1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/mac80211.h> 22 #include "ieee80211_i.h" 23 #include "driver-ops.h" 24 #include "rate.h" 25 #include "sta_info.h" 26 #include "debugfs_sta.h" 27 #include "mesh.h" 28 #include "wme.h" 29 30 /** 31 * DOC: STA information lifetime rules 32 * 33 * STA info structures (&struct sta_info) are managed in a hash table 34 * for faster lookup and a list for iteration. They are managed using 35 * RCU, i.e. access to the list and hash table is protected by RCU. 36 * 37 * Upon allocating a STA info structure with sta_info_alloc(), the caller 38 * owns that structure. It must then insert it into the hash table using 39 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 40 * case (which acquires an rcu read section but must not be called from 41 * within one) will the pointer still be valid after the call. Note that 42 * the caller may not do much with the STA info before inserting it, in 43 * particular, it may not start any mesh peer link management or add 44 * encryption keys. 45 * 46 * When the insertion fails (sta_info_insert()) returns non-zero), the 47 * structure will have been freed by sta_info_insert()! 48 * 49 * Station entries are added by mac80211 when you establish a link with a 50 * peer. This means different things for the different type of interfaces 51 * we support. For a regular station this mean we add the AP sta when we 52 * receive an association response from the AP. For IBSS this occurs when 53 * get to know about a peer on the same IBSS. For WDS we add the sta for 54 * the peer immediately upon device open. When using AP mode we add stations 55 * for each respective station upon request from userspace through nl80211. 56 * 57 * In order to remove a STA info structure, various sta_info_destroy_*() 58 * calls are available. 59 * 60 * There is no concept of ownership on a STA entry, each structure is 61 * owned by the global hash table/list until it is removed. All users of 62 * the structure need to be RCU protected so that the structure won't be 63 * freed before they are done using it. 64 */ 65 66 /* Caller must hold local->sta_mtx */ 67 static int sta_info_hash_del(struct ieee80211_local *local, 68 struct sta_info *sta) 69 { 70 struct sta_info *s; 71 72 s = rcu_dereference_protected(local->sta_hash[STA_HASH(sta->sta.addr)], 73 lockdep_is_held(&local->sta_mtx)); 74 if (!s) 75 return -ENOENT; 76 if (s == sta) { 77 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], 78 s->hnext); 79 return 0; 80 } 81 82 while (rcu_access_pointer(s->hnext) && 83 rcu_access_pointer(s->hnext) != sta) 84 s = rcu_dereference_protected(s->hnext, 85 lockdep_is_held(&local->sta_mtx)); 86 if (rcu_access_pointer(s->hnext)) { 87 rcu_assign_pointer(s->hnext, sta->hnext); 88 return 0; 89 } 90 91 return -ENOENT; 92 } 93 94 static void __cleanup_single_sta(struct sta_info *sta) 95 { 96 int ac, i; 97 struct tid_ampdu_tx *tid_tx; 98 struct ieee80211_sub_if_data *sdata = sta->sdata; 99 struct ieee80211_local *local = sdata->local; 100 struct ps_data *ps; 101 102 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 103 test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 104 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 105 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 106 ps = &sdata->bss->ps; 107 else if (ieee80211_vif_is_mesh(&sdata->vif)) 108 ps = &sdata->u.mesh.ps; 109 else 110 return; 111 112 clear_sta_flag(sta, WLAN_STA_PS_STA); 113 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 114 115 atomic_dec(&ps->num_sta_ps); 116 sta_info_recalc_tim(sta); 117 } 118 119 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 120 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 121 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 122 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 123 } 124 125 if (ieee80211_vif_is_mesh(&sdata->vif)) 126 mesh_sta_cleanup(sta); 127 128 cancel_work_sync(&sta->drv_unblock_wk); 129 130 /* 131 * Destroy aggregation state here. It would be nice to wait for the 132 * driver to finish aggregation stop and then clean up, but for now 133 * drivers have to handle aggregation stop being requested, followed 134 * directly by station destruction. 135 */ 136 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 137 kfree(sta->ampdu_mlme.tid_start_tx[i]); 138 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 139 if (!tid_tx) 140 continue; 141 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 142 kfree(tid_tx); 143 } 144 } 145 146 static void cleanup_single_sta(struct sta_info *sta) 147 { 148 struct ieee80211_sub_if_data *sdata = sta->sdata; 149 struct ieee80211_local *local = sdata->local; 150 151 __cleanup_single_sta(sta); 152 sta_info_free(local, sta); 153 } 154 155 /* protected by RCU */ 156 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 157 const u8 *addr) 158 { 159 struct ieee80211_local *local = sdata->local; 160 struct sta_info *sta; 161 162 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)], 163 lockdep_is_held(&local->sta_mtx)); 164 while (sta) { 165 if (sta->sdata == sdata && 166 ether_addr_equal(sta->sta.addr, addr)) 167 break; 168 sta = rcu_dereference_check(sta->hnext, 169 lockdep_is_held(&local->sta_mtx)); 170 } 171 return sta; 172 } 173 174 /* 175 * Get sta info either from the specified interface 176 * or from one of its vlans 177 */ 178 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 179 const u8 *addr) 180 { 181 struct ieee80211_local *local = sdata->local; 182 struct sta_info *sta; 183 184 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)], 185 lockdep_is_held(&local->sta_mtx)); 186 while (sta) { 187 if ((sta->sdata == sdata || 188 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) && 189 ether_addr_equal(sta->sta.addr, addr)) 190 break; 191 sta = rcu_dereference_check(sta->hnext, 192 lockdep_is_held(&local->sta_mtx)); 193 } 194 return sta; 195 } 196 197 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 198 int idx) 199 { 200 struct ieee80211_local *local = sdata->local; 201 struct sta_info *sta; 202 int i = 0; 203 204 list_for_each_entry_rcu(sta, &local->sta_list, list) { 205 if (sdata != sta->sdata) 206 continue; 207 if (i < idx) { 208 ++i; 209 continue; 210 } 211 return sta; 212 } 213 214 return NULL; 215 } 216 217 /** 218 * sta_info_free - free STA 219 * 220 * @local: pointer to the global information 221 * @sta: STA info to free 222 * 223 * This function must undo everything done by sta_info_alloc() 224 * that may happen before sta_info_insert(). It may only be 225 * called when sta_info_insert() has not been attempted (and 226 * if that fails, the station is freed anyway.) 