xref: /openbmc/linux/net/mac80211/sta_info.c (revision d003d772)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
4  * Copyright 2013-2014  Intel Mobile Communications GmbH
5  * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
6  * Copyright (C) 2018 Intel Corporation
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/etherdevice.h>
16 #include <linux/netdevice.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/if_arp.h>
21 #include <linux/timer.h>
22 #include <linux/rtnetlink.h>
23 
24 #include <net/codel.h>
25 #include <net/mac80211.h>
26 #include "ieee80211_i.h"
27 #include "driver-ops.h"
28 #include "rate.h"
29 #include "sta_info.h"
30 #include "debugfs_sta.h"
31 #include "mesh.h"
32 #include "wme.h"
33 
34 /**
35  * DOC: STA information lifetime rules
36  *
37  * STA info structures (&struct sta_info) are managed in a hash table
38  * for faster lookup and a list for iteration. They are managed using
39  * RCU, i.e. access to the list and hash table is protected by RCU.
40  *
41  * Upon allocating a STA info structure with sta_info_alloc(), the caller
42  * owns that structure. It must then insert it into the hash table using
43  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
44  * case (which acquires an rcu read section but must not be called from
45  * within one) will the pointer still be valid after the call. Note that
46  * the caller may not do much with the STA info before inserting it, in
47  * particular, it may not start any mesh peer link management or add
48  * encryption keys.
49  *
50  * When the insertion fails (sta_info_insert()) returns non-zero), the
51  * structure will have been freed by sta_info_insert()!
52  *
53  * Station entries are added by mac80211 when you establish a link with a
54  * peer. This means different things for the different type of interfaces
55  * we support. For a regular station this mean we add the AP sta when we
56  * receive an association response from the AP. For IBSS this occurs when
57  * get to know about a peer on the same IBSS. For WDS we add the sta for
58  * the peer immediately upon device open. When using AP mode we add stations
59  * for each respective station upon request from userspace through nl80211.
60  *
61  * In order to remove a STA info structure, various sta_info_destroy_*()
62  * calls are available.
63  *
64  * There is no concept of ownership on a STA entry, each structure is
65  * owned by the global hash table/list until it is removed. All users of
66  * the structure need to be RCU protected so that the structure won't be
67  * freed before they are done using it.
68  */
69 
70 static const struct rhashtable_params sta_rht_params = {
71 	.nelem_hint = 3, /* start small */
72 	.automatic_shrinking = true,
73 	.head_offset = offsetof(struct sta_info, hash_node),
74 	.key_offset = offsetof(struct sta_info, addr),
75 	.key_len = ETH_ALEN,
76 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
77 };
78 
79 /* Caller must hold local->sta_mtx */
80 static int sta_info_hash_del(struct ieee80211_local *local,
81 			     struct sta_info *sta)
82 {
83 	return rhltable_remove(&local->sta_hash, &sta->hash_node,
84 			       sta_rht_params);
85 }
86 
87 static void __cleanup_single_sta(struct sta_info *sta)
88 {
89 	int ac, i;
90 	struct tid_ampdu_tx *tid_tx;
91 	struct ieee80211_sub_if_data *sdata = sta->sdata;
92 	struct ieee80211_local *local = sdata->local;
93 	struct ps_data *ps;
94 
95 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
96 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
97 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
98 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
99 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
100 			ps = &sdata->bss->ps;
101 		else if (ieee80211_vif_is_mesh(&sdata->vif))
102 			ps = &sdata->u.mesh.ps;
103 		else
104 			return;
105 
106 		clear_sta_flag(sta, WLAN_STA_PS_STA);
107 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
108 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
109 
110 		atomic_dec(&ps->num_sta_ps);
111 	}
112 
113 	if (sta->sta.txq[0]) {
114 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
115 			struct txq_info *txqi;
116 
117 			if (!sta->sta.txq[i])
118 				continue;
119 
120 			txqi = to_txq_info(sta->sta.txq[i]);
121 
122 			ieee80211_txq_purge(local, txqi);
123 		}
124 	}
125 
126 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
127 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
128 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
129 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
130 	}
131 
132 	if (ieee80211_vif_is_mesh(&sdata->vif))
133 		mesh_sta_cleanup(sta);
134 
135 	cancel_work_sync(&sta->drv_deliver_wk);
136 
137 	/*
138 	 * Destroy aggregation state here. It would be nice to wait for the
139 	 * driver to finish aggregation stop and then clean up, but for now
140 	 * drivers have to handle aggregation stop being requested, followed
141 	 * directly by station destruction.
142 	 */
143 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
144 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
145 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
146 		if (!tid_tx)
147 			continue;
148 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
149 		kfree(tid_tx);
150 	}
151 }
152 
153 static void cleanup_single_sta(struct sta_info *sta)
154 {
155 	struct ieee80211_sub_if_data *sdata = sta->sdata;
156 	struct ieee80211_local *local = sdata->local;
157 
158 	__cleanup_single_sta(sta);
159 	sta_info_free(local, sta);
160 }
161 
162 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
163 					 const u8 *addr)
164 {
165 	return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
166 }
167 
168 /* protected by RCU */
169 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
170 			      const u8 *addr)
171 {
172 	struct ieee80211_local *local = sdata->local;
173 	struct rhlist_head *tmp;
174 	struct sta_info *sta;
175 
176 	rcu_read_lock();
177 	for_each_sta_info(local, addr, sta, tmp) {
178 		if (sta->sdata == sdata) {
179 			rcu_read_unlock();
180 			/* this is safe as the caller must already hold
181 			 * another rcu read section or the mutex
182 			 */
183 			return sta;
184 		}
185 	}
186 	rcu_read_unlock();
187 	return NULL;
188 }
189 
190 /*
191  * Get sta info either from the specified interface
192  * or from one of its vlans
193  */
194 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
195 				  const u8 *addr)
196 {
197 	struct ieee80211_local *local = sdata->local;
198 	struct rhlist_head *tmp;
199 	struct sta_info *sta;
200 
201 	rcu_read_lock();
202 	for_each_sta_info(local, addr, sta, tmp) {
203 		if (sta->sdata == sdata ||
204 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
205 			rcu_read_unlock();
206 			/* this is safe as the caller must already hold
207 			 * another rcu read section or the mutex
208 			 */
209 			return sta;
210 		}
211 	}
212 	rcu_read_unlock();
213 	return NULL;
214 }
215 
216 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
217 				     int idx)
218 {
219 	struct ieee80211_local *local = sdata->local;
220 	struct sta_info *sta;
221 	int i = 0;
222 
223 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
224 		if (sdata != sta->sdata)
225 			continue;
226 		if (i < idx) {
227 			++i;
228 			continue;
229 		}
230 		return sta;
231 	}
232 
233 	return NULL;
234 }
235 
236 /**
237  * sta_info_free - free STA
238  *
239  * @local: pointer to the global information
240  * @sta: STA info to free
241  *
242  * This function must undo everything done by sta_info_alloc()
243  * that may happen before sta_info_insert(). It may only be
244  * called when sta_info_insert() has not been attempted (and
245  * if that fails, the station is freed anyway.)
