xref: /openbmc/linux/net/mac80211/sta_info.c (revision be78b59e)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
4  * Copyright 2013-2014  Intel Mobile Communications GmbH
5  * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/etherdevice.h>
15 #include <linux/netdevice.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/skbuff.h>
19 #include <linux/if_arp.h>
20 #include <linux/timer.h>
21 #include <linux/rtnetlink.h>
22 
23 #include <net/mac80211.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "rate.h"
27 #include "sta_info.h"
28 #include "debugfs_sta.h"
29 #include "mesh.h"
30 #include "wme.h"
31 
32 /**
33  * DOC: STA information lifetime rules
34  *
35  * STA info structures (&struct sta_info) are managed in a hash table
36  * for faster lookup and a list for iteration. They are managed using
37  * RCU, i.e. access to the list and hash table is protected by RCU.
38  *
39  * Upon allocating a STA info structure with sta_info_alloc(), the caller
40  * owns that structure. It must then insert it into the hash table using
41  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
42  * case (which acquires an rcu read section but must not be called from
43  * within one) will the pointer still be valid after the call. Note that
44  * the caller may not do much with the STA info before inserting it, in
45  * particular, it may not start any mesh peer link management or add
46  * encryption keys.
47  *
48  * When the insertion fails (sta_info_insert()) returns non-zero), the
49  * structure will have been freed by sta_info_insert()!
50  *
51  * Station entries are added by mac80211 when you establish a link with a
52  * peer. This means different things for the different type of interfaces
53  * we support. For a regular station this mean we add the AP sta when we
54  * receive an association response from the AP. For IBSS this occurs when
55  * get to know about a peer on the same IBSS. For WDS we add the sta for
56  * the peer immediately upon device open. When using AP mode we add stations
57  * for each respective station upon request from userspace through nl80211.
58  *
59  * In order to remove a STA info structure, various sta_info_destroy_*()
60  * calls are available.
61  *
62  * There is no concept of ownership on a STA entry, each structure is
63  * owned by the global hash table/list until it is removed. All users of
64  * the structure need to be RCU protected so that the structure won't be
65  * freed before they are done using it.
66  */
67 
68 static const struct rhashtable_params sta_rht_params = {
69 	.nelem_hint = 3, /* start small */
70 	.automatic_shrinking = true,
71 	.head_offset = offsetof(struct sta_info, hash_node),
72 	.key_offset = offsetof(struct sta_info, addr),
73 	.key_len = ETH_ALEN,
74 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
75 };
76 
77 /* Caller must hold local->sta_mtx */
78 static int sta_info_hash_del(struct ieee80211_local *local,
79 			     struct sta_info *sta)
80 {
81 	return rhltable_remove(&local->sta_hash, &sta->hash_node,
82 			       sta_rht_params);
83 }
84 
85 static void __cleanup_single_sta(struct sta_info *sta)
86 {
87 	int ac, i;
88 	struct tid_ampdu_tx *tid_tx;
89 	struct ieee80211_sub_if_data *sdata = sta->sdata;
90 	struct ieee80211_local *local = sdata->local;
91 	struct fq *fq = &local->fq;
92 	struct ps_data *ps;
93 
94 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
95 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
96 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
97 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
98 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
99 			ps = &sdata->bss->ps;
100 		else if (ieee80211_vif_is_mesh(&sdata->vif))
101 			ps = &sdata->u.mesh.ps;
102 		else
103 			return;
104 
105 		clear_sta_flag(sta, WLAN_STA_PS_STA);
106 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
107 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
108 
109 		atomic_dec(&ps->num_sta_ps);
110 	}
111 
112 	if (sta->sta.txq[0]) {
113 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
114 			struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
115 
116 			spin_lock_bh(&fq->lock);
117 			ieee80211_txq_purge(local, txqi);
118 			spin_unlock_bh(&fq->lock);
119 		}
120 	}
121 
122 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
123 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
124 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
125 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
126 	}
127 
128 	if (ieee80211_vif_is_mesh(&sdata->vif))
129 		mesh_sta_cleanup(sta);
130 
131 	cancel_work_sync(&sta->drv_deliver_wk);
132 
133 	/*
134 	 * Destroy aggregation state here. It would be nice to wait for the
135 	 * driver to finish aggregation stop and then clean up, but for now
136 	 * drivers have to handle aggregation stop being requested, followed
137 	 * directly by station destruction.
138 	 */
139 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
140 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
141 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
142 		if (!tid_tx)
143 			continue;
144 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
145 		kfree(tid_tx);
146 	}
147 }
148 
149 static void cleanup_single_sta(struct sta_info *sta)
150 {
151 	struct ieee80211_sub_if_data *sdata = sta->sdata;
152 	struct ieee80211_local *local = sdata->local;
153 
154 	__cleanup_single_sta(sta);
155 	sta_info_free(local, sta);
156 }
157 
158 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
159 					 const u8 *addr)
160 {
161 	return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
162 }
163 
164 /* protected by RCU */
165 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
166 			      const u8 *addr)
167 {
168 	struct ieee80211_local *local = sdata->local;
169 	struct rhlist_head *tmp;
170 	struct sta_info *sta;
171 
172 	rcu_read_lock();
173 	for_each_sta_info(local, addr, sta, tmp) {
174 		if (sta->sdata == sdata) {
175 			rcu_read_unlock();
176 			/* this is safe as the caller must already hold
177 			 * another rcu read section or the mutex
178 			 */
179 			return sta;
180 		}
181 	}
182 	rcu_read_unlock();
183 	return NULL;
184 }
185 
186 /*
187  * Get sta info either from the specified interface
188  * or from one of its vlans
189  */
190 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
191 				  const u8 *addr)
192 {
193 	struct ieee80211_local *local = sdata->local;
194 	struct rhlist_head *tmp;
195 	struct sta_info *sta;
196 
197 	rcu_read_lock();
198 	for_each_sta_info(local, addr, sta, tmp) {
199 		if (sta->sdata == sdata ||
200 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
201 			rcu_read_unlock();
202 			/* this is safe as the caller must already hold
203 			 * another rcu read section or the mutex
204 			 */
205 			return sta;
206 		}
207 	}
208 	rcu_read_unlock();
209 	return NULL;
210 }
211 
212 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
213 				     int idx)
214 {
215 	struct ieee80211_local *local = sdata->local;
216 	struct sta_info *sta;
217 	int i = 0;
218 
219 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
220 		if (sdata != sta->sdata)
221 			continue;
222 		if (i < idx) {
223 			++i;
224 			continue;
225 		}
226 		return sta;
227 	}
228 
229 	return NULL;
230 }
231 
232 /**
233  * sta_info_free - free STA
234  *
235  * @local: pointer to the global information
236  * @sta: STA info to free
237  *
238  * This function must undo everything done by sta_info_alloc()
239  * that may happen before sta_info_insert(). It may only be
240  * called when sta_info_insert() has not been attempted (and
241  * if that fails, the station is freed anyway.)
