xref: /openbmc/linux/net/mac80211/sta_info.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7  * Copyright (C) 2018-2021 Intel Corporation
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20 
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30 
31 /**
32  * DOC: STA information lifetime rules
33  *
34  * STA info structures (&struct sta_info) are managed in a hash table
35  * for faster lookup and a list for iteration. They are managed using
36  * RCU, i.e. access to the list and hash table is protected by RCU.
37  *
38  * Upon allocating a STA info structure with sta_info_alloc(), the caller
39  * owns that structure. It must then insert it into the hash table using
40  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41  * case (which acquires an rcu read section but must not be called from
42  * within one) will the pointer still be valid after the call. Note that
43  * the caller may not do much with the STA info before inserting it, in
44  * particular, it may not start any mesh peer link management or add
45  * encryption keys.
46  *
47  * When the insertion fails (sta_info_insert()) returns non-zero), the
48  * structure will have been freed by sta_info_insert()!
49  *
50  * Station entries are added by mac80211 when you establish a link with a
51  * peer. This means different things for the different type of interfaces
52  * we support. For a regular station this mean we add the AP sta when we
53  * receive an association response from the AP. For IBSS this occurs when
54  * get to know about a peer on the same IBSS. For WDS we add the sta for
55  * the peer immediately upon device open. When using AP mode we add stations
56  * for each respective station upon request from userspace through nl80211.
57  *
58  * In order to remove a STA info structure, various sta_info_destroy_*()
59  * calls are available.
60  *
61  * There is no concept of ownership on a STA entry, each structure is
62  * owned by the global hash table/list until it is removed. All users of
63  * the structure need to be RCU protected so that the structure won't be
64  * freed before they are done using it.
65  */
66 
67 static const struct rhashtable_params sta_rht_params = {
68 	.nelem_hint = 3, /* start small */
69 	.automatic_shrinking = true,
70 	.head_offset = offsetof(struct sta_info, hash_node),
71 	.key_offset = offsetof(struct sta_info, addr),
72 	.key_len = ETH_ALEN,
73 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
74 };
75 
76 /* Caller must hold local->sta_mtx */
77 static int sta_info_hash_del(struct ieee80211_local *local,
78 			     struct sta_info *sta)
79 {
80 	return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 			       sta_rht_params);
82 }
83 
84 static void __cleanup_single_sta(struct sta_info *sta)
85 {
86 	int ac, i;
87 	struct tid_ampdu_tx *tid_tx;
88 	struct ieee80211_sub_if_data *sdata = sta->sdata;
89 	struct ieee80211_local *local = sdata->local;
90 	struct ps_data *ps;
91 
92 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 			ps = &sdata->bss->ps;
98 		else if (ieee80211_vif_is_mesh(&sdata->vif))
99 			ps = &sdata->u.mesh.ps;
100 		else
101 			return;
102 
103 		clear_sta_flag(sta, WLAN_STA_PS_STA);
104 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
106 
107 		atomic_dec(&ps->num_sta_ps);
108 	}
109 
110 	if (sta->sta.txq[0]) {
111 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 			struct txq_info *txqi;
113 
114 			if (!sta->sta.txq[i])
115 				continue;
116 
117 			txqi = to_txq_info(sta->sta.txq[i]);
118 
119 			ieee80211_txq_purge(local, txqi);
120 		}
121 	}
122 
123 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
127 	}
128 
129 	if (ieee80211_vif_is_mesh(&sdata->vif))
130 		mesh_sta_cleanup(sta);
131 
132 	cancel_work_sync(&sta->drv_deliver_wk);
133 
134 	/*
135 	 * Destroy aggregation state here. It would be nice to wait for the
136 	 * driver to finish aggregation stop and then clean up, but for now
137 	 * drivers have to handle aggregation stop being requested, followed
138 	 * directly by station destruction.
139 	 */
140 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 		if (!tid_tx)
144 			continue;
145 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 		kfree(tid_tx);
147 	}
148 }
149 
150 static void cleanup_single_sta(struct sta_info *sta)
151 {
152 	struct ieee80211_sub_if_data *sdata = sta->sdata;
153 	struct ieee80211_local *local = sdata->local;
154 
155 	__cleanup_single_sta(sta);
156 	sta_info_free(local, sta);
157 }
158 
159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 					 const u8 *addr)
161 {
162 	return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
163 }
164 
165 /* protected by RCU */
166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 			      const u8 *addr)
168 {
169 	struct ieee80211_local *local = sdata->local;
170 	struct rhlist_head *tmp;
171 	struct sta_info *sta;
172 
173 	rcu_read_lock();
174 	for_each_sta_info(local, addr, sta, tmp) {
175 		if (sta->sdata == sdata) {
176 			rcu_read_unlock();
177 			/* this is safe as the caller must already hold
178 			 * another rcu read section or the mutex
179 			 */
180 			return sta;
181 		}
182 	}
183 	rcu_read_unlock();
184 	return NULL;
185 }
186 
187 /*
188  * Get sta info either from the specified interface
189  * or from one of its vlans
190  */
191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 				  const u8 *addr)
193 {
194 	struct ieee80211_local *local = sdata->local;
195 	struct rhlist_head *tmp;
196 	struct sta_info *sta;
197 
198 	rcu_read_lock();
199 	for_each_sta_info(local, addr, sta, tmp) {
200 		if (sta->sdata == sdata ||
201 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 			rcu_read_unlock();
203 			/* this is safe as the caller must already hold
204 			 * another rcu read section or the mutex
205 			 */
206 			return sta;
207 		}
208 	}
209 	rcu_read_unlock();
210 	return NULL;
211 }
212 
213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
214 				       const u8 *sta_addr, const u8 *vif_addr)
215 {
216 	struct rhlist_head *tmp;
217 	struct sta_info *sta;
218 
219 	for_each_sta_info(local, sta_addr, sta, tmp) {
220 		if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
221 			return sta;
222 	}
223 
224 	return NULL;
225 }
226 
227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
228 				     int idx)
229 {
230 	struct ieee80211_local *local = sdata->local;
231 	struct sta_info *sta;
232 	int i = 0;
233 
234 	list_for_each_entry_rcu(sta, &local->sta_list, list,
235 				lockdep_is_held(&local->sta_mtx)) {
236 		if (sdata != sta->sdata)
237 			continue;
238 		if (i < idx) {
239 			++i;
240 			continue;
241 		}
242 		return sta;
243 	}
244 
245 	return NULL;
246 }
247 
248 /**
249  * sta_info_free - free STA
250  *
251  * @local: pointer to the global information
252  * @sta: STA info to free
253  *
254  * This function must undo everything done by sta_info_alloc()
255  * that may happen before sta_info_insert(). It may only be
256  * called when sta_info_insert() has not been attempted (and
257  * if that fails, the station is freed anyway.)
258  */
259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
260 {
261 	/*
262 	 * If we had used sta_info_pre_move_state() then we might not
263 	 * have gone through the state transitions down again, so do
264 	 * it here now (and warn if it's inserted).
265 	 *
266 	 * This will clear state such as fast TX/RX that may have been
267 	 * allocated during state transitions.
268 	 */
269 	while (sta->sta_state > IEEE80211_STA_NONE) {
270 		int ret;
271 
272 		WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED));
273 
274 		ret = sta_info_move_state(sta, sta->sta_state - 1);
275 		if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret))
276 			break;
277 	}
278 
279 	if (sta->rate_ctrl)
280 		rate_control_free_sta(sta);
281 
282 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
283 
284 	if (sta->sta.txq[0])
285 		kfree(to_txq_info(sta->sta.txq[0]));
286 	kfree(rcu_dereference_raw(sta->sta.rates));
287 #ifdef CONFIG_MAC80211_MESH
288 	kfree(sta->mesh);
289 #endif
290 	free_percpu(sta->pcpu_rx_stats);
291 	kfree(sta);
292 }
293 
294 /* Caller must hold local->sta_mtx */
295 static int sta_info_hash_add(struct ieee80211_local *local,
296 			     struct sta_info *sta)
297 {
298 	return rhltable_insert(&local->sta_hash, &sta->hash_node,
299 			       sta_rht_params);
300 }
301 
302 static void sta_deliver_ps_frames(struct work_struct *wk)
303 {
304 	struct sta_info *sta;
305 
306 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
307 
308 	if (sta->dead)
309 		return;
310 
311 	local_bh_disable();
312 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
313 		ieee80211_sta_ps_deliver_wakeup(sta);
314 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
315 		ieee80211_sta_ps_deliver_poll_response(sta);
316 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
317 		ieee80211_sta_ps_deliver_uapsd(sta);
318 	local_bh_enable();
319 }
320 
321 static int sta_prepare_rate_control(struct ieee80211_local *local,
322 				    struct sta_info *sta, gfp_t gfp)
323 {
324 	if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
325 		return 0;
326 
327 	sta->rate_ctrl = local->rate_ctrl;
328 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
329 						     sta, gfp);
330 	if (!sta->rate_ctrl_priv)
331 		return -ENOMEM;
332 
333 	return 0;
334 }
335 
336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
337 				const u8 *addr, gfp_t gfp)
338 {
339 	struct ieee80211_local *local = sdata->local;
340 	struct ieee80211_hw *hw = &local->hw;
341 	struct sta_info *sta;
342 	int i;
343 
344 	sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
345 	if (!sta)
346 		return NULL;
347 
348 	if (ieee80211_hw_check(hw, USES_RSS)) {
349 		sta->pcpu_rx_stats =
350 			alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
351 		if (!sta->pcpu_rx_stats)
352 			goto free;
353 	}
354 
355 	spin_lock_init(&sta->lock);
356 	spin_lock_init(&sta->ps_lock);
357 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
358 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
359 	mutex_init(&sta->ampdu_mlme.mtx);
360 #ifdef CONFIG_MAC80211_MESH
361 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
362 		sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
363 		if (!sta->mesh)
364 			goto free;
365 		sta->mesh->plink_sta = sta;
366 		spin_lock_init(&sta->mesh->plink_lock);
367 		if (ieee80211_vif_is_mesh(&sdata->vif) &&
368 		    !sdata->u.mesh.user_mpm)
369 			timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
370 				    0);
371 		sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
372 	}
373 #endif
374 
375 	memcpy(sta->addr, addr, ETH_ALEN);
376 	memcpy(sta->sta.addr, addr, ETH_ALEN);
377 	sta->sta.max_rx_aggregation_subframes =
378 		local->hw.max_rx_aggregation_subframes;
379 
380 	/* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
381 	 * The Tx path starts to use a key as soon as the key slot ptk_idx
382 	 * references to is not NULL. To not use the initial Rx-only key
383 	 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
384 	 * which always will refer to a NULL key.
