1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 7 * Copyright (C) 2018-2019 Intel Corporation 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/codel.h> 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 static const struct rhashtable_params sta_rht_params = { 68 .nelem_hint = 3, /* start small */ 69 .automatic_shrinking = true, 70 .head_offset = offsetof(struct sta_info, hash_node), 71 .key_offset = offsetof(struct sta_info, addr), 72 .key_len = ETH_ALEN, 73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 74 }; 75 76 /* Caller must hold local->sta_mtx */ 77 static int sta_info_hash_del(struct ieee80211_local *local, 78 struct sta_info *sta) 79 { 80 return rhltable_remove(&local->sta_hash, &sta->hash_node, 81 sta_rht_params); 82 } 83 84 static void __cleanup_single_sta(struct sta_info *sta) 85 { 86 int ac, i; 87 struct tid_ampdu_tx *tid_tx; 88 struct ieee80211_sub_if_data *sdata = sta->sdata; 89 struct ieee80211_local *local = sdata->local; 90 struct ps_data *ps; 91 92 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 97 ps = &sdata->bss->ps; 98 else if (ieee80211_vif_is_mesh(&sdata->vif)) 99 ps = &sdata->u.mesh.ps; 100 else 101 return; 102 103 clear_sta_flag(sta, WLAN_STA_PS_STA); 104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 106 107 atomic_dec(&ps->num_sta_ps); 108 } 109 110 if (sta->sta.txq[0]) { 111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 112 struct txq_info *txqi; 113 114 if (!sta->sta.txq[i]) 115 continue; 116 117 txqi = to_txq_info(sta->sta.txq[i]); 118 119 ieee80211_txq_purge(local, txqi); 120 } 121 } 122 123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 127 } 128 129 if (ieee80211_vif_is_mesh(&sdata->vif)) 130 mesh_sta_cleanup(sta); 131 132 cancel_work_sync(&sta->drv_deliver_wk); 133 134 /* 135 * Destroy aggregation state here. It would be nice to wait for the 136 * driver to finish aggregation stop and then clean up, but for now 137 * drivers have to handle aggregation stop being requested, followed 138 * directly by station destruction. 139 */ 140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 141 kfree(sta->ampdu_mlme.tid_start_tx[i]); 142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 143 if (!tid_tx) 144 continue; 145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 146 kfree(tid_tx); 147 } 148 } 149 150 static void cleanup_single_sta(struct sta_info *sta) 151 { 152 struct ieee80211_sub_if_data *sdata = sta->sdata; 153 struct ieee80211_local *local = sdata->local; 154 155 __cleanup_single_sta(sta); 156 sta_info_free(local, sta); 157 } 158 159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 160 const u8 *addr) 161 { 162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 163 } 164 165 /* protected by RCU */ 166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 167 const u8 *addr) 168 { 169 struct ieee80211_local *local = sdata->local; 170 struct rhlist_head *tmp; 171 struct sta_info *sta; 172 173 rcu_read_lock(); 174 for_each_sta_info(local, addr, sta, tmp) { 175 if (sta->sdata == sdata) { 176 rcu_read_unlock(); 177 /* this is safe as the caller must already hold 178 * another rcu read section or the mutex 179 */ 180 return sta; 181 } 182 } 183 rcu_read_unlock(); 184 return NULL; 185 } 186 187 /* 188 * Get sta info either from the specified interface 189 * or from one of its vlans 190 */ 191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 192 const u8 *addr) 193 { 194 struct ieee80211_local *local = sdata->local; 195 struct rhlist_head *tmp; 196 struct sta_info *sta; 197 198 rcu_read_lock(); 199 for_each_sta_info(local, addr, sta, tmp) { 200 if (sta->sdata == sdata || 201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 202 rcu_read_unlock(); 203 /* this is safe as the caller must already hold 204 * another rcu read section or the mutex 205 */ 206 return sta; 207 } 208 } 209 rcu_read_unlock(); 210 return NULL; 211 } 212 213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, 214 const u8 *sta_addr, const u8 *vif_addr) 215 { 216 struct rhlist_head *tmp; 217 struct sta_info *sta; 218 219 for_each_sta_info(local, sta_addr, sta, tmp) { 220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr)) 221 return sta; 222 } 223 224 return NULL; 225 } 226 227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 228 int idx) 229 { 230 struct ieee80211_local *local = sdata->local; 231 struct sta_info *sta; 232 int i = 0; 233 234 list_for_each_entry_rcu(sta, &local->sta_list, list) { 235 if (sdata != sta->sdata) 236 continue; 237 if (i < idx) { 238 ++i; 239 continue; 240 } 241 return sta; 242 } 243 244 return NULL; 245 } 246 247 /** 248 * sta_info_free - free STA 249 * 250 * @local: pointer to the global information 251 * @sta: STA info to free 252 * 253 * This function must undo everything done by sta_info_alloc() 254 * that may happen before sta_info_insert(). It may only be 255 * called when sta_info_insert() has not been attempted (and 256 * if that fails, the station is freed anyway.) 257 */ 258 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 259 { 260 if (sta->rate_ctrl) 261 rate_control_free_sta(sta); 262 263 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 264 265 if (sta->sta.txq[0]) 266 kfree(to_txq_info(sta->sta.txq[0])); 267 kfree(rcu_dereference_raw(sta->sta.rates)); 268 #ifdef CONFIG_MAC80211_MESH 269 kfree(sta->mesh); 270 #endif 271 free_percpu(sta->pcpu_rx_stats); 272 kfree(sta); 273 } 274 275 /* Caller must hold local->sta_mtx */ 276 static int sta_info_hash_add(struct ieee80211_local *local, 277 struct sta_info *sta) 278 { 279 return rhltable_insert(&local->sta_hash, &sta->hash_node, 280 sta_rht_params); 281 } 282 283 static void sta_deliver_ps_frames(struct work_struct *wk) 284 { 285 struct sta_info *sta; 286 287 sta = container_of(wk, struct sta_info, drv_deliver_wk); 288 289 if (sta->dead) 290 return; 291 292 local_bh_disable(); 293 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 294 ieee80211_sta_ps_deliver_wakeup(sta); 295 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 296 ieee80211_sta_ps_deliver_poll_response(sta); 297 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 298 ieee80211_sta_ps_deliver_uapsd(sta); 299 local_bh_enable(); 300 } 301 302 static int sta_prepare_rate_control(struct ieee80211_local *local, 303 struct sta_info *sta, gfp_t gfp) 304 { 305 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 306 return 0; 307 308 sta->rate_ctrl = local->rate_ctrl; 309 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 310 sta, gfp); 311 if (!sta->rate_ctrl_priv) 312 return -ENOMEM; 313 314 return 0; 315 } 316 317 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 318 const u8 *addr, gfp_t gfp) 319 { 320 struct ieee80211_local *local = sdata->local; 321 struct ieee80211_hw *hw = &local->hw; 322 struct sta_info *sta; 323 int i; 324 325 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 326 if (!sta) 327 return NULL; 328 329 if (ieee80211_hw_check(hw, USES_RSS)) { 330 sta->pcpu_rx_stats = 331 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); 332 if (!sta->pcpu_rx_stats) 333 goto free; 334 } 335 336 spin_lock_init(&sta->lock); 337 spin_lock_init(&sta->ps_lock); 338 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 339 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 340 mutex_init(&sta->ampdu_mlme.mtx); 341 #ifdef CONFIG_MAC80211_MESH 342 if (ieee80211_vif_is_mesh(&sdata->vif)) { 343 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 344 if (!sta->mesh) 345 goto free; 346 sta->mesh->plink_sta = sta; 347 spin_lock_init(&sta->mesh->plink_lock); 348 if (ieee80211_vif_is_mesh(&sdata->vif) && 349 !sdata->u.mesh.user_mpm) 350 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 351 0); 352 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 353 } 354 #endif 355 356 memcpy(sta->addr, addr, ETH_ALEN); 357 memcpy(sta->sta.addr, addr, ETH_ALEN); 358 sta->sta.max_rx_aggregation_subframes = 359 local->hw.max_rx_aggregation_subframes; 360 361 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only. 362 * The Tx path starts to use a key as soon as the key slot ptk_idx 363 * references to is not NULL. To not use the initial Rx-only key 364 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid 365 * which always will refer to a NULL key. 366 */ 367 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX); 368 sta->ptk_idx = INVALID_PTK_KEYIDX; 369 370 sta->local = local; 371 sta->sdata = sdata; 372 sta->rx_stats.last_rx = jiffies; 373 374 u64_stats_init(&sta->rx_stats.syncp); 375 376 sta->sta_state = IEEE80211_STA_NONE; 377 378 /* Mark TID as unreserved */ 379 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 380 381 sta->last_connected = ktime_get_seconds(); 382 ewma_signal_init(&sta->rx_stats_avg.signal); 383 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal); 384 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 385 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 386 387 if (local->ops->wake_tx_queue) { 388 void *txq_data; 389 int size = sizeof(struct txq_info) + 390 ALIGN(hw->txq_data_size, sizeof(void *)); 391 392 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 393 if (!txq_data) 394 goto free; 395 396 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 397 struct txq_info *txq = txq_data + i * size; 398 399 /* might not do anything for the bufferable MMPDU TXQ */ 400 ieee80211_txq_init(sdata, sta, txq, i); 401 } 402 } 403 404 if (sta_prepare_rate_control(local, sta, gfp)) 405 goto free_txq; 406 407 sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT; 408 409 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 410 skb_queue_head_init(&sta->ps_tx_buf[i]); 411 skb_queue_head_init(&sta->tx_filtered[i]); 412 sta->airtime[i].deficit = sta->airtime_weight; 413 atomic_set(&sta->airtime[i].aql_tx_pending, 0); 414 sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i]; 415 sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i]; 416 } 417 418 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 419 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 420 421 for (i = 0; i < NUM_NL80211_BANDS; i++) { 422 u32 mandatory = 0; 423 int r; 424 425 if (!hw->wiphy->bands[i]) 426 continue; 427 428 switch (i) { 429 case NL80211_BAND_2GHZ: 430 /* 431 * We use both here, even if we cannot really know for 432 * sure the station will support both, but the only use 433 * for this is when we don't know anything yet and send 434 * management frames, and then we'll pick the lowest 435 * possible rate anyway. 