1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 7 * Copyright (C) 2018-2021 Intel Corporation 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/codel.h> 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 struct sta_link_alloc { 68 struct link_sta_info info; 69 struct ieee80211_link_sta sta; 70 struct rcu_head rcu_head; 71 }; 72 73 static const struct rhashtable_params sta_rht_params = { 74 .nelem_hint = 3, /* start small */ 75 .automatic_shrinking = true, 76 .head_offset = offsetof(struct sta_info, hash_node), 77 .key_offset = offsetof(struct sta_info, addr), 78 .key_len = ETH_ALEN, 79 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 80 }; 81 82 static const struct rhashtable_params link_sta_rht_params = { 83 .nelem_hint = 3, /* start small */ 84 .automatic_shrinking = true, 85 .head_offset = offsetof(struct link_sta_info, link_hash_node), 86 .key_offset = offsetof(struct link_sta_info, addr), 87 .key_len = ETH_ALEN, 88 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 89 }; 90 91 /* Caller must hold local->sta_mtx */ 92 static int sta_info_hash_del(struct ieee80211_local *local, 93 struct sta_info *sta) 94 { 95 return rhltable_remove(&local->sta_hash, &sta->hash_node, 96 sta_rht_params); 97 } 98 99 static int link_sta_info_hash_add(struct ieee80211_local *local, 100 struct link_sta_info *link_sta) 101 { 102 lockdep_assert_held(&local->sta_mtx); 103 return rhltable_insert(&local->link_sta_hash, 104 &link_sta->link_hash_node, 105 link_sta_rht_params); 106 } 107 108 static int link_sta_info_hash_del(struct ieee80211_local *local, 109 struct link_sta_info *link_sta) 110 { 111 lockdep_assert_held(&local->sta_mtx); 112 return rhltable_remove(&local->link_sta_hash, 113 &link_sta->link_hash_node, 114 link_sta_rht_params); 115 } 116 117 static void __cleanup_single_sta(struct sta_info *sta) 118 { 119 int ac, i; 120 struct tid_ampdu_tx *tid_tx; 121 struct ieee80211_sub_if_data *sdata = sta->sdata; 122 struct ieee80211_local *local = sdata->local; 123 struct ps_data *ps; 124 125 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 126 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 127 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 128 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 129 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 130 ps = &sdata->bss->ps; 131 else if (ieee80211_vif_is_mesh(&sdata->vif)) 132 ps = &sdata->u.mesh.ps; 133 else 134 return; 135 136 clear_sta_flag(sta, WLAN_STA_PS_STA); 137 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 138 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 139 140 atomic_dec(&ps->num_sta_ps); 141 } 142 143 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 144 struct txq_info *txqi; 145 146 if (!sta->sta.txq[i]) 147 continue; 148 149 txqi = to_txq_info(sta->sta.txq[i]); 150 151 ieee80211_txq_purge(local, txqi); 152 } 153 154 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 155 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 156 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 157 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 158 } 159 160 if (ieee80211_vif_is_mesh(&sdata->vif)) 161 mesh_sta_cleanup(sta); 162 163 cancel_work_sync(&sta->drv_deliver_wk); 164 165 /* 166 * Destroy aggregation state here. It would be nice to wait for the 167 * driver to finish aggregation stop and then clean up, but for now 168 * drivers have to handle aggregation stop being requested, followed 169 * directly by station destruction. 170 */ 171 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 172 kfree(sta->ampdu_mlme.tid_start_tx[i]); 173 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 174 if (!tid_tx) 175 continue; 176 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 177 kfree(tid_tx); 178 } 179 } 180 181 static void cleanup_single_sta(struct sta_info *sta) 182 { 183 struct ieee80211_sub_if_data *sdata = sta->sdata; 184 struct ieee80211_local *local = sdata->local; 185 186 __cleanup_single_sta(sta); 187 sta_info_free(local, sta); 188 } 189 190 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 191 const u8 *addr) 192 { 193 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 194 } 195 196 /* protected by RCU */ 197 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 198 const u8 *addr) 199 { 200 struct ieee80211_local *local = sdata->local; 201 struct rhlist_head *tmp; 202 struct sta_info *sta; 203 204 rcu_read_lock(); 205 for_each_sta_info(local, addr, sta, tmp) { 206 if (sta->sdata == sdata) { 207 rcu_read_unlock(); 208 /* this is safe as the caller must already hold 209 * another rcu read section or the mutex 210 */ 211 return sta; 212 } 213 } 214 rcu_read_unlock(); 215 return NULL; 216 } 217 218 /* 219 * Get sta info either from the specified interface 220 * or from one of its vlans 221 */ 222 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 223 const u8 *addr) 224 { 225 struct ieee80211_local *local = sdata->local; 226 struct rhlist_head *tmp; 227 struct sta_info *sta; 228 229 rcu_read_lock(); 230 for_each_sta_info(local, addr, sta, tmp) { 231 if (sta->sdata == sdata || 232 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 233 rcu_read_unlock(); 234 /* this is safe as the caller must already hold 235 * another rcu read section or the mutex 236 */ 237 return sta; 238 } 239 } 240 rcu_read_unlock(); 241 return NULL; 242 } 243 244 struct rhlist_head *link_sta_info_hash_lookup(struct ieee80211_local *local, 245 const u8 *addr) 246 { 247 return rhltable_lookup(&local->link_sta_hash, addr, 248 link_sta_rht_params); 249 } 250 251 struct link_sta_info * 252 link_sta_info_get_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr) 253 { 254 struct ieee80211_local *local = sdata->local; 255 struct rhlist_head *tmp; 256 struct link_sta_info *link_sta; 257 258 rcu_read_lock(); 259 for_each_link_sta_info(local, addr, link_sta, tmp) { 260 struct sta_info *sta = link_sta->sta; 261 262 if (sta->sdata == sdata || 263 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 264 rcu_read_unlock(); 265 /* this is safe as the caller must already hold 266 * another rcu read section or the mutex 267 */ 268 return link_sta; 269 } 270 } 271 rcu_read_unlock(); 272 return NULL; 273 } 274 275 struct ieee80211_sta * 276 ieee80211_find_sta_by_link_addrs(struct ieee80211_hw *hw, 277 const u8 *addr, 278 const u8 *localaddr, 279 unsigned int *link_id) 280 { 281 struct ieee80211_local *local = hw_to_local(hw); 282 struct link_sta_info *link_sta; 283 struct rhlist_head *tmp; 284 285 for_each_link_sta_info(local, addr, link_sta, tmp) { 286 struct sta_info *sta = link_sta->sta; 287 struct ieee80211_link_data *link; 288 u8 _link_id = link_sta->link_id; 289 290 if (!localaddr) { 291 if (link_id) 292 *link_id = _link_id; 293 return &sta->sta; 294 } 295 296 link = rcu_dereference(sta->sdata->link[_link_id]); 297 if (!link) 298 continue; 299 300 if (memcmp(link->conf->addr, localaddr, ETH_ALEN)) 301 continue; 302 303 if (link_id) 304 *link_id = _link_id; 305 return &sta->sta; 306 } 307 308 return NULL; 309 } 310 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_link_addrs); 311 312 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, 313 const u8 *sta_addr, const u8 *vif_addr) 314 { 315 struct rhlist_head *tmp; 316 struct sta_info *sta; 317 318 for_each_sta_info(local, sta_addr, sta, tmp) { 319 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr)) 320 return sta; 321 } 322 323 return NULL; 324 } 325 326 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 327 int idx) 328 { 329 struct ieee80211_local *local = sdata->local; 330 struct sta_info *sta; 331 int i = 0; 332 333 list_for_each_entry_rcu(sta, &local->sta_list, list, 334 lockdep_is_held(&local->sta_mtx)) { 335 if (sdata != sta->sdata) 336 continue; 337 if (i < idx) { 338 ++i; 339 continue; 340 } 341 return sta; 342 } 343 344 return NULL; 345 } 346 347 static void sta_info_free_link(struct link_sta_info *link_sta) 348 { 349 free_percpu(link_sta->pcpu_rx_stats); 350 } 351 352 static void sta_remove_link(struct sta_info *sta, unsigned int link_id, 353 bool unhash) 354 { 355 struct sta_link_alloc *alloc = NULL; 356 struct link_sta_info *link_sta; 357 358 link_sta = rcu_dereference_protected(sta->link[link_id], 359 lockdep_is_held(&sta->local->sta_mtx)); 360 361 if (WARN_ON(!link_sta)) 362 return; 363 364 if (unhash) 365 link_sta_info_hash_del(sta->local, link_sta); 366 367 if (test_sta_flag(sta, WLAN_STA_INSERTED)) 368 ieee80211_link_sta_debugfs_remove(link_sta); 369 370 if (link_sta != &sta->deflink) 371 alloc = container_of(link_sta, typeof(*alloc), info); 372 373 sta->sta.valid_links &= ~BIT(link_id); 374 RCU_INIT_POINTER(sta->link[link_id], NULL); 375 RCU_INIT_POINTER(sta->sta.link[link_id], NULL); 376 if (alloc) { 377 sta_info_free_link(&alloc->info); 378 kfree_rcu(alloc, rcu_head); 379 } 380 381 ieee80211_sta_recalc_aggregates(&sta->sta); 382 } 383 384 /** 385 * sta_info_free - free STA 386 * 387 * @local: pointer to the global information 388 * @sta: STA info to free 389 * 390 * This function must undo everything done by sta_info_alloc() 391 * that may happen before sta_info_insert(). It may only be 392 * called when sta_info_insert() has not been attempted (and 393 * if that fails, the station is freed anyway.) 394 */ 395 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 396 { 397 int i; 398 399 for (i = 0; i < ARRAY_SIZE(sta->link); i++) { 400 if (!(sta->sta.valid_links & BIT(i))) 401 continue; 402 403 sta_remove_link(sta, i, false); 404 } 405 406 /* 407 * If we had used sta_info_pre_move_state() then we might not 408 * have gone through the state transitions down again, so do 409 * it here now (and warn if it's inserted). 410 * 411 * This will clear state such as fast TX/RX that may have been 412 * allocated during state transitions. 