227 */ 228 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 229 { 230 int i; 231 232 if (sta->rate_ctrl) 233 rate_control_free_sta(sta); 234 235 if (sta->tx_lat) { 236 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 237 kfree(sta->tx_lat[i].bins); 238 kfree(sta->tx_lat); 239 } 240 241 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 242 243 kfree(sta); 244 } 245 246 /* Caller must hold local->sta_mtx */ 247 static void sta_info_hash_add(struct ieee80211_local *local, 248 struct sta_info *sta) 249 { 250 lockdep_assert_held(&local->sta_mtx); 251 sta->hnext = local->sta_hash[STA_HASH(sta->sta.addr)]; 252 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], sta); 253 } 254 255 static void sta_unblock(struct work_struct *wk) 256 { 257 struct sta_info *sta; 258 259 sta = container_of(wk, struct sta_info, drv_unblock_wk); 260 261 if (sta->dead) 262 return; 263 264 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 265 local_bh_disable(); 266 ieee80211_sta_ps_deliver_wakeup(sta); 267 local_bh_enable(); 268 } else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) { 269 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 270 271 local_bh_disable(); 272 ieee80211_sta_ps_deliver_poll_response(sta); 273 local_bh_enable(); 274 } else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) { 275 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 276 277 local_bh_disable(); 278 ieee80211_sta_ps_deliver_uapsd(sta); 279 local_bh_enable(); 280 } else 281 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 282 } 283 284 static int sta_prepare_rate_control(struct ieee80211_local *local, 285 struct sta_info *sta, gfp_t gfp) 286 { 287 if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL) 288 return 0; 289 290 sta->rate_ctrl = local->rate_ctrl; 291 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 292 &sta->sta, gfp); 293 if (!sta->rate_ctrl_priv) 294 return -ENOMEM; 295 296 return 0; 297 } 298 299 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 300 const u8 *addr, gfp_t gfp) 301 { 302 struct ieee80211_local *local = sdata->local; 303 struct sta_info *sta; 304 struct timespec uptime; 305 struct ieee80211_tx_latency_bin_ranges *tx_latency; 306 int i; 307 308 sta = kzalloc(sizeof(*sta) + local->hw.sta_data_size, gfp); 309 if (!sta) 310 return NULL; 311 312 rcu_read_lock(); 313 tx_latency = rcu_dereference(local->tx_latency); 314 /* init stations Tx latency statistics && TID bins */ 315 if (tx_latency) { 316 sta->tx_lat = kzalloc(IEEE80211_NUM_TIDS * 317 sizeof(struct ieee80211_tx_latency_stat), 318 GFP_ATOMIC); 319 if (!sta->tx_lat) { 320 rcu_read_unlock(); 321 goto free; 322 } 323 324 if (tx_latency->n_ranges) { 325 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 326 /* size of bins is size of the ranges +1 */ 327 sta->tx_lat[i].bin_count = 328 tx_latency->n_ranges + 1; 329 sta->tx_lat[i].bins = 330 kcalloc(sta->tx_lat[i].bin_count, 331 sizeof(u32), GFP_ATOMIC); 332 if (!sta->tx_lat[i].bins) { 333 rcu_read_unlock(); 334 goto free; 335 } 336 } 337 } 338 } 339 rcu_read_unlock(); 340 341 spin_lock_init(&sta->lock); 342 spin_lock_init(&sta->ps_lock); 343 INIT_WORK(&sta->drv_unblock_wk, sta_unblock); 344 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 345 mutex_init(&sta->ampdu_mlme.mtx); 346 #ifdef CONFIG_MAC80211_MESH 347 if (ieee80211_vif_is_mesh(&sdata->vif) && 348 !sdata->u.mesh.user_mpm) 349 init_timer(&sta->plink_timer); 350 sta->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 351 #endif 352 353 memcpy(sta->sta.addr, addr, ETH_ALEN); 354 sta->local = local; 355 sta->sdata = sdata; 356 sta->last_rx = jiffies; 357 358 sta->sta_state = IEEE80211_STA_NONE; 359 360 do_posix_clock_monotonic_gettime(&uptime); 361 sta->last_connected = uptime.tv_sec; 362 ewma_init(&sta->avg_signal, 1024, 8); 363 for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++) 364 ewma_init(&sta->chain_signal_avg[i], 1024, 8); 365 366 if (sta_prepare_rate_control(local, sta, gfp)) 367 goto free; 368 369 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 370 /* 371 * timer_to_tid must be initialized with identity mapping 372 * to enable session_timer's data differentiation. See 373 * sta_rx_agg_session_timer_expired for usage. 374 */ 375 sta->timer_to_tid[i] = i; 376 } 377 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 378 skb_queue_head_init(&sta->ps_tx_buf[i]); 379 skb_queue_head_init(&sta->tx_filtered[i]); 380 } 381 382 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 383 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 384 385 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 386 if (sdata->vif.type == NL80211_IFTYPE_AP || 387 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 388 struct ieee80211_supported_band *sband = 389 local->hw.wiphy->bands[ieee80211_get_sdata_band(sdata)]; 390 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 391 IEEE80211_HT_CAP_SM_PS_SHIFT; 392 /* 393 * Assume that hostapd advertises our caps in the beacon and 394 * this is the known_smps_mode for a station that just assciated 395 */ 396 switch (smps) { 397 case WLAN_HT_SMPS_CONTROL_DISABLED: 398 sta->known_smps_mode = IEEE80211_SMPS_OFF; 399 break; 400 case WLAN_HT_SMPS_CONTROL_STATIC: 401 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 402 break; 403 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 404 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 405 break; 406 default: 407 WARN_ON(1); 408 } 409 } 410 411 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 412 return sta; 413 414 free: 415 if (sta->tx_lat) { 416 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 417 kfree(sta->tx_lat[i].bins); 418 kfree(sta->tx_lat); 419 } 420 kfree(sta); 421 return NULL; 422 } 423 424 static int sta_info_insert_check(struct sta_info *sta) 425 { 426 struct ieee80211_sub_if_data *sdata = sta->sdata; 427 428 /* 429 * Can't be a WARN_ON because it can be triggered through a race: 430 * something inserts a STA (on one CPU) without holding the RTNL 431 * and another CPU turns off the net device. 