xref: /openbmc/linux/net/mac80211/sta_info.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7  * Copyright (C) 2018-2020 Intel Corporation
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20 
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30 
31 /**
32  * DOC: STA information lifetime rules
33  *
34  * STA info structures (&struct sta_info) are managed in a hash table
35  * for faster lookup and a list for iteration. They are managed using
36  * RCU, i.e. access to the list and hash table is protected by RCU.
37  *
38  * Upon allocating a STA info structure with sta_info_alloc(), the caller
39  * owns that structure. It must then insert it into the hash table using
40  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41  * case (which acquires an rcu read section but must not be called from
42  * within one) will the pointer still be valid after the call. Note that
43  * the caller may not do much with the STA info before inserting it, in
44  * particular, it may not start any mesh peer link management or add
45  * encryption keys.
46  *
47  * When the insertion fails (sta_info_insert()) returns non-zero), the
48  * structure will have been freed by sta_info_insert()!
49  *
50  * Station entries are added by mac80211 when you establish a link with a
51  * peer. This means different things for the different type of interfaces
52  * we support. For a regular station this mean we add the AP sta when we
53  * receive an association response from the AP. For IBSS this occurs when
54  * get to know about a peer on the same IBSS. For WDS we add the sta for
55  * the peer immediately upon device open. When using AP mode we add stations
56  * for each respective station upon request from userspace through nl80211.
57  *
58  * In order to remove a STA info structure, various sta_info_destroy_*()
59  * calls are available.
60  *
61  * There is no concept of ownership on a STA entry, each structure is
62  * owned by the global hash table/list until it is removed. All users of
63  * the structure need to be RCU protected so that the structure won't be
64  * freed before they are done using it.
65  */
66 
67 static const struct rhashtable_params sta_rht_params = {
68 	.nelem_hint = 3, /* start small */
69 	.automatic_shrinking = true,
70 	.head_offset = offsetof(struct sta_info, hash_node),
71 	.key_offset = offsetof(struct sta_info, addr),
72 	.key_len = ETH_ALEN,
73 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
74 };
75 
76 /* Caller must hold local->sta_mtx */
77 static int sta_info_hash_del(struct ieee80211_local *local,
78 			     struct sta_info *sta)
79 {
80 	return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 			       sta_rht_params);
82 }
83 
84 static void __cleanup_single_sta(struct sta_info *sta)
85 {
86 	int ac, i;
87 	struct tid_ampdu_tx *tid_tx;
88 	struct ieee80211_sub_if_data *sdata = sta->sdata;
89 	struct ieee80211_local *local = sdata->local;
90 	struct ps_data *ps;
91 
92 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 			ps = &sdata->bss->ps;
98 		else if (ieee80211_vif_is_mesh(&sdata->vif))
99 			ps = &sdata->u.mesh.ps;
100 		else
101 			return;
102 
103 		clear_sta_flag(sta, WLAN_STA_PS_STA);
104 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
106 
107 		atomic_dec(&ps->num_sta_ps);
108 	}
109 
110 	if (sta->sta.txq[0]) {
111 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 			struct txq_info *txqi;
113 
114 			if (!sta->sta.txq[i])
115 				continue;
116 
117 			txqi = to_txq_info(sta->sta.txq[i]);
118 
119 			ieee80211_txq_purge(local, txqi);
120 		}
121 	}
122 
123 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
127 	}
128 
129 	if (ieee80211_vif_is_mesh(&sdata->vif))
130 		mesh_sta_cleanup(sta);
131 
132 	cancel_work_sync(&sta->drv_deliver_wk);
133 
134 	/*
135 	 * Destroy aggregation state here. It would be nice to wait for the
136 	 * driver to finish aggregation stop and then clean up, but for now
137 	 * drivers have to handle aggregation stop being requested, followed
138 	 * directly by station destruction.
139 	 */
140 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 		if (!tid_tx)
144 			continue;
145 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 		kfree(tid_tx);
147 	}
148 }
149 
150 static void cleanup_single_sta(struct sta_info *sta)
151 {
152 	struct ieee80211_sub_if_data *sdata = sta->sdata;
153 	struct ieee80211_local *local = sdata->local;
154 
155 	__cleanup_single_sta(sta);
156 	sta_info_free(local, sta);
157 }
158 
159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 					 const u8 *addr)
161 {
162 	return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
163 }
164 
165 /* protected by RCU */
166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 			      const u8 *addr)
168 {
169 	struct ieee80211_local *local = sdata->local;
170 	struct rhlist_head *tmp;
171 	struct sta_info *sta;
172 
173 	rcu_read_lock();
174 	for_each_sta_info(local, addr, sta, tmp) {
175 		if (sta->sdata == sdata) {
176 			rcu_read_unlock();
177 			/* this is safe as the caller must already hold
178 			 * another rcu read section or the mutex
179 			 */
180 			return sta;
181 		}
182 	}
183 	rcu_read_unlock();
184 	return NULL;
185 }
186 
187 /*
188  * Get sta info either from the specified interface
189  * or from one of its vlans
190  */
191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 				  const u8 *addr)
193 {
194 	struct ieee80211_local *local = sdata->local;
195 	struct rhlist_head *tmp;
196 	struct sta_info *sta;
197 
198 	rcu_read_lock();
199 	for_each_sta_info(local, addr, sta, tmp) {
200 		if (sta->sdata == sdata ||
201 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 			rcu_read_unlock();
203 			/* this is safe as the caller must already hold
204 			 * another rcu read section or the mutex
205 			 */
206 			return sta;
207 		}
208 	}
209 	rcu_read_unlock();
210 	return NULL;
211 }
212 
213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
214 				       const u8 *sta_addr, const u8 *vif_addr)
215 {
216 	struct rhlist_head *tmp;
217 	struct sta_info *sta;
218 
219 	for_each_sta_info(local, sta_addr, sta, tmp) {
220 		if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
221 			return sta;
222 	}
223 
224 	return NULL;
225 }
226 
227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
228 				     int idx)
229 {
230 	struct ieee80211_local *local = sdata->local;
231 	struct sta_info *sta;
232 	int i = 0;
233 
234 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
235 		if (sdata != sta->sdata)
236 			continue;
237 		if (i < idx) {
238 			++i;
239 			continue;
240 		}
241 		return sta;
242 	}
243 
244 	return NULL;
245 }
246 
247 /**
248  * sta_info_free - free STA
249  *
250  * @local: pointer to the global information
251  * @sta: STA info to free
252  *
253  * This function must undo everything done by sta_info_alloc()
254  * that may happen before sta_info_insert(). It may only be
255  * called when sta_info_insert() has not been attempted (and
256  * if that fails, the station is freed anyway.)
257  */
258 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
259 {
260 	if (sta->rate_ctrl)
261 		rate_control_free_sta(sta);
262 
263 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
264 
265 	if (sta->sta.txq[0])
266 		kfree(to_txq_info(sta->sta.txq[0]));
267 	kfree(rcu_dereference_raw(sta->sta.rates));
268 #ifdef CONFIG_MAC80211_MESH
269 	kfree(sta->mesh);
270 #endif
271 	free_percpu(sta->pcpu_rx_stats);
272 	kfree(sta);
273 }
274 
275 /* Caller must hold local->sta_mtx */
276 static int sta_info_hash_add(struct ieee80211_local *local,
277 			     struct sta_info *sta)
278 {
279 	return rhltable_insert(&local->sta_hash, &sta->hash_node,
280 			       sta_rht_params);
281 }
282 
283 static void sta_deliver_ps_frames(struct work_struct *wk)
284 {
285 	struct sta_info *sta;
286 
287 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
288 
289 	if (sta->dead)
290 		return;
291 
292 	local_bh_disable();
293 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
294 		ieee80211_sta_ps_deliver_wakeup(sta);
295 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
296 		ieee80211_sta_ps_deliver_poll_response(sta);
297 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
298 		ieee80211_sta_ps_deliver_uapsd(sta);
299 	local_bh_enable();
300 }
301 
302 static int sta_prepare_rate_control(struct ieee80211_local *local,
303 				    struct sta_info *sta, gfp_t gfp)
304 {
305 	if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
306 		return 0;
307 
308 	sta->rate_ctrl = local->rate_ctrl;
309 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
310 						     sta, gfp);
311 	if (!sta->rate_ctrl_priv)
312 		return -ENOMEM;
313 
314 	return 0;
315 }
316 
317 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
318 				const u8 *addr, gfp_t gfp)
319 {
320 	struct ieee80211_local *local = sdata->local;
321 	struct ieee80211_hw *hw = &local->hw;
322 	struct sta_info *sta;
323 	int i;
324 
325 	sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
326 	if (!sta)
327 		return NULL;
328 
329 	if (ieee80211_hw_check(hw, USES_RSS)) {
330 		sta->pcpu_rx_stats =
331 			alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
332 		if (!sta->pcpu_rx_stats)
333 			goto free;
334 	}
335 
336 	spin_lock_init(&sta->lock);
337 	spin_lock_init(&sta->ps_lock);
338 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
339 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
340 	mutex_init(&sta->ampdu_mlme.mtx);
341 #ifdef CONFIG_MAC80211_MESH
342 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
343 		sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
344 		if (!sta->mesh)
345 			goto free;
346 		sta->mesh->plink_sta = sta;
347 		spin_lock_init(&sta->mesh->plink_lock);
348 		if (ieee80211_vif_is_mesh(&sdata->vif) &&
349 		    !sdata->u.mesh.user_mpm)
350 			timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
351 				    0);
352 		sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
353 	}
354 #endif
355 
356 	memcpy(sta->addr, addr, ETH_ALEN);
357 	memcpy(sta->sta.addr, addr, ETH_ALEN);
358 	sta->sta.max_rx_aggregation_subframes =
359 		local->hw.max_rx_aggregation_subframes;
360 
361 	/* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
362 	 * The Tx path starts to use a key as soon as the key slot ptk_idx
363 	 * references to is not NULL. To not use the initial Rx-only key
364 	 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
365 	 * which always will refer to a NULL key.