385 	 */
386 	BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
387 	sta->ptk_idx = INVALID_PTK_KEYIDX;
388 
389 	sta->local = local;
390 	sta->sdata = sdata;
391 	sta->rx_stats.last_rx = jiffies;
392 
393 	u64_stats_init(&sta->rx_stats.syncp);
394 
395 	ieee80211_init_frag_cache(&sta->frags);
396 
397 	sta->sta_state = IEEE80211_STA_NONE;
398 
399 	/* Mark TID as unreserved */
400 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
401 
402 	sta->last_connected = ktime_get_seconds();
403 	ewma_signal_init(&sta->rx_stats_avg.signal);
404 	ewma_avg_signal_init(&sta->status_stats.avg_ack_signal);
405 	for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
406 		ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
407 
408 	if (local->ops->wake_tx_queue) {
409 		void *txq_data;
410 		int size = sizeof(struct txq_info) +
411 			   ALIGN(hw->txq_data_size, sizeof(void *));
412 
413 		txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
414 		if (!txq_data)
415 			goto free;
416 
417 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
418 			struct txq_info *txq = txq_data + i * size;
419 
420 			/* might not do anything for the bufferable MMPDU TXQ */
421 			ieee80211_txq_init(sdata, sta, txq, i);
422 		}
423 	}
424 
425 	if (sta_prepare_rate_control(local, sta, gfp))
426 		goto free_txq;
427 
428 
429 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
430 		skb_queue_head_init(&sta->ps_tx_buf[i]);
431 		skb_queue_head_init(&sta->tx_filtered[i]);
432 		init_airtime_info(&sta->airtime[i], &local->airtime[i]);
433 	}
434 
435 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
436 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
437 
438 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
439 		u32 mandatory = 0;
440 		int r;
441 
442 		if (!hw->wiphy->bands[i])
443 			continue;
444 
445 		switch (i) {
446 		case NL80211_BAND_2GHZ:
447 		case NL80211_BAND_LC:
448 			/*
449 			 * We use both here, even if we cannot really know for
450 			 * sure the station will support both, but the only use
451 			 * for this is when we don't know anything yet and send
452 			 * management frames, and then we'll pick the lowest
453 			 * possible rate anyway.
454 			 * If we don't include _G here, we cannot find a rate
455 			 * in P2P, and thus trigger the WARN_ONCE() in rate.c
456 			 */
457 			mandatory = IEEE80211_RATE_MANDATORY_B |
458 				    IEEE80211_RATE_MANDATORY_G;
459 			break;
460 		case NL80211_BAND_5GHZ:
461 			mandatory = IEEE80211_RATE_MANDATORY_A;
462 			break;
463 		case NL80211_BAND_60GHZ:
464 			WARN_ON(1);
465 			mandatory = 0;
466 			break;
467 		}
468 
469 		for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
470 			struct ieee80211_rate *rate;
471 
472 			rate = &hw->wiphy->bands[i]->bitrates[r];
473 
474 			if (!(rate->flags & mandatory))
475 				continue;
476 			sta->sta.supp_rates[i] |= BIT(r);
477 		}
478 	}
479 
480 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
481 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
482 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
483 		struct ieee80211_supported_band *sband;
484 		u8 smps;
485 
486 		sband = ieee80211_get_sband(sdata);
487 		if (!sband)
488 			goto free_txq;
489 
490 		smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
491 			IEEE80211_HT_CAP_SM_PS_SHIFT;
492 		/*
493 		 * Assume that hostapd advertises our caps in the beacon and
494 		 * this is the known_smps_mode for a station that just assciated
495 		 */
496 		switch (smps) {
497 		case WLAN_HT_SMPS_CONTROL_DISABLED:
498 			sta->known_smps_mode = IEEE80211_SMPS_OFF;
499 			break;
500 		case WLAN_HT_SMPS_CONTROL_STATIC:
501 			sta->known_smps_mode = IEEE80211_SMPS_STATIC;
502 			break;
503 		case WLAN_HT_SMPS_CONTROL_DYNAMIC:
504 			sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
505 			break;
506 		default:
507 			WARN_ON(1);
508 		}
509 	}
510 
511 	sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
512 
513 	sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
514 	sta->cparams.target = MS2TIME(20);
515 	sta->cparams.interval = MS2TIME(100);
516 	sta->cparams.ecn = true;
517 	sta->cparams.ce_threshold_selector = 0;
518 	sta->cparams.ce_threshold_mask = 0;
519 
520 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
521 
522 	return sta;
523 
524 free_txq:
525 	if (sta->sta.txq[0])
526 		kfree(to_txq_info(sta->sta.txq[0]));
527 free:
528 	free_percpu(sta->pcpu_rx_stats);
529 #ifdef CONFIG_MAC80211_MESH
530 	kfree(sta->mesh);
531 #endif
532 	kfree(sta);
533 	return NULL;
534 }
535 
536 static int sta_info_insert_check(struct sta_info *sta)
537 {
538 	struct ieee80211_sub_if_data *sdata = sta->sdata;
539 
540 	/*
541 	 * Can't be a WARN_ON because it can be triggered through a race:
542 	 * something inserts a STA (on one CPU) without holding the RTNL
543 	 * and another CPU turns off the net device.
544 	 */
545 	if (unlikely(!ieee80211_sdata_running(sdata)))
546 		return -ENETDOWN;
547 
548 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
549 		    !is_valid_ether_addr(sta->sta.addr)))
550 		return -EINVAL;
551 
552 	/* The RCU read lock is required by rhashtable due to
553 	 * asynchronous resize/rehash.  We also require the mutex
554 	 * for correctness.
555 	 */
556 	rcu_read_lock();
557 	lockdep_assert_held(&sdata->local->sta_mtx);
558 	if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
559 	    ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
560 		rcu_read_unlock();
561 		return -ENOTUNIQ;
562 	}
563 	rcu_read_unlock();
564 
565 	return 0;
566 }
567 
568 static int sta_info_insert_drv_state(struct ieee80211_local *local,
569 				     struct ieee80211_sub_if_data *sdata,
570 				     struct sta_info *sta)
571 {
572 	enum ieee80211_sta_state state;
573 	int err = 0;
574 
575 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
576 		err = drv_sta_state(local, sdata, sta, state, state + 1);
577 		if (err)
578 			break;
579 	}
580 
581 	if (!err) {
582 		/*
583 		 * Drivers using legacy sta_add/sta_remove callbacks only
584 		 * get uploaded set to true after sta_add is called.
