1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 7 * Copyright (C) 2018-2021 Intel Corporation 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/codel.h> 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 static const struct rhashtable_params sta_rht_params = { 68 .nelem_hint = 3, /* start small */ 69 .automatic_shrinking = true, 70 .head_offset = offsetof(struct sta_info, hash_node), 71 .key_offset = offsetof(struct sta_info, addr), 72 .key_len = ETH_ALEN, 73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 74 }; 75 76 /* Caller must hold local->sta_mtx */ 77 static int sta_info_hash_del(struct ieee80211_local *local, 78 struct sta_info *sta) 79 { 80 return rhltable_remove(&local->sta_hash, &sta->hash_node, 81 sta_rht_params); 82 } 83 84 static void __cleanup_single_sta(struct sta_info *sta) 85 { 86 int ac, i; 87 struct tid_ampdu_tx *tid_tx; 88 struct ieee80211_sub_if_data *sdata = sta->sdata; 89 struct ieee80211_local *local = sdata->local; 90 struct ps_data *ps; 91 92 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 97 ps = &sdata->bss->ps; 98 else if (ieee80211_vif_is_mesh(&sdata->vif)) 99 ps = &sdata->u.mesh.ps; 100 else 101 return; 102 103 clear_sta_flag(sta, WLAN_STA_PS_STA); 104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 106 107 atomic_dec(&ps->num_sta_ps); 108 } 109 110 if (sta->sta.txq[0]) { 111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 112 struct txq_info *txqi; 113 114 if (!sta->sta.txq[i]) 115 continue; 116 117 txqi = to_txq_info(sta->sta.txq[i]); 118 119 ieee80211_txq_purge(local, txqi); 120 } 121 } 122 123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 127 } 128 129 if (ieee80211_vif_is_mesh(&sdata->vif)) 130 mesh_sta_cleanup(sta); 131 132 cancel_work_sync(&sta->drv_deliver_wk); 133 134 /* 135 * Destroy aggregation state here. It would be nice to wait for the 136 * driver to finish aggregation stop and then clean up, but for now 137 * drivers have to handle aggregation stop being requested, followed 138 * directly by station destruction. 139 */ 140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 141 kfree(sta->ampdu_mlme.tid_start_tx[i]); 142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 143 if (!tid_tx) 144 continue; 145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 146 kfree(tid_tx); 147 } 148 } 149 150 static void cleanup_single_sta(struct sta_info *sta) 151 { 152 struct ieee80211_sub_if_data *sdata = sta->sdata; 153 struct ieee80211_local *local = sdata->local; 154 155 __cleanup_single_sta(sta); 156 sta_info_free(local, sta); 157 } 158 159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 160 const u8 *addr) 161 { 162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 163 } 164 165 /* protected by RCU */ 166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 167 const u8 *addr) 168 { 169 struct ieee80211_local *local = sdata->local; 170 struct rhlist_head *tmp; 171 struct sta_info *sta; 172 173 rcu_read_lock(); 174 for_each_sta_info(local, addr, sta, tmp) { 175 if (sta->sdata == sdata) { 176 rcu_read_unlock(); 177 /* this is safe as the caller must already hold 178 * another rcu read section or the mutex 179 */ 180 return sta; 181 } 182 } 183 rcu_read_unlock(); 184 return NULL; 185 } 186 187 /* 188 * Get sta info either from the specified interface 189 * or from one of its vlans 190 */ 191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 192 const u8 *addr) 193 { 194 struct ieee80211_local *local = sdata->local; 195 struct rhlist_head *tmp; 196 struct sta_info *sta; 197 198 rcu_read_lock(); 199 for_each_sta_info(local, addr, sta, tmp) { 200 if (sta->sdata == sdata || 201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 202 rcu_read_unlock(); 203 /* this is safe as the caller must already hold 204 * another rcu read section or the mutex 205 */ 206 return sta; 207 } 208 } 209 rcu_read_unlock(); 210 return NULL; 211 } 212 213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, 214 const u8 *sta_addr, const u8 *vif_addr) 215 { 216 struct rhlist_head *tmp; 217 struct sta_info *sta; 218 219 for_each_sta_info(local, sta_addr, sta, tmp) { 220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr)) 221 return sta; 222 } 223 224 return NULL; 225 } 226 227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 228 int idx) 229 { 230 struct ieee80211_local *local = sdata->local; 231 struct sta_info *sta; 232 int i = 0; 233 234 list_for_each_entry_rcu(sta, &local->sta_list, list, 235 lockdep_is_held(&local->sta_mtx)) { 236 if (sdata != sta->sdata) 237 continue; 238 if (i < idx) { 239 ++i; 240 continue; 241 } 242 return sta; 243 } 244 245 return NULL; 246 } 247 248 /** 249 * sta_info_free - free STA 250 * 251 * @local: pointer to the global information 252 * @sta: STA info to free 253 * 254 * This function must undo everything done by sta_info_alloc() 255 * that may happen before sta_info_insert(). It may only be 256 * called when sta_info_insert() has not been attempted (and 257 * if that fails, the station is freed anyway.) 258 */ 259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 260 { 261 /* 262 * If we had used sta_info_pre_move_state() then we might not 263 * have gone through the state transitions down again, so do 264 * it here now (and warn if it's inserted). 265 * 266 * This will clear state such as fast TX/RX that may have been 267 * allocated during state transitions. 268 */ 269 while (sta->sta_state > IEEE80211_STA_NONE) { 270 int ret; 271 272 WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED)); 273 274 ret = sta_info_move_state(sta, sta->sta_state - 1); 275 if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret)) 276 break; 277 } 278 279 if (sta->rate_ctrl) 280 rate_control_free_sta(sta); 281 282 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 283 284 if (sta->sta.txq[0]) 285 kfree(to_txq_info(sta->sta.txq[0])); 286 kfree(rcu_dereference_raw(sta->sta.rates)); 287 #ifdef CONFIG_MAC80211_MESH 288 kfree(sta->mesh); 289 #endif 290 free_percpu(sta->pcpu_rx_stats); 291 kfree(sta); 292 } 293 294 /* Caller must hold local->sta_mtx */ 295 static int sta_info_hash_add(struct ieee80211_local *local, 296 struct sta_info *sta) 297 { 298 return rhltable_insert(&local->sta_hash, &sta->hash_node, 299 sta_rht_params); 300 } 301 302 static void sta_deliver_ps_frames(struct work_struct *wk) 303 { 304 struct sta_info *sta; 305 306 sta = container_of(wk, struct sta_info, drv_deliver_wk); 307 308 if (sta->dead) 309 return; 310 311 local_bh_disable(); 312 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 313 ieee80211_sta_ps_deliver_wakeup(sta); 314 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 315 ieee80211_sta_ps_deliver_poll_response(sta); 316 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 317 ieee80211_sta_ps_deliver_uapsd(sta); 318 local_bh_enable(); 319 } 320 321 static int sta_prepare_rate_control(struct ieee80211_local *local, 322 struct sta_info *sta, gfp_t gfp) 323 { 324 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 325 return 0; 326 327 sta->rate_ctrl = local->rate_ctrl; 328 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 329 sta, gfp); 330 if (!sta->rate_ctrl_priv) 331 return -ENOMEM; 332 333 return 0; 334 } 335 336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 337 const u8 *addr, gfp_t gfp) 338 { 339 struct ieee80211_local *local = sdata->local; 340 struct ieee80211_hw *hw = &local->hw; 341 struct sta_info *sta; 342 int i; 343 344 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 345 if (!sta) 346 return NULL; 347 348 if (ieee80211_hw_check(hw, USES_RSS)) { 349 sta->pcpu_rx_stats = 350 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); 351 if (!sta->pcpu_rx_stats) 352 goto free; 353 } 354 355 spin_lock_init(&sta->lock); 356 spin_lock_init(&sta->ps_lock); 357 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 358 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 359 mutex_init(&sta->ampdu_mlme.mtx); 360 #ifdef CONFIG_MAC80211_MESH 361 if (ieee80211_vif_is_mesh(&sdata->vif)) { 362 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 363 if (!sta->mesh) 364 goto free; 365 sta->mesh->plink_sta = sta; 366 spin_lock_init(&sta->mesh->plink_lock); 367 if (ieee80211_vif_is_mesh(&sdata->vif) && 368 !sdata->u.mesh.user_mpm) 369 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 370 0); 371 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 372 } 373 #endif 374 375 memcpy(sta->addr, addr, ETH_ALEN); 376 memcpy(sta->sta.addr, addr, ETH_ALEN); 377 sta->sta.max_rx_aggregation_subframes = 378 local->hw.max_rx_aggregation_subframes; 379 380 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only. 381 * The Tx path starts to use a key as soon as the key slot ptk_idx 382 * references to is not NULL. To not use the initial Rx-only key 383 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid 384 * which always will refer to a NULL key. 385 */ 386 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX); 387 sta->ptk_idx = INVALID_PTK_KEYIDX; 388 389 sta->local = local; 390 sta->sdata = sdata; 391 sta->rx_stats.last_rx = jiffies; 392 393 u64_stats_init(&sta->rx_stats.syncp); 394 395 ieee80211_init_frag_cache(&sta->frags); 396 397 sta->sta_state = IEEE80211_STA_NONE; 398 399 /* Mark TID as unreserved */ 400 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 401 402 sta->last_connected = ktime_get_seconds(); 403 ewma_signal_init(&sta->rx_stats_avg.signal); 404 