1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * Copyright 2013-2014 Intel Mobile Communications GmbH 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/etherdevice.h> 14 #include <linux/netdevice.h> 15 #include <linux/types.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/if_arp.h> 19 #include <linux/timer.h> 20 #include <linux/rtnetlink.h> 21 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 static const struct rhashtable_params sta_rht_params = { 68 .nelem_hint = 3, /* start small */ 69 .automatic_shrinking = true, 70 .head_offset = offsetof(struct sta_info, hash_node), 71 .key_offset = offsetof(struct sta_info, addr), 72 .key_len = ETH_ALEN, 73 .hashfn = sta_addr_hash, 74 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 75 }; 76 77 /* Caller must hold local->sta_mtx */ 78 static int sta_info_hash_del(struct ieee80211_local *local, 79 struct sta_info *sta) 80 { 81 return rhashtable_remove_fast(&local->sta_hash, &sta->hash_node, 82 sta_rht_params); 83 } 84 85 static void __cleanup_single_sta(struct sta_info *sta) 86 { 87 int ac, i; 88 struct tid_ampdu_tx *tid_tx; 89 struct ieee80211_sub_if_data *sdata = sta->sdata; 90 struct ieee80211_local *local = sdata->local; 91 struct ps_data *ps; 92 93 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 94 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 95 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 96 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 97 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 98 ps = &sdata->bss->ps; 99 else if (ieee80211_vif_is_mesh(&sdata->vif)) 100 ps = &sdata->u.mesh.ps; 101 else 102 return; 103 104 clear_sta_flag(sta, WLAN_STA_PS_STA); 105 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 106 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 107 108 atomic_dec(&ps->num_sta_ps); 109 } 110 111 if (sta->sta.txq[0]) { 112 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 113 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); 114 int n = skb_queue_len(&txqi->queue); 115 116 ieee80211_purge_tx_queue(&local->hw, &txqi->queue); 117 atomic_sub(n, &sdata->txqs_len[txqi->txq.ac]); 118 } 119 } 120 121 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 122 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 123 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 124 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 125 } 126 127 if (ieee80211_vif_is_mesh(&sdata->vif)) 128 mesh_sta_cleanup(sta); 129 130 cancel_work_sync(&sta->drv_deliver_wk); 131 132 /* 133 * Destroy aggregation state here. It would be nice to wait for the 134 * driver to finish aggregation stop and then clean up, but for now 135 * drivers have to handle aggregation stop being requested, followed 136 * directly by station destruction. 137 */ 138 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 139 kfree(sta->ampdu_mlme.tid_start_tx[i]); 140 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 141 if (!tid_tx) 142 continue; 143 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 144 kfree(tid_tx); 145 } 146 } 147 148 static void cleanup_single_sta(struct sta_info *sta) 149 { 150 struct ieee80211_sub_if_data *sdata = sta->sdata; 151 struct ieee80211_local *local = sdata->local; 152 153 __cleanup_single_sta(sta); 154 sta_info_free(local, sta); 155 } 156 157 /* protected by RCU */ 158 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 159 const u8 *addr) 160 { 161 struct ieee80211_local *local = sdata->local; 162 struct sta_info *sta; 163 struct rhash_head *tmp; 164 const struct bucket_table *tbl; 165 166 rcu_read_lock(); 167 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 168 169 for_each_sta_info(local, tbl, addr, sta, tmp) { 170 if (sta->sdata == sdata) { 171 rcu_read_unlock(); 172 /* this is safe as the caller must already hold 173 * another rcu read section or the mutex 174 */ 175 return sta; 176 } 177 } 178 rcu_read_unlock(); 179 return NULL; 180 } 181 182 /* 183 * Get sta info either from the specified interface 184 * or from one of its vlans 185 */ 186 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 187 const u8 *addr) 188 { 189 struct ieee80211_local *local = sdata->local; 190 struct sta_info *sta; 191 struct rhash_head *tmp; 192 const struct bucket_table *tbl; 193 194 rcu_read_lock(); 195 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 196 197 for_each_sta_info(local, tbl, addr, sta, tmp) { 198 if (sta->sdata == sdata || 199 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 200 rcu_read_unlock(); 201 /* this is safe as the caller must already hold 202 * another rcu read section or the mutex 203 */ 204 return sta; 205 } 206 } 207 rcu_read_unlock(); 208 return NULL; 209 } 210 211 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 212 int idx) 213 { 214 struct ieee80211_local *local = sdata->local; 215 struct sta_info *sta; 216 int i = 0; 217 218 list_for_each_entry_rcu(sta, &local->sta_list, list) { 219 if (sdata != sta->sdata) 220 continue; 221 if (i < idx) { 222 ++i; 223 continue; 224 } 225 return sta; 226 } 227 228 return NULL; 229 } 230 231 /** 232 * sta_info_free - free STA 233 * 234 * @local: pointer to the global information 235 * @sta: STA info to free 236 * 237 * This function must undo everything done by sta_info_alloc() 238 * that may happen before sta_info_insert(). It may only be 239 * called when sta_info_insert() has not been attempted (and 240 * if that fails, the station is freed anyway.) 