246  */
247 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
248 {
249 	if (sta->rate_ctrl)
250 		rate_control_free_sta(sta);
251 
252 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
253 
254 	if (sta->sta.txq[0])
255 		kfree(to_txq_info(sta->sta.txq[0]));
256 	kfree(rcu_dereference_raw(sta->sta.rates));
257 #ifdef CONFIG_MAC80211_MESH
258 	kfree(sta->mesh);
259 #endif
260 	free_percpu(sta->pcpu_rx_stats);
261 	kfree(sta);
262 }
263 
264 /* Caller must hold local->sta_mtx */
265 static int sta_info_hash_add(struct ieee80211_local *local,
266 			     struct sta_info *sta)
267 {
268 	return rhltable_insert(&local->sta_hash, &sta->hash_node,
269 			       sta_rht_params);
270 }
271 
272 static void sta_deliver_ps_frames(struct work_struct *wk)
273 {
274 	struct sta_info *sta;
275 
276 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
277 
278 	if (sta->dead)
279 		return;
280 
281 	local_bh_disable();
282 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
283 		ieee80211_sta_ps_deliver_wakeup(sta);
284 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
285 		ieee80211_sta_ps_deliver_poll_response(sta);
286 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
287 		ieee80211_sta_ps_deliver_uapsd(sta);
288 	local_bh_enable();
289 }
290 
291 static int sta_prepare_rate_control(struct ieee80211_local *local,
292 				    struct sta_info *sta, gfp_t gfp)
293 {
294 	if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
295 		return 0;
296 
297 	sta->rate_ctrl = local->rate_ctrl;
298 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
299 						     sta, gfp);
300 	if (!sta->rate_ctrl_priv)
301 		return -ENOMEM;
302 
303 	return 0;
304 }
305 
306 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
307 				const u8 *addr, gfp_t gfp)
308 {
309 	struct ieee80211_local *local = sdata->local;
310 	struct ieee80211_hw *hw = &local->hw;
311 	struct sta_info *sta;
312 	int i;
313 
314 	sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
315 	if (!sta)
316 		return NULL;
317 
318 	if (ieee80211_hw_check(hw, USES_RSS)) {
319 		sta->pcpu_rx_stats =
320 			alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
321 		if (!sta->pcpu_rx_stats)
322 			goto free;
323 	}
324 
325 	spin_lock_init(&sta->lock);
326 	spin_lock_init(&sta->ps_lock);
327 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
328 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
329 	mutex_init(&sta->ampdu_mlme.mtx);
330 #ifdef CONFIG_MAC80211_MESH
331 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
332 		sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
333 		if (!sta->mesh)
334 			goto free;
335 		sta->mesh->plink_sta = sta;
336 		spin_lock_init(&sta->mesh->plink_lock);
337 		if (ieee80211_vif_is_mesh(&sdata->vif) &&
338 		    !sdata->u.mesh.user_mpm)
339 			timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
340 				    0);
341 		sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
342 	}
343 #endif
344 
345 	memcpy(sta->addr, addr, ETH_ALEN);
346 	memcpy(sta->sta.addr, addr, ETH_ALEN);
347 	sta->sta.max_rx_aggregation_subframes =
348 		local->hw.max_rx_aggregation_subframes;
349 
350 	sta->local = local;
351 	sta->sdata = sdata;
352 	sta->rx_stats.last_rx = jiffies;
353 
354 	u64_stats_init(&sta->rx_stats.syncp);
355 
356 	sta->sta_state = IEEE80211_STA_NONE;
357 
358 	/* Mark TID as unreserved */
359 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
360 
361 	sta->last_connected = ktime_get_seconds();
362 	ewma_signal_init(&sta->rx_stats_avg.signal);
363 	ewma_avg_signal_init(&sta->status_stats.avg_ack_signal);
364 	for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
365 		ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
366 
367 	if (local->ops->wake_tx_queue) {
368 		void *txq_data;
369 		int size = sizeof(struct txq_info) +
370 			   ALIGN(hw->txq_data_size, sizeof(void *));
371 
372 		txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
373 		if (!txq_data)
374 			goto free;
375 
376 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
377 			struct txq_info *txq = txq_data + i * size;
378 
379 			/* might not do anything for the bufferable MMPDU TXQ */
380 			ieee80211_txq_init(sdata, sta, txq, i);
381 		}
382 	}
383 
384 	if (sta_prepare_rate_control(local, sta, gfp))
385 		goto free_txq;
386 
387 	sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT;
388 
389 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
390 		skb_queue_head_init(&sta->ps_tx_buf[i]);
391 		skb_queue_head_init(&sta->tx_filtered[i]);
392 		sta->airtime[i].deficit = sta->airtime_weight;
393 	}
394 
395 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
396 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
397 
398 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
399 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
400 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
401 		struct ieee80211_supported_band *sband;
402 		u8 smps;
403 
404 		sband = ieee80211_get_sband(sdata);
405 		if (!sband)
406 			goto free_txq;
407 
408 		smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
409 			IEEE80211_HT_CAP_SM_PS_SHIFT;
410 		/*
411 		 * Assume that hostapd advertises our caps in the beacon and
412 		 * this is the known_smps_mode for a station that just assciated
413 		 */
414 		switch (smps) {
415 		case WLAN_HT_SMPS_CONTROL_DISABLED:
416 			sta->known_smps_mode = IEEE80211_SMPS_OFF;
417 			break;
418 		case WLAN_HT_SMPS_CONTROL_STATIC:
419 			sta->known_smps_mode = IEEE80211_SMPS_STATIC;
420 			break;
421 		case WLAN_HT_SMPS_CONTROL_DYNAMIC:
422 			sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
423 			break;
424 		default:
425 			WARN_ON(1);
426 		}
427 	}
428 
429 	sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
430 
431 	sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
432 	sta->cparams.target = MS2TIME(20);
433 	sta->cparams.interval = MS2TIME(100);
434 	sta->cparams.ecn = true;
435 
436 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
437 
438 	return sta;
439 
440 free_txq:
441 	if (sta->sta.txq[0])
442 		kfree(to_txq_info(sta->sta.txq[0]));
443 free:
444 	free_percpu(sta->pcpu_rx_stats);
445 #ifdef CONFIG_MAC80211_MESH
446 	kfree(sta->mesh);
447 #endif
448 	kfree(sta);
449 	return NULL;
450 }
451 
452 static int sta_info_insert_check(struct sta_info *sta)
453 {
454 	struct ieee80211_sub_if_data *sdata = sta->sdata;
455 
456 	/*
457 	 * Can't be a WARN_ON because it can be triggered through a race:
458 	 * something inserts a STA (on one CPU) without holding the RTNL
459 	 * and another CPU turns off the net device.
460 	 */
461 	if (unlikely(!ieee80211_sdata_running(sdata)))
462 		return -ENETDOWN;
463 
464 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
465 		    is_multicast_ether_addr(sta->sta.addr)))
466 		return -EINVAL;
467 
468 	/* The RCU read lock is required by rhashtable due to
469 	 * asynchronous resize/rehash.  We also require the mutex
470 	 * for correctness.
471 	 */
472 	rcu_read_lock();
473 	lockdep_assert_held(&sdata->local->sta_mtx);
474 	if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
475 	    ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
476 		rcu_read_unlock();
477 		return -ENOTUNIQ;
478 	}
479 	rcu_read_unlock();
480 
481 	return 0;
482 }
483 
484 static int sta_info_insert_drv_state(struct ieee80211_local *local,
485 				     struct ieee80211_sub_if_data *sdata,
486 				     struct sta_info *sta)
487 {
488 	enum ieee80211_sta_state state;
489 	int err = 0;
490 
491 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
492 		err = drv_sta_state(local, sdata, sta, state, state + 1);
493 		if (err)
494 			break;
495 	}
496 
497 	if (!err) {
498 		/*
499 		 * Drivers using legacy sta_add/sta_remove callbacks only
500 		 * get uploaded set to true after sta_add is called.
501 		 */
502 		if (!local->ops->sta_add)
503 			sta->uploaded = true;
504 		return 0;
505 	}
506 
507 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
508 		sdata_info(sdata,
509 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
510 			   sta->sta.addr, state + 1, err);
511 		err = 0;
512 	}
513 
514 	/* unwind on error */
515 	for (; state > IEEE80211_STA_NOTEXIST; state--)
516 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
517 
518 	return err;
519 }
520 
521 static void
522 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
523 {
524 	struct ieee80211_local *local = sdata->local;
525 	bool allow_p2p_go_ps = sdata->vif.p2p;
526 	struct sta_info *sta;
527 
528 	rcu_read_lock();
529 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
530 		if (sdata != sta->sdata ||
531 		    !test_sta_flag(sta, WLAN_STA_ASSOC))
532 			continue;
533 		if (!sta->sta.support_p2p_ps) {
534 			allow_p2p_go_ps = false;
535 			break;
536 		}
537 	}
538 	rcu_read_unlock();
539 
540 	if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
541 		sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
542 		ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
543 	}
544 }
545 
546 /*
547  * should be called with sta_mtx locked
548  * this function replaces the mutex lock
549  * with a RCU lock
550  */
551 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
552 {
553 	struct ieee80211_local *local = sta->local;
554 	struct ieee80211_sub_if_data *sdata = sta->sdata;
555 	struct station_info *sinfo = NULL;
556 	int err = 0;
557 
558 	lockdep_assert_held(&local->sta_mtx);
559 
560 	/* check if STA exists already */
561 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
562 		err = -EEXIST;
563 		goto out_err;
564 	}
565 
566 	sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
567 	if (!sinfo) {
568 		err = -ENOMEM;
569 		goto out_err;
570 	}
571 
572 	local->num_sta++;
573 	local->sta_generation++;
574 	smp_mb();
575 
576 	/* simplify things and don't accept BA sessions yet */
577 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
578 
579 	/* make the station visible */
580 	err = sta_info_hash_add(local, sta);
581 	if (err)
582 		goto out_drop_sta;
583 
584 	list_add_tail_rcu(&sta->list, &local->sta_list);
585 
586 	/* notify driver */
587 	err = sta_info_insert_drv_state(local, sdata, sta);
588 	if (err)
589 		goto out_remove;
590 
591 	set_sta_flag(sta, WLAN_STA_INSERTED);
592 
593 	if (sta->sta_state >= IEEE80211_STA_ASSOC) {
594 		ieee80211_recalc_min_chandef(sta->sdata);
595 		if (!sta->sta.support_p2p_ps)
596 			ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
597 	}
598 
599 	/* accept BA sessions now */
600 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
601 
602 	ieee80211_sta_debugfs_add(sta);
603 	rate_control_add_sta_debugfs(sta);
604 
605 	sinfo->generation = local->sta_generation;
606 	cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
607 	kfree(sinfo);
608 
609 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
610 
611 	/* move reference to rcu-protected */
612 	rcu_read_lock();
613 	mutex_unlock(&local->sta_mtx);
614 
615 	if (ieee80211_vif_is_mesh(&sdata->vif))
616 		mesh_accept_plinks_update(sdata);
617 
618 	return 0;
619  out_remove:
620 	sta_info_hash_del(local, sta);
621 	list_del_rcu(&sta->list);
622  out_drop_sta:
623 	local->num_sta--;
624 	synchronize_net();
625 	__cleanup_single_sta(sta);
626  out_err:
627 	mutex_unlock(&local->sta_mtx);
628 	kfree(sinfo);
629 	rcu_read_lock();
630 	return err;
631 }
632 
633 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
634 {
635 	struct ieee80211_local *local = sta->local;
636 	int err;
637 
638 	might_sleep();
639 
640 	mutex_lock(&local->sta_mtx);
641 
642 	err = sta_info_insert_check(sta);
643 	if (err) {
644 		mutex_unlock(&local->sta_mtx);
645 		rcu_read_lock();
646 		goto out_free;
647 	}
648 
649 	err = sta_info_insert_finish(sta);
650 	if (err)
651 		goto out_free;
652 
653 	return 0;
654  out_free:
655 	sta_info_free(local, sta);
656 	return err;
657 }
658 
659 int sta_info_insert(struct sta_info *sta)
660 {
661 	int err = sta_info_insert_rcu(sta);
662 
663 	rcu_read_unlock();
664 
665 	return err;
666 }
667 
668 static inline void __bss_tim_set(u8 *tim, u16 id)
669 {
670 	/*
671 	 * This format has been mandated by the IEEE specifications,
672 	 * so this line may not be changed to use the __set_bit() format.