432 */ 433 if (unlikely(!ieee80211_sdata_running(sdata))) 434 return -ENETDOWN; 435 436 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 437 is_multicast_ether_addr(sta->sta.addr))) 438 return -EINVAL; 439 440 return 0; 441 } 442 443 static int sta_info_insert_drv_state(struct ieee80211_local *local, 444 struct ieee80211_sub_if_data *sdata, 445 struct sta_info *sta) 446 { 447 enum ieee80211_sta_state state; 448 int err = 0; 449 450 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 451 err = drv_sta_state(local, sdata, sta, state, state + 1); 452 if (err) 453 break; 454 } 455 456 if (!err) { 457 /* 458 * Drivers using legacy sta_add/sta_remove callbacks only 459 * get uploaded set to true after sta_add is called. 460 */ 461 if (!local->ops->sta_add) 462 sta->uploaded = true; 463 return 0; 464 } 465 466 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 467 sdata_info(sdata, 468 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 469 sta->sta.addr, state + 1, err); 470 err = 0; 471 } 472 473 /* unwind on error */ 474 for (; state > IEEE80211_STA_NOTEXIST; state--) 475 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 476 477 return err; 478 } 479 480 /* 481 * should be called with sta_mtx locked 482 * this function replaces the mutex lock 483 * with a RCU lock 484 */ 485 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 486 { 487 struct ieee80211_local *local = sta->local; 488 struct ieee80211_sub_if_data *sdata = sta->sdata; 489 struct station_info sinfo; 490 int err = 0; 491 492 lockdep_assert_held(&local->sta_mtx); 493 494 /* check if STA exists already */ 495 if (sta_info_get_bss(sdata, sta->sta.addr)) { 496 err = -EEXIST; 497 goto out_err; 498 } 499 500 local->num_sta++; 501 local->sta_generation++; 502 smp_mb(); 503 504 /* simplify things and don't accept BA sessions yet */ 505 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 506 507 /* make the station visible */ 508 sta_info_hash_add(local, sta); 509 510 list_add_rcu(&sta->list, &local->sta_list); 511 512 /* notify driver */ 513 err = sta_info_insert_drv_state(local, sdata, sta); 514 if (err) 515 goto out_remove; 516 517 set_sta_flag(sta, WLAN_STA_INSERTED); 518 /* accept BA sessions now */ 519 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 520 521 ieee80211_recalc_min_chandef(sdata); 522 ieee80211_sta_debugfs_add(sta); 523 rate_control_add_sta_debugfs(sta); 524 525 memset(&sinfo, 0, sizeof(sinfo)); 526 sinfo.filled = 0; 527 sinfo.generation = local->sta_generation; 528 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 529 530 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 531 532 /* move reference to rcu-protected */ 533 rcu_read_lock(); 534 mutex_unlock(&local->sta_mtx); 535 536 if (ieee80211_vif_is_mesh(&sdata->vif)) 537 mesh_accept_plinks_update(sdata); 538 539 return 0; 540 out_remove: 541 sta_info_hash_del(local, sta); 542 list_del_rcu(&sta->list); 543 local->num_sta--; 544 synchronize_net(); 545 __cleanup_single_sta(sta); 546 out_err: 547 mutex_unlock(&local->sta_mtx); 548 rcu_read_lock(); 549 return err; 550 } 551 552 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 553 { 554 struct ieee80211_local *local = sta->local; 555 int err = 0; 556 557 might_sleep(); 558 559 err = sta_info_insert_check(sta); 560 if (err) { 561 rcu_read_lock(); 562 goto out_free; 563 } 564 565 mutex_lock(&local->sta_mtx); 566 567 err = sta_info_insert_finish(sta); 568 if (err) 569 goto out_free; 570 571 return 0; 572 out_free: 573 BUG_ON(!err); 574 sta_info_free(local, sta); 575 return err; 576 } 577 578 int sta_info_insert(struct sta_info *sta) 579 { 580 int err = sta_info_insert_rcu(sta); 581 582 rcu_read_unlock(); 583 584 return err; 585 } 586 587 static inline void __bss_tim_set(u8 *tim, u16 id) 588 { 589 /* 590 * This format has been mandated by the IEEE specifications, 591 * so this line may not be changed to use the __set_bit() format. 592 */ 593 tim[id / 8] |= (1 << (id % 8)); 594 } 595 596 static inline void __bss_tim_clear(u8 *tim, u16 id) 597 { 598 /* 599 * This format has been mandated by the IEEE specifications, 600 * so this line may not be changed to use the __clear_bit() format. 601 */ 602 tim[id / 8] &= ~(1 << (id % 8)); 603 } 604 605 static inline bool __bss_tim_get(u8 *tim, u16 id) 606 { 607 /* 608 * This format has been mandated by the IEEE specifications, 609 * so this line may not be changed to use the test_bit() format. 610 */ 611 return tim[id / 8] & (1 << (id % 8)); 612 } 613 614 static unsigned long ieee80211_tids_for_ac(int ac) 615 { 616 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 617 switch (ac) { 618 case IEEE80211_AC_VO: 619 return BIT(6) | BIT(7); 620 case IEEE80211_AC_VI: 621 return BIT(4) | BIT(5); 622 case IEEE80211_AC_BE: 623 return BIT(0) | BIT(3); 624 case IEEE80211_AC_BK: 625 return BIT(1) | BIT(2); 626 default: 627 WARN_ON(1); 628 return 0; 629 } 630 } 631 632 void sta_info_recalc_tim(struct sta_info *sta) 633 { 634 struct ieee80211_local *local = sta->local; 635 struct ps_data *ps; 636 bool indicate_tim = false; 637 u8 ignore_for_tim = sta->sta.uapsd_queues; 638 int ac; 639 u16 id; 640 641 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 642 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 643 if (WARN_ON_ONCE(!sta->sdata->bss)) 644 return; 645 646 ps = &sta->sdata->bss->ps; 647 id = sta->sta.aid; 648 #ifdef CONFIG_MAC80211_MESH 649 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 650 ps = &sta->sdata->u.mesh.ps; 