585 		 */
586 		if (!local->ops->sta_add)
587 			sta->uploaded = true;
588 		return 0;
589 	}
590 
591 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
592 		sdata_info(sdata,
593 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
594 			   sta->sta.addr, state + 1, err);
595 		err = 0;
596 	}
597 
598 	/* unwind on error */
599 	for (; state > IEEE80211_STA_NOTEXIST; state--)
600 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
601 
602 	return err;
603 }
604 
605 static void
606 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
607 {
608 	struct ieee80211_local *local = sdata->local;
609 	bool allow_p2p_go_ps = sdata->vif.p2p;
610 	struct sta_info *sta;
611 
612 	rcu_read_lock();
613 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
614 		if (sdata != sta->sdata ||
615 		    !test_sta_flag(sta, WLAN_STA_ASSOC))
616 			continue;
617 		if (!sta->sta.support_p2p_ps) {
618 			allow_p2p_go_ps = false;
619 			break;
620 		}
621 	}
622 	rcu_read_unlock();
623 
624 	if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
625 		sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
626 		ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
627 	}
628 }
629 
630 /*
631  * should be called with sta_mtx locked
632  * this function replaces the mutex lock
633  * with a RCU lock
634  */
635 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
636 {
637 	struct ieee80211_local *local = sta->local;
638 	struct ieee80211_sub_if_data *sdata = sta->sdata;
639 	struct station_info *sinfo = NULL;
640 	int err = 0;
641 
642 	lockdep_assert_held(&local->sta_mtx);
643 
644 	/* check if STA exists already */
645 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
646 		err = -EEXIST;
647 		goto out_err;
648 	}
649 
650 	sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
651 	if (!sinfo) {
652 		err = -ENOMEM;
653 		goto out_err;
654 	}
655 
656 	local->num_sta++;
657 	local->sta_generation++;
658 	smp_mb();
659 
660 	/* simplify things and don't accept BA sessions yet */
661 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
662 
663 	/* make the station visible */
664 	err = sta_info_hash_add(local, sta);
665 	if (err)
666 		goto out_drop_sta;
667 
668 	list_add_tail_rcu(&sta->list, &local->sta_list);
669 
670 	/* notify driver */
671 	err = sta_info_insert_drv_state(local, sdata, sta);
672 	if (err)
673 		goto out_remove;
674 
675 	set_sta_flag(sta, WLAN_STA_INSERTED);
676 
677 	if (sta->sta_state >= IEEE80211_STA_ASSOC) {
678 		ieee80211_recalc_min_chandef(sta->sdata);
679 		if (!sta->sta.support_p2p_ps)
680 			ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
681 	}
682 
683 	/* accept BA sessions now */
684 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
685 
686 	ieee80211_sta_debugfs_add(sta);
687 	rate_control_add_sta_debugfs(sta);
688 
689 	sinfo->generation = local->sta_generation;
690 	cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
691 	kfree(sinfo);
692 
693 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
694 
695 	/* move reference to rcu-protected */
696 	rcu_read_lock();
697 	mutex_unlock(&local->sta_mtx);
698 
699 	if (ieee80211_vif_is_mesh(&sdata->vif))
700 		mesh_accept_plinks_update(sdata);
701 
702 	return 0;
703  out_remove:
704 	sta_info_hash_del(local, sta);
705 	list_del_rcu(&sta->list);
706  out_drop_sta:
707 	local->num_sta--;
708 	synchronize_net();
709 	cleanup_single_sta(sta);
710  out_err:
711 	mutex_unlock(&local->sta_mtx);
712 	kfree(sinfo);
713 	rcu_read_lock();
714 	return err;
715 }
716 
717 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
718 {
719 	struct ieee80211_local *local = sta->local;
720 	int err;
721 
722 	might_sleep();
723 
724 	mutex_lock(&local->sta_mtx);
725 
726 	err = sta_info_insert_check(sta);
727 	if (err) {
728 		sta_info_free(local, sta);
729 		mutex_unlock(&local->sta_mtx);
730 		rcu_read_lock();
731 		return err;
732 	}
733 
734 	return sta_info_insert_finish(sta);
735 }
736 
737 int sta_info_insert(struct sta_info *sta)
738 {
739 	int err = sta_info_insert_rcu(sta);
740 
741 	rcu_read_unlock();
742 
743 	return err;
744 }
745 
746 static inline void __bss_tim_set(u8 *tim, u16 id)
747 {
748 	/*
749 	 * This format has been mandated by the IEEE specifications,
750 	 * so this line may not be changed to use the __set_bit() format.
751 	 */
752 	tim[id / 8] |= (1 << (id % 8));
753 }
754 
755 static inline void __bss_tim_clear(u8 *tim, u16 id)
756 {
757 	/*
758 	 * This format has been mandated by the IEEE specifications,
759 	 * so this line may not be changed to use the __clear_bit() format.
760 	 */
761 	tim[id / 8] &= ~(1 << (id % 8));
762 }
763 
764 static inline bool __bss_tim_get(u8 *tim, u16 id)
765 {
766 	/*
767 	 * This format has been mandated by the IEEE specifications,
768 	 * so this line may not be changed to use the test_bit() format.
769 	 */
770 	return tim[id / 8] & (1 << (id % 8));
771 }
772 
773 static unsigned long ieee80211_tids_for_ac(int ac)
774 {
775 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
776 	switch (ac) {
777 	case IEEE80211_AC_VO:
778 		return BIT(6) | BIT(7);
779 	case IEEE80211_AC_VI:
780 		return BIT(4) | BIT(5);
781 	case IEEE80211_AC_BE:
782 		return BIT(0) | BIT(3);
783 	case IEEE80211_AC_BK:
784 		return BIT(1) | BIT(2);
785 	default:
786 		WARN_ON(1);
787 		return 0;
788 	}
789 }
790 
791 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
792 {
793 	struct ieee80211_local *local = sta->local;
794 	struct ps_data *ps;
795 	bool indicate_tim = false;
796 	u8 ignore_for_tim = sta->sta.uapsd_queues;
797 	int ac;
798 	u16 id = sta->sta.aid;
799 
800 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
801 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
802 		if (WARN_ON_ONCE(!sta->sdata->bss))
803 			return;
804 
805 		ps = &sta->sdata->bss->ps;
806 #ifdef CONFIG_MAC80211_MESH
807 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
808 		ps = &sta->sdata->u.mesh.ps;
809 #endif
810 	} else {
811 		return;
812 	}
813 
814 	/* No need to do anything if the driver does all */
815 	if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
816 		return;
817 
818 	if (sta->dead)
819 		goto done;
820 
821 	/*
822 	 * If all ACs are delivery-enabled then we should build
823 	 * the TIM bit for all ACs anyway; if only some are then
824 	 * we ignore those and build the TIM bit using only the
825 	 * non-enabled ones.
826 	 */
827 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
828 		ignore_for_tim = 0;
829 
830 	if (ignore_pending)
831 		ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
832 
833 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
834 		unsigned long tids;
835 
836 		if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
837 			continue;
838 
839 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
840 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
841 		if (indicate_tim)
842 			break;
843 
844 		tids = ieee80211_tids_for_ac(ac);
845 
846 		indicate_tim |=
847 			sta->driver_buffered_tids & tids;
848 		indicate_tim |=
849 			sta->txq_buffered_tids & tids;
850 	}
851 
852  done:
853 	spin_lock_bh(&local->tim_lock);
854 
855 	if (indicate_tim == __bss_tim_get(ps->tim, id))
856 		goto out_unlock;
857 
858 	if (indicate_tim)
859 		__bss_tim_set(ps->tim, id);
860 	else
861 		__bss_tim_clear(ps->tim, id);
862 
863 	if (local->ops->set_tim && !WARN_ON(sta->dead)) {
864 		local->tim_in_locked_section = true;
865 		drv_set_tim(local, &sta->sta, indicate_tim);
866 		local->tim_in_locked_section = false;
867 	}
868 
869 out_unlock:
870 	spin_unlock_bh(&local->tim_lock);
871 }
872 
873 void sta_info_recalc_tim(struct sta_info *sta)
874 {
875 	__sta_info_recalc_tim(sta, false);
876 }
877 
878 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
879 {
880 	struct ieee80211_tx_info *info;
881 	int timeout;
882 
883 	if (!skb)
884 		return false;
885 
886 	info = IEEE80211_SKB_CB(skb);
887 
888 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
889 	timeout = (sta->listen_interval *
890 		   sta->sdata->vif.bss_conf.beacon_int *
891 		   32 / 15625) * HZ;
892 	if (timeout < STA_TX_BUFFER_EXPIRE)
893 		timeout = STA_TX_BUFFER_EXPIRE;
894 	return time_after(jiffies, info->control.jiffies + timeout);
895 }
896 
897 
898 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
899 						struct sta_info *sta, int ac)
900 {
901 	unsigned long flags;
902 	struct sk_buff *skb;
903 
904 	/*
905 	 * First check for frames that should expire on the filtered
906 	 * queue. Frames here were rejected by the driver and are on
907 	 * a separate queue to avoid reordering with normal PS-buffered
908 	 * frames. They also aren't accounted for right now in the
909 	 * total_ps_buffered counter.
910 	 */
911 	for (;;) {
912 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
913 		skb = skb_peek(&sta->tx_filtered[ac]);
914 		if (sta_info_buffer_expired(sta, skb))
915 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
916 		else
917 			skb = NULL;
918 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
919 
920 		/*
921 		 * Frames are queued in order, so if this one
922 		 * hasn't expired yet we can stop testing. If
923 		 * we actually reached the end of the queue we
924 		 * also need to stop, of course.
925 		 */
926 		if (!skb)
927 			break;
928 		ieee80211_free_txskb(&local->hw, skb);
929 	}
930 
931 	/*
932 	 * Now also check the normal PS-buffered queue, this will
933 	 * only find something if the filtered queue was emptied
934 	 * since the filtered frames are all before the normal PS
935 	 * buffered frames.
936 	 */
937 	for (;;) {
938 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
939 		skb = skb_peek(&sta->ps_tx_buf[ac]);
940 		if (sta_info_buffer_expired(sta, skb))
941 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
942 		else
943 			skb = NULL;
944 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
945 
946 		/*
947 		 * frames are queued in order, so if this one
948 		 * hasn't expired yet (or we reached the end of
949 		 * the queue) we can stop testing
950 		 */
951 		if (!skb)
952 			break;
953 
954 		local->total_ps_buffered--;
955 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
956 		       sta->sta.addr);
957 		ieee80211_free_txskb(&local->hw, skb);
958 	}
959 
960 	/*
961 	 * Finally, recalculate the TIM bit for this station -- it might
962 	 * now be clear because the station was too slow to retrieve its
963 	 * frames.
964 	 */
965 	sta_info_recalc_tim(sta);
966 
967 	/*
968 	 * Return whether there are any frames still buffered, this is
969 	 * used to check whether the cleanup timer still needs to run,
970 	 * if there are no frames we don't need to rearm the timer.
