struct rhlist_head *tmp;
1412 	struct sta_info *sta;
1413 
1414 	/*
1415 	 * Just return a random station if localaddr is NULL
1416 	 * ... first in list.
1417 	 */
1418 	for_each_sta_info(local, addr, sta, tmp) {
1419 		if (localaddr &&
1420 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1421 			continue;
1422 		if (!sta->uploaded)
1423 			return NULL;
1424 		return &sta->sta;
1425 	}
1426 
1427 	return NULL;
1428 }
1429 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1430 
1431 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1432 					 const u8 *addr)
1433 {
1434 	struct sta_info *sta;
1435 
1436 	if (!vif)
1437 		return NULL;
1438 
1439 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1440 	if (!sta)
1441 		return NULL;
1442 
1443 	if (!sta->uploaded)
1444 		return NULL;
1445 
1446 	return &sta->sta;
1447 }
1448 EXPORT_SYMBOL(ieee80211_find_sta);
1449 
1450 /* powersave support code */
1451 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1452 {
1453 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1454 	struct ieee80211_local *local = sdata->local;
1455 	struct sk_buff_head pending;
1456 	int filtered = 0, buffered = 0, ac, i;
1457 	unsigned long flags;
1458 	struct ps_data *ps;
1459 
1460 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1461 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1462 				     u.ap);
1463 
1464 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1465 		ps = &sdata->bss->ps;
1466 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1467 		ps = &sdata->u.mesh.ps;
1468 	else
1469 		return;
1470 
1471 	clear_sta_flag(sta, WLAN_STA_SP);
1472 
1473 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1474 	sta->driver_buffered_tids = 0;
1475 	sta->txq_buffered_tids = 0;
1476 
1477 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1478 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1479 
1480 	for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1481 		if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1482 			continue;
1483 
1484 		schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1485 	}
1486 
1487 	skb_queue_head_init(&pending);
1488 
1489 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1490 	spin_lock(&sta->ps_lock);
1491 	/* Send all buffered frames to the station */
1492 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1493 		int count = skb_queue_len(&pending), tmp;
1494 
1495 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1496 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1497 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1498 		tmp = skb_queue_len(&pending);
1499 		filtered += tmp - count;
1500 		count = tmp;
1501 
1502 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1503 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1504 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1505 		tmp = skb_queue_len(&pending);
1506 		buffered += tmp - count;
1507 	}
1508 
1509 	ieee80211_add_pending_skbs(local, &pending);
1510 
1511 	/* now we're no longer in the deliver code */
1512 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1513 
1514 	/* The station might have polled and then woken up before we responded,
1515 	 * so clear these flags now to avoid them sticking around.
1516 	 */
1517 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1518 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1519 	spin_unlock(&sta->ps_lock);
1520 
1521 	atomic_dec(&ps->num_sta_ps);
1522 
1523 	local->total_ps_buffered -= buffered;
1524 
1525 	sta_info_recalc_tim(sta);
1526 
1527 	ps_dbg(sdata,
1528 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1529 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1530 
1531 	ieee80211_check_fast_xmit(sta);
1532 }
1533 
1534 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1535 					 enum ieee80211_frame_release_type reason,
1536 					 bool call_driver, bool more_data)
1537 {
1538 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1539 	struct ieee80211_local *local = sdata->local;
1540 	struct ieee80211_qos_hdr *nullfunc;
1541 	struct sk_buff *skb;
1542 	int size = sizeof(*nullfunc);
1543 	__le16 fc;
1544 	bool qos = sta->sta.wme;
1545 	struct ieee80211_tx_info *info;
1546 	struct ieee80211_chanctx_conf *chanctx_conf;
1547 
1548 	if (qos) {
1549 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1550 				 IEEE80211_STYPE_QOS_NULLFUNC |
1551 				 IEEE80211_FCTL_FROMDS);
1552 	} else {
1553 		size -= 2;
1554 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1555 				 IEEE80211_STYPE_NULLFUNC |
1556 				 IEEE80211_FCTL_FROMDS);
1557 	}
1558 
1559 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1560 	if (!skb)
1561 		return;
1562 
1563 	skb_reserve(skb, local->hw.extra_tx_headroom);
1564 
1565 	nullfunc = skb_put(skb, size);
1566 	nullfunc->frame_control = fc;
1567 	nullfunc->duration_id = 0;
1568 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1569 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1570 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1571 	nullfunc->seq_ctrl = 0;
1572 
1573 	skb->priority = tid;
1574 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1575 	if (qos) {
1576 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1577 
1578 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1579 			nullfunc->qos_ctrl |=
1580 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1581 			if (more_data)
1582 				nullfunc->frame_control |=
1583 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1584 		}
1585 	}
1586 
1587 	info = IEEE80211_SKB_CB(skb);
1588 
1589 	/*
1590 	 * Tell TX path to send this frame even though the
1591 	 * STA may still remain is PS mode after this frame
1592 	 * exchange. Also set EOSP to indicate this packet
1593 	 * ends the poll/service period.