413 */ 414 while (sta->sta_state > IEEE80211_STA_NONE) { 415 int ret; 416 417 WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED)); 418 419 ret = sta_info_move_state(sta, sta->sta_state - 1); 420 if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret)) 421 break; 422 } 423 424 if (sta->rate_ctrl) 425 rate_control_free_sta(sta); 426 427 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 428 429 kfree(to_txq_info(sta->sta.txq[0])); 430 kfree(rcu_dereference_raw(sta->sta.rates)); 431 #ifdef CONFIG_MAC80211_MESH 432 kfree(sta->mesh); 433 #endif 434 435 sta_info_free_link(&sta->deflink); 436 kfree(sta); 437 } 438 439 /* Caller must hold local->sta_mtx */ 440 static int sta_info_hash_add(struct ieee80211_local *local, 441 struct sta_info *sta) 442 { 443 return rhltable_insert(&local->sta_hash, &sta->hash_node, 444 sta_rht_params); 445 } 446 447 static void sta_deliver_ps_frames(struct work_struct *wk) 448 { 449 struct sta_info *sta; 450 451 sta = container_of(wk, struct sta_info, drv_deliver_wk); 452 453 if (sta->dead) 454 return; 455 456 local_bh_disable(); 457 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 458 ieee80211_sta_ps_deliver_wakeup(sta); 459 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 460 ieee80211_sta_ps_deliver_poll_response(sta); 461 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 462 ieee80211_sta_ps_deliver_uapsd(sta); 463 local_bh_enable(); 464 } 465 466 static int sta_prepare_rate_control(struct ieee80211_local *local, 467 struct sta_info *sta, gfp_t gfp) 468 { 469 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 470 return 0; 471 472 sta->rate_ctrl = local->rate_ctrl; 473 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 474 sta, gfp); 475 if (!sta->rate_ctrl_priv) 476 return -ENOMEM; 477 478 return 0; 479 } 480 481 static int sta_info_alloc_link(struct ieee80211_local *local, 482 struct link_sta_info *link_info, 483 gfp_t gfp) 484 { 485 struct ieee80211_hw *hw = &local->hw; 486 int i; 487 488 if (ieee80211_hw_check(hw, USES_RSS)) { 489 link_info->pcpu_rx_stats = 490 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); 491 if (!link_info->pcpu_rx_stats) 492 return -ENOMEM; 493 } 494 495 link_info->rx_stats.last_rx = jiffies; 496 u64_stats_init(&link_info->rx_stats.syncp); 497 498 ewma_signal_init(&link_info->rx_stats_avg.signal); 499 ewma_avg_signal_init(&link_info->status_stats.avg_ack_signal); 500 for (i = 0; i < ARRAY_SIZE(link_info->rx_stats_avg.chain_signal); i++) 501 ewma_signal_init(&link_info->rx_stats_avg.chain_signal[i]); 502 503 return 0; 504 } 505 506 static void sta_info_add_link(struct sta_info *sta, 507 unsigned int link_id, 508 struct link_sta_info *link_info, 509 struct ieee80211_link_sta *link_sta) 510 { 511 link_info->sta = sta; 512 link_info->link_id = link_id; 513 link_info->pub = link_sta; 514 link_info->pub->sta = &sta->sta; 515 link_sta->link_id = link_id; 516 rcu_assign_pointer(sta->link[link_id], link_info); 517 rcu_assign_pointer(sta->sta.link[link_id], link_sta); 518 519 link_sta->smps_mode = IEEE80211_SMPS_OFF; 520 link_sta->agg.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 521 } 522 523 static struct sta_info * 524 __sta_info_alloc(struct ieee80211_sub_if_data *sdata, 525 const u8 *addr, int link_id, const u8 *link_addr, 526 gfp_t gfp) 527 { 528 struct ieee80211_local *local = sdata->local; 529 struct ieee80211_hw *hw = &local->hw; 530 struct sta_info *sta; 531 void *txq_data; 532 int size; 533 int i; 534 535 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 536 if (!sta) 537 return NULL; 538 539 sta->local = local; 540 sta->sdata = sdata; 541 542 if (sta_info_alloc_link(local, &sta->deflink, gfp)) 543 goto free; 544 545 if (link_id >= 0) { 546 sta_info_add_link(sta, link_id, &sta->deflink, 547 &sta->sta.deflink); 548 sta->sta.valid_links = BIT(link_id); 549 } else { 550 sta_info_add_link(sta, 0, &sta->deflink, &sta->sta.deflink); 551 } 552 553 sta->sta.cur = &sta->sta.deflink.agg; 554 555 spin_lock_init(&sta->lock); 556 spin_lock_init(&sta->ps_lock); 557 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 558 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 559 mutex_init(&sta->ampdu_mlme.mtx); 560 #ifdef CONFIG_MAC80211_MESH 561 if (ieee80211_vif_is_mesh(&sdata->vif)) { 562 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 563 if (!sta->mesh) 564 goto free; 565 sta->mesh->plink_sta = sta; 566 spin_lock_init(&sta->mesh->plink_lock); 567 if (!sdata->u.mesh.user_mpm) 568 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 569 0); 570 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 571 } 572 #endif 573 574 memcpy(sta->addr, addr, ETH_ALEN); 575 memcpy(sta->sta.addr, addr, ETH_ALEN); 576 memcpy(sta->deflink.addr, link_addr, ETH_ALEN); 577 memcpy(sta->sta.deflink.addr, link_addr, ETH_ALEN); 578 sta->sta.max_rx_aggregation_subframes = 579 local->hw.max_rx_aggregation_subframes; 580 581 /* TODO link specific alloc and assignments for MLO Link STA */ 582 583 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only. 584 * The Tx path starts to use a key as soon as the key slot ptk_idx 585 * references to is not NULL. To not use the initial Rx-only key 586 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid 587 * which always will refer to a NULL key. 588 */ 589 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX); 590 sta->ptk_idx = INVALID_PTK_KEYIDX; 591 592 593 ieee80211_init_frag_cache(&sta->frags); 594 595 sta->sta_state = IEEE80211_STA_NONE; 596 597 /* Mark TID as unreserved */ 598 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 599 600 sta->last_connected = ktime_get_seconds(); 601 602 size = sizeof(struct txq_info) + 603 ALIGN(hw->txq_data_size, sizeof(void *)); 604 605 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 606 if (!txq_data) 607 goto free; 608 609 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 610 struct txq_info *txq = txq_data + i * size; 611 612 /* might not do anything for the (bufferable) MMPDU TXQ */ 613 ieee80211_txq_init(sdata, sta, txq, i); 614 } 615 616 if (sta_prepare_rate_control(local, sta, gfp)) 617 goto free_txq; 618 619 sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT; 620 621 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 622 skb_queue_head_init(&sta->ps_tx_buf[i]); 623 skb_queue_head_init(&sta->tx_filtered[i]); 624 sta->airtime[i].deficit = sta->airtime_weight; 625 atomic_set(&sta->airtime[i].aql_tx_pending, 0); 626 sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i]; 627 sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i]; 628 } 629 630 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 631 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 632 633 for (i = 0; i < NUM_NL80211_BANDS; i++) { 634 u32 mandatory = 0; 635 int r; 636 637 if (!hw->wiphy->bands[i]) 638 continue; 639 640 switch (i) { 641 case NL80211_BAND_2GHZ: 642 case NL80211_BAND_LC: 643 /* 644 * We use both here, even if we cannot really know for 645 * sure the station will support both, but the only use 646 * for this is when we don't know anything yet and send 647 * management frames, and then we'll pick the lowest 648 * possible rate anyway. 649 * If we don't include _G here, we cannot find a rate 650 * in P2P, and thus trigger the WARN_ONCE() in rate.c 651 */ 652 mandatory = IEEE80211_RATE_MANDATORY_B | 653 IEEE80211_RATE_MANDATORY_G; 654 break; 655 case NL80211_BAND_5GHZ: 656 mandatory = IEEE80211_RATE_MANDATORY_A; 657 break; 658 case NL80211_BAND_60GHZ: 659 WARN_ON(1); 660 mandatory = 0; 661 break; 662 } 663 664 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) { 665 struct ieee80211_rate *rate; 666 667 rate = &hw->wiphy->bands[i]->bitrates[r]; 668 669 if (!(rate->flags & mandatory)) 670 continue; 671 sta->sta.deflink.supp_rates[i] |= BIT(r); 672 } 673 } 674 675 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; 676 sta->cparams.target = MS2TIME(20); 677 sta->cparams.interval = MS2TIME(100); 678 sta->cparams.ecn = true; 679 sta->cparams.ce_threshold_selector = 0; 680 sta->cparams.ce_threshold_mask = 0; 681 682 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 683 684 return sta; 685 686 free_txq: 687 kfree(to_txq_info(sta->sta.txq[0])); 688 free: 689 sta_info_free_link(&sta->deflink); 690 #ifdef CONFIG_MAC80211_MESH 691 kfree(sta->mesh); 692 #endif 693 kfree(sta); 694 return NULL; 695 } 696 697 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 698 const u8 *addr, gfp_t gfp) 699 { 700 return __sta_info_alloc(sdata, addr, -1, addr, gfp); 701 } 702 703 struct sta_info *sta_info_alloc_with_link(struct ieee80211_sub_if_data *sdata, 704 const u8 *mld_addr, 705 unsigned int link_id, 706 const u8 *link_addr, 707 gfp_t gfp) 708 { 709 return __sta_info_alloc(sdata, mld_addr, link_id, link_addr, gfp); 710 } 711 712 static int sta_info_insert_check(struct sta_info *sta) 713 { 714 struct ieee80211_sub_if_data *sdata = sta->sdata; 715 716 /* 717 * Can't be a WARN_ON because it can be triggered through a race: 718 * something inserts a STA (on one CPU) without holding the RTNL 719 * and another CPU turns off the net device. 720 */ 721 if (unlikely(!ieee80211_sdata_running(sdata))) 722 return -ENETDOWN; 723 724 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 725 !is_valid_ether_addr(sta->sta.addr))) 726 return -EINVAL; 727 728 /* The RCU read lock is required by rhashtable due to 729 * asynchronous resize/rehash. We also require the mutex 730 * for correctness. 731 */ 732 rcu_read_lock(); 733 lockdep_assert_held(&sdata->local->sta_mtx); 734 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 735 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 736 rcu_read_unlock(); 737 return -ENOTUNIQ; 738 } 739 rcu_read_unlock(); 740 741 return 0; 742 } 743 744 static int sta_info_insert_drv_state(struct ieee80211_local *local, 745 struct ieee80211_sub_if_data *sdata, 746 struct sta_info *sta) 747 { 748 enum ieee80211_sta_state state; 749 int err = 0; 750 751 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 752 err = drv_sta_state(local, sdata, sta, state, state + 1); 753 if (err) 754 break; 755 } 756 757 if (!err) { 758 /* 759 * Drivers using legacy sta_add/sta_remove callbacks only 760 * get uploaded set to true after sta_add is called. 