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal); 405 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 406 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 407 408 if (local->ops->wake_tx_queue) { 409 void *txq_data; 410 int size = sizeof(struct txq_info) + 411 ALIGN(hw->txq_data_size, sizeof(void *)); 412 413 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 414 if (!txq_data) 415 goto free; 416 417 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 418 struct txq_info *txq = txq_data + i * size; 419 420 /* might not do anything for the bufferable MMPDU TXQ */ 421 ieee80211_txq_init(sdata, sta, txq, i); 422 } 423 } 424 425 if (sta_prepare_rate_control(local, sta, gfp)) 426 goto free_txq; 427 428 429 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 430 skb_queue_head_init(&sta->ps_tx_buf[i]); 431 skb_queue_head_init(&sta->tx_filtered[i]); 432 init_airtime_info(&sta->airtime[i], &local->airtime[i]); 433 } 434 435 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 436 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 437 438 for (i = 0; i < NUM_NL80211_BANDS; i++) { 439 u32 mandatory = 0; 440 int r; 441 442 if (!hw->wiphy->bands[i]) 443 continue; 444 445 switch (i) { 446 case NL80211_BAND_2GHZ: 447 case NL80211_BAND_LC: 448 /* 449 * We use both here, even if we cannot really know for 450 * sure the station will support both, but the only use 451 * for this is when we don't know anything yet and send 452 * management frames, and then we'll pick the lowest 453 * possible rate anyway. 454 * If we don't include _G here, we cannot find a rate 455 * in P2P, and thus trigger the WARN_ONCE() in rate.c 456 */ 457 mandatory = IEEE80211_RATE_MANDATORY_B | 458 IEEE80211_RATE_MANDATORY_G; 459 break; 460 case NL80211_BAND_5GHZ: 461 mandatory = IEEE80211_RATE_MANDATORY_A; 462 break; 463 case NL80211_BAND_60GHZ: 464 WARN_ON(1); 465 mandatory = 0; 466 break; 467 } 468 469 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) { 470 struct ieee80211_rate *rate; 471 472 rate = &hw->wiphy->bands[i]->bitrates[r]; 473 474 if (!(rate->flags & mandatory)) 475 continue; 476 sta->sta.supp_rates[i] |= BIT(r); 477 } 478 } 479 480 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 481 if (sdata->vif.type == NL80211_IFTYPE_AP || 482 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 483 struct ieee80211_supported_band *sband; 484 u8 smps; 485 486 sband = ieee80211_get_sband(sdata); 487 if (!sband) 488 goto free_txq; 489 490 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 491 IEEE80211_HT_CAP_SM_PS_SHIFT; 492 /* 493 * Assume that hostapd advertises our caps in the beacon and 494 * this is the known_smps_mode for a station that just assciated 495 */ 496 switch (smps) { 497 case WLAN_HT_SMPS_CONTROL_DISABLED: 498 sta->known_smps_mode = IEEE80211_SMPS_OFF; 499 break; 500 case WLAN_HT_SMPS_CONTROL_STATIC: 501 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 502 break; 503 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 504 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 505 break; 506 default: 507 WARN_ON(1); 508 } 509 } 510 511 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 512 513 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; 514 sta->cparams.target = MS2TIME(20); 515 sta->cparams.interval = MS2TIME(100); 516 sta->cparams.ecn = true; 517 sta->cparams.ce_threshold_selector = 0; 518 sta->cparams.ce_threshold_mask = 0; 519 520 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 521 522 return sta; 523 524 free_txq: 525 if (sta->sta.txq[0]) 526 kfree(to_txq_info(sta->sta.txq[0])); 527 free: 528 free_percpu(sta->pcpu_rx_stats); 529 #ifdef CONFIG_MAC80211_MESH 530 kfree(sta->mesh); 531 #endif 532 kfree(sta); 533 return NULL; 534 } 535 536 static int sta_info_insert_check(struct sta_info *sta) 537 { 538 struct ieee80211_sub_if_data *sdata = sta->sdata; 539 540 /* 541 * Can't be a WARN_ON because it can be triggered through a race: 542 * something inserts a STA (on one CPU) without holding the RTNL 543 * and another CPU turns off the net device. 544 */ 545 if (unlikely(!ieee80211_sdata_running(sdata))) 546 return -ENETDOWN; 547 548 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 549 !is_valid_ether_addr(sta->sta.addr))) 550 return -EINVAL; 551 552 /* The RCU read lock is required by rhashtable due to 553 * asynchronous resize/rehash. We also require the mutex 554 * for correctness. 555 */ 556 rcu_read_lock(); 557 lockdep_assert_held(&sdata->local->sta_mtx); 558 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 559 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 560 rcu_read_unlock(); 561 return -ENOTUNIQ; 562 } 563 rcu_read_unlock(); 564 565 return 0; 566 } 567 568 static int sta_info_insert_drv_state(struct ieee80211_local *local, 569 struct ieee80211_sub_if_data *sdata, 570 struct sta_info *sta) 571 { 572 enum ieee80211_sta_state state; 573 int err = 0; 574 575 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 576 err = drv_sta_state(local, sdata, sta, state, state + 1); 577 if (err) 578 break; 579 } 580 581 if (!err) { 582 /* 583 * Drivers using legacy sta_add/sta_remove callbacks only 584 * get uploaded set to true after sta_add is called. 585 */ 586 if (!local->ops->sta_add) 587 sta->uploaded = true; 588 return 0; 589 } 590 591 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 592 sdata_info(sdata, 593 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 594 sta->sta.addr, state + 1, err); 595 err = 0; 596 } 597 598 /* unwind on error */ 599 for (; state > IEEE80211_STA_NOTEXIST; state--) 600 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 601 602 return err; 603 } 604 605 static void 606 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 607 { 608 struct ieee80211_local *local = sdata->local; 609 bool allow_p2p_go_ps = sdata->vif.p2p; 610 struct sta_info *sta; 611 612 rcu_read_lock(); 613 list_for_each_entry_rcu(sta, &local->sta_list, list) { 614 if (sdata != sta->sdata || 615 !test_sta_flag(sta, WLAN_STA_ASSOC)) 616 continue; 617 if (!sta->sta.support_p2p_ps) { 618 allow_p2p_go_ps = false; 619 break; 620 } 621 } 622 rcu_read_unlock(); 623 624 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 625 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 626 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 627 } 628 } 629 630 /* 631 * should be called with sta_mtx locked 632 * this function replaces the mutex lock 633 * with a RCU lock 634 */ 635 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 636 { 637 struct ieee80211_local *local = sta->local; 638 struct ieee80211_sub_if_data *sdata = sta->sdata; 639 struct station_info *sinfo = NULL; 640 int err = 0; 641 642 lockdep_assert_held(&local->sta_mtx); 643 644 /* check if STA exists already */ 645 if (sta_info_get_bss(sdata, sta->sta.addr)) { 646 err = -EEXIST; 647 goto out_cleanup; 648 } 649 650 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 651 if (!sinfo) { 652 err = -ENOMEM; 653 goto out_cleanup; 654 } 655 656 local->num_sta++; 657 local->sta_generation++; 658 smp_mb(); 659 660 /* simplify things and don't accept BA sessions yet */ 661 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 662 663 /* make the station visible */ 664 err = sta_info_hash_add(local, sta); 665 if (err) 666 goto out_drop_sta; 667 668 list_add_tail_rcu(&sta->list, &local->sta_list); 669 670 /* update channel context before notifying the driver about state 671 * change, this enables driver using the updated channel context right away. 672 */ 673 if (sta->sta_state >= IEEE80211_STA_ASSOC) { 674 ieee80211_recalc_min_chandef(sta->sdata); 675 if (!sta->sta.support_p2p_ps) 676 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 677 } 678 679 /* notify driver */ 680 err = sta_info_insert_drv_state(local, sdata, sta); 681 if (err) 682 goto out_remove; 683 684 set_sta_flag(sta, WLAN_STA_INSERTED); 685 686 /* accept BA sessions now */ 687 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 688 689 ieee80211_sta_debugfs_add(sta); 690 rate_control_add_sta_debugfs(sta); 691 692 sinfo->generation = local->sta_generation; 693 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 694 kfree(sinfo); 695 696 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 697 698 /* move reference to rcu-protected */ 699 rcu_read_lock(); 700 mutex_unlock(&local->sta_mtx); 701 702 if (ieee80211_vif_is_mesh(&sdata->vif)) 703 mesh_accept_plinks_update(sdata); 704 705 return 0; 706 out_remove: 707 sta_info_hash_del(local, sta); 708 list_del_rcu(&sta->list); 709 out_drop_sta: 710 local->num_sta--; 711 synchronize_net(); 712 out_cleanup: 713 cleanup_single_sta(sta); 714 mutex_unlock(&local->sta_mtx); 715 kfree(sinfo); 716 rcu_read_lock(); 717 return err; 718 } 719 720 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 721 { 722 struct ieee80211_local *local = sta->local; 723 int err; 724 725 might_sleep(); 726 727 mutex_lock(&local->sta_mtx); 728 729 err = sta_info_insert_check(sta); 730 if (err) { 731 sta_info_free(local, sta); 732 mutex_unlock(&local->sta_mtx); 733 rcu_read_lock(); 734 return err; 735 } 736 737 return sta_info_insert_finish(sta); 738 } 739 740 int sta_info_insert(struct sta_info *sta) 741 { 742 int err = sta_info_insert_rcu(sta); 743 744 rcu_read_unlock(); 745 746 return err; 747 } 748 749 static inline void __bss_tim_set(u8 *tim, u16 id) 750 { 751 /* 752 * This format has been mandated by the IEEE specifications, 753 * so this line may not be changed to use the __set_bit() format. 