241 */ 242 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 243 { 244 if (sta->rate_ctrl) 245 rate_control_free_sta(sta); 246 247 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 248 249 if (sta->sta.txq[0]) 250 kfree(to_txq_info(sta->sta.txq[0])); 251 kfree(rcu_dereference_raw(sta->sta.rates)); 252 #ifdef CONFIG_MAC80211_MESH 253 kfree(sta->mesh); 254 #endif 255 kfree(sta); 256 } 257 258 /* Caller must hold local->sta_mtx */ 259 static void sta_info_hash_add(struct ieee80211_local *local, 260 struct sta_info *sta) 261 { 262 rhashtable_insert_fast(&local->sta_hash, &sta->hash_node, 263 sta_rht_params); 264 } 265 266 static void sta_deliver_ps_frames(struct work_struct *wk) 267 { 268 struct sta_info *sta; 269 270 sta = container_of(wk, struct sta_info, drv_deliver_wk); 271 272 if (sta->dead) 273 return; 274 275 local_bh_disable(); 276 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 277 ieee80211_sta_ps_deliver_wakeup(sta); 278 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 279 ieee80211_sta_ps_deliver_poll_response(sta); 280 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 281 ieee80211_sta_ps_deliver_uapsd(sta); 282 local_bh_enable(); 283 } 284 285 static int sta_prepare_rate_control(struct ieee80211_local *local, 286 struct sta_info *sta, gfp_t gfp) 287 { 288 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 289 return 0; 290 291 sta->rate_ctrl = local->rate_ctrl; 292 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 293 sta, gfp); 294 if (!sta->rate_ctrl_priv) 295 return -ENOMEM; 296 297 return 0; 298 } 299 300 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 301 const u8 *addr, gfp_t gfp) 302 { 303 struct ieee80211_local *local = sdata->local; 304 struct ieee80211_hw *hw = &local->hw; 305 struct sta_info *sta; 306 int i; 307 308 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 309 if (!sta) 310 return NULL; 311 312 spin_lock_init(&sta->lock); 313 spin_lock_init(&sta->ps_lock); 314 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 315 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 316 mutex_init(&sta->ampdu_mlme.mtx); 317 #ifdef CONFIG_MAC80211_MESH 318 if (ieee80211_vif_is_mesh(&sdata->vif)) { 319 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 320 if (!sta->mesh) 321 goto free; 322 spin_lock_init(&sta->mesh->plink_lock); 323 if (ieee80211_vif_is_mesh(&sdata->vif) && 324 !sdata->u.mesh.user_mpm) 325 init_timer(&sta->mesh->plink_timer); 326 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 327 } 328 #endif 329 330 memcpy(sta->addr, addr, ETH_ALEN); 331 memcpy(sta->sta.addr, addr, ETH_ALEN); 332 sta->local = local; 333 sta->sdata = sdata; 334 sta->rx_stats.last_rx = jiffies; 335 336 sta->sta_state = IEEE80211_STA_NONE; 337 338 /* Mark TID as unreserved */ 339 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 340 341 sta->last_connected = ktime_get_seconds(); 342 ewma_signal_init(&sta->rx_stats.avg_signal); 343 for (i = 0; i < ARRAY_SIZE(sta->rx_stats.chain_signal_avg); i++) 344 ewma_signal_init(&sta->rx_stats.chain_signal_avg[i]); 345 346 if (local->ops->wake_tx_queue) { 347 void *txq_data; 348 int size = sizeof(struct txq_info) + 349 ALIGN(hw->txq_data_size, sizeof(void *)); 350 351 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 352 if (!txq_data) 353 goto free; 354 355 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 356 struct txq_info *txq = txq_data + i * size; 357 358 ieee80211_init_tx_queue(sdata, sta, txq, i); 359 } 360 } 361 362 if (sta_prepare_rate_control(local, sta, gfp)) 363 goto free_txq; 364 365 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 366 /* 367 * timer_to_tid must be initialized with identity mapping 368 * to enable session_timer's data differentiation. See 369 * sta_rx_agg_session_timer_expired for usage. 370 */ 371 sta->timer_to_tid[i] = i; 372 } 373 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 374 skb_queue_head_init(&sta->ps_tx_buf[i]); 375 skb_queue_head_init(&sta->tx_filtered[i]); 376 } 377 378 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 379 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 380 381 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 382 if (sdata->vif.type == NL80211_IFTYPE_AP || 383 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 384 struct ieee80211_supported_band *sband = 385 hw->wiphy->bands[ieee80211_get_sdata_band(sdata)]; 386 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 387 IEEE80211_HT_CAP_SM_PS_SHIFT; 388 /* 389 * Assume that hostapd advertises our caps in the beacon and 390 * this is the known_smps_mode for a station that just assciated 391 */ 392 switch (smps) { 393 case WLAN_HT_SMPS_CONTROL_DISABLED: 394 sta->known_smps_mode = IEEE80211_SMPS_OFF; 395 break; 396 case WLAN_HT_SMPS_CONTROL_STATIC: 397 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 398 break; 399 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 400 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 401 break; 402 default: 403 WARN_ON(1); 404 } 405 } 406 407 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 408 409 return sta; 410 411 free_txq: 412 if (sta->sta.txq[0]) 413 kfree(to_txq_info(sta->sta.txq[0])); 414 free: 415 #ifdef CONFIG_MAC80211_MESH 416 kfree(sta->mesh); 417 #endif 418 kfree(sta); 419 return NULL; 420 } 421 422 static int sta_info_insert_check(struct sta_info *sta) 423 { 424 struct ieee80211_sub_if_data *sdata = sta->sdata; 425 426 /* 427 * Can't be a WARN_ON because it can be triggered through a race: 428 * something inserts a STA (on one CPU) without holding the RTNL 429 * and another CPU turns off the net device. 