971 	 */
972 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
973 		 skb_queue_empty(&sta->tx_filtered[ac]));
974 }
975 
976 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
977 					     struct sta_info *sta)
978 {
979 	bool have_buffered = false;
980 	int ac;
981 
982 	/* This is only necessary for stations on BSS/MBSS interfaces */
983 	if (!sta->sdata->bss &&
984 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
985 		return false;
986 
987 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
988 		have_buffered |=
989 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
990 
991 	return have_buffered;
992 }
993 
994 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
995 {
996 	struct ieee80211_local *local;
997 	struct ieee80211_sub_if_data *sdata;
998 	int ret;
999 
1000 	might_sleep();
1001 
1002 	if (!sta)
1003 		return -ENOENT;
1004 
1005 	local = sta->local;
1006 	sdata = sta->sdata;
1007 
1008 	lockdep_assert_held(&local->sta_mtx);
1009 
1010 	/*
1011 	 * Before removing the station from the driver and
1012 	 * rate control, it might still start new aggregation
1013 	 * sessions -- block that to make sure the tear-down
1014 	 * will be sufficient.
1015 	 */
1016 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1017 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1018 
1019 	/*
1020 	 * Before removing the station from the driver there might be pending
1021 	 * rx frames on RSS queues sent prior to the disassociation - wait for
1022 	 * all such frames to be processed.
1023 	 */
1024 	drv_sync_rx_queues(local, sta);
1025 
1026 	ret = sta_info_hash_del(local, sta);
1027 	if (WARN_ON(ret))
1028 		return ret;
1029 
1030 	/*
1031 	 * for TDLS peers, make sure to return to the base channel before
1032 	 * removal.
1033 	 */
1034 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1035 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1036 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1037 	}
1038 
1039 	list_del_rcu(&sta->list);
1040 	sta->removed = true;
1041 
1042 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1043 
1044 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1045 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
1046 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1047 
1048 	return 0;
1049 }
1050 
1051 static void __sta_info_destroy_part2(struct sta_info *sta)
1052 {
1053 	struct ieee80211_local *local = sta->local;
1054 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1055 	struct station_info *sinfo;
1056 	int ret;
1057 
1058 	/*
1059 	 * NOTE: This assumes at least synchronize_net() was done
1060 	 *	 after _part1 and before _part2!
1061 	 */
1062 
1063 	might_sleep();
1064 	lockdep_assert_held(&local->sta_mtx);
1065 
1066 	if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1067 		ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1068 		WARN_ON_ONCE(ret);
1069 	}
1070 
1071 	/* now keys can no longer be reached */
1072 	ieee80211_free_sta_keys(local, sta);
1073 
1074 	/* disable TIM bit - last chance to tell driver */
1075 	__sta_info_recalc_tim(sta, true);
1076 
1077 	sta->dead = true;
1078 
1079 	local->num_sta--;
1080 	local->sta_generation++;
1081 
1082 	while (sta->sta_state > IEEE80211_STA_NONE) {
1083 		ret = sta_info_move_state(sta, sta->sta_state - 1);
1084 		if (ret) {
1085 			WARN_ON_ONCE(1);
1086 			break;
1087 		}
1088 	}
1089 
1090 	if (sta->uploaded) {
1091 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1092 				    IEEE80211_STA_NOTEXIST);
1093 		WARN_ON_ONCE(ret != 0);
1094 	}
1095 
1096 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1097 
1098 	sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1099 	if (sinfo)
1100 		sta_set_sinfo(sta, sinfo, true);
1101 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1102 	kfree(sinfo);
1103 
1104 	ieee80211_sta_debugfs_remove(sta);
1105 
1106 	ieee80211_destroy_frag_cache(&sta->frags);
1107 
1108 	cleanup_single_sta(sta);
1109 }
1110 
1111 int __must_check __sta_info_destroy(struct sta_info *sta)
1112 {
1113 	int err = __sta_info_destroy_part1(sta);
1114 
1115 	if (err)
1116 		return err;
1117 
1118 	synchronize_net();
1119 
1120 	__sta_info_destroy_part2(sta);
1121 
1122 	return 0;
1123 }
1124 
1125 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1126 {
1127 	struct sta_info *sta;
1128 	int ret;
1129 
1130 	mutex_lock(&sdata->local->sta_mtx);
1131 	sta = sta_info_get(sdata, addr);
1132 	ret = __sta_info_destroy(sta);
1133 	mutex_unlock(&sdata->local->sta_mtx);
1134 
1135 	return ret;
1136 }
1137 
1138 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1139 			      const u8 *addr)
1140 {
1141 	struct sta_info *sta;
1142 	int ret;
1143 
1144 	mutex_lock(&sdata->local->sta_mtx);
1145 	sta = sta_info_get_bss(sdata, addr);
1146 	ret = __sta_info_destroy(sta);
1147 	mutex_unlock(&sdata->local->sta_mtx);
1148 
1149 	return ret;
1150 }
1151 
1152 static void sta_info_cleanup(struct timer_list *t)
1153 {
1154 	struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1155 	struct sta_info *sta;
1156 	bool timer_needed = false;
1157 
1158 	rcu_read_lock();
1159 	list_for_each_entry_rcu(sta, &local->sta_list, list)
1160 		if (sta_info_cleanup_expire_buffered(local, sta))
1161 			timer_needed = true;
1162 	rcu_read_unlock();
1163 
1164 	if (local->quiescing)
1165 		return;
1166 
1167 	if (!timer_needed)
1168 		return;
1169 
1170 	mod_timer(&local->sta_cleanup,
1171 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1172 }
1173 
1174 int sta_info_init(struct ieee80211_local *local)
1175 {
1176 	int err;
1177 
1178 	err = rhltable_init(&local->sta_hash, &sta_rht_params);
1179 	if (err)
1180 		return err;
1181 
1182 	spin_lock_init(&local->tim_lock);
1183 	mutex_init(&local->sta_mtx);
1184 	INIT_LIST_HEAD(&local->sta_list);
1185 
1186 	timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1187 	return 0;
1188 }
1189 
1190 void sta_info_stop(struct ieee80211_local *local)
1191 {
1192 	del_timer_sync(&local->sta_cleanup);
1193 	rhltable_destroy(&local->sta_hash);
1194 }
1195 
1196 
1197 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1198 {
1199 	struct ieee80211_local *local = sdata->local;
1200 	struct sta_info *sta, *tmp;
1201 	LIST_HEAD(free_list);
1202 	int ret = 0;
1203 
1204 	might_sleep();
1205 
1206 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1207 	WARN_ON(vlans && !sdata->bss);
1208 
1209 	mutex_lock(&local->sta_mtx);
1210 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1211 		if (sdata == sta->sdata ||
1212 		    (vlans && sdata->bss == sta->sdata->bss)) {
1213 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1214 				list_add(&sta->free_list, &free_list);
1215 			ret++;
1216 		}
1217 	}
1218 
1219 	if (!list_empty(&free_list)) {
1220 		synchronize_net();
1221 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1222 			__sta_info_destroy_part2(sta);
1223 	}
1224 	mutex_unlock(&local->sta_mtx);
1225 
1226 	return ret;
1227 }
1228 
1229 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1230 			  unsigned long exp_time)
1231 {
1232 	struct ieee80211_local *local = sdata->local;
1233 	struct sta_info *sta, *tmp;
1234 
1235 	mutex_lock(&local->sta_mtx);
1236 
1237 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1238 		unsigned long last_active = ieee80211_sta_last_active(sta);
1239 
1240 		if (sdata != sta->sdata)
1241 			continue;
1242 
1243 		if (time_is_before_jiffies(last_active + exp_time)) {
1244 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1245 				sta->sta.addr);
1246 
1247 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1248 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1249 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1250 
1251 			WARN_ON(__sta_info_destroy(sta));
1252 		}
1253 	}
1254 
1255 	mutex_unlock(&local->sta_mtx);
1256 }
1257 
1258 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1259 						   const u8 *addr,
1260 						   const u8 *localaddr)
1261 {
1262 	struct ieee80211_local *local = hw_to_local(hw);
1263 	struct rhlist_head *tmp;
1264 	struct sta_info *sta;
1265 
1266 	/*
1267 	 * Just return a random station if localaddr is NULL
1268 	 * ... first in list.