754 */ 755 tim[id / 8] |= (1 << (id % 8)); 756 } 757 758 static inline void __bss_tim_clear(u8 *tim, u16 id) 759 { 760 /* 761 * This format has been mandated by the IEEE specifications, 762 * so this line may not be changed to use the __clear_bit() format. 763 */ 764 tim[id / 8] &= ~(1 << (id % 8)); 765 } 766 767 static inline bool __bss_tim_get(u8 *tim, u16 id) 768 { 769 /* 770 * This format has been mandated by the IEEE specifications, 771 * so this line may not be changed to use the test_bit() format. 772 */ 773 return tim[id / 8] & (1 << (id % 8)); 774 } 775 776 static unsigned long ieee80211_tids_for_ac(int ac) 777 { 778 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 779 switch (ac) { 780 case IEEE80211_AC_VO: 781 return BIT(6) | BIT(7); 782 case IEEE80211_AC_VI: 783 return BIT(4) | BIT(5); 784 case IEEE80211_AC_BE: 785 return BIT(0) | BIT(3); 786 case IEEE80211_AC_BK: 787 return BIT(1) | BIT(2); 788 default: 789 WARN_ON(1); 790 return 0; 791 } 792 } 793 794 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 795 { 796 struct ieee80211_local *local = sta->local; 797 struct ps_data *ps; 798 bool indicate_tim = false; 799 u8 ignore_for_tim = sta->sta.uapsd_queues; 800 int ac; 801 u16 id = sta->sta.aid; 802 803 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 804 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 805 if (WARN_ON_ONCE(!sta->sdata->bss)) 806 return; 807 808 ps = &sta->sdata->bss->ps; 809 #ifdef CONFIG_MAC80211_MESH 810 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 811 ps = &sta->sdata->u.mesh.ps; 812 #endif 813 } else { 814 return; 815 } 816 817 /* No need to do anything if the driver does all */ 818 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 819 return; 820 821 if (sta->dead) 822 goto done; 823 824 /* 825 * If all ACs are delivery-enabled then we should build 826 * the TIM bit for all ACs anyway; if only some are then 827 * we ignore those and build the TIM bit using only the 828 * non-enabled ones. 829 */ 830 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 831 ignore_for_tim = 0; 832 833 if (ignore_pending) 834 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 835 836 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 837 unsigned long tids; 838 839 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 840 continue; 841 842 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 843 !skb_queue_empty(&sta->ps_tx_buf[ac]); 844 if (indicate_tim) 845 break; 846 847 tids = ieee80211_tids_for_ac(ac); 848 849 indicate_tim |= 850 sta->driver_buffered_tids & tids; 851 indicate_tim |= 852 sta->txq_buffered_tids & tids; 853 } 854 855 done: 856 spin_lock_bh(&local->tim_lock); 857 858 if (indicate_tim == __bss_tim_get(ps->tim, id)) 859 goto out_unlock; 860 861 if (indicate_tim) 862 __bss_tim_set(ps->tim, id); 863 else 864 __bss_tim_clear(ps->tim, id); 865 866 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 867 local->tim_in_locked_section = true; 868 drv_set_tim(local, &sta->sta, indicate_tim); 869 local->tim_in_locked_section = false; 870 } 871 872 out_unlock: 873 spin_unlock_bh(&local->tim_lock); 874 } 875 876 void sta_info_recalc_tim(struct sta_info *sta) 877 { 878 __sta_info_recalc_tim(sta, false); 879 } 880 881 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 882 { 883 struct ieee80211_tx_info *info; 884 int timeout; 885 886 if (!skb) 887 return false; 888 889 info = IEEE80211_SKB_CB(skb); 890 891 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 892 timeout = (sta->listen_interval * 893 sta->sdata->vif.bss_conf.beacon_int * 894 32 / 15625) * HZ; 895 if (timeout < STA_TX_BUFFER_EXPIRE) 896 timeout = STA_TX_BUFFER_EXPIRE; 897 return time_after(jiffies, info->control.jiffies + timeout); 898 } 899 900 901 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 902 struct sta_info *sta, int ac) 903 { 904 unsigned long flags; 905 struct sk_buff *skb; 906 907 /* 908 * First check for frames that should expire on the filtered 909 * queue. Frames here were rejected by the driver and are on 910 * a separate queue to avoid reordering with normal PS-buffered 911 * frames. They also aren't accounted for right now in the 912 * total_ps_buffered counter. 913 */ 914 for (;;) { 915 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 916 skb = skb_peek(&sta->tx_filtered[ac]); 917 if (sta_info_buffer_expired(sta, skb)) 918 skb = __skb_dequeue(&sta->tx_filtered[ac]); 919 else 920 skb = NULL; 921 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 922 923 /* 924 * Frames are queued in order, so if this one 925 * hasn't expired yet we can stop testing. If 926 * we actually reached the end of the queue we 927 * also need to stop, of course. 928 */ 929 if (!skb) 930 break; 931 ieee80211_free_txskb(&local->hw, skb); 932 } 933 934 /* 935 * Now also check the normal PS-buffered queue, this will 936 * only find something if the filtered queue was emptied 937 * since the filtered frames are all before the normal PS 938 * buffered frames. 939 */ 940 for (;;) { 941 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 942 skb = skb_peek(&sta->ps_tx_buf[ac]); 943 if (sta_info_buffer_expired(sta, skb)) 944 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 945 else 946 skb = NULL; 947 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 948 949 /* 950 * frames are queued in order, so if this one 951 * hasn't expired yet (or we reached the end of 952 * the queue) we can stop testing 953 */ 954 if (!skb) 955 break; 956 957 local->total_ps_buffered--; 958 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 959 sta->sta.addr); 960 ieee80211_free_txskb(&local->hw, skb); 961 } 962 963 /* 964 * Finally, recalculate the TIM bit for this station -- it might 965 * now be clear because the station was too slow to retrieve its 966 * frames. 967 */ 968 sta_info_recalc_tim(sta); 969 970 /* 971 * Return whether there are any frames still buffered, this is 972 * used to check whether the cleanup timer still needs to run, 973 * if there are no frames we don't need to rearm the timer. 974 */ 975 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 976 skb_queue_empty(&sta->tx_filtered[ac])); 977 } 978 979 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 980 struct sta_info *sta) 981 { 982 bool have_buffered = false; 983 int ac; 984 985 /* This is only necessary for stations on BSS/MBSS interfaces */ 986 if (!sta->sdata->bss && 987 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 988 return false; 989 990 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 991 have_buffered |= 992 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 993 994 return have_buffered; 995 } 996 997 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 998 { 999 struct ieee80211_local *local; 1000 struct ieee80211_sub_if_data *sdata; 1001 int ret; 1002 1003 might_sleep(); 1004 1005 if (!sta) 1006 return -ENOENT; 1007 1008 local = sta->local; 1009 sdata = sta->sdata; 1010 1011 lockdep_assert_held(&local->sta_mtx); 1012 1013 /* 1014 * Before removing the station from the driver and 1015 * rate control, it might still start new aggregation 1016 * sessions -- block that to make sure the tear-down 1017 * will be sufficient. 1018 */ 1019 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 1020 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 1021 1022 /* 1023 * Before removing the station from the driver there might be pending 1024 * rx frames on RSS queues sent prior to the disassociation - wait for 1025 * all such frames to be processed. 1026 */ 1027 drv_sync_rx_queues(local, sta); 1028 1029 ret = sta_info_hash_del(local, sta); 1030 if (WARN_ON(ret)) 1031 return ret; 1032 1033 /* 1034 * for TDLS peers, make sure to return to the base channel before 1035 * removal. 1036 */ 1037 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 1038 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 1039 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 1040 } 1041 1042 list_del_rcu(&sta->list); 1043 sta->removed = true; 1044 1045 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 1046 1047 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1048 rcu_access_pointer(sdata->u.vlan.sta) == sta) 1049 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 1050 1051 return 0; 1052 } 1053 1054 static void __sta_info_destroy_part2(struct sta_info *sta) 1055 { 1056 struct ieee80211_local *local = sta->local; 1057 struct ieee80211_sub_if_data *sdata = sta->sdata; 1058 struct station_info *sinfo; 1059 int ret; 1060 1061 /* 1062 * NOTE: This assumes at least synchronize_net() was done 1063 * after _part1 and before _part2! 