1594 	 */
1595 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1596 		       IEEE80211_TX_STATUS_EOSP |
1597 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1598 
1599 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1600 
1601 	if (call_driver)
1602 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1603 					  reason, false);
1604 
1605 	skb->dev = sdata->dev;
1606 
1607 	rcu_read_lock();
1608 	chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf);
1609 	if (WARN_ON(!chanctx_conf)) {
1610 		rcu_read_unlock();
1611 		kfree_skb(skb);
1612 		return;
1613 	}
1614 
1615 	info->band = chanctx_conf->def.chan->band;
1616 	ieee80211_xmit(sdata, sta, skb);
1617 	rcu_read_unlock();
1618 }
1619 
1620 static int find_highest_prio_tid(unsigned long tids)
1621 {
1622 	/* lower 3 TIDs aren't ordered perfectly */
1623 	if (tids & 0xF8)
1624 		return fls(tids) - 1;
1625 	/* TID 0 is BE just like TID 3 */
1626 	if (tids & BIT(0))
1627 		return 0;
1628 	return fls(tids) - 1;
1629 }
1630 
1631 /* Indicates if the MORE_DATA bit should be set in the last
1632  * frame obtained by ieee80211_sta_ps_get_frames.
1633  * Note that driver_release_tids is relevant only if
1634  * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1635  */
1636 static bool
1637 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1638 			   enum ieee80211_frame_release_type reason,
1639 			   unsigned long driver_release_tids)
1640 {
1641 	int ac;
1642 
1643 	/* If the driver has data on more than one TID then
1644 	 * certainly there's more data if we release just a
1645 	 * single frame now (from a single TID). This will
1646 	 * only happen for PS-Poll.
1647 	 */
1648 	if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1649 	    hweight16(driver_release_tids) > 1)
1650 		return true;
1651 
1652 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1653 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1654 			continue;
1655 
1656 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1657 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1658 			return true;
1659 	}
1660 
1661 	return false;
1662 }
1663 
1664 static void
1665 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1666 			    enum ieee80211_frame_release_type reason,
1667 			    struct sk_buff_head *frames,
1668 			    unsigned long *driver_release_tids)
1669 {
1670 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1671 	struct ieee80211_local *local = sdata->local;
1672 	int ac;
1673 
1674 	/* Get response frame(s) and more data bit for the last one. */
1675 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1676 		unsigned long tids;
1677 
1678 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1679 			continue;
1680 
1681 		tids = ieee80211_tids_for_ac(ac);
1682 
1683 		/* if we already have frames from software, then we can't also
1684 		 * release from hardware queues
1685 		 */
1686 		if (skb_queue_empty(frames)) {
1687 			*driver_release_tids |=
1688 				sta->driver_buffered_tids & tids;
1689 			*driver_release_tids |= sta->txq_buffered_tids & tids;
1690 		}
1691 
1692 		if (!*driver_release_tids) {
1693 			struct sk_buff *skb;
1694 
1695 			while (n_frames > 0) {
1696 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1697 				if (!skb) {
1698 					skb = skb_dequeue(
1699 						&sta->ps_tx_buf[ac]);
1700 					if (skb)
1701 						local->total_ps_buffered--;
1702 				}
1703 				if (!skb)
1704 					break;
1705 				n_frames--;
1706 				__skb_queue_tail(frames, skb);
1707 			}
1708 		}
1709 
1710 		/* If we have more frames buffered on this AC, then abort the
1711 		 * loop since we can't send more data from other ACs before
1712 		 * the buffered frames from this.
1713 		 */
1714 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1715 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1716 			break;
1717 	}
1718 }
1719 
1720 static void
1721 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1722 				  int n_frames, u8 ignored_acs,
1723 				  enum ieee80211_frame_release_type reason)
1724 {
1725 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1726 	struct ieee80211_local *local = sdata->local;
1727 	unsigned long driver_release_tids = 0;
1728 	struct sk_buff_head frames;
1729 	bool more_data;
1730 
1731 	/* Service or PS-Poll period starts */
1732 	set_sta_flag(sta, WLAN_STA_SP);
1733 
1734 	__skb_queue_head_init(&frames);
1735 
1736 	ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1737 				    &frames, &driver_release_tids);
1738 
1739 	more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1740 
1741 	if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1742 		driver_release_tids =
1743 			BIT(find_highest_prio_tid(driver_release_tids));
1744 
1745 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1746 		int tid, ac;
1747 
1748 		/*
1749 		 * For PS-Poll, this can only happen due to a race condition
1750 		 * when we set the TIM bit and the station notices it, but
1751 		 * before it can poll for the frame we expire it.
1752 		 *
1753 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1754 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1755 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1756 		 *	more than the value specified in the Max SP Length field
1757 		 *	in the QoS Capability element from delivery-enabled ACs,
1758 		 *	that are destined for the non-AP STA.
1759 		 *
1760 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1761 		 */
1762 
1763 		/* This will evaluate to 1, 3, 5 or 7. */
1764 		for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1765 			if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1766 				break;
1767 		tid = 7 - 2 * ac;
1768 
1769 		ieee80211_send_null_response(sta, tid, reason, true, false);
1770 	} else if (!driver_release_tids) {
1771 		struct sk_buff_head pending;
1772 		struct sk_buff *skb;
1773 		int num = 0;
1774 		u16 tids = 0;
1775 		bool need_null = false;
1776 
1777 		skb_queue_head_init(&pending);
1778 
1779 		while ((skb = __skb_dequeue(&frames))) {
1780 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1781 			struct ieee80211_hdr *hdr = (void *) skb->data;
1782 			u8 *qoshdr = NULL;
1783 
1784 			num++;
1785 
1786 			/*
1787 			 * Tell TX path to send this frame even though the
1788 			 * STA may still remain is PS mode after this frame
1789 			 * exchange.