1269 	 */
1270 	for_each_sta_info(local, addr, sta, tmp) {
1271 		if (localaddr &&
1272 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1273 			continue;
1274 		if (!sta->uploaded)
1275 			return NULL;
1276 		return &sta->sta;
1277 	}
1278 
1279 	return NULL;
1280 }
1281 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1282 
1283 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1284 					 const u8 *addr)
1285 {
1286 	struct sta_info *sta;
1287 
1288 	if (!vif)
1289 		return NULL;
1290 
1291 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1292 	if (!sta)
1293 		return NULL;
1294 
1295 	if (!sta->uploaded)
1296 		return NULL;
1297 
1298 	return &sta->sta;
1299 }
1300 EXPORT_SYMBOL(ieee80211_find_sta);
1301 
1302 /* powersave support code */
1303 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1304 {
1305 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1306 	struct ieee80211_local *local = sdata->local;
1307 	struct sk_buff_head pending;
1308 	int filtered = 0, buffered = 0, ac, i;
1309 	unsigned long flags;
1310 	struct ps_data *ps;
1311 
1312 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1313 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1314 				     u.ap);
1315 
1316 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1317 		ps = &sdata->bss->ps;
1318 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1319 		ps = &sdata->u.mesh.ps;
1320 	else
1321 		return;
1322 
1323 	clear_sta_flag(sta, WLAN_STA_SP);
1324 
1325 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1326 	sta->driver_buffered_tids = 0;
1327 	sta->txq_buffered_tids = 0;
1328 
1329 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1330 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1331 
1332 	for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1333 		if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1334 			continue;
1335 
1336 		schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1337 	}
1338 
1339 	skb_queue_head_init(&pending);
1340 
1341 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1342 	spin_lock(&sta->ps_lock);
1343 	/* Send all buffered frames to the station */
1344 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1345 		int count = skb_queue_len(&pending), tmp;
1346 
1347 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1348 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1349 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1350 		tmp = skb_queue_len(&pending);
1351 		filtered += tmp - count;
1352 		count = tmp;
1353 
1354 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1355 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1356 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1357 		tmp = skb_queue_len(&pending);
1358 		buffered += tmp - count;
1359 	}
1360 
1361 	ieee80211_add_pending_skbs(local, &pending);
1362 
1363 	/* now we're no longer in the deliver code */
1364 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1365 
1366 	/* The station might have polled and then woken up before we responded,
1367 	 * so clear these flags now to avoid them sticking around.
1368 	 */
1369 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1370 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1371 	spin_unlock(&sta->ps_lock);
1372 
1373 	atomic_dec(&ps->num_sta_ps);
1374 
1375 	local->total_ps_buffered -= buffered;
1376 
1377 	sta_info_recalc_tim(sta);
1378 
1379 	ps_dbg(sdata,
1380 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1381 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1382 
1383 	ieee80211_check_fast_xmit(sta);
1384 }
1385 
1386 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1387 					 enum ieee80211_frame_release_type reason,
1388 					 bool call_driver, bool more_data)
1389 {
1390 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1391 	struct ieee80211_local *local = sdata->local;
1392 	struct ieee80211_qos_hdr *nullfunc;
1393 	struct sk_buff *skb;
1394 	int size = sizeof(*nullfunc);
1395 	__le16 fc;
1396 	bool qos = sta->sta.wme;
1397 	struct ieee80211_tx_info *info;
1398 	struct ieee80211_chanctx_conf *chanctx_conf;
1399 
1400 	if (qos) {
1401 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1402 				 IEEE80211_STYPE_QOS_NULLFUNC |
1403 				 IEEE80211_FCTL_FROMDS);
1404 	} else {
1405 		size -= 2;
1406 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1407 				 IEEE80211_STYPE_NULLFUNC |
1408 				 IEEE80211_FCTL_FROMDS);
1409 	}
1410 
1411 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1412 	if (!skb)
1413 		return;
1414 
1415 	skb_reserve(skb, local->hw.extra_tx_headroom);
1416 
1417 	nullfunc = skb_put(skb, size);
1418 	nullfunc->frame_control = fc;
1419 	nullfunc->duration_id = 0;
1420 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1421 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1422 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1423 	nullfunc->seq_ctrl = 0;
1424 
1425 	skb->priority = tid;
1426 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1427 	if (qos) {
1428 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1429 
1430 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1431 			nullfunc->qos_ctrl |=
1432 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1433 			if (more_data)
1434 				nullfunc->frame_control |=
1435 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1436 		}
1437 	}
1438 
1439 	info = IEEE80211_SKB_CB(skb);
1440 
1441 	/*
1442 	 * Tell TX path to send this frame even though the
1443 	 * STA may still remain is PS mode after this frame
1444 	 * exchange. Also set EOSP to indicate this packet
1445 	 * ends the poll/service period.
1446 	 */
1447 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1448 		       IEEE80211_TX_STATUS_EOSP |
1449 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1450 
1451 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1452 
1453 	if (call_driver)
1454 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1455 					  reason, false);
1456 
1457 	skb->dev = sdata->dev;
1458 
1459 	rcu_read_lock();
1460 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1461 	if (WARN_ON(!chanctx_conf)) {
1462 		rcu_read_unlock();
1463 		kfree_skb(skb);
1464 		return;
1465 	}
1466 
1467 	info->band = chanctx_conf->def.chan->band;
1468 	ieee80211_xmit(sdata, sta, skb);
1469 	rcu_read_unlock();
1470 }
1471 
1472 static int find_highest_prio_tid(unsigned long tids)
1473 {
1474 	/* lower 3 TIDs aren't ordered perfectly */
1475 	if (tids & 0xF8)
1476 		return fls(tids) - 1;
1477 	/* TID 0 is BE just like TID 3 */
1478 	if (tids & BIT(0))
1479 		return 0;
1480 	return fls(tids) - 1;
1481 }
1482 
1483 /* Indicates if the MORE_DATA bit should be set in the last
1484  * frame obtained by ieee80211_sta_ps_get_frames.
1485  * Note that driver_release_tids is relevant only if
1486  * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1487  */
1488 static bool
1489 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1490 			   enum ieee80211_frame_release_type reason,
1491 			   unsigned long driver_release_tids)
1492 {
1493 	int ac;
1494 
1495 	/* If the driver has data on more than one TID then
1496 	 * certainly there's more data if we release just a
1497 	 * single frame now (from a single TID). This will
1498 	 * only happen for PS-Poll.
1499 	 */
1500 	if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1501 	    hweight16(driver_release_tids) > 1)
1502 		return true;
1503 
1504 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1505 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1506 			continue;
1507 
1508 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1509 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1510 			return true;
1511 	}
1512 
1513 	return false;
1514 }
1515 
1516 static void
1517 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1518 			    enum ieee80211_frame_release_type reason,
1519 			    struct sk_buff_head *frames,
1520 			    unsigned long *driver_release_tids)
1521 {
1522 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1523 	struct ieee80211_local *local = sdata->local;
1524 	int ac;
1525 
1526 	/* Get response frame(s) and more data bit for the last one. */
1527 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1528 		unsigned long tids;
1529 
1530 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1531 			continue;
1532 
1533 		tids = ieee80211_tids_for_ac(ac);
1534 
1535 		/* if we already have frames from software, then we can't also
1536 		 * release from hardware queues
1537 		 */
1538 		if (skb_queue_empty(frames)) {
1539 			*driver_release_tids |=
1540 				sta->driver_buffered_tids & tids;
1541 			*driver_release_tids |= sta->txq_buffered_tids & tids;
1542 		}
1543 
1544 		if (!*driver_release_tids) {
1545 			struct sk_buff *skb;
1546 
1547 			while (n_frames > 0) {
1548 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1549 				if (!skb) {
1550 					skb = skb_dequeue(
1551 						&sta->ps_tx_buf[ac]);
1552 					if (skb)
1553 						local->total_ps_buffered--;
1554 				}
1555 				if (!skb)
1556 					break;
1557 				n_frames--;
1558 				__skb_queue_tail(frames, skb);
1559 			}
1560 		}
1561 
1562 		/* If we have more frames buffered on this AC, then abort the
1563 		 * loop since we can't send more data from other ACs before
1564 		 * the buffered frames from this.
1565 		 */
1566 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1567 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1568 			break;
1569 	}
1570 }
1571 
1572 static void
1573 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1574 				  int n_frames, u8 ignored_acs,
1575 				  enum ieee80211_frame_release_type reason)
1576 {
1577 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1578 	struct ieee80211_local *local = sdata->local;
1579 	unsigned long driver_release_tids = 0;
1580 	struct sk_buff_head frames;
1581 	bool more_data;
1582 
1583 	/* Service or PS-Poll period starts */
1584 	set_sta_flag(sta, WLAN_STA_SP);
1585 
1586 	__skb_queue_head_init(&frames);
1587 
1588 	ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1589 				    &frames, &driver_release_tids);
1590 
1591 	more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1592 
1593 	if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1594 		driver_release_tids =
1595 			BIT(find_highest_prio_tid(driver_release_tids));
1596 
1597 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1598 		int tid, ac;
1599 
1600 		/*
1601 		 * For PS-Poll, this can only happen due to a race condition
1602 		 * when we set the TIM bit and the station notices it, but
1603 		 * before it can poll for the frame we expire it.
1604 		 *
1605 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1606 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1607 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1608 		 *	more than the value specified in the Max SP Length field
1609 		 *	in the QoS Capability element from delivery-enabled ACs,
1610 		 *	that are destined for the non-AP STA.
1611 		 *
1612 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1613 		 */
1614 
1615 		/* This will evaluate to 1, 3, 5 or 7. */
1616 		for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1617 			if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1618 				break;
1619 		tid = 7 - 2 * ac;
1620 
1621 		ieee80211_send_null_response(sta, tid, reason, true, false);
1622 	} else if (!driver_release_tids) {
1623 		struct sk_buff_head pending;
1624 		struct sk_buff *skb;
1625 		int num = 0;
1626 		u16 tids = 0;
1627 		bool need_null = false;
1628 
1629 		skb_queue_head_init(&pending);
1630 
1631 		while ((skb = __skb_dequeue(&frames))) {
1632 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1633 			struct ieee80211_hdr *hdr = (void *) skb->data;
1634 			u8 *qoshdr = NULL;
1635 
1636 			num++;
1637 
1638 			/*
1639 			 * Tell TX path to send this frame even though the
1640 			 * STA may still remain is PS mode after this frame
1641 			 * exchange.