1064 */ 1065 1066 might_sleep(); 1067 lockdep_assert_held(&local->sta_mtx); 1068 1069 if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1070 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC); 1071 WARN_ON_ONCE(ret); 1072 } 1073 1074 /* now keys can no longer be reached */ 1075 ieee80211_free_sta_keys(local, sta); 1076 1077 /* disable TIM bit - last chance to tell driver */ 1078 __sta_info_recalc_tim(sta, true); 1079 1080 sta->dead = true; 1081 1082 local->num_sta--; 1083 local->sta_generation++; 1084 1085 while (sta->sta_state > IEEE80211_STA_NONE) { 1086 ret = sta_info_move_state(sta, sta->sta_state - 1); 1087 if (ret) { 1088 WARN_ON_ONCE(1); 1089 break; 1090 } 1091 } 1092 1093 if (sta->uploaded) { 1094 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 1095 IEEE80211_STA_NOTEXIST); 1096 WARN_ON_ONCE(ret != 0); 1097 } 1098 1099 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 1100 1101 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 1102 if (sinfo) 1103 sta_set_sinfo(sta, sinfo, true); 1104 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 1105 kfree(sinfo); 1106 1107 ieee80211_sta_debugfs_remove(sta); 1108 1109 ieee80211_destroy_frag_cache(&sta->frags); 1110 1111 cleanup_single_sta(sta); 1112 } 1113 1114 int __must_check __sta_info_destroy(struct sta_info *sta) 1115 { 1116 int err = __sta_info_destroy_part1(sta); 1117 1118 if (err) 1119 return err; 1120 1121 synchronize_net(); 1122 1123 __sta_info_destroy_part2(sta); 1124 1125 return 0; 1126 } 1127 1128 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1129 { 1130 struct sta_info *sta; 1131 int ret; 1132 1133 mutex_lock(&sdata->local->sta_mtx); 1134 sta = sta_info_get(sdata, addr); 1135 ret = __sta_info_destroy(sta); 1136 mutex_unlock(&sdata->local->sta_mtx); 1137 1138 return ret; 1139 } 1140 1141 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1142 const u8 *addr) 1143 { 1144 struct sta_info *sta; 1145 int ret; 1146 1147 mutex_lock(&sdata->local->sta_mtx); 1148 sta = sta_info_get_bss(sdata, addr); 1149 ret = __sta_info_destroy(sta); 1150 mutex_unlock(&sdata->local->sta_mtx); 1151 1152 return ret; 1153 } 1154 1155 static void sta_info_cleanup(struct timer_list *t) 1156 { 1157 struct ieee80211_local *local = from_timer(local, t, sta_cleanup); 1158 struct sta_info *sta; 1159 bool timer_needed = false; 1160 1161 rcu_read_lock(); 1162 list_for_each_entry_rcu(sta, &local->sta_list, list) 1163 if (sta_info_cleanup_expire_buffered(local, sta)) 1164 timer_needed = true; 1165 rcu_read_unlock(); 1166 1167 if (local->quiescing) 1168 return; 1169 1170 if (!timer_needed) 1171 return; 1172 1173 mod_timer(&local->sta_cleanup, 1174 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1175 } 1176 1177 int sta_info_init(struct ieee80211_local *local) 1178 { 1179 int err; 1180 1181 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1182 if (err) 1183 return err; 1184 1185 spin_lock_init(&local->tim_lock); 1186 mutex_init(&local->sta_mtx); 1187 INIT_LIST_HEAD(&local->sta_list); 1188 1189 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); 1190 return 0; 1191 } 1192 1193 void sta_info_stop(struct ieee80211_local *local) 1194 { 1195 del_timer_sync(&local->sta_cleanup); 1196 rhltable_destroy(&local->sta_hash); 1197 } 1198 1199 1200 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1201 { 1202 struct ieee80211_local *local = sdata->local; 1203 struct sta_info *sta, *tmp; 1204 LIST_HEAD(free_list); 1205 int ret = 0; 1206 1207 might_sleep(); 1208 1209 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1210 WARN_ON(vlans && !sdata->bss); 1211 1212 mutex_lock(&local->sta_mtx); 1213 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1214 if (sdata == sta->sdata || 1215 (vlans && sdata->bss == sta->sdata->bss)) { 1216 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1217 list_add(&sta->free_list, &free_list); 1218 ret++; 1219 } 1220 } 1221 1222 if (!list_empty(&free_list)) { 1223 synchronize_net(); 1224 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1225 __sta_info_destroy_part2(sta); 1226 } 1227 mutex_unlock(&local->sta_mtx); 1228 1229 return ret; 1230 } 1231 1232 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1233 unsigned long exp_time) 1234 { 1235 struct ieee80211_local *local = sdata->local; 1236 struct sta_info *sta, *tmp; 1237 1238 mutex_lock(&local->sta_mtx); 1239 1240 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1241 unsigned long last_active = ieee80211_sta_last_active(sta); 1242 1243 if (sdata != sta->sdata) 1244 continue; 1245 1246 if (time_is_before_jiffies(last_active + exp_time)) { 1247 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1248 sta->sta.addr); 1249 1250 if (ieee80211_vif_is_mesh(&sdata->vif) && 1251 test_sta_flag(sta, WLAN_STA_PS_STA)) 1252 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1253 1254 WARN_ON(__sta_info_destroy(sta)); 1255 } 1256 } 1257 1258 mutex_unlock(&local->sta_mtx); 1259 } 1260 1261 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1262 const u8 *addr, 1263 const u8 *localaddr) 1264 { 1265 struct ieee80211_local *local = hw_to_local(hw); 1266 struct rhlist_head *tmp; 1267 struct sta_info *sta; 1268 1269 /* 1270 * Just return a random station if localaddr is NULL 1271 * ... first in list. 1272 */ 1273 for_each_sta_info(local, addr, sta, tmp) { 1274 if (localaddr && 1275 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1276 continue; 1277 if (!sta->uploaded) 1278 return NULL; 1279 return &sta->sta; 1280 } 1281 1282 return NULL; 1283 } 1284 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1285 1286 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1287 const u8 *addr) 1288 { 1289 struct sta_info *sta; 1290 1291 if (!vif) 1292 return NULL; 1293 1294 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1295 if (!sta) 1296 return NULL; 1297 1298 if (!sta->uploaded) 1299 return NULL; 1300 1301 return &sta->sta; 1302 } 1303 EXPORT_SYMBOL(ieee80211_find_sta); 1304 1305 /* powersave support code */ 1306 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1307 { 1308 struct ieee80211_sub_if_data *sdata = sta->sdata; 1309 struct ieee80211_local *local = sdata->local; 1310 struct sk_buff_head pending; 1311 int filtered = 0, buffered = 0, ac, i; 1312 unsigned long flags; 1313 struct ps_data *ps; 1314 1315 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1316 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1317 u.ap); 1318 1319 if (sdata->vif.type == NL80211_IFTYPE_AP) 1320 ps = &sdata->bss->ps; 1321 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1322 ps = &sdata->u.mesh.ps; 1323 else 1324 return; 1325 1326 clear_sta_flag(sta, WLAN_STA_SP); 1327 1328 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1329 sta->driver_buffered_tids = 0; 1330 sta->txq_buffered_tids = 0; 1331 1332 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1333 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1334 1335 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1336 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) 1337 continue; 1338 1339 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); 1340 } 1341 1342 skb_queue_head_init(&pending); 1343 1344 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1345 spin_lock(&sta->ps_lock); 1346 /* Send all buffered frames to the station */ 1347 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1348 int count = skb_queue_len(&pending), tmp; 1349 1350 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1351 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1352 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1353 tmp = skb_queue_len(&pending); 1354 filtered += tmp - count; 1355 count = tmp; 1356 1357 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1358 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1359 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1360 tmp = skb_queue_len(&pending); 1361 buffered += tmp - count; 1362 } 1363 1364 ieee80211_add_pending_skbs(local, &pending); 1365 1366 /* now we're no longer in the deliver code */ 1367 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1368 1369 /* The station might have polled and then woken up before we responded, 1370 * so clear these flags now to avoid them sticking around. 1371 */ 1372 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1373 clear_sta_flag(sta, WLAN_STA_UAPSD); 1374 spin_unlock(&sta->ps_lock); 1375 1376 atomic_dec(&ps->num_sta_ps); 1377 1378 local->total_ps_buffered -= buffered; 1379 1380 sta_info_recalc_tim(sta); 1381 1382 ps_dbg(sdata, 1383 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1384 sta->sta.addr, sta->sta.aid, filtered, buffered); 1385 1386 ieee80211_check_fast_xmit(sta); 1387 } 1388 1389 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1390 enum ieee80211_frame_release_type reason, 1391 bool call_driver, bool more_data) 1392 { 1393 struct ieee80211_sub_if_data *sdata = sta->sdata; 1394 struct ieee80211_local *local = sdata->local; 1395 struct ieee80211_qos_hdr *nullfunc; 1396 struct sk_buff *skb; 1397 int size = sizeof(*nullfunc); 1398 __le16 fc; 1399 bool qos = sta->sta.wme; 1400 struct ieee80211_tx_info *info; 1401 struct ieee80211_chanctx_conf *chanctx_conf; 1402 1403 if (qos) { 1404 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1405 IEEE80211_STYPE_QOS_NULLFUNC | 1406 IEEE80211_FCTL_FROMDS); 1407 } else { 1408 size -= 2; 1409 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1410 IEEE80211_STYPE_NULLFUNC | 1411 IEEE80211_FCTL_FROMDS); 1412 } 1413 1414 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1415 if (!skb) 1416 return; 1417 1418 skb_reserve(skb, local->hw.extra_tx_headroom); 1419 1420 nullfunc = skb_put(skb, size); 1421 nullfunc->frame_control = fc; 1422 nullfunc->duration_id = 0; 1423 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1424 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1425 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1426 nullfunc->seq_ctrl = 0; 1427 1428 skb->priority = tid; 1429 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1430 if (qos) { 1431 nullfunc->qos_ctrl = cpu_to_le16(tid); 1432 1433 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1434 nullfunc->qos_ctrl |= 1435 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1436 if (more_data) 1437 nullfunc->frame_control |= 1438 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1439 } 1440 } 1441 1442 info = IEEE80211_SKB_CB(skb); 1443 1444 /* 1445 * Tell TX path to send this frame even though the 1446 * STA may still remain is PS mode after this frame 1447 * exchange. Also set EOSP to indicate this packet 1448 * ends the poll/service period. 