430 */ 431 if (unlikely(!ieee80211_sdata_running(sdata))) 432 return -ENETDOWN; 433 434 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 435 is_multicast_ether_addr(sta->sta.addr))) 436 return -EINVAL; 437 438 return 0; 439 } 440 441 static int sta_info_insert_drv_state(struct ieee80211_local *local, 442 struct ieee80211_sub_if_data *sdata, 443 struct sta_info *sta) 444 { 445 enum ieee80211_sta_state state; 446 int err = 0; 447 448 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 449 err = drv_sta_state(local, sdata, sta, state, state + 1); 450 if (err) 451 break; 452 } 453 454 if (!err) { 455 /* 456 * Drivers using legacy sta_add/sta_remove callbacks only 457 * get uploaded set to true after sta_add is called. 458 */ 459 if (!local->ops->sta_add) 460 sta->uploaded = true; 461 return 0; 462 } 463 464 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 465 sdata_info(sdata, 466 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 467 sta->sta.addr, state + 1, err); 468 err = 0; 469 } 470 471 /* unwind on error */ 472 for (; state > IEEE80211_STA_NOTEXIST; state--) 473 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 474 475 return err; 476 } 477 478 /* 479 * should be called with sta_mtx locked 480 * this function replaces the mutex lock 481 * with a RCU lock 482 */ 483 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 484 { 485 struct ieee80211_local *local = sta->local; 486 struct ieee80211_sub_if_data *sdata = sta->sdata; 487 struct station_info sinfo; 488 int err = 0; 489 490 lockdep_assert_held(&local->sta_mtx); 491 492 /* check if STA exists already */ 493 if (sta_info_get_bss(sdata, sta->sta.addr)) { 494 err = -EEXIST; 495 goto out_err; 496 } 497 498 local->num_sta++; 499 local->sta_generation++; 500 smp_mb(); 501 502 /* simplify things and don't accept BA sessions yet */ 503 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 504 505 /* make the station visible */ 506 sta_info_hash_add(local, sta); 507 508 list_add_tail_rcu(&sta->list, &local->sta_list); 509 510 /* notify driver */ 511 err = sta_info_insert_drv_state(local, sdata, sta); 512 if (err) 513 goto out_remove; 514 515 set_sta_flag(sta, WLAN_STA_INSERTED); 516 /* accept BA sessions now */ 517 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 518 519 ieee80211_recalc_min_chandef(sdata); 520 ieee80211_sta_debugfs_add(sta); 521 rate_control_add_sta_debugfs(sta); 522 523 memset(&sinfo, 0, sizeof(sinfo)); 524 sinfo.filled = 0; 525 sinfo.generation = local->sta_generation; 526 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 527 528 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 529 530 /* move reference to rcu-protected */ 531 rcu_read_lock(); 532 mutex_unlock(&local->sta_mtx); 533 534 if (ieee80211_vif_is_mesh(&sdata->vif)) 535 mesh_accept_plinks_update(sdata); 536 537 return 0; 538 out_remove: 539 sta_info_hash_del(local, sta); 540 list_del_rcu(&sta->list); 541 local->num_sta--; 542 synchronize_net(); 543 __cleanup_single_sta(sta); 544 out_err: 545 mutex_unlock(&local->sta_mtx); 546 rcu_read_lock(); 547 return err; 548 } 549 550 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 551 { 552 struct ieee80211_local *local = sta->local; 553 int err; 554 555 might_sleep(); 556 557 err = sta_info_insert_check(sta); 558 if (err) { 559 rcu_read_lock(); 560 goto out_free; 561 } 562 563 mutex_lock(&local->sta_mtx); 564 565 err = sta_info_insert_finish(sta); 566 if (err) 567 goto out_free; 568 569 return 0; 570 out_free: 571 sta_info_free(local, sta); 572 return err; 573 } 574 575 int sta_info_insert(struct sta_info *sta) 576 { 577 int err = sta_info_insert_rcu(sta); 578 579 rcu_read_unlock(); 580 581 return err; 582 } 583 584 static inline void __bss_tim_set(u8 *tim, u16 id) 585 { 586 /* 587 * This format has been mandated by the IEEE specifications, 588 * so this line may not be changed to use the __set_bit() format. 589 */ 590 tim[id / 8] |= (1 << (id % 8)); 591 } 592 593 static inline void __bss_tim_clear(u8 *tim, u16 id) 594 { 595 /* 596 * This format has been mandated by the IEEE specifications, 597 * so this line may not be changed to use the __clear_bit() format. 598 */ 599 tim[id / 8] &= ~(1 << (id % 8)); 600 } 601 602 static inline bool __bss_tim_get(u8 *tim, u16 id) 603 { 604 /* 605 * This format has been mandated by the IEEE specifications, 606 * so this line may not be changed to use the test_bit() format. 607 */ 608 return tim[id / 8] & (1 << (id % 8)); 609 } 610 611 static unsigned long ieee80211_tids_for_ac(int ac) 612 { 613 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 614 switch (ac) { 615 case IEEE80211_AC_VO: 616 return BIT(6) | BIT(7); 617 case IEEE80211_AC_VI: 618 return BIT(4) | BIT(5); 619 case IEEE80211_AC_BE: 620 return BIT(0) | BIT(3); 621 case IEEE80211_AC_BK: 622 return BIT(1) | BIT(2); 623 default: 624 WARN_ON(1); 625 return 0; 626 } 627 } 628 629 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 630 { 631 struct ieee80211_local *local = sta->local; 632 struct ps_data *ps; 633 bool indicate_tim = false; 634 u8 ignore_for_tim = sta->sta.uapsd_queues; 635 int ac; 636 u16 id = sta->sta.aid; 637 638 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 639 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 640 if (WARN_ON_ONCE(!sta->sdata->bss)) 641 return; 642 643 ps = &sta->sdata->bss->ps; 644 #ifdef CONFIG_MAC80211_MESH 645 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 646 ps = &sta->sdata->u.mesh.ps; 647 #endif 648 } else { 649 return; 650 } 651 652 /* No need to do anything if the driver does all */ 653 if (ieee80211_hw_check(&local->hw, AP_LINK_PS)) 654 return; 655 656 if (sta->dead) 657 goto done; 658 659 /* 660 * If all ACs are delivery-enabled then we should build 661 * the TIM bit for all ACs anyway; if only some are then 662 * we ignore those and build the TIM bit using only the 663 * non-enabled ones. 664 */ 665 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 666 ignore_for_tim = 0; 667 668 if (ignore_pending) 669 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 670 671 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 672 unsigned long tids; 673 674 if (ignore_for_tim & BIT(ac)) 675 continue; 676 677 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 678 !skb_queue_empty(&sta->ps_tx_buf[ac]); 679 if (indicate_tim) 680 break; 681 682 tids = ieee80211_tids_for_ac(ac); 683 684 indicate_tim |= 685 sta->driver_buffered_tids & tids; 686 indicate_tim |= 687 sta->txq_buffered_tids & tids; 688 } 689 690 done: 691 spin_lock_bh(&local->tim_lock); 692 693 if (indicate_tim == __bss_tim_get(ps->tim, id)) 694 goto out_unlock; 695 696 if (indicate_tim) 697 __bss_tim_set(ps->tim, id); 698 else 699 __bss_tim_clear(ps->tim, id); 700 701 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 702 local->tim_in_locked_section = true; 703 drv_set_tim(local, &sta->sta, indicate_tim); 704 local->tim_in_locked_section = false; 705 } 706 707 out_unlock: 708 spin_unlock_bh(&local->tim_lock); 709 } 710 711 void sta_info_recalc_tim(struct sta_info *sta) 712 { 713 __sta_info_recalc_tim(sta, false); 714 } 715 716 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 717 { 718 struct ieee80211_tx_info *info; 719 int timeout; 720 721 if (!skb) 722 return false; 723 724 info = IEEE80211_SKB_CB(skb); 725 726 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 727 timeout = (sta->listen_interval * 728 sta->sdata->vif.bss_conf.beacon_int * 729 32 / 15625) * HZ; 730 if (timeout < STA_TX_BUFFER_EXPIRE) 731 timeout = STA_TX_BUFFER_EXPIRE; 732 return time_after(jiffies, info->control.jiffies + timeout); 733 } 734 735 736 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 737 struct sta_info *sta, int ac) 738 { 739 unsigned long flags; 740 struct sk_buff *skb; 741 742 /* 743 * First check for frames that should expire on the filtered 744 * queue. Frames here were rejected by the driver and are on 745 * a separate queue to avoid reordering with normal PS-buffered 746 * frames. They also aren't accounted for right now in the 747 * total_ps_buffered counter. 748 */ 749 for (;;) { 750 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 751 skb = skb_peek(&sta->tx_filtered[ac]); 752 if (sta_info_buffer_expired(sta, skb)) 753 skb = __skb_dequeue(&sta->tx_filtered[ac]); 754 else 755 skb = NULL; 756 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 757 758 /* 759 * Frames are queued in order, so if this one 760 * hasn't expired yet we can stop testing. If 761 * we actually reached the end of the queue we 762 * also need to stop, of course. 763 */ 764 if (!skb) 765 break; 766 ieee80211_free_txskb(&local->hw, skb); 767 } 768 769 /* 770 * Now also check the normal PS-buffered queue, this will 771 * only find something if the filtered queue was emptied 772 * since the filtered frames are all before the normal PS 773 * buffered frames. 774 */ 775 for (;;) { 776 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 777 skb = skb_peek(&sta->ps_tx_buf[ac]); 778 if (sta_info_buffer_expired(sta, skb)) 779 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 780 else 781 skb = NULL; 782 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 783 784 /* 785 * frames are queued in order, so if this one 786 * hasn't expired yet (or we reached the end of 787 * the queue) we can stop testing 788 */ 789 if (!skb) 790 break; 791 792 local->total_ps_buffered--; 793 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 794 sta->sta.addr); 795 ieee80211_free_txskb(&local->hw, skb); 796 } 797 798 /* 799 * Finally, recalculate the TIM bit for this station -- it might 800 * now be clear because the station was too slow to retrieve its 801 * frames. 802 */ 803 sta_info_recalc_tim(sta); 804 805 /* 806 * Return whether there are any frames still buffered, this is 807 * used to check whether the cleanup timer still needs to run, 808 * if there are no frames we don't need to rearm the timer. 809 */ 810 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 811 skb_queue_empty(&sta->tx_filtered[ac])); 812 } 813 814 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 815 struct sta_info *sta) 816 { 817 bool have_buffered = false; 818 int ac; 819 820 /* This is only necessary for stations on BSS/MBSS interfaces */ 821 if (!sta->sdata->bss && 822 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 823 return false; 824 825 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 826 have_buffered |= 827 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 828 829 return have_buffered; 830 } 831 832 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 833 { 834 struct ieee80211_local *local; 835 struct ieee80211_sub_if_data *sdata; 836 int ret; 837 838 might_sleep(); 839 840 if (!sta) 841 return -ENOENT; 842 843 local = sta->local; 844 sdata = sta->sdata; 845 846 lockdep_assert_held(&local->sta_mtx); 847 848 /* 849 * Before removing the station from the driver and 850 * rate control, it might still start new aggregation 851 * sessions -- block that to make sure the tear-down 852 * will be sufficient. 