651 /* TIM map only for 1 <= PLID <= IEEE80211_MAX_AID */ 652 id = sta->plid % (IEEE80211_MAX_AID + 1); 653 #endif 654 } else { 655 return; 656 } 657 658 /* No need to do anything if the driver does all */ 659 if (local->hw.flags & IEEE80211_HW_AP_LINK_PS) 660 return; 661 662 if (sta->dead) 663 goto done; 664 665 /* 666 * If all ACs are delivery-enabled then we should build 667 * the TIM bit for all ACs anyway; if only some are then 668 * we ignore those and build the TIM bit using only the 669 * non-enabled ones. 670 */ 671 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 672 ignore_for_tim = 0; 673 674 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 675 unsigned long tids; 676 677 if (ignore_for_tim & BIT(ac)) 678 continue; 679 680 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 681 !skb_queue_empty(&sta->ps_tx_buf[ac]); 682 if (indicate_tim) 683 break; 684 685 tids = ieee80211_tids_for_ac(ac); 686 687 indicate_tim |= 688 sta->driver_buffered_tids & tids; 689 } 690 691 done: 692 spin_lock_bh(&local->tim_lock); 693 694 if (indicate_tim == __bss_tim_get(ps->tim, id)) 695 goto out_unlock; 696 697 if (indicate_tim) 698 __bss_tim_set(ps->tim, id); 699 else 700 __bss_tim_clear(ps->tim, id); 701 702 if (local->ops->set_tim) { 703 local->tim_in_locked_section = true; 704 drv_set_tim(local, &sta->sta, indicate_tim); 705 local->tim_in_locked_section = false; 706 } 707 708 out_unlock: 709 spin_unlock_bh(&local->tim_lock); 710 } 711 712 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 713 { 714 struct ieee80211_tx_info *info; 715 int timeout; 716 717 if (!skb) 718 return false; 719 720 info = IEEE80211_SKB_CB(skb); 721 722 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 723 timeout = (sta->listen_interval * 724 sta->sdata->vif.bss_conf.beacon_int * 725 32 / 15625) * HZ; 726 if (timeout < STA_TX_BUFFER_EXPIRE) 727 timeout = STA_TX_BUFFER_EXPIRE; 728 return time_after(jiffies, info->control.jiffies + timeout); 729 } 730 731 732 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 733 struct sta_info *sta, int ac) 734 { 735 unsigned long flags; 736 struct sk_buff *skb; 737 738 /* 739 * First check for frames that should expire on the filtered 740 * queue. Frames here were rejected by the driver and are on 741 * a separate queue to avoid reordering with normal PS-buffered 742 * frames. They also aren't accounted for right now in the 743 * total_ps_buffered counter. 744 */ 745 for (;;) { 746 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 747 skb = skb_peek(&sta->tx_filtered[ac]); 748 if (sta_info_buffer_expired(sta, skb)) 749 skb = __skb_dequeue(&sta->tx_filtered[ac]); 750 else 751 skb = NULL; 752 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 753 754 /* 755 * Frames are queued in order, so if this one 756 * hasn't expired yet we can stop testing. If 757 * we actually reached the end of the queue we 758 * also need to stop, of course. 759 */ 760 if (!skb) 761 break; 762 ieee80211_free_txskb(&local->hw, skb); 763 } 764 765 /* 766 * Now also check the normal PS-buffered queue, this will 767 * only find something if the filtered queue was emptied 768 * since the filtered frames are all before the normal PS 769 * buffered frames. 770 */ 771 for (;;) { 772 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 773 skb = skb_peek(&sta->ps_tx_buf[ac]); 774 if (sta_info_buffer_expired(sta, skb)) 775 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 776 else 777 skb = NULL; 778 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 779 780 /* 781 * frames are queued in order, so if this one 782 * hasn't expired yet (or we reached the end of 783 * the queue) we can stop testing 784 */ 785 if (!skb) 786 break; 787 788 local->total_ps_buffered--; 789 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 790 sta->sta.addr); 791 ieee80211_free_txskb(&local->hw, skb); 792 } 793 794 /* 795 * Finally, recalculate the TIM bit for this station -- it might 796 * now be clear because the station was too slow to retrieve its 797 * frames. 798 */ 799 sta_info_recalc_tim(sta); 800 801 /* 802 * Return whether there are any frames still buffered, this is 803 * used to check whether the cleanup timer still needs to run, 804 * if there are no frames we don't need to rearm the timer. 805 */ 806 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 807 skb_queue_empty(&sta->tx_filtered[ac])); 808 } 809 810 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 811 struct sta_info *sta) 812 { 813 bool have_buffered = false; 814 int ac; 815 816 /* This is only necessary for stations on BSS/MBSS interfaces */ 817 if (!sta->sdata->bss && 818 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 819 return false; 820 821 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 822 have_buffered |= 823 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 824 825 return have_buffered; 826 } 827 828 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 829 { 830 struct ieee80211_local *local; 831 struct ieee80211_sub_if_data *sdata; 832 int ret; 833 834 might_sleep(); 835 836 if (!sta) 837 return -ENOENT; 838 839 local = sta->local; 840 sdata = sta->sdata; 841 842 lockdep_assert_held(&local->sta_mtx); 843 844 /* 845 * Before removing the station from the driver and 846 * rate control, it might still start new aggregation 847 * sessions -- block that to make sure the tear-down 848 * will be sufficient. 849 */ 850 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 851 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 852 853 ret = sta_info_hash_del(local, sta); 854 if (WARN_ON(ret)) 855 return ret; 856 857 list_del_rcu(&sta->list); 858 859 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 860 861 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 862 rcu_access_pointer(sdata->u.vlan.sta) == sta) 863 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 864 865 return 0; 866 } 867 868 static void __sta_info_destroy_part2(struct sta_info *sta) 869 { 870 struct ieee80211_local *local = sta->local; 871 struct ieee80211_sub_if_data *sdata = sta->sdata; 872 int ret; 873 874 /* 875 * NOTE: This assumes at least synchronize_net() was done 876 * after _part1 and before _part2! 