436 * If we don't include _G here, we cannot find a rate 437 * in P2P, and thus trigger the WARN_ONCE() in rate.c 438 */ 439 mandatory = IEEE80211_RATE_MANDATORY_B | 440 IEEE80211_RATE_MANDATORY_G; 441 break; 442 case NL80211_BAND_5GHZ: 443 mandatory = IEEE80211_RATE_MANDATORY_A; 444 break; 445 case NL80211_BAND_60GHZ: 446 WARN_ON(1); 447 mandatory = 0; 448 break; 449 } 450 451 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) { 452 struct ieee80211_rate *rate; 453 454 rate = &hw->wiphy->bands[i]->bitrates[r]; 455 456 if (!(rate->flags & mandatory)) 457 continue; 458 sta->sta.supp_rates[i] |= BIT(r); 459 } 460 } 461 462 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 463 if (sdata->vif.type == NL80211_IFTYPE_AP || 464 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 465 struct ieee80211_supported_band *sband; 466 u8 smps; 467 468 sband = ieee80211_get_sband(sdata); 469 if (!sband) 470 goto free_txq; 471 472 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 473 IEEE80211_HT_CAP_SM_PS_SHIFT; 474 /* 475 * Assume that hostapd advertises our caps in the beacon and 476 * this is the known_smps_mode for a station that just assciated 477 */ 478 switch (smps) { 479 case WLAN_HT_SMPS_CONTROL_DISABLED: 480 sta->known_smps_mode = IEEE80211_SMPS_OFF; 481 break; 482 case WLAN_HT_SMPS_CONTROL_STATIC: 483 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 484 break; 485 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 486 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 487 break; 488 default: 489 WARN_ON(1); 490 } 491 } 492 493 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 494 495 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; 496 sta->cparams.target = MS2TIME(20); 497 sta->cparams.interval = MS2TIME(100); 498 sta->cparams.ecn = true; 499 500 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 501 502 return sta; 503 504 free_txq: 505 if (sta->sta.txq[0]) 506 kfree(to_txq_info(sta->sta.txq[0])); 507 free: 508 free_percpu(sta->pcpu_rx_stats); 509 #ifdef CONFIG_MAC80211_MESH 510 kfree(sta->mesh); 511 #endif 512 kfree(sta); 513 return NULL; 514 } 515 516 static int sta_info_insert_check(struct sta_info *sta) 517 { 518 struct ieee80211_sub_if_data *sdata = sta->sdata; 519 520 /* 521 * Can't be a WARN_ON because it can be triggered through a race: 522 * something inserts a STA (on one CPU) without holding the RTNL 523 * and another CPU turns off the net device. 524 */ 525 if (unlikely(!ieee80211_sdata_running(sdata))) 526 return -ENETDOWN; 527 528 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 529 is_multicast_ether_addr(sta->sta.addr))) 530 return -EINVAL; 531 532 /* The RCU read lock is required by rhashtable due to 533 * asynchronous resize/rehash. We also require the mutex 534 * for correctness. 535 */ 536 rcu_read_lock(); 537 lockdep_assert_held(&sdata->local->sta_mtx); 538 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 539 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 540 rcu_read_unlock(); 541 return -ENOTUNIQ; 542 } 543 rcu_read_unlock(); 544 545 return 0; 546 } 547 548 static int sta_info_insert_drv_state(struct ieee80211_local *local, 549 struct ieee80211_sub_if_data *sdata, 550 struct sta_info *sta) 551 { 552 enum ieee80211_sta_state state; 553 int err = 0; 554 555 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 556 err = drv_sta_state(local, sdata, sta, state, state + 1); 557 if (err) 558 break; 559 } 560 561 if (!err) { 562 /* 563 * Drivers using legacy sta_add/sta_remove callbacks only 564 * get uploaded set to true after sta_add is called. 565 */ 566 if (!local->ops->sta_add) 567 sta->uploaded = true; 568 return 0; 569 } 570 571 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 572 sdata_info(sdata, 573 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 574 sta->sta.addr, state + 1, err); 575 err = 0; 576 } 577 578 /* unwind on error */ 579 for (; state > IEEE80211_STA_NOTEXIST; state--) 580 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 581 582 return err; 583 } 584 585 static void 586 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 587 { 588 struct ieee80211_local *local = sdata->local; 589 bool allow_p2p_go_ps = sdata->vif.p2p; 590 struct sta_info *sta; 591 592 rcu_read_lock(); 593 list_for_each_entry_rcu(sta, &local->sta_list, list) { 594 if (sdata != sta->sdata || 595 !test_sta_flag(sta, WLAN_STA_ASSOC)) 596 continue; 597 if (!sta->sta.support_p2p_ps) { 598 allow_p2p_go_ps = false; 599 break; 600 } 601 } 602 rcu_read_unlock(); 603 604 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 605 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 606 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 607 } 608 } 609 610 /* 611 * should be called with sta_mtx locked 612 * this function replaces the mutex lock 613 * with a RCU lock 614 */ 615 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 616 { 617 struct ieee80211_local *local = sta->local; 618 struct ieee80211_sub_if_data *sdata = sta->sdata; 619 struct station_info *sinfo = NULL; 620 int err = 0; 621 622 lockdep_assert_held(&local->sta_mtx); 623 624 /* check if STA exists already */ 625 if (sta_info_get_bss(sdata, sta->sta.addr)) { 626 err = -EEXIST; 627 goto out_err; 628 } 629 630 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 631 if (!sinfo) { 632 err = -ENOMEM; 633 goto out_err; 634 } 635 636 local->num_sta++; 637 local->sta_generation++; 638 smp_mb(); 639 640 /* simplify things and don't accept BA sessions yet */ 641 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 642 643 /* make the station visible */ 644 err = sta_info_hash_add(local, sta); 645 if (err) 646 goto out_drop_sta; 647 648 list_add_tail_rcu(&sta->list, &local->sta_list); 649 650 /* notify driver */ 651 err = sta_info_insert_drv_state(local, sdata, sta); 652 if (err) 653 goto out_remove; 654 655 set_sta_flag(sta, WLAN_STA_INSERTED); 656 657 if (sta->sta_state >= IEEE80211_STA_ASSOC) { 658 ieee80211_recalc_min_chandef(sta->sdata); 659 if (!sta->sta.support_p2p_ps) 660 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 661 } 662 663 /* accept BA sessions now */ 664 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 665 666 ieee80211_sta_debugfs_add(sta); 667 rate_control_add_sta_debugfs(sta); 668 669 sinfo->generation = local->sta_generation; 670 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 671 kfree(sinfo); 672 673 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 674 675 /* move reference to rcu-protected */ 676 rcu_read_lock(); 677 mutex_unlock(&local->sta_mtx); 678 679 if (ieee80211_vif_is_mesh(&sdata->vif)) 680 mesh_accept_plinks_update(sdata); 681 682 return 0; 683 out_remove: 684 sta_info_hash_del(local, sta); 685 list_del_rcu(&sta->list); 686 out_drop_sta: 687 local->num_sta--; 688 synchronize_net(); 689 __cleanup_single_sta(sta); 690 out_err: 691 mutex_unlock(&local->sta_mtx); 692 kfree(sinfo); 693 rcu_read_lock(); 694 return err; 695 } 696 697 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 698 { 699 struct ieee80211_local *local = sta->local; 700 int err; 701 702 might_sleep(); 703 704 mutex_lock(&local->sta_mtx); 705 706 err = sta_info_insert_check(sta); 707 if (err) { 708 mutex_unlock(&local->sta_mtx); 709 rcu_read_lock(); 710 goto out_free; 711 } 712 713 err = sta_info_insert_finish(sta); 714 if (err) 715 goto out_free; 716 717 return 0; 718 out_free: 719 sta_info_free(local, sta); 720 return err; 721 } 722 723 int sta_info_insert(struct sta_info *sta) 724 { 725 int err = sta_info_insert_rcu(sta); 726 727 rcu_read_unlock(); 728 729 return err; 730 } 731 732 static inline void __bss_tim_set(u8 *tim, u16 id) 733 { 734 /* 735 * This format has been mandated by the IEEE specifications, 736 * so this line may not be changed to use the __set_bit() format. 737 */ 738 tim[id / 8] |= (1 << (id % 8)); 739 } 740 741 static inline void __bss_tim_clear(u8 *tim, u16 id) 742 { 743 /* 744 * This format has been mandated by the IEEE specifications, 745 * so this line may not be changed to use the __clear_bit() format. 