673 	 */
674 	tim[id / 8] |= (1 << (id % 8));
675 }
676 
677 static inline void __bss_tim_clear(u8 *tim, u16 id)
678 {
679 	/*
680 	 * This format has been mandated by the IEEE specifications,
681 	 * so this line may not be changed to use the __clear_bit() format.
682 	 */
683 	tim[id / 8] &= ~(1 << (id % 8));
684 }
685 
686 static inline bool __bss_tim_get(u8 *tim, u16 id)
687 {
688 	/*
689 	 * This format has been mandated by the IEEE specifications,
690 	 * so this line may not be changed to use the test_bit() format.
691 	 */
692 	return tim[id / 8] & (1 << (id % 8));
693 }
694 
695 static unsigned long ieee80211_tids_for_ac(int ac)
696 {
697 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
698 	switch (ac) {
699 	case IEEE80211_AC_VO:
700 		return BIT(6) | BIT(7);
701 	case IEEE80211_AC_VI:
702 		return BIT(4) | BIT(5);
703 	case IEEE80211_AC_BE:
704 		return BIT(0) | BIT(3);
705 	case IEEE80211_AC_BK:
706 		return BIT(1) | BIT(2);
707 	default:
708 		WARN_ON(1);
709 		return 0;
710 	}
711 }
712 
713 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
714 {
715 	struct ieee80211_local *local = sta->local;
716 	struct ps_data *ps;
717 	bool indicate_tim = false;
718 	u8 ignore_for_tim = sta->sta.uapsd_queues;
719 	int ac;
720 	u16 id = sta->sta.aid;
721 
722 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
723 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
724 		if (WARN_ON_ONCE(!sta->sdata->bss))
725 			return;
726 
727 		ps = &sta->sdata->bss->ps;
728 #ifdef CONFIG_MAC80211_MESH
729 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
730 		ps = &sta->sdata->u.mesh.ps;
731 #endif
732 	} else {
733 		return;
734 	}
735 
736 	/* No need to do anything if the driver does all */
737 	if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
738 		return;
739 
740 	if (sta->dead)
741 		goto done;
742 
743 	/*
744 	 * If all ACs are delivery-enabled then we should build
745 	 * the TIM bit for all ACs anyway; if only some are then
746 	 * we ignore those and build the TIM bit using only the
747 	 * non-enabled ones.
748 	 */
749 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
750 		ignore_for_tim = 0;
751 
752 	if (ignore_pending)
753 		ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
754 
755 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
756 		unsigned long tids;
757 
758 		if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
759 			continue;
760 
761 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
762 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
763 		if (indicate_tim)
764 			break;
765 
766 		tids = ieee80211_tids_for_ac(ac);
767 
768 		indicate_tim |=
769 			sta->driver_buffered_tids & tids;
770 		indicate_tim |=
771 			sta->txq_buffered_tids & tids;
772 	}
773 
774  done:
775 	spin_lock_bh(&local->tim_lock);
776 
777 	if (indicate_tim == __bss_tim_get(ps->tim, id))
778 		goto out_unlock;
779 
780 	if (indicate_tim)
781 		__bss_tim_set(ps->tim, id);
782 	else
783 		__bss_tim_clear(ps->tim, id);
784 
785 	if (local->ops->set_tim && !WARN_ON(sta->dead)) {
786 		local->tim_in_locked_section = true;
787 		drv_set_tim(local, &sta->sta, indicate_tim);
788 		local->tim_in_locked_section = false;
789 	}
790 
791 out_unlock:
792 	spin_unlock_bh(&local->tim_lock);
793 }
794 
795 void sta_info_recalc_tim(struct sta_info *sta)
796 {
797 	__sta_info_recalc_tim(sta, false);
798 }
799 
800 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
801 {
802 	struct ieee80211_tx_info *info;
803 	int timeout;
804 
805 	if (!skb)
806 		return false;
807 
808 	info = IEEE80211_SKB_CB(skb);
809 
810 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
811 	timeout = (sta->listen_interval *
812 		   sta->sdata->vif.bss_conf.beacon_int *
813 		   32 / 15625) * HZ;
814 	if (timeout < STA_TX_BUFFER_EXPIRE)
815 		timeout = STA_TX_BUFFER_EXPIRE;
816 	return time_after(jiffies, info->control.jiffies + timeout);
817 }
818 
819 
820 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
821 						struct sta_info *sta, int ac)
822 {
823 	unsigned long flags;
824 	struct sk_buff *skb;
825 
826 	/*
827 	 * First check for frames that should expire on the filtered
828 	 * queue. Frames here were rejected by the driver and are on
829 	 * a separate queue to avoid reordering with normal PS-buffered
830 	 * frames. They also aren't accounted for right now in the
831 	 * total_ps_buffered counter.
832 	 */
833 	for (;;) {
834 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
835 		skb = skb_peek(&sta->tx_filtered[ac]);
836 		if (sta_info_buffer_expired(sta, skb))
837 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
838 		else
839 			skb = NULL;
840 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
841 
842 		/*
843 		 * Frames are queued in order, so if this one
844 		 * hasn't expired yet we can stop testing. If
845 		 * we actually reached the end of the queue we
846 		 * also need to stop, of course.
847 		 */
848 		if (!skb)
849 			break;
850 		ieee80211_free_txskb(&local->hw, skb);
851 	}
852 
853 	/*
854 	 * Now also check the normal PS-buffered queue, this will
855 	 * only find something if the filtered queue was emptied
856 	 * since the filtered frames are all before the normal PS
857 	 * buffered frames.
858 	 */
859 	for (;;) {
860 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
861 		skb = skb_peek(&sta->ps_tx_buf[ac]);
862 		if (sta_info_buffer_expired(sta, skb))
863 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
864 		else
865 			skb = NULL;
866 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
867 
868 		/*
869 		 * frames are queued in order, so if this one
870 		 * hasn't expired yet (or we reached the end of
871 		 * the queue) we can stop testing
872 		 */
873 		if (!skb)
874 			break;
875 
876 		local->total_ps_buffered--;
877 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
878 		       sta->sta.addr);
879 		ieee80211_free_txskb(&local->hw, skb);
880 	}
881 
882 	/*
883 	 * Finally, recalculate the TIM bit for this station -- it might
884 	 * now be clear because the station was too slow to retrieve its
885 	 * frames.
886 	 */
887 	sta_info_recalc_tim(sta);
888 
889 	/*
890 	 * Return whether there are any frames still buffered, this is
891 	 * used to check whether the cleanup timer still needs to run,
892 	 * if there are no frames we don't need to rearm the timer.