242  */
243 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
244 {
245 	if (sta->rate_ctrl)
246 		rate_control_free_sta(sta);
247 
248 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
249 
250 	if (sta->sta.txq[0])
251 		kfree(to_txq_info(sta->sta.txq[0]));
252 	kfree(rcu_dereference_raw(sta->sta.rates));
253 #ifdef CONFIG_MAC80211_MESH
254 	kfree(sta->mesh);
255 #endif
256 	free_percpu(sta->pcpu_rx_stats);
257 	kfree(sta);
258 }
259 
260 /* Caller must hold local->sta_mtx */
261 static int sta_info_hash_add(struct ieee80211_local *local,
262 			     struct sta_info *sta)
263 {
264 	return rhltable_insert(&local->sta_hash, &sta->hash_node,
265 			       sta_rht_params);
266 }
267 
268 static void sta_deliver_ps_frames(struct work_struct *wk)
269 {
270 	struct sta_info *sta;
271 
272 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
273 
274 	if (sta->dead)
275 		return;
276 
277 	local_bh_disable();
278 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
279 		ieee80211_sta_ps_deliver_wakeup(sta);
280 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
281 		ieee80211_sta_ps_deliver_poll_response(sta);
282 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
283 		ieee80211_sta_ps_deliver_uapsd(sta);
284 	local_bh_enable();
285 }
286 
287 static int sta_prepare_rate_control(struct ieee80211_local *local,
288 				    struct sta_info *sta, gfp_t gfp)
289 {
290 	if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
291 		return 0;
292 
293 	sta->rate_ctrl = local->rate_ctrl;
294 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
295 						     sta, gfp);
296 	if (!sta->rate_ctrl_priv)
297 		return -ENOMEM;
298 
299 	return 0;
300 }
301 
302 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
303 				const u8 *addr, gfp_t gfp)
304 {
305 	struct ieee80211_local *local = sdata->local;
306 	struct ieee80211_hw *hw = &local->hw;
307 	struct sta_info *sta;
308 	int i;
309 
310 	sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
311 	if (!sta)
312 		return NULL;
313 
314 	if (ieee80211_hw_check(hw, USES_RSS)) {
315 		sta->pcpu_rx_stats =
316 			alloc_percpu(struct ieee80211_sta_rx_stats);
317 		if (!sta->pcpu_rx_stats)
318 			goto free;
319 	}
320 
321 	spin_lock_init(&sta->lock);
322 	spin_lock_init(&sta->ps_lock);
323 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
324 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
325 	mutex_init(&sta->ampdu_mlme.mtx);
326 #ifdef CONFIG_MAC80211_MESH
327 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
328 		sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
329 		if (!sta->mesh)
330 			goto free;
331 		spin_lock_init(&sta->mesh->plink_lock);
332 		if (ieee80211_vif_is_mesh(&sdata->vif) &&
333 		    !sdata->u.mesh.user_mpm)
334 			init_timer(&sta->mesh->plink_timer);
335 		sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
336 	}
337 #endif
338 
339 	memcpy(sta->addr, addr, ETH_ALEN);
340 	memcpy(sta->sta.addr, addr, ETH_ALEN);
341 	sta->sta.max_rx_aggregation_subframes =
342 		local->hw.max_rx_aggregation_subframes;
343 
344 	sta->local = local;
345 	sta->sdata = sdata;
346 	sta->rx_stats.last_rx = jiffies;
347 
348 	u64_stats_init(&sta->rx_stats.syncp);
349 
350 	sta->sta_state = IEEE80211_STA_NONE;
351 
352 	/* Mark TID as unreserved */
353 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
354 
355 	sta->last_connected = ktime_get_seconds();
356 	ewma_signal_init(&sta->rx_stats_avg.signal);
357 	for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
358 		ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
359 
360 	if (local->ops->wake_tx_queue) {
361 		void *txq_data;
362 		int size = sizeof(struct txq_info) +
363 			   ALIGN(hw->txq_data_size, sizeof(void *));
364 
365 		txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
366 		if (!txq_data)
367 			goto free;
368 
369 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
370 			struct txq_info *txq = txq_data + i * size;
371 
372 			ieee80211_txq_init(sdata, sta, txq, i);
373 		}
374 	}
375 
376 	if (sta_prepare_rate_control(local, sta, gfp))
377 		goto free_txq;
378 
379 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
380 		/*
381 		 * timer_to_tid must be initialized with identity mapping
382 		 * to enable session_timer's data differentiation. See
383 		 * sta_rx_agg_session_timer_expired for usage.
384 		 */
385 		sta->timer_to_tid[i] = i;
386 	}
387 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
388 		skb_queue_head_init(&sta->ps_tx_buf[i]);
389 		skb_queue_head_init(&sta->tx_filtered[i]);
390 	}
391 
392 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
393 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
394 
395 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
396 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
397 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
398 		struct ieee80211_supported_band *sband;
399 		u8 smps;
400 
401 		sband = ieee80211_get_sband(sdata);
402 		if (!sband)
403 			goto free_txq;
404 
405 		smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
406 			IEEE80211_HT_CAP_SM_PS_SHIFT;
407 		/*
408 		 * Assume that hostapd advertises our caps in the beacon and
409 		 * this is the known_smps_mode for a station that just assciated
410 		 */
411 		switch (smps) {
412 		case WLAN_HT_SMPS_CONTROL_DISABLED:
413 			sta->known_smps_mode = IEEE80211_SMPS_OFF;
414 			break;
415 		case WLAN_HT_SMPS_CONTROL_STATIC:
416 			sta->known_smps_mode = IEEE80211_SMPS_STATIC;
417 			break;
418 		case WLAN_HT_SMPS_CONTROL_DYNAMIC:
419 			sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
420 			break;
421 		default:
422 			WARN_ON(1);
423 		}
424 	}
425 
426 	sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
427 
428 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
429 
430 	return sta;
431 
432 free_txq:
433 	if (sta->sta.txq[0])
434 		kfree(to_txq_info(sta->sta.txq[0]));
435 free:
436 #ifdef CONFIG_MAC80211_MESH
437 	kfree(sta->mesh);
438 #endif
439 	kfree(sta);
440 	return NULL;
441 }
442 
443 static int sta_info_insert_check(struct sta_info *sta)
444 {
445 	struct ieee80211_sub_if_data *sdata = sta->sdata;
446 
447 	/*
448 	 * Can't be a WARN_ON because it can be triggered through a race:
449 	 * something inserts a STA (on one CPU) without holding the RTNL
450 	 * and another CPU turns off the net device.
451 	 */
452 	if (unlikely(!ieee80211_sdata_running(sdata)))
453 		return -ENETDOWN;
454 
455 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
456 		    is_multicast_ether_addr(sta->sta.addr)))
457 		return -EINVAL;
458 
459 	/* The RCU read lock is required by rhashtable due to
460 	 * asynchronous resize/rehash.  We also require the mutex
461 	 * for correctness.
462 	 */
463 	rcu_read_lock();
464 	lockdep_assert_held(&sdata->local->sta_mtx);
465 	if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
466 	    ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
467 		rcu_read_unlock();
468 		return -ENOTUNIQ;
469 	}
470 	rcu_read_unlock();
471 
472 	return 0;
473 }
474 
475 static int sta_info_insert_drv_state(struct ieee80211_local *local,
476 				     struct ieee80211_sub_if_data *sdata,
477 				     struct sta_info *sta)
478 {
479 	enum ieee80211_sta_state state;
480 	int err = 0;
481 
482 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
483 		err = drv_sta_state(local, sdata, sta, state, state + 1);
484 		if (err)
485 			break;
486 	}
487 
488 	if (!err) {
489 		/*
490 		 * Drivers using legacy sta_add/sta_remove callbacks only
491 		 * get uploaded set to true after sta_add is called.
492 		 */
493 		if (!local->ops->sta_add)
494 			sta->uploaded = true;
495 		return 0;
496 	}
497 
498 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
499 		sdata_info(sdata,
500 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
501 			   sta->sta.addr, state + 1, err);
502 		err = 0;
503 	}
504 
505 	/* unwind on error */
506 	for (; state > IEEE80211_STA_NOTEXIST; state--)
507 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
508 
509 	return err;
510 }
511 
512 /*
513  * should be called with sta_mtx locked
514  * this function replaces the mutex lock
515  * with a RCU lock
516  */
517 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
518 {
519 	struct ieee80211_local *local = sta->local;
520 	struct ieee80211_sub_if_data *sdata = sta->sdata;
521 	struct station_info *sinfo = NULL;
522 	int err = 0;
523 
524 	lockdep_assert_held(&local->sta_mtx);
525 
526 	/* check if STA exists already */
527 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
528 		err = -EEXIST;
529 		goto out_err;
530 	}
531 
532 	sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
533 	if (!sinfo) {
534 		err = -ENOMEM;
535 		goto out_err;
536 	}
537 
538 	local->num_sta++;
539 	local->sta_generation++;
540 	smp_mb();
541 
542 	/* simplify things and don't accept BA sessions yet */
543 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
544 
545 	/* make the station visible */
546 	err = sta_info_hash_add(local, sta);
547 	if (err)
548 		goto out_drop_sta;
549 
550 	list_add_tail_rcu(&sta->list, &local->sta_list);
551 
552 	/* notify driver */
553 	err = sta_info_insert_drv_state(local, sdata, sta);
554 	if (err)
555 		goto out_remove;
556 
557 	set_sta_flag(sta, WLAN_STA_INSERTED);
558 	/* accept BA sessions now */
559 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
560 
561 	ieee80211_sta_debugfs_add(sta);
562 	rate_control_add_sta_debugfs(sta);
563 
564 	sinfo->generation = local->sta_generation;
565 	cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
566 	kfree(sinfo);
567 
568 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
569 
570 	/* move reference to rcu-protected */
571 	rcu_read_lock();
572 	mutex_unlock(&local->sta_mtx);
573 
574 	if (ieee80211_vif_is_mesh(&sdata->vif))
575 		mesh_accept_plinks_update(sdata);
576 
577 	return 0;
578  out_remove:
579 	sta_info_hash_del(local, sta);
580 	list_del_rcu(&sta->list);
581  out_drop_sta:
582 	local->num_sta--;
583 	synchronize_net();
584 	__cleanup_single_sta(sta);
585  out_err:
586 	mutex_unlock(&local->sta_mtx);
587 	kfree(sinfo);
588 	rcu_read_lock();
589 	return err;
590 }
591 
592 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
593 {
594 	struct ieee80211_local *local = sta->local;
595 	int err;
596 
597 	might_sleep();
598 
599 	mutex_lock(&local->sta_mtx);
600 
601 	err = sta_info_insert_check(sta);
602 	if (err) {
603 		mutex_unlock(&local->sta_mtx);
604 		rcu_read_lock();
605 		goto out_free;
606 	}
607 
608 	err = sta_info_insert_finish(sta);
609 	if (err)
610 		goto out_free;
611 
612 	return 0;
613  out_free:
614 	sta_info_free(local, sta);
615 	return err;
616 }
617 
618 int sta_info_insert(struct sta_info *sta)
619 {
620 	int err = sta_info_insert_rcu(sta);
621 
622 	rcu_read_unlock();
623 
624 	return err;
625 }
626 
627 static inline void __bss_tim_set(u8 *tim, u16 id)
628 {
629 	/*
630 	 * This format has been mandated by the IEEE specifications,
631 	 * so this line may not be changed to use the __set_bit() format.