746 */ 747 tim[id / 8] &= ~(1 << (id % 8)); 748 } 749 750 static inline bool __bss_tim_get(u8 *tim, u16 id) 751 { 752 /* 753 * This format has been mandated by the IEEE specifications, 754 * so this line may not be changed to use the test_bit() format. 755 */ 756 return tim[id / 8] & (1 << (id % 8)); 757 } 758 759 static unsigned long ieee80211_tids_for_ac(int ac) 760 { 761 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 762 switch (ac) { 763 case IEEE80211_AC_VO: 764 return BIT(6) | BIT(7); 765 case IEEE80211_AC_VI: 766 return BIT(4) | BIT(5); 767 case IEEE80211_AC_BE: 768 return BIT(0) | BIT(3); 769 case IEEE80211_AC_BK: 770 return BIT(1) | BIT(2); 771 default: 772 WARN_ON(1); 773 return 0; 774 } 775 } 776 777 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 778 { 779 struct ieee80211_local *local = sta->local; 780 struct ps_data *ps; 781 bool indicate_tim = false; 782 u8 ignore_for_tim = sta->sta.uapsd_queues; 783 int ac; 784 u16 id = sta->sta.aid; 785 786 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 787 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 788 if (WARN_ON_ONCE(!sta->sdata->bss)) 789 return; 790 791 ps = &sta->sdata->bss->ps; 792 #ifdef CONFIG_MAC80211_MESH 793 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 794 ps = &sta->sdata->u.mesh.ps; 795 #endif 796 } else { 797 return; 798 } 799 800 /* No need to do anything if the driver does all */ 801 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 802 return; 803 804 if (sta->dead) 805 goto done; 806 807 /* 808 * If all ACs are delivery-enabled then we should build 809 * the TIM bit for all ACs anyway; if only some are then 810 * we ignore those and build the TIM bit using only the 811 * non-enabled ones. 812 */ 813 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 814 ignore_for_tim = 0; 815 816 if (ignore_pending) 817 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 818 819 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 820 unsigned long tids; 821 822 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 823 continue; 824 825 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 826 !skb_queue_empty(&sta->ps_tx_buf[ac]); 827 if (indicate_tim) 828 break; 829 830 tids = ieee80211_tids_for_ac(ac); 831 832 indicate_tim |= 833 sta->driver_buffered_tids & tids; 834 indicate_tim |= 835 sta->txq_buffered_tids & tids; 836 } 837 838 done: 839 spin_lock_bh(&local->tim_lock); 840 841 if (indicate_tim == __bss_tim_get(ps->tim, id)) 842 goto out_unlock; 843 844 if (indicate_tim) 845 __bss_tim_set(ps->tim, id); 846 else 847 __bss_tim_clear(ps->tim, id); 848 849 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 850 local->tim_in_locked_section = true; 851 drv_set_tim(local, &sta->sta, indicate_tim); 852 local->tim_in_locked_section = false; 853 } 854 855 out_unlock: 856 spin_unlock_bh(&local->tim_lock); 857 } 858 859 void sta_info_recalc_tim(struct sta_info *sta) 860 { 861 __sta_info_recalc_tim(sta, false); 862 } 863 864 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 865 { 866 struct ieee80211_tx_info *info; 867 int timeout; 868 869 if (!skb) 870 return false; 871 872 info = IEEE80211_SKB_CB(skb); 873 874 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 875 timeout = (sta->listen_interval * 876 sta->sdata->vif.bss_conf.beacon_int * 877 32 / 15625) * HZ; 878 if (timeout < STA_TX_BUFFER_EXPIRE) 879 timeout = STA_TX_BUFFER_EXPIRE; 880 return time_after(jiffies, info->control.jiffies + timeout); 881 } 882 883 884 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 885 struct sta_info *sta, int ac) 886 { 887 unsigned long flags; 888 struct sk_buff *skb; 889 890 /* 891 * First check for frames that should expire on the filtered 892 * queue. Frames here were rejected by the driver and are on 893 * a separate queue to avoid reordering with normal PS-buffered 894 * frames. They also aren't accounted for right now in the 895 * total_ps_buffered counter. 896 */ 897 for (;;) { 898 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 899 skb = skb_peek(&sta->tx_filtered[ac]); 900 if (sta_info_buffer_expired(sta, skb)) 901 skb = __skb_dequeue(&sta->tx_filtered[ac]); 902 else 903 skb = NULL; 904 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 905 906 /* 907 * Frames are queued in order, so if this one 908 * hasn't expired yet we can stop testing. If 909 * we actually reached the end of the queue we 910 * also need to stop, of course. 911 */ 912 if (!skb) 913 break; 914 ieee80211_free_txskb(&local->hw, skb); 915 } 916 917 /* 918 * Now also check the normal PS-buffered queue, this will 919 * only find something if the filtered queue was emptied 920 * since the filtered frames are all before the normal PS 921 * buffered frames. 922 */ 923 for (;;) { 924 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 925 skb = skb_peek(&sta->ps_tx_buf[ac]); 926 if (sta_info_buffer_expired(sta, skb)) 927 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 928 else 929 skb = NULL; 930 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 931 932 /* 933 * frames are queued in order, so if this one 934 * hasn't expired yet (or we reached the end of 935 * the queue) we can stop testing 936 */ 937 if (!skb) 938 break; 939 940 local->total_ps_buffered--; 941 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 942 sta->sta.addr); 943 ieee80211_free_txskb(&local->hw, skb); 944 } 945 946 /* 947 * Finally, recalculate the TIM bit for this station -- it might 948 * now be clear because the station was too slow to retrieve its 949 * frames. 950 */ 951 sta_info_recalc_tim(sta); 952 953 /* 954 * Return whether there are any frames still buffered, this is 955 * used to check whether the cleanup timer still needs to run, 956 * if there are no frames we don't need to rearm the timer. 957 */ 958 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 959 skb_queue_empty(&sta->tx_filtered[ac])); 960 } 961 962 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 963 struct sta_info *sta) 964 { 965 bool have_buffered = false; 966 int ac; 967 968 /* This is only necessary for stations on BSS/MBSS interfaces */ 969 if (!sta->sdata->bss && 970 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 971 return false; 972 973 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 974 have_buffered |= 975 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 976 977 return have_buffered; 978 } 979 980 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 981 { 982 struct ieee80211_local *local; 983 struct ieee80211_sub_if_data *sdata; 984 int ret; 985 986 might_sleep(); 987 988 if (!sta) 989 return -ENOENT; 990 991 local = sta->local; 992 sdata = sta->sdata; 993 994 lockdep_assert_held(&local->sta_mtx); 995 996 /* 997 * Before removing the station from the driver and 998 * rate control, it might still start new aggregation 999 * sessions -- block that to make sure the tear-down 1000 * will be sufficient. 1001 */ 1002 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 1003 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 1004 1005 /* 1006 * Before removing the station from the driver there might be pending 1007 * rx frames on RSS queues sent prior to the disassociation - wait for 1008 * all such frames to be processed. 1009 */ 1010 drv_sync_rx_queues(local, sta); 1011 1012 ret = sta_info_hash_del(local, sta); 1013 if (WARN_ON(ret)) 1014 return ret; 1015 1016 /* 1017 * for TDLS peers, make sure to return to the base channel before 1018 * removal. 1019 */ 1020 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 1021 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 1022 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 1023 } 1024 1025 list_del_rcu(&sta->list); 1026 sta->removed = true; 1027 1028 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 1029 1030 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1031 rcu_access_pointer(sdata->u.vlan.sta) == sta) 1032 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 1033 1034 return 0; 1035 } 1036 1037 static void __sta_info_destroy_part2(struct sta_info *sta) 1038 { 1039 struct ieee80211_local *local = sta->local; 1040 struct ieee80211_sub_if_data *sdata = sta->sdata; 1041 struct station_info *sinfo; 1042 int ret; 1043 1044 /* 1045 * NOTE: This assumes at least synchronize_net() was done 1046 * after _part1 and before _part2! 