1790 			 */
1791 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1792 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1793 
1794 			/*
1795 			 * Use MoreData flag to indicate whether there are
1796 			 * more buffered frames for this STA
1797 			 */
1798 			if (more_data || !skb_queue_empty(&frames))
1799 				hdr->frame_control |=
1800 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1801 			else
1802 				hdr->frame_control &=
1803 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1804 
1805 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1806 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1807 				qoshdr = ieee80211_get_qos_ctl(hdr);
1808 
1809 			tids |= BIT(skb->priority);
1810 
1811 			__skb_queue_tail(&pending, skb);
1812 
1813 			/* end service period after last frame or add one */
1814 			if (!skb_queue_empty(&frames))
1815 				continue;
1816 
1817 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1818 				/* for PS-Poll, there's only one frame */
1819 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1820 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1821 				break;
1822 			}
1823 
1824 			/* For uAPSD, things are a bit more complicated. If the
1825 			 * last frame has a QoS header (i.e. is a QoS-data or
1826 			 * QoS-nulldata frame) then just set the EOSP bit there
1827 			 * and be done.
1828 			 * If the frame doesn't have a QoS header (which means
1829 			 * it should be a bufferable MMPDU) then we can't set
1830 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1831 			 * frame to the list to send it after the MMPDU.
1832 			 *
1833 			 * Note that this code is only in the mac80211-release
1834 			 * code path, we assume that the driver will not buffer
1835 			 * anything but QoS-data frames, or if it does, will
1836 			 * create the QoS-nulldata frame by itself if needed.
1837 			 *
1838 			 * Cf. 802.11-2012 10.2.1.10 (c).
1839 			 */
1840 			if (qoshdr) {
1841 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1842 
1843 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1844 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1845 			} else {
1846 				/* The standard isn't completely clear on this
1847 				 * as it says the more-data bit should be set
1848 				 * if there are more BUs. The QoS-Null frame
1849 				 * we're about to send isn't buffered yet, we
1850 				 * only create it below, but let's pretend it
1851 				 * was buffered just in case some clients only
1852 				 * expect more-data=0 when eosp=1.
1853 				 */
1854 				hdr->frame_control |=
1855 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1856 				need_null = true;
1857 				num++;
1858 			}
1859 			break;
1860 		}
1861 
1862 		drv_allow_buffered_frames(local, sta, tids, num,
1863 					  reason, more_data);
1864 
1865 		ieee80211_add_pending_skbs(local, &pending);
1866 
1867 		if (need_null)
1868 			ieee80211_send_null_response(
1869 				sta, find_highest_prio_tid(tids),
1870 				reason, false, false);
1871 
1872 		sta_info_recalc_tim(sta);
1873 	} else {
1874 		int tid;
1875 
1876 		/*
1877 		 * We need to release a frame that is buffered somewhere in the
1878 		 * driver ... it'll have to handle that.
1879 		 * Note that the driver also has to check the number of frames
1880 		 * on the TIDs we're releasing from - if there are more than
1881 		 * n_frames it has to set the more-data bit (if we didn't ask
1882 		 * it to set it anyway due to other buffered frames); if there
1883 		 * are fewer than n_frames it has to make sure to adjust that
1884 		 * to allow the service period to end properly.
1885 		 */
1886 		drv_release_buffered_frames(local, sta, driver_release_tids,
1887 					    n_frames, reason, more_data);
1888 
1889 		/*
1890 		 * Note that we don't recalculate the TIM bit here as it would
1891 		 * most likely have no effect at all unless the driver told us
1892 		 * that the TID(s) became empty before returning here from the
1893 		 * release function.
1894 		 * Either way, however, when the driver tells us that the TID(s)
1895 		 * became empty or we find that a txq became empty, we'll do the
1896 		 * TIM recalculation.
1897 		 */
1898 
1899 		if (!sta->sta.txq[0])
1900 			return;
1901 
1902 		for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1903 			if (!sta->sta.txq[tid] ||
1904 			    !(driver_release_tids & BIT(tid)) ||
1905 			    txq_has_queue(sta->sta.txq[tid]))
1906 				continue;
1907 
1908 			sta_info_recalc_tim(sta);
1909 			break;
1910 		}
1911 	}
1912 }
1913 
1914 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1915 {
1916 	u8 ignore_for_response = sta->sta.uapsd_queues;
1917 
1918 	/*
1919 	 * If all ACs are delivery-enabled then we should reply
1920 	 * from any of them, if only some are enabled we reply
1921 	 * only from the non-enabled ones.
1922 	 */
1923 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1924 		ignore_for_response = 0;
1925 
1926 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1927 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1928 }
1929 
1930 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1931 {
1932 	int n_frames = sta->sta.max_sp;
1933 	u8 delivery_enabled = sta->sta.uapsd_queues;
1934 
1935 	/*
1936 	 * If we ever grow support for TSPEC this might happen if
1937 	 * the TSPEC update from hostapd comes in between a trigger
1938 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1939 	 * actually getting called.