632 	 */
633 	tim[id / 8] |= (1 << (id % 8));
634 }
635 
636 static inline void __bss_tim_clear(u8 *tim, u16 id)
637 {
638 	/*
639 	 * This format has been mandated by the IEEE specifications,
640 	 * so this line may not be changed to use the __clear_bit() format.
641 	 */
642 	tim[id / 8] &= ~(1 << (id % 8));
643 }
644 
645 static inline bool __bss_tim_get(u8 *tim, u16 id)
646 {
647 	/*
648 	 * This format has been mandated by the IEEE specifications,
649 	 * so this line may not be changed to use the test_bit() format.
650 	 */
651 	return tim[id / 8] & (1 << (id % 8));
652 }
653 
654 static unsigned long ieee80211_tids_for_ac(int ac)
655 {
656 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
657 	switch (ac) {
658 	case IEEE80211_AC_VO:
659 		return BIT(6) | BIT(7);
660 	case IEEE80211_AC_VI:
661 		return BIT(4) | BIT(5);
662 	case IEEE80211_AC_BE:
663 		return BIT(0) | BIT(3);
664 	case IEEE80211_AC_BK:
665 		return BIT(1) | BIT(2);
666 	default:
667 		WARN_ON(1);
668 		return 0;
669 	}
670 }
671 
672 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
673 {
674 	struct ieee80211_local *local = sta->local;
675 	struct ps_data *ps;
676 	bool indicate_tim = false;
677 	u8 ignore_for_tim = sta->sta.uapsd_queues;
678 	int ac;
679 	u16 id = sta->sta.aid;
680 
681 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
682 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
683 		if (WARN_ON_ONCE(!sta->sdata->bss))
684 			return;
685 
686 		ps = &sta->sdata->bss->ps;
687 #ifdef CONFIG_MAC80211_MESH
688 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
689 		ps = &sta->sdata->u.mesh.ps;
690 #endif
691 	} else {
692 		return;
693 	}
694 
695 	/* No need to do anything if the driver does all */
696 	if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
697 		return;
698 
699 	if (sta->dead)
700 		goto done;
701 
702 	/*
703 	 * If all ACs are delivery-enabled then we should build
704 	 * the TIM bit for all ACs anyway; if only some are then
705 	 * we ignore those and build the TIM bit using only the
706 	 * non-enabled ones.
707 	 */
708 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
709 		ignore_for_tim = 0;
710 
711 	if (ignore_pending)
712 		ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
713 
714 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
715 		unsigned long tids;
716 
717 		if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
718 			continue;
719 
720 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
721 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
722 		if (indicate_tim)
723 			break;
724 
725 		tids = ieee80211_tids_for_ac(ac);
726 
727 		indicate_tim |=
728 			sta->driver_buffered_tids & tids;
729 		indicate_tim |=
730 			sta->txq_buffered_tids & tids;
731 	}
732 
733  done:
734 	spin_lock_bh(&local->tim_lock);
735 
736 	if (indicate_tim == __bss_tim_get(ps->tim, id))
737 		goto out_unlock;
738 
739 	if (indicate_tim)
740 		__bss_tim_set(ps->tim, id);
741 	else
742 		__bss_tim_clear(ps->tim, id);
743 
744 	if (local->ops->set_tim && !WARN_ON(sta->dead)) {
745 		local->tim_in_locked_section = true;
746 		drv_set_tim(local, &sta->sta, indicate_tim);
747 		local->tim_in_locked_section = false;
748 	}
749 
750 out_unlock:
751 	spin_unlock_bh(&local->tim_lock);
752 }
753 
754 void sta_info_recalc_tim(struct sta_info *sta)
755 {
756 	__sta_info_recalc_tim(sta, false);
757 }
758 
759 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
760 {
761 	struct ieee80211_tx_info *info;
762 	int timeout;
763 
764 	if (!skb)
765 		return false;
766 
767 	info = IEEE80211_SKB_CB(skb);
768 
769 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
770 	timeout = (sta->listen_interval *
771 		   sta->sdata->vif.bss_conf.beacon_int *
772 		   32 / 15625) * HZ;
773 	if (timeout < STA_TX_BUFFER_EXPIRE)
774 		timeout = STA_TX_BUFFER_EXPIRE;
775 	return time_after(jiffies, info->control.jiffies + timeout);
776 }
777 
778 
779 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
780 						struct sta_info *sta, int ac)
781 {
782 	unsigned long flags;
783 	struct sk_buff *skb;
784 
785 	/*
786 	 * First check for frames that should expire on the filtered
787 	 * queue. Frames here were rejected by the driver and are on
788 	 * a separate queue to avoid reordering with normal PS-buffered
789 	 * frames. They also aren't accounted for right now in the
790 	 * total_ps_buffered counter.
791 	 */
792 	for (;;) {
793 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
794 		skb = skb_peek(&sta->tx_filtered[ac]);
795 		if (sta_info_buffer_expired(sta, skb))
796 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
797 		else
798 			skb = NULL;
799 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
800 
801 		/*
802 		 * Frames are queued in order, so if this one
803 		 * hasn't expired yet we can stop testing. If
804 		 * we actually reached the end of the queue we
805 		 * also need to stop, of course.
806 		 */
807 		if (!skb)
808 			break;
809 		ieee80211_free_txskb(&local->hw, skb);
810 	}
811 
812 	/*
813 	 * Now also check the normal PS-buffered queue, this will
814 	 * only find something if the filtered queue was emptied
815 	 * since the filtered frames are all before the normal PS
816 	 * buffered frames.
817 	 */
818 	for (;;) {
819 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
820 		skb = skb_peek(&sta->ps_tx_buf[ac]);
821 		if (sta_info_buffer_expired(sta, skb))
822 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
823 		else
824 			skb = NULL;
825 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
826 
827 		/*
828 		 * frames are queued in order, so if this one
829 		 * hasn't expired yet (or we reached the end of
830 		 * the queue) we can stop testing
831 		 */
832 		if (!skb)
833 			break;
834 
835 		local->total_ps_buffered--;
836 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
837 		       sta->sta.addr);
838 		ieee80211_free_txskb(&local->hw, skb);
839 	}
840 
841 	/*
842 	 * Finally, recalculate the TIM bit for this station -- it might
843 	 * now be clear because the station was too slow to retrieve its
844 	 * frames.
845 	 */
846 	sta_info_recalc_tim(sta);
847 
848 	/*
849 	 * Return whether there are any frames still buffered, this is
850 	 * used to check whether the cleanup timer still needs to run,
851 	 * if there are no frames we don't need to rearm the timer.