1047 */ 1048 1049 might_sleep(); 1050 lockdep_assert_held(&local->sta_mtx); 1051 1052 /* now keys can no longer be reached */ 1053 ieee80211_free_sta_keys(local, sta); 1054 1055 /* disable TIM bit - last chance to tell driver */ 1056 __sta_info_recalc_tim(sta, true); 1057 1058 sta->dead = true; 1059 1060 local->num_sta--; 1061 local->sta_generation++; 1062 1063 while (sta->sta_state > IEEE80211_STA_NONE) { 1064 ret = sta_info_move_state(sta, sta->sta_state - 1); 1065 if (ret) { 1066 WARN_ON_ONCE(1); 1067 break; 1068 } 1069 } 1070 1071 if (sta->uploaded) { 1072 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 1073 IEEE80211_STA_NOTEXIST); 1074 WARN_ON_ONCE(ret != 0); 1075 } 1076 1077 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 1078 1079 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 1080 if (sinfo) 1081 sta_set_sinfo(sta, sinfo, true); 1082 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 1083 kfree(sinfo); 1084 1085 ieee80211_sta_debugfs_remove(sta); 1086 1087 cleanup_single_sta(sta); 1088 } 1089 1090 int __must_check __sta_info_destroy(struct sta_info *sta) 1091 { 1092 int err = __sta_info_destroy_part1(sta); 1093 1094 if (err) 1095 return err; 1096 1097 synchronize_net(); 1098 1099 __sta_info_destroy_part2(sta); 1100 1101 return 0; 1102 } 1103 1104 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1105 { 1106 struct sta_info *sta; 1107 int ret; 1108 1109 mutex_lock(&sdata->local->sta_mtx); 1110 sta = sta_info_get(sdata, addr); 1111 ret = __sta_info_destroy(sta); 1112 mutex_unlock(&sdata->local->sta_mtx); 1113 1114 return ret; 1115 } 1116 1117 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1118 const u8 *addr) 1119 { 1120 struct sta_info *sta; 1121 int ret; 1122 1123 mutex_lock(&sdata->local->sta_mtx); 1124 sta = sta_info_get_bss(sdata, addr); 1125 ret = __sta_info_destroy(sta); 1126 mutex_unlock(&sdata->local->sta_mtx); 1127 1128 return ret; 1129 } 1130 1131 static void sta_info_cleanup(struct timer_list *t) 1132 { 1133 struct ieee80211_local *local = from_timer(local, t, sta_cleanup); 1134 struct sta_info *sta; 1135 bool timer_needed = false; 1136 1137 rcu_read_lock(); 1138 list_for_each_entry_rcu(sta, &local->sta_list, list) 1139 if (sta_info_cleanup_expire_buffered(local, sta)) 1140 timer_needed = true; 1141 rcu_read_unlock(); 1142 1143 if (local->quiescing) 1144 return; 1145 1146 if (!timer_needed) 1147 return; 1148 1149 mod_timer(&local->sta_cleanup, 1150 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1151 } 1152 1153 int sta_info_init(struct ieee80211_local *local) 1154 { 1155 int err; 1156 1157 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1158 if (err) 1159 return err; 1160 1161 spin_lock_init(&local->tim_lock); 1162 mutex_init(&local->sta_mtx); 1163 INIT_LIST_HEAD(&local->sta_list); 1164 1165 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); 1166 return 0; 1167 } 1168 1169 void sta_info_stop(struct ieee80211_local *local) 1170 { 1171 del_timer_sync(&local->sta_cleanup); 1172 rhltable_destroy(&local->sta_hash); 1173 } 1174 1175 1176 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1177 { 1178 struct ieee80211_local *local = sdata->local; 1179 struct sta_info *sta, *tmp; 1180 LIST_HEAD(free_list); 1181 int ret = 0; 1182 1183 might_sleep(); 1184 1185 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1186 WARN_ON(vlans && !sdata->bss); 1187 1188 mutex_lock(&local->sta_mtx); 1189 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1190 if (sdata == sta->sdata || 1191 (vlans && sdata->bss == sta->sdata->bss)) { 1192 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1193 list_add(&sta->free_list, &free_list); 1194 ret++; 1195 } 1196 } 1197 1198 if (!list_empty(&free_list)) { 1199 synchronize_net(); 1200 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1201 __sta_info_destroy_part2(sta); 1202 } 1203 mutex_unlock(&local->sta_mtx); 1204 1205 return ret; 1206 } 1207 1208 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1209 unsigned long exp_time) 1210 { 1211 struct ieee80211_local *local = sdata->local; 1212 struct sta_info *sta, *tmp; 1213 1214 mutex_lock(&local->sta_mtx); 1215 1216 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1217 unsigned long last_active = ieee80211_sta_last_active(sta); 1218 1219 if (sdata != sta->sdata) 1220 continue; 1221 1222 if (time_is_before_jiffies(last_active + exp_time)) { 1223 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1224 sta->sta.addr); 1225 1226 if (ieee80211_vif_is_mesh(&sdata->vif) && 1227 test_sta_flag(sta, WLAN_STA_PS_STA)) 1228 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1229 1230 WARN_ON(__sta_info_destroy(sta)); 1231 } 1232 } 1233 1234 mutex_unlock(&local->sta_mtx); 1235 } 1236 1237 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1238 const u8 *addr, 1239 const u8 *localaddr) 1240 { 1241 struct ieee80211_local *local = hw_to_local(hw); 1242 struct rhlist_head *tmp; 1243 struct sta_info *sta; 1244 1245 /* 1246 * Just return a random station if localaddr is NULL 1247 * ... first in list. 1248 */ 1249 for_each_sta_info(local, addr, sta, tmp) { 1250 if (localaddr && 1251 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1252 continue; 1253 if (!sta->uploaded) 1254 return NULL; 1255 return &sta->sta; 1256 } 1257 1258 return NULL; 1259 } 1260 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1261 1262 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1263 const u8 *addr) 1264 { 1265 struct sta_info *sta; 1266 1267 if (!vif) 1268 return NULL; 1269 1270 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1271 if (!sta) 1272 return NULL; 1273 1274 if (!sta->uploaded) 1275 return NULL; 1276 1277 return &sta->sta; 1278 } 1279 EXPORT_SYMBOL(ieee80211_find_sta); 1280 1281 /* powersave support code */ 1282 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1283 { 1284 struct ieee80211_sub_if_data *sdata = sta->sdata; 1285 struct ieee80211_local *local = sdata->local; 1286 struct sk_buff_head pending; 1287 int filtered = 0, buffered = 0, ac, i; 1288 unsigned long flags; 1289 struct ps_data *ps; 1290 1291 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1292 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1293 u.ap); 1294 1295 if (sdata->vif.type == NL80211_IFTYPE_AP) 1296 ps = &sdata->bss->ps; 1297 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1298 ps = &sdata->u.mesh.ps; 1299 else 1300 return; 1301 1302 clear_sta_flag(sta, WLAN_STA_SP); 1303 1304 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1305 sta->driver_buffered_tids = 0; 1306 sta->txq_buffered_tids = 0; 1307 1308 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1309 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1310 1311 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1312 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) 1313 continue; 1314 1315 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); 1316 } 1317 1318 skb_queue_head_init(&pending); 1319 1320 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1321 spin_lock(&sta->ps_lock); 1322 /* Send all buffered frames to the station */ 1323 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1324 int count = skb_queue_len(&pending), tmp; 1325 1326 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1327 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1328 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1329 tmp = skb_queue_len(&pending); 1330 filtered += tmp - count; 1331 count = tmp; 1332 1333 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1334 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1335 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1336 tmp = skb_queue_len(&pending); 1337 buffered += tmp - count; 1338 } 1339 1340 ieee80211_add_pending_skbs(local, &pending); 1341 1342 /* now we're no longer in the deliver code */ 1343 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1344 1345 /* The station might have polled and then woken up before we responded, 1346 * so clear these flags now to avoid them sticking around. 1347 */ 1348 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1349 clear_sta_flag(sta, WLAN_STA_UAPSD); 1350 spin_unlock(&sta->ps_lock); 1351 1352 atomic_dec(&ps->num_sta_ps); 1353 1354 /* This station just woke up and isn't aware of our SMPS state */ 1355 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1356 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1357 sdata->smps_mode) && 1358 sta->known_smps_mode != sdata->bss->req_smps && 1359 sta_info_tx_streams(sta) != 1) { 1360 ht_dbg(sdata, 1361 "%pM just woke up and MIMO capable - update SMPS\n", 1362 sta->sta.addr); 1363 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1364 sta->sta.addr, 1365 sdata->vif.bss_conf.bssid); 1366 } 1367 1368 local->total_ps_buffered -= buffered; 1369 1370 sta_info_recalc_tim(sta); 1371 1372 ps_dbg(sdata, 1373 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1374 sta->sta.addr, sta->sta.aid, filtered, buffered); 1375 1376 ieee80211_check_fast_xmit(sta); 1377 } 1378 1379 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1380 enum ieee80211_frame_release_type reason, 1381 bool call_driver, bool more_data) 1382 { 1383 struct ieee80211_sub_if_data *sdata = sta->sdata; 1384 struct ieee80211_local *local = sdata->local; 1385 struct ieee80211_qos_hdr *nullfunc; 1386 struct sk_buff *skb; 1387 int size = sizeof(*nullfunc); 1388 __le16 fc; 1389 bool qos = sta->sta.wme; 1390 struct ieee80211_tx_info *info; 1391 struct ieee80211_chanctx_conf *chanctx_conf; 1392 1393 /* Don't send NDPs when STA is connected HE */ 1394 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1395 !