877 */ 878 879 might_sleep(); 880 lockdep_assert_held(&local->sta_mtx); 881 882 /* now keys can no longer be reached */ 883 ieee80211_free_sta_keys(local, sta); 884 885 sta->dead = true; 886 887 local->num_sta--; 888 local->sta_generation++; 889 890 while (sta->sta_state > IEEE80211_STA_NONE) { 891 ret = sta_info_move_state(sta, sta->sta_state - 1); 892 if (ret) { 893 WARN_ON_ONCE(1); 894 break; 895 } 896 } 897 898 if (sta->uploaded) { 899 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 900 IEEE80211_STA_NOTEXIST); 901 WARN_ON_ONCE(ret != 0); 902 } 903 904 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 905 906 cfg80211_del_sta(sdata->dev, sta->sta.addr, GFP_KERNEL); 907 908 rate_control_remove_sta_debugfs(sta); 909 ieee80211_sta_debugfs_remove(sta); 910 ieee80211_recalc_min_chandef(sdata); 911 912 cleanup_single_sta(sta); 913 } 914 915 int __must_check __sta_info_destroy(struct sta_info *sta) 916 { 917 int err = __sta_info_destroy_part1(sta); 918 919 if (err) 920 return err; 921 922 synchronize_net(); 923 924 __sta_info_destroy_part2(sta); 925 926 return 0; 927 } 928 929 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 930 { 931 struct sta_info *sta; 932 int ret; 933 934 mutex_lock(&sdata->local->sta_mtx); 935 sta = sta_info_get(sdata, addr); 936 ret = __sta_info_destroy(sta); 937 mutex_unlock(&sdata->local->sta_mtx); 938 939 return ret; 940 } 941 942 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 943 const u8 *addr) 944 { 945 struct sta_info *sta; 946 int ret; 947 948 mutex_lock(&sdata->local->sta_mtx); 949 sta = sta_info_get_bss(sdata, addr); 950 ret = __sta_info_destroy(sta); 951 mutex_unlock(&sdata->local->sta_mtx); 952 953 return ret; 954 } 955 956 static void sta_info_cleanup(unsigned long data) 957 { 958 struct ieee80211_local *local = (struct ieee80211_local *) data; 959 struct sta_info *sta; 960 bool timer_needed = false; 961 962 rcu_read_lock(); 963 list_for_each_entry_rcu(sta, &local->sta_list, list) 964 if (sta_info_cleanup_expire_buffered(local, sta)) 965 timer_needed = true; 966 rcu_read_unlock(); 967 968 if (local->quiescing) 969 return; 970 971 if (!timer_needed) 972 return; 973 974 mod_timer(&local->sta_cleanup, 975 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 976 } 977 978 void sta_info_init(struct ieee80211_local *local) 979 { 980 spin_lock_init(&local->tim_lock); 981 mutex_init(&local->sta_mtx); 982 INIT_LIST_HEAD(&local->sta_list); 983 984 setup_timer(&local->sta_cleanup, sta_info_cleanup, 985 (unsigned long)local); 986 } 987 988 void sta_info_stop(struct ieee80211_local *local) 989 { 990 del_timer_sync(&local->sta_cleanup); 991 } 992 993 994 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 995 { 996 struct ieee80211_local *local = sdata->local; 997 struct sta_info *sta, *tmp; 998 LIST_HEAD(free_list); 999 int ret = 0; 1000 1001 might_sleep(); 1002 1003 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1004 WARN_ON(vlans && !sdata->bss); 1005 1006 mutex_lock(&local->sta_mtx); 1007 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1008 if (sdata == sta->sdata || 1009 (vlans && sdata->bss == sta->sdata->bss)) { 1010 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1011 list_add(&sta->free_list, &free_list); 1012 ret++; 1013 } 1014 } 1015 1016 if (!list_empty(&free_list)) { 1017 synchronize_net(); 1018 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1019 __sta_info_destroy_part2(sta); 1020 } 1021 mutex_unlock(&local->sta_mtx); 1022 1023 return ret; 1024 } 1025 1026 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1027 unsigned long exp_time) 1028 { 1029 struct ieee80211_local *local = sdata->local; 1030 struct sta_info *sta, *tmp; 1031 1032 mutex_lock(&local->sta_mtx); 1033 1034 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1035 if (sdata != sta->sdata) 1036 continue; 1037 1038 if (time_after(jiffies, sta->last_rx + exp_time)) { 1039 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1040 sta->sta.addr); 1041 1042 if (ieee80211_vif_is_mesh(&sdata->vif) && 1043 test_sta_flag(sta, WLAN_STA_PS_STA)) 1044 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1045 1046 WARN_ON(__sta_info_destroy(sta)); 1047 } 1048 } 1049 1050 mutex_unlock(&local->sta_mtx); 1051 } 1052 1053 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1054 const u8 *addr, 1055 const u8 *localaddr) 1056 { 1057 struct sta_info *sta, *nxt; 1058 1059 /* 1060 * Just return a random station if localaddr is NULL 1061 * ... first in list. 1062 */ 1063 for_each_sta_info(hw_to_local(hw), addr, sta, nxt) { 1064 if (localaddr && 1065 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1066 continue; 1067 if (!sta->uploaded) 1068 return NULL; 1069 return &sta->sta; 1070 } 1071 1072 return NULL; 1073 } 1074 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1075 1076 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1077 const u8 *addr) 1078 { 1079 struct sta_info *sta; 1080 1081 if (!vif) 1082 return NULL; 1083 1084 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1085 if (!sta) 1086 return NULL; 1087 1088 if (!sta->uploaded) 1089 return NULL; 1090 1091 return &sta->sta; 1092 } 1093 EXPORT_SYMBOL(ieee80211_find_sta); 1094 1095 /* powersave support code */ 1096 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1097 { 1098 struct ieee80211_sub_if_data *sdata = sta->sdata; 1099 struct ieee80211_local *local = sdata->local; 1100 struct sk_buff_head pending; 1101 int filtered = 0, buffered = 0, ac; 1102 unsigned long flags; 1103 struct ps_data *ps; 1104 1105 if (sdata->vif.type == NL80211_IFTYPE_AP || 1106 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1107 ps = &sdata->bss->ps; 1108 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1109 ps = &sdata->u.mesh.ps; 1110 else 1111 return; 1112 1113 clear_sta_flag(sta, WLAN_STA_SP); 1114 1115 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1116 sta->driver_buffered_tids = 0; 1117 