1940 	 */
1941 	if (!delivery_enabled)
1942 		return;
1943 
1944 	switch (sta->sta.max_sp) {
1945 	case 1:
1946 		n_frames = 2;
1947 		break;
1948 	case 2:
1949 		n_frames = 4;
1950 		break;
1951 	case 3:
1952 		n_frames = 6;
1953 		break;
1954 	case 0:
1955 		/* XXX: what is a good value? */
1956 		n_frames = 128;
1957 		break;
1958 	}
1959 
1960 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1961 					  IEEE80211_FRAME_RELEASE_UAPSD);
1962 }
1963 
1964 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1965 			       struct ieee80211_sta *pubsta, bool block)
1966 {
1967 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1968 
1969 	trace_api_sta_block_awake(sta->local, pubsta, block);
1970 
1971 	if (block) {
1972 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1973 		ieee80211_clear_fast_xmit(sta);
1974 		return;
1975 	}
1976 
1977 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1978 		return;
1979 
1980 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1981 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1982 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1983 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1984 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1985 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
1986 		/* must be asleep in this case */
1987 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1988 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1989 	} else {
1990 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1991 		ieee80211_check_fast_xmit(sta);
1992 	}
1993 }
1994 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1995 
1996 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1997 {
1998 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1999 	struct ieee80211_local *local = sta->local;
2000 
2001 	trace_api_eosp(local, pubsta);
2002 
2003 	clear_sta_flag(sta, WLAN_STA_SP);
2004 }
2005 EXPORT_SYMBOL(ieee80211_sta_eosp);
2006 
2007 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
2008 {
2009 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2010 	enum ieee80211_frame_release_type reason;
2011 	bool more_data;
2012 
2013 	trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
2014 
2015 	reason = IEEE80211_FRAME_RELEASE_UAPSD;
2016 	more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
2017 					       reason, 0);
2018 
2019 	ieee80211_send_null_response(sta, tid, reason, false, more_data);
2020 }
2021 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
2022 
2023 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
2024 				u8 tid, bool buffered)
2025 {
2026 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2027 
2028 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
2029 		return;
2030 
2031 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
2032 
2033 	if (buffered)
2034 		set_bit(tid, &sta->driver_buffered_tids);
2035 	else
2036 		clear_bit(tid, &sta->driver_buffered_tids);
2037 
2038 	sta_info_recalc_tim(sta);
2039 }
2040 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
2041 
2042 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
2043 				    u32 tx_airtime, u32 rx_airtime)
2044 {
2045 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2046 	struct ieee80211_local *local = sta->sdata->local;
2047 	u8 ac = ieee80211_ac_from_tid(tid);
2048 	u32 airtime = 0;
2049 	u32 diff;
2050 
2051 	if (sta->local->airtime_flags & AIRTIME_USE_TX)
2052 		airtime += tx_airtime;
2053 	if (sta->local->airtime_flags & AIRTIME_USE_RX)
2054 		airtime += rx_airtime;
2055 
2056 	spin_lock_bh(&local->active_txq_lock[ac]);
2057 	sta->airtime[ac].tx_airtime += tx_airtime;
2058 	sta->airtime[ac].rx_airtime += rx_airtime;
2059 
2060 	diff = (u32)jiffies - sta->airtime[ac].last_active;
2061 	if (diff <= AIRTIME_ACTIVE_DURATION)
2062 		sta->airtime[ac].deficit -= airtime;
2063 
2064 	spin_unlock_bh(&local->active_txq_lock[ac]);
2065 }
2066 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
2067 
2068 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
2069 					  struct sta_info *sta, u8 ac,
2070 					  u16 tx_airtime, bool tx_completed)
2071 {
2072 	int tx_pending;
2073 
2074 	if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
2075 		return;
2076 
2077 	if (!tx_completed) {
2078 		if (sta)
2079 			atomic_add(tx_airtime,
2080 				   &sta->airtime[ac].aql_tx_pending);
2081 
2082 		atomic_add(tx_airtime, &local->aql_total_pending_airtime);
2083 		atomic_add(tx_airtime, &local->aql_ac_pending_airtime[ac]);
2084 		return;
2085 	}
2086 
2087 	if (sta) {
2088 		tx_pending = atomic_sub_return(tx_airtime,
2089 					       &sta->airtime[ac].aql_tx_pending);
2090 		if (tx_pending < 0)
2091 			atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
2092 				       tx_pending, 0);
2093 	}
2094 
2095 	atomic_sub(tx_airtime, &local->aql_total_pending_airtime);
2096 	tx_pending = atomic_sub_return(tx_airtime,
2097 				       &local->aql_ac_pending_airtime[ac]);
2098 	if (WARN_ONCE(tx_pending < 0,
2099 		      "Device %s AC %d pending airtime underflow: %u, %u",
2100 		      wiphy_name(local->hw.wiphy), ac, tx_pending,
2101 		      tx_airtime)) {
2102 		atomic_cmpxchg(&local->aql_ac_pending_airtime[ac],
2103 			       tx_pending, 0);
2104 		atomic_sub(tx_pending, &local->aql_total_pending_airtime);
2105 	}
2106 }
2107 
2108 int sta_info_move_state(struct sta_info *sta,
2109 			enum ieee80211_sta_state new_state)
2110 {
2111 	might_sleep();
2112 
2113 	if (sta->sta_state == new_state)
2114 		return 0;
2115 
2116 	/* check allowed transitions first */
2117 
2118 	switch (new_state) {
2119 	case IEEE80211_STA_NONE:
2120 		if (sta->sta_state != IEEE80211_STA_AUTH)
2121 			return -EINVAL;
2122 		break;
2123 	case IEEE80211_STA_AUTH:
2124 		if (sta->sta_state != IEEE80211_STA_NONE &&