1642 			 */
1643 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1644 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1645 
1646 			/*
1647 			 * Use MoreData flag to indicate whether there are
1648 			 * more buffered frames for this STA
1649 			 */
1650 			if (more_data || !skb_queue_empty(&frames))
1651 				hdr->frame_control |=
1652 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1653 			else
1654 				hdr->frame_control &=
1655 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1656 
1657 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1658 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1659 				qoshdr = ieee80211_get_qos_ctl(hdr);
1660 
1661 			tids |= BIT(skb->priority);
1662 
1663 			__skb_queue_tail(&pending, skb);
1664 
1665 			/* end service period after last frame or add one */
1666 			if (!skb_queue_empty(&frames))
1667 				continue;
1668 
1669 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1670 				/* for PS-Poll, there's only one frame */
1671 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1672 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1673 				break;
1674 			}
1675 
1676 			/* For uAPSD, things are a bit more complicated. If the
1677 			 * last frame has a QoS header (i.e. is a QoS-data or
1678 			 * QoS-nulldata frame) then just set the EOSP bit there
1679 			 * and be done.
1680 			 * If the frame doesn't have a QoS header (which means
1681 			 * it should be a bufferable MMPDU) then we can't set
1682 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1683 			 * frame to the list to send it after the MMPDU.
1684 			 *
1685 			 * Note that this code is only in the mac80211-release
1686 			 * code path, we assume that the driver will not buffer
1687 			 * anything but QoS-data frames, or if it does, will
1688 			 * create the QoS-nulldata frame by itself if needed.
1689 			 *
1690 			 * Cf. 802.11-2012 10.2.1.10 (c).
1691 			 */
1692 			if (qoshdr) {
1693 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1694 
1695 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1696 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1697 			} else {
1698 				/* The standard isn't completely clear on this
1699 				 * as it says the more-data bit should be set
1700 				 * if there are more BUs. The QoS-Null frame
1701 				 * we're about to send isn't buffered yet, we
1702 				 * only create it below, but let's pretend it
1703 				 * was buffered just in case some clients only
1704 				 * expect more-data=0 when eosp=1.
1705 				 */
1706 				hdr->frame_control |=
1707 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1708 				need_null = true;
1709 				num++;
1710 			}
1711 			break;
1712 		}
1713 
1714 		drv_allow_buffered_frames(local, sta, tids, num,
1715 					  reason, more_data);
1716 
1717 		ieee80211_add_pending_skbs(local, &pending);
1718 
1719 		if (need_null)
1720 			ieee80211_send_null_response(
1721 				sta, find_highest_prio_tid(tids),
1722 				reason, false, false);
1723 
1724 		sta_info_recalc_tim(sta);
1725 	} else {
1726 		int tid;
1727 
1728 		/*
1729 		 * We need to release a frame that is buffered somewhere in the
1730 		 * driver ... it'll have to handle that.
1731 		 * Note that the driver also has to check the number of frames
1732 		 * on the TIDs we're releasing from - if there are more than
1733 		 * n_frames it has to set the more-data bit (if we didn't ask
1734 		 * it to set it anyway due to other buffered frames); if there
1735 		 * are fewer than n_frames it has to make sure to adjust that
1736 		 * to allow the service period to end properly.
1737 		 */
1738 		drv_release_buffered_frames(local, sta, driver_release_tids,
1739 					    n_frames, reason, more_data);
1740 
1741 		/*
1742 		 * Note that we don't recalculate the TIM bit here as it would
1743 		 * most likely have no effect at all unless the driver told us
1744 		 * that the TID(s) became empty before returning here from the
1745 		 * release function.
1746 		 * Either way, however, when the driver tells us that the TID(s)
1747 		 * became empty or we find that a txq became empty, we'll do the
1748 		 * TIM recalculation.
1749 		 */
1750 
1751 		if (!sta->sta.txq[0])
1752 			return;
1753 
1754 		for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1755 			if (!sta->sta.txq[tid] ||
1756 			    !(driver_release_tids & BIT(tid)) ||
1757 			    txq_has_queue(sta->sta.txq[tid]))
1758 				continue;
1759 
1760 			sta_info_recalc_tim(sta);
1761 			break;
1762 		}
1763 	}
1764 }
1765 
1766 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1767 {
1768 	u8 ignore_for_response = sta->sta.uapsd_queues;
1769 
1770 	/*
1771 	 * If all ACs are delivery-enabled then we should reply
1772 	 * from any of them, if only some are enabled we reply
1773 	 * only from the non-enabled ones.
1774 	 */
1775 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1776 		ignore_for_response = 0;
1777 
1778 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1779 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1780 }
1781 
1782 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1783 {
1784 	int n_frames = sta->sta.max_sp;
1785 	u8 delivery_enabled = sta->sta.uapsd_queues;
1786 
1787 	/*
1788 	 * If we ever grow support for TSPEC this might happen if
1789 	 * the TSPEC update from hostapd comes in between a trigger
1790 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1791 	 * actually getting called.
1792 	 */
1793 	if (!delivery_enabled)
1794 		return;
1795 
1796 	switch (sta->sta.max_sp) {
1797 	case 1:
1798 		n_frames = 2;
1799 		break;
1800 	case 2:
1801 		n_frames = 4;
1802 		break;
1803 	case 3:
1804 		n_frames = 6;
1805 		break;
1806 	case 0:
1807 		/* XXX: what is a good value? */
1808 		n_frames = 128;
1809 		break;
1810 	}
1811 
1812 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1813 					  IEEE80211_FRAME_RELEASE_UAPSD);
1814 }
1815 
1816 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1817 			       struct ieee80211_sta *pubsta, bool block)
1818 {
1819 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1820 
1821 	trace_api_sta_block_awake(sta->local, pubsta, block);
1822 
1823 	if (block) {
1824 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1825 		ieee80211_clear_fast_xmit(sta);
1826 		return;
1827 	}
1828 
1829 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1830 		return;
1831 
1832 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1833 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1834 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1835 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1836 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1837 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
1838 		/* must be asleep in this case */
1839 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1840 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1841 	} else {
1842 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1843 		ieee80211_check_fast_xmit(sta);
1844 	}
1845 }
1846 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1847 
1848 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1849 {
1850 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1851 	struct ieee80211_local *local = sta->local;
1852 
1853 	trace_api_eosp(local, pubsta);
1854 
1855 	clear_sta_flag(sta, WLAN_STA_SP);
1856 }
1857 EXPORT_SYMBOL(ieee80211_sta_eosp);
1858 
1859 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1860 {
1861 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1862 	enum ieee80211_frame_release_type reason;
1863 	bool more_data;
1864 
1865 	trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1866 
1867 	reason = IEEE80211_FRAME_RELEASE_UAPSD;
1868 	more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1869 					       reason, 0);
1870 
1871 	ieee80211_send_null_response(sta, tid, reason, false, more_data);
1872 }
1873 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1874 
1875 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1876 				u8 tid, bool buffered)
1877 {
1878 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1879 
1880 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1881 		return;
1882 
1883 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1884 
1885 	if (buffered)
1886 		set_bit(tid, &sta->driver_buffered_tids);
1887 	else
1888 		clear_bit(tid, &sta->driver_buffered_tids);
1889 
1890 	sta_info_recalc_tim(sta);
1891 }
1892 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1893 
1894 void ieee80211_register_airtime(struct ieee80211_txq *txq,
1895 				u32 tx_airtime, u32 rx_airtime)
1896 {
1897 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif);
1898 	struct ieee80211_local *local = sdata->local;
1899 	u64 weight_sum, weight_sum_reciprocal;
1900 	struct airtime_sched_info *air_sched;
1901 	struct airtime_info *air_info;
1902 	u32 airtime = 0;
1903 
1904 	air_sched = &local->airtime[txq->ac];
1905 	air_info = to_airtime_info(txq);
1906 
1907 	if (local->airtime_flags & AIRTIME_USE_TX)
1908 		airtime += tx_airtime;
1909 	if (local->airtime_flags & AIRTIME_USE_RX)
1910 		airtime += rx_airtime;
1911 
1912 	/* Weights scale so the unit weight is 256 */
1913 	airtime <<= 8;
1914 
1915 	spin_lock_bh(&air_sched->lock);
1916 
1917 	air_info->tx_airtime += tx_airtime;
1918 	air_info->rx_airtime += rx_airtime;
1919 
1920 	if (air_sched->weight_sum) {
1921 		weight_sum = air_sched->weight_sum;
1922 		weight_sum_reciprocal = air_sched->weight_sum_reciprocal;
1923 	} else {
1924 		weight_sum = air_info->weight;
1925 		weight_sum_reciprocal = air_info->weight_reciprocal;
1926 	}
1927 
1928 	/* Round the calculation of global vt */
1929 	air_sched->v_t += (u64)((airtime + (weight_sum >> 1)) *
1930 				weight_sum_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_64;
1931 	air_info->v_t += (u32)((airtime + (air_info->weight >> 1)) *
1932 			       air_info->weight_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_32;
1933 	ieee80211_resort_txq(&local->hw, txq);
1934 
1935 	spin_unlock_bh(&air_sched->lock);
1936 }
1937 
1938 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1939 				    u32 tx_airtime, u32 rx_airtime)
1940 {
1941 	struct ieee80211_txq *txq = pubsta->txq[tid];
1942 
1943 	if (!txq)
1944 		return;
1945 
1946 	ieee80211_register_airtime(txq, tx_airtime, rx_airtime);
1947 }
1948 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1949 
1950 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
1951 					  struct sta_info *sta, u8 ac,
1952 					  u16 tx_airtime, bool tx_completed)
1953 {
1954 	int tx_pending;
1955 
1956 	if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
1957 		return;
1958 
1959 	if (!tx_completed) {
1960 		if (sta)
1961 			atomic_add(tx_airtime,
1962 				   &sta->airtime[ac].aql_tx_pending);
1963 
1964 		atomic_add(tx_airtime, &local->aql_total_pending_airtime);
1965 		return;
1966 	}
1967 
1968 	if (sta) {
1969 		tx_pending = atomic_sub_return(tx_airtime,
1970 					       &sta->airtime[ac].aql_tx_pending);