893 	 */
894 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
895 		 skb_queue_empty(&sta->tx_filtered[ac]));
896 }
897 
898 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
899 					     struct sta_info *sta)
900 {
901 	bool have_buffered = false;
902 	int ac;
903 
904 	/* This is only necessary for stations on BSS/MBSS interfaces */
905 	if (!sta->sdata->bss &&
906 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
907 		return false;
908 
909 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
910 		have_buffered |=
911 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
912 
913 	return have_buffered;
914 }
915 
916 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
917 {
918 	struct ieee80211_local *local;
919 	struct ieee80211_sub_if_data *sdata;
920 	int ret;
921 
922 	might_sleep();
923 
924 	if (!sta)
925 		return -ENOENT;
926 
927 	local = sta->local;
928 	sdata = sta->sdata;
929 
930 	lockdep_assert_held(&local->sta_mtx);
931 
932 	/*
933 	 * Before removing the station from the driver and
934 	 * rate control, it might still start new aggregation
935 	 * sessions -- block that to make sure the tear-down
936 	 * will be sufficient.
937 	 */
938 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
939 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
940 
941 	/*
942 	 * Before removing the station from the driver there might be pending
943 	 * rx frames on RSS queues sent prior to the disassociation - wait for
944 	 * all such frames to be processed.
945 	 */
946 	drv_sync_rx_queues(local, sta);
947 
948 	ret = sta_info_hash_del(local, sta);
949 	if (WARN_ON(ret))
950 		return ret;
951 
952 	/*
953 	 * for TDLS peers, make sure to return to the base channel before
954 	 * removal.
955 	 */
956 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
957 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
958 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
959 	}
960 
961 	list_del_rcu(&sta->list);
962 	sta->removed = true;
963 
964 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
965 
966 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
967 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
968 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
969 
970 	return 0;
971 }
972 
973 static void __sta_info_destroy_part2(struct sta_info *sta)
974 {
975 	struct ieee80211_local *local = sta->local;
976 	struct ieee80211_sub_if_data *sdata = sta->sdata;
977 	struct station_info *sinfo;
978 	int ret;
979 
980 	/*
981 	 * NOTE: This assumes at least synchronize_net() was done
982 	 *	 after _part1 and before _part2!
983 	 */
984 
985 	might_sleep();
986 	lockdep_assert_held(&local->sta_mtx);
987 
988 	/* now keys can no longer be reached */
989 	ieee80211_free_sta_keys(local, sta);
990 
991 	/* disable TIM bit - last chance to tell driver */
992 	__sta_info_recalc_tim(sta, true);
993 
994 	sta->dead = true;
995 
996 	local->num_sta--;
997 	local->sta_generation++;
998 
999 	while (sta->sta_state > IEEE80211_STA_NONE) {
1000 		ret = sta_info_move_state(sta, sta->sta_state - 1);
1001 		if (ret) {
1002 			WARN_ON_ONCE(1);
1003 			break;
1004 		}
1005 	}
1006 
1007 	if (sta->uploaded) {
1008 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1009 				    IEEE80211_STA_NOTEXIST);
1010 		WARN_ON_ONCE(ret != 0);
1011 	}
1012 
1013 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1014 
1015 	sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1016 	if (sinfo)
1017 		sta_set_sinfo(sta, sinfo, true);
1018 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1019 	kfree(sinfo);
1020 
1021 	rate_control_remove_sta_debugfs(sta);
1022 	ieee80211_sta_debugfs_remove(sta);
1023 
1024 	cleanup_single_sta(sta);
1025 }
1026 
1027 int __must_check __sta_info_destroy(struct sta_info *sta)
1028 {
1029 	int err = __sta_info_destroy_part1(sta);
1030 
1031 	if (err)
1032 		return err;
1033 
1034 	synchronize_net();
1035 
1036 	__sta_info_destroy_part2(sta);
1037 
1038 	return 0;
1039 }
1040 
1041 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1042 {
1043 	struct sta_info *sta;
1044 	int ret;
1045 
1046 	mutex_lock(&sdata->local->sta_mtx);
1047 	sta = sta_info_get(sdata, addr);
1048 	ret = __sta_info_destroy(sta);
1049 	mutex_unlock(&sdata->local->sta_mtx);
1050 
1051 	return ret;
1052 }
1053 
1054 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1055 			      const u8 *addr)
1056 {
1057 	struct sta_info *sta;
1058 	int ret;
1059 
1060 	mutex_lock(&sdata->local->sta_mtx);
1061 	sta = sta_info_get_bss(sdata, addr);
1062 	ret = __sta_info_destroy(sta);
1063 	mutex_unlock(&sdata->local->sta_mtx);
1064 
1065 	return ret;
1066 }
1067 
1068 static void sta_info_cleanup(struct timer_list *t)
1069 {
1070 	struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1071 	struct sta_info *sta;
1072 	bool timer_needed = false;
1073 
1074 	rcu_read_lock();
1075 	list_for_each_entry_rcu(sta, &local->sta_list, list)
1076 		if (sta_info_cleanup_expire_buffered(local, sta))
1077 			timer_needed = true;
1078 	rcu_read_unlock();
1079 
1080 	if (local->quiescing)
1081 		return;
1082 
1083 	if (!timer_needed)
1084 		return;
1085 
1086 	mod_timer(&local->sta_cleanup,
1087 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1088 }
1089 
1090 int sta_info_init(struct ieee80211_local *local)
1091 {
1092 	int err;
1093 
1094 	err = rhltable_init(&local->sta_hash, &sta_rht_params);
1095 	if (err)
1096 		return err;
1097 
1098 	spin_lock_init(&local->tim_lock);
1099 	mutex_init(&local->sta_mtx);
1100 	INIT_LIST_HEAD(&local->sta_list);
1101 
1102 	timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1103 	return 0;
1104 }
1105 
1106 void sta_info_stop(struct ieee80211_local *local)
1107 {
1108 	del_timer_sync(&local->sta_cleanup);
1109 	rhltable_destroy(&local->sta_hash);
1110 }
1111 
1112 
1113 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1114 {
1115 	struct ieee80211_local *local = sdata->local;
1116 	struct sta_info *sta, *tmp;
1117 	LIST_HEAD(free_list);
1118 	int ret = 0;
1119 
1120 	might_sleep();
1121 
1122 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1123 	WARN_ON(vlans && !sdata->bss);
1124 
1125 	mutex_lock(&local->sta_mtx);
1126 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1127 		if (sdata == sta->sdata ||
1128 		    (vlans && sdata->bss == sta->sdata->bss)) {
1129 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1130 				list_add(&sta->free_list, &free_list);
1131 			ret++;
1132 		}
1133 	}
1134 
1135 	if (!list_empty(&free_list)) {
1136 		synchronize_net();
1137 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1138 			__sta_info_destroy_part2(sta);
1139 	}
1140 	mutex_unlock(&local->sta_mtx);
1141 
1142 	return ret;
1143 }
1144 
1145 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1146 			  unsigned long exp_time)
1147 {
1148 	struct ieee80211_local *local = sdata->local;
1149 	struct sta_info *sta, *tmp;
1150 
1151 	mutex_lock(&local->sta_mtx);
1152 
1153 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1154 		unsigned long last_active = ieee80211_sta_last_active(sta);
1155 
1156 		if (sdata != sta->sdata)
1157 			continue;
1158 
1159 		if (time_is_before_jiffies(last_active + exp_time)) {
1160 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1161 				sta->sta.addr);
1162 
1163 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1164 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1165 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1166 
1167 			WARN_ON(__sta_info_destroy(sta));
1168 		}
1169 	}
1170 
1171 	mutex_unlock(&local->sta_mtx);
1172 }
1173 
1174 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1175 						   const u8 *addr,
1176 						   const u8 *localaddr)
1177 {
1178 	struct ieee80211_local *local = hw_to_local(hw);
1179 	struct rhlist_head *tmp;
1180 	struct sta_info *sta;
1181 
1182 	/*
1183 	 * Just return a random station if localaddr is NULL
1184 	 * ... first in list.