366 	 */
367 	BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
368 	sta->ptk_idx = INVALID_PTK_KEYIDX;
369 
370 	sta->local = local;
371 	sta->sdata = sdata;
372 	sta->rx_stats.last_rx = jiffies;
373 
374 	u64_stats_init(&sta->rx_stats.syncp);
375 
376 	sta->sta_state = IEEE80211_STA_NONE;
377 
378 	/* Mark TID as unreserved */
379 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
380 
381 	sta->last_connected = ktime_get_seconds();
382 	ewma_signal_init(&sta->rx_stats_avg.signal);
383 	ewma_avg_signal_init(&sta->status_stats.avg_ack_signal);
384 	for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
385 		ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
386 
387 	if (local->ops->wake_tx_queue) {
388 		void *txq_data;
389 		int size = sizeof(struct txq_info) +
390 			   ALIGN(hw->txq_data_size, sizeof(void *));
391 
392 		txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
393 		if (!txq_data)
394 			goto free;
395 
396 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
397 			struct txq_info *txq = txq_data + i * size;
398 
399 			/* might not do anything for the bufferable MMPDU TXQ */
400 			ieee80211_txq_init(sdata, sta, txq, i);
401 		}
402 	}
403 
404 	if (sta_prepare_rate_control(local, sta, gfp))
405 		goto free_txq;
406 
407 	sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT;
408 
409 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
410 		skb_queue_head_init(&sta->ps_tx_buf[i]);
411 		skb_queue_head_init(&sta->tx_filtered[i]);
412 		sta->airtime[i].deficit = sta->airtime_weight;
413 		atomic_set(&sta->airtime[i].aql_tx_pending, 0);
414 		sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i];
415 		sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i];
416 	}
417 
418 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
419 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
420 
421 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
422 		u32 mandatory = 0;
423 		int r;
424 
425 		if (!hw->wiphy->bands[i])
426 			continue;
427 
428 		switch (i) {
429 		case NL80211_BAND_2GHZ:
430 			/*
431 			 * We use both here, even if we cannot really know for
432 			 * sure the station will support both, but the only use
433 			 * for this is when we don't know anything yet and send
434 			 * management frames, and then we'll pick the lowest
435 			 * possible rate anyway.
436 			 * If we don't include _G here, we cannot find a rate
437 			 * in P2P, and thus trigger the WARN_ONCE() in rate.c
438 			 */
439 			mandatory = IEEE80211_RATE_MANDATORY_B |
440 				    IEEE80211_RATE_MANDATORY_G;
441 			break;
442 		case NL80211_BAND_5GHZ:
443 			mandatory = IEEE80211_RATE_MANDATORY_A;
444 			break;
445 		case NL80211_BAND_60GHZ:
446 			WARN_ON(1);
447 			mandatory = 0;
448 			break;
449 		}
450 
451 		for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
452 			struct ieee80211_rate *rate;
453 
454 			rate = &hw->wiphy->bands[i]->bitrates[r];
455 
456 			if (!(rate->flags & mandatory))
457 				continue;
458 			sta->sta.supp_rates[i] |= BIT(r);
459 		}
460 	}
461 
462 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
463 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
464 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
465 		struct ieee80211_supported_band *sband;
466 		u8 smps;
467 
468 		sband = ieee80211_get_sband(sdata);
469 		if (!sband)
470 			goto free_txq;
471 
472 		smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
473 			IEEE80211_HT_CAP_SM_PS_SHIFT;
474 		/*
475 		 * Assume that hostapd advertises our caps in the beacon and
476 		 * this is the known_smps_mode for a station that just assciated
477 		 */
478 		switch (smps) {
479 		case WLAN_HT_SMPS_CONTROL_DISABLED:
480 			sta->known_smps_mode = IEEE80211_SMPS_OFF;
481 			break;
482 		case WLAN_HT_SMPS_CONTROL_STATIC:
483 			sta->known_smps_mode = IEEE80211_SMPS_STATIC;
484 			break;
485 		case WLAN_HT_SMPS_CONTROL_DYNAMIC:
486 			sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
487 			break;
488 		default:
489 			WARN_ON(1);
490 		}
491 	}
492 
493 	sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
494 
495 	sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
496 	sta->cparams.target = MS2TIME(20);
497 	sta->cparams.interval = MS2TIME(100);
498 	sta->cparams.ecn = true;
499 
500 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
501 
502 	return sta;
503 
504 free_txq:
505 	if (sta->sta.txq[0])
506 		kfree(to_txq_info(sta->sta.txq[0]));
507 free:
508 	free_percpu(sta->pcpu_rx_stats);
509 #ifdef CONFIG_MAC80211_MESH
510 	kfree(sta->mesh);
511 #endif
512 	kfree(sta);
513 	return NULL;
514 }
515 
516 static int sta_info_insert_check(struct sta_info *sta)
517 {
518 	struct ieee80211_sub_if_data *sdata = sta->sdata;
519 
520 	/*
521 	 * Can't be a WARN_ON because it can be triggered through a race:
522 	 * something inserts a STA (on one CPU) without holding the RTNL
523 	 * and another CPU turns off the net device.
524 	 */
525 	if (unlikely(!ieee80211_sdata_running(sdata)))
526 		return -ENETDOWN;
527 
528 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
529 		    is_multicast_ether_addr(sta->sta.addr)))
530 		return -EINVAL;
531 
532 	/* The RCU read lock is required by rhashtable due to
533 	 * asynchronous resize/rehash.  We also require the mutex
534 	 * for correctness.
535 	 */
536 	rcu_read_lock();
537 	lockdep_assert_held(&sdata->local->sta_mtx);
538 	if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
539 	    ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
540 		rcu_read_unlock();
541 		return -ENOTUNIQ;
542 	}
543 	rcu_read_unlock();
544 
545 	return 0;
546 }
547 
548 static int sta_info_insert_drv_state(struct ieee80211_local *local,
549 				     struct ieee80211_sub_if_data *sdata,
550 				     struct sta_info *sta)
551 {
552 	enum ieee80211_sta_state state;
553 	int err = 0;
554 
555 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
556 		err = drv_sta_state(local, sdata, sta, state, state + 1);
557 		if (err)
558 			break;
559 	}
560 
561 	if (!err) {
562 		/*
563 		 * Drivers using legacy sta_add/sta_remove callbacks only
564 		 * get uploaded set to true after sta_add is called.