761 */ 762 if (!local->ops->sta_add) 763 sta->uploaded = true; 764 return 0; 765 } 766 767 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 768 sdata_info(sdata, 769 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 770 sta->sta.addr, state + 1, err); 771 err = 0; 772 } 773 774 /* unwind on error */ 775 for (; state > IEEE80211_STA_NOTEXIST; state--) 776 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 777 778 return err; 779 } 780 781 static void 782 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 783 { 784 struct ieee80211_local *local = sdata->local; 785 bool allow_p2p_go_ps = sdata->vif.p2p; 786 struct sta_info *sta; 787 788 rcu_read_lock(); 789 list_for_each_entry_rcu(sta, &local->sta_list, list) { 790 if (sdata != sta->sdata || 791 !test_sta_flag(sta, WLAN_STA_ASSOC)) 792 continue; 793 if (!sta->sta.support_p2p_ps) { 794 allow_p2p_go_ps = false; 795 break; 796 } 797 } 798 rcu_read_unlock(); 799 800 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 801 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 802 ieee80211_link_info_change_notify(sdata, &sdata->deflink, 803 BSS_CHANGED_P2P_PS); 804 } 805 } 806 807 /* 808 * should be called with sta_mtx locked 809 * this function replaces the mutex lock 810 * with a RCU lock 811 */ 812 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 813 { 814 struct ieee80211_local *local = sta->local; 815 struct ieee80211_sub_if_data *sdata = sta->sdata; 816 struct station_info *sinfo = NULL; 817 int err = 0; 818 819 lockdep_assert_held(&local->sta_mtx); 820 821 /* check if STA exists already */ 822 if (sta_info_get_bss(sdata, sta->sta.addr)) { 823 err = -EEXIST; 824 goto out_cleanup; 825 } 826 827 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 828 if (!sinfo) { 829 err = -ENOMEM; 830 goto out_cleanup; 831 } 832 833 local->num_sta++; 834 local->sta_generation++; 835 smp_mb(); 836 837 /* simplify things and don't accept BA sessions yet */ 838 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 839 840 /* make the station visible */ 841 err = sta_info_hash_add(local, sta); 842 if (err) 843 goto out_drop_sta; 844 845 if (sta->sta.valid_links) { 846 err = link_sta_info_hash_add(local, &sta->deflink); 847 if (err) { 848 sta_info_hash_del(local, sta); 849 goto out_drop_sta; 850 } 851 } 852 853 list_add_tail_rcu(&sta->list, &local->sta_list); 854 855 /* update channel context before notifying the driver about state 856 * change, this enables driver using the updated channel context right away. 857 */ 858 if (sta->sta_state >= IEEE80211_STA_ASSOC) { 859 ieee80211_recalc_min_chandef(sta->sdata, -1); 860 if (!sta->sta.support_p2p_ps) 861 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 862 } 863 864 /* notify driver */ 865 err = sta_info_insert_drv_state(local, sdata, sta); 866 if (err) 867 goto out_remove; 868 869 set_sta_flag(sta, WLAN_STA_INSERTED); 870 871 /* accept BA sessions now */ 872 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 873 874 ieee80211_sta_debugfs_add(sta); 875 rate_control_add_sta_debugfs(sta); 876 if (sta->sta.valid_links) { 877 int i; 878 879 for (i = 0; i < ARRAY_SIZE(sta->link); i++) { 880 struct link_sta_info *link_sta; 881 882 link_sta = rcu_dereference_protected(sta->link[i], 883 lockdep_is_held(&local->sta_mtx)); 884 885 if (!link_sta) 886 continue; 887 888 ieee80211_link_sta_debugfs_add(link_sta); 889 if (sdata->vif.active_links & BIT(i)) 890 ieee80211_link_sta_debugfs_drv_add(link_sta); 891 } 892 } else { 893 ieee80211_link_sta_debugfs_add(&sta->deflink); 894 ieee80211_link_sta_debugfs_drv_add(&sta->deflink); 895 } 896 897 sinfo->generation = local->sta_generation; 898 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 899 kfree(sinfo); 900 901 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 902 903 /* move reference to rcu-protected */ 904 rcu_read_lock(); 905 mutex_unlock(&local->sta_mtx); 906 907 if (ieee80211_vif_is_mesh(&sdata->vif)) 908 mesh_accept_plinks_update(sdata); 909 910 return 0; 911 out_remove: 912 if (sta->sta.valid_links) 913 link_sta_info_hash_del(local, &sta->deflink); 914 sta_info_hash_del(local, sta); 915 list_del_rcu(&sta->list); 916 out_drop_sta: 917 local->num_sta--; 918 synchronize_net(); 919 out_cleanup: 920 cleanup_single_sta(sta); 921 mutex_unlock(&local->sta_mtx); 922 kfree(sinfo); 923 rcu_read_lock(); 924 return err; 925 } 926 927 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 928 { 929 struct ieee80211_local *local = sta->local; 930 int err; 931 932 might_sleep(); 933 934 mutex_lock(&local->sta_mtx); 935 936 err = sta_info_insert_check(sta); 937 if (err) { 938 sta_info_free(local, sta); 939 mutex_unlock(&local->sta_mtx); 940 rcu_read_lock(); 941 return err; 942 } 943 944 return sta_info_insert_finish(sta); 945 } 946 947 int sta_info_insert(struct sta_info *sta) 948 { 949 int err = sta_info_insert_rcu(sta); 950 951 rcu_read_unlock(); 952 953 return err; 954 } 955 956 static inline void __bss_tim_set(u8 *tim, u16 id) 957 { 958 /* 959 * This format has been mandated by the IEEE specifications, 960 * so this line may not be changed to use the __set_bit() format. 961 */ 962 tim[id / 8] |= (1 << (id % 8)); 963 } 964 965 static inline void __bss_tim_clear(u8 *tim, u16 id) 966 { 967 /* 968 * This format has been mandated by the IEEE specifications, 969 * so this line may not be changed to use the __clear_bit() format. 970 */ 971 tim[id / 8] &= ~(1 << (id % 8)); 972 } 973 974 static inline bool __bss_tim_get(u8 *tim, u16 id) 975 { 976 /* 977 * This format has been mandated by the IEEE specifications, 978 * so this line may not be changed to use the test_bit() format. 979 */ 980 return tim[id / 8] & (1 << (id % 8)); 981 } 982 983 static unsigned long ieee80211_tids_for_ac(int ac) 984 { 985 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 986 switch (ac) { 987 case IEEE80211_AC_VO: 988 return BIT(6) | BIT(7); 989 case IEEE80211_AC_VI: 990 return BIT(4) | BIT(5); 991 case IEEE80211_AC_BE: 992 return BIT(0) | BIT(3); 993 case IEEE80211_AC_BK: 994 return BIT(1) | BIT(2); 995 default: 996 WARN_ON(1); 997 return 0; 998 } 999 } 1000 1001 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 1002 { 1003 struct ieee80211_local *local = sta->local; 1004 struct ps_data *ps; 1005 bool indicate_tim = false; 1006 u8 ignore_for_tim = sta->sta.uapsd_queues; 1007 int ac; 1008 u16 id = sta->sta.aid; 1009 1010 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1011 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 1012 if (WARN_ON_ONCE(!sta->sdata->bss)) 1013 return; 1014 1015 ps = &sta->sdata->bss->ps; 1016 #ifdef CONFIG_MAC80211_MESH 1017 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 1018 ps = &sta->sdata->u.mesh.ps; 1019 #endif 1020 } else { 1021 return; 1022 } 1023 1024 /* No need to do anything if the driver does all */ 1025 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 1026 return; 1027 1028 if (sta->dead) 1029 goto done; 1030 1031 /* 1032 * If all ACs are delivery-enabled then we should build 1033 * the TIM bit for all ACs anyway; if only some are then 1034 * we ignore those and build the TIM bit using only the 1035 * non-enabled ones. 1036 */ 1037 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 1038 ignore_for_tim = 0; 1039 1040 if (ignore_pending) 1041 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 1042 1043 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1044 unsigned long tids; 1045 1046 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 1047 continue; 1048 1049 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 1050 !skb_queue_empty(&sta->ps_tx_buf[ac]); 1051 if (indicate_tim) 1052 break; 1053 1054 tids = ieee80211_tids_for_ac(ac); 1055 1056 indicate_tim |= 1057 sta->driver_buffered_tids & tids; 1058 indicate_tim |= 1059 sta->txq_buffered_tids & tids; 1060 } 1061 1062 done: 1063 spin_lock_bh(&local->tim_lock); 1064 1065 if (indicate_tim == __bss_tim_get(ps->tim, id)) 1066 goto out_unlock; 1067 1068 if (indicate_tim) 1069 __bss_tim_set(ps->tim, id); 1070 else 1071 __bss_tim_clear(ps->tim, id); 1072 1073 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 1074 local->tim_in_locked_section = true; 1075 drv_set_tim(local, &sta->sta, indicate_tim); 1076 local->tim_in_locked_section = false; 1077 } 1078 1079 out_unlock: 1080 spin_unlock_bh(&local->tim_lock); 1081 } 1082 1083 void sta_info_recalc_tim(struct sta_info *sta) 1084 { 1085 __sta_info_recalc_tim(sta, false); 1086 } 1087 1088 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 1089 { 1090 struct ieee80211_tx_info *info; 1091 int timeout; 1092 1093 if (!skb) 1094 return false; 1095 1096 info = IEEE80211_SKB_CB(skb); 1097 1098 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 1099 timeout = (sta->listen_interval * 1100 sta->sdata->vif.bss_conf.beacon_int * 1101 32 / 15625) * HZ; 1102 if (timeout < STA_TX_BUFFER_EXPIRE) 1103 timeout = STA_TX_BUFFER_EXPIRE; 1104 return time_after(jiffies, info->control.jiffies + timeout); 1105 } 1106 1107 1108 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 1109 struct sta_info *sta, int ac) 1110 { 1111 unsigned long flags; 1112 struct sk_buff *skb; 1113 1114 /* 1115 * First check for frames that should expire on the filtered 1116 * queue. Frames here were rejected by the driver and are on 1117 * a separate queue to avoid reordering with normal PS-buffered 1118 * frames. They also aren't accounted for right now in the 1119 * total_ps_buffered counter. 1120 */ 1121 for (;;) { 1122 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1123 skb = skb_peek(&sta->tx_filtered[ac]); 1124 if (sta_info_buffer_expired(sta, skb)) 1125 skb = __skb_dequeue(&sta->tx_filtered[ac]); 1126 else 1127 skb = NULL; 1128 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1129 1130 /* 1131 * Frames are queued in order, so if this one 1132 * hasn't expired yet we can stop testing. If 1133 * we actually reached the end of the queue we 1134 * also need to stop, of course. 1135 */ 1136 if (!skb) 1137 break; 1138 ieee80211_free_txskb(&local->hw, skb); 1139 } 1140 1141 /* 1142 * Now also check the normal PS-buffered queue, this will 1143 * only find something if the filtered queue was emptied 1144 * since the filtered frames are all before the normal PS 1145 * buffered frames. 1146 */ 1147 for (;;) { 1148 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1149 skb = skb_peek(&sta->ps_tx_buf[ac]); 1150 if (sta_info_buffer_expired(sta, skb)) 1151 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 1152 else 1153 skb = NULL; 1154 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1155 1156 /* 1157 * frames are queued in order, so if this one 1158 * hasn't expired yet (or we reached the end of 1159 * the queue) we can stop testing 1160 */ 1161 if (!skb) 1162 break; 1163 1164 local->total_ps_buffered--; 1165 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 1166 sta->sta.addr); 1167 ieee80211_free_txskb(&local->hw, skb); 1168 } 1169 1170 /* 1171 * Finally, recalculate the TIM bit for this station -- it might 1172 * now be clear because the station was too slow to retrieve its 1173 * frames. 1174 */ 1175 sta_info_recalc_tim(sta); 1176 1177 /* 1178 * Return whether there are any frames still buffered, this is 1179 * used to check whether the cleanup timer still needs to run, 1180 * if there are no frames we don't need to rearm the timer. 1181 */ 1182 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 1183 skb_queue_empty(&sta->tx_filtered[ac])); 1184 } 1185 1186 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 1187 struct sta_info *sta) 1188 { 1189 bool have_buffered = false; 1190 int ac; 1191 1192 /* This is only necessary for stations on BSS/MBSS interfaces */ 1193 if (!sta->sdata->bss && 1194 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 1195 return false; 1196 1197 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 1198 have_buffered |= 1199 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 1200 1201 return have_buffered; 1202 } 1203 1204 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 1205 { 1206 struct ieee80211_local *local; 1207 struct ieee80211_sub_if_data *sdata; 1208 int ret, i; 1209 1210 might_sleep(); 1211 1212 if (!sta) 1213 return -ENOENT; 1214 1215 local = sta->local; 1216 sdata = sta->sdata; 1217 1218 lockdep_assert_held(&local->sta_mtx); 1219 1220 /* 1221 * Before removing the station from the driver and 1222 * rate control, it might still start new aggregation 1223 * sessions -- block that to make sure the tear-down 1224 * will be sufficient. 