2125 		    sta->sta_state != IEEE80211_STA_ASSOC)
2126 			return -EINVAL;
2127 		break;
2128 	case IEEE80211_STA_ASSOC:
2129 		if (sta->sta_state != IEEE80211_STA_AUTH &&
2130 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
2131 			return -EINVAL;
2132 		break;
2133 	case IEEE80211_STA_AUTHORIZED:
2134 		if (sta->sta_state != IEEE80211_STA_ASSOC)
2135 			return -EINVAL;
2136 		break;
2137 	default:
2138 		WARN(1, "invalid state %d", new_state);
2139 		return -EINVAL;
2140 	}
2141 
2142 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
2143 		sta->sta.addr, new_state);
2144 
2145 	/*
2146 	 * notify the driver before the actual changes so it can
2147 	 * fail the transition
2148 	 */
2149 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
2150 		int err = drv_sta_state(sta->local, sta->sdata, sta,
2151 					sta->sta_state, new_state);
2152 		if (err)
2153 			return err;
2154 	}
2155 
2156 	/* reflect the change in all state variables */
2157 
2158 	switch (new_state) {
2159 	case IEEE80211_STA_NONE:
2160 		if (sta->sta_state == IEEE80211_STA_AUTH)
2161 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
2162 		break;
2163 	case IEEE80211_STA_AUTH:
2164 		if (sta->sta_state == IEEE80211_STA_NONE) {
2165 			set_bit(WLAN_STA_AUTH, &sta->_flags);
2166 		} else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2167 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2168 			ieee80211_recalc_min_chandef(sta->sdata);
2169 			if (!sta->sta.support_p2p_ps)
2170 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2171 		}
2172 		break;
2173 	case IEEE80211_STA_ASSOC:
2174 		if (sta->sta_state == IEEE80211_STA_AUTH) {
2175 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
2176 			sta->assoc_at = ktime_get_boottime_ns();
2177 			ieee80211_recalc_min_chandef(sta->sdata);
2178 			if (!sta->sta.support_p2p_ps)
2179 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2180 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2181 			ieee80211_vif_dec_num_mcast(sta->sdata);
2182 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2183 			ieee80211_clear_fast_xmit(sta);
2184 			ieee80211_clear_fast_rx(sta);
2185 		}
2186 		break;
2187 	case IEEE80211_STA_AUTHORIZED:
2188 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
2189 			ieee80211_vif_inc_num_mcast(sta->sdata);
2190 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2191 			ieee80211_check_fast_xmit(sta);
2192 			ieee80211_check_fast_rx(sta);
2193 		}
2194 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2195 		    sta->sdata->vif.type == NL80211_IFTYPE_AP)
2196 			cfg80211_send_layer2_update(sta->sdata->dev,
2197 						    sta->sta.addr);
2198 		break;
2199 	default:
2200 		break;
2201 	}
2202 
2203 	sta->sta_state = new_state;
2204 
2205 	return 0;
2206 }
2207 
2208 static struct ieee80211_sta_rx_stats *
2209 sta_get_last_rx_stats(struct sta_info *sta)
2210 {
2211 	struct ieee80211_sta_rx_stats *stats = &sta->deflink.rx_stats;
2212 	int cpu;
2213 
2214 	if (!sta->deflink.pcpu_rx_stats)
2215 		return stats;
2216 
2217 	for_each_possible_cpu(cpu) {
2218 		struct ieee80211_sta_rx_stats *cpustats;
2219 
2220 		cpustats = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu);
2221 
2222 		if (time_after(cpustats->last_rx, stats->last_rx))
2223 			stats = cpustats;
2224 	}
2225 
2226 	return stats;
2227 }
2228 
2229 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2230 				  struct rate_info *rinfo)
2231 {
2232 	rinfo->bw = STA_STATS_GET(BW, rate);
2233 
2234 	switch (STA_STATS_GET(TYPE, rate)) {
2235 	case STA_STATS_RATE_TYPE_VHT:
2236 		rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2237 		rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2238 		rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2239 		if (STA_STATS_GET(SGI, rate))
2240 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2241 		break;
2242 	case STA_STATS_RATE_TYPE_HT:
2243 		rinfo->flags = RATE_INFO_FLAGS_MCS;
2244 		rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2245 		if (STA_STATS_GET(SGI, rate))
2246 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2247 		break;
2248 	case STA_STATS_RATE_TYPE_LEGACY: {
2249 		struct ieee80211_supported_band *sband;
2250 		u16 brate;
2251 		unsigned int shift;
2252 		int band = STA_STATS_GET(LEGACY_BAND, rate);
2253 		int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2254 
2255 		sband = local->hw.wiphy->bands[band];
2256 
2257 		if (WARN_ON_ONCE(!sband->bitrates))
2258 			break;
2259 
2260 		brate = sband->bitrates[rate_idx].bitrate;
2261 		if (rinfo->bw == RATE_INFO_BW_5)
2262 			shift = 2;
2263 		else if (rinfo->bw == RATE_INFO_BW_10)
2264 			shift = 1;
2265 		else
2266 			shift = 0;
2267 		rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2268 		break;
2269 		}
2270 	case STA_STATS_RATE_TYPE_HE:
2271 		rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2272 		rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2273 		rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2274 		rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2275 		rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2276 		rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2277 		break;
2278 	}
2279 }
2280 
2281 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2282 {
2283 	u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2284 
2285 	if (rate == STA_STATS_RATE_INVALID)
2286 		return -EINVAL;
2287 
2288 	sta_stats_decode_rate(sta->local, rate, rinfo);
2289 	return 0;
2290 }
2291 
2292 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats,
2293 					int tid)
2294 {
2295 	unsigned int start;
2296 	u64 value;
2297 
2298 	do {
2299 		start = u64_stats_fetch_begin(&rxstats->syncp);
2300 		value = rxstats->msdu[tid];