565 		 */
566 		if (!local->ops->sta_add)
567 			sta->uploaded = true;
568 		return 0;
569 	}
570 
571 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
572 		sdata_info(sdata,
573 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
574 			   sta->sta.addr, state + 1, err);
575 		err = 0;
576 	}
577 
578 	/* unwind on error */
579 	for (; state > IEEE80211_STA_NOTEXIST; state--)
580 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
581 
582 	return err;
583 }
584 
585 static void
586 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
587 {
588 	struct ieee80211_local *local = sdata->local;
589 	bool allow_p2p_go_ps = sdata->vif.p2p;
590 	struct sta_info *sta;
591 
592 	rcu_read_lock();
593 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
594 		if (sdata != sta->sdata ||
595 		    !test_sta_flag(sta, WLAN_STA_ASSOC))
596 			continue;
597 		if (!sta->sta.support_p2p_ps) {
598 			allow_p2p_go_ps = false;
599 			break;
600 		}
601 	}
602 	rcu_read_unlock();
603 
604 	if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
605 		sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
606 		ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
607 	}
608 }
609 
610 /*
611  * should be called with sta_mtx locked
612  * this function replaces the mutex lock
613  * with a RCU lock
614  */
615 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
616 {
617 	struct ieee80211_local *local = sta->local;
618 	struct ieee80211_sub_if_data *sdata = sta->sdata;
619 	struct station_info *sinfo = NULL;
620 	int err = 0;
621 
622 	lockdep_assert_held(&local->sta_mtx);
623 
624 	/* check if STA exists already */
625 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
626 		err = -EEXIST;
627 		goto out_err;
628 	}
629 
630 	sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
631 	if (!sinfo) {
632 		err = -ENOMEM;
633 		goto out_err;
634 	}
635 
636 	local->num_sta++;
637 	local->sta_generation++;
638 	smp_mb();
639 
640 	/* simplify things and don't accept BA sessions yet */
641 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
642 
643 	/* make the station visible */
644 	err = sta_info_hash_add(local, sta);
645 	if (err)
646 		goto out_drop_sta;
647 
648 	list_add_tail_rcu(&sta->list, &local->sta_list);
649 
650 	/* notify driver */
651 	err = sta_info_insert_drv_state(local, sdata, sta);
652 	if (err)
653 		goto out_remove;
654 
655 	set_sta_flag(sta, WLAN_STA_INSERTED);
656 
657 	if (sta->sta_state >= IEEE80211_STA_ASSOC) {
658 		ieee80211_recalc_min_chandef(sta->sdata);
659 		if (!sta->sta.support_p2p_ps)
660 			ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
661 	}
662 
663 	/* accept BA sessions now */
664 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
665 
666 	ieee80211_sta_debugfs_add(sta);
667 	rate_control_add_sta_debugfs(sta);
668 
669 	sinfo->generation = local->sta_generation;
670 	cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
671 	kfree(sinfo);
672 
673 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
674 
675 	/* move reference to rcu-protected */
676 	rcu_read_lock();
677 	mutex_unlock(&local->sta_mtx);
678 
679 	if (ieee80211_vif_is_mesh(&sdata->vif))
680 		mesh_accept_plinks_update(sdata);
681 
682 	return 0;
683  out_remove:
684 	sta_info_hash_del(local, sta);
685 	list_del_rcu(&sta->list);
686  out_drop_sta:
687 	local->num_sta--;
688 	synchronize_net();
689 	__cleanup_single_sta(sta);
690  out_err:
691 	mutex_unlock(&local->sta_mtx);
692 	kfree(sinfo);
693 	rcu_read_lock();
694 	return err;
695 }
696 
697 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
698 {
699 	struct ieee80211_local *local = sta->local;
700 	int err;
701 
702 	might_sleep();
703 
704 	mutex_lock(&local->sta_mtx);
705 
706 	err = sta_info_insert_check(sta);
707 	if (err) {
708 		mutex_unlock(&local->sta_mtx);
709 		rcu_read_lock();
710 		goto out_free;
711 	}
712 
713 	err = sta_info_insert_finish(sta);
714 	if (err)
715 		goto out_free;
716 
717 	return 0;
718  out_free:
719 	sta_info_free(local, sta);
720 	return err;
721 }
722 
723 int sta_info_insert(struct sta_info *sta)
724 {
725 	int err = sta_info_insert_rcu(sta);
726 
727 	rcu_read_unlock();
728 
729 	return err;
730 }
731 
732 static inline void __bss_tim_set(u8 *tim, u16 id)
733 {
734 	/*
735 	 * This format has been mandated by the IEEE specifications,
736 	 * so this line may not be changed to use the __set_bit() format.
737 	 */
738 	tim[id / 8] |= (1 << (id % 8));
739 }
740 
741 static inline void __bss_tim_clear(u8 *tim, u16 id)
742 {
743 	/*
744 	 * This format has been mandated by the IEEE specifications,
745 	 * so this line may not be changed to use the __clear_bit() format.
746 	 */
747 	tim[id / 8] &= ~(1 << (id % 8));
748 }
749 
750 static inline bool __bss_tim_get(u8 *tim, u16 id)
751 {
752 	/*
753 	 * This format has been mandated by the IEEE specifications,
754 	 * so this line may not be changed to use the test_bit() format.
755 	 */
756 	return tim[id / 8] & (1 << (id % 8));
757 }
758 
759 static unsigned long ieee80211_tids_for_ac(int ac)
760 {
761 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
762 	switch (ac) {
763 	case IEEE80211_AC_VO:
764 		return BIT(6) | BIT(7);
765 	case IEEE80211_AC_VI:
766 		return BIT(4) | BIT(5);
767 	case IEEE80211_AC_BE:
768 		return BIT(0) | BIT(3);
769 	case IEEE80211_AC_BK:
770 		return BIT(1) | BIT(2);
771 	default:
772 		WARN_ON(1);
773 		return 0;
774 	}
775 }
776 
777 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
778 {
779 	struct ieee80211_local *local = sta->local;
780 	struct ps_data *ps;
781 	bool indicate_tim = false;
782 	u8 ignore_for_tim = sta->sta.uapsd_queues;
783 	int ac;
784 	u16 id = sta->sta.aid;
785 
786 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
787 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
788 		if (WARN_ON_ONCE(!sta->sdata->bss))
789 			return;
790 
791 		ps = &sta->sdata->bss->ps;
792 #ifdef CONFIG_MAC80211_MESH
793 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
794 		ps = &sta->sdata->u.mesh.ps;
795 #endif
796 	} else {
797 		return;
798 	}
799 
800 	/* No need to do anything if the driver does all */
801 	if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
802 		return;
803 
804 	if (sta->dead)
805 		goto done;
806 
807 	/*
808 	 * If all ACs are delivery-enabled then we should build
809 	 * the TIM bit for all ACs anyway; if only some are then
810 	 * we ignore those and build the TIM bit using only the
811 	 * non-enabled ones.
812 	 */
813 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
814 		ignore_for_tim = 0;
815 
816 	if (ignore_pending)
817 		ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
818 
819 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
820 		unsigned long tids;
821 
822 		if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
823 			continue;
824 
825 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
826 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
827 		if (indicate_tim)
828 			break;
829 
830 		tids = ieee80211_tids_for_ac(ac);
831 
832 		indicate_tim |=
833 			sta->driver_buffered_tids & tids;
834 		indicate_tim |=
835 			sta->txq_buffered_tids & tids;
836 	}
837 
838  done:
839 	spin_lock_bh(&local->tim_lock);
840 
841 	if (indicate_tim == __bss_tim_get(ps->tim, id))
842 		goto out_unlock;
843 
844 	if (indicate_tim)
845 		__bss_tim_set(ps->tim, id);
846 	else
847 		__bss_tim_clear(ps->tim, id);
848 
849 	if (local->ops->set_tim && !WARN_ON(sta->dead)) {
850 		local->tim_in_locked_section = true;
851 		drv_set_tim(local, &sta->sta, indicate_tim);
852 		local->tim_in_locked_section = false;
853 	}
854 
855 out_unlock:
856 	spin_unlock_bh(&local->tim_lock);
857 }
858 
859 void sta_info_recalc_tim(struct sta_info *sta)
860 {
861 	__sta_info_recalc_tim(sta, false);
862 }
863 
864 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
865 {
866 	struct ieee80211_tx_info *info;
867 	int timeout;
868 
869 	if (!skb)
870 		return false;
871 
872 	info = IEEE80211_SKB_CB(skb);
873 
874 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
875 	timeout = (sta->listen_interval *
876 		   sta->sdata->vif.bss_conf.beacon_int *
877 		   32 / 15625) * HZ;
878 	if (timeout < STA_TX_BUFFER_EXPIRE)
879 		timeout = STA_TX_BUFFER_EXPIRE;
880 	return time_after(jiffies, info->control.jiffies + timeout);
881 }
882 
883 
884 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
885 						struct sta_info *sta, int ac)
886 {
887 	unsigned long flags;
888 	struct sk_buff *skb;
889 
890 	/*
891 	 * First check for frames that should expire on the filtered
892 	 * queue. Frames here were rejected by the driver and are on
893 	 * a separate queue to avoid reordering with normal PS-buffered
894 	 * frames. They also aren't accounted for right now in the
895 	 * total_ps_buffered counter.
896 	 */
897 	for (;;) {
898 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
899 		skb = skb_peek(&sta->tx_filtered[ac]);
900 		if (sta_info_buffer_expired(sta, skb))
901 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
902 		else
903 			skb = NULL;
904 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
905 
906 		/*
907 		 * Frames are queued in order, so if this one
908 		 * hasn't expired yet we can stop testing. If
909 		 * we actually reached the end of the queue we
910 		 * also need to stop, of course.
911 		 */
912 		if (!skb)
913 			break;
914 		ieee80211_free_txskb(&local->hw, skb);
915 	}
916 
917 	/*
918 	 * Now also check the normal PS-buffered queue, this will
919 	 * only find something if the filtered queue was emptied
920 	 * since the filtered frames are all before the normal PS
921 	 * buffered frames.
922 	 */
923 	for (;;) {
924 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
925 		skb = skb_peek(&sta->ps_tx_buf[ac]);
926 		if (sta_info_buffer_expired(sta, skb))
927 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
928 		else
929 			skb = NULL;
930 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
931 
932 		/*
933 		 * frames are queued in order, so if this one
934 		 * hasn't expired yet (or we reached the end of
935 		 * the queue) we can stop testing
936 		 */
937 		if (!skb)
938 			break;
939 
940 		local->total_ps_buffered--;
941 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
942 		       sta->sta.addr);
943 		ieee80211_free_txskb(&local->hw, skb);
944 	}
945 
946 	/*
947 	 * Finally, recalculate the TIM bit for this station -- it might
948 	 * now be clear because the station was too slow to retrieve its
949 	 * frames.
950 	 */
951 	sta_info_recalc_tim(sta);
952 
953 	/*
954 	 * Return whether there are any frames still buffered, this is
955 	 * used to check whether the cleanup timer still needs to run,
956 	 * if there are no frames we don't need to rearm the timer.