853 */ 854 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 855 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 856 857 ret = sta_info_hash_del(local, sta); 858 if (WARN_ON(ret)) 859 return ret; 860 861 /* 862 * for TDLS peers, make sure to return to the base channel before 863 * removal. 864 */ 865 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 866 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 867 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 868 } 869 870 list_del_rcu(&sta->list); 871 872 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 873 874 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 875 rcu_access_pointer(sdata->u.vlan.sta) == sta) 876 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 877 878 return 0; 879 } 880 881 static void __sta_info_destroy_part2(struct sta_info *sta) 882 { 883 struct ieee80211_local *local = sta->local; 884 struct ieee80211_sub_if_data *sdata = sta->sdata; 885 struct station_info sinfo = {}; 886 int ret; 887 888 /* 889 * NOTE: This assumes at least synchronize_net() was done 890 * after _part1 and before _part2! 891 */ 892 893 might_sleep(); 894 lockdep_assert_held(&local->sta_mtx); 895 896 /* now keys can no longer be reached */ 897 ieee80211_free_sta_keys(local, sta); 898 899 /* disable TIM bit - last chance to tell driver */ 900 __sta_info_recalc_tim(sta, true); 901 902 sta->dead = true; 903 904 local->num_sta--; 905 local->sta_generation++; 906 907 while (sta->sta_state > IEEE80211_STA_NONE) { 908 ret = sta_info_move_state(sta, sta->sta_state - 1); 909 if (ret) { 910 WARN_ON_ONCE(1); 911 break; 912 } 913 } 914 915 if (sta->uploaded) { 916 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 917 IEEE80211_STA_NOTEXIST); 918 WARN_ON_ONCE(ret != 0); 919 } 920 921 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 922 923 sta_set_sinfo(sta, &sinfo); 924 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 925 926 rate_control_remove_sta_debugfs(sta); 927 ieee80211_sta_debugfs_remove(sta); 928 ieee80211_recalc_min_chandef(sdata); 929 930 cleanup_single_sta(sta); 931 } 932 933 int __must_check __sta_info_destroy(struct sta_info *sta) 934 { 935 int err = __sta_info_destroy_part1(sta); 936 937 if (err) 938 return err; 939 940 synchronize_net(); 941 942 __sta_info_destroy_part2(sta); 943 944 return 0; 945 } 946 947 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 948 { 949 struct sta_info *sta; 950 int ret; 951 952 mutex_lock(&sdata->local->sta_mtx); 953 sta = sta_info_get(sdata, addr); 954 ret = __sta_info_destroy(sta); 955 mutex_unlock(&sdata->local->sta_mtx); 956 957 return ret; 958 } 959 960 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 961 const u8 *addr) 962 { 963 struct sta_info *sta; 964 int ret; 965 966 mutex_lock(&sdata->local->sta_mtx); 967 sta = sta_info_get_bss(sdata, addr); 968 ret = __sta_info_destroy(sta); 969 mutex_unlock(&sdata->local->sta_mtx); 970 971 return ret; 972 } 973 974 static void sta_info_cleanup(unsigned long data) 975 { 976 struct ieee80211_local *local = (struct ieee80211_local *) data; 977 struct sta_info *sta; 978 bool timer_needed = false; 979 980 rcu_read_lock(); 981 list_for_each_entry_rcu(sta, &local->sta_list, list) 982 if (sta_info_cleanup_expire_buffered(local, sta)) 983 timer_needed = true; 984 rcu_read_unlock(); 985 986 if (local->quiescing) 987 return; 988 989 if (!timer_needed) 990 return; 991 992 mod_timer(&local->sta_cleanup, 993 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 994 } 995 996 u32 sta_addr_hash(const void *key, u32 length, u32 seed) 997 { 998 return jhash(key, ETH_ALEN, seed); 999 } 1000 1001 int sta_info_init(struct ieee80211_local *local) 1002 { 1003 int err; 1004 1005 err = rhashtable_init(&local->sta_hash, &sta_rht_params); 1006 if (err) 1007 return err; 1008 1009 spin_lock_init(&local->tim_lock); 1010 mutex_init(&local->sta_mtx); 1011 INIT_LIST_HEAD(&local->sta_list); 1012 1013 setup_timer(&local->sta_cleanup, sta_info_cleanup, 1014 (unsigned long)local); 1015 return 0; 1016 } 1017 1018 void sta_info_stop(struct ieee80211_local *local) 1019 { 1020 del_timer_sync(&local->sta_cleanup); 1021 rhashtable_destroy(&local->sta_hash); 1022 } 1023 1024 1025 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1026 { 1027 struct ieee80211_local *local = sdata->local; 1028 struct sta_info *sta, *tmp; 1029 LIST_HEAD(free_list); 1030 int ret = 0; 1031 1032 might_sleep(); 1033 1034 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1035 WARN_ON(vlans && !sdata->bss); 1036 1037 mutex_lock(&local->sta_mtx); 1038 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1039 if (sdata == sta->sdata || 1040 (vlans && sdata->bss == sta->sdata->bss)) { 1041 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1042 list_add(&sta->free_list, &free_list); 1043 ret++; 1044 } 1045 } 1046 1047 if (!list_empty(&free_list)) { 1048 synchronize_net(); 1049 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1050 __sta_info_destroy_part2(sta); 1051 } 1052 mutex_unlock(&local->sta_mtx); 1053 1054 return ret; 1055 } 1056 1057 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1058 