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE)) 1396 return; 1397 1398 if (qos) { 1399 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1400 IEEE80211_STYPE_QOS_NULLFUNC | 1401 IEEE80211_FCTL_FROMDS); 1402 } else { 1403 size -= 2; 1404 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1405 IEEE80211_STYPE_NULLFUNC | 1406 IEEE80211_FCTL_FROMDS); 1407 } 1408 1409 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1410 if (!skb) 1411 return; 1412 1413 skb_reserve(skb, local->hw.extra_tx_headroom); 1414 1415 nullfunc = skb_put(skb, size); 1416 nullfunc->frame_control = fc; 1417 nullfunc->duration_id = 0; 1418 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1419 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1420 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1421 nullfunc->seq_ctrl = 0; 1422 1423 skb->priority = tid; 1424 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1425 if (qos) { 1426 nullfunc->qos_ctrl = cpu_to_le16(tid); 1427 1428 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1429 nullfunc->qos_ctrl |= 1430 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1431 if (more_data) 1432 nullfunc->frame_control |= 1433 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1434 } 1435 } 1436 1437 info = IEEE80211_SKB_CB(skb); 1438 1439 /* 1440 * Tell TX path to send this frame even though the 1441 * STA may still remain is PS mode after this frame 1442 * exchange. Also set EOSP to indicate this packet 1443 * ends the poll/service period. 1444 */ 1445 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1446 IEEE80211_TX_STATUS_EOSP | 1447 IEEE80211_TX_CTL_REQ_TX_STATUS; 1448 1449 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1450 1451 if (call_driver) 1452 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1453 reason, false); 1454 1455 skb->dev = sdata->dev; 1456 1457 rcu_read_lock(); 1458 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1459 if (WARN_ON(!chanctx_conf)) { 1460 rcu_read_unlock(); 1461 kfree_skb(skb); 1462 return; 1463 } 1464 1465 info->band = chanctx_conf->def.chan->band; 1466 ieee80211_xmit(sdata, sta, skb, 0); 1467 rcu_read_unlock(); 1468 } 1469 1470 static int find_highest_prio_tid(unsigned long tids) 1471 { 1472 /* lower 3 TIDs aren't ordered perfectly */ 1473 if (tids & 0xF8) 1474 return fls(tids) - 1; 1475 /* TID 0 is BE just like TID 3 */ 1476 if (tids & BIT(0)) 1477 return 0; 1478 return fls(tids) - 1; 1479 } 1480 1481 /* Indicates if the MORE_DATA bit should be set in the last 1482 * frame obtained by ieee80211_sta_ps_get_frames. 1483 * Note that driver_release_tids is relevant only if 1484 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1485 */ 1486 static bool 1487 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1488 enum ieee80211_frame_release_type reason, 1489 unsigned long driver_release_tids) 1490 { 1491 int ac; 1492 1493 /* If the driver has data on more than one TID then 1494 * certainly there's more data if we release just a 1495 * single frame now (from a single TID). This will 1496 * only happen for PS-Poll. 1497 */ 1498 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1499 hweight16(driver_release_tids) > 1) 1500 return true; 1501 1502 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1503 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1504 continue; 1505 1506 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1507 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1508 return true; 1509 } 1510 1511 return false; 1512 } 1513 1514 static void 1515 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1516 enum ieee80211_frame_release_type reason, 1517 struct sk_buff_head *frames, 1518 unsigned long *driver_release_tids) 1519 { 1520 struct ieee80211_sub_if_data *sdata = sta->sdata; 1521 struct ieee80211_local *local = sdata->local; 1522 int ac; 1523 1524 /* Get response frame(s) and more data bit for the last one. */ 1525 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1526 unsigned long tids; 1527 1528 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1529 continue; 1530 1531 tids = ieee80211_tids_for_ac(ac); 1532 1533 /* if we already have frames from software, then we can't also 1534 * release from hardware queues 1535 */ 1536 if (skb_queue_empty(frames)) { 1537 *driver_release_tids |= 1538 sta->driver_buffered_tids & tids; 1539 *driver_release_tids |= sta->txq_buffered_tids & tids; 1540 } 1541 1542 if (!*driver_release_tids) { 1543 struct sk_buff *skb; 1544 1545 while (n_frames > 0) { 1546 skb = skb_dequeue(&sta->tx_filtered[ac]); 1547 if (!skb) { 1548 skb = skb_dequeue( 1549 &sta->ps_tx_buf[ac]); 1550 if (skb) 1551 local->total_ps_buffered--; 1552 } 1553 if (!skb) 1554 break; 1555 n_frames--; 1556 __skb_queue_tail(frames, skb); 1557 } 1558 } 1559 1560 /* If we have more frames buffered on this AC, then abort the 1561 * loop since we can't send more data from other ACs before 1562 * the buffered frames from this. 1563 */ 1564 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1565 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1566 break; 1567 } 1568 } 1569 1570 static void 1571 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1572 int n_frames, u8 ignored_acs, 1573 enum ieee80211_frame_release_type reason) 1574 { 1575 struct ieee80211_sub_if_data *sdata = sta->sdata; 1576 struct ieee80211_local *local = sdata->local; 1577 unsigned long driver_release_tids = 0; 1578 struct sk_buff_head frames; 1579 bool more_data; 1580 1581 /* Service or PS-Poll period starts */ 1582 set_sta_flag(sta, WLAN_STA_SP); 1583 1584 __skb_queue_head_init(&frames); 1585 1586 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1587 &frames, &driver_release_tids); 1588 1589 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1590 1591 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1592 driver_release_tids = 1593 BIT(find_highest_prio_tid(driver_release_tids)); 1594 1595 if (skb_queue_empty(&frames) && !driver_release_tids) { 1596 int tid, ac; 1597 1598 /* 1599 * For PS-Poll, this can only happen due to a race condition 1600 * when we set the TIM bit and the station notices it, but 1601 * before it can poll for the frame we expire it. 1602 * 1603 * For uAPSD, this is said in the standard (11.2.1.5 h): 1604 * At each unscheduled SP for a non-AP STA, the AP shall 1605 * attempt to transmit at least one MSDU or MMPDU, but no 1606 * more than the value specified in the Max SP Length field 1607 * in the QoS Capability element from delivery-enabled ACs, 1608 * that are destined for the non-AP STA. 1609 * 1610 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1611 */ 1612 1613 /* This will evaluate to 1, 3, 5 or 7. */ 1614 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1615 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1616 break; 1617 tid = 7 - 2 * ac; 1618 1619 ieee80211_send_null_response(sta, tid, reason, true, false); 1620 } else if (!driver_release_tids) { 1621 struct sk_buff_head pending; 1622 struct sk_buff *skb; 1623 int num = 0; 1624 u16 tids = 0; 1625 bool need_null = false; 1626 1627 skb_queue_head_init(&pending); 1628 1629 while ((skb = __skb_dequeue(&frames))) { 1630 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1631 struct ieee80211_hdr *hdr = (void *) skb->data; 1632 u8 *qoshdr = NULL; 1633 1634 num++; 1635 1636 /* 1637 * Tell TX path to send this frame even though the 1638 * STA may still remain is PS mode after this frame 1639 * exchange. 1640 */ 1641 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1642 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1643 1644 /* 1645 * Use MoreData flag to indicate whether there are 1646 * more buffered frames for this STA 1647 */ 1648 if (more_data || !skb_queue_empty(&frames)) 1649 hdr->frame_control |= 1650 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1651 else 1652 hdr->frame_control &= 1653 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1654 1655 if (ieee80211_is_data_qos(hdr->frame_control) || 1656 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1657 qoshdr = ieee80211_get_qos_ctl(hdr); 1658 1659 tids |= BIT(skb->priority); 1660 1661 __skb_queue_tail(&pending, skb); 1662 1663 /* end service period after last frame or add one */ 1664 if (!skb_queue_empty(&frames)) 1665 continue; 1666 1667 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1668 /* for PS-Poll, there's only one frame */ 1669 info->flags |= IEEE80211_TX_STATUS_EOSP | 1670 IEEE80211_TX_CTL_REQ_TX_STATUS; 1671 break; 1672 } 1673 1674 /* For uAPSD, things are a bit more complicated. If the 1675 * last frame has a QoS header (i.e. is a QoS-data or 1676 * QoS-nulldata frame) then just set the EOSP bit there 1677 * and be done. 1678 * If the frame doesn't have a QoS header (which means 1679 * it should be a bufferable MMPDU) then we can't set 1680 * the EOSP bit in the QoS header; add a QoS-nulldata 1681 * frame to the list to send it after the MMPDU. 1682 * 1683 * Note that this code is only in the mac80211-release 1684 * code path, we assume that the driver will not buffer 1685 * anything but QoS-data frames, or if it does, will 1686 * create the QoS-nulldata frame by itself if needed. 1687 * 1688 * Cf. 802.11-2012 10.2.1.10 (c). 1689 */ 1690 if (qoshdr) { 1691 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1692 1693 info->flags |= IEEE80211_TX_STATUS_EOSP | 1694 IEEE80211_TX_CTL_REQ_TX_STATUS; 1695 } else { 1696 /* The standard isn't completely clear on this 1697 * as it says the more-data bit should be set 1698 * if there are more BUs. The QoS-Null frame 1699 * we're about to send isn't buffered yet, we 1700 * only create it below, but let's pretend it 1701 * was buffered just in case some clients only 1702 * expect more-data=0 when eosp=1. 