957 	 */
958 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
959 		 skb_queue_empty(&sta->tx_filtered[ac]));
960 }
961 
962 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
963 					     struct sta_info *sta)
964 {
965 	bool have_buffered = false;
966 	int ac;
967 
968 	/* This is only necessary for stations on BSS/MBSS interfaces */
969 	if (!sta->sdata->bss &&
970 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
971 		return false;
972 
973 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
974 		have_buffered |=
975 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
976 
977 	return have_buffered;
978 }
979 
980 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
981 {
982 	struct ieee80211_local *local;
983 	struct ieee80211_sub_if_data *sdata;
984 	int ret;
985 
986 	might_sleep();
987 
988 	if (!sta)
989 		return -ENOENT;
990 
991 	local = sta->local;
992 	sdata = sta->sdata;
993 
994 	lockdep_assert_held(&local->sta_mtx);
995 
996 	/*
997 	 * Before removing the station from the driver and
998 	 * rate control, it might still start new aggregation
999 	 * sessions -- block that to make sure the tear-down
1000 	 * will be sufficient.
1001 	 */
1002 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1003 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1004 
1005 	/*
1006 	 * Before removing the station from the driver there might be pending
1007 	 * rx frames on RSS queues sent prior to the disassociation - wait for
1008 	 * all such frames to be processed.
1009 	 */
1010 	drv_sync_rx_queues(local, sta);
1011 
1012 	ret = sta_info_hash_del(local, sta);
1013 	if (WARN_ON(ret))
1014 		return ret;
1015 
1016 	/*
1017 	 * for TDLS peers, make sure to return to the base channel before
1018 	 * removal.
1019 	 */
1020 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1021 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1022 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1023 	}
1024 
1025 	list_del_rcu(&sta->list);
1026 	sta->removed = true;
1027 
1028 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1029 
1030 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1031 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
1032 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1033 
1034 	return 0;
1035 }
1036 
1037 static void __sta_info_destroy_part2(struct sta_info *sta)
1038 {
1039 	struct ieee80211_local *local = sta->local;
1040 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1041 	struct station_info *sinfo;
1042 	int ret;
1043 
1044 	/*
1045 	 * NOTE: This assumes at least synchronize_net() was done
1046 	 *	 after _part1 and before _part2!
1047 	 */
1048 
1049 	might_sleep();
1050 	lockdep_assert_held(&local->sta_mtx);
1051 
1052 	while (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1053 		ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1054 		WARN_ON_ONCE(ret);
1055 	}
1056 
1057 	/* now keys can no longer be reached */
1058 	ieee80211_free_sta_keys(local, sta);
1059 
1060 	/* disable TIM bit - last chance to tell driver */
1061 	__sta_info_recalc_tim(sta, true);
1062 
1063 	sta->dead = true;
1064 
1065 	local->num_sta--;
1066 	local->sta_generation++;
1067 
1068 	while (sta->sta_state > IEEE80211_STA_NONE) {
1069 		ret = sta_info_move_state(sta, sta->sta_state - 1);
1070 		if (ret) {
1071 			WARN_ON_ONCE(1);
1072 			break;
1073 		}
1074 	}
1075 
1076 	if (sta->uploaded) {
1077 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1078 				    IEEE80211_STA_NOTEXIST);
1079 		WARN_ON_ONCE(ret != 0);
1080 	}
1081 
1082 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1083 
1084 	sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1085 	if (sinfo)
1086 		sta_set_sinfo(sta, sinfo, true);
1087 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1088 	kfree(sinfo);
1089 
1090 	ieee80211_sta_debugfs_remove(sta);
1091 
1092 	cleanup_single_sta(sta);
1093 }
1094 
1095 int __must_check __sta_info_destroy(struct sta_info *sta)
1096 {
1097 	int err = __sta_info_destroy_part1(sta);
1098 
1099 	if (err)
1100 		return err;
1101 
1102 	synchronize_net();
1103 
1104 	__sta_info_destroy_part2(sta);
1105 
1106 	return 0;
1107 }
1108 
1109 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1110 {
1111 	struct sta_info *sta;
1112 	int ret;
1113 
1114 	mutex_lock(&sdata->local->sta_mtx);
1115 	sta = sta_info_get(sdata, addr);
1116 	ret = __sta_info_destroy(sta);
1117 	mutex_unlock(&sdata->local->sta_mtx);
1118 
1119 	return ret;
1120 }
1121 
1122 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1123 			      const u8 *addr)
1124 {
1125 	struct sta_info *sta;
1126 	int ret;
1127 
1128 	mutex_lock(&sdata->local->sta_mtx);
1129 	sta = sta_info_get_bss(sdata, addr);
1130 	ret = __sta_info_destroy(sta);
1131 	mutex_unlock(&sdata->local->sta_mtx);
1132 
1133 	return ret;
1134 }
1135 
1136 static void sta_info_cleanup(struct timer_list *t)
1137 {
1138 	struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1139 	struct sta_info *sta;
1140 	bool timer_needed = false;
1141 
1142 	rcu_read_lock();
1143 	list_for_each_entry_rcu(sta, &local->sta_list, list)
1144 		if (sta_info_cleanup_expire_buffered(local, sta))
1145 			timer_needed = true;
1146 	rcu_read_unlock();
1147 
1148 	if (local->quiescing)
1149 		return;
1150 
1151 	if (!timer_needed)
1152 		return;
1153 
1154 	mod_timer(&local->sta_cleanup,
1155 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1156 }
1157 
1158 int sta_info_init(struct ieee80211_local *local)
1159 {
1160 	int err;
1161 
1162 	err = rhltable_init(&local->sta_hash, &sta_rht_params);
1163 	if (err)
1164 		return err;
1165 
1166 	spin_lock_init(&local->tim_lock);
1167 	mutex_init(&local->sta_mtx);
1168 	INIT_LIST_HEAD(&local->sta_list);
1169 
1170 	timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1171 	return 0;
1172 }
1173 
1174 void sta_info_stop(struct ieee80211_local *local)
1175 {
1176 	del_timer_sync(&local->sta_cleanup);
1177 	rhltable_destroy(&local->sta_hash);
1178 }
1179 
1180 
1181 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1182 {
1183 	struct ieee80211_local *local = sdata->local;
1184 	struct sta_info *sta, *tmp;
1185 	LIST_HEAD(free_list);
1186 	int ret = 0;
1187 
1188 	might_sleep();
1189 
1190 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1191 	WARN_ON(vlans && !sdata->bss);
1192 
1193 	mutex_lock(&local->sta_mtx);
1194 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1195 		if (sdata == sta->sdata ||
1196 		    (vlans && sdata->bss == sta->sdata->bss)) {
1197 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1198 				list_add(&sta->free_list, &free_list);
1199 			ret++;
1200 		}
1201 	}
1202 
1203 	if (!list_empty(&free_list)) {
1204 		synchronize_net();
1205 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1206 			__sta_info_destroy_part2(sta);
1207 	}
1208 	mutex_unlock(&local->sta_mtx);
1209 
1210 	return ret;
1211 }
1212 
1213 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1214 			  unsigned long exp_time)
1215 {
1216 	struct ieee80211_local *local = sdata->local;
1217 	struct sta_info *sta, *tmp;
1218 
1219 	mutex_lock(&local->sta_mtx);
1220 
1221 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1222 		unsigned long last_active = ieee80211_sta_last_active(sta);
1223 
1224 		if (sdata != sta->sdata)
1225 			continue;
1226 
1227 		if (time_is_before_jiffies(last_active + exp_time)) {
1228 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1229 				sta->sta.addr);
1230 
1231 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1232 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1233 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1234 
1235 			WARN_ON(__sta_info_destroy(sta));
1236 		}
1237 	}
1238 
1239 	mutex_unlock(&local->sta_mtx);
1240 }
1241 
1242 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1243 						   const u8 *addr,
1244 						   const u8 *localaddr)
1245 {
1246 	struct ieee80211_local *local = hw_to_local(hw);
1247 	struct rhlist_head *tmp;
1248 	struct sta_info *sta;
1249 
1250 	/*
1251 	 * Just return a random station if localaddr is NULL
1252 	 * ... first in list.