1449 */ 1450 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1451 IEEE80211_TX_STATUS_EOSP | 1452 IEEE80211_TX_CTL_REQ_TX_STATUS; 1453 1454 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1455 1456 if (call_driver) 1457 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1458 reason, false); 1459 1460 skb->dev = sdata->dev; 1461 1462 rcu_read_lock(); 1463 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1464 if (WARN_ON(!chanctx_conf)) { 1465 rcu_read_unlock(); 1466 kfree_skb(skb); 1467 return; 1468 } 1469 1470 info->band = chanctx_conf->def.chan->band; 1471 ieee80211_xmit(sdata, sta, skb); 1472 rcu_read_unlock(); 1473 } 1474 1475 static int find_highest_prio_tid(unsigned long tids) 1476 { 1477 /* lower 3 TIDs aren't ordered perfectly */ 1478 if (tids & 0xF8) 1479 return fls(tids) - 1; 1480 /* TID 0 is BE just like TID 3 */ 1481 if (tids & BIT(0)) 1482 return 0; 1483 return fls(tids) - 1; 1484 } 1485 1486 /* Indicates if the MORE_DATA bit should be set in the last 1487 * frame obtained by ieee80211_sta_ps_get_frames. 1488 * Note that driver_release_tids is relevant only if 1489 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1490 */ 1491 static bool 1492 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1493 enum ieee80211_frame_release_type reason, 1494 unsigned long driver_release_tids) 1495 { 1496 int ac; 1497 1498 /* If the driver has data on more than one TID then 1499 * certainly there's more data if we release just a 1500 * single frame now (from a single TID). This will 1501 * only happen for PS-Poll. 1502 */ 1503 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1504 hweight16(driver_release_tids) > 1) 1505 return true; 1506 1507 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1508 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1509 continue; 1510 1511 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1512 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1513 return true; 1514 } 1515 1516 return false; 1517 } 1518 1519 static void 1520 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1521 enum ieee80211_frame_release_type reason, 1522 struct sk_buff_head *frames, 1523 unsigned long *driver_release_tids) 1524 { 1525 struct ieee80211_sub_if_data *sdata = sta->sdata; 1526 struct ieee80211_local *local = sdata->local; 1527 int ac; 1528 1529 /* Get response frame(s) and more data bit for the last one. */ 1530 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1531 unsigned long tids; 1532 1533 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1534 continue; 1535 1536 tids = ieee80211_tids_for_ac(ac); 1537 1538 /* if we already have frames from software, then we can't also 1539 * release from hardware queues 1540 */ 1541 if (skb_queue_empty(frames)) { 1542 *driver_release_tids |= 1543 sta->driver_buffered_tids & tids; 1544 *driver_release_tids |= sta->txq_buffered_tids & tids; 1545 } 1546 1547 if (!*driver_release_tids) { 1548 struct sk_buff *skb; 1549 1550 while (n_frames > 0) { 1551 skb = skb_dequeue(&sta->tx_filtered[ac]); 1552 if (!skb) { 1553 skb = skb_dequeue( 1554 &sta->ps_tx_buf[ac]); 1555 if (skb) 1556 local->total_ps_buffered--; 1557 } 1558 if (!skb) 1559 break; 1560 n_frames--; 1561 __skb_queue_tail(frames, skb); 1562 } 1563 } 1564 1565 /* If we have more frames buffered on this AC, then abort the 1566 * loop since we can't send more data from other ACs before 1567 * the buffered frames from this. 1568 */ 1569 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1570 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1571 break; 1572 } 1573 } 1574 1575 static void 1576 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1577 int n_frames, u8 ignored_acs, 1578 enum ieee80211_frame_release_type reason) 1579 { 1580 struct ieee80211_sub_if_data *sdata = sta->sdata; 1581 struct ieee80211_local *local = sdata->local; 1582 unsigned long driver_release_tids = 0; 1583 struct sk_buff_head frames; 1584 bool more_data; 1585 1586 /* Service or PS-Poll period starts */ 1587 set_sta_flag(sta, WLAN_STA_SP); 1588 1589 __skb_queue_head_init(&frames); 1590 1591 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1592 &frames, &driver_release_tids); 1593 1594 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1595 1596 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1597 driver_release_tids = 1598 BIT(find_highest_prio_tid(driver_release_tids)); 1599 1600 if (skb_queue_empty(&frames) && !driver_release_tids) { 1601 int tid, ac; 1602 1603 /* 1604 * For PS-Poll, this can only happen due to a race condition 1605 * when we set the TIM bit and the station notices it, but 1606 * before it can poll for the frame we expire it. 1607 * 1608 * For uAPSD, this is said in the standard (11.2.1.5 h): 1609 * At each unscheduled SP for a non-AP STA, the AP shall 1610 * attempt to transmit at least one MSDU or MMPDU, but no 1611 * more than the value specified in the Max SP Length field 1612 * in the QoS Capability element from delivery-enabled ACs, 1613 * that are destined for the non-AP STA. 1614 * 1615 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1616 */ 1617 1618 /* This will evaluate to 1, 3, 5 or 7. */ 1619 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1620 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1621 break; 1622 tid = 7 - 2 * ac; 1623 1624 ieee80211_send_null_response(sta, tid, reason, true, false); 1625 } else if (!driver_release_tids) { 1626 struct sk_buff_head pending; 1627 struct sk_buff *skb; 1628 int num = 0; 1629 u16 tids = 0; 1630 bool need_null = false; 1631 1632 skb_queue_head_init(&pending); 1633 1634 while ((skb = __skb_dequeue(&frames))) { 1635 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1636 struct ieee80211_hdr *hdr = (void *) skb->data; 1637 u8 *qoshdr = NULL; 1638 1639 num++; 1640 1641 /* 1642 * Tell TX path to send this frame even though the 1643 * STA may still remain is PS mode after this frame 1644 * exchange. 1645 */ 1646 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1647 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1648 1649 /* 1650 * Use MoreData flag to indicate whether there are 1651 * more buffered frames for this STA 1652 */ 1653 if (more_data || !skb_queue_empty(&frames)) 1654 hdr->frame_control |= 1655 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1656 else 1657 hdr->frame_control &= 1658 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1659 1660 if (ieee80211_is_data_qos(hdr->frame_control) || 1661 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1662 qoshdr = ieee80211_get_qos_ctl(hdr); 1663 1664 tids |= BIT(skb->priority); 1665 1666 __skb_queue_tail(&pending, skb); 1667 1668 /* end service period after last frame or add one */ 1669 if (!skb_queue_empty(&frames)) 1670 continue; 1671 1672 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1673 /* for PS-Poll, there's only one frame */ 1674 info->flags |= IEEE80211_TX_STATUS_EOSP | 1675 IEEE80211_TX_CTL_REQ_TX_STATUS; 1676 break; 1677 } 1678 1679 /* For uAPSD, things are a bit more complicated. If the 1680 * last frame has a QoS header (i.e. is a QoS-data or 1681 * QoS-nulldata frame) then just set the EOSP bit there 1682 * and be done. 1683 * If the frame doesn't have a QoS header (which means 1684 * it should be a bufferable MMPDU) then we can't set 1685 * the EOSP bit in the QoS header; add a QoS-nulldata 1686 * frame to the list to send it after the MMPDU. 1687 * 1688 * Note that this code is only in the mac80211-release 1689 * code path, we assume that the driver will not buffer 1690 * anything but QoS-data frames, or if it does, will 1691 * create the QoS-nulldata frame by itself if needed. 1692 * 1693 * Cf. 802.11-2012 10.2.1.10 (c). 1694 */ 1695 if (qoshdr) { 1696 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1697 1698 info->flags |= IEEE80211_TX_STATUS_EOSP | 1699 IEEE80211_TX_CTL_REQ_TX_STATUS; 1700 } else { 1701 /* The standard isn't completely clear on this 1702 * as it says the more-data bit should be set 1703 * if there are more BUs. The QoS-Null frame 1704 * we're about to send isn't buffered yet, we 1705 * only create it below, but let's pretend it 1706 * was buffered just in case some clients only 1707 * expect more-data=0 when eosp=1. 1708 */ 1709 hdr->frame_control |= 1710 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1711 need_null = true; 1712 num++; 1713 } 1714 break; 1715 } 1716 1717 drv_allow_buffered_frames(local, sta, tids, num, 1718 reason, more_data); 1719 1720 ieee80211_add_pending_skbs(local, &pending); 1721 1722 if (need_null) 1723 ieee80211_send_null_response( 1724 sta, find_highest_prio_tid(tids), 1725 reason, false, false); 1726 1727 sta_info_recalc_tim(sta); 1728 } else { 1729 int tid; 1730 1731 /* 1732 * We need to release a frame that is buffered somewhere in the 1733 * driver ... it'll have to handle that. 1734 * Note that the driver also has to check the number of frames 1735 * on the TIDs we're releasing from - if there are more than 1736 * n_frames it has to set the more-data bit (if we didn't ask 1737 * it to set it anyway due to other buffered frames); if there 1738 * are fewer than n_frames it has to make sure to adjust that 1739 * to allow the service period to end properly. 