1703 */ 1704 hdr->frame_control |= 1705 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1706 need_null = true; 1707 num++; 1708 } 1709 break; 1710 } 1711 1712 drv_allow_buffered_frames(local, sta, tids, num, 1713 reason, more_data); 1714 1715 ieee80211_add_pending_skbs(local, &pending); 1716 1717 if (need_null) 1718 ieee80211_send_null_response( 1719 sta, find_highest_prio_tid(tids), 1720 reason, false, false); 1721 1722 sta_info_recalc_tim(sta); 1723 } else { 1724 int tid; 1725 1726 /* 1727 * We need to release a frame that is buffered somewhere in the 1728 * driver ... it'll have to handle that. 1729 * Note that the driver also has to check the number of frames 1730 * on the TIDs we're releasing from - if there are more than 1731 * n_frames it has to set the more-data bit (if we didn't ask 1732 * it to set it anyway due to other buffered frames); if there 1733 * are fewer than n_frames it has to make sure to adjust that 1734 * to allow the service period to end properly. 1735 */ 1736 drv_release_buffered_frames(local, sta, driver_release_tids, 1737 n_frames, reason, more_data); 1738 1739 /* 1740 * Note that we don't recalculate the TIM bit here as it would 1741 * most likely have no effect at all unless the driver told us 1742 * that the TID(s) became empty before returning here from the 1743 * release function. 1744 * Either way, however, when the driver tells us that the TID(s) 1745 * became empty or we find that a txq became empty, we'll do the 1746 * TIM recalculation. 1747 */ 1748 1749 if (!sta->sta.txq[0]) 1750 return; 1751 1752 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1753 if (!sta->sta.txq[tid] || 1754 !(driver_release_tids & BIT(tid)) || 1755 txq_has_queue(sta->sta.txq[tid])) 1756 continue; 1757 1758 sta_info_recalc_tim(sta); 1759 break; 1760 } 1761 } 1762 } 1763 1764 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1765 { 1766 u8 ignore_for_response = sta->sta.uapsd_queues; 1767 1768 /* 1769 * If all ACs are delivery-enabled then we should reply 1770 * from any of them, if only some are enabled we reply 1771 * only from the non-enabled ones. 1772 */ 1773 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1774 ignore_for_response = 0; 1775 1776 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1777 IEEE80211_FRAME_RELEASE_PSPOLL); 1778 } 1779 1780 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1781 { 1782 int n_frames = sta->sta.max_sp; 1783 u8 delivery_enabled = sta->sta.uapsd_queues; 1784 1785 /* 1786 * If we ever grow support for TSPEC this might happen if 1787 * the TSPEC update from hostapd comes in between a trigger 1788 * frame setting WLAN_STA_UAPSD in the RX path and this 1789 * actually getting called. 1790 */ 1791 if (!delivery_enabled) 1792 return; 1793 1794 switch (sta->sta.max_sp) { 1795 case 1: 1796 n_frames = 2; 1797 break; 1798 case 2: 1799 n_frames = 4; 1800 break; 1801 case 3: 1802 n_frames = 6; 1803 break; 1804 case 0: 1805 /* XXX: what is a good value? */ 1806 n_frames = 128; 1807 break; 1808 } 1809 1810 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1811 IEEE80211_FRAME_RELEASE_UAPSD); 1812 } 1813 1814 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1815 struct ieee80211_sta *pubsta, bool block) 1816 { 1817 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1818 1819 trace_api_sta_block_awake(sta->local, pubsta, block); 1820 1821 if (block) { 1822 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1823 ieee80211_clear_fast_xmit(sta); 1824 return; 1825 } 1826 1827 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1828 return; 1829 1830 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1831 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1832 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1833 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1834 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1835 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1836 /* must be asleep in this case */ 1837 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1838 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1839 } else { 1840 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1841 ieee80211_check_fast_xmit(sta); 1842 } 1843 } 1844 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1845 1846 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1847 { 1848 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1849 struct ieee80211_local *local = sta->local; 1850 1851 trace_api_eosp(local, pubsta); 1852 1853 clear_sta_flag(sta, WLAN_STA_SP); 1854 } 1855 EXPORT_SYMBOL(ieee80211_sta_eosp); 1856 1857 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1858 { 1859 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1860 enum ieee80211_frame_release_type reason; 1861 bool more_data; 1862 1863 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1864 1865 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1866 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1867 reason, 0); 1868 1869 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1870 } 1871 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1872 1873 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1874 u8 tid, bool buffered) 1875 { 1876 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1877 1878 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1879 return; 1880 1881 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1882 1883 if (buffered) 1884 set_bit(tid, &sta->driver_buffered_tids); 1885 else 1886 clear_bit(tid, &sta->driver_buffered_tids); 1887 1888 sta_info_recalc_tim(sta); 1889 } 1890 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1891 1892 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, 1893 u32 tx_airtime, u32 rx_airtime) 1894 { 1895 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1896 struct ieee80211_local *local = sta->sdata->local; 1897 u8 ac = ieee80211_ac_from_tid(tid); 1898 u32 airtime = 0; 1899 1900 if (sta->local->airtime_flags & AIRTIME_USE_TX) 1901 airtime += tx_airtime; 1902 if (sta->local->airtime_flags & AIRTIME_USE_RX) 1903 airtime += rx_airtime; 1904 1905 spin_lock_bh(&local->active_txq_lock[ac]); 1906 sta->airtime[ac].tx_airtime += tx_airtime; 1907 sta->airtime[ac].rx_airtime += rx_airtime; 1908 sta->airtime[ac].deficit -= airtime; 1909 spin_unlock_bh(&local->active_txq_lock[ac]); 1910 } 1911 EXPORT_SYMBOL(ieee80211_sta_register_airtime); 1912 1913 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, 1914 struct sta_info *sta, u8 ac, 1915 u16 tx_airtime, bool tx_completed) 1916 { 1917 int tx_pending; 1918 1919 if (!tx_completed) { 1920 if (sta) 1921 atomic_add(tx_airtime, 1922 &sta->airtime[ac].aql_tx_pending); 1923 1924 atomic_add(tx_airtime, &local->aql_total_pending_airtime); 1925 return; 1926 } 1927 1928 if (sta) { 1929 tx_pending = atomic_sub_return(tx_airtime, 1930 &sta->airtime[ac].aql_tx_pending); 1931 if (WARN_ONCE(tx_pending < 0, 1932 "STA %pM AC %d txq pending airtime underflow: %u, %u", 1933 sta->addr, ac, tx_pending, tx_airtime)) 1934 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending, 1935 tx_pending, 0); 1936 } 1937 1938 tx_pending = atomic_sub_return(tx_airtime, 1939 &local->aql_total_pending_airtime); 1940 if (WARN_ONCE(tx_pending < 0, 1941 "Device %s AC %d pending airtime underflow: %u, %u", 1942 wiphy_name(local->hw.wiphy), ac, tx_pending, 1943 tx_airtime)) 1944 atomic_cmpxchg(&local->aql_total_pending_airtime, 1945 tx_pending, 0); 1946 } 1947 1948 int sta_info_move_state(struct sta_info *sta, 1949 enum ieee80211_sta_state new_state) 1950 { 1951 might_sleep(); 1952 1953 if (sta->sta_state == new_state) 1954 return 0; 1955 1956 /* check allowed transitions first */ 1957 1958 switch (new_state) { 1959 case IEEE80211_STA_NONE: 1960 if (sta->sta_state != IEEE80211_STA_AUTH) 1961 return -EINVAL; 1962 break; 1963 case IEEE80211_STA_AUTH: 1964 if (sta->sta_state != IEEE80211_STA_NONE && 1965 sta->sta_state != IEEE80211_STA_ASSOC) 1966 return -EINVAL; 1967 break; 1968 case IEEE80211_STA_ASSOC: 1969 if (sta->sta_state != IEEE80211_STA_AUTH && 1970 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1971 return -EINVAL; 1972 break; 1973 case IEEE80211_STA_AUTHORIZED: 1974 if (sta->sta_state != IEEE80211_STA_ASSOC) 1975 return -EINVAL; 1976 break; 1977 default: 1978 WARN(1, "invalid state %d", new_state); 1979 return -EINVAL; 1980 } 1981 1982 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1983 sta->sta.addr, new_state); 1984 1985 /* 1986 * notify the driver before the actual changes so it can 1987 * fail the transition 1988 */ 1989 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1990 int err = drv_sta_state(sta->local, sta->sdata, sta, 1991 sta->sta_state, new_state); 1992 if (err) 1993 return err; 1994 } 1995 1996 /* reflect the change in all state variables */ 1997 1998 switch (new_state) { 1999 case IEEE80211_STA_NONE: 2000 if (sta->sta_state == IEEE80211_STA_AUTH) 2001 clear_bit(WLAN_STA_AUTH, &sta->_flags); 2002 break; 2003 case IEEE80211_STA_AUTH: 2004 if (sta->sta_state == IEEE80211_STA_NONE) { 2005 