1971 		if (tx_pending < 0)
1972 			atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
1973 				       tx_pending, 0);
1974 	}
1975 
1976 	tx_pending = atomic_sub_return(tx_airtime,
1977 				       &local->aql_total_pending_airtime);
1978 	if (WARN_ONCE(tx_pending < 0,
1979 		      "Device %s AC %d pending airtime underflow: %u, %u",
1980 		      wiphy_name(local->hw.wiphy), ac, tx_pending,
1981 		      tx_airtime))
1982 		atomic_cmpxchg(&local->aql_total_pending_airtime,
1983 			       tx_pending, 0);
1984 }
1985 
1986 int sta_info_move_state(struct sta_info *sta,
1987 			enum ieee80211_sta_state new_state)
1988 {
1989 	might_sleep();
1990 
1991 	if (sta->sta_state == new_state)
1992 		return 0;
1993 
1994 	/* check allowed transitions first */
1995 
1996 	switch (new_state) {
1997 	case IEEE80211_STA_NONE:
1998 		if (sta->sta_state != IEEE80211_STA_AUTH)
1999 			return -EINVAL;
2000 		break;
2001 	case IEEE80211_STA_AUTH:
2002 		if (sta->sta_state != IEEE80211_STA_NONE &&
2003 		    sta->sta_state != IEEE80211_STA_ASSOC)
2004 			return -EINVAL;
2005 		break;
2006 	case IEEE80211_STA_ASSOC:
2007 		if (sta->sta_state != IEEE80211_STA_AUTH &&
2008 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
2009 			return -EINVAL;
2010 		break;
2011 	case IEEE80211_STA_AUTHORIZED:
2012 		if (sta->sta_state != IEEE80211_STA_ASSOC)
2013 			return -EINVAL;
2014 		break;
2015 	default:
2016 		WARN(1, "invalid state %d", new_state);
2017 		return -EINVAL;
2018 	}
2019 
2020 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
2021 		sta->sta.addr, new_state);
2022 
2023 	/*
2024 	 * notify the driver before the actual changes so it can
2025 	 * fail the transition
2026 	 */
2027 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
2028 		int err = drv_sta_state(sta->local, sta->sdata, sta,
2029 					sta->sta_state, new_state);
2030 		if (err)
2031 			return err;
2032 	}
2033 
2034 	/* reflect the change in all state variables */
2035 
2036 	switch (new_state) {
2037 	case IEEE80211_STA_NONE:
2038 		if (sta->sta_state == IEEE80211_STA_AUTH)
2039 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
2040 		break;
2041 	case IEEE80211_STA_AUTH:
2042 		if (sta->sta_state == IEEE80211_STA_NONE) {
2043 			set_bit(WLAN_STA_AUTH, &sta->_flags);
2044 		} else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2045 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2046 			ieee80211_recalc_min_chandef(sta->sdata);
2047 			if (!sta->sta.support_p2p_ps)
2048 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2049 		}
2050 		break;
2051 	case IEEE80211_STA_ASSOC:
2052 		if (sta->sta_state == IEEE80211_STA_AUTH) {
2053 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
2054 			sta->assoc_at = ktime_get_boottime_ns();
2055 			ieee80211_recalc_min_chandef(sta->sdata);
2056 			if (!sta->sta.support_p2p_ps)
2057 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2058 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2059 			ieee80211_vif_dec_num_mcast(sta->sdata);
2060 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2061 			ieee80211_clear_fast_xmit(sta);
2062 			ieee80211_clear_fast_rx(sta);
2063 		}
2064 		break;
2065 	case IEEE80211_STA_AUTHORIZED:
2066 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
2067 			ieee80211_vif_inc_num_mcast(sta->sdata);
2068 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2069 			ieee80211_check_fast_xmit(sta);
2070 			ieee80211_check_fast_rx(sta);
2071 		}
2072 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2073 		    sta->sdata->vif.type == NL80211_IFTYPE_AP)
2074 			cfg80211_send_layer2_update(sta->sdata->dev,
2075 						    sta->sta.addr);
2076 		break;
2077 	default:
2078 		break;
2079 	}
2080 
2081 	sta->sta_state = new_state;
2082 
2083 	return 0;
2084 }
2085 
2086 u8 sta_info_tx_streams(struct sta_info *sta)
2087 {
2088 	struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
2089 	u8 rx_streams;
2090 
2091 	if (!sta->sta.ht_cap.ht_supported)
2092 		return 1;
2093 
2094 	if (sta->sta.vht_cap.vht_supported) {
2095 		int i;
2096 		u16 tx_mcs_map =
2097 			le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
2098 
2099 		for (i = 7; i >= 0; i--)
2100 			if ((tx_mcs_map & (0x3 << (i * 2))) !=
2101 			    IEEE80211_VHT_MCS_NOT_SUPPORTED)
2102 				return i + 1;
2103 	}
2104 
2105 	if (ht_cap->mcs.rx_mask[3])
2106 		rx_streams = 4;
2107 	else if (ht_cap->mcs.rx_mask[2])
2108 		rx_streams = 3;
2109 	else if (ht_cap->mcs.rx_mask[1])
2110 		rx_streams = 2;
2111 	else
2112 		rx_streams = 1;
2113 
2114 	if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2115 		return rx_streams;
2116 
2117 	return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2118 			>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2119 }
2120 
2121 static struct ieee80211_sta_rx_stats *
2122 sta_get_last_rx_stats(struct sta_info *sta)
2123 {
2124 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
2125 	int cpu;
2126 
2127 	if (!sta->pcpu_rx_stats)
2128 		return stats;
2129 
2130 	for_each_possible_cpu(cpu) {
2131 		struct ieee80211_sta_rx_stats *cpustats;
2132 
2133 		cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2134 
2135 		if (time_after(cpustats->last_rx, stats->last_rx))
2136 			stats = cpustats;
2137 	}
2138 
2139 	return stats;
2140 }
2141 
2142 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2143 				  struct rate_info *rinfo)
2144 {
2145 	rinfo->bw = STA_STATS_GET(BW, rate);
2146 
2147 	switch (STA_STATS_GET(TYPE, rate)) {
2148 	case STA_STATS_RATE_TYPE_VHT:
2149 		rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2150 		rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2151 		rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2152 		if (STA_STATS_GET(SGI, rate))
2153 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2154 		break;
2155 	case STA_STATS_RATE_TYPE_HT:
2156 		rinfo->flags = RATE_INFO_FLAGS_MCS;
2157 		rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2158 		if (STA_STATS_GET(SGI, rate))
2159 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2160 		break;
2161 	case STA_STATS_RATE_TYPE_LEGACY: {
2162 		struct ieee80211_supported_band *sband;
2163 		u16 brate;
2164 		unsigned int shift;
2165 		int band = STA_STATS_GET(LEGACY_BAND, rate);
2166 		int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2167 
2168 		sband = local->hw.wiphy->bands[band];
2169 
2170 		if (WARN_ON_ONCE(!sband->bitrates))
2171 			break;
2172 
2173 		brate = sband->bitrates[rate_idx].bitrate;
2174 		if (rinfo->bw == RATE_INFO_BW_5)
2175 			shift = 2;
2176 		else if (rinfo->bw == RATE_INFO_BW_10)
2177 			shift = 1;
2178 		else
2179 			shift = 0;
2180 		rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2181 		break;
2182 		}
2183 	case STA_STATS_RATE_TYPE_HE:
2184 		rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2185 		rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2186 		rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2187 		rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2188 		rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2189 		rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2190 		break;
2191 	}
2192 }
2193 
2194 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2195 {
2196 	u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2197 
2198 	if (rate == STA_STATS_RATE_INVALID)
2199 		return -EINVAL;
2200 
2201 	sta_stats_decode_rate(sta->local, rate, rinfo);
2202 	return 0;
2203 }
2204 
2205 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats,
2206 					int tid)
2207 {
2208 	unsigned int start;
2209 	u64 value;
2210 
2211 	do {
2212 		start = u64_stats_fetch_begin(&rxstats->syncp);
2213 		value = rxstats->msdu[tid];
2214 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2215 
2216 	return value;
2217 }
2218 
2219 static void sta_set_tidstats(struct sta_info *sta,
2220 			     struct cfg80211_tid_stats *tidstats,
2221 			     int tid)
2222 {
2223 	struct ieee80211_local *local = sta->local;
2224 	int cpu;
2225 
2226 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2227 		tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->rx_stats, tid);
2228 
2229 		if (sta->pcpu_rx_stats) {
2230 			for_each_possible_cpu(cpu) {
2231 				struct ieee80211_sta_rx_stats *cpurxs;
2232 
2233 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2234 				tidstats->rx_msdu +=
2235 					sta_get_tidstats_msdu(cpurxs, tid);
2236 			}
2237 		}
2238 
2239 		tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2240 	}
2241 
2242 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2243 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2244 		tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2245 	}
2246 
2247 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2248 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2249 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2250 		tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2251 	}
2252 
2253 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2254 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2255 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2256 		tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2257 	}
2258 
2259 	if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2260 		spin_lock_bh(&local->fq.lock);
2261 		rcu_read_lock();
2262 
2263 		tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2264 		ieee80211_fill_txq_stats(&tidstats->txq_stats,
2265 					 to_txq_info(sta->sta.txq[tid]));
2266 
2267 		rcu_read_unlock();
2268 		spin_unlock_bh(&local->fq.lock);
2269 	}
2270 }
2271 
2272 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2273 {
2274 	unsigned int start;
2275 	u64 value;
2276 
2277 	do {
2278 		start = u64_stats_fetch_begin(&rxstats->syncp);
2279 		value = rxstats->bytes;
2280 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2281 
2282 	return value;
2283 }
2284 
2285 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2286 		   bool tidstats)
2287 {
2288 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2289 	struct ieee80211_local *local = sdata->local;
2290 	u32 thr = 0;
2291 	int i, ac, cpu;
2292 	struct ieee80211_sta_rx_stats *last_rxstats;
2293 
2294 	last_rxstats = sta_get_last_rx_stats(sta);
2295 
2296 	sinfo->generation = sdata->local->sta_generation;
2297 
2298 	/* do before driver, so beacon filtering drivers have a
2299 	 * chance to e.g. just add the number of filtered beacons
2300 	 * (or just modify the value entirely, of course)
2301 	 */
2302 	if (sdata->vif.type == NL80211_IFTYPE_STATION)
2303 		sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2304 
2305 	drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2306 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2307 			 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2308 			 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2309 			 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2310 			 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2311 			 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2312 