1740 */ 1741 drv_release_buffered_frames(local, sta, driver_release_tids, 1742 n_frames, reason, more_data); 1743 1744 /* 1745 * Note that we don't recalculate the TIM bit here as it would 1746 * most likely have no effect at all unless the driver told us 1747 * that the TID(s) became empty before returning here from the 1748 * release function. 1749 * Either way, however, when the driver tells us that the TID(s) 1750 * became empty or we find that a txq became empty, we'll do the 1751 * TIM recalculation. 1752 */ 1753 1754 if (!sta->sta.txq[0]) 1755 return; 1756 1757 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1758 if (!sta->sta.txq[tid] || 1759 !(driver_release_tids & BIT(tid)) || 1760 txq_has_queue(sta->sta.txq[tid])) 1761 continue; 1762 1763 sta_info_recalc_tim(sta); 1764 break; 1765 } 1766 } 1767 } 1768 1769 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1770 { 1771 u8 ignore_for_response = sta->sta.uapsd_queues; 1772 1773 /* 1774 * If all ACs are delivery-enabled then we should reply 1775 * from any of them, if only some are enabled we reply 1776 * only from the non-enabled ones. 1777 */ 1778 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1779 ignore_for_response = 0; 1780 1781 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1782 IEEE80211_FRAME_RELEASE_PSPOLL); 1783 } 1784 1785 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1786 { 1787 int n_frames = sta->sta.max_sp; 1788 u8 delivery_enabled = sta->sta.uapsd_queues; 1789 1790 /* 1791 * If we ever grow support for TSPEC this might happen if 1792 * the TSPEC update from hostapd comes in between a trigger 1793 * frame setting WLAN_STA_UAPSD in the RX path and this 1794 * actually getting called. 1795 */ 1796 if (!delivery_enabled) 1797 return; 1798 1799 switch (sta->sta.max_sp) { 1800 case 1: 1801 n_frames = 2; 1802 break; 1803 case 2: 1804 n_frames = 4; 1805 break; 1806 case 3: 1807 n_frames = 6; 1808 break; 1809 case 0: 1810 /* XXX: what is a good value? */ 1811 n_frames = 128; 1812 break; 1813 } 1814 1815 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1816 IEEE80211_FRAME_RELEASE_UAPSD); 1817 } 1818 1819 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1820 struct ieee80211_sta *pubsta, bool block) 1821 { 1822 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1823 1824 trace_api_sta_block_awake(sta->local, pubsta, block); 1825 1826 if (block) { 1827 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1828 ieee80211_clear_fast_xmit(sta); 1829 return; 1830 } 1831 1832 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1833 return; 1834 1835 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1836 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1837 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1838 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1839 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1840 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1841 /* must be asleep in this case */ 1842 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1843 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1844 } else { 1845 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1846 ieee80211_check_fast_xmit(sta); 1847 } 1848 } 1849 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1850 1851 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1852 { 1853 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1854 struct ieee80211_local *local = sta->local; 1855 1856 trace_api_eosp(local, pubsta); 1857 1858 clear_sta_flag(sta, WLAN_STA_SP); 1859 } 1860 EXPORT_SYMBOL(ieee80211_sta_eosp); 1861 1862 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1863 { 1864 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1865 enum ieee80211_frame_release_type reason; 1866 bool more_data; 1867 1868 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1869 1870 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1871 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1872 reason, 0); 1873 1874 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1875 } 1876 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1877 1878 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1879 u8 tid, bool buffered) 1880 { 1881 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1882 1883 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1884 return; 1885 1886 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1887 1888 if (buffered) 1889 set_bit(tid, &sta->driver_buffered_tids); 1890 else 1891 clear_bit(tid, &sta->driver_buffered_tids); 1892 1893 sta_info_recalc_tim(sta); 1894 } 1895 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1896 1897 void ieee80211_register_airtime(struct ieee80211_txq *txq, 1898 u32 tx_airtime, u32 rx_airtime) 1899 { 1900 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 1901 struct ieee80211_local *local = sdata->local; 1902 u64 weight_sum, weight_sum_reciprocal; 1903 struct airtime_sched_info *air_sched; 1904 struct airtime_info *air_info; 1905 u32 airtime = 0; 1906 1907 air_sched = &local->airtime[txq->ac]; 1908 air_info = to_airtime_info(txq); 1909 1910 if (local->airtime_flags & AIRTIME_USE_TX) 1911 airtime += tx_airtime; 1912 if (local->airtime_flags & AIRTIME_USE_RX) 1913 airtime += rx_airtime; 1914 1915 /* Weights scale so the unit weight is 256 */ 1916 airtime <<= 8; 1917 1918 spin_lock_bh(&air_sched->lock); 1919 1920 air_info->tx_airtime += tx_airtime; 1921 air_info->rx_airtime += rx_airtime; 1922 1923 if (air_sched->weight_sum) { 1924 weight_sum = air_sched->weight_sum; 1925 weight_sum_reciprocal = air_sched->weight_sum_reciprocal; 1926 } else { 1927 weight_sum = air_info->weight; 1928 weight_sum_reciprocal = air_info->weight_reciprocal; 1929 } 1930 1931 /* Round the calculation of global vt */ 1932 air_sched->v_t += (u64)((airtime + (weight_sum >> 1)) * 1933 weight_sum_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_64; 1934 air_info->v_t += (u32)((airtime + (air_info->weight >> 1)) * 1935 air_info->weight_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_32; 1936 ieee80211_resort_txq(&local->hw, txq); 1937 1938 spin_unlock_bh(&air_sched->lock); 1939 } 1940 1941 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, 1942 u32 tx_airtime, u32 rx_airtime) 1943 { 1944 struct ieee80211_txq *txq = pubsta->txq[tid]; 1945 1946 if (!txq) 1947 return; 1948 1949 ieee80211_register_airtime(txq, tx_airtime, rx_airtime); 1950 } 1951 EXPORT_SYMBOL(ieee80211_sta_register_airtime); 1952 1953 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, 1954 struct sta_info *sta, u8 ac, 1955 u16 tx_airtime, bool tx_completed) 1956 { 1957 int tx_pending; 1958 1959 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) 1960 return; 1961 1962 if (!tx_completed) { 1963 if (sta) 1964 atomic_add(tx_airtime, 1965 &sta->airtime[ac].aql_tx_pending); 1966 1967 atomic_add(tx_airtime, &local->aql_total_pending_airtime); 1968 return; 1969 } 1970 1971 if (sta) { 1972 tx_pending = atomic_sub_return(tx_airtime, 1973 &sta->airtime[ac].aql_tx_pending); 1974 if (tx_pending < 0) 1975 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending, 1976 tx_pending, 0); 1977 } 1978 1979 tx_pending = atomic_sub_return(tx_airtime, 1980 &local->aql_total_pending_airtime); 1981 if (WARN_ONCE(tx_pending < 0, 1982 "Device %s AC %d pending airtime underflow: %u, %u", 1983 wiphy_name(local->hw.wiphy), ac, tx_pending, 1984 tx_airtime)) 1985 atomic_cmpxchg(&local->aql_total_pending_airtime, 1986 tx_pending, 0); 1987 } 1988 1989 int sta_info_move_state(struct sta_info *sta, 1990 enum ieee80211_sta_state new_state) 1991 { 1992 might_sleep(); 1993 1994 if (sta->sta_state == new_state) 1995 return 0; 1996 1997 /* check allowed transitions first */ 1998 1999 switch (new_state) { 2000 case IEEE80211_STA_NONE: 2001 if (sta->sta_state != IEEE80211_STA_AUTH) 2002 return -EINVAL; 2003 break; 2004 case IEEE80211_STA_AUTH: 2005 if (sta->sta_state != IEEE80211_STA_NONE && 2006 sta->sta_state != IEEE80211_STA_ASSOC) 2007 return -EINVAL; 2008 break; 2009 case IEEE80211_STA_ASSOC: 2010 if (sta->sta_state != IEEE80211_STA_AUTH && 2011 sta->sta_state != IEEE80211_STA_AUTHORIZED) 2012 return -EINVAL; 2013 break; 2014 case IEEE80211_STA_AUTHORIZED: 2015 if (sta->sta_state != IEEE80211_STA_ASSOC) 2016 return -EINVAL; 2017 break; 2018 default: 2019 WARN(1, "invalid state %d", new_state); 2020 return -EINVAL; 2021 } 2022 2023 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 2024 sta->sta.addr, new_state); 2025 2026 /* 2027 * notify the driver before the actual changes so it can 2028 * fail the transition 2029 */ 2030 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 2031 int err = drv_sta_state(sta->local, sta->sdata, sta, 2032 sta->sta_state, new_state); 2033 if (err) 2034 return err; 2035 } 2036 2037 /* reflect the change in all state variables */ 2038 2039 switch (new_state) { 2040 case IEEE80211_STA_NONE: 2041 if (sta->sta_state == IEEE80211_STA_AUTH) 2042 clear_bit(WLAN_STA_AUTH, &sta->_flags); 2043 break; 2044 case IEEE80211_STA_AUTH: 2045 if (sta->sta_state == IEEE80211_STA_NONE) { 2046 set_bit(WLAN_STA_AUTH, &sta->_flags); 2047 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 2048 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 