set_bit(WLAN_STA_AUTH, &sta->_flags); 2006 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 2007 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 2008 ieee80211_recalc_min_chandef(sta->sdata); 2009 if (!sta->sta.support_p2p_ps) 2010 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2011 } 2012 break; 2013 case IEEE80211_STA_ASSOC: 2014 if (sta->sta_state == IEEE80211_STA_AUTH) { 2015 set_bit(WLAN_STA_ASSOC, &sta->_flags); 2016 sta->assoc_at = ktime_get_boottime_ns(); 2017 ieee80211_recalc_min_chandef(sta->sdata); 2018 if (!sta->sta.support_p2p_ps) 2019 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2020 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 2021 ieee80211_vif_dec_num_mcast(sta->sdata); 2022 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2023 ieee80211_clear_fast_xmit(sta); 2024 ieee80211_clear_fast_rx(sta); 2025 } 2026 break; 2027 case IEEE80211_STA_AUTHORIZED: 2028 if (sta->sta_state == IEEE80211_STA_ASSOC) { 2029 ieee80211_vif_inc_num_mcast(sta->sdata); 2030 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2031 ieee80211_check_fast_xmit(sta); 2032 ieee80211_check_fast_rx(sta); 2033 } 2034 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 2035 sta->sdata->vif.type == NL80211_IFTYPE_AP) 2036 cfg80211_send_layer2_update(sta->sdata->dev, 2037 sta->sta.addr); 2038 break; 2039 default: 2040 break; 2041 } 2042 2043 sta->sta_state = new_state; 2044 2045 return 0; 2046 } 2047 2048 u8 sta_info_tx_streams(struct sta_info *sta) 2049 { 2050 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 2051 u8 rx_streams; 2052 2053 if (!sta->sta.ht_cap.ht_supported) 2054 return 1; 2055 2056 if (sta->sta.vht_cap.vht_supported) { 2057 int i; 2058 u16 tx_mcs_map = 2059 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 2060 2061 for (i = 7; i >= 0; i--) 2062 if ((tx_mcs_map & (0x3 << (i * 2))) != 2063 IEEE80211_VHT_MCS_NOT_SUPPORTED) 2064 return i + 1; 2065 } 2066 2067 if (ht_cap->mcs.rx_mask[3]) 2068 rx_streams = 4; 2069 else if (ht_cap->mcs.rx_mask[2]) 2070 rx_streams = 3; 2071 else if (ht_cap->mcs.rx_mask[1]) 2072 rx_streams = 2; 2073 else 2074 rx_streams = 1; 2075 2076 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 2077 return rx_streams; 2078 2079 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 2080 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 2081 } 2082 2083 static struct ieee80211_sta_rx_stats * 2084 sta_get_last_rx_stats(struct sta_info *sta) 2085 { 2086 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 2087 struct ieee80211_local *local = sta->local; 2088 int cpu; 2089 2090 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 2091 return stats; 2092 2093 for_each_possible_cpu(cpu) { 2094 struct ieee80211_sta_rx_stats *cpustats; 2095 2096 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2097 2098 if (time_after(cpustats->last_rx, stats->last_rx)) 2099 stats = cpustats; 2100 } 2101 2102 return stats; 2103 } 2104 2105 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, 2106 struct rate_info *rinfo) 2107 { 2108 rinfo->bw = STA_STATS_GET(BW, rate); 2109 2110 switch (STA_STATS_GET(TYPE, rate)) { 2111 case STA_STATS_RATE_TYPE_VHT: 2112 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 2113 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 2114 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 2115 if (STA_STATS_GET(SGI, rate)) 2116 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2117 break; 2118 case STA_STATS_RATE_TYPE_HT: 2119 rinfo->flags = RATE_INFO_FLAGS_MCS; 2120 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 2121 if (STA_STATS_GET(SGI, rate)) 2122 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2123 break; 2124 case STA_STATS_RATE_TYPE_LEGACY: { 2125 struct ieee80211_supported_band *sband; 2126 u16 brate; 2127 unsigned int shift; 2128 int band = STA_STATS_GET(LEGACY_BAND, rate); 2129 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 2130 2131 sband = local->hw.wiphy->bands[band]; 2132 brate = sband->bitrates[rate_idx].bitrate; 2133 if (rinfo->bw == RATE_INFO_BW_5) 2134 shift = 2; 2135 else if (rinfo->bw == RATE_INFO_BW_10) 2136 shift = 1; 2137 else 2138 shift = 0; 2139 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 2140 break; 2141 } 2142 case STA_STATS_RATE_TYPE_HE: 2143 rinfo->flags = RATE_INFO_FLAGS_HE_MCS; 2144 rinfo->mcs = STA_STATS_GET(HE_MCS, rate); 2145 rinfo->nss = STA_STATS_GET(HE_NSS, rate); 2146 rinfo->he_gi = STA_STATS_GET(HE_GI, rate); 2147 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); 2148 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); 2149 break; 2150 } 2151 } 2152 2153 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2154 { 2155 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2156 2157 if (rate == STA_STATS_RATE_INVALID) 2158 return -EINVAL; 2159 2160 sta_stats_decode_rate(sta->local, rate, rinfo); 2161 return 0; 2162 } 2163 2164 static void sta_set_tidstats(struct sta_info *sta, 2165 struct cfg80211_tid_stats *tidstats, 2166 int tid) 2167 { 2168 struct ieee80211_local *local = sta->local; 2169 2170 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2171 unsigned int start; 2172 2173 do { 2174 start = u64_stats_fetch_begin(&sta->rx_stats.syncp); 2175 tidstats->rx_msdu = sta->rx_stats.msdu[tid]; 2176 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start)); 2177 2178 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2179 } 2180 2181 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2182 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2183 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2184 } 2185 2186 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2187 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2188 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2189 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2190 } 2191 2192 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2193 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2194 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2195 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2196 } 2197 2198 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) { 2199 spin_lock_bh(&local->fq.lock); 2200 rcu_read_lock(); 2201 2202 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); 2203 ieee80211_fill_txq_stats(&tidstats->txq_stats, 2204 to_txq_info(sta->sta.txq[tid])); 2205 2206 rcu_read_unlock(); 2207 spin_unlock_bh(&local->fq.lock); 2208 } 2209 } 2210 2211 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2212 { 2213 unsigned int start; 2214 u64 value; 2215 2216 do { 2217 start = u64_stats_fetch_begin(&rxstats->syncp); 2218 value = rxstats->bytes; 2219 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2220 2221 return value; 2222 } 2223 2224 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, 2225 bool tidstats) 2226 { 2227 struct ieee80211_sub_if_data *sdata = sta->sdata; 2228 struct ieee80211_local *local = sdata->local; 2229 u32 thr = 0; 2230 int i, ac, cpu; 2231 struct ieee80211_sta_rx_stats *last_rxstats; 2232 2233 last_rxstats = sta_get_last_rx_stats(sta); 2234 2235 sinfo->generation = sdata->local->sta_generation; 2236 2237 /* do before driver, so beacon filtering drivers have a 2238 * chance to e.g. just add the number of filtered beacons 2239 * (or just modify the value entirely, of course) 2240 */ 2241 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2242 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2243 2244 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2245 2246 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | 2247 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | 2248 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | 2249 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | 2250 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) | 2251 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); 2252 2253 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2254 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2255 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); 2256 } 2257 2258 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2259 sinfo->assoc_at = sta->assoc_at; 2260 sinfo->inactive_time = 2261 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2262 2263 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | 2264 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { 2265 sinfo->tx_bytes = 0; 2266 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2267 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2268 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); 2269 } 2270 2271 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { 2272 sinfo->tx_packets = 0; 2273 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2274 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2275 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); 2276 } 2277 2278 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | 2279 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { 2280 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2281 2282 if (sta->pcpu_rx_stats) { 2283 for_each_possible_cpu(cpu) { 2284 struct ieee80211_sta_rx_stats *cpurxs; 2285 2286 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2287 