1185 	 */
1186 	for_each_sta_info(local, addr, sta, tmp) {
1187 		if (localaddr &&
1188 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1189 			continue;
1190 		if (!sta->uploaded)
1191 			return NULL;
1192 		return &sta->sta;
1193 	}
1194 
1195 	return NULL;
1196 }
1197 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1198 
1199 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1200 					 const u8 *addr)
1201 {
1202 	struct sta_info *sta;
1203 
1204 	if (!vif)
1205 		return NULL;
1206 
1207 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1208 	if (!sta)
1209 		return NULL;
1210 
1211 	if (!sta->uploaded)
1212 		return NULL;
1213 
1214 	return &sta->sta;
1215 }
1216 EXPORT_SYMBOL(ieee80211_find_sta);
1217 
1218 /* powersave support code */
1219 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1220 {
1221 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1222 	struct ieee80211_local *local = sdata->local;
1223 	struct sk_buff_head pending;
1224 	int filtered = 0, buffered = 0, ac, i;
1225 	unsigned long flags;
1226 	struct ps_data *ps;
1227 
1228 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1229 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1230 				     u.ap);
1231 
1232 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1233 		ps = &sdata->bss->ps;
1234 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1235 		ps = &sdata->u.mesh.ps;
1236 	else
1237 		return;
1238 
1239 	clear_sta_flag(sta, WLAN_STA_SP);
1240 
1241 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1242 	sta->driver_buffered_tids = 0;
1243 	sta->txq_buffered_tids = 0;
1244 
1245 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1246 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1247 
1248 	for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1249 		if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1250 			continue;
1251 
1252 		schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1253 	}
1254 
1255 	skb_queue_head_init(&pending);
1256 
1257 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1258 	spin_lock(&sta->ps_lock);
1259 	/* Send all buffered frames to the station */
1260 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1261 		int count = skb_queue_len(&pending), tmp;
1262 
1263 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1264 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1265 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1266 		tmp = skb_queue_len(&pending);
1267 		filtered += tmp - count;
1268 		count = tmp;
1269 
1270 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1271 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1272 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1273 		tmp = skb_queue_len(&pending);
1274 		buffered += tmp - count;
1275 	}
1276 
1277 	ieee80211_add_pending_skbs(local, &pending);
1278 
1279 	/* now we're no longer in the deliver code */
1280 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1281 
1282 	/* The station might have polled and then woken up before we responded,
1283 	 * so clear these flags now to avoid them sticking around.
1284 	 */
1285 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1286 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1287 	spin_unlock(&sta->ps_lock);
1288 
1289 	atomic_dec(&ps->num_sta_ps);
1290 
1291 	/* This station just woke up and isn't aware of our SMPS state */
1292 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1293 	    !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1294 					   sdata->smps_mode) &&
1295 	    sta->known_smps_mode != sdata->bss->req_smps &&
1296 	    sta_info_tx_streams(sta) != 1) {
1297 		ht_dbg(sdata,
1298 		       "%pM just woke up and MIMO capable - update SMPS\n",
1299 		       sta->sta.addr);
1300 		ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1301 					   sta->sta.addr,
1302 					   sdata->vif.bss_conf.bssid);
1303 	}
1304 
1305 	local->total_ps_buffered -= buffered;
1306 
1307 	sta_info_recalc_tim(sta);
1308 
1309 	ps_dbg(sdata,
1310 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1311 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1312 
1313 	ieee80211_check_fast_xmit(sta);
1314 }
1315 
1316 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1317 					 enum ieee80211_frame_release_type reason,
1318 					 bool call_driver, bool more_data)
1319 {
1320 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1321 	struct ieee80211_local *local = sdata->local;
1322 	struct ieee80211_qos_hdr *nullfunc;
1323 	struct sk_buff *skb;
1324 	int size = sizeof(*nullfunc);
1325 	__le16 fc;
1326 	bool qos = sta->sta.wme;
1327 	struct ieee80211_tx_info *info;
1328 	struct ieee80211_chanctx_conf *chanctx_conf;
1329 
1330 	/* Don't send NDPs when STA is connected HE */
1331 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1332 	    !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE))
1333 		return;
1334 
1335 	if (qos) {
1336 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1337 				 IEEE80211_STYPE_QOS_NULLFUNC |
1338 				 IEEE80211_FCTL_FROMDS);
1339 	} else {
1340 		size -= 2;
1341 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1342 				 IEEE80211_STYPE_NULLFUNC |
1343 				 IEEE80211_FCTL_FROMDS);
1344 	}
1345 
1346 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1347 	if (!skb)
1348 		return;
1349 
1350 	skb_reserve(skb, local->hw.extra_tx_headroom);
1351 
1352 	nullfunc = skb_put(skb, size);
1353 	nullfunc->frame_control = fc;
1354 	nullfunc->duration_id = 0;
1355 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1356 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1357 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1358 	nullfunc->seq_ctrl = 0;
1359 
1360 	skb->priority = tid;
1361 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1362 	if (qos) {
1363 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1364 
1365 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1366 			nullfunc->qos_ctrl |=
1367 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1368 			if (more_data)
1369 				nullfunc->frame_control |=
1370 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1371 		}
1372 	}
1373 
1374 	info = IEEE80211_SKB_CB(skb);
1375 
1376 	/*
1377 	 * Tell TX path to send this frame even though the
1378 	 * STA may still remain is PS mode after this frame
1379 	 * exchange. Also set EOSP to indicate this packet
1380 	 * ends the poll/service period.
1381 	 */
1382 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1383 		       IEEE80211_TX_STATUS_EOSP |
1384 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1385 
1386 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1387 
1388 	if (call_driver)
1389 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1390 					  reason, false);
1391 
1392 	skb->dev = sdata->dev;
1393 
1394 	rcu_read_lock();
1395 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1396 	if (WARN_ON(!chanctx_conf)) {
1397 		rcu_read_unlock();
1398 		kfree_skb(skb);
1399 		return;
1400 	}
1401 
1402 	info->band = chanctx_conf->def.chan->band;
1403 	ieee80211_xmit(sdata, sta, skb, 0);
1404 	rcu_read_unlock();
1405 }
1406 
1407 static int find_highest_prio_tid(unsigned long tids)
1408 {
1409 	/* lower 3 TIDs aren't ordered perfectly */
1410 	if (tids & 0xF8)
1411 		return fls(tids) - 1;
1412 	/* TID 0 is BE just like TID 3 */
1413 	if (tids & BIT(0))
1414 		return 0;
1415 	return fls(tids) - 1;
1416 }
1417 
1418 /* Indicates if the MORE_DATA bit should be set in the last
1419  * frame obtained by ieee80211_sta_ps_get_frames.
1420  * Note that driver_release_tids is relevant only if
1421  * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1422  */
1423 static bool
1424 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1425 			   enum ieee80211_frame_release_type reason,
1426 			   unsigned long driver_release_tids)
1427 {
1428 	int ac;
1429 
1430 	/* If the driver has data on more than one TID then
1431 	 * certainly there's more data if we release just a
1432 	 * single frame now (from a single TID). This will
1433 	 * only happen for PS-Poll.
1434 	 */
1435 	if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1436 	    hweight16(driver_release_tids) > 1)
1437 		return true;
1438 
1439 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1440 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1441 			continue;
1442 
1443 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1444 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1445 			return true;
1446 	}
1447 
1448 	return false;
1449 }
1450 
1451 static void
1452 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1453 			    enum ieee80211_frame_release_type reason,
1454 			    struct sk_buff_head *frames,
1455 			    unsigned long *driver_release_tids)
1456 {
1457 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1458 	struct ieee80211_local *local = sdata->local;
1459 	int ac;
1460 
1461 	/* Get response frame(s) and more data bit for the last one. */
1462 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1463 		unsigned long tids;
1464 
1465 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1466 			continue;
1467 
1468 		tids = ieee80211_tids_for_ac(ac);
1469 
1470 		/* if we already have frames from software, then we can't also
1471 		 * release from hardware queues
1472 		 */
1473 		if (skb_queue_empty(frames)) {
1474 			*driver_release_tids |=
1475 				sta->driver_buffered_tids & tids;
1476 			*driver_release_tids |= sta->txq_buffered_tids & tids;
1477 		}
1478 
1479 		if (!*driver_release_tids) {
1480 			struct sk_buff *skb;
1481 
1482 			while (n_frames > 0) {
1483 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1484 				if (!skb) {
1485 					skb = skb_dequeue(
1486 						&sta->ps_tx_buf[ac]);
1487 					if (skb)
1488 						local->total_ps_buffered--;
1489 				}
1490 				if (!skb)
1491 					break;
1492 				n_frames--;
1493 				__skb_queue_tail(frames, skb);
1494 			}
1495 		}
1496 
1497 		/* If we have more frames buffered on this AC, then abort the
1498 		 * loop since we can't send more data from other ACs before
1499 		 * the buffered frames from this.
1500 		 */
1501 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1502 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1503 			break;
1504 	}
1505 }
1506 
1507 static void
1508 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1509 				  int n_frames, u8 ignored_acs,
1510 				  enum ieee80211_frame_release_type reason)
1511 {
1512 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1513 	struct ieee80211_local *local = sdata->local;
1514 	unsigned long driver_release_tids = 0;
1515 	struct sk_buff_head frames;
1516 	bool more_data;
1517 
1518 	/* Service or PS-Poll period starts */
1519 	set_sta_flag(sta, WLAN_STA_SP);
1520 
1521 	__skb_queue_head_init(&frames);
1522 
1523 	ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1524 				    &frames, &driver_release_tids);
1525 
1526 	more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1527 
1528 	if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1529 		driver_release_tids =
1530 			BIT(find_highest_prio_tid(driver_release_tids));
1531 
1532 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1533 		int tid, ac;
1534 
1535 		/*
1536 		 * For PS-Poll, this can only happen due to a race condition
1537 		 * when we set the TIM bit and the station notices it, but
1538 		 * before it can poll for the frame we expire it.