1225 */ 1226 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 1227 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 1228 1229 /* 1230 * Before removing the station from the driver there might be pending 1231 * rx frames on RSS queues sent prior to the disassociation - wait for 1232 * all such frames to be processed. 1233 */ 1234 drv_sync_rx_queues(local, sta); 1235 1236 for (i = 0; i < ARRAY_SIZE(sta->link); i++) { 1237 struct link_sta_info *link_sta; 1238 1239 if (!(sta->sta.valid_links & BIT(i))) 1240 continue; 1241 1242 link_sta = rcu_dereference_protected(sta->link[i], 1243 lockdep_is_held(&local->sta_mtx)); 1244 1245 link_sta_info_hash_del(local, link_sta); 1246 } 1247 1248 ret = sta_info_hash_del(local, sta); 1249 if (WARN_ON(ret)) 1250 return ret; 1251 1252 /* 1253 * for TDLS peers, make sure to return to the base channel before 1254 * removal. 1255 */ 1256 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 1257 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 1258 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 1259 } 1260 1261 list_del_rcu(&sta->list); 1262 sta->removed = true; 1263 1264 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 1265 1266 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1267 rcu_access_pointer(sdata->u.vlan.sta) == sta) 1268 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 1269 1270 return 0; 1271 } 1272 1273 static void __sta_info_destroy_part2(struct sta_info *sta) 1274 { 1275 struct ieee80211_local *local = sta->local; 1276 struct ieee80211_sub_if_data *sdata = sta->sdata; 1277 struct station_info *sinfo; 1278 int ret; 1279 1280 /* 1281 * NOTE: This assumes at least synchronize_net() was done 1282 * after _part1 and before _part2! 1283 */ 1284 1285 might_sleep(); 1286 lockdep_assert_held(&local->sta_mtx); 1287 1288 if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1289 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC); 1290 WARN_ON_ONCE(ret); 1291 } 1292 1293 /* now keys can no longer be reached */ 1294 ieee80211_free_sta_keys(local, sta); 1295 1296 /* disable TIM bit - last chance to tell driver */ 1297 __sta_info_recalc_tim(sta, true); 1298 1299 sta->dead = true; 1300 1301 local->num_sta--; 1302 local->sta_generation++; 1303 1304 while (sta->sta_state > IEEE80211_STA_NONE) { 1305 ret = sta_info_move_state(sta, sta->sta_state - 1); 1306 if (ret) { 1307 WARN_ON_ONCE(1); 1308 break; 1309 } 1310 } 1311 1312 if (sta->uploaded) { 1313 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 1314 IEEE80211_STA_NOTEXIST); 1315 WARN_ON_ONCE(ret != 0); 1316 } 1317 1318 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 1319 1320 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 1321 if (sinfo) 1322 sta_set_sinfo(sta, sinfo, true); 1323 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 1324 kfree(sinfo); 1325 1326 ieee80211_sta_debugfs_remove(sta); 1327 1328 ieee80211_destroy_frag_cache(&sta->frags); 1329 1330 cleanup_single_sta(sta); 1331 } 1332 1333 int __must_check __sta_info_destroy(struct sta_info *sta) 1334 { 1335 int err = __sta_info_destroy_part1(sta); 1336 1337 if (err) 1338 return err; 1339 1340 synchronize_net(); 1341 1342 __sta_info_destroy_part2(sta); 1343 1344 return 0; 1345 } 1346 1347 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1348 { 1349 struct sta_info *sta; 1350 int ret; 1351 1352 mutex_lock(&sdata->local->sta_mtx); 1353 sta = sta_info_get(sdata, addr); 1354 ret = __sta_info_destroy(sta); 1355 mutex_unlock(&sdata->local->sta_mtx); 1356 1357 return ret; 1358 } 1359 1360 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1361 const u8 *addr) 1362 { 1363 struct sta_info *sta; 1364 int ret; 1365 1366 mutex_lock(&sdata->local->sta_mtx); 1367 sta = sta_info_get_bss(sdata, addr); 1368 ret = __sta_info_destroy(sta); 1369 mutex_unlock(&sdata->local->sta_mtx); 1370 1371 return ret; 1372 } 1373 1374 static void sta_info_cleanup(struct timer_list *t) 1375 { 1376 struct ieee80211_local *local = from_timer(local, t, sta_cleanup); 1377 struct sta_info *sta; 1378 bool timer_needed = false; 1379 1380 rcu_read_lock(); 1381 list_for_each_entry_rcu(sta, &local->sta_list, list) 1382 if (sta_info_cleanup_expire_buffered(local, sta)) 1383 timer_needed = true; 1384 rcu_read_unlock(); 1385 1386 if (local->quiescing) 1387 return; 1388 1389 if (!timer_needed) 1390 return; 1391 1392 mod_timer(&local->sta_cleanup, 1393 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1394 } 1395 1396 int sta_info_init(struct ieee80211_local *local) 1397 { 1398 int err; 1399 1400 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1401 if (err) 1402 return err; 1403 1404 err = rhltable_init(&local->link_sta_hash, &link_sta_rht_params); 1405 if (err) { 1406 rhltable_destroy(&local->sta_hash); 1407 return err; 1408 } 1409 1410 spin_lock_init(&local->tim_lock); 1411 mutex_init(&local->sta_mtx); 1412 INIT_LIST_HEAD(&local->sta_list); 1413 1414 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); 1415 return 0; 1416 } 1417 1418 void sta_info_stop(struct ieee80211_local *local) 1419 { 1420 del_timer_sync(&local->sta_cleanup); 1421 rhltable_destroy(&local->sta_hash); 1422 rhltable_destroy(&local->link_sta_hash); 1423 } 1424 1425 1426 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1427 { 1428 struct ieee80211_local *local = sdata->local; 1429 struct sta_info *sta, *tmp; 1430 LIST_HEAD(free_list); 1431 int ret = 0; 1432 1433 might_sleep(); 1434 1435 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1436 WARN_ON(vlans && !sdata->bss); 1437 1438 mutex_lock(&local->sta_mtx); 1439 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1440 if (sdata == sta->sdata || 1441 (vlans && sdata->bss == sta->sdata->bss)) { 1442 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1443 list_add(&sta->free_list, &free_list); 1444 ret++; 1445 } 1446 } 1447 1448 if (!list_empty(&free_list)) { 1449 synchronize_net(); 1450 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1451 __sta_info_destroy_part2(sta); 1452 } 1453 mutex_unlock(&local->sta_mtx); 1454 1455 return ret; 1456 } 1457 1458 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1459 unsigned long exp_time) 1460 { 1461 struct ieee80211_local *local = sdata->local; 1462 struct sta_info *sta, *tmp; 1463 1464 mutex_lock(&local->sta_mtx); 1465 1466 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1467 unsigned long last_active = ieee80211_sta_last_active(sta); 1468 1469 if (sdata != sta->sdata) 1470 continue; 1471 1472 if (time_is_before_jiffies(last_active + exp_time)) { 1473 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1474 sta->sta.addr); 1475 1476 if (ieee80211_vif_is_mesh(&sdata->vif) && 1477 test_sta_flag(sta, WLAN_STA_PS_STA)) 1478 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1479 1480 WARN_ON(__sta_info_destroy(sta)); 1481 } 1482 } 1483 1484 mutex_unlock(&local->sta_mtx); 1485 } 1486 1487 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1488 const u8 *addr, 1489 const u8 *localaddr) 1490 { 1491 struct ieee80211_local *local = hw_to_local(hw); 1492 struct rhlist_head *tmp; 1493 struct sta_info *sta; 1494 1495 /* 1496 * Just return a random station if localaddr is NULL 1497 * ... first in list. 1498 */ 1499 for_each_sta_info(local, addr, sta, tmp) { 1500 if (localaddr && 1501 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1502 continue; 1503 if (!sta->uploaded) 1504 return NULL; 1505 return &sta->sta; 1506 } 1507 1508 return NULL; 1509 } 1510 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1511 1512 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1513 const u8 *addr) 1514 { 1515 struct sta_info *sta; 1516 1517 if (!vif) 1518 return NULL; 1519 1520 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1521 if (!sta) 1522 return NULL; 1523 1524 if (!sta->uploaded) 1525 return NULL; 1526 1527 return &sta->sta; 1528 } 1529 EXPORT_SYMBOL(ieee80211_find_sta); 1530 1531 /* powersave support code */ 1532 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1533 { 1534 struct ieee80211_sub_if_data *sdata = sta->sdata; 1535 struct ieee80211_local *local = sdata->local; 1536 struct sk_buff_head pending; 1537 int filtered = 0, buffered = 0, ac, i; 1538 unsigned long flags; 1539 struct ps_data *ps; 1540 1541 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1542 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1543 u.ap); 1544 1545 if (sdata->vif.type == NL80211_IFTYPE_AP) 1546 ps = &sdata->bss->ps; 1547 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1548 ps = &sdata->u.mesh.ps; 1549 else 1550 return; 1551 1552 clear_sta_flag(sta, WLAN_STA_SP); 1553 1554 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1555 sta->driver_buffered_tids = 0; 1556 sta->txq_buffered_tids = 0; 1557 1558 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1559 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1560 1561 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1562 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) 1563 continue; 1564 1565 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); 1566 } 1567 1568 skb_queue_head_init(&pending); 1569 1570 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1571 spin_lock(&sta->ps_lock); 1572 /* Send all buffered frames to the station */ 1573 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1574 int count = skb_queue_len(&pending), tmp; 1575 1576 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1577 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1578 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1579 tmp = skb_queue_len(&pending); 1580 filtered += tmp - count; 1581 count = tmp; 1582 1583 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1584 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1585 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1586 tmp = skb_queue_len(&pending); 1587 buffered += tmp - count; 1588 } 1589 1590 ieee80211_add_pending_skbs(local, &pending); 1591 1592 /* now we're no longer in the deliver code */ 1593 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1594 1595 /* The station might have polled and then woken up before we responded, 1596 * so clear these flags now to avoid them sticking around. 