2301 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2302 
2303 	return value;
2304 }
2305 
2306 static void sta_set_tidstats(struct sta_info *sta,
2307 			     struct cfg80211_tid_stats *tidstats,
2308 			     int tid)
2309 {
2310 	struct ieee80211_local *local = sta->local;
2311 	int cpu;
2312 
2313 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2314 		tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->deflink.rx_stats,
2315 							   tid);
2316 
2317 		if (sta->deflink.pcpu_rx_stats) {
2318 			for_each_possible_cpu(cpu) {
2319 				struct ieee80211_sta_rx_stats *cpurxs;
2320 
2321 				cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats,
2322 						     cpu);
2323 				tidstats->rx_msdu +=
2324 					sta_get_tidstats_msdu(cpurxs, tid);
2325 			}
2326 		}
2327 
2328 		tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2329 	}
2330 
2331 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2332 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2333 		tidstats->tx_msdu = sta->deflink.tx_stats.msdu[tid];
2334 	}
2335 
2336 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2337 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2338 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2339 		tidstats->tx_msdu_retries = sta->deflink.status_stats.msdu_retries[tid];
2340 	}
2341 
2342 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2343 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2344 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2345 		tidstats->tx_msdu_failed = sta->deflink.status_stats.msdu_failed[tid];
2346 	}
2347 
2348 	if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2349 		spin_lock_bh(&local->fq.lock);
2350 		rcu_read_lock();
2351 
2352 		tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2353 		ieee80211_fill_txq_stats(&tidstats->txq_stats,
2354 					 to_txq_info(sta->sta.txq[tid]));
2355 
2356 		rcu_read_unlock();
2357 		spin_unlock_bh(&local->fq.lock);
2358 	}
2359 }
2360 
2361 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2362 {
2363 	unsigned int start;
2364 	u64 value;
2365 
2366 	do {
2367 		start = u64_stats_fetch_begin(&rxstats->syncp);
2368 		value = rxstats->bytes;
2369 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2370 
2371 	return value;
2372 }
2373 
2374 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2375 		   bool tidstats)
2376 {
2377 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2378 	struct ieee80211_local *local = sdata->local;
2379 	u32 thr = 0;
2380 	int i, ac, cpu;
2381 	struct ieee80211_sta_rx_stats *last_rxstats;
2382 
2383 	last_rxstats = sta_get_last_rx_stats(sta);
2384 
2385 	sinfo->generation = sdata->local->sta_generation;
2386 
2387 	/* do before driver, so beacon filtering drivers have a
2388 	 * chance to e.g. just add the number of filtered beacons
2389 	 * (or just modify the value entirely, of course)
2390 	 */
2391 	if (sdata->vif.type == NL80211_IFTYPE_STATION)
2392 		sinfo->rx_beacon = sdata->deflink.u.mgd.count_beacon_signal;
2393 
2394 	drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2395 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2396 			 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2397 			 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2398 			 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2399 			 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2400 			 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2401 
2402 	if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2403 		sinfo->beacon_loss_count =
2404 			sdata->deflink.u.mgd.beacon_loss_count;
2405 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2406 	}
2407 
2408 	sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2409 	sinfo->assoc_at = sta->assoc_at;
2410 	sinfo->inactive_time =
2411 		jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2412 
2413 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2414 			       BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2415 		sinfo->tx_bytes = 0;
2416 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2417 			sinfo->tx_bytes += sta->deflink.tx_stats.bytes[ac];
2418 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2419 	}
2420 
2421 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2422 		sinfo->tx_packets = 0;
2423 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2424 			sinfo->tx_packets += sta->deflink.tx_stats.packets[ac];
2425 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2426 	}
2427 
2428 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2429 			       BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2430 		sinfo->rx_bytes += sta_get_stats_bytes(&sta->deflink.rx_stats);
2431 
2432 		if (sta->deflink.pcpu_rx_stats) {
2433 			for_each_possible_cpu(cpu) {
2434 				struct ieee80211_sta_rx_stats *cpurxs;
2435 
2436 				cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats,
2437 						     cpu);
2438 				sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2439 			}
2440 		}
2441 
2442 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2443 	}
2444 
2445 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2446 		sinfo->rx_packets = sta->deflink.rx_stats.packets;
2447 		if (sta->deflink.pcpu_rx_stats) {
2448 			for_each_possible_cpu(cpu) {
2449 				struct ieee80211_sta_rx_stats *cpurxs;
2450 
2451 				cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats,
2452 						     cpu);
2453 				sinfo->rx_packets += cpurxs->packets;
2454 			}
2455 		}
2456 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2457 	}
2458 
2459 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2460 		sinfo->tx_retries = sta->deflink.status_stats.retry_count;
2461 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2462 	}
2463 