1118 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1119 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1120 1121 skb_queue_head_init(&pending); 1122 1123 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1124 spin_lock(&sta->ps_lock); 1125 /* Send all buffered frames to the station */ 1126 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1127 int count = skb_queue_len(&pending), tmp; 1128 1129 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1130 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1131 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1132 tmp = skb_queue_len(&pending); 1133 filtered += tmp - count; 1134 count = tmp; 1135 1136 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1137 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1138 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1139 tmp = skb_queue_len(&pending); 1140 buffered += tmp - count; 1141 } 1142 1143 ieee80211_add_pending_skbs(local, &pending); 1144 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1145 clear_sta_flag(sta, WLAN_STA_PS_STA); 1146 spin_unlock(&sta->ps_lock); 1147 1148 atomic_dec(&ps->num_sta_ps); 1149 1150 /* This station just woke up and isn't aware of our SMPS state */ 1151 if (!ieee80211_smps_is_restrictive(sta->known_smps_mode, 1152 sdata->smps_mode) && 1153 sta->known_smps_mode != sdata->bss->req_smps && 1154 sta_info_tx_streams(sta) != 1) { 1155 ht_dbg(sdata, 1156 "%pM just woke up and MIMO capable - update SMPS\n", 1157 sta->sta.addr); 1158 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1159 sta->sta.addr, 1160 sdata->vif.bss_conf.bssid); 1161 } 1162 1163 local->total_ps_buffered -= buffered; 1164 1165 sta_info_recalc_tim(sta); 1166 1167 ps_dbg(sdata, 1168 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n", 1169 sta->sta.addr, sta->sta.aid, filtered, buffered); 1170 } 1171 1172 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata, 1173 struct sta_info *sta, int tid, 1174 enum ieee80211_frame_release_type reason, 1175 bool call_driver) 1176 { 1177 struct ieee80211_local *local = sdata->local; 1178 struct ieee80211_qos_hdr *nullfunc; 1179 struct sk_buff *skb; 1180 int size = sizeof(*nullfunc); 1181 __le16 fc; 1182 bool qos = test_sta_flag(sta, WLAN_STA_WME); 1183 struct ieee80211_tx_info *info; 1184 struct ieee80211_chanctx_conf *chanctx_conf; 1185 1186 if (qos) { 1187 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1188 IEEE80211_STYPE_QOS_NULLFUNC | 1189 IEEE80211_FCTL_FROMDS); 1190 } else { 1191 size -= 2; 1192 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1193 IEEE80211_STYPE_NULLFUNC | 1194 IEEE80211_FCTL_FROMDS); 1195 } 1196 1197 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1198 if (!skb) 1199 return; 1200 1201 skb_reserve(skb, local->hw.extra_tx_headroom); 1202 1203 nullfunc = (void *) skb_put(skb, size); 1204 nullfunc->frame_control = fc; 1205 nullfunc->duration_id = 0; 1206 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1207 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1208 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1209 nullfunc->seq_ctrl = 0; 1210 1211 skb->priority = tid; 1212 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1213 if (qos) { 1214 nullfunc->qos_ctrl = cpu_to_le16(tid); 1215 1216 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) 1217 nullfunc->qos_ctrl |= 1218 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1219 } 1220 1221 info = IEEE80211_SKB_CB(skb); 1222 1223 /* 1224 * Tell TX path to send this frame even though the 1225 * STA may still remain is PS mode after this frame 1226 * exchange. Also set EOSP to indicate this packet 1227 * ends the poll/service period. 1228 */ 1229 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1230 IEEE80211_TX_CTL_PS_RESPONSE | 1231 IEEE80211_TX_STATUS_EOSP | 1232 IEEE80211_TX_CTL_REQ_TX_STATUS; 1233 1234 if (call_driver) 1235 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1236 reason, false); 1237 1238 skb->dev = sdata->dev; 1239 1240 rcu_read_lock(); 1241 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1242 if (WARN_ON(!chanctx_conf)) { 1243 rcu_read_unlock(); 1244 kfree_skb(skb); 1245 return; 1246 } 1247 1248 ieee80211_xmit(sdata, skb, chanctx_conf->def.chan->band); 1249 rcu_read_unlock(); 1250 } 1251 1252 static int find_highest_prio_tid(unsigned long tids) 1253 { 1254 /* lower 3 TIDs aren't ordered perfectly */ 1255 if (tids & 0xF8) 1256 return fls(tids) - 1; 1257 /* TID 0 is BE just like TID 3 */ 1258 if (tids & BIT(0)) 1259 return 0; 1260 return fls(tids) - 1; 1261 } 1262 1263 static void 1264 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1265 int n_frames, u8 ignored_acs, 1266 enum ieee80211_frame_release_type reason) 1267 { 1268 struct ieee80211_sub_if_data *sdata = sta->sdata; 1269 struct ieee80211_local *local = sdata->local; 1270 bool more_data = false; 1271 int ac; 1272 unsigned long driver_release_tids = 0; 1273 struct sk_buff_head frames; 1274 1275 /* Service or PS-Poll period starts */ 1276 set_sta_flag(sta, WLAN_STA_SP); 1277 1278 __skb_queue_head_init(&frames); 1279 1280 /* Get response frame(s) and more data bit for the last one. */ 1281 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1282 unsigned long tids; 1283 1284 if (ignored_acs & BIT(ac)) 1285 continue; 1286 1287 tids = ieee80211_tids_for_ac(ac); 1288 1289 /* if we already have frames from software, then we can't also 1290 * release from hardware queues 1291 */ 1292 if (skb_queue_empty(&frames)) 1293 driver_release_tids |= sta->driver_buffered_tids & tids; 1294 1295 if (driver_release_tids) { 1296 /* If the driver has data on more than one TID then 1297 * certainly there's more data if we release just a 1298 * single frame now (from a single TID). This will 1299 * only happen for PS-Poll. 1300 */ 1301 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1302 hweight16(driver_release_tids) > 1) { 1303 more_data = true; 1304 driver_release_tids = 1305 BIT(find_highest_prio_tid( 1306 driver_release_tids)); 1307 break; 1308 } 1309 } else { 1310 struct sk_buff *skb; 