1597 */ 1598 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1599 clear_sta_flag(sta, WLAN_STA_UAPSD); 1600 spin_unlock(&sta->ps_lock); 1601 1602 atomic_dec(&ps->num_sta_ps); 1603 1604 local->total_ps_buffered -= buffered; 1605 1606 sta_info_recalc_tim(sta); 1607 1608 ps_dbg(sdata, 1609 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1610 sta->sta.addr, sta->sta.aid, filtered, buffered); 1611 1612 ieee80211_check_fast_xmit(sta); 1613 } 1614 1615 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1616 enum ieee80211_frame_release_type reason, 1617 bool call_driver, bool more_data) 1618 { 1619 struct ieee80211_sub_if_data *sdata = sta->sdata; 1620 struct ieee80211_local *local = sdata->local; 1621 struct ieee80211_qos_hdr *nullfunc; 1622 struct sk_buff *skb; 1623 int size = sizeof(*nullfunc); 1624 __le16 fc; 1625 bool qos = sta->sta.wme; 1626 struct ieee80211_tx_info *info; 1627 struct ieee80211_chanctx_conf *chanctx_conf; 1628 1629 if (qos) { 1630 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1631 IEEE80211_STYPE_QOS_NULLFUNC | 1632 IEEE80211_FCTL_FROMDS); 1633 } else { 1634 size -= 2; 1635 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1636 IEEE80211_STYPE_NULLFUNC | 1637 IEEE80211_FCTL_FROMDS); 1638 } 1639 1640 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1641 if (!skb) 1642 return; 1643 1644 skb_reserve(skb, local->hw.extra_tx_headroom); 1645 1646 nullfunc = skb_put(skb, size); 1647 nullfunc->frame_control = fc; 1648 nullfunc->duration_id = 0; 1649 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1650 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1651 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1652 nullfunc->seq_ctrl = 0; 1653 1654 skb->priority = tid; 1655 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1656 if (qos) { 1657 nullfunc->qos_ctrl = cpu_to_le16(tid); 1658 1659 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1660 nullfunc->qos_ctrl |= 1661 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1662 if (more_data) 1663 nullfunc->frame_control |= 1664 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1665 } 1666 } 1667 1668 info = IEEE80211_SKB_CB(skb); 1669 1670 /* 1671 * Tell TX path to send this frame even though the 1672 * STA may still remain is PS mode after this frame 1673 * exchange. Also set EOSP to indicate this packet 1674 * ends the poll/service period. 1675 */ 1676 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1677 IEEE80211_TX_STATUS_EOSP | 1678 IEEE80211_TX_CTL_REQ_TX_STATUS; 1679 1680 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1681 1682 if (call_driver) 1683 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1684 reason, false); 1685 1686 skb->dev = sdata->dev; 1687 1688 rcu_read_lock(); 1689 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 1690 if (WARN_ON(!chanctx_conf)) { 1691 rcu_read_unlock(); 1692 kfree_skb(skb); 1693 return; 1694 } 1695 1696 info->band = chanctx_conf->def.chan->band; 1697 ieee80211_xmit(sdata, sta, skb); 1698 rcu_read_unlock(); 1699 } 1700 1701 static int find_highest_prio_tid(unsigned long tids) 1702 { 1703 /* lower 3 TIDs aren't ordered perfectly */ 1704 if (tids & 0xF8) 1705 return fls(tids) - 1; 1706 /* TID 0 is BE just like TID 3 */ 1707 if (tids & BIT(0)) 1708 return 0; 1709 return fls(tids) - 1; 1710 } 1711 1712 /* Indicates if the MORE_DATA bit should be set in the last 1713 * frame obtained by ieee80211_sta_ps_get_frames. 1714 * Note that driver_release_tids is relevant only if 1715 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1716 */ 1717 static bool 1718 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1719 enum ieee80211_frame_release_type reason, 1720 unsigned long driver_release_tids) 1721 { 1722 int ac; 1723 1724 /* If the driver has data on more than one TID then 1725 * certainly there's more data if we release just a 1726 * single frame now (from a single TID). This will 1727 * only happen for PS-Poll. 1728 */ 1729 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1730 hweight16(driver_release_tids) > 1) 1731 return true; 1732 1733 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1734 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1735 continue; 1736 1737 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1738 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1739 return true; 1740 } 1741 1742 return false; 1743 } 1744 1745 static void 1746 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1747 enum ieee80211_frame_release_type reason, 1748 struct sk_buff_head *frames, 1749 unsigned long *driver_release_tids) 1750 { 1751 struct ieee80211_sub_if_data *sdata = sta->sdata; 1752 struct ieee80211_local *local = sdata->local; 1753 int ac; 1754 1755 /* Get response frame(s) and more data bit for the last one. */ 1756 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1757 unsigned long tids; 1758 1759 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1760 continue; 1761 1762 tids = ieee80211_tids_for_ac(ac); 1763 1764 /* if we already have frames from software, then we can't also 1765 * release from hardware queues 1766 */ 1767 if (skb_queue_empty(frames)) { 1768 *driver_release_tids |= 1769 sta->driver_buffered_tids & tids; 1770 *driver_release_tids |= sta->txq_buffered_tids & tids; 1771 } 1772 1773 if (!*driver_release_tids) { 1774 struct sk_buff *skb; 1775 1776 while (n_frames > 0) { 1777 skb = skb_dequeue(&sta->tx_filtered[ac]); 1778 if (!skb) { 1779 skb = skb_dequeue( 1780 &sta->ps_tx_buf[ac]); 1781 if (skb) 1782 local->total_ps_buffered--; 1783 } 1784 if (!skb) 1785 break; 1786 n_frames--; 1787 __skb_queue_tail(frames, skb); 1788 } 1789 } 1790 1791 /* If we have more frames buffered on this AC, then abort the 1792 * loop since we can't send more data from other ACs before 1793 * the buffered frames from this. 1794 */ 1795 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1796 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1797 break; 1798 } 1799 } 1800 1801 static void 1802 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1803 int n_frames, u8 ignored_acs, 1804 enum ieee80211_frame_release_type reason) 1805 { 1806 struct ieee80211_sub_if_data *sdata = sta->sdata; 1807 struct ieee80211_local *local = sdata->local; 1808 unsigned long driver_release_tids = 0; 1809 struct sk_buff_head frames; 1810 bool more_data; 1811 1812 /* Service or PS-Poll period starts */ 1813 set_sta_flag(sta, WLAN_STA_SP); 1814 1815 __skb_queue_head_init(&frames); 1816 1817 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1818 &frames, &driver_release_tids); 1819 1820 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1821 1822 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1823 driver_release_tids = 1824 BIT(find_highest_prio_tid(driver_release_tids)); 1825 1826 if (skb_queue_empty(&frames) && !driver_release_tids) { 1827 int tid, ac; 1828 1829 /* 1830 * For PS-Poll, this can only happen due to a race condition 1831 * when we set the TIM bit and the station notices it, but 1832 * before it can poll for the frame we expire it. 1833 * 1834 * For uAPSD, this is said in the standard (11.2.1.5 h): 1835 * At each unscheduled SP for a non-AP STA, the AP shall 1836 * attempt to transmit at least one MSDU or MMPDU, but no 1837 * more than the value specified in the Max SP Length field 1838 * in the QoS Capability element from delivery-enabled ACs, 1839 * that are destined for the non-AP STA. 1840 * 1841 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1842 */ 1843 1844 /* This will evaluate to 1, 3, 5 or 7. */ 1845 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1846 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1847 break; 1848 tid = 7 - 2 * ac; 1849 1850 ieee80211_send_null_response(sta, tid, reason, true, false); 1851 } else if (!driver_release_tids) { 1852 struct sk_buff_head pending; 1853 struct sk_buff *skb; 1854 int num = 0; 1855 u16 tids = 0; 1856 bool need_null = false; 1857 1858 skb_queue_head_init(&pending); 1859 1860 while ((skb = __skb_dequeue(&frames))) { 1861 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1862 struct ieee80211_hdr *hdr = (void *) skb->data; 1863 u8 *qoshdr = NULL; 1864 1865 num++; 1866 1867 /* 1868 * Tell TX path to send this frame even though the 1869 * STA may still remain is PS mode after this frame 1870 * exchange. 1871 */ 1872 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1873 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1874 1875 /* 1876 * Use MoreData flag to indicate whether there are 1877 * more buffered frames for this STA 1878 */ 1879 if (more_data || !skb_queue_empty(&frames)) 1880 hdr->frame_control |= 1881 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1882 else 1883 hdr->frame_control &= 1884 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1885 1886 if (ieee80211_is_data_qos(hdr->frame_control) || 1887 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1888 qoshdr = ieee80211_get_qos_ctl(hdr); 1889 1890 tids |= BIT(skb->priority); 1891 1892 __skb_queue_tail(&pending, skb); 1893 1894 /* end service period after last frame or add one */ 1895 if (!skb_queue_empty(&frames)) 1896 continue; 1897 1898 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1899 /* for PS-Poll, there's only one frame */ 1900 info->flags |= IEEE80211_TX_STATUS_EOSP | 1901 IEEE80211_TX_CTL_REQ_TX_STATUS; 1902 break; 1903 } 1904 1905 /* For uAPSD, things are a bit more complicated. If the 1906 * last frame has a QoS header (i.e. is a QoS-data or 1907 * QoS-nulldata frame) then just set the EOSP bit there 1908 * and be done. 1909 * If the frame doesn't have a QoS header (which means 1910 * it should be a bufferable MMPDU) then we can't set 1911 * the EOSP bit in the QoS header; add a QoS-nulldata 1912 * frame to the list to send it after the MMPDU. 1913 * 1914 * Note that this code is only in the mac80211-release 1915 * code path, we assume that the driver will not buffer 1916 * anything but QoS-data frames, or if it does, will 1917 * create the QoS-nulldata frame by itself if needed. 1918 * 1919 * Cf. 802.11-2012 10.2.1.10 (c). 1920 */ 1921 if (qoshdr) { 1922 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1923 1924 info->flags |= IEEE80211_TX_STATUS_EOSP | 1925 IEEE80211_TX_CTL_REQ_TX_STATUS; 1926 } else { 1927 /* The standard isn't completely clear on this 1928 * as it says the more-data bit should be set 1929 * if there are more BUs. The QoS-Null frame 1930 * we're about to send isn't buffered yet, we 1931 * only create it below, but let's pretend it 1932 * was buffered just in case some clients only 1933 * expect more-data=0 when eosp=1. 1934 */ 1935 hdr->frame_control |= 1936 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1937 need_null = true; 1938 num++; 1939 } 1940 break; 1941 } 1942 1943 drv_allow_buffered_frames(local, sta, tids, num, 1944 reason, more_data); 1945 1946 ieee80211_add_pending_skbs(local, &pending); 1947 1948 if (need_null) 1949 ieee80211_send_null_response( 1950 sta, find_highest_prio_tid(tids), 1951 reason, false, false); 1952 1953 sta_info_recalc_tim(sta); 1954 } else { 1955 int tid; 1956 1957 /* 1958 * We need to release a frame that is buffered somewhere in the 1959 * driver ... it'll have to handle that. 1960 * Note that the driver also has to check the number of frames 1961 * on the TIDs we're releasing from - if there are more than 1962 * n_frames it has to set the more-data bit (if we didn't ask 1963 * it to set it anyway due to other buffered frames); if there 1964 * are fewer than n_frames it has to make sure to adjust that 1965 * to allow the service period to end properly. 