852 	 */
853 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
854 		 skb_queue_empty(&sta->tx_filtered[ac]));
855 }
856 
857 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
858 					     struct sta_info *sta)
859 {
860 	bool have_buffered = false;
861 	int ac;
862 
863 	/* This is only necessary for stations on BSS/MBSS interfaces */
864 	if (!sta->sdata->bss &&
865 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
866 		return false;
867 
868 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
869 		have_buffered |=
870 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
871 
872 	return have_buffered;
873 }
874 
875 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
876 {
877 	struct ieee80211_local *local;
878 	struct ieee80211_sub_if_data *sdata;
879 	int ret;
880 
881 	might_sleep();
882 
883 	if (!sta)
884 		return -ENOENT;
885 
886 	local = sta->local;
887 	sdata = sta->sdata;
888 
889 	lockdep_assert_held(&local->sta_mtx);
890 
891 	/*
892 	 * Before removing the station from the driver and
893 	 * rate control, it might still start new aggregation
894 	 * sessions -- block that to make sure the tear-down
895 	 * will be sufficient.
896 	 */
897 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
898 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
899 
900 	/*
901 	 * Before removing the station from the driver there might be pending
902 	 * rx frames on RSS queues sent prior to the disassociation - wait for
903 	 * all such frames to be processed.
904 	 */
905 	drv_sync_rx_queues(local, sta);
906 
907 	ret = sta_info_hash_del(local, sta);
908 	if (WARN_ON(ret))
909 		return ret;
910 
911 	/*
912 	 * for TDLS peers, make sure to return to the base channel before
913 	 * removal.
914 	 */
915 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
916 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
917 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
918 	}
919 
920 	list_del_rcu(&sta->list);
921 	sta->removed = true;
922 
923 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
924 
925 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
926 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
927 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
928 
929 	return 0;
930 }
931 
932 static void __sta_info_destroy_part2(struct sta_info *sta)
933 {
934 	struct ieee80211_local *local = sta->local;
935 	struct ieee80211_sub_if_data *sdata = sta->sdata;
936 	struct station_info *sinfo;
937 	int ret;
938 
939 	/*
940 	 * NOTE: This assumes at least synchronize_net() was done
941 	 *	 after _part1 and before _part2!
942 	 */
943 
944 	might_sleep();
945 	lockdep_assert_held(&local->sta_mtx);
946 
947 	/* now keys can no longer be reached */
948 	ieee80211_free_sta_keys(local, sta);
949 
950 	/* disable TIM bit - last chance to tell driver */
951 	__sta_info_recalc_tim(sta, true);
952 
953 	sta->dead = true;
954 
955 	local->num_sta--;
956 	local->sta_generation++;
957 
958 	while (sta->sta_state > IEEE80211_STA_NONE) {
959 		ret = sta_info_move_state(sta, sta->sta_state - 1);
960 		if (ret) {
961 			WARN_ON_ONCE(1);
962 			break;
963 		}
964 	}
965 
966 	if (sta->uploaded) {
967 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
968 				    IEEE80211_STA_NOTEXIST);
969 		WARN_ON_ONCE(ret != 0);
970 	}
971 
972 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
973 
974 	sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
975 	if (sinfo)
976 		sta_set_sinfo(sta, sinfo);
977 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
978 	kfree(sinfo);
979 
980 	rate_control_remove_sta_debugfs(sta);
981 	ieee80211_sta_debugfs_remove(sta);
982 
983 	cleanup_single_sta(sta);
984 }
985 
986 int __must_check __sta_info_destroy(struct sta_info *sta)
987 {
988 	int err = __sta_info_destroy_part1(sta);
989 
990 	if (err)
991 		return err;
992 
993 	synchronize_net();
994 
995 	__sta_info_destroy_part2(sta);
996 
997 	return 0;
998 }
999 
1000 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1001 {
1002 	struct sta_info *sta;
1003 	int ret;
1004 
1005 	mutex_lock(&sdata->local->sta_mtx);
1006 	sta = sta_info_get(sdata, addr);
1007 	ret = __sta_info_destroy(sta);
1008 	mutex_unlock(&sdata->local->sta_mtx);
1009 
1010 	return ret;
1011 }
1012 
1013 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1014 			      const u8 *addr)
1015 {
1016 	struct sta_info *sta;
1017 	int ret;
1018 
1019 	mutex_lock(&sdata->local->sta_mtx);
1020 	sta = sta_info_get_bss(sdata, addr);
1021 	ret = __sta_info_destroy(sta);
1022 	mutex_unlock(&sdata->local->sta_mtx);
1023 
1024 	return ret;
1025 }
1026 
1027 static void sta_info_cleanup(unsigned long data)
1028 {
1029 	struct ieee80211_local *local = (struct ieee80211_local *) data;
1030 	struct sta_info *sta;
1031 	bool timer_needed = false;
1032 
1033 	rcu_read_lock();
1034 	list_for_each_entry_rcu(sta, &local->sta_list, list)
1035 		if (sta_info_cleanup_expire_buffered(local, sta))
1036 			timer_needed = true;
1037 	rcu_read_unlock();
1038 
1039 	if (local->quiescing)
1040 		return;
1041 
1042 	if (!timer_needed)
1043 		return;
1044 
1045 	mod_timer(&local->sta_cleanup,
1046 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1047 }
1048 
1049 int sta_info_init(struct ieee80211_local *local)
1050 {
1051 	int err;
1052 
1053 	err = rhltable_init(&local->sta_hash, &sta_rht_params);
1054 	if (err)
1055 		return err;
1056 
1057 	spin_lock_init(&local->tim_lock);
1058 	mutex_init(&local->sta_mtx);
1059 	INIT_LIST_HEAD(&local->sta_list);
1060 
1061 	setup_timer(&local->sta_cleanup, sta_info_cleanup,
1062 		    (unsigned long)local);
1063 	return 0;
1064 }
1065 
1066 void sta_info_stop(struct ieee80211_local *local)
1067 {
1068 	del_timer_sync(&local->sta_cleanup);
1069 	rhltable_destroy(&local->sta_hash);
1070 }
1071 
1072 
1073 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1074 {
1075 	struct ieee80211_local *local = sdata->local;
1076 	struct sta_info *sta, *tmp;
1077 	LIST_HEAD(free_list);
1078 	int ret = 0;
1079 
1080 	might_sleep();
1081 
1082 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1083 	WARN_ON(vlans && !sdata->bss);
1084 
1085 	mutex_lock(&local->sta_mtx);
1086 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1087 		if (sdata == sta->sdata ||
1088 		    (vlans && sdata->bss == sta->sdata->bss)) {
1089 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1090 				list_add(&sta->free_list, &free_list);
1091 			ret++;
1092 		}
1093 	}
1094 
1095 	if (!list_empty(&free_list)) {
1096 		synchronize_net();
1097 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1098 			__sta_info_destroy_part2(sta);
1099 	}
1100 	mutex_unlock(&local->sta_mtx);
1101 
1102 	return ret;
1103 }
1104 
1105 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1106 			  unsigned long exp_time)
1107 {
1108 	struct ieee80211_local *local = sdata->local;
1109 	struct sta_info *sta, *tmp;
1110 
1111 	mutex_lock(&local->sta_mtx);
1112 
1113 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1114 		unsigned long last_active = ieee80211_sta_last_active(sta);
1115 
1116 		if (sdata != sta->sdata)
1117 			continue;
1118 
1119 		if (time_is_before_jiffies(last_active + exp_time)) {
1120 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1121 				sta->sta.addr);
1122 
1123 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1124 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1125 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1126 
1127 			WARN_ON(__sta_info_destroy(sta));
1128 		}
1129 	}
1130 
1131 	mutex_unlock(&local->sta_mtx);
1132 }
1133 
1134 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1135 						   const u8 *addr,
1136 						   const u8 *localaddr)
1137 {
1138 	struct ieee80211_local *local = hw_to_local(hw);
1139 	struct rhlist_head *tmp;
1140 	struct sta_info *sta;
1141 
1142 	/*
1143 	 * Just return a random station if localaddr is NULL
1144 	 * ... first in list.