unsigned long exp_time) 1059 { 1060 struct ieee80211_local *local = sdata->local; 1061 struct sta_info *sta, *tmp; 1062 1063 mutex_lock(&local->sta_mtx); 1064 1065 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1066 if (sdata != sta->sdata) 1067 continue; 1068 1069 if (time_after(jiffies, sta->rx_stats.last_rx + exp_time)) { 1070 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1071 sta->sta.addr); 1072 1073 if (ieee80211_vif_is_mesh(&sdata->vif) && 1074 test_sta_flag(sta, WLAN_STA_PS_STA)) 1075 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1076 1077 WARN_ON(__sta_info_destroy(sta)); 1078 } 1079 } 1080 1081 mutex_unlock(&local->sta_mtx); 1082 } 1083 1084 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1085 const u8 *addr, 1086 const u8 *localaddr) 1087 { 1088 struct ieee80211_local *local = hw_to_local(hw); 1089 struct sta_info *sta; 1090 struct rhash_head *tmp; 1091 const struct bucket_table *tbl; 1092 1093 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 1094 1095 /* 1096 * Just return a random station if localaddr is NULL 1097 * ... first in list. 1098 */ 1099 for_each_sta_info(local, tbl, addr, sta, tmp) { 1100 if (localaddr && 1101 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1102 continue; 1103 if (!sta->uploaded) 1104 return NULL; 1105 return &sta->sta; 1106 } 1107 1108 return NULL; 1109 } 1110 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1111 1112 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1113 const u8 *addr) 1114 { 1115 struct sta_info *sta; 1116 1117 if (!vif) 1118 return NULL; 1119 1120 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1121 if (!sta) 1122 return NULL; 1123 1124 if (!sta->uploaded) 1125 return NULL; 1126 1127 return &sta->sta; 1128 } 1129 EXPORT_SYMBOL(ieee80211_find_sta); 1130 1131 /* powersave support code */ 1132 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1133 { 1134 struct ieee80211_sub_if_data *sdata = sta->sdata; 1135 struct ieee80211_local *local = sdata->local; 1136 struct sk_buff_head pending; 1137 int filtered = 0, buffered = 0, ac, i; 1138 unsigned long flags; 1139 struct ps_data *ps; 1140 1141 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1142 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1143 u.ap); 1144 1145 if (sdata->vif.type == NL80211_IFTYPE_AP) 1146 ps = &sdata->bss->ps; 1147 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1148 ps = &sdata->u.mesh.ps; 1149 else 1150 return; 1151 1152 clear_sta_flag(sta, WLAN_STA_SP); 1153 1154 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1155 sta->driver_buffered_tids = 0; 1156 sta->txq_buffered_tids = 0; 1157 1158 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1159 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1160 1161 if (sta->sta.txq[0]) { 1162 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1163 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); 1164 1165 if (!skb_queue_len(&txqi->queue)) 1166 continue; 1167 1168 drv_wake_tx_queue(local, txqi); 1169 } 1170 } 1171 1172 skb_queue_head_init(&pending); 1173 1174 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1175 spin_lock(&sta->ps_lock); 1176 /* Send all buffered frames to the station */ 1177 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1178 int count = skb_queue_len(&pending), tmp; 1179 1180 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1181 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1182 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1183 tmp = skb_queue_len(&pending); 1184 filtered += tmp - count; 1185 count = tmp; 1186 1187 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1188 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1189 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1190 tmp = skb_queue_len(&pending); 1191 buffered += tmp - count; 1192 } 1193 1194 ieee80211_add_pending_skbs(local, &pending); 1195 1196 /* now we're no longer in the deliver code */ 1197 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1198 1199 /* The station might have polled and then woken up before we responded, 1200 * so clear these flags now to avoid them sticking around. 1201 */ 1202 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1203 clear_sta_flag(sta, WLAN_STA_UAPSD); 1204 spin_unlock(&sta->ps_lock); 1205 1206 atomic_dec(&ps->num_sta_ps); 1207 1208 /* This station just woke up and isn't aware of our SMPS state */ 1209 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1210 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1211 sdata->smps_mode) && 1212 sta->known_smps_mode != sdata->bss->req_smps && 1213 sta_info_tx_streams(sta) != 1) { 1214 ht_dbg(sdata, 1215 "%pM just woke up and MIMO capable - update SMPS\n", 1216 sta->sta.addr); 1217 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1218 sta->sta.addr, 1219 sdata->vif.bss_conf.bssid); 1220 } 1221 1222 local->total_ps_buffered -= buffered; 1223 1224 sta_info_recalc_tim(sta); 1225 1226 ps_dbg(sdata, 1227 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n", 1228 sta->sta.addr, sta->sta.aid, filtered, buffered); 1229 1230 ieee80211_check_fast_xmit(sta); 1231 } 1232 1233 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata, 1234 struct sta_info *sta, int tid, 1235 enum ieee80211_frame_release_type reason, 1236 bool call_driver) 1237 { 1238 struct ieee80211_local *local = sdata->local; 1239 struct ieee80211_qos_hdr *nullfunc; 1240 struct sk_buff *skb; 1241 int size = sizeof(*nullfunc); 1242 __le16 fc; 1243 bool qos = sta->sta.wme; 1244 struct ieee80211_tx_info *info; 1245 struct ieee80211_chanctx_conf *chanctx_conf; 1246 1247 if (qos) { 1248 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1249 IEEE80211_STYPE_QOS_NULLFUNC | 1250 IEEE80211_FCTL_FROMDS); 1251 } else { 1252 size -= 2; 1253 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1254 IEEE80211_STYPE_NULLFUNC | 1255 IEEE80211_FCTL_FROMDS); 1256 } 1257 1258 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1259 if (!skb) 1260 return; 1261 1262 skb_reserve(skb, local->hw.extra_tx_headroom); 1263 1264 nullfunc = (void *) skb_put(skb, size); 1265 nullfunc->frame_control = fc; 1266 nullfunc->duration_id = 0; 1267 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1268 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1269 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1270 nullfunc->seq_ctrl = 0; 1271 1272 skb->priority = tid; 1273 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1274 if (qos) { 1275 nullfunc->qos_ctrl = cpu_to_le16(tid); 1276 1277 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) 1278 nullfunc->qos_ctrl |= 1279 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1280 } 1281 1282 info = IEEE80211_SKB_CB(skb); 1283 1284 /* 1285 * Tell TX path to send this frame even though the 1286 * STA may still remain is PS mode after this frame 1287 * exchange. Also set EOSP to indicate this packet 1288 * ends the poll/service period. 1289 */ 1290 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1291 IEEE80211_TX_STATUS_EOSP | 1292 IEEE80211_TX_CTL_REQ_TX_STATUS; 1293 1294 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1295 1296 if (call_driver) 1297 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1298 reason, false); 1299 1300 skb->dev = sdata->dev; 1301 1302 rcu_read_lock(); 1303 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1304 if (WARN_ON(!chanctx_conf)) { 1305 rcu_read_unlock(); 1306 kfree_skb(skb); 1307 return; 1308 } 1309 1310 info->band = chanctx_conf->def.chan->band; 1311 ieee80211_xmit(sdata, sta, skb); 1312 rcu_read_unlock(); 1313 } 1314 1315 static int find_highest_prio_tid(unsigned long tids) 1316 { 1317 /* lower 3 TIDs aren't ordered perfectly */ 1318 if (tids & 0xF8) 1319 return fls(tids) - 1; 1320 /* TID 0 is BE just like TID 3 */ 1321 if (tids & BIT(0)) 1322 return 0; 1323 return fls(tids) - 1; 1324 } 1325 1326 static void 1327 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1328 int n_frames, u8 ignored_acs, 1329 enum ieee80211_frame_release_type reason) 1330 { 1331 struct ieee80211_sub_if_data *sdata = sta->sdata; 1332 struct ieee80211_local *local = sdata->local; 1333 bool more_data = false; 1334 int ac; 1335 unsigned long driver_release_tids = 0; 1336 struct sk_buff_head frames; 1337 1338 /* Service or PS-Poll period starts */ 1339 set_sta_flag(sta, WLAN_STA_SP); 1340 1341 __skb_queue_head_init(&frames); 1342 1343 /* Get response frame(s) and more data bit for the last one. */ 1344 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1345 unsigned long tids; 1346 1347 if (ignored_acs & BIT(ac)) 1348 continue; 1349 1350 tids = ieee80211_tids_for_ac(ac); 1351 1352 /* if we already have frames from software, then we can't also 1353 * release from hardware queues 1354 */ 1355 if (skb_queue_empty(&frames)) { 1356 driver_release_tids |= sta->driver_buffered_tids & tids; 1357 driver_release_tids |= sta->txq_buffered_tids & tids; 1358 } 1359 1360 if (driver_release_tids) { 1361 /* If the driver has data on more than one TID then 1362 * certainly there's more data if we release just a 1363 * single frame now (from a single TID). This will 1364 * only happen for PS-Poll. 1365 */ 1366 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1367 hweight16(driver_release_tids) > 1) { 1368 more_data = true; 1369 driver_release_tids = 1370 BIT(find_highest_prio_tid( 1371 driver_release_tids)); 1372 break; 1373 } 1374 } else { 1375 struct sk_buff *skb; 1376 1377 while (n_frames > 0) { 1378 skb = skb_dequeue(&sta->tx_filtered[ac]); 1379 if (!skb) { 1380 skb = skb_dequeue( 1381 &sta->ps_tx_buf[ac]); 1382 if (skb) 1383 local->total_ps_buffered--; 1384 } 1385 if (!skb) 1386 break; 1387 n_frames--; 1388 __skb_queue_tail(&frames, skb); 1389 } 1390 } 1391 1392 /* If we have more frames buffered on this AC, then set the 1393 * more-data bit and abort the loop since we can't send more 1394 * data from other ACs before the buffered frames from this. 1395 */ 1396 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1397 !skb_queue_empty(&sta->ps_tx_buf[ac])) { 1398 more_data = true; 1399 break; 1400 } 1401 } 1402 1403 if (skb_queue_empty(&frames) && !driver_release_tids) { 1404 int tid; 1405 1406 /* 1407 * For PS-Poll, this can only happen due to a race condition 1408 * when we set the TIM bit and the station notices it, but 1409 * before it can poll for the frame we expire it. 1410 * 1411 * For uAPSD, this is said in the standard (11.2.1.5 h): 1412 * At each unscheduled SP for a non-AP STA, the AP shall 1413 * attempt to transmit at least one MSDU or MMPDU, but no 1414 * more than the value specified in the Max SP Length field 1415 * in the QoS Capability element from delivery-enabled ACs, 1416 * that are destined for the non-AP STA. 1417 * 1418 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1419 */ 1420 1421 /* This will evaluate to 1, 3, 5 or 7. */ 1422 tid = 7 - ((ffs(~ignored_acs) - 1) << 1); 1423 1424 ieee80211_send_null_response(sdata, sta, tid, reason, true); 1425 } else if (!driver_release_tids) { 1426 struct sk_buff_head pending; 1427 struct sk_buff *skb; 1428 int num = 0; 1429 u16 tids = 0; 1430 bool need_null = false; 1431 1432 skb_queue_head_init(&pending); 1433 1434 while ((skb = __skb_dequeue(&frames))) { 1435 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1436 struct ieee80211_hdr *hdr = (void *) skb->data; 1437 u8 *qoshdr = NULL; 1438 1439 num++; 1440 1441 /* 1442 * Tell TX path to send this frame even though the 1443 * STA may still remain is PS mode after this frame 1444 * exchange. 