1966 */ 1967 drv_release_buffered_frames(local, sta, driver_release_tids, 1968 n_frames, reason, more_data); 1969 1970 /* 1971 * Note that we don't recalculate the TIM bit here as it would 1972 * most likely have no effect at all unless the driver told us 1973 * that the TID(s) became empty before returning here from the 1974 * release function. 1975 * Either way, however, when the driver tells us that the TID(s) 1976 * became empty or we find that a txq became empty, we'll do the 1977 * TIM recalculation. 1978 */ 1979 1980 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1981 if (!sta->sta.txq[tid] || 1982 !(driver_release_tids & BIT(tid)) || 1983 txq_has_queue(sta->sta.txq[tid])) 1984 continue; 1985 1986 sta_info_recalc_tim(sta); 1987 break; 1988 } 1989 } 1990 } 1991 1992 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1993 { 1994 u8 ignore_for_response = sta->sta.uapsd_queues; 1995 1996 /* 1997 * If all ACs are delivery-enabled then we should reply 1998 * from any of them, if only some are enabled we reply 1999 * only from the non-enabled ones. 2000 */ 2001 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 2002 ignore_for_response = 0; 2003 2004 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 2005 IEEE80211_FRAME_RELEASE_PSPOLL); 2006 } 2007 2008 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 2009 { 2010 int n_frames = sta->sta.max_sp; 2011 u8 delivery_enabled = sta->sta.uapsd_queues; 2012 2013 /* 2014 * If we ever grow support for TSPEC this might happen if 2015 * the TSPEC update from hostapd comes in between a trigger 2016 * frame setting WLAN_STA_UAPSD in the RX path and this 2017 * actually getting called. 2018 */ 2019 if (!delivery_enabled) 2020 return; 2021 2022 switch (sta->sta.max_sp) { 2023 case 1: 2024 n_frames = 2; 2025 break; 2026 case 2: 2027 n_frames = 4; 2028 break; 2029 case 3: 2030 n_frames = 6; 2031 break; 2032 case 0: 2033 /* XXX: what is a good value? */ 2034 n_frames = 128; 2035 break; 2036 } 2037 2038 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 2039 IEEE80211_FRAME_RELEASE_UAPSD); 2040 } 2041 2042 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 2043 struct ieee80211_sta *pubsta, bool block) 2044 { 2045 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2046 2047 trace_api_sta_block_awake(sta->local, pubsta, block); 2048 2049 if (block) { 2050 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 2051 ieee80211_clear_fast_xmit(sta); 2052 return; 2053 } 2054 2055 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 2056 return; 2057 2058 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 2059 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 2060 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 2061 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 2062 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 2063 test_sta_flag(sta, WLAN_STA_UAPSD)) { 2064 /* must be asleep in this case */ 2065 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 2066 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 2067 } else { 2068 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 2069 ieee80211_check_fast_xmit(sta); 2070 } 2071 } 2072 EXPORT_SYMBOL(ieee80211_sta_block_awake); 2073 2074 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 2075 { 2076 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2077 struct ieee80211_local *local = sta->local; 2078 2079 trace_api_eosp(local, pubsta); 2080 2081 clear_sta_flag(sta, WLAN_STA_SP); 2082 } 2083 EXPORT_SYMBOL(ieee80211_sta_eosp); 2084 2085 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 2086 { 2087 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2088 enum ieee80211_frame_release_type reason; 2089 bool more_data; 2090 2091 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 2092 2093 reason = IEEE80211_FRAME_RELEASE_UAPSD; 2094 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 2095 reason, 0); 2096 2097 ieee80211_send_null_response(sta, tid, reason, false, more_data); 2098 } 2099 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 2100 2101 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 2102 u8 tid, bool buffered) 2103 { 2104 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2105 2106 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 2107 return; 2108 2109 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 2110 2111 if (buffered) 2112 set_bit(tid, &sta->driver_buffered_tids); 2113 else 2114 clear_bit(tid, &sta->driver_buffered_tids); 2115 2116 sta_info_recalc_tim(sta); 2117 } 2118 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 2119 2120 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, 2121 u32 tx_airtime, u32 rx_airtime) 2122 { 2123 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2124 struct ieee80211_local *local = sta->sdata->local; 2125 u8 ac = ieee80211_ac_from_tid(tid); 2126 u32 airtime = 0; 2127 u32 diff; 2128 2129 if (sta->local->airtime_flags & AIRTIME_USE_TX) 2130 airtime += tx_airtime; 2131 if (sta->local->airtime_flags & AIRTIME_USE_RX) 2132 airtime += rx_airtime; 2133 2134 spin_lock_bh(&local->active_txq_lock[ac]); 2135 sta->airtime[ac].tx_airtime += tx_airtime; 2136 sta->airtime[ac].rx_airtime += rx_airtime; 2137 2138 diff = (u32)jiffies - sta->airtime[ac].last_active; 2139 if (diff <= AIRTIME_ACTIVE_DURATION) 2140 sta->airtime[ac].deficit -= airtime; 2141 2142 spin_unlock_bh(&local->active_txq_lock[ac]); 2143 } 2144 EXPORT_SYMBOL(ieee80211_sta_register_airtime); 2145 2146 void __ieee80211_sta_recalc_aggregates(struct sta_info *sta, u16 active_links) 2147 { 2148 bool first = true; 2149 int link_id; 2150 2151 if (!sta->sta.valid_links || !sta->sta.mlo) { 2152 sta->sta.cur = &sta->sta.deflink.agg; 2153 return; 2154 } 2155 2156 rcu_read_lock(); 2157 for (link_id = 0; link_id < ARRAY_SIZE((sta)->link); link_id++) { 2158 struct ieee80211_link_sta *link_sta; 2159 int i; 2160 2161 if (!(active_links & BIT(link_id))) 2162 continue; 2163 2164 link_sta = rcu_dereference(sta->sta.link[link_id]); 2165 if (!link_sta) 2166 continue; 2167 2168 if (first) { 2169 sta->cur = sta->sta.deflink.agg; 2170 first = false; 2171 continue; 2172 } 2173 2174 sta->cur.max_amsdu_len = 2175 min(sta->cur.max_amsdu_len, 2176 link_sta->agg.max_amsdu_len); 2177 sta->cur.max_rc_amsdu_len = 2178 min(sta->cur.max_rc_amsdu_len, 2179 link_sta->agg.max_rc_amsdu_len); 2180 2181 for (i = 0; i < ARRAY_SIZE(sta->cur.max_tid_amsdu_len); i++) 2182 sta->cur.max_tid_amsdu_len[i] = 2183 min(sta->cur.max_tid_amsdu_len[i], 2184 link_sta->agg.max_tid_amsdu_len[i]); 2185 } 2186 rcu_read_unlock(); 2187 2188 sta->sta.cur = &sta->cur; 2189 } 2190 2191 void ieee80211_sta_recalc_aggregates(struct ieee80211_sta *pubsta) 2192 { 2193 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2194 2195 __ieee80211_sta_recalc_aggregates(sta, sta->sdata->vif.active_links); 2196 } 2197 EXPORT_SYMBOL(ieee80211_sta_recalc_aggregates); 2198 2199 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, 2200 struct sta_info *sta, u8 ac, 2201 u16 tx_airtime, bool tx_completed) 2202 { 2203 int tx_pending; 2204 2205 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) 2206 return; 2207 2208 if (!tx_completed) { 2209 if (sta) 2210 atomic_add(tx_airtime, 2211 &sta->airtime[ac].aql_tx_pending); 2212 2213 atomic_add(tx_airtime, &local->aql_total_pending_airtime); 2214 atomic_add(tx_airtime, &local->aql_ac_pending_airtime[ac]); 2215 return; 2216 } 2217 2218 if (sta) { 2219 tx_pending = atomic_sub_return(tx_airtime, 2220 &sta->airtime[ac].aql_tx_pending); 2221 if (tx_pending < 0) 2222 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending, 2223 tx_pending, 0); 2224 } 2225 2226 atomic_sub(tx_airtime, &local->aql_total_pending_airtime); 2227 tx_pending = atomic_sub_return(tx_airtime, 2228 &local->aql_ac_pending_airtime[ac]); 2229 if (WARN_ONCE(tx_pending < 0, 2230 "Device %s AC %d pending airtime underflow: %u, %u", 2231 wiphy_name(local->hw.wiphy), ac, tx_pending, 2232 tx_airtime)) { 2233 atomic_cmpxchg(&local->aql_ac_pending_airtime[ac], 2234 tx_pending, 0); 2235 atomic_sub(tx_pending, &local->aql_total_pending_airtime); 2236 } 2237 } 2238 2239 int sta_info_move_state(struct sta_info *sta, 2240 enum ieee80211_sta_state new_state) 2241 { 2242 might_sleep(); 2243 2244 if (sta->sta_state == new_state) 2245 return 0; 2246 2247 /* check allowed transitions first */ 2248 2249 switch (new_state) { 2250 case IEEE80211_STA_NONE: 2251 if (sta->sta_state != IEEE80211_STA_AUTH) 2252 return -EINVAL; 2253 break; 2254 case IEEE80211_STA_AUTH: 2255 if (sta->sta_state != IEEE80211_STA_NONE && 2256 sta->sta_state != IEEE80211_STA_ASSOC) 2257 return -EINVAL; 2258 break; 2259 case IEEE80211_STA_ASSOC: 2260 if (sta->sta_state != IEEE80211_STA_AUTH && 2261 sta->sta_state != IEEE80211_STA_AUTHORIZED) 2262 return -EINVAL; 2263 break; 2264 case IEEE80211_STA_AUTHORIZED: 2265 if (sta->sta_state != IEEE80211_STA_ASSOC) 2266 return -EINVAL; 2267 break; 2268 default: 2269 WARN(1, "invalid state %d", new_state); 2270 return -EINVAL; 2271 } 2272 2273 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 2274 sta->sta.addr, new_state); 2275 2276 /* 2277 * notify the driver before the actual changes so it can 2278 * fail the transition 2279 */ 2280 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 2281 int err = drv_sta_state(sta->local, sta->sdata, sta, 2282 sta->sta_state, new_state); 2283 if (err) 2284 return err; 2285 } 2286 2287 /* reflect the change in all state variables */ 2288 2289 switch (new_state) { 2290 case IEEE80211_STA_NONE: 2291 if (sta->sta_state == IEEE80211_STA_AUTH) 2292 clear_bit(WLAN_STA_AUTH, &sta->_flags); 2293 break; 2294 case IEEE80211_STA_AUTH: 2295 if (sta->sta_state == IEEE80211_STA_NONE) { 2296 set_bit(WLAN_STA_AUTH, &sta->_flags); 2297 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 2298 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 2299 ieee80211_recalc_min_chandef(sta->sdata, -1); 2300 if (!sta->sta.support_p2p_ps) 2301 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2302 } 2303 break; 2304 case IEEE80211_STA_ASSOC: 2305 if (sta->sta_state == IEEE80211_STA_AUTH) { 2306 set_bit(WLAN_STA_ASSOC, &sta->_flags); 2307 sta->assoc_at = ktime_get_boottime_ns(); 2308 ieee80211_recalc_min_chandef(sta->sdata, -1); 2309 if (!sta->sta.support_p2p_ps) 2310 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2311 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 