1145 	 */
1146 	for_each_sta_info(local, addr, sta, tmp) {
1147 		if (localaddr &&
1148 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1149 			continue;
1150 		if (!sta->uploaded)
1151 			return NULL;
1152 		return &sta->sta;
1153 	}
1154 
1155 	return NULL;
1156 }
1157 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1158 
1159 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1160 					 const u8 *addr)
1161 {
1162 	struct sta_info *sta;
1163 
1164 	if (!vif)
1165 		return NULL;
1166 
1167 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1168 	if (!sta)
1169 		return NULL;
1170 
1171 	if (!sta->uploaded)
1172 		return NULL;
1173 
1174 	return &sta->sta;
1175 }
1176 EXPORT_SYMBOL(ieee80211_find_sta);
1177 
1178 /* powersave support code */
1179 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1180 {
1181 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1182 	struct ieee80211_local *local = sdata->local;
1183 	struct sk_buff_head pending;
1184 	int filtered = 0, buffered = 0, ac, i;
1185 	unsigned long flags;
1186 	struct ps_data *ps;
1187 
1188 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1189 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1190 				     u.ap);
1191 
1192 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1193 		ps = &sdata->bss->ps;
1194 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1195 		ps = &sdata->u.mesh.ps;
1196 	else
1197 		return;
1198 
1199 	clear_sta_flag(sta, WLAN_STA_SP);
1200 
1201 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1202 	sta->driver_buffered_tids = 0;
1203 	sta->txq_buffered_tids = 0;
1204 
1205 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1206 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1207 
1208 	if (sta->sta.txq[0]) {
1209 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1210 			if (!txq_has_queue(sta->sta.txq[i]))
1211 				continue;
1212 
1213 			drv_wake_tx_queue(local, to_txq_info(sta->sta.txq[i]));
1214 		}
1215 	}
1216 
1217 	skb_queue_head_init(&pending);
1218 
1219 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1220 	spin_lock(&sta->ps_lock);
1221 	/* Send all buffered frames to the station */
1222 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1223 		int count = skb_queue_len(&pending), tmp;
1224 
1225 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1226 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1227 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1228 		tmp = skb_queue_len(&pending);
1229 		filtered += tmp - count;
1230 		count = tmp;
1231 
1232 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1233 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1234 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1235 		tmp = skb_queue_len(&pending);
1236 		buffered += tmp - count;
1237 	}
1238 
1239 	ieee80211_add_pending_skbs(local, &pending);
1240 
1241 	/* now we're no longer in the deliver code */
1242 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1243 
1244 	/* The station might have polled and then woken up before we responded,
1245 	 * so clear these flags now to avoid them sticking around.
1246 	 */
1247 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1248 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1249 	spin_unlock(&sta->ps_lock);
1250 
1251 	atomic_dec(&ps->num_sta_ps);
1252 
1253 	/* This station just woke up and isn't aware of our SMPS state */
1254 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1255 	    !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1256 					   sdata->smps_mode) &&
1257 	    sta->known_smps_mode != sdata->bss->req_smps &&
1258 	    sta_info_tx_streams(sta) != 1) {
1259 		ht_dbg(sdata,
1260 		       "%pM just woke up and MIMO capable - update SMPS\n",
1261 		       sta->sta.addr);
1262 		ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1263 					   sta->sta.addr,
1264 					   sdata->vif.bss_conf.bssid);
1265 	}
1266 
1267 	local->total_ps_buffered -= buffered;
1268 
1269 	sta_info_recalc_tim(sta);
1270 
1271 	ps_dbg(sdata,
1272 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1273 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1274 
1275 	ieee80211_check_fast_xmit(sta);
1276 }
1277 
1278 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1279 					 enum ieee80211_frame_release_type reason,
1280 					 bool call_driver, bool more_data)
1281 {
1282 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1283 	struct ieee80211_local *local = sdata->local;
1284 	struct ieee80211_qos_hdr *nullfunc;
1285 	struct sk_buff *skb;
1286 	int size = sizeof(*nullfunc);
1287 	__le16 fc;
1288 	bool qos = sta->sta.wme;
1289 	struct ieee80211_tx_info *info;
1290 	struct ieee80211_chanctx_conf *chanctx_conf;
1291 
1292 	if (qos) {
1293 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1294 				 IEEE80211_STYPE_QOS_NULLFUNC |
1295 				 IEEE80211_FCTL_FROMDS);
1296 	} else {
1297 		size -= 2;
1298 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1299 				 IEEE80211_STYPE_NULLFUNC |
1300 				 IEEE80211_FCTL_FROMDS);
1301 	}
1302 
1303 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1304 	if (!skb)
1305 		return;
1306 
1307 	skb_reserve(skb, local->hw.extra_tx_headroom);
1308 
1309 	nullfunc = (void *) skb_put(skb, size);
1310 	nullfunc->frame_control = fc;
1311 	nullfunc->duration_id = 0;
1312 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1313 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1314 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1315 	nullfunc->seq_ctrl = 0;
1316 
1317 	skb->priority = tid;
1318 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1319 	if (qos) {
1320 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1321 
1322 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1323 			nullfunc->qos_ctrl |=
1324 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1325 			if (more_data)
1326 				nullfunc->frame_control |=
1327 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1328 		}
1329 	}
1330 
1331 	info = IEEE80211_SKB_CB(skb);
1332 
1333 	/*
1334 	 * Tell TX path to send this frame even though the
1335 	 * STA may still remain is PS mode after this frame
1336 	 * exchange. Also set EOSP to indicate this packet
1337 	 * ends the poll/service period.
1338 	 */
1339 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1340 		       IEEE80211_TX_STATUS_EOSP |
1341 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1342 
1343 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1344 
1345 	if (call_driver)
1346 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1347 					  reason, false);
1348 
1349 	skb->dev = sdata->dev;
1350 
1351 	rcu_read_lock();
1352 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1353 	if (WARN_ON(!chanctx_conf)) {
1354 		rcu_read_unlock();
1355 		kfree_skb(skb);
1356 		return;
1357 	}
1358 
1359 	info->band = chanctx_conf->def.chan->band;
1360 	ieee80211_xmit(sdata, sta, skb);
1361 	rcu_read_unlock();
1362 }
1363 
1364 static int find_highest_prio_tid(unsigned long tids)
1365 {
1366 	/* lower 3 TIDs aren't ordered perfectly */
1367 	if (tids & 0xF8)
1368 		return fls(tids) - 1;
1369 	/* TID 0 is BE just like TID 3 */
1370 	if (tids & BIT(0))
1371 		return 0;
1372 	return fls(tids) - 1;
1373 }
1374 
1375 /* Indicates if the MORE_DATA bit should be set in the last
1376  * frame obtained by ieee80211_sta_ps_get_frames.
1377  * Note that driver_release_tids is relevant only if
1378  * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1379  */
1380 static bool
1381 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1382 			   enum ieee80211_frame_release_type reason,
1383 			   unsigned long driver_release_tids)
1384 {
1385 	int ac;
1386 
1387 	/* If the driver has data on more than one TID then
1388 	 * certainly there's more data if we release just a
1389 	 * single frame now (from a single TID). This will
1390 	 * only happen for PS-Poll.
1391 	 */
1392 	if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1393 	    hweight16(driver_release_tids) > 1)
1394 		return true;
1395 
1396 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1397 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1398 			continue;
1399 
1400 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1401 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1402 			return true;
1403 	}
1404 
1405 	return false;
1406 }
1407 
1408 static void
1409 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1410 			    enum ieee80211_frame_release_type reason,
1411 			    struct sk_buff_head *frames,
1412 			    unsigned long *driver_release_tids)
1413 {
1414 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1415 	struct ieee80211_local *local = sdata->local;
1416 	int ac;
1417 
1418 	/* Get response frame(s) and more data bit for the last one. */
1419 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1420 		unsigned long tids;
1421 
1422 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1423 			continue;
1424 
1425 		tids = ieee80211_tids_for_ac(ac);
1426 
1427 		/* if we already have frames from software, then we can't also
1428 		 * release from hardware queues
1429 		 */
1430 		if (skb_queue_empty(frames)) {
1431 			*driver_release_tids |=
1432 				sta->driver_buffered_tids & tids;
1433 			*driver_release_tids |= sta->txq_buffered_tids & tids;
1434 		}
1435 
1436 		if (!*driver_release_tids) {
1437 			struct sk_buff *skb;
1438 
1439 			while (n_frames > 0) {
1440 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1441 				if (!skb) {
1442 					skb = skb_dequeue(
1443 						&sta->ps_tx_buf[ac]);
1444 					if (skb)
1445 						local->total_ps_buffered--;
1446 				}
1447 				if (!skb)
1448 					break;
1449 				n_frames--;
1450 				__skb_queue_tail(frames, skb);
1451 			}
1452 		}
1453 
1454 		/* If we have more frames buffered on this AC, then abort the
1455 		 * loop since we can't send more data from other ACs before
1456 		 * the buffered frames from this.