2049 ieee80211_recalc_min_chandef(sta->sdata); 2050 if (!sta->sta.support_p2p_ps) 2051 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2052 } 2053 break; 2054 case IEEE80211_STA_ASSOC: 2055 if (sta->sta_state == IEEE80211_STA_AUTH) { 2056 set_bit(WLAN_STA_ASSOC, &sta->_flags); 2057 sta->assoc_at = ktime_get_boottime_ns(); 2058 ieee80211_recalc_min_chandef(sta->sdata); 2059 if (!sta->sta.support_p2p_ps) 2060 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2061 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 2062 ieee80211_vif_dec_num_mcast(sta->sdata); 2063 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2064 ieee80211_clear_fast_xmit(sta); 2065 ieee80211_clear_fast_rx(sta); 2066 } 2067 break; 2068 case IEEE80211_STA_AUTHORIZED: 2069 if (sta->sta_state == IEEE80211_STA_ASSOC) { 2070 ieee80211_vif_inc_num_mcast(sta->sdata); 2071 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2072 ieee80211_check_fast_xmit(sta); 2073 ieee80211_check_fast_rx(sta); 2074 } 2075 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 2076 sta->sdata->vif.type == NL80211_IFTYPE_AP) 2077 cfg80211_send_layer2_update(sta->sdata->dev, 2078 sta->sta.addr); 2079 break; 2080 default: 2081 break; 2082 } 2083 2084 sta->sta_state = new_state; 2085 2086 return 0; 2087 } 2088 2089 u8 sta_info_tx_streams(struct sta_info *sta) 2090 { 2091 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 2092 u8 rx_streams; 2093 2094 if (!sta->sta.ht_cap.ht_supported) 2095 return 1; 2096 2097 if (sta->sta.vht_cap.vht_supported) { 2098 int i; 2099 u16 tx_mcs_map = 2100 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 2101 2102 for (i = 7; i >= 0; i--) 2103 if ((tx_mcs_map & (0x3 << (i * 2))) != 2104 IEEE80211_VHT_MCS_NOT_SUPPORTED) 2105 return i + 1; 2106 } 2107 2108 if (ht_cap->mcs.rx_mask[3]) 2109 rx_streams = 4; 2110 else if (ht_cap->mcs.rx_mask[2]) 2111 rx_streams = 3; 2112 else if (ht_cap->mcs.rx_mask[1]) 2113 rx_streams = 2; 2114 else 2115 rx_streams = 1; 2116 2117 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 2118 return rx_streams; 2119 2120 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 2121 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 2122 } 2123 2124 static struct ieee80211_sta_rx_stats * 2125 sta_get_last_rx_stats(struct sta_info *sta) 2126 { 2127 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 2128 int cpu; 2129 2130 if (!sta->pcpu_rx_stats) 2131 return stats; 2132 2133 for_each_possible_cpu(cpu) { 2134 struct ieee80211_sta_rx_stats *cpustats; 2135 2136 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2137 2138 if (time_after(cpustats->last_rx, stats->last_rx)) 2139 stats = cpustats; 2140 } 2141 2142 return stats; 2143 } 2144 2145 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, 2146 struct rate_info *rinfo) 2147 { 2148 rinfo->bw = STA_STATS_GET(BW, rate); 2149 2150 switch (STA_STATS_GET(TYPE, rate)) { 2151 case STA_STATS_RATE_TYPE_VHT: 2152 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 2153 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 2154 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 2155 if (STA_STATS_GET(SGI, rate)) 2156 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2157 break; 2158 case STA_STATS_RATE_TYPE_HT: 2159 rinfo->flags = RATE_INFO_FLAGS_MCS; 2160 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 2161 if (STA_STATS_GET(SGI, rate)) 2162 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2163 break; 2164 case STA_STATS_RATE_TYPE_LEGACY: { 2165 struct ieee80211_supported_band *sband; 2166 u16 brate; 2167 unsigned int shift; 2168 int band = STA_STATS_GET(LEGACY_BAND, rate); 2169 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 2170 2171 sband = local->hw.wiphy->bands[band]; 2172 2173 if (WARN_ON_ONCE(!sband->bitrates)) 2174 break; 2175 2176 brate = sband->bitrates[rate_idx].bitrate; 2177 if (rinfo->bw == RATE_INFO_BW_5) 2178 shift = 2; 2179 else if (rinfo->bw == RATE_INFO_BW_10) 2180 shift = 1; 2181 else 2182 shift = 0; 2183 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 2184 break; 2185 } 2186 case STA_STATS_RATE_TYPE_HE: 2187 rinfo->flags = RATE_INFO_FLAGS_HE_MCS; 2188 rinfo->mcs = STA_STATS_GET(HE_MCS, rate); 2189 rinfo->nss = STA_STATS_GET(HE_NSS, rate); 2190 rinfo->he_gi = STA_STATS_GET(HE_GI, rate); 2191 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); 2192 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); 2193 break; 2194 } 2195 } 2196 2197 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2198 { 2199 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2200 2201 if (rate == STA_STATS_RATE_INVALID) 2202 return -EINVAL; 2203 2204 sta_stats_decode_rate(sta->local, rate, rinfo); 2205 return 0; 2206 } 2207 2208 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats, 2209 int tid) 2210 { 2211 unsigned int start; 2212 u64 value; 2213 2214 do { 2215 start = u64_stats_fetch_begin(&rxstats->syncp); 2216 value = rxstats->msdu[tid]; 2217 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2218 2219 return value; 2220 } 2221 2222 static void sta_set_tidstats(struct sta_info *sta, 2223 struct cfg80211_tid_stats *tidstats, 2224 int tid) 2225 { 2226 struct ieee80211_local *local = sta->local; 2227 int cpu; 2228 2229 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2230 tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->rx_stats, tid); 2231 2232 if (sta->pcpu_rx_stats) { 2233 for_each_possible_cpu(cpu) { 2234 struct ieee80211_sta_rx_stats *cpurxs; 2235 2236 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2237 tidstats->rx_msdu += 2238 sta_get_tidstats_msdu(cpurxs, tid); 2239 } 2240 } 2241 2242 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2243 } 2244 2245 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2246 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2247 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2248 } 2249 2250 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2251 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2252 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2253 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2254 } 2255 2256 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2257 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2258 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2259 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2260 } 2261 2262 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) { 2263 spin_lock_bh(&local->fq.lock); 2264 rcu_read_lock(); 2265 2266 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); 2267 ieee80211_fill_txq_stats(&tidstats->txq_stats, 2268 to_txq_info(sta->sta.txq[tid])); 2269 2270 rcu_read_unlock(); 2271 spin_unlock_bh(&local->fq.lock); 2272 } 2273 } 2274 2275 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2276 { 2277 unsigned int start; 2278 u64 value; 2279 2280 do { 2281 start = u64_stats_fetch_begin(&rxstats->syncp); 2282 value = rxstats->bytes; 2283 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2284 2285 return value; 2286 } 2287 2288 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, 2289 bool tidstats) 2290 { 2291 struct ieee80211_sub_if_data *sdata = sta->sdata; 2292 struct ieee80211_local *local = sdata->local; 2293 u32 thr = 0; 2294 int i, ac, cpu; 2295 struct ieee80211_sta_rx_stats *last_rxstats; 2296 2297 last_rxstats = sta_get_last_rx_stats(sta); 2298 2299 sinfo->generation = sdata->local->sta_generation; 2300 2301 /* do before driver, so beacon filtering drivers have a 2302 * chance to e.g. just add the number of filtered beacons 2303 * (or just modify the value entirely, of course) 2304 */ 2305 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2306 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2307 2308 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2309 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | 2310 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | 2311 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | 2312 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | 2313 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) | 2314 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); 2315 2316 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2317 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2318 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); 2319 } 2320 2321 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2322 sinfo->assoc_at = sta->assoc_at; 2323 sinfo->inactive_time = 2324 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2325 2326 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | 2327 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { 2328 sinfo->tx_bytes = 0; 2329 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2330 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2331 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); 2332 } 2333 2334 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { 2335 sinfo->tx_packets = 0; 2336 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2337 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2338 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); 2339 } 2340 2341 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | 2342 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { 2343 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2344 2345 if (sta->pcpu_rx_stats) { 2346 for_each_possible_cpu(cpu) { 2347 struct