2312 ieee80211_vif_dec_num_mcast(sta->sdata); 2313 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2314 ieee80211_clear_fast_xmit(sta); 2315 ieee80211_clear_fast_rx(sta); 2316 } 2317 break; 2318 case IEEE80211_STA_AUTHORIZED: 2319 if (sta->sta_state == IEEE80211_STA_ASSOC) { 2320 ieee80211_vif_inc_num_mcast(sta->sdata); 2321 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2322 ieee80211_check_fast_xmit(sta); 2323 ieee80211_check_fast_rx(sta); 2324 } 2325 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 2326 sta->sdata->vif.type == NL80211_IFTYPE_AP) 2327 cfg80211_send_layer2_update(sta->sdata->dev, 2328 sta->sta.addr); 2329 break; 2330 default: 2331 break; 2332 } 2333 2334 sta->sta_state = new_state; 2335 2336 return 0; 2337 } 2338 2339 static struct ieee80211_sta_rx_stats * 2340 sta_get_last_rx_stats(struct sta_info *sta) 2341 { 2342 struct ieee80211_sta_rx_stats *stats = &sta->deflink.rx_stats; 2343 int cpu; 2344 2345 if (!sta->deflink.pcpu_rx_stats) 2346 return stats; 2347 2348 for_each_possible_cpu(cpu) { 2349 struct ieee80211_sta_rx_stats *cpustats; 2350 2351 cpustats = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu); 2352 2353 if (time_after(cpustats->last_rx, stats->last_rx)) 2354 stats = cpustats; 2355 } 2356 2357 return stats; 2358 } 2359 2360 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, 2361 struct rate_info *rinfo) 2362 { 2363 rinfo->bw = STA_STATS_GET(BW, rate); 2364 2365 switch (STA_STATS_GET(TYPE, rate)) { 2366 case STA_STATS_RATE_TYPE_VHT: 2367 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 2368 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 2369 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 2370 if (STA_STATS_GET(SGI, rate)) 2371 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2372 break; 2373 case STA_STATS_RATE_TYPE_HT: 2374 rinfo->flags = RATE_INFO_FLAGS_MCS; 2375 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 2376 if (STA_STATS_GET(SGI, rate)) 2377 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2378 break; 2379 case STA_STATS_RATE_TYPE_LEGACY: { 2380 struct ieee80211_supported_band *sband; 2381 u16 brate; 2382 unsigned int shift; 2383 int band = STA_STATS_GET(LEGACY_BAND, rate); 2384 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 2385 2386 sband = local->hw.wiphy->bands[band]; 2387 2388 if (WARN_ON_ONCE(!sband->bitrates)) 2389 break; 2390 2391 brate = sband->bitrates[rate_idx].bitrate; 2392 if (rinfo->bw == RATE_INFO_BW_5) 2393 shift = 2; 2394 else if (rinfo->bw == RATE_INFO_BW_10) 2395 shift = 1; 2396 else 2397 shift = 0; 2398 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 2399 break; 2400 } 2401 case STA_STATS_RATE_TYPE_HE: 2402 rinfo->flags = RATE_INFO_FLAGS_HE_MCS; 2403 rinfo->mcs = STA_STATS_GET(HE_MCS, rate); 2404 rinfo->nss = STA_STATS_GET(HE_NSS, rate); 2405 rinfo->he_gi = STA_STATS_GET(HE_GI, rate); 2406 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); 2407 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); 2408 break; 2409 } 2410 } 2411 2412 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2413 { 2414 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2415 2416 if (rate == STA_STATS_RATE_INVALID) 2417 return -EINVAL; 2418 2419 sta_stats_decode_rate(sta->local, rate, rinfo); 2420 return 0; 2421 } 2422 2423 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats, 2424 int tid) 2425 { 2426 unsigned int start; 2427 u64 value; 2428 2429 do { 2430 start = u64_stats_fetch_begin(&rxstats->syncp); 2431 value = rxstats->msdu[tid]; 2432 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2433 2434 return value; 2435 } 2436 2437 static void sta_set_tidstats(struct sta_info *sta, 2438 struct cfg80211_tid_stats *tidstats, 2439 int tid) 2440 { 2441 struct ieee80211_local *local = sta->local; 2442 int cpu; 2443 2444 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2445 tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->deflink.rx_stats, 2446 tid); 2447 2448 if (sta->deflink.pcpu_rx_stats) { 2449 for_each_possible_cpu(cpu) { 2450 struct ieee80211_sta_rx_stats *cpurxs; 2451 2452 cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, 2453 cpu); 2454 tidstats->rx_msdu += 2455 sta_get_tidstats_msdu(cpurxs, tid); 2456 } 2457 } 2458 2459 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2460 } 2461 2462 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2463 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2464 tidstats->tx_msdu = sta->deflink.tx_stats.msdu[tid]; 2465 } 2466 2467 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2468 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2469 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2470 tidstats->tx_msdu_retries = sta->deflink.status_stats.msdu_retries[tid]; 2471 } 2472 2473 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2474 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2475 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2476 tidstats->tx_msdu_failed = sta->deflink.status_stats.msdu_failed[tid]; 2477 } 2478 2479 if (tid < IEEE80211_NUM_TIDS) { 2480 spin_lock_bh(&local->fq.lock); 2481 rcu_read_lock(); 2482 2483 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); 2484 ieee80211_fill_txq_stats(&tidstats->txq_stats, 2485 to_txq_info(sta->sta.txq[tid])); 2486 2487 rcu_read_unlock(); 2488 spin_unlock_bh(&local->fq.lock); 2489 } 2490 } 2491 2492 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2493 { 2494 unsigned int start; 2495 u64 value; 2496 2497 do { 2498 start = u64_stats_fetch_begin(&rxstats->syncp); 2499 value = rxstats->bytes; 2500 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2501 2502 return value; 2503 } 2504 2505 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, 2506 bool tidstats) 2507 { 2508 struct ieee80211_sub_if_data *sdata = sta->sdata; 2509 struct ieee80211_local *local = sdata->local; 2510 u32 thr = 0; 2511 int i, ac, cpu; 2512 struct ieee80211_sta_rx_stats *last_rxstats; 2513 2514 last_rxstats = sta_get_last_rx_stats(sta); 2515 2516 sinfo->generation = sdata->local->sta_generation; 2517 2518 /* do before driver, so beacon filtering drivers have a 2519 * chance to e.g. just add the number of filtered beacons 2520 * (or just modify the value entirely, of course) 2521 */ 2522 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2523 sinfo->rx_beacon = sdata->deflink.u.mgd.count_beacon_signal; 2524 2525 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2526 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | 2527 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | 2528 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | 2529 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | 2530 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) | 2531 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); 2532 2533 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2534 sinfo->beacon_loss_count = 2535 sdata->deflink.u.mgd.beacon_loss_count; 2536 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); 2537 } 2538 2539 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2540 sinfo->assoc_at = sta->assoc_at; 2541 sinfo->inactive_time = 2542 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2543 2544 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | 2545 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { 2546 sinfo->tx_bytes = 0; 2547 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2548 sinfo->tx_bytes += sta->deflink.tx_stats.bytes[ac]; 2549 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); 2550 } 2551 2552 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { 2553 sinfo->tx_packets = 0; 2554 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2555 sinfo->tx_packets += sta->deflink.tx_stats.packets[ac]; 2556 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); 2557 } 2558 2559 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | 2560 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { 2561 sinfo->rx_bytes += sta_get_stats_bytes(&sta->deflink.rx_stats); 2562 2563 if (sta->deflink.pcpu_rx_stats) { 2564 for_each_possible_cpu(cpu) { 2565 struct ieee80211_sta_rx_stats *cpurxs; 2566 2567 cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, 2568 cpu); 2569 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2570 } 2571 } 2572 2573 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); 2574 } 2575 2576 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { 2577 sinfo->rx_packets = sta->deflink.rx_stats.packets; 2578 if (sta->deflink.pcpu_rx_stats) { 2579 for_each_possible_cpu(cpu) { 2580 struct ieee80211_sta_rx_stats *cpurxs; 2581 2582 cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, 2583 cpu); 2584 sinfo->rx_packets += cpurxs->packets; 2585 } 2586 } 2587 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 2588 } 2589 2590 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { 2591 sinfo->tx_retries = sta->deflink.status_stats.retry_count; 2592 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); 2593 } 2594 2595 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { 2596 sinfo->tx_failed = sta->deflink.status_stats.retry_failed; 2597 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); 2598 } 2599 2600 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { 2601 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2602 sinfo->rx_duration += sta->airtime[ac].rx_airtime; 2603 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 2604 } 2605 2606 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { 2607 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2608 sinfo->tx_duration += sta->airtime[ac].tx_airtime; 2609 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 2610 } 2611 2612 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { 2613 sinfo->airtime_weight = sta->airtime_weight; 2614 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); 2615 } 2616 2617 sinfo->rx_dropped_misc = sta->deflink.rx_stats.dropped; 2618 if (sta->deflink.pcpu_rx_stats) { 2619 for_each_possible_cpu(cpu) { 2620 struct ieee80211_sta_rx_stats *cpurxs; 2621 2622 cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu); 2623 sinfo->rx_dropped_misc += cpurxs->dropped; 2624 } 2625 } 2626 2627 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2628 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2629 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | 2630 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2631 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2632 } 2633 2634 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2635 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2636 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { 2637 sinfo->signal = (s8)last_rxstats->last_signal; 2638 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 