1311 1312 while (n_frames > 0) { 1313 skb = skb_dequeue(&sta->tx_filtered[ac]); 1314 if (!skb) { 1315 skb = skb_dequeue( 1316 &sta->ps_tx_buf[ac]); 1317 if (skb) 1318 local->total_ps_buffered--; 1319 } 1320 if (!skb) 1321 break; 1322 n_frames--; 1323 __skb_queue_tail(&frames, skb); 1324 } 1325 } 1326 1327 /* If we have more frames buffered on this AC, then set the 1328 * more-data bit and abort the loop since we can't send more 1329 * data from other ACs before the buffered frames from this. 1330 */ 1331 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1332 !skb_queue_empty(&sta->ps_tx_buf[ac])) { 1333 more_data = true; 1334 break; 1335 } 1336 } 1337 1338 if (skb_queue_empty(&frames) && !driver_release_tids) { 1339 int tid; 1340 1341 /* 1342 * For PS-Poll, this can only happen due to a race condition 1343 * when we set the TIM bit and the station notices it, but 1344 * before it can poll for the frame we expire it. 1345 * 1346 * For uAPSD, this is said in the standard (11.2.1.5 h): 1347 * At each unscheduled SP for a non-AP STA, the AP shall 1348 * attempt to transmit at least one MSDU or MMPDU, but no 1349 * more than the value specified in the Max SP Length field 1350 * in the QoS Capability element from delivery-enabled ACs, 1351 * that are destined for the non-AP STA. 1352 * 1353 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1354 */ 1355 1356 /* This will evaluate to 1, 3, 5 or 7. */ 1357 tid = 7 - ((ffs(~ignored_acs) - 1) << 1); 1358 1359 ieee80211_send_null_response(sdata, sta, tid, reason, true); 1360 } else if (!driver_release_tids) { 1361 struct sk_buff_head pending; 1362 struct sk_buff *skb; 1363 int num = 0; 1364 u16 tids = 0; 1365 bool need_null = false; 1366 1367 skb_queue_head_init(&pending); 1368 1369 while ((skb = __skb_dequeue(&frames))) { 1370 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1371 struct ieee80211_hdr *hdr = (void *) skb->data; 1372 u8 *qoshdr = NULL; 1373 1374 num++; 1375 1376 /* 1377 * Tell TX path to send this frame even though the 1378 * STA may still remain is PS mode after this frame 1379 * exchange. 1380 */ 1381 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1382 IEEE80211_TX_CTL_PS_RESPONSE; 1383 1384 /* 1385 * Use MoreData flag to indicate whether there are 1386 * more buffered frames for this STA 1387 */ 1388 if (more_data || !skb_queue_empty(&frames)) 1389 hdr->frame_control |= 1390 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1391 else 1392 hdr->frame_control &= 1393 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1394 1395 if (ieee80211_is_data_qos(hdr->frame_control) || 1396 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1397 qoshdr = ieee80211_get_qos_ctl(hdr); 1398 1399 tids |= BIT(skb->priority); 1400 1401 __skb_queue_tail(&pending, skb); 1402 1403 /* end service period after last frame or add one */ 1404 if (!skb_queue_empty(&frames)) 1405 continue; 1406 1407 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1408 /* for PS-Poll, there's only one frame */ 1409 info->flags |= IEEE80211_TX_STATUS_EOSP | 1410 IEEE80211_TX_CTL_REQ_TX_STATUS; 1411 break; 1412 } 1413 1414 /* For uAPSD, things are a bit more complicated. If the 1415 * last frame has a QoS header (i.e. is a QoS-data or 1416 * QoS-nulldata frame) then just set the EOSP bit there 1417 * and be done. 1418 * If the frame doesn't have a QoS header (which means 1419 * it should be a bufferable MMPDU) then we can't set 1420 * the EOSP bit in the QoS header; add a QoS-nulldata 1421 * frame to the list to send it after the MMPDU. 1422 * 1423 * Note that this code is only in the mac80211-release 1424 * code path, we assume that the driver will not buffer 1425 * anything but QoS-data frames, or if it does, will 1426 * create the QoS-nulldata frame by itself if needed. 1427 * 1428 * Cf. 802.11-2012 10.2.1.10 (c). 1429 */ 1430 if (qoshdr) { 1431 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1432 1433 info->flags |= IEEE80211_TX_STATUS_EOSP | 1434 IEEE80211_TX_CTL_REQ_TX_STATUS; 1435 } else { 1436 /* The standard isn't completely clear on this 1437 * as it says the more-data bit should be set 1438 * if there are more BUs. The QoS-Null frame 1439 * we're about to send isn't buffered yet, we 1440 * only create it below, but let's pretend it 1441 * was buffered just in case some clients only 1442 * expect more-data=0 when eosp=1. 1443 */ 1444 hdr->frame_control |= 1445 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1446 need_null = true; 1447 num++; 1448 } 1449 break; 1450 } 1451 1452 drv_allow_buffered_frames(local, sta, tids, num, 1453 reason, more_data); 1454 1455 ieee80211_add_pending_skbs(local, &pending); 1456 1457 if (need_null) 1458 ieee80211_send_null_response( 1459 sdata, sta, find_highest_prio_tid(tids), 1460 reason, false); 1461 1462 sta_info_recalc_tim(sta); 1463 } else { 1464 /* 1465 * We need to release a frame that is buffered somewhere in the 1466 * driver ... it'll have to handle that. 1467 * Note that the driver also has to check the number of frames 1468 * on the TIDs we're releasing from - if there are more than 1469 * n_frames it has to set the more-data bit (if we didn't ask 1470 * it to set it anyway due to other buffered frames); if there 1471 * are fewer than n_frames it has to make sure to adjust that 1472 * to allow the service period to end properly. 1473 */ 1474 drv_release_buffered_frames(local, sta, driver_release_tids, 1475 n_frames, reason, more_data); 1476 1477 /* 1478 * Note that we don't recalculate the TIM bit here as it would 1479 * most likely have no effect at all unless the driver told us 1480 * that the TID(s) became empty before returning here from the 1481 * release function. 1482 * Either way, however, when the driver tells us that the TID(s) 1483 * became empty we'll do the TIM recalculation. 