1539 		 *
1540 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1541 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1542 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1543 		 *	more than the value specified in the Max SP Length field
1544 		 *	in the QoS Capability element from delivery-enabled ACs,
1545 		 *	that are destined for the non-AP STA.
1546 		 *
1547 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1548 		 */
1549 
1550 		/* This will evaluate to 1, 3, 5 or 7. */
1551 		for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1552 			if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1553 				break;
1554 		tid = 7 - 2 * ac;
1555 
1556 		ieee80211_send_null_response(sta, tid, reason, true, false);
1557 	} else if (!driver_release_tids) {
1558 		struct sk_buff_head pending;
1559 		struct sk_buff *skb;
1560 		int num = 0;
1561 		u16 tids = 0;
1562 		bool need_null = false;
1563 
1564 		skb_queue_head_init(&pending);
1565 
1566 		while ((skb = __skb_dequeue(&frames))) {
1567 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1568 			struct ieee80211_hdr *hdr = (void *) skb->data;
1569 			u8 *qoshdr = NULL;
1570 
1571 			num++;
1572 
1573 			/*
1574 			 * Tell TX path to send this frame even though the
1575 			 * STA may still remain is PS mode after this frame
1576 			 * exchange.
1577 			 */
1578 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1579 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1580 
1581 			/*
1582 			 * Use MoreData flag to indicate whether there are
1583 			 * more buffered frames for this STA
1584 			 */
1585 			if (more_data || !skb_queue_empty(&frames))
1586 				hdr->frame_control |=
1587 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1588 			else
1589 				hdr->frame_control &=
1590 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1591 
1592 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1593 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1594 				qoshdr = ieee80211_get_qos_ctl(hdr);
1595 
1596 			tids |= BIT(skb->priority);
1597 
1598 			__skb_queue_tail(&pending, skb);
1599 
1600 			/* end service period after last frame or add one */
1601 			if (!skb_queue_empty(&frames))
1602 				continue;
1603 
1604 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1605 				/* for PS-Poll, there's only one frame */
1606 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1607 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1608 				break;
1609 			}
1610 
1611 			/* For uAPSD, things are a bit more complicated. If the
1612 			 * last frame has a QoS header (i.e. is a QoS-data or
1613 			 * QoS-nulldata frame) then just set the EOSP bit there
1614 			 * and be done.
1615 			 * If the frame doesn't have a QoS header (which means
1616 			 * it should be a bufferable MMPDU) then we can't set
1617 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1618 			 * frame to the list to send it after the MMPDU.
1619 			 *
1620 			 * Note that this code is only in the mac80211-release
1621 			 * code path, we assume that the driver will not buffer
1622 			 * anything but QoS-data frames, or if it does, will
1623 			 * create the QoS-nulldata frame by itself if needed.
1624 			 *
1625 			 * Cf. 802.11-2012 10.2.1.10 (c).
1626 			 */
1627 			if (qoshdr) {
1628 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1629 
1630 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1631 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1632 			} else {
1633 				/* The standard isn't completely clear on this
1634 				 * as it says the more-data bit should be set
1635 				 * if there are more BUs. The QoS-Null frame
1636 				 * we're about to send isn't buffered yet, we
1637 				 * only create it below, but let's pretend it
1638 				 * was buffered just in case some clients only
1639 				 * expect more-data=0 when eosp=1.
1640 				 */
1641 				hdr->frame_control |=
1642 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1643 				need_null = true;
1644 				num++;
1645 			}
1646 			break;
1647 		}
1648 
1649 		drv_allow_buffered_frames(local, sta, tids, num,
1650 					  reason, more_data);
1651 
1652 		ieee80211_add_pending_skbs(local, &pending);
1653 
1654 		if (need_null)
1655 			ieee80211_send_null_response(
1656 				sta, find_highest_prio_tid(tids),
1657 				reason, false, false);
1658 
1659 		sta_info_recalc_tim(sta);
1660 	} else {
1661 		int tid;
1662 
1663 		/*
1664 		 * We need to release a frame that is buffered somewhere in the
1665 		 * driver ... it'll have to handle that.
1666 		 * Note that the driver also has to check the number of frames
1667 		 * on the TIDs we're releasing from - if there are more than
1668 		 * n_frames it has to set the more-data bit (if we didn't ask
1669 		 * it to set it anyway due to other buffered frames); if there
1670 		 * are fewer than n_frames it has to make sure to adjust that
1671 		 * to allow the service period to end properly.
1672 		 */
1673 		drv_release_buffered_frames(local, sta, driver_release_tids,
1674 					    n_frames, reason, more_data);
1675 
1676 		/*
1677 		 * Note that we don't recalculate the TIM bit here as it would
1678 		 * most likely have no effect at all unless the driver told us
1679 		 * that the TID(s) became empty before returning here from the
1680 		 * release function.
1681 		 * Either way, however, when the driver tells us that the TID(s)
1682 		 * became empty or we find that a txq became empty, we'll do the
1683 		 * TIM recalculation.
1684 		 */
1685 
1686 		if (!sta->sta.txq[0])
1687 			return;
1688 
1689 		for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1690 			if (!sta->sta.txq[tid] ||
1691 			    !(driver_release_tids & BIT(tid)) ||
1692 			    txq_has_queue(sta->sta.txq[tid]))
1693 				continue;
1694 
1695 			sta_info_recalc_tim(sta);
1696 			break;
1697 		}
1698 	}
1699 }
1700 
1701 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1702 {
1703 	u8 ignore_for_response = sta->sta.uapsd_queues;
1704 
1705 	/*
1706 	 * If all ACs are delivery-enabled then we should reply
1707 	 * from any of them, if only some are enabled we reply
1708 	 * only from the non-enabled ones.
1709 	 */
1710 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1711 		ignore_for_response = 0;
1712 
1713 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1714 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1715 }
1716 
1717 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1718 {
1719 	int n_frames = sta->sta.max_sp;
1720 	u8 delivery_enabled = sta->sta.uapsd_queues;
1721 
1722 	/*
1723 	 * If we ever grow support for TSPEC this might happen if
1724 	 * the TSPEC update from hostapd comes in between a trigger
1725 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1726 	 * actually getting called.