1457 		 */
1458 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1459 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1460 			break;
1461 	}
1462 }
1463 
1464 static void
1465 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1466 				  int n_frames, u8 ignored_acs,
1467 				  enum ieee80211_frame_release_type reason)
1468 {
1469 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1470 	struct ieee80211_local *local = sdata->local;
1471 	unsigned long driver_release_tids = 0;
1472 	struct sk_buff_head frames;
1473 	bool more_data;
1474 
1475 	/* Service or PS-Poll period starts */
1476 	set_sta_flag(sta, WLAN_STA_SP);
1477 
1478 	__skb_queue_head_init(&frames);
1479 
1480 	ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1481 				    &frames, &driver_release_tids);
1482 
1483 	more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1484 
1485 	if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1486 		driver_release_tids =
1487 			BIT(find_highest_prio_tid(driver_release_tids));
1488 
1489 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1490 		int tid, ac;
1491 
1492 		/*
1493 		 * For PS-Poll, this can only happen due to a race condition
1494 		 * when we set the TIM bit and the station notices it, but
1495 		 * before it can poll for the frame we expire it.
1496 		 *
1497 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1498 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1499 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1500 		 *	more than the value specified in the Max SP Length field
1501 		 *	in the QoS Capability element from delivery-enabled ACs,
1502 		 *	that are destined for the non-AP STA.
1503 		 *
1504 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1505 		 */
1506 
1507 		/* This will evaluate to 1, 3, 5 or 7. */
1508 		for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1509 			if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1510 				break;
1511 		tid = 7 - 2 * ac;
1512 
1513 		ieee80211_send_null_response(sta, tid, reason, true, false);
1514 	} else if (!driver_release_tids) {
1515 		struct sk_buff_head pending;
1516 		struct sk_buff *skb;
1517 		int num = 0;
1518 		u16 tids = 0;
1519 		bool need_null = false;
1520 
1521 		skb_queue_head_init(&pending);
1522 
1523 		while ((skb = __skb_dequeue(&frames))) {
1524 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1525 			struct ieee80211_hdr *hdr = (void *) skb->data;
1526 			u8 *qoshdr = NULL;
1527 
1528 			num++;
1529 
1530 			/*
1531 			 * Tell TX path to send this frame even though the
1532 			 * STA may still remain is PS mode after this frame
1533 			 * exchange.
1534 			 */
1535 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1536 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1537 
1538 			/*
1539 			 * Use MoreData flag to indicate whether there are
1540 			 * more buffered frames for this STA
1541 			 */
1542 			if (more_data || !skb_queue_empty(&frames))
1543 				hdr->frame_control |=
1544 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1545 			else
1546 				hdr->frame_control &=
1547 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1548 
1549 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1550 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1551 				qoshdr = ieee80211_get_qos_ctl(hdr);
1552 
1553 			tids |= BIT(skb->priority);
1554 
1555 			__skb_queue_tail(&pending, skb);
1556 
1557 			/* end service period after last frame or add one */
1558 			if (!skb_queue_empty(&frames))
1559 				continue;
1560 
1561 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1562 				/* for PS-Poll, there's only one frame */
1563 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1564 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1565 				break;
1566 			}
1567 
1568 			/* For uAPSD, things are a bit more complicated. If the
1569 			 * last frame has a QoS header (i.e. is a QoS-data or
1570 			 * QoS-nulldata frame) then just set the EOSP bit there
1571 			 * and be done.
1572 			 * If the frame doesn't have a QoS header (which means
1573 			 * it should be a bufferable MMPDU) then we can't set
1574 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1575 			 * frame to the list to send it after the MMPDU.
1576 			 *
1577 			 * Note that this code is only in the mac80211-release
1578 			 * code path, we assume that the driver will not buffer
1579 			 * anything but QoS-data frames, or if it does, will
1580 			 * create the QoS-nulldata frame by itself if needed.
1581 			 *
1582 			 * Cf. 802.11-2012 10.2.1.10 (c).
1583 			 */
1584 			if (qoshdr) {
1585 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1586 
1587 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1588 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1589 			} else {
1590 				/* The standard isn't completely clear on this
1591 				 * as it says the more-data bit should be set
1592 				 * if there are more BUs. The QoS-Null frame
1593 				 * we're about to send isn't buffered yet, we
1594 				 * only create it below, but let's pretend it
1595 				 * was buffered just in case some clients only
1596 				 * expect more-data=0 when eosp=1.
1597 				 */
1598 				hdr->frame_control |=
1599 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1600 				need_null = true;
1601 				num++;
1602 			}
1603 			break;
1604 		}
1605 
1606 		drv_allow_buffered_frames(local, sta, tids, num,
1607 					  reason, more_data);
1608 
1609 		ieee80211_add_pending_skbs(local, &pending);
1610 
1611 		if (need_null)
1612 			ieee80211_send_null_response(
1613 				sta, find_highest_prio_tid(tids),
1614 				reason, false, false);
1615 
1616 		sta_info_recalc_tim(sta);
1617 	} else {
1618 		int tid;
1619 
1620 		/*
1621 		 * We need to release a frame that is buffered somewhere in the
1622 		 * driver ... it'll have to handle that.
1623 		 * Note that the driver also has to check the number of frames
1624 		 * on the TIDs we're releasing from - if there are more than
1625 		 * n_frames it has to set the more-data bit (if we didn't ask
1626 		 * it to set it anyway due to other buffered frames); if there
1627 		 * are fewer than n_frames it has to make sure to adjust that
1628 		 * to allow the service period to end properly.
1629 		 */
1630 		drv_release_buffered_frames(local, sta, driver_release_tids,
1631 					    n_frames, reason, more_data);
1632 
1633 		/*
1634 		 * Note that we don't recalculate the TIM bit here as it would
1635 		 * most likely have no effect at all unless the driver told us
1636 		 * that the TID(s) became empty before returning here from the
1637 		 * release function.
1638 		 * Either way, however, when the driver tells us that the TID(s)
1639 		 * became empty or we find that a txq became empty, we'll do the
1640 		 * TIM recalculation.
1641 		 */
1642 
1643 		if (!sta->sta.txq[0])
1644 			return;
1645 
1646 		for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1647 			if (!(driver_release_tids & BIT(tid)) ||
1648 			    txq_has_queue(sta->sta.txq[tid]))
1649 				continue;
1650 
1651 			sta_info_recalc_tim(sta);
1652 			break;
1653 		}
1654 	}
1655 }
1656 
1657 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1658 {
1659 	u8 ignore_for_response = sta->sta.uapsd_queues;
1660 
1661 	/*
1662 	 * If all ACs are delivery-enabled then we should reply
1663 	 * from any of them, if only some are enabled we reply
1664 	 * only from the non-enabled ones.
1665 	 */
1666 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1667 		ignore_for_response = 0;
1668 
1669 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1670 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1671 }
1672 
1673 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1674 {
1675 	int n_frames = sta->sta.max_sp;
1676 	u8 delivery_enabled = sta->sta.uapsd_queues;
1677 
1678 	/*
1679 	 * If we ever grow support for TSPEC this might happen if
1680 	 * the TSPEC update from hostapd comes in between a trigger
1681 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1682 	 * actually getting called.