2313 	if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2314 		sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2315 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2316 	}
2317 
2318 	sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2319 	sinfo->assoc_at = sta->assoc_at;
2320 	sinfo->inactive_time =
2321 		jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2322 
2323 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2324 			       BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2325 		sinfo->tx_bytes = 0;
2326 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2327 			sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2328 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2329 	}
2330 
2331 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2332 		sinfo->tx_packets = 0;
2333 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2334 			sinfo->tx_packets += sta->tx_stats.packets[ac];
2335 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2336 	}
2337 
2338 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2339 			       BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2340 		sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2341 
2342 		if (sta->pcpu_rx_stats) {
2343 			for_each_possible_cpu(cpu) {
2344 				struct ieee80211_sta_rx_stats *cpurxs;
2345 
2346 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2347 				sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2348 			}
2349 		}
2350 
2351 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2352 	}
2353 
2354 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2355 		sinfo->rx_packets = sta->rx_stats.packets;
2356 		if (sta->pcpu_rx_stats) {
2357 			for_each_possible_cpu(cpu) {
2358 				struct ieee80211_sta_rx_stats *cpurxs;
2359 
2360 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2361 				sinfo->rx_packets += cpurxs->packets;
2362 			}
2363 		}
2364 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2365 	}
2366 
2367 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2368 		sinfo->tx_retries = sta->status_stats.retry_count;
2369 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2370 	}
2371 
2372 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2373 		sinfo->tx_failed = sta->status_stats.retry_failed;
2374 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2375 	}
2376 
2377 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2378 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2379 			sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2380 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2381 	}
2382 
2383 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2384 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2385 			sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2386 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2387 	}
2388 
2389 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2390 		sinfo->airtime_weight = sta->airtime[0].weight;
2391 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2392 	}
2393 
2394 	sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2395 	if (sta->pcpu_rx_stats) {
2396 		for_each_possible_cpu(cpu) {
2397 			struct ieee80211_sta_rx_stats *cpurxs;
2398 
2399 			cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2400 			sinfo->rx_dropped_misc += cpurxs->dropped;
2401 		}
2402 	}
2403 
2404 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2405 	    !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2406 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2407 				 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2408 		sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2409 	}
2410 
2411 	if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2412 	    ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2413 		if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2414 			sinfo->signal = (s8)last_rxstats->last_signal;
2415 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2416 		}
2417 
2418 		if (!sta->pcpu_rx_stats &&
2419 		    !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2420 			sinfo->signal_avg =
2421 				-ewma_signal_read(&sta->rx_stats_avg.signal);
2422 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2423 		}
2424 	}
2425 
2426 	/* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2427 	 * the sta->rx_stats struct, so the check here is fine with and without
2428 	 * pcpu statistics
2429 	 */
2430 	if (last_rxstats->chains &&
2431 	    !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2432 			       BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2433 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2434 		if (!sta->pcpu_rx_stats)
2435 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2436 
2437 		sinfo->chains = last_rxstats->chains;
2438 
2439 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2440 			sinfo->chain_signal[i] =
2441 				last_rxstats->chain_signal_last[i];
2442 			sinfo->chain_signal_avg[i] =
2443 				-ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2444 		}
2445 	}
2446 
2447 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2448 		sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2449 				     &sinfo->txrate);
2450 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2451 	}
2452 
2453 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2454 		if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2455 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2456 	}
2457 
2458 	if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2459 		for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2460 			sta_set_tidstats(sta, &sinfo->pertid[i], i);
2461 	}
2462 
2463 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2464 #ifdef CONFIG_MAC80211_MESH
2465 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2466 				 BIT_ULL(NL80211_STA_INFO_PLID) |
2467 				 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2468 				 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2469 				 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2470 				 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2471 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) |
2472 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS);
2473 
2474 		sinfo->llid = sta->mesh->llid;
2475 		sinfo->plid = sta->mesh->plid;
2476 		sinfo->plink_state = sta->mesh->plink_state;
2477 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2478 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2479 			sinfo->t_offset = sta->mesh->t_offset;
2480 		}
2481 		sinfo->local_pm = sta->mesh->local_pm;
2482 		sinfo->peer_pm = sta->mesh->peer_pm;
2483 		sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2484 		sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2485 		sinfo->connected_to_as = sta->mesh->connected_to_as;
2486 #endif
2487 	}
2488 
2489 	sinfo->bss_param.flags = 0;
2490 	if (sdata->vif.bss_conf.use_cts_prot)
2491 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2492 	if (sdata->vif.bss_conf.use_short_preamble)
2493 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2494 	if (sdata->vif.bss_conf.use_short_slot)
2495 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2496 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2497 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2498 
2499 	sinfo->sta_flags.set = 0;
2500 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2501 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2502 				BIT(NL80211_STA_FLAG_WME) |
2503 				BIT(NL80211_STA_FLAG_MFP) |
2504 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2505 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
2506 				BIT(NL80211_STA_FLAG_TDLS_PEER);
2507 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2508 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2509 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2510 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2511 	if (sta->sta.wme)
2512 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2513 	if (test_sta_flag(sta, WLAN_STA_MFP))
2514 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2515 	if (test_sta_flag(sta, WLAN_STA_AUTH))
2516 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2517 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
2518 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2519 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2520 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2521 
2522 	thr = sta_get_expected_throughput(sta);
2523 
2524 	if (thr != 0) {
2525 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2526 		sinfo->expected_throughput = thr;
2527 	}
2528 
2529 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2530 	    sta->status_stats.ack_signal_filled) {
2531 		sinfo->ack_signal = sta->status_stats.last_ack_signal;
2532 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2533 	}
2534 
2535 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2536 	    sta->status_stats.ack_signal_filled) {
2537 		sinfo->avg_ack_signal =
2538 			-(s8)ewma_avg_signal_read(
2539 				&sta->status_stats.avg_ack_signal);
2540 		sinfo->filled |=
2541 			BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2542 	}
2543 
2544 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2545 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2546 		sinfo->airtime_link_metric =
2547 			airtime_link_metric_get(local, sta);
2548 	}
2549 }
2550 
2551 u32 sta_get_expected_throughput(struct sta_info *sta)
2552 {
2553 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2554 	struct ieee80211_local *local = sdata->local;
2555 	struct rate_control_ref *ref = NULL;
2556 	u32 thr = 0;
2557 
2558 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2559 		ref = local->rate_ctrl;
2560 
2561 	/* check if the driver has a SW RC implementation */
2562 	if (ref && ref->ops->get_expected_throughput)
2563 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2564 	else
2565 		thr = drv_get_expected_throughput(local, sta);
2566 
2567 	return thr;
2568 }
2569 
2570 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2571 {
2572 	struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2573 
2574 	if (!sta->status_stats.last_ack ||
2575 	    time_after(stats->last_rx, sta->status_stats.last_ack))
2576 		return stats->last_rx;
2577 	return sta->status_stats.last_ack;
2578 }
2579 
2580 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2581 {
2582 	if (!sta->sdata->local->ops->wake_tx_queue)
2583 		return;
2584 
2585 	if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2586 		sta->cparams.target = MS2TIME(50);
2587 		sta->cparams.interval = MS2TIME(300);
2588 		sta->cparams.ecn = false;
2589 	} else {
2590 		sta->cparams.target = MS2TIME(20);
2591 		sta->cparams.interval = MS2TIME(100);
2592 		sta->cparams.ecn = true;
2593 	}
2594 }
2595 
2596 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2597 					   u32 thr)
2598 {
2599 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2600 
2601 	sta_update_codel_params(sta, thr);
2602 }
2603