1727 	 */
1728 	if (!delivery_enabled)
1729 		return;
1730 
1731 	switch (sta->sta.max_sp) {
1732 	case 1:
1733 		n_frames = 2;
1734 		break;
1735 	case 2:
1736 		n_frames = 4;
1737 		break;
1738 	case 3:
1739 		n_frames = 6;
1740 		break;
1741 	case 0:
1742 		/* XXX: what is a good value? */
1743 		n_frames = 128;
1744 		break;
1745 	}
1746 
1747 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1748 					  IEEE80211_FRAME_RELEASE_UAPSD);
1749 }
1750 
1751 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1752 			       struct ieee80211_sta *pubsta, bool block)
1753 {
1754 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1755 
1756 	trace_api_sta_block_awake(sta->local, pubsta, block);
1757 
1758 	if (block) {
1759 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1760 		ieee80211_clear_fast_xmit(sta);
1761 		return;
1762 	}
1763 
1764 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1765 		return;
1766 
1767 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1768 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1769 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1770 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1771 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1772 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
1773 		/* must be asleep in this case */
1774 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1775 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1776 	} else {
1777 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1778 		ieee80211_check_fast_xmit(sta);
1779 	}
1780 }
1781 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1782 
1783 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1784 {
1785 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1786 	struct ieee80211_local *local = sta->local;
1787 
1788 	trace_api_eosp(local, pubsta);
1789 
1790 	clear_sta_flag(sta, WLAN_STA_SP);
1791 }
1792 EXPORT_SYMBOL(ieee80211_sta_eosp);
1793 
1794 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1795 {
1796 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1797 	enum ieee80211_frame_release_type reason;
1798 	bool more_data;
1799 
1800 	trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1801 
1802 	reason = IEEE80211_FRAME_RELEASE_UAPSD;
1803 	more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1804 					       reason, 0);
1805 
1806 	ieee80211_send_null_response(sta, tid, reason, false, more_data);
1807 }
1808 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1809 
1810 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1811 				u8 tid, bool buffered)
1812 {
1813 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1814 
1815 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1816 		return;
1817 
1818 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1819 
1820 	if (buffered)
1821 		set_bit(tid, &sta->driver_buffered_tids);
1822 	else
1823 		clear_bit(tid, &sta->driver_buffered_tids);
1824 
1825 	sta_info_recalc_tim(sta);
1826 }
1827 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1828 
1829 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1830 				    u32 tx_airtime, u32 rx_airtime)
1831 {
1832 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1833 	struct ieee80211_local *local = sta->sdata->local;
1834 	u8 ac = ieee80211_ac_from_tid(tid);
1835 	u32 airtime = 0;
1836 
1837 	if (sta->local->airtime_flags & AIRTIME_USE_TX)
1838 		airtime += tx_airtime;
1839 	if (sta->local->airtime_flags & AIRTIME_USE_RX)
1840 		airtime += rx_airtime;
1841 
1842 	spin_lock_bh(&local->active_txq_lock[ac]);
1843 	sta->airtime[ac].tx_airtime += tx_airtime;
1844 	sta->airtime[ac].rx_airtime += rx_airtime;
1845 	sta->airtime[ac].deficit -= airtime;
1846 	spin_unlock_bh(&local->active_txq_lock[ac]);
1847 }
1848 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1849 
1850 int sta_info_move_state(struct sta_info *sta,
1851 			enum ieee80211_sta_state new_state)
1852 {
1853 	might_sleep();
1854 
1855 	if (sta->sta_state == new_state)
1856 		return 0;
1857 
1858 	/* check allowed transitions first */
1859 
1860 	switch (new_state) {
1861 	case IEEE80211_STA_NONE:
1862 		if (sta->sta_state != IEEE80211_STA_AUTH)
1863 			return -EINVAL;
1864 		break;
1865 	case IEEE80211_STA_AUTH:
1866 		if (sta->sta_state != IEEE80211_STA_NONE &&
1867 		    sta->sta_state != IEEE80211_STA_ASSOC)
1868 			return -EINVAL;
1869 		break;
1870 	case IEEE80211_STA_ASSOC:
1871 		if (sta->sta_state != IEEE80211_STA_AUTH &&
1872 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
1873 			return -EINVAL;
1874 		break;
1875 	case IEEE80211_STA_AUTHORIZED:
1876 		if (sta->sta_state != IEEE80211_STA_ASSOC)
1877 			return -EINVAL;
1878 		break;
1879 	default:
1880 		WARN(1, "invalid state %d", new_state);
1881 		return -EINVAL;
1882 	}
1883 
1884 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1885 		sta->sta.addr, new_state);
1886 
1887 	/*
1888 	 * notify the driver before the actual changes so it can
1889 	 * fail the transition
1890 	 */
1891 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1892 		int err = drv_sta_state(sta->local, sta->sdata, sta,
1893 					sta->sta_state, new_state);
1894 		if (err)
1895 			return err;
1896 	}
1897 
1898 	/* reflect the change in all state variables */
1899 
1900 	switch (new_state) {
1901 	case IEEE80211_STA_NONE:
1902 		if (sta->sta_state == IEEE80211_STA_AUTH)
1903 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
1904 		break;
1905 	case IEEE80211_STA_AUTH:
1906 		if (sta->sta_state == IEEE80211_STA_NONE) {
1907 			set_bit(WLAN_STA_AUTH, &sta->_flags);
1908 		} else if (sta->sta_state == IEEE80211_STA_ASSOC) {
1909 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1910 			ieee80211_recalc_min_chandef(sta->sdata);
1911 			if (!sta->sta.support_p2p_ps)
1912 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1913 		}
1914 		break;
1915 	case IEEE80211_STA_ASSOC:
1916 		if (sta->sta_state == IEEE80211_STA_AUTH) {
1917 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
1918 			ieee80211_recalc_min_chandef(sta->sdata);
1919 			if (!sta->sta.support_p2p_ps)
1920 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1921 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1922 			ieee80211_vif_dec_num_mcast(sta->sdata);
1923 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1924 			ieee80211_clear_fast_xmit(sta);
1925 			ieee80211_clear_fast_rx(sta);
1926 		}
1927 		break;
1928 	case IEEE80211_STA_AUTHORIZED:
1929 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
1930 			ieee80211_vif_inc_num_mcast(sta->sdata);
1931 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1932 			ieee80211_check_fast_xmit(sta);
1933 			ieee80211_check_fast_rx(sta);
1934 		}
1935 		break;
1936 	default:
1937 		break;
1938 	}
1939 
1940 	sta->sta_state = new_state;
1941 
1942 	return 0;
1943 }
1944 
1945 u8 sta_info_tx_streams(struct sta_info *sta)
1946 {
1947 	struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1948 	u8 rx_streams;
1949 
1950 	if (!sta->sta.ht_cap.ht_supported)
1951 		return 1;
1952 
1953 	if (sta->sta.vht_cap.vht_supported) {
1954 		int i;
1955 		u16 tx_mcs_map =
1956 			le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1957 
1958 		for (i = 7; i >= 0; i--)
1959 			if ((tx_mcs_map & (0x3 << (i * 2))) !=
1960 			    IEEE80211_VHT_MCS_NOT_SUPPORTED)
1961 				return i + 1;
1962 	}
1963 
1964 	if (ht_cap->mcs.rx_mask[3])
1965 		rx_streams = 4;
1966 	else if (ht_cap->mcs.rx_mask[2])
1967 		rx_streams = 3;
1968 	else if (ht_cap->mcs.rx_mask[1])
1969 		rx_streams = 2;
1970 	else
1971 		rx_streams = 1;
1972 
1973 	if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1974 		return rx_streams;
1975 
1976 	return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1977 			>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
1978 }
1979 
1980 static struct ieee80211_sta_rx_stats *
1981 sta_get_last_rx_stats(struct sta_info *sta)
1982 {
1983 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
1984 	struct ieee80211_local *local = sta->local;
1985 	int cpu;
1986 
1987 	if (!ieee80211_hw_check(&local->hw, USES_RSS))
1988 		return stats;
1989 
1990 	for_each_possible_cpu(cpu) {
1991 		struct ieee80211_sta_rx_stats *cpustats;
1992 
1993 		cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
1994 
1995 		if (time_after(cpustats->last_rx, stats->last_rx))
1996 			stats = cpustats;
1997 	}
1998 
1999 	return stats;
2000 }
2001 
2002 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2003 				  struct rate_info *rinfo)
2004 {
2005 	rinfo->bw = STA_STATS_GET(BW, rate);
2006 
2007 	switch (STA_STATS_GET(TYPE, rate)) {
2008 	case STA_STATS_RATE_TYPE_VHT:
2009 		rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2010 		rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2011 		rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2012 		if (STA_STATS_GET(SGI, rate))
2013 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2014 		break;
2015 	case STA_STATS_RATE_TYPE_HT:
2016 		rinfo->flags = RATE_INFO_FLAGS_MCS;
2017 		rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2018 		if (STA_STATS_GET(SGI, rate))
2019 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2020 		break;
2021 	case STA_STATS_RATE_TYPE_LEGACY: {
2022 		struct ieee80211_supported_band *sband;
2023 		u16 brate;
2024 		unsigned int shift;
2025 		int band = STA_STATS_GET(LEGACY_BAND, rate);
2026 		int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2027 
2028 		sband = local->hw.wiphy->bands[band];
2029 		brate = sband->bitrates[rate_idx].bitrate;
2030 		if (rinfo->bw == RATE_INFO_BW_5)
2031 			shift = 2;
2032 		else if (rinfo->bw == RATE_INFO_BW_10)
2033 			shift = 1;
2034 		else
2035 			shift = 0;
2036 		rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2037 		break;
2038 		}
2039 	case STA_STATS_RATE_TYPE_HE:
2040 		rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2041 		rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2042 		rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2043 		rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2044 		rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2045 		rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2046 		break;
2047 	}
2048 }
2049 
2050 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2051 {
2052 	u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2053 
2054 	if (rate == STA_STATS_RATE_INVALID)
2055 		return -EINVAL;
2056 
2057 	sta_stats_decode_rate(sta->local, rate, rinfo);
2058 	return 0;
2059 }
2060 
2061 static void sta_set_tidstats(struct sta_info *sta,
2062 			     struct cfg80211_tid_stats *tidstats,
2063 			     int tid)
2064 {
2065 	struct ieee80211_local *local = sta->local;
2066 
2067 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2068 		unsigned int start;
2069 
2070 		do {
2071 			start = u64_stats_fetch_begin(&sta->rx_stats.syncp);
2072 			tidstats->rx_msdu = sta->rx_stats.msdu[tid];
2073 		} while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start));
2074 
2075 		tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2076 	}
2077 
2078 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2079 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2080 		tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2081 	}
2082 
2083 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2084 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2085 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2086 		tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2087 	}
2088 
2089 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2090 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2091 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2092 		tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2093 	}
2094 
2095 	if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2096 		spin_lock_bh(&local->fq.lock);
2097 		rcu_read_lock();
2098 
2099 		tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2100 		ieee80211_fill_txq_stats(&tidstats->txq_stats,
2101 					 to_txq_info(sta->sta.txq[tid]));
2102 
2103 		rcu_read_unlock();