1253 	 */
1254 	for_each_sta_info(local, addr, sta, tmp) {
1255 		if (localaddr &&
1256 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1257 			continue;
1258 		if (!sta->uploaded)
1259 			return NULL;
1260 		return &sta->sta;
1261 	}
1262 
1263 	return NULL;
1264 }
1265 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1266 
1267 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1268 					 const u8 *addr)
1269 {
1270 	struct sta_info *sta;
1271 
1272 	if (!vif)
1273 		return NULL;
1274 
1275 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1276 	if (!sta)
1277 		return NULL;
1278 
1279 	if (!sta->uploaded)
1280 		return NULL;
1281 
1282 	return &sta->sta;
1283 }
1284 EXPORT_SYMBOL(ieee80211_find_sta);
1285 
1286 /* powersave support code */
1287 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1288 {
1289 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1290 	struct ieee80211_local *local = sdata->local;
1291 	struct sk_buff_head pending;
1292 	int filtered = 0, buffered = 0, ac, i;
1293 	unsigned long flags;
1294 	struct ps_data *ps;
1295 
1296 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1297 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1298 				     u.ap);
1299 
1300 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1301 		ps = &sdata->bss->ps;
1302 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1303 		ps = &sdata->u.mesh.ps;
1304 	else
1305 		return;
1306 
1307 	clear_sta_flag(sta, WLAN_STA_SP);
1308 
1309 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1310 	sta->driver_buffered_tids = 0;
1311 	sta->txq_buffered_tids = 0;
1312 
1313 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1314 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1315 
1316 	for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1317 		if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1318 			continue;
1319 
1320 		schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1321 	}
1322 
1323 	skb_queue_head_init(&pending);
1324 
1325 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1326 	spin_lock(&sta->ps_lock);
1327 	/* Send all buffered frames to the station */
1328 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1329 		int count = skb_queue_len(&pending), tmp;
1330 
1331 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1332 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1333 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1334 		tmp = skb_queue_len(&pending);
1335 		filtered += tmp - count;
1336 		count = tmp;
1337 
1338 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1339 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1340 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1341 		tmp = skb_queue_len(&pending);
1342 		buffered += tmp - count;
1343 	}
1344 
1345 	ieee80211_add_pending_skbs(local, &pending);
1346 
1347 	/* now we're no longer in the deliver code */
1348 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1349 
1350 	/* The station might have polled and then woken up before we responded,
1351 	 * so clear these flags now to avoid them sticking around.
1352 	 */
1353 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1354 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1355 	spin_unlock(&sta->ps_lock);
1356 
1357 	atomic_dec(&ps->num_sta_ps);
1358 
1359 	local->total_ps_buffered -= buffered;
1360 
1361 	sta_info_recalc_tim(sta);
1362 
1363 	ps_dbg(sdata,
1364 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1365 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1366 
1367 	ieee80211_check_fast_xmit(sta);
1368 }
1369 
1370 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1371 					 enum ieee80211_frame_release_type reason,
1372 					 bool call_driver, bool more_data)
1373 {
1374 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1375 	struct ieee80211_local *local = sdata->local;
1376 	struct ieee80211_qos_hdr *nullfunc;
1377 	struct sk_buff *skb;
1378 	int size = sizeof(*nullfunc);
1379 	__le16 fc;
1380 	bool qos = sta->sta.wme;
1381 	struct ieee80211_tx_info *info;
1382 	struct ieee80211_chanctx_conf *chanctx_conf;
1383 
1384 	/* Don't send NDPs when STA is connected HE */
1385 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1386 	    !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE))
1387 		return;
1388 
1389 	if (qos) {
1390 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1391 				 IEEE80211_STYPE_QOS_NULLFUNC |
1392 				 IEEE80211_FCTL_FROMDS);
1393 	} else {
1394 		size -= 2;
1395 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1396 				 IEEE80211_STYPE_NULLFUNC |
1397 				 IEEE80211_FCTL_FROMDS);
1398 	}
1399 
1400 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1401 	if (!skb)
1402 		return;
1403 
1404 	skb_reserve(skb, local->hw.extra_tx_headroom);
1405 
1406 	nullfunc = skb_put(skb, size);
1407 	nullfunc->frame_control = fc;
1408 	nullfunc->duration_id = 0;
1409 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1410 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1411 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1412 	nullfunc->seq_ctrl = 0;
1413 
1414 	skb->priority = tid;
1415 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1416 	if (qos) {
1417 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1418 
1419 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1420 			nullfunc->qos_ctrl |=
1421 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1422 			if (more_data)
1423 				nullfunc->frame_control |=
1424 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1425 		}
1426 	}
1427 
1428 	info = IEEE80211_SKB_CB(skb);
1429 
1430 	/*
1431 	 * Tell TX path to send this frame even though the
1432 	 * STA may still remain is PS mode after this frame
1433 	 * exchange. Also set EOSP to indicate this packet
1434 	 * ends the poll/service period.
1435 	 */
1436 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1437 		       IEEE80211_TX_STATUS_EOSP |
1438 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1439 
1440 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1441 
1442 	if (call_driver)
1443 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1444 					  reason, false);
1445 
1446 	skb->dev = sdata->dev;
1447 
1448 	rcu_read_lock();
1449 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1450 	if (WARN_ON(!chanctx_conf)) {
1451 		rcu_read_unlock();
1452 		kfree_skb(skb);
1453 		return;
1454 	}
1455 
1456 	info->band = chanctx_conf->def.chan->band;
1457 	ieee80211_xmit(sdata, sta, skb, 0);
1458 	rcu_read_unlock();
1459 }
1460 
1461 static int find_highest_prio_tid(unsigned long tids)
1462 {
1463 	/* lower 3 TIDs aren't ordered perfectly */
1464 	if (tids & 0xF8)
1465 		return fls(tids) - 1;
1466 	/* TID 0 is BE just like TID 3 */
1467 	if (tids & BIT(0))
1468 		return 0;
1469 	return fls(tids) - 1;
1470 }
1471 
1472 /* Indicates if the MORE_DATA bit should be set in the last
1473  * frame obtained by ieee80211_sta_ps_get_frames.
1474  * Note that driver_release_tids is relevant only if
1475  * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1476  */
1477 static bool
1478 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1479 			   enum ieee80211_frame_release_type reason,
1480 			   unsigned long driver_release_tids)
1481 {
1482 	int ac;
1483 
1484 	/* If the driver has data on more than one TID then
1485 	 * certainly there's more data if we release just a
1486 	 * single frame now (from a single TID). This will
1487 	 * only happen for PS-Poll.
1488 	 */
1489 	if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1490 	    hweight16(driver_release_tids) > 1)
1491 		return true;
1492 
1493 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1494 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1495 			continue;
1496 
1497 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1498 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1499 			return true;
1500 	}
1501 
1502 	return false;
1503 }
1504 
1505 static void
1506 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1507 			    enum ieee80211_frame_release_type reason,
1508 			    struct sk_buff_head *frames,
1509 			    unsigned long *driver_release_tids)
1510 {
1511 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1512 	struct ieee80211_local *local = sdata->local;
1513 	int ac;
1514 
1515 	/* Get response frame(s) and more data bit for the last one. */
1516 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1517 		unsigned long tids;
1518 
1519 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1520 			continue;
1521 
1522 		tids = ieee80211_tids_for_ac(ac);
1523 
1524 		/* if we already have frames from software, then we can't also
1525 		 * release from hardware queues
1526 		 */
1527 		if (skb_queue_empty(frames)) {
1528 			*driver_release_tids |=
1529 				sta->driver_buffered_tids & tids;
1530 			*driver_release_tids |= sta->txq_buffered_tids & tids;
1531 		}
1532 
1533 		if (!*driver_release_tids) {
1534 			struct sk_buff *skb;
1535 
1536 			while (n_frames > 0) {
1537 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1538 				if (!skb) {
1539 					skb = skb_dequeue(
1540 						&sta->ps_tx_buf[ac]);
1541 					if (skb)
1542 						local->total_ps_buffered--;
1543 				}
1544 				if (!skb)
1545 					break;
1546 				n_frames--;
1547 				__skb_queue_tail(frames, skb);
1548 			}
1549 		}
1550 
1551 		/* If we have more frames buffered on this AC, then abort the
1552 		 * loop since we can't send more data from other ACs before
1553 		 * the buffered frames from this.
1554 		 */
1555 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1556 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1557 			break;
1558 	}
1559 }
1560 
1561 static void
1562 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1563 				  int n_frames, u8 ignored_acs,
1564 				  enum ieee80211_frame_release_type reason)
1565 {
1566 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1567 	struct ieee80211_local *local = sdata->local;
1568 	unsigned long driver_release_tids = 0;
1569 	struct sk_buff_head frames;
1570 	bool more_data;
1571 
1572 	/* Service or PS-Poll period starts */
1573 	set_sta_flag(sta, WLAN_STA_SP);
1574 
1575 	__skb_queue_head_init(&frames);
1576 
1577 	ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1578 				    &frames, &driver_release_tids);
1579 
1580 	more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1581 
1582 	if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1583 		driver_release_tids =
1584 			BIT(find_highest_prio_tid(driver_release_tids));
1585 
1586 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1587 		int tid, ac;
1588 
1589 		/*
1590 		 * For PS-Poll, this can only happen due to a race condition
1591 		 * when we set the TIM bit and the station notices it, but
1592 		 * before it can poll for the frame we expire it.
1593 		 *
1594 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1595 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1596 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1597 		 *	more than the value specified in the Max SP Length field
1598 		 *	in the QoS Capability element from delivery-enabled ACs,
1599 		 *	that are destined for the non-AP STA.
1600 		 *
1601 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1602 		 */
1603 
1604 		/* This will evaluate to 1, 3, 5 or 7. */
1605 		for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1606 			if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1607 				break;
1608 		tid = 7 - 2 * ac;
1609 
1610 		ieee80211_send_null_response(sta, tid, reason, true, false);
1611 	} else if (!driver_release_tids) {
1612 		struct sk_buff_head pending;
1613 		struct sk_buff *skb;
1614 		int num = 0;
1615 		u16 tids = 0;
1616 		bool need_null = false;
1617 
1618 		skb_queue_head_init(&pending);
1619 
1620 		while ((skb = __skb_dequeue(&frames))) {
1621 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1622 			struct ieee80211_hdr *hdr = (void *) skb->data;
1623 			u8 *qoshdr = NULL;
1624 
1625 			num++;
1626 
1627 			/*
1628 			 * Tell TX path to send this frame even though the
1629 			 * STA may still remain is PS mode after this frame
1630 			 * exchange.