2464 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2465 		sinfo->tx_failed = sta->deflink.status_stats.retry_failed;
2466 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2467 	}
2468 
2469 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2470 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2471 			sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2472 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2473 	}
2474 
2475 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2476 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2477 			sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2478 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2479 	}
2480 
2481 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2482 		sinfo->airtime_weight = sta->airtime_weight;
2483 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2484 	}
2485 
2486 	sinfo->rx_dropped_misc = sta->deflink.rx_stats.dropped;
2487 	if (sta->deflink.pcpu_rx_stats) {
2488 		for_each_possible_cpu(cpu) {
2489 			struct ieee80211_sta_rx_stats *cpurxs;
2490 
2491 			cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu);
2492 			sinfo->rx_dropped_misc += cpurxs->dropped;
2493 		}
2494 	}
2495 
2496 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2497 	    !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2498 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2499 				 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2500 		sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2501 	}
2502 
2503 	if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2504 	    ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2505 		if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2506 			sinfo->signal = (s8)last_rxstats->last_signal;
2507 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2508 		}
2509 
2510 		if (!sta->deflink.pcpu_rx_stats &&
2511 		    !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2512 			sinfo->signal_avg =
2513 				-ewma_signal_read(&sta->deflink.rx_stats_avg.signal);
2514 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2515 		}
2516 	}
2517 
2518 	/* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2519 	 * the sta->rx_stats struct, so the check here is fine with and without
2520 	 * pcpu statistics
2521 	 */
2522 	if (last_rxstats->chains &&
2523 	    !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2524 			       BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2525 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2526 		if (!sta->deflink.pcpu_rx_stats)
2527 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2528 
2529 		sinfo->chains = last_rxstats->chains;
2530 
2531 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2532 			sinfo->chain_signal[i] =
2533 				last_rxstats->chain_signal_last[i];
2534 			sinfo->chain_signal_avg[i] =
2535 				-ewma_signal_read(&sta->deflink.rx_stats_avg.chain_signal[i]);
2536 		}
2537 	}
2538 
2539 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2540 		sta_set_rate_info_tx(sta, &sta->deflink.tx_stats.last_rate,
2541 				     &sinfo->txrate);
2542 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2543 	}
2544 
2545 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2546 		if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2547 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2548 	}
2549 
2550 	if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2551 		for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2552 			sta_set_tidstats(sta, &sinfo->pertid[i], i);
2553 	}
2554 
2555 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2556 #ifdef CONFIG_MAC80211_MESH
2557 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2558 				 BIT_ULL(NL80211_STA_INFO_PLID) |
2559 				 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2560 				 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2561 				 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2562 				 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2563 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) |
2564 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS);
2565 
2566 		sinfo->llid = sta->mesh->llid;
2567 		sinfo->plid = sta->mesh->plid;
2568 		sinfo->plink_state = sta->mesh->plink_state;
2569 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2570 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2571 			sinfo->t_offset = sta->mesh->t_offset;
2572 		}
2573 		sinfo->local_pm = sta->mesh->local_pm;
2574 		sinfo->peer_pm = sta->mesh->peer_pm;
2575 		sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2576 		sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2577 		sinfo->connected_to_as = sta->mesh->connected_to_as;
2578 #endif
2579 	}
2580 
2581 	sinfo->bss_param.flags = 0;
2582 	if (sdata->vif.bss_conf.use_cts_prot)
2583 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2584 	if (sdata->vif.bss_conf.use_short_preamble)
2585 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2586 	if (sdata->vif.bss_conf.use_short_slot)
2587 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2588 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2589 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2590 
2591 	sinfo->sta_flags.set = 0;
2592 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2593 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2594 				BIT(NL80211_STA_FLAG_WME) |
2595 				BIT(NL80211_STA_FLAG_MFP) |
2596 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2597 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
2598 				BIT(NL80211_STA_FLAG_TDLS_PEER);
2599 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2600 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2601 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2602 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2603 	if (sta->sta.wme)