1683 	 */
1684 	if (!delivery_enabled)
1685 		return;
1686 
1687 	switch (sta->sta.max_sp) {
1688 	case 1:
1689 		n_frames = 2;
1690 		break;
1691 	case 2:
1692 		n_frames = 4;
1693 		break;
1694 	case 3:
1695 		n_frames = 6;
1696 		break;
1697 	case 0:
1698 		/* XXX: what is a good value? */
1699 		n_frames = 128;
1700 		break;
1701 	}
1702 
1703 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1704 					  IEEE80211_FRAME_RELEASE_UAPSD);
1705 }
1706 
1707 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1708 			       struct ieee80211_sta *pubsta, bool block)
1709 {
1710 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1711 
1712 	trace_api_sta_block_awake(sta->local, pubsta, block);
1713 
1714 	if (block) {
1715 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1716 		ieee80211_clear_fast_xmit(sta);
1717 		return;
1718 	}
1719 
1720 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1721 		return;
1722 
1723 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1724 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1725 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1726 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1727 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1728 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
1729 		/* must be asleep in this case */
1730 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1731 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1732 	} else {
1733 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1734 		ieee80211_check_fast_xmit(sta);
1735 	}
1736 }
1737 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1738 
1739 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1740 {
1741 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1742 	struct ieee80211_local *local = sta->local;
1743 
1744 	trace_api_eosp(local, pubsta);
1745 
1746 	clear_sta_flag(sta, WLAN_STA_SP);
1747 }
1748 EXPORT_SYMBOL(ieee80211_sta_eosp);
1749 
1750 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1751 {
1752 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1753 	enum ieee80211_frame_release_type reason;
1754 	bool more_data;
1755 
1756 	trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1757 
1758 	reason = IEEE80211_FRAME_RELEASE_UAPSD;
1759 	more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1760 					       reason, 0);
1761 
1762 	ieee80211_send_null_response(sta, tid, reason, false, more_data);
1763 }
1764 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1765 
1766 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1767 				u8 tid, bool buffered)
1768 {
1769 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1770 
1771 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1772 		return;
1773 
1774 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1775 
1776 	if (buffered)
1777 		set_bit(tid, &sta->driver_buffered_tids);
1778 	else
1779 		clear_bit(tid, &sta->driver_buffered_tids);
1780 
1781 	sta_info_recalc_tim(sta);
1782 }
1783 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1784 
1785 static void
1786 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
1787 {
1788 	struct ieee80211_local *local = sdata->local;
1789 	bool allow_p2p_go_ps = sdata->vif.p2p;
1790 	struct sta_info *sta;
1791 
1792 	rcu_read_lock();
1793 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
1794 		if (sdata != sta->sdata ||
1795 		    !test_sta_flag(sta, WLAN_STA_ASSOC))
1796 			continue;
1797 		if (!sta->sta.support_p2p_ps) {
1798 			allow_p2p_go_ps = false;
1799 			break;
1800 		}
1801 	}
1802 	rcu_read_unlock();
1803 
1804 	if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
1805 		sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
1806 		ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
1807 	}
1808 }
1809 
1810 int sta_info_move_state(struct sta_info *sta,
1811 			enum ieee80211_sta_state new_state)
1812 {
1813 	might_sleep();
1814 
1815 	if (sta->sta_state == new_state)
1816 		return 0;
1817 
1818 	/* check allowed transitions first */
1819 
1820 	switch (new_state) {
1821 	case IEEE80211_STA_NONE:
1822 		if (sta->sta_state != IEEE80211_STA_AUTH)
1823 			return -EINVAL;
1824 		break;
1825 	case IEEE80211_STA_AUTH:
1826 		if (sta->sta_state != IEEE80211_STA_NONE &&
1827 		    sta->sta_state != IEEE80211_STA_ASSOC)
1828 			return -EINVAL;
1829 		break;
1830 	case IEEE80211_STA_ASSOC:
1831 		if (sta->sta_state != IEEE80211_STA_AUTH &&
1832 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
1833 			return -EINVAL;
1834 		break;
1835 	case IEEE80211_STA_AUTHORIZED:
1836 		if (sta->sta_state != IEEE80211_STA_ASSOC)
1837 			return -EINVAL;
1838 		break;
1839 	default:
1840 		WARN(1, "invalid state %d", new_state);
1841 		return -EINVAL;
1842 	}
1843 
1844 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1845 		sta->sta.addr, new_state);
1846 
1847 	/*
1848 	 * notify the driver before the actual changes so it can
1849 	 * fail the transition
1850 	 */
1851 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1852 		int err = drv_sta_state(sta->local, sta->sdata, sta,
1853 					sta->sta_state, new_state);
1854 		if (err)
1855 			return err;
1856 	}
1857 
1858 	/* reflect the change in all state variables */
1859 
1860 	switch (new_state) {
1861 	case IEEE80211_STA_NONE:
1862 		if (sta->sta_state == IEEE80211_STA_AUTH)
1863 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
1864 		break;
1865 	case IEEE80211_STA_AUTH:
1866 		if (sta->sta_state == IEEE80211_STA_NONE) {
1867 			set_bit(WLAN_STA_AUTH, &sta->_flags);
1868 		} else if (sta->sta_state == IEEE80211_STA_ASSOC) {
1869 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1870 			ieee80211_recalc_min_chandef(sta->sdata);
1871 			if (!sta->sta.support_p2p_ps)
1872 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1873 		}
1874 		break;
1875 	case IEEE80211_STA_ASSOC:
1876 		if (sta->sta_state == IEEE80211_STA_AUTH) {
1877 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
1878 			ieee80211_recalc_min_chandef(sta->sdata);
1879 			if (!sta->sta.support_p2p_ps)
1880 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1881 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1882 			ieee80211_vif_dec_num_mcast(sta->sdata);
1883 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1884 			ieee80211_clear_fast_xmit(sta);
1885 			ieee80211_clear_fast_rx(sta);
1886 		}
1887 		break;
1888 	case IEEE80211_STA_AUTHORIZED:
1889 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
1890 			ieee80211_vif_inc_num_mcast(sta->sdata);
1891 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1892 			ieee80211_check_fast_xmit(sta);
1893 			ieee80211_check_fast_rx(sta);
1894 		}
1895 		break;
1896 	default:
1897 		break;
1898 	}
1899 
1900 	sta->sta_state = new_state;
1901 
1902 	return 0;
1903 }
1904 
1905 u8 sta_info_tx_streams(struct sta_info *sta)
1906 {
1907 	struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1908 	u8 rx_streams;
1909 
1910 	if (!sta->sta.ht_cap.ht_supported)
1911 		return 1;
1912 
1913 	if (sta->sta.vht_cap.vht_supported) {
1914 		int i;
1915 		u16 tx_mcs_map =
1916 			le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1917 
1918 		for (i = 7; i >= 0; i--)
1919 			if ((tx_mcs_map & (0x3 << (i * 2))) !=
1920 			    IEEE80211_VHT_MCS_NOT_SUPPORTED)
1921 				return i + 1;
1922 	}
1923 
1924 	if (ht_cap->mcs.rx_mask[3])
1925 		rx_streams = 4;
1926 	else if (ht_cap->mcs.rx_mask[2])
1927 		rx_streams = 3;
1928 	else if (ht_cap->mcs.rx_mask[1])
1929 		rx_streams = 2;
1930 	else
1931 		rx_streams = 1;
1932 
1933 	if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1934 		return rx_streams;
1935 
1936 	return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1937 			>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
1938 }
1939 
1940 static struct ieee80211_sta_rx_stats *
1941 sta_get_last_rx_stats(struct sta_info *sta)
1942 {
1943 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
1944 	struct ieee80211_local *local = sta->local;
1945 	int cpu;
1946 
1947 	if (!ieee80211_hw_check(&local->hw, USES_RSS))
1948 		return stats;
1949 
1950 	for_each_possible_cpu(cpu) {
1951 		struct ieee80211_sta_rx_stats *cpustats;
1952 
1953 		cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
1954 
1955 		if (time_after(cpustats->last_rx, stats->last_rx))
1956 			stats = cpustats;
1957 	}
1958 
1959 	return stats;
1960 }
1961 
1962 static void sta_stats_decode_rate(struct ieee80211_local *local, u16 rate,
1963 				  struct rate_info *rinfo)
1964 {
1965 	rinfo->bw = STA_STATS_GET(BW, rate);
1966 
1967 	switch (STA_STATS_GET(TYPE, rate)) {
1968 	case STA_STATS_RATE_TYPE_VHT:
1969 		rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
1970 		rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
1971 		rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
1972 		if (STA_STATS_GET(SGI, rate))
1973 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
1974 		break;
1975 	case STA_STATS_RATE_TYPE_HT:
1976 		rinfo->flags = RATE_INFO_FLAGS_MCS;
1977 		rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
1978 		if (STA_STATS_GET(SGI, rate))
1979 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
1980 		break;
1981 	case STA_STATS_RATE_TYPE_LEGACY: {
1982 		struct ieee80211_supported_band *sband;
1983 		u16 brate;
1984 		unsigned int shift;
1985 		int band = STA_STATS_GET(LEGACY_BAND, rate);
1986 		int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
1987 
1988 		rinfo->flags = 0;
1989 		sband = local->hw.wiphy->bands[band];
1990 		brate = sband->bitrates[rate_idx].bitrate;
1991 		if (rinfo->bw == RATE_INFO_BW_5)
1992 			shift = 2;
1993 		else if (rinfo->bw == RATE_INFO_BW_10)
1994 			shift = 1;
1995 		else
1996 			shift = 0;
1997 		rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
1998 		break;
1999 		}
2000 	}
2001 }
2002 
2003 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2004 {
2005 	u16 rate = ACCESS_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2006 
2007 	if (rate == STA_STATS_RATE_INVALID)
2008 		return -EINVAL;
2009 
2010 	sta_stats_decode_rate(sta->local, rate, rinfo);
2011 	return 0;
2012 }
2013 
2014 static void sta_set_tidstats(struct sta_info *sta,
2015 			     struct cfg80211_tid_stats *tidstats,
2016 			     int tid)
2017 {
2018 	struct ieee80211_local *local = sta->local;
2019 
2020 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2021 		unsigned int start;
2022 
2023 		do {
2024 			start = u64_stats_fetch_begin(&sta->rx_stats.syncp);
2025 			tidstats->rx_msdu = sta->rx_stats.msdu[tid];
2026 		} while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start));
2027 
2028 		tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2029 	}
2030 