1631 			 */
1632 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1633 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1634 
1635 			/*
1636 			 * Use MoreData flag to indicate whether there are
1637 			 * more buffered frames for this STA
1638 			 */
1639 			if (more_data || !skb_queue_empty(&frames))
1640 				hdr->frame_control |=
1641 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1642 			else
1643 				hdr->frame_control &=
1644 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1645 
1646 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1647 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1648 				qoshdr = ieee80211_get_qos_ctl(hdr);
1649 
1650 			tids |= BIT(skb->priority);
1651 
1652 			__skb_queue_tail(&pending, skb);
1653 
1654 			/* end service period after last frame or add one */
1655 			if (!skb_queue_empty(&frames))
1656 				continue;
1657 
1658 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1659 				/* for PS-Poll, there's only one frame */
1660 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1661 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1662 				break;
1663 			}
1664 
1665 			/* For uAPSD, things are a bit more complicated. If the
1666 			 * last frame has a QoS header (i.e. is a QoS-data or
1667 			 * QoS-nulldata frame) then just set the EOSP bit there
1668 			 * and be done.
1669 			 * If the frame doesn't have a QoS header (which means
1670 			 * it should be a bufferable MMPDU) then we can't set
1671 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1672 			 * frame to the list to send it after the MMPDU.
1673 			 *
1674 			 * Note that this code is only in the mac80211-release
1675 			 * code path, we assume that the driver will not buffer
1676 			 * anything but QoS-data frames, or if it does, will
1677 			 * create the QoS-nulldata frame by itself if needed.
1678 			 *
1679 			 * Cf. 802.11-2012 10.2.1.10 (c).
1680 			 */
1681 			if (qoshdr) {
1682 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1683 
1684 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1685 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1686 			} else {
1687 				/* The standard isn't completely clear on this
1688 				 * as it says the more-data bit should be set
1689 				 * if there are more BUs. The QoS-Null frame
1690 				 * we're about to send isn't buffered yet, we
1691 				 * only create it below, but let's pretend it
1692 				 * was buffered just in case some clients only
1693 				 * expect more-data=0 when eosp=1.
1694 				 */
1695 				hdr->frame_control |=
1696 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1697 				need_null = true;
1698 				num++;
1699 			}
1700 			break;
1701 		}
1702 
1703 		drv_allow_buffered_frames(local, sta, tids, num,
1704 					  reason, more_data);
1705 
1706 		ieee80211_add_pending_skbs(local, &pending);
1707 
1708 		if (need_null)
1709 			ieee80211_send_null_response(
1710 				sta, find_highest_prio_tid(tids),
1711 				reason, false, false);
1712 
1713 		sta_info_recalc_tim(sta);
1714 	} else {
1715 		int tid;
1716 
1717 		/*
1718 		 * We need to release a frame that is buffered somewhere in the
1719 		 * driver ... it'll have to handle that.
1720 		 * Note that the driver also has to check the number of frames
1721 		 * on the TIDs we're releasing from - if there are more than
1722 		 * n_frames it has to set the more-data bit (if we didn't ask
1723 		 * it to set it anyway due to other buffered frames); if there
1724 		 * are fewer than n_frames it has to make sure to adjust that
1725 		 * to allow the service period to end properly.
1726 		 */
1727 		drv_release_buffered_frames(local, sta, driver_release_tids,
1728 					    n_frames, reason, more_data);
1729 
1730 		/*
1731 		 * Note that we don't recalculate the TIM bit here as it would
1732 		 * most likely have no effect at all unless the driver told us
1733 		 * that the TID(s) became empty before returning here from the
1734 		 * release function.
1735 		 * Either way, however, when the driver tells us that the TID(s)
1736 		 * became empty or we find that a txq became empty, we'll do the
1737 		 * TIM recalculation.
1738 		 */
1739 
1740 		if (!sta->sta.txq[0])
1741 			return;
1742 
1743 		for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1744 			if (!sta->sta.txq[tid] ||
1745 			    !(driver_release_tids & BIT(tid)) ||
1746 			    txq_has_queue(sta->sta.txq[tid]))
1747 				continue;
1748 
1749 			sta_info_recalc_tim(sta);
1750 			break;
1751 		}
1752 	}
1753 }
1754 
1755 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1756 {
1757 	u8 ignore_for_response = sta->sta.uapsd_queues;
1758 
1759 	/*
1760 	 * If all ACs are delivery-enabled then we should reply
1761 	 * from any of them, if only some are enabled we reply
1762 	 * only from the non-enabled ones.
1763 	 */
1764 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1765 		ignore_for_response = 0;
1766 
1767 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1768 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1769 }
1770 
1771 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1772 {
1773 	int n_frames = sta->sta.max_sp;
1774 	u8 delivery_enabled = sta->sta.uapsd_queues;
1775 
1776 	/*
1777 	 * If we ever grow support for TSPEC this might happen if
1778 	 * the TSPEC update from hostapd comes in between a trigger
1779 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1780 	 * actually getting called.
1781 	 */
1782 	if (!delivery_enabled)
1783 		return;
1784 
1785 	switch (sta->sta.max_sp) {
1786 	case 1:
1787 		n_frames = 2;
1788 		break;
1789 	case 2:
1790 		n_frames = 4;
1791 		break;
1792 	case 3:
1793 		n_frames = 6;
1794 		break;
1795 	case 0:
1796 		/* XXX: what is a good value? */
1797 		n_frames = 128;
1798 		break;
1799 	}
1800 
1801 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1802 					  IEEE80211_FRAME_RELEASE_UAPSD);
1803 }
1804 
1805 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1806 			       struct ieee80211_sta *pubsta, bool block)
1807 {
1808 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1809 
1810 	trace_api_sta_block_awake(sta->local, pubsta, block);
1811 
1812 	if (block) {
1813 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1814 		ieee80211_clear_fast_xmit(sta);
1815 		return;
1816 	}
1817 
1818 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1819 		return;
1820 
1821 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1822 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1823 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1824 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1825 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1826 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
1827 		/* must be asleep in this case */
1828 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1829 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1830 	} else {
1831 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1832 		ieee80211_check_fast_xmit(sta);
1833 	}
1834 }
1835 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1836 
1837 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1838 {
1839 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1840 	struct ieee80211_local *local = sta->local;
1841 
1842 	trace_api_eosp(local, pubsta);
1843 
1844 	clear_sta_flag(sta, WLAN_STA_SP);
1845 }
1846 EXPORT_SYMBOL(ieee80211_sta_eosp);
1847 
1848 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1849 {
1850 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1851 	enum ieee80211_frame_release_type reason;
1852 	bool more_data;
1853 
1854 	trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1855 
1856 	reason = IEEE80211_FRAME_RELEASE_UAPSD;
1857 	more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1858 					       reason, 0);
1859 
1860 	ieee80211_send_null_response(sta, tid, reason, false, more_data);
1861 }
1862 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1863 
1864 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1865 				u8 tid, bool buffered)
1866 {
1867 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1868 
1869 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1870 		return;
1871 
1872 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1873 
1874 	if (buffered)
1875 		set_bit(tid, &sta->driver_buffered_tids);
1876 	else
1877 		clear_bit(tid, &sta->driver_buffered_tids);
1878 
1879 	sta_info_recalc_tim(sta);
1880 }
1881 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1882 
1883 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1884 				    u32 tx_airtime, u32 rx_airtime)
1885 {
1886 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1887 	struct ieee80211_local *local = sta->sdata->local;
1888 	u8 ac = ieee80211_ac_from_tid(tid);
1889 	u32 airtime = 0;
1890 
1891 	if (sta->local->airtime_flags & AIRTIME_USE_TX)
1892 		airtime += tx_airtime;
1893 	if (sta->local->airtime_flags & AIRTIME_USE_RX)
1894 		airtime += rx_airtime;
1895 
1896 	spin_lock_bh(&local->active_txq_lock[ac]);
1897 	sta->airtime[ac].tx_airtime += tx_airtime;
1898 	sta->airtime[ac].rx_airtime += rx_airtime;
1899 	sta->airtime[ac].deficit -= airtime;
1900 	spin_unlock_bh(&local->active_txq_lock[ac]);
1901 }
1902 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1903 
1904 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
1905 					  struct sta_info *sta, u8 ac,
1906 					  u16 tx_airtime, bool tx_completed)
1907 {
1908 	int tx_pending;
1909 
1910 	if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
1911 		return;
1912 
1913 	if (!tx_completed) {
1914 		if (sta)
1915 			atomic_add(tx_airtime,
1916 				   &sta->airtime[ac].aql_tx_pending);
1917 
1918 		atomic_add(tx_airtime, &local->aql_total_pending_airtime);
1919 		return;
1920 	}
1921 
1922 	if (sta) {
1923 		tx_pending = atomic_sub_return(tx_airtime,
1924 					       &sta->airtime[ac].aql_tx_pending);
1925 		if (WARN_ONCE(tx_pending < 0,
1926 			      "STA %pM AC %d txq pending airtime underflow: %u, %u",
1927 			      sta->addr, ac, tx_pending, tx_airtime))
1928 			atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
1929 				       tx_pending, 0);
1930 	}
1931 
1932 	tx_pending = atomic_sub_return(tx_airtime,
1933 				       &local->aql_total_pending_airtime);
1934 	if (WARN_ONCE(tx_pending < 0,
1935 		      "Device %s AC %d pending airtime underflow: %u, %u",
1936 		      wiphy_name(local->hw.wiphy), ac, tx_pending,
1937 		      tx_airtime))
1938 		atomic_cmpxchg(&local->aql_total_pending_airtime,
1939 			       tx_pending, 0);
1940 }
1941 
1942 int sta_info_move_state(struct sta_info *sta,
1943 			enum ieee80211_sta_state new_state)
1944 {
1945 	might_sleep();
1946 