1484 */ 1485 } 1486 } 1487 1488 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1489 { 1490 u8 ignore_for_response = sta->sta.uapsd_queues; 1491 1492 /* 1493 * If all ACs are delivery-enabled then we should reply 1494 * from any of them, if only some are enabled we reply 1495 * only from the non-enabled ones. 1496 */ 1497 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1498 ignore_for_response = 0; 1499 1500 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1501 IEEE80211_FRAME_RELEASE_PSPOLL); 1502 } 1503 1504 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1505 { 1506 int n_frames = sta->sta.max_sp; 1507 u8 delivery_enabled = sta->sta.uapsd_queues; 1508 1509 /* 1510 * If we ever grow support for TSPEC this might happen if 1511 * the TSPEC update from hostapd comes in between a trigger 1512 * frame setting WLAN_STA_UAPSD in the RX path and this 1513 * actually getting called. 1514 */ 1515 if (!delivery_enabled) 1516 return; 1517 1518 switch (sta->sta.max_sp) { 1519 case 1: 1520 n_frames = 2; 1521 break; 1522 case 2: 1523 n_frames = 4; 1524 break; 1525 case 3: 1526 n_frames = 6; 1527 break; 1528 case 0: 1529 /* XXX: what is a good value? */ 1530 n_frames = 8; 1531 break; 1532 } 1533 1534 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1535 IEEE80211_FRAME_RELEASE_UAPSD); 1536 } 1537 1538 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1539 struct ieee80211_sta *pubsta, bool block) 1540 { 1541 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1542 1543 trace_api_sta_block_awake(sta->local, pubsta, block); 1544 1545 if (block) 1546 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1547 else if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1548 ieee80211_queue_work(hw, &sta->drv_unblock_wk); 1549 } 1550 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1551 1552 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1553 { 1554 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1555 struct ieee80211_local *local = sta->local; 1556 1557 trace_api_eosp(local, pubsta); 1558 1559 clear_sta_flag(sta, WLAN_STA_SP); 1560 } 1561 EXPORT_SYMBOL(ieee80211_sta_eosp); 1562 1563 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1564 u8 tid, bool buffered) 1565 { 1566 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1567 1568 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1569 return; 1570 1571 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1572 1573 if (buffered) 1574 set_bit(tid, &sta->driver_buffered_tids); 1575 else 1576 clear_bit(tid, &sta->driver_buffered_tids); 1577 1578 sta_info_recalc_tim(sta); 1579 } 1580 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1581 1582 int sta_info_move_state(struct sta_info *sta, 1583 enum ieee80211_sta_state new_state) 1584 { 1585 might_sleep(); 1586 1587 if (sta->sta_state == new_state) 1588 return 0; 1589 1590 /* check allowed transitions first */ 1591 1592 switch (new_state) { 1593 case IEEE80211_STA_NONE: 1594 if (sta->sta_state != IEEE80211_STA_AUTH) 1595 return -EINVAL; 1596 break; 1597 case IEEE80211_STA_AUTH: 1598 if (sta->sta_state != IEEE80211_STA_NONE && 1599 sta->sta_state != IEEE80211_STA_ASSOC) 1600 return -EINVAL; 1601 break; 1602 case IEEE80211_STA_ASSOC: 1603 if (sta->sta_state != IEEE80211_STA_AUTH && 1604 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1605 return -EINVAL; 1606 break; 1607 case IEEE80211_STA_AUTHORIZED: 1608 if (sta->sta_state != IEEE80211_STA_ASSOC) 1609 return -EINVAL; 1610 break; 1611 default: 1612 WARN(1, "invalid state %d", new_state); 1613 return -EINVAL; 1614 } 1615 1616 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1617 sta->sta.addr, new_state); 1618 1619 /* 1620 * notify the driver before the actual changes so it can 1621 * fail the transition 1622 */ 1623 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1624 int err = drv_sta_state(sta->local, sta->sdata, sta, 1625 sta->sta_state, new_state); 1626 if (err) 1627 return err; 1628 } 1629 1630 /* reflect the change in all state variables */ 1631 1632 switch (new_state) { 1633 case IEEE80211_STA_NONE: 1634 if (sta->sta_state == IEEE80211_STA_AUTH) 1635 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1636 break; 1637 case IEEE80211_STA_AUTH: 1638 if (sta->sta_state == IEEE80211_STA_NONE) 1639 set_bit(WLAN_STA_AUTH, &sta->_flags); 1640 else if (sta->sta_state == IEEE80211_STA_ASSOC) 1641 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1642 break; 1643 case IEEE80211_STA_ASSOC: 1644 if (sta->sta_state == IEEE80211_STA_AUTH) { 1645 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1646 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1647 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1648 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1649 !sta->sdata->u.vlan.sta)) 1650 atomic_dec(&sta->sdata->bss->num_mcast_sta); 1651 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1652 } 1653 break; 1654 case IEEE80211_STA_AUTHORIZED: 1655 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1656 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1657 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1658 !sta->sdata->u.vlan.sta)) 1659 atomic_inc(&sta->sdata->bss->num_mcast_sta); 1660 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1661 } 1662 break; 1663 default: 1664 break; 1665 } 1666 1667 sta->sta_state = new_state; 1668 1669 return 0; 1670 } 1671 1672 u8 sta_info_tx_streams(struct sta_info *sta) 1673 { 1674 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1675 u8 rx_streams; 1676 1677 if (!sta->sta.ht_cap.ht_supported) 1678 return 1; 1679 1680 if (sta->sta.vht_cap.vht_supported) { 1681 int i; 1682 u16 tx_mcs_map = 1683 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1684 1685 for (i = 7; i >= 0; i--) 1686 if ((tx_mcs_map & (0x3 << (i * 2))) != 1687 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1688 return i + 1; 1689 } 1690 1691 if (ht_cap->mcs.rx_mask[3]) 1692 rx_streams = 4; 1693 else if (ht_cap->mcs.rx_mask[2]) 1694 rx_streams = 3; 1695 else if (ht_cap->mcs.rx_mask[1]) 1696 rx_streams = 2; 1697 else 1698 rx_streams = 1; 1699 1700 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1701 return rx_streams; 1702 1703 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1704 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1705 } 1706