2639 } 2640 2641 if (!sta->deflink.pcpu_rx_stats && 2642 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { 2643 sinfo->signal_avg = 2644 -ewma_signal_read(&sta->deflink.rx_stats_avg.signal); 2645 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 2646 } 2647 } 2648 2649 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2650 * the sta->rx_stats struct, so the check here is fine with and without 2651 * pcpu statistics 2652 */ 2653 if (last_rxstats->chains && 2654 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | 2655 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2656 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 2657 if (!sta->deflink.pcpu_rx_stats) 2658 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2659 2660 sinfo->chains = last_rxstats->chains; 2661 2662 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2663 sinfo->chain_signal[i] = 2664 last_rxstats->chain_signal_last[i]; 2665 sinfo->chain_signal_avg[i] = 2666 -ewma_signal_read(&sta->deflink.rx_stats_avg.chain_signal[i]); 2667 } 2668 } 2669 2670 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE)) && 2671 !sta->sta.valid_links) { 2672 sta_set_rate_info_tx(sta, &sta->deflink.tx_stats.last_rate, 2673 &sinfo->txrate); 2674 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 2675 } 2676 2677 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE)) && 2678 !sta->sta.valid_links) { 2679 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2680 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); 2681 } 2682 2683 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { 2684 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 2685 sta_set_tidstats(sta, &sinfo->pertid[i], i); 2686 } 2687 2688 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2689 #ifdef CONFIG_MAC80211_MESH 2690 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | 2691 BIT_ULL(NL80211_STA_INFO_PLID) | 2692 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | 2693 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | 2694 BIT_ULL(NL80211_STA_INFO_PEER_PM) | 2695 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | 2696 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) | 2697 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS); 2698 2699 sinfo->llid = sta->mesh->llid; 2700 sinfo->plid = sta->mesh->plid; 2701 sinfo->plink_state = sta->mesh->plink_state; 2702 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2703 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); 2704 sinfo->t_offset = sta->mesh->t_offset; 2705 } 2706 sinfo->local_pm = sta->mesh->local_pm; 2707 sinfo->peer_pm = sta->mesh->peer_pm; 2708 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2709 sinfo->connected_to_gate = sta->mesh->connected_to_gate; 2710 sinfo->connected_to_as = sta->mesh->connected_to_as; 2711 #endif 2712 } 2713 2714 sinfo->bss_param.flags = 0; 2715 if (sdata->vif.bss_conf.use_cts_prot) 2716 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2717 if (sdata->vif.bss_conf.use_short_preamble) 2718 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2719 if (sdata->vif.bss_conf.use_short_slot) 2720 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2721 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2722 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2723 2724 sinfo->sta_flags.set = 0; 2725 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2726 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2727 BIT(NL80211_STA_FLAG_WME) | 2728 BIT(NL80211_STA_FLAG_MFP) | 2729 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2730 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2731 BIT(NL80211_STA_FLAG_TDLS_PEER); 2732 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2733 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2734 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2735 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2736 if (sta->sta.wme) 2737 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2738 if (test_sta_flag(sta, WLAN_STA_MFP)) 2739 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2740 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2741 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2742 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2743 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2744 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2745 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2746 2747 thr = sta_get_expected_throughput(sta); 2748 2749 if (thr != 0) { 2750 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2751 sinfo->expected_throughput = thr; 2752 } 2753 2754 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && 2755 sta->deflink.status_stats.ack_signal_filled) { 2756 sinfo->ack_signal = sta->deflink.status_stats.last_ack_signal; 2757 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); 2758 } 2759 2760 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && 2761 sta->deflink.status_stats.ack_signal_filled) { 2762 sinfo->avg_ack_signal = 2763 -(s8)ewma_avg_signal_read( 2764 &sta->deflink.status_stats.avg_ack_signal); 2765 sinfo->filled |= 2766 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); 2767 } 2768 2769 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2770 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC); 2771 sinfo->airtime_link_metric = 2772 airtime_link_metric_get(local, sta); 2773 } 2774 } 2775 2776 u32 sta_get_expected_throughput(struct sta_info *sta) 2777 { 2778 struct ieee80211_sub_if_data *sdata = sta->sdata; 2779 struct ieee80211_local *local = sdata->local; 2780 struct rate_control_ref *ref = NULL; 2781 u32 thr = 0; 2782 2783 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2784 ref = local->rate_ctrl; 2785 2786 /* check if the driver has a SW RC implementation */ 2787 if (ref && ref->ops->get_expected_throughput) 2788 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2789 else 2790 thr = drv_get_expected_throughput(local, sta); 2791 2792 return thr; 2793 } 2794 2795 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2796 { 2797 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2798 2799 if (!sta->deflink.status_stats.last_ack || 2800 time_after(stats->last_rx, sta->deflink.status_stats.last_ack)) 2801 return stats->last_rx; 2802 return sta->deflink.status_stats.last_ack; 2803 } 2804 2805 static void sta_update_codel_params(struct sta_info *sta, u32 thr) 2806 { 2807 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { 2808 sta->cparams.target = MS2TIME(50); 2809 sta->cparams.interval = MS2TIME(300); 2810 sta->cparams.ecn = false; 2811 } else { 2812 sta->cparams.target = MS2TIME(20); 2813 sta->cparams.interval = MS2TIME(100); 2814 sta->cparams.ecn = true; 2815 } 2816 } 2817 2818 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, 2819 u32 thr) 2820 { 2821 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2822 2823 sta_update_codel_params(sta, thr); 2824 } 2825 2826 int ieee80211_sta_allocate_link(struct sta_info *sta, unsigned int link_id) 2827 { 2828 struct ieee80211_sub_if_data *sdata = sta->sdata; 2829 struct sta_link_alloc *alloc; 2830 int ret; 2831 2832 lockdep_assert_held(&sdata->local->sta_mtx); 2833 2834 /* must represent an MLD from the start */ 2835 if (WARN_ON(!sta->sta.valid_links)) 2836 return -EINVAL; 2837 2838 if (WARN_ON(sta->sta.valid_links & BIT(link_id) || 2839 sta->link[link_id])) 2840 return -EBUSY; 2841 2842 alloc = kzalloc(sizeof(*alloc), GFP_KERNEL); 2843 if (!alloc) 2844 return -ENOMEM; 2845 2846 ret = sta_info_alloc_link(sdata->local, &alloc->info, GFP_KERNEL); 2847 if (ret) { 2848 kfree(alloc); 2849 return ret; 2850 } 2851 2852 sta_info_add_link(sta, link_id, &alloc->info, &alloc->sta); 2853 2854 ieee80211_link_sta_debugfs_add(&alloc->info); 2855 2856 return 0; 2857 } 2858 2859 void ieee80211_sta_free_link(struct sta_info *sta, unsigned int link_id) 2860 { 2861 lockdep_assert_held(&sta->sdata->local->sta_mtx); 2862 2863 sta_remove_link(sta, link_id, false); 2864 } 2865 2866 int ieee80211_sta_activate_link(struct sta_info *sta, unsigned int link_id) 2867 { 2868 struct ieee80211_sub_if_data *sdata = sta->sdata; 2869 struct link_sta_info *link_sta; 2870 u16 old_links = sta->sta.valid_links; 2871 u16 new_links = old_links | BIT(link_id); 2872 int ret; 2873 2874 link_sta = rcu_dereference_protected(sta->link[link_id], 2875 lockdep_is_held(&sdata->local->sta_mtx)); 2876 2877 if (WARN_ON(old_links == new_links || !link_sta)) 2878 return -EINVAL; 2879 2880 rcu_read_lock(); 2881 if (link_sta_info_hash_lookup(sdata->local, link_sta->addr)) { 2882 rcu_read_unlock(); 2883 return -EALREADY; 2884 } 2885 /* we only modify under the mutex so this is fine */ 2886 rcu_read_unlock(); 2887 2888 sta->sta.valid_links = new_links; 2889 2890 if (!test_sta_flag(sta, WLAN_STA_INSERTED)) 2891 goto hash; 2892 2893 /* Ensure the values are updated for the driver, 2894 * redone by sta_remove_link on failure. 2895 */ 2896 ieee80211_sta_recalc_aggregates(&sta->sta); 2897 2898 ret = drv_change_sta_links(sdata->local, sdata, &sta->sta, 2899 old_links, new_links); 2900 if (ret) { 2901 sta->sta.valid_links = old_links; 2902 sta_remove_link(sta, link_id, false); 2903 return ret; 2904 } 2905 2906 hash: 2907 ret = link_sta_info_hash_add(sdata->local, link_sta); 2908 WARN_ON(ret); 2909 return 0; 2910 } 2911 2912 void ieee80211_sta_remove_link(struct sta_info *sta, unsigned int link_id) 2913 { 2914 struct ieee80211_sub_if_data *sdata = sta->sdata; 2915 u16 old_links = sta->sta.valid_links; 2916 2917 lockdep_assert_held(&sdata->local->sta_mtx); 2918 2919 sta->sta.valid_links &= ~BIT(link_id); 2920 2921 if (test_sta_flag(sta, WLAN_STA_INSERTED)) 2922 drv_change_sta_links(sdata->local, sdata, &sta->sta, 2923 old_links, sta->sta.valid_links); 2924 2925 sta_remove_link(sta, link_id, true); 2926 } 2927 2928 void ieee80211_sta_set_max_amsdu_subframes(struct sta_info *sta, 2929 const u8 *ext_capab, 2930 unsigned int ext_capab_len) 2931 { 2932 u8 val; 2933 2934 sta->sta.max_amsdu_subframes = 0; 2935 2936 if (ext_capab_len < 8) 2937 return; 2938 2939 /* The sender might not have sent the last bit, consider it to be 0 */ 2940 val = u8_get_bits(ext_capab[7], WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB); 2941 2942 /* we did get all the bits, take the MSB as well */ 2943 if (ext_capab_len >= 9) 2944 val |= u8_get_bits(ext_capab[8], 2945 WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB) << 1; 2946 2947 if (val) 2948 sta->sta.max_amsdu_subframes = 4 << val; 2949 } 2950 2951 #ifdef CONFIG_LOCKDEP 2952 bool lockdep_sta_mutex_held(struct ieee80211_sta *pubsta) 2953 { 2954 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2955 2956 return lockdep_is_held(&sta->local->sta_mtx); 2957 } 2958 EXPORT_SYMBOL(lockdep_sta_mutex_held); 2959 #endif 2960