1947 	if (sta->sta_state == new_state)
1948 		return 0;
1949 
1950 	/* check allowed transitions first */
1951 
1952 	switch (new_state) {
1953 	case IEEE80211_STA_NONE:
1954 		if (sta->sta_state != IEEE80211_STA_AUTH)
1955 			return -EINVAL;
1956 		break;
1957 	case IEEE80211_STA_AUTH:
1958 		if (sta->sta_state != IEEE80211_STA_NONE &&
1959 		    sta->sta_state != IEEE80211_STA_ASSOC)
1960 			return -EINVAL;
1961 		break;
1962 	case IEEE80211_STA_ASSOC:
1963 		if (sta->sta_state != IEEE80211_STA_AUTH &&
1964 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
1965 			return -EINVAL;
1966 		break;
1967 	case IEEE80211_STA_AUTHORIZED:
1968 		if (sta->sta_state != IEEE80211_STA_ASSOC)
1969 			return -EINVAL;
1970 		break;
1971 	default:
1972 		WARN(1, "invalid state %d", new_state);
1973 		return -EINVAL;
1974 	}
1975 
1976 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1977 		sta->sta.addr, new_state);
1978 
1979 	/*
1980 	 * notify the driver before the actual changes so it can
1981 	 * fail the transition
1982 	 */
1983 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1984 		int err = drv_sta_state(sta->local, sta->sdata, sta,
1985 					sta->sta_state, new_state);
1986 		if (err)
1987 			return err;
1988 	}
1989 
1990 	/* reflect the change in all state variables */
1991 
1992 	switch (new_state) {
1993 	case IEEE80211_STA_NONE:
1994 		if (sta->sta_state == IEEE80211_STA_AUTH)
1995 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
1996 		break;
1997 	case IEEE80211_STA_AUTH:
1998 		if (sta->sta_state == IEEE80211_STA_NONE) {
1999 			set_bit(WLAN_STA_AUTH, &sta->_flags);
2000 		} else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2001 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2002 			ieee80211_recalc_min_chandef(sta->sdata);
2003 			if (!sta->sta.support_p2p_ps)
2004 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2005 		}
2006 		break;
2007 	case IEEE80211_STA_ASSOC:
2008 		if (sta->sta_state == IEEE80211_STA_AUTH) {
2009 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
2010 			sta->assoc_at = ktime_get_boottime_ns();
2011 			ieee80211_recalc_min_chandef(sta->sdata);
2012 			if (!sta->sta.support_p2p_ps)
2013 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2014 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2015 			ieee80211_vif_dec_num_mcast(sta->sdata);
2016 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2017 			ieee80211_clear_fast_xmit(sta);
2018 			ieee80211_clear_fast_rx(sta);
2019 		}
2020 		break;
2021 	case IEEE80211_STA_AUTHORIZED:
2022 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
2023 			ieee80211_vif_inc_num_mcast(sta->sdata);
2024 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2025 			ieee80211_check_fast_xmit(sta);
2026 			ieee80211_check_fast_rx(sta);
2027 		}
2028 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2029 		    sta->sdata->vif.type == NL80211_IFTYPE_AP)
2030 			cfg80211_send_layer2_update(sta->sdata->dev,
2031 						    sta->sta.addr);
2032 		break;
2033 	default:
2034 		break;
2035 	}
2036 
2037 	sta->sta_state = new_state;
2038 
2039 	return 0;
2040 }
2041 
2042 u8 sta_info_tx_streams(struct sta_info *sta)
2043 {
2044 	struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
2045 	u8 rx_streams;
2046 
2047 	if (!sta->sta.ht_cap.ht_supported)
2048 		return 1;
2049 
2050 	if (sta->sta.vht_cap.vht_supported) {
2051 		int i;
2052 		u16 tx_mcs_map =
2053 			le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
2054 
2055 		for (i = 7; i >= 0; i--)
2056 			if ((tx_mcs_map & (0x3 << (i * 2))) !=
2057 			    IEEE80211_VHT_MCS_NOT_SUPPORTED)
2058 				return i + 1;
2059 	}
2060 
2061 	if (ht_cap->mcs.rx_mask[3])
2062 		rx_streams = 4;
2063 	else if (ht_cap->mcs.rx_mask[2])
2064 		rx_streams = 3;
2065 	else if (ht_cap->mcs.rx_mask[1])
2066 		rx_streams = 2;
2067 	else
2068 		rx_streams = 1;
2069 
2070 	if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2071 		return rx_streams;
2072 
2073 	return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2074 			>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2075 }
2076 
2077 static struct ieee80211_sta_rx_stats *
2078 sta_get_last_rx_stats(struct sta_info *sta)
2079 {
2080 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
2081 	struct ieee80211_local *local = sta->local;
2082 	int cpu;
2083 
2084 	if (!ieee80211_hw_check(&local->hw, USES_RSS))
2085 		return stats;
2086 
2087 	for_each_possible_cpu(cpu) {
2088 		struct ieee80211_sta_rx_stats *cpustats;
2089 
2090 		cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2091 
2092 		if (time_after(cpustats->last_rx, stats->last_rx))
2093 			stats = cpustats;
2094 	}
2095 
2096 	return stats;
2097 }
2098 
2099 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2100 				  struct rate_info *rinfo)
2101 {
2102 	rinfo->bw = STA_STATS_GET(BW, rate);
2103 
2104 	switch (STA_STATS_GET(TYPE, rate)) {
2105 	case STA_STATS_RATE_TYPE_VHT:
2106 		rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2107 		rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2108 		rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2109 		if (STA_STATS_GET(SGI, rate))
2110 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2111 		break;
2112 	case STA_STATS_RATE_TYPE_HT:
2113 		rinfo->flags = RATE_INFO_FLAGS_MCS;
2114 		rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2115 		if (STA_STATS_GET(SGI, rate))
2116 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2117 		break;
2118 	case STA_STATS_RATE_TYPE_LEGACY: {
2119 		struct ieee80211_supported_band *sband;
2120 		u16 brate;
2121 		unsigned int shift;
2122 		int band = STA_STATS_GET(LEGACY_BAND, rate);
2123 		int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2124 
2125 		sband = local->hw.wiphy->bands[band];
2126 		brate = sband->bitrates[rate_idx].bitrate;
2127 		if (rinfo->bw == RATE_INFO_BW_5)
2128 			shift = 2;
2129 		else if (rinfo->bw == RATE_INFO_BW_10)
2130 			shift = 1;
2131 		else
2132 			shift = 0;
2133 		rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2134 		break;
2135 		}
2136 	case STA_STATS_RATE_TYPE_HE:
2137 		rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2138 		rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2139 		rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2140 		rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2141 		rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2142 		rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2143 		break;
2144 	}
2145 }
2146 
2147 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2148 {
2149 	u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2150 
2151 	if (rate == STA_STATS_RATE_INVALID)
2152 		return -EINVAL;
2153 
2154 	sta_stats_decode_rate(sta->local, rate, rinfo);
2155 	return 0;
2156 }
2157 
2158 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats,
2159 					int tid)
2160 {
2161 	unsigned int start;
2162 	u64 value;
2163 
2164 	do {
2165 		start = u64_stats_fetch_begin(&rxstats->syncp);
2166 		value = rxstats->msdu[tid];
2167 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2168 
2169 	return value;
2170 }
2171 
2172 static void sta_set_tidstats(struct sta_info *sta,
2173 			     struct cfg80211_tid_stats *tidstats,
2174 			     int tid)
2175 {
2176 	struct ieee80211_local *local = sta->local;
2177 	int cpu;
2178 
2179 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2180 		if (!ieee80211_hw_check(&local->hw, USES_RSS))
2181 			tidstats->rx_msdu +=
2182 				sta_get_tidstats_msdu(&sta->rx_stats, tid);
2183 
2184 		if (sta->pcpu_rx_stats) {
2185 			for_each_possible_cpu(cpu) {
2186 				struct ieee80211_sta_rx_stats *cpurxs;
2187 
2188 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2189 				tidstats->rx_msdu +=
2190 					sta_get_tidstats_msdu(cpurxs, tid);
2191 			}
2192 		}
2193 
2194 		tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2195 	}
2196 
2197 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2198 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2199 		tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2200 	}
2201 
2202 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2203 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2204 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2205 		tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2206 	}
2207 
2208 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2209 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2210 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2211 		tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2212 	}
2213 
2214 	if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2215 		spin_lock_bh(&local->fq.lock);
2216 		rcu_read_lock();
2217 
2218 		tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2219 		ieee80211_fill_txq_stats(&tidstats->txq_stats,
2220 					 to_txq_info(sta->sta.txq[tid]));
2221 
2222 		rcu_read_unlock();
2223 		spin_unlock_bh(&local->fq.lock);
2224 	}
2225 }
2226 
2227 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2228 {
2229 	unsigned int start;
2230 	u64 value;
2231 
2232 	do {
2233 		start = u64_stats_fetch_begin(&rxstats->syncp);
2234 		value = rxstats->bytes;
2235 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2236 
2237 	return value;
2238 }
2239 
2240 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2241 		   bool tidstats)
2242 {
2243 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2244 	struct ieee80211_local *local = sdata->local;
2245 	u32 thr = 0;
2246 	int i, ac, cpu;
2247 	struct ieee80211_sta_rx_stats *last_rxstats;
2248 
2249 	last_rxstats = sta_get_last_rx_stats(sta);
2250 
2251 	sinfo->generation = sdata->local->sta_generation;
2252 
2253 	/* do before driver, so beacon filtering drivers have a
2254 	 * chance to e.g. just add the number of filtered beacons
2255 	 * (or just modify the value entirely, of course)
2256 	 */
2257 	if (sdata->vif.type == NL80211_IFTYPE_STATION)
2258 		sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2259 
2260 	drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2261 
2262 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2263 			 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2264 			 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2265 			 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2266 			 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2267 			 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2268 
2269 	if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2270 		sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2271 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2272 	}
2273 
2274 	sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2275 	sinfo->assoc_at = sta->assoc_at;