ieee80211_sta_rx_stats *cpurxs; 2348 2349 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2350 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2351 } 2352 } 2353 2354 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); 2355 } 2356 2357 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { 2358 sinfo->rx_packets = sta->rx_stats.packets; 2359 if (sta->pcpu_rx_stats) { 2360 for_each_possible_cpu(cpu) { 2361 struct ieee80211_sta_rx_stats *cpurxs; 2362 2363 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2364 sinfo->rx_packets += cpurxs->packets; 2365 } 2366 } 2367 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 2368 } 2369 2370 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { 2371 sinfo->tx_retries = sta->status_stats.retry_count; 2372 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); 2373 } 2374 2375 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { 2376 sinfo->tx_failed = sta->status_stats.retry_failed; 2377 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); 2378 } 2379 2380 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { 2381 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2382 sinfo->rx_duration += sta->airtime[ac].rx_airtime; 2383 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 2384 } 2385 2386 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { 2387 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2388 sinfo->tx_duration += sta->airtime[ac].tx_airtime; 2389 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 2390 } 2391 2392 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { 2393 sinfo->airtime_weight = sta->airtime[0].weight; 2394 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); 2395 } 2396 2397 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2398 if (sta->pcpu_rx_stats) { 2399 for_each_possible_cpu(cpu) { 2400 struct ieee80211_sta_rx_stats *cpurxs; 2401 2402 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2403 sinfo->rx_dropped_misc += cpurxs->dropped; 2404 } 2405 } 2406 2407 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2408 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2409 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | 2410 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2411 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2412 } 2413 2414 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2415 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2416 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { 2417 sinfo->signal = (s8)last_rxstats->last_signal; 2418 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 2419 } 2420 2421 if (!sta->pcpu_rx_stats && 2422 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { 2423 sinfo->signal_avg = 2424 -ewma_signal_read(&sta->rx_stats_avg.signal); 2425 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 2426 } 2427 } 2428 2429 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2430 * the sta->rx_stats struct, so the check here is fine with and without 2431 * pcpu statistics 2432 */ 2433 if (last_rxstats->chains && 2434 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | 2435 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2436 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 2437 if (!sta->pcpu_rx_stats) 2438 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2439 2440 sinfo->chains = last_rxstats->chains; 2441 2442 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2443 sinfo->chain_signal[i] = 2444 last_rxstats->chain_signal_last[i]; 2445 sinfo->chain_signal_avg[i] = 2446 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2447 } 2448 } 2449 2450 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) { 2451 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2452 &sinfo->txrate); 2453 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 2454 } 2455 2456 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) { 2457 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2458 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); 2459 } 2460 2461 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { 2462 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 2463 sta_set_tidstats(sta, &sinfo->pertid[i], i); 2464 } 2465 2466 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2467 #ifdef CONFIG_MAC80211_MESH 2468 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | 2469 BIT_ULL(NL80211_STA_INFO_PLID) | 2470 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | 2471 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | 2472 BIT_ULL(NL80211_STA_INFO_PEER_PM) | 2473 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | 2474 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) | 2475 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS); 2476 2477 sinfo->llid = sta->mesh->llid; 2478 sinfo->plid = sta->mesh->plid; 2479 sinfo->plink_state = sta->mesh->plink_state; 2480 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2481 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); 2482 sinfo->t_offset = sta->mesh->t_offset; 2483 } 2484 sinfo->local_pm = sta->mesh->local_pm; 2485 sinfo->peer_pm = sta->mesh->peer_pm; 2486 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2487 sinfo->connected_to_gate = sta->mesh->connected_to_gate; 2488 sinfo->connected_to_as = sta->mesh->connected_to_as; 2489 #endif 2490 } 2491 2492 sinfo->bss_param.flags = 0; 2493 if (sdata->vif.bss_conf.use_cts_prot) 2494 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2495 if (sdata->vif.bss_conf.use_short_preamble) 2496 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2497 if (sdata->vif.bss_conf.use_short_slot) 2498 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2499 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2500 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2501 2502 sinfo->sta_flags.set = 0; 2503 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2504 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2505 BIT(NL80211_STA_FLAG_WME) | 2506 BIT(NL80211_STA_FLAG_MFP) | 2507 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2508 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2509 BIT(NL80211_STA_FLAG_TDLS_PEER); 2510 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2511 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2512 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2513 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2514 if (sta->sta.wme) 2515 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2516 if (test_sta_flag(sta, WLAN_STA_MFP)) 2517 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2518 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2519 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2520 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2521 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2522 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2523 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2524 2525 thr = sta_get_expected_throughput(sta); 2526 2527 if (thr != 0) { 2528 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2529 sinfo->expected_throughput = thr; 2530 } 2531 2532 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && 2533 sta->status_stats.ack_signal_filled) { 2534 sinfo->ack_signal = sta->status_stats.last_ack_signal; 2535 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); 2536 } 2537 2538 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && 2539 sta->status_stats.ack_signal_filled) { 2540 sinfo->avg_ack_signal = 2541 -(s8)ewma_avg_signal_read( 2542 &sta->status_stats.avg_ack_signal); 2543 sinfo->filled |= 2544 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); 2545 } 2546 2547 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2548 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC); 2549 sinfo->airtime_link_metric = 2550 airtime_link_metric_get(local, sta); 2551 } 2552 } 2553 2554 u32 sta_get_expected_throughput(struct sta_info *sta) 2555 { 2556 struct ieee80211_sub_if_data *sdata = sta->sdata; 2557 struct ieee80211_local *local = sdata->local; 2558 struct rate_control_ref *ref = NULL; 2559 u32 thr = 0; 2560 2561 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2562 ref = local->rate_ctrl; 2563 2564 /* check if the driver has a SW RC implementation */ 2565 if (ref && ref->ops->get_expected_throughput) 2566 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2567 else 2568 thr = drv_get_expected_throughput(local, sta); 2569 2570 return thr; 2571 } 2572 2573 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2574 { 2575 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2576 2577 if (!sta->status_stats.last_ack || 2578 time_after(stats->last_rx, sta->status_stats.last_ack)) 2579 return stats->last_rx; 2580 return sta->status_stats.last_ack; 2581 } 2582 2583 static void sta_update_codel_params(struct sta_info *sta, u32 thr) 2584 { 2585 if (!sta->sdata->local->ops->wake_tx_queue) 2586 return; 2587 2588 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { 2589 sta->cparams.target = MS2TIME(50); 2590 sta->cparams.interval = MS2TIME(300); 2591 sta->cparams.ecn = false; 2592 } else { 2593 sta->cparams.target = MS2TIME(20); 2594 sta->cparams.interval = MS2TIME(100); 2595 sta->cparams.ecn = true; 2596 } 2597 } 2598 2599 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, 2600 u32 thr) 2601 { 2602 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2603 2604 sta_update_codel_params(sta, thr); 2605 } 2606