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2288 } 2289 } 2290 2291 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); 2292 } 2293 2294 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { 2295 sinfo->rx_packets = sta->rx_stats.packets; 2296 if (sta->pcpu_rx_stats) { 2297 for_each_possible_cpu(cpu) { 2298 struct ieee80211_sta_rx_stats *cpurxs; 2299 2300 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2301 sinfo->rx_packets += cpurxs->packets; 2302 } 2303 } 2304 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 2305 } 2306 2307 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { 2308 sinfo->tx_retries = sta->status_stats.retry_count; 2309 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); 2310 } 2311 2312 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { 2313 sinfo->tx_failed = sta->status_stats.retry_failed; 2314 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); 2315 } 2316 2317 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { 2318 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2319 sinfo->rx_duration += sta->airtime[ac].rx_airtime; 2320 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 2321 } 2322 2323 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { 2324 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2325 sinfo->tx_duration += sta->airtime[ac].tx_airtime; 2326 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 2327 } 2328 2329 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { 2330 sinfo->airtime_weight = sta->airtime_weight; 2331 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); 2332 } 2333 2334 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2335 if (sta->pcpu_rx_stats) { 2336 for_each_possible_cpu(cpu) { 2337 struct ieee80211_sta_rx_stats *cpurxs; 2338 2339 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2340 sinfo->rx_dropped_misc += cpurxs->dropped; 2341 } 2342 } 2343 2344 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2345 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2346 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | 2347 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2348 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2349 } 2350 2351 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2352 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2353 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { 2354 sinfo->signal = (s8)last_rxstats->last_signal; 2355 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 2356 } 2357 2358 if (!sta->pcpu_rx_stats && 2359 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { 2360 sinfo->signal_avg = 2361 -ewma_signal_read(&sta->rx_stats_avg.signal); 2362 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 2363 } 2364 } 2365 2366 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2367 * the sta->rx_stats struct, so the check here is fine with and without 2368 * pcpu statistics 2369 */ 2370 if (last_rxstats->chains && 2371 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | 2372 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2373 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 2374 if (!sta->pcpu_rx_stats) 2375 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2376 2377 sinfo->chains = last_rxstats->chains; 2378 2379 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2380 sinfo->chain_signal[i] = 2381 last_rxstats->chain_signal_last[i]; 2382 sinfo->chain_signal_avg[i] = 2383 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2384 } 2385 } 2386 2387 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) { 2388 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2389 &sinfo->txrate); 2390 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 2391 } 2392 2393 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) { 2394 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2395 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); 2396 } 2397 2398 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { 2399 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 2400 sta_set_tidstats(sta, &sinfo->pertid[i], i); 2401 } 2402 2403 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2404 #ifdef CONFIG_MAC80211_MESH 2405 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | 2406 BIT_ULL(NL80211_STA_INFO_PLID) | 2407 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | 2408 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | 2409 BIT_ULL(NL80211_STA_INFO_PEER_PM) | 2410 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | 2411 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE); 2412 2413 sinfo->llid = sta->mesh->llid; 2414 sinfo->plid = sta->mesh->plid; 2415 sinfo->plink_state = sta->mesh->plink_state; 2416 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2417 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); 2418 sinfo->t_offset = sta->mesh->t_offset; 2419 } 2420 sinfo->local_pm = sta->mesh->local_pm; 2421 sinfo->peer_pm = sta->mesh->peer_pm; 2422 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2423 sinfo->connected_to_gate = sta->mesh->connected_to_gate; 2424 #endif 2425 } 2426 2427 sinfo->bss_param.flags = 0; 2428 if (sdata->vif.bss_conf.use_cts_prot) 2429 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2430 if (sdata->vif.bss_conf.use_short_preamble) 2431 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2432 if (sdata->vif.bss_conf.use_short_slot) 2433 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2434 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2435 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2436 2437 sinfo->sta_flags.set = 0; 2438 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2439 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2440 BIT(NL80211_STA_FLAG_WME) | 2441 BIT(NL80211_STA_FLAG_MFP) | 2442 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2443 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2444 BIT(NL80211_STA_FLAG_TDLS_PEER); 2445 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2446 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2447 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2448 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2449 if (sta->sta.wme) 2450 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2451 if (test_sta_flag(sta, WLAN_STA_MFP)) 2452 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2453 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2454 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2455 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2456 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2457 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2458 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2459 2460 thr = sta_get_expected_throughput(sta); 2461 2462 if (thr != 0) { 2463 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2464 sinfo->expected_throughput = thr; 2465 } 2466 2467 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && 2468 sta->status_stats.ack_signal_filled) { 2469 sinfo->ack_signal = sta->status_stats.last_ack_signal; 2470 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); 2471 } 2472 2473 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && 2474 sta->status_stats.ack_signal_filled) { 2475 sinfo->avg_ack_signal = 2476 -(s8)ewma_avg_signal_read( 2477 &sta->status_stats.avg_ack_signal); 2478 sinfo->filled |= 2479 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); 2480 } 2481 2482 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2483 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC); 2484 sinfo->airtime_link_metric = 2485 airtime_link_metric_get(local, sta); 2486 } 2487 } 2488 2489 u32 sta_get_expected_throughput(struct sta_info *sta) 2490 { 2491 struct ieee80211_sub_if_data *sdata = sta->sdata; 2492 struct ieee80211_local *local = sdata->local; 2493 struct rate_control_ref *ref = NULL; 2494 u32 thr = 0; 2495 2496 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2497 ref = local->rate_ctrl; 2498 2499 /* check if the driver has a SW RC implementation */ 2500 if (ref && ref->ops->get_expected_throughput) 2501 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2502 else 2503 thr = drv_get_expected_throughput(local, sta); 2504 2505 return thr; 2506 } 2507 2508 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2509 { 2510 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2511 2512 if (!sta->status_stats.last_ack || 2513 time_after(stats->last_rx, sta->status_stats.last_ack)) 2514 return stats->last_rx; 2515 return sta->status_stats.last_ack; 2516 } 2517 2518 static void sta_update_codel_params(struct sta_info *sta, u32 thr) 2519 { 2520 if (!sta->sdata->local->ops->wake_tx_queue) 2521 return; 2522 2523 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { 2524 sta->cparams.target = MS2TIME(50); 2525 sta->cparams.interval = MS2TIME(300); 2526 sta->cparams.ecn = false; 2527 } else { 2528 sta->cparams.target = MS2TIME(20); 2529 sta->cparams.interval = MS2TIME(100); 2530 sta->cparams.ecn = true; 2531 } 2532 } 2533 2534 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, 2535 u32 thr) 2536 { 2537 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2538 2539 sta_update_codel_params(sta, thr); 2540 } 2541