2104 		spin_unlock_bh(&local->fq.lock);
2105 	}
2106 }
2107 
2108 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2109 {
2110 	unsigned int start;
2111 	u64 value;
2112 
2113 	do {
2114 		start = u64_stats_fetch_begin(&rxstats->syncp);
2115 		value = rxstats->bytes;
2116 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2117 
2118 	return value;
2119 }
2120 
2121 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2122 		   bool tidstats)
2123 {
2124 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2125 	struct ieee80211_local *local = sdata->local;
2126 	u32 thr = 0;
2127 	int i, ac, cpu;
2128 	struct ieee80211_sta_rx_stats *last_rxstats;
2129 
2130 	last_rxstats = sta_get_last_rx_stats(sta);
2131 
2132 	sinfo->generation = sdata->local->sta_generation;
2133 
2134 	/* do before driver, so beacon filtering drivers have a
2135 	 * chance to e.g. just add the number of filtered beacons
2136 	 * (or just modify the value entirely, of course)
2137 	 */
2138 	if (sdata->vif.type == NL80211_IFTYPE_STATION)
2139 		sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2140 
2141 	drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2142 
2143 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2144 			 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2145 			 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2146 			 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2147 			 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2148 
2149 	if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2150 		sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2151 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2152 	}
2153 
2154 	sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2155 	sinfo->inactive_time =
2156 		jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2157 
2158 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2159 			       BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2160 		sinfo->tx_bytes = 0;
2161 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2162 			sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2163 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2164 	}
2165 
2166 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2167 		sinfo->tx_packets = 0;
2168 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2169 			sinfo->tx_packets += sta->tx_stats.packets[ac];
2170 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2171 	}
2172 
2173 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2174 			       BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2175 		sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2176 
2177 		if (sta->pcpu_rx_stats) {
2178 			for_each_possible_cpu(cpu) {
2179 				struct ieee80211_sta_rx_stats *cpurxs;
2180 
2181 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2182 				sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2183 			}
2184 		}
2185 
2186 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2187 	}
2188 
2189 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2190 		sinfo->rx_packets = sta->rx_stats.packets;
2191 		if (sta->pcpu_rx_stats) {
2192 			for_each_possible_cpu(cpu) {
2193 				struct ieee80211_sta_rx_stats *cpurxs;
2194 
2195 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2196 				sinfo->rx_packets += cpurxs->packets;
2197 			}
2198 		}
2199 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2200 	}
2201 
2202 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2203 		sinfo->tx_retries = sta->status_stats.retry_count;
2204 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2205 	}
2206 
2207 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2208 		sinfo->tx_failed = sta->status_stats.retry_failed;
2209 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2210 	}
2211 
2212 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2213 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2214 			sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2215 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2216 	}
2217 
2218 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2219 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2220 			sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2221 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2222 	}
2223 
2224 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2225 		sinfo->airtime_weight = sta->airtime_weight;
2226 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2227 	}
2228 
2229 	sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2230 	if (sta->pcpu_rx_stats) {
2231 		for_each_possible_cpu(cpu) {
2232 			struct ieee80211_sta_rx_stats *cpurxs;
2233 
2234 			cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2235 			sinfo->rx_dropped_misc += cpurxs->dropped;
2236 		}
2237 	}
2238 
2239 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2240 	    !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2241 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2242 				 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2243 		sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2244 	}
2245 
2246 	if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2247 	    ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2248 		if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2249 			sinfo->signal = (s8)last_rxstats->last_signal;
2250 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2251 		}
2252 
2253 		if (!sta->pcpu_rx_stats &&
2254 		    !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2255 			sinfo->signal_avg =
2256 				-ewma_signal_read(&sta->rx_stats_avg.signal);
2257 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2258 		}
2259 	}
2260 
2261 	/* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2262 	 * the sta->rx_stats struct, so the check here is fine with and without
2263 	 * pcpu statistics
2264 	 */
2265 	if (last_rxstats->chains &&
2266 	    !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2267 			       BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2268 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2269 		if (!sta->pcpu_rx_stats)
2270 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2271 
2272 		sinfo->chains = last_rxstats->chains;
2273 
2274 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2275 			sinfo->chain_signal[i] =
2276 				last_rxstats->chain_signal_last[i];
2277 			sinfo->chain_signal_avg[i] =
2278 				-ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2279 		}
2280 	}
2281 
2282 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2283 		sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2284 				     &sinfo->txrate);
2285 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2286 	}
2287 
2288 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2289 		if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2290 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2291 	}
2292 
2293 	if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2294 		for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2295 			sta_set_tidstats(sta, &sinfo->pertid[i], i);
2296 	}
2297 
2298 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2299 #ifdef CONFIG_MAC80211_MESH
2300 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2301 				 BIT_ULL(NL80211_STA_INFO_PLID) |
2302 				 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2303 				 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2304 				 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2305 				 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2306 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE);
2307 
2308 		sinfo->llid = sta->mesh->llid;
2309 		sinfo->plid = sta->mesh->plid;
2310 		sinfo->plink_state = sta->mesh->plink_state;
2311 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2312 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2313 			sinfo->t_offset = sta->mesh->t_offset;
2314 		}
2315 		sinfo->local_pm = sta->mesh->local_pm;
2316 		sinfo->peer_pm = sta->mesh->peer_pm;
2317 		sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2318 		sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2319 #endif
2320 	}
2321 
2322 	sinfo->bss_param.flags = 0;
2323 	if (sdata->vif.bss_conf.use_cts_prot)
2324 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2325 	if (sdata->vif.bss_conf.use_short_preamble)
2326 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2327 	if (sdata->vif.bss_conf.use_short_slot)
2328 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2329 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2330 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2331 
2332 	sinfo->sta_flags.set = 0;
2333 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2334 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2335 				BIT(NL80211_STA_FLAG_WME) |
2336 				BIT(NL80211_STA_FLAG_MFP) |
2337 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2338 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
2339 				BIT(NL80211_STA_FLAG_TDLS_PEER);
2340 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2341 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2342 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2343 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2344 	if (sta->sta.wme)
2345 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2346 	if (test_sta_flag(sta, WLAN_STA_MFP))
2347 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2348 	if (test_sta_flag(sta, WLAN_STA_AUTH))
2349 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2350 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
2351 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2352 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2353 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2354 
2355 	thr = sta_get_expected_throughput(sta);
2356 
2357 	if (thr != 0) {
2358 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2359 		sinfo->expected_throughput = thr;
2360 	}
2361 
2362 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2363 	    sta->status_stats.ack_signal_filled) {
2364 		sinfo->ack_signal = sta->status_stats.last_ack_signal;
2365 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2366 	}
2367 
2368 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2369 	    sta->status_stats.ack_signal_filled) {
2370 		sinfo->avg_ack_signal =
2371 			-(s8)ewma_avg_signal_read(
2372 				&sta->status_stats.avg_ack_signal);
2373 		sinfo->filled |=
2374 			BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2375 	}
2376 }
2377 
2378 u32 sta_get_expected_throughput(struct sta_info *sta)
2379 {
2380 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2381 	struct ieee80211_local *local = sdata->local;
2382 	struct rate_control_ref *ref = NULL;
2383 	u32 thr = 0;
2384 
2385 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2386 		ref = local->rate_ctrl;
2387 
2388 	/* check if the driver has a SW RC implementation */
2389 	if (ref && ref->ops->get_expected_throughput)
2390 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2391 	else
2392 		thr = drv_get_expected_throughput(local, sta);
2393 
2394 	return thr;
2395 }
2396 
2397 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2398 {
2399 	struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2400 
2401 	if (time_after(stats->last_rx, sta->status_stats.last_ack))
2402 		return stats->last_rx;
2403 	return sta->status_stats.last_ack;
2404 }
2405 
2406 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2407 {
2408 	if (!sta->sdata->local->ops->wake_tx_queue)
2409 		return;
2410 
2411 	if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2412 		sta->cparams.target = MS2TIME(50);
2413 		sta->cparams.interval = MS2TIME(300);
2414 		sta->cparams.ecn = false;
2415 	} else {
2416 		sta->cparams.target = MS2TIME(20);
2417 		sta->cparams.interval = MS2TIME(100);
2418 		sta->cparams.ecn = true;
2419 	}
2420 }
2421 
2422 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2423 					   u32 thr)
2424 {
2425 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2426 
2427 	sta_update_codel_params(sta, thr);
2428 }
2429