2276 	sinfo->inactive_time =
2277 		jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2278 
2279 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2280 			       BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2281 		sinfo->tx_bytes = 0;
2282 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2283 			sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2284 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2285 	}
2286 
2287 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2288 		sinfo->tx_packets = 0;
2289 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2290 			sinfo->tx_packets += sta->tx_stats.packets[ac];
2291 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2292 	}
2293 
2294 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2295 			       BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2296 		if (!ieee80211_hw_check(&local->hw, USES_RSS))
2297 			sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2298 
2299 		if (sta->pcpu_rx_stats) {
2300 			for_each_possible_cpu(cpu) {
2301 				struct ieee80211_sta_rx_stats *cpurxs;
2302 
2303 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2304 				sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2305 			}
2306 		}
2307 
2308 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2309 	}
2310 
2311 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2312 		sinfo->rx_packets = sta->rx_stats.packets;
2313 		if (sta->pcpu_rx_stats) {
2314 			for_each_possible_cpu(cpu) {
2315 				struct ieee80211_sta_rx_stats *cpurxs;
2316 
2317 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2318 				sinfo->rx_packets += cpurxs->packets;
2319 			}
2320 		}
2321 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2322 	}
2323 
2324 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2325 		sinfo->tx_retries = sta->status_stats.retry_count;
2326 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2327 	}
2328 
2329 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2330 		sinfo->tx_failed = sta->status_stats.retry_failed;
2331 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2332 	}
2333 
2334 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2335 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2336 			sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2337 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2338 	}
2339 
2340 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2341 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2342 			sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2343 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2344 	}
2345 
2346 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2347 		sinfo->airtime_weight = sta->airtime_weight;
2348 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2349 	}
2350 
2351 	sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2352 	if (sta->pcpu_rx_stats) {
2353 		for_each_possible_cpu(cpu) {
2354 			struct ieee80211_sta_rx_stats *cpurxs;
2355 
2356 			cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2357 			sinfo->rx_dropped_misc += cpurxs->dropped;
2358 		}
2359 	}
2360 
2361 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2362 	    !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2363 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2364 				 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2365 		sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2366 	}
2367 
2368 	if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2369 	    ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2370 		if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2371 			sinfo->signal = (s8)last_rxstats->last_signal;
2372 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2373 		}
2374 
2375 		if (!sta->pcpu_rx_stats &&
2376 		    !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2377 			sinfo->signal_avg =
2378 				-ewma_signal_read(&sta->rx_stats_avg.signal);
2379 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2380 		}
2381 	}
2382 
2383 	/* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2384 	 * the sta->rx_stats struct, so the check here is fine with and without
2385 	 * pcpu statistics
2386 	 */
2387 	if (last_rxstats->chains &&
2388 	    !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2389 			       BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2390 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2391 		if (!sta->pcpu_rx_stats)
2392 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2393 
2394 		sinfo->chains = last_rxstats->chains;
2395 
2396 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2397 			sinfo->chain_signal[i] =
2398 				last_rxstats->chain_signal_last[i];
2399 			sinfo->chain_signal_avg[i] =
2400 				-ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2401 		}
2402 	}
2403 
2404 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2405 		sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2406 				     &sinfo->txrate);
2407 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2408 	}
2409 
2410 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2411 		if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2412 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2413 	}
2414 
2415 	if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2416 		for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2417 			sta_set_tidstats(sta, &sinfo->pertid[i], i);
2418 	}
2419 
2420 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2421 #ifdef CONFIG_MAC80211_MESH
2422 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2423 				 BIT_ULL(NL80211_STA_INFO_PLID) |
2424 				 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2425 				 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2426 				 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2427 				 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2428 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE);
2429 
2430 		sinfo->llid = sta->mesh->llid;
2431 		sinfo->plid = sta->mesh->plid;
2432 		sinfo->plink_state = sta->mesh->plink_state;
2433 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2434 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2435 			sinfo->t_offset = sta->mesh->t_offset;
2436 		}
2437 		sinfo->local_pm = sta->mesh->local_pm;
2438 		sinfo->peer_pm = sta->mesh->peer_pm;
2439 		sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2440 		sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2441 #endif
2442 	}
2443 
2444 	sinfo->bss_param.flags = 0;
2445 	if (sdata->vif.bss_conf.use_cts_prot)
2446 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2447 	if (sdata->vif.bss_conf.use_short_preamble)
2448 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2449 	if (sdata->vif.bss_conf.use_short_slot)
2450 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2451 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2452 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2453 
2454 	sinfo->sta_flags.set = 0;
2455 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2456 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2457 				BIT(NL80211_STA_FLAG_WME) |
2458 				BIT(NL80211_STA_FLAG_MFP) |
2459 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2460 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
2461 				BIT(NL80211_STA_FLAG_TDLS_PEER);
2462 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2463 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2464 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2465 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2466 	if (sta->sta.wme)
2467 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2468 	if (test_sta_flag(sta, WLAN_STA_MFP))
2469 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2470 	if (test_sta_flag(sta, WLAN_STA_AUTH))
2471 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2472 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
2473 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2474 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2475 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2476 
2477 	thr = sta_get_expected_throughput(sta);
2478 
2479 	if (thr != 0) {
2480 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2481 		sinfo->expected_throughput = thr;
2482 	}
2483 
2484 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2485 	    sta->status_stats.ack_signal_filled) {
2486 		sinfo->ack_signal = sta->status_stats.last_ack_signal;
2487 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2488 	}
2489 
2490 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2491 	    sta->status_stats.ack_signal_filled) {
2492 		sinfo->avg_ack_signal =
2493 			-(s8)ewma_avg_signal_read(
2494 				&sta->status_stats.avg_ack_signal);
2495 		sinfo->filled |=
2496 			BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2497 	}
2498 
2499 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2500 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2501 		sinfo->airtime_link_metric =
2502 			airtime_link_metric_get(local, sta);
2503 	}
2504 }
2505 
2506 u32 sta_get_expected_throughput(struct sta_info *sta)
2507 {
2508 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2509 	struct ieee80211_local *local = sdata->local;
2510 	struct rate_control_ref *ref = NULL;
2511 	u32 thr = 0;
2512 
2513 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2514 		ref = local->rate_ctrl;
2515 
2516 	/* check if the driver has a SW RC implementation */
2517 	if (ref && ref->ops->get_expected_throughput)
2518 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2519 	else
2520 		thr = drv_get_expected_throughput(local, sta);
2521 
2522 	return thr;
2523 }
2524 
2525 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2526 {
2527 	struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2528 
2529 	if (!sta->status_stats.last_ack ||
2530 	    time_after(stats->last_rx, sta->status_stats.last_ack))
2531 		return stats->last_rx;
2532 	return sta->status_stats.last_ack;
2533 }
2534 
2535 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2536 {
2537 	if (!sta->sdata->local->ops->wake_tx_queue)
2538 		return;
2539 
2540 	if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2541 		sta->cparams.target = MS2TIME(50);
2542 		sta->cparams.interval = MS2TIME(300);
2543 		sta->cparams.ecn = false;
2544 	} else {
2545 		sta->cparams.target = MS2TIME(20);
2546 		sta->cparams.interval = MS2TIME(100);
2547 		sta->cparams.ecn = true;
2548 	}
2549 }
2550 
2551 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2552 					   u32 thr)
2553 {
2554 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2555 
2556 	sta_update_codel_params(sta, thr);
2557 }
2558