2604 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2605 	if (test_sta_flag(sta, WLAN_STA_MFP))
2606 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2607 	if (test_sta_flag(sta, WLAN_STA_AUTH))
2608 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2609 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
2610 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2611 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2612 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2613 
2614 	thr = sta_get_expected_throughput(sta);
2615 
2616 	if (thr != 0) {
2617 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2618 		sinfo->expected_throughput = thr;
2619 	}
2620 
2621 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2622 	    sta->deflink.status_stats.ack_signal_filled) {
2623 		sinfo->ack_signal = sta->deflink.status_stats.last_ack_signal;
2624 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2625 	}
2626 
2627 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2628 	    sta->deflink.status_stats.ack_signal_filled) {
2629 		sinfo->avg_ack_signal =
2630 			-(s8)ewma_avg_signal_read(
2631 				&sta->deflink.status_stats.avg_ack_signal);
2632 		sinfo->filled |=
2633 			BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2634 	}
2635 
2636 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2637 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2638 		sinfo->airtime_link_metric =
2639 			airtime_link_metric_get(local, sta);
2640 	}
2641 }
2642 
2643 u32 sta_get_expected_throughput(struct sta_info *sta)
2644 {
2645 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2646 	struct ieee80211_local *local = sdata->local;
2647 	struct rate_control_ref *ref = NULL;
2648 	u32 thr = 0;
2649 
2650 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2651 		ref = local->rate_ctrl;
2652 
2653 	/* check if the driver has a SW RC implementation */
2654 	if (ref && ref->ops->get_expected_throughput)
2655 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2656 	else
2657 		thr = drv_get_expected_throughput(local, sta);
2658 
2659 	return thr;
2660 }
2661 
2662 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2663 {
2664 	struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2665 
2666 	if (!sta->deflink.status_stats.last_ack ||
2667 	    time_after(stats->last_rx, sta->deflink.status_stats.last_ack))
2668 		return stats->last_rx;
2669 	return sta->deflink.status_stats.last_ack;
2670 }
2671 
2672 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2673 {
2674 	if (!sta->sdata->local->ops->wake_tx_queue)
2675 		return;
2676 
2677 	if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2678 		sta->cparams.target = MS2TIME(50);
2679 		sta->cparams.interval = MS2TIME(300);
2680 		sta->cparams.ecn = false;
2681 	} else {
2682 		sta->cparams.target = MS2TIME(20);
2683 		sta->cparams.interval = MS2TIME(100);
2684 		sta->cparams.ecn = true;
2685 	}
2686 }
2687 
2688 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2689 					   u32 thr)
2690 {
2691 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2692 
2693 	sta_update_codel_params(sta, thr);
2694 }
2695 
2696 int ieee80211_sta_allocate_link(struct sta_info *sta, unsigned int link_id)
2697 {
2698 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2699 	struct sta_link_alloc *alloc;
2700 	int ret;
2701 
2702 	lockdep_assert_held(&sdata->local->sta_mtx);
2703 
2704 	/* must represent an MLD from the start */
2705 	if (WARN_ON(!sta->sta.valid_links))
2706 		return -EINVAL;
2707 
2708 	if (WARN_ON(sta->sta.valid_links & BIT(link_id) ||
2709 		    sta->link[link_id]))
2710 		return -EBUSY;
2711 
2712 	alloc = kzalloc(sizeof(*alloc), GFP_KERNEL);
2713 	if (!alloc)
2714 		return -ENOMEM;
2715 
2716 	ret = sta_info_alloc_link(sdata->local, &alloc->info, GFP_KERNEL);
2717 	if (ret) {
2718 		kfree(alloc);
2719 		return ret;
2720 	}
2721 
2722 	sta_info_add_link(sta, link_id, &alloc->info, &alloc->sta);
2723 
2724 	return 0;
2725 }
2726 
2727 static int link_sta_info_hash_add(struct ieee80211_local *local,
2728 				  struct link_sta_info *link_sta)
2729 {
2730 	return rhltable_insert(&local->link_sta_hash,
2731 			       &link_sta->link_hash_node,
2732 			       link_sta_rht_params);
2733 }
2734 
2735 int ieee80211_sta_activate_link(struct sta_info *sta, unsigned int link_id)
2736 {
2737 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2738 	struct link_sta_info *link_sta;
2739 	u16 old_links = sta->sta.valid_links;
2740 	u16 new_links = old_links | BIT(link_id);
2741 	int ret;
2742 
2743 	link_sta = rcu_dereference_protected(sta->link[link_id],
2744 					     lockdep_is_held(&sdata->local->sta_mtx));
2745 
2746 	if (WARN_ON(old_links == new_links || !link_sta))
2747 		return -EINVAL;
2748 
2749 	sta->sta.valid_links = new_links;
2750 
2751 	if (!test_sta_flag(sta, WLAN_STA_INSERTED)) {
2752 		ret = 0;
2753 		goto hash;
2754 	}
2755 
2756 	ret = drv_change_sta_links(sdata->local, sdata, &sta->sta,
2757 				   old_links, new_links);
2758 	if (ret) {
2759 		sta->sta.valid_links = old_links;
2760 		sta_remove_link(sta, link_id, false);
2761 	}
2762 
2763 hash:
2764 	link_sta_info_hash_add(sdata->local, link_sta);
2765 
2766 	return ret;
2767 }
2768 
2769 void ieee80211_sta_remove_link(struct sta_info *sta, unsigned int link_id)
2770 {
2771 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2772 
2773 	lockdep_assert_held(&sdata->local->sta_mtx);
2774 
2775 	sta->sta.valid_links &= ~BIT(link_id);
2776 
2777 	if (test_sta_flag(sta, WLAN_STA_INSERTED))
2778 		drv_change_sta_links(sdata->local, sdata, &sta->sta,
2779 				     sta->sta.valid_links,
2780 				     sta->sta.valid_links & ~BIT(link_id));
2781 
2782 	sta_remove_link(sta, link_id, true);
2783 }
2784