2031 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2032 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2033 		tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2034 	}
2035 
2036 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2037 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2038 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2039 		tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2040 	}
2041 
2042 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2043 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2044 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2045 		tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2046 	}
2047 }
2048 
2049 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2050 {
2051 	unsigned int start;
2052 	u64 value;
2053 
2054 	do {
2055 		start = u64_stats_fetch_begin(&rxstats->syncp);
2056 		value = rxstats->bytes;
2057 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2058 
2059 	return value;
2060 }
2061 
2062 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
2063 {
2064 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2065 	struct ieee80211_local *local = sdata->local;
2066 	u32 thr = 0;
2067 	int i, ac, cpu;
2068 	struct ieee80211_sta_rx_stats *last_rxstats;
2069 
2070 	last_rxstats = sta_get_last_rx_stats(sta);
2071 
2072 	sinfo->generation = sdata->local->sta_generation;
2073 
2074 	/* do before driver, so beacon filtering drivers have a
2075 	 * chance to e.g. just add the number of filtered beacons
2076 	 * (or just modify the value entirely, of course)
2077 	 */
2078 	if (sdata->vif.type == NL80211_IFTYPE_STATION)
2079 		sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2080 
2081 	drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2082 
2083 	sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) |
2084 			 BIT(NL80211_STA_INFO_STA_FLAGS) |
2085 			 BIT(NL80211_STA_INFO_BSS_PARAM) |
2086 			 BIT(NL80211_STA_INFO_CONNECTED_TIME) |
2087 			 BIT(NL80211_STA_INFO_RX_DROP_MISC);
2088 
2089 	if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2090 		sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2091 		sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS);
2092 	}
2093 
2094 	sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2095 	sinfo->inactive_time =
2096 		jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2097 
2098 	if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) |
2099 			       BIT(NL80211_STA_INFO_TX_BYTES)))) {
2100 		sinfo->tx_bytes = 0;
2101 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2102 			sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2103 		sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64);
2104 	}
2105 
2106 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) {
2107 		sinfo->tx_packets = 0;
2108 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2109 			sinfo->tx_packets += sta->tx_stats.packets[ac];
2110 		sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS);
2111 	}
2112 
2113 	if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) |
2114 			       BIT(NL80211_STA_INFO_RX_BYTES)))) {
2115 		sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2116 
2117 		if (sta->pcpu_rx_stats) {
2118 			for_each_possible_cpu(cpu) {
2119 				struct ieee80211_sta_rx_stats *cpurxs;
2120 
2121 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2122 				sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2123 			}
2124 		}
2125 
2126 		sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64);
2127 	}
2128 
2129 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) {
2130 		sinfo->rx_packets = sta->rx_stats.packets;
2131 		if (sta->pcpu_rx_stats) {
2132 			for_each_possible_cpu(cpu) {
2133 				struct ieee80211_sta_rx_stats *cpurxs;
2134 
2135 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2136 				sinfo->rx_packets += cpurxs->packets;
2137 			}
2138 		}
2139 		sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS);
2140 	}
2141 
2142 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) {
2143 		sinfo->tx_retries = sta->status_stats.retry_count;
2144 		sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES);
2145 	}
2146 
2147 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) {
2148 		sinfo->tx_failed = sta->status_stats.retry_failed;
2149 		sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED);
2150 	}
2151 
2152 	sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2153 	if (sta->pcpu_rx_stats) {
2154 		for_each_possible_cpu(cpu) {
2155 			struct ieee80211_sta_rx_stats *cpurxs;
2156 
2157 			cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2158 			sinfo->rx_dropped_misc += cpurxs->dropped;
2159 		}
2160 	}
2161 
2162 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2163 	    !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2164 		sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) |
2165 				 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2166 		sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2167 	}
2168 
2169 	if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2170 	    ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2171 		if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) {
2172 			sinfo->signal = (s8)last_rxstats->last_signal;
2173 			sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL);
2174 		}
2175 
2176 		if (!sta->pcpu_rx_stats &&
2177 		    !(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) {
2178 			sinfo->signal_avg =
2179 				-ewma_signal_read(&sta->rx_stats_avg.signal);
2180 			sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG);
2181 		}
2182 	}
2183 
2184 	/* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2185 	 * the sta->rx_stats struct, so the check here is fine with and without
2186 	 * pcpu statistics
2187 	 */
2188 	if (last_rxstats->chains &&
2189 	    !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) |
2190 			       BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2191 		sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL);
2192 		if (!sta->pcpu_rx_stats)
2193 			sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2194 
2195 		sinfo->chains = last_rxstats->chains;
2196 
2197 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2198 			sinfo->chain_signal[i] =
2199 				last_rxstats->chain_signal_last[i];
2200 			sinfo->chain_signal_avg[i] =
2201 				-ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2202 		}
2203 	}
2204 
2205 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) {
2206 		sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2207 				     &sinfo->txrate);
2208 		sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE);
2209 	}
2210 
2211 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) {
2212 		if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2213 			sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE);
2214 	}
2215 
2216 	sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS);
2217 	for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) {
2218 		struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i];
2219 
2220 		sta_set_tidstats(sta, tidstats, i);
2221 	}
2222 
2223 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2224 #ifdef CONFIG_MAC80211_MESH
2225 		sinfo->filled |= BIT(NL80211_STA_INFO_LLID) |
2226 				 BIT(NL80211_STA_INFO_PLID) |
2227 				 BIT(NL80211_STA_INFO_PLINK_STATE) |
2228 				 BIT(NL80211_STA_INFO_LOCAL_PM) |
2229 				 BIT(NL80211_STA_INFO_PEER_PM) |
2230 				 BIT(NL80211_STA_INFO_NONPEER_PM);
2231 
2232 		sinfo->llid = sta->mesh->llid;
2233 		sinfo->plid = sta->mesh->plid;
2234 		sinfo->plink_state = sta->mesh->plink_state;
2235 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2236 			sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET);
2237 			sinfo->t_offset = sta->mesh->t_offset;
2238 		}
2239 		sinfo->local_pm = sta->mesh->local_pm;
2240 		sinfo->peer_pm = sta->mesh->peer_pm;
2241 		sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2242 #endif
2243 	}
2244 
2245 	sinfo->bss_param.flags = 0;
2246 	if (sdata->vif.bss_conf.use_cts_prot)
2247 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2248 	if (sdata->vif.bss_conf.use_short_preamble)
2249 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2250 	if (sdata->vif.bss_conf.use_short_slot)
2251 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2252 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2253 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2254 
2255 	sinfo->sta_flags.set = 0;
2256 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2257 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2258 				BIT(NL80211_STA_FLAG_WME) |
2259 				BIT(NL80211_STA_FLAG_MFP) |
2260 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2261 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
2262 				BIT(NL80211_STA_FLAG_TDLS_PEER);
2263 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2264 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2265 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2266 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2267 	if (sta->sta.wme)
2268 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2269 	if (test_sta_flag(sta, WLAN_STA_MFP))
2270 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2271 	if (test_sta_flag(sta, WLAN_STA_AUTH))
2272 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2273 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
2274 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2275 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2276 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2277 
2278 	thr = sta_get_expected_throughput(sta);
2279 
2280 	if (thr != 0) {
2281 		sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2282 		sinfo->expected_throughput = thr;
2283 	}
2284 }
2285 
2286 u32 sta_get_expected_throughput(struct sta_info *sta)
2287 {
2288 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2289 	struct ieee80211_local *local = sdata->local;
2290 	struct rate_control_ref *ref = NULL;
2291 	u32 thr = 0;
2292 
2293 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2294 		ref = local->rate_ctrl;
2295 
2296 	/* check if the driver has a SW RC implementation */
2297 	if (ref && ref->ops->get_expected_throughput)
2298 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2299 	else
2300 		thr = drv_get_expected_throughput(local, sta);
2301 
2302 	return thr;
2303 }
2304 
2305 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2306 {
2307 	struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2308 
2309 	if (time_after(stats->last_rx, sta->status_stats.last_ack))
2310 		return stats->last_rx;
2311 	return sta->status_stats.last_ack;
2312 }
2313