1445 */ 1446 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1447 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1448 1449 /* 1450 * Use MoreData flag to indicate whether there are 1451 * more buffered frames for this STA 1452 */ 1453 if (more_data || !skb_queue_empty(&frames)) 1454 hdr->frame_control |= 1455 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1456 else 1457 hdr->frame_control &= 1458 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1459 1460 if (ieee80211_is_data_qos(hdr->frame_control) || 1461 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1462 qoshdr = ieee80211_get_qos_ctl(hdr); 1463 1464 tids |= BIT(skb->priority); 1465 1466 __skb_queue_tail(&pending, skb); 1467 1468 /* end service period after last frame or add one */ 1469 if (!skb_queue_empty(&frames)) 1470 continue; 1471 1472 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1473 /* for PS-Poll, there's only one frame */ 1474 info->flags |= IEEE80211_TX_STATUS_EOSP | 1475 IEEE80211_TX_CTL_REQ_TX_STATUS; 1476 break; 1477 } 1478 1479 /* For uAPSD, things are a bit more complicated. If the 1480 * last frame has a QoS header (i.e. is a QoS-data or 1481 * QoS-nulldata frame) then just set the EOSP bit there 1482 * and be done. 1483 * If the frame doesn't have a QoS header (which means 1484 * it should be a bufferable MMPDU) then we can't set 1485 * the EOSP bit in the QoS header; add a QoS-nulldata 1486 * frame to the list to send it after the MMPDU. 1487 * 1488 * Note that this code is only in the mac80211-release 1489 * code path, we assume that the driver will not buffer 1490 * anything but QoS-data frames, or if it does, will 1491 * create the QoS-nulldata frame by itself if needed. 1492 * 1493 * Cf. 802.11-2012 10.2.1.10 (c). 1494 */ 1495 if (qoshdr) { 1496 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1497 1498 info->flags |= IEEE80211_TX_STATUS_EOSP | 1499 IEEE80211_TX_CTL_REQ_TX_STATUS; 1500 } else { 1501 /* The standard isn't completely clear on this 1502 * as it says the more-data bit should be set 1503 * if there are more BUs. The QoS-Null frame 1504 * we're about to send isn't buffered yet, we 1505 * only create it below, but let's pretend it 1506 * was buffered just in case some clients only 1507 * expect more-data=0 when eosp=1. 1508 */ 1509 hdr->frame_control |= 1510 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1511 need_null = true; 1512 num++; 1513 } 1514 break; 1515 } 1516 1517 drv_allow_buffered_frames(local, sta, tids, num, 1518 reason, more_data); 1519 1520 ieee80211_add_pending_skbs(local, &pending); 1521 1522 if (need_null) 1523 ieee80211_send_null_response( 1524 sdata, sta, find_highest_prio_tid(tids), 1525 reason, false); 1526 1527 sta_info_recalc_tim(sta); 1528 } else { 1529 unsigned long tids = sta->txq_buffered_tids & driver_release_tids; 1530 int tid; 1531 1532 /* 1533 * We need to release a frame that is buffered somewhere in the 1534 * driver ... it'll have to handle that. 1535 * Note that the driver also has to check the number of frames 1536 * on the TIDs we're releasing from - if there are more than 1537 * n_frames it has to set the more-data bit (if we didn't ask 1538 * it to set it anyway due to other buffered frames); if there 1539 * are fewer than n_frames it has to make sure to adjust that 1540 * to allow the service period to end properly. 1541 */ 1542 drv_release_buffered_frames(local, sta, driver_release_tids, 1543 n_frames, reason, more_data); 1544 1545 /* 1546 * Note that we don't recalculate the TIM bit here as it would 1547 * most likely have no effect at all unless the driver told us 1548 * that the TID(s) became empty before returning here from the 1549 * release function. 1550 * Either way, however, when the driver tells us that the TID(s) 1551 * became empty or we find that a txq became empty, we'll do the 1552 * TIM recalculation. 1553 */ 1554 1555 if (!sta->sta.txq[0]) 1556 return; 1557 1558 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1559 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]); 1560 1561 if (!(tids & BIT(tid)) || skb_queue_len(&txqi->queue)) 1562 continue; 1563 1564 sta_info_recalc_tim(sta); 1565 break; 1566 } 1567 } 1568 } 1569 1570 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1571 { 1572 u8 ignore_for_response = sta->sta.uapsd_queues; 1573 1574 /* 1575 * If all ACs are delivery-enabled then we should reply 1576 * from any of them, if only some are enabled we reply 1577 * only from the non-enabled ones. 1578 */ 1579 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1580 ignore_for_response = 0; 1581 1582 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1583 IEEE80211_FRAME_RELEASE_PSPOLL); 1584 } 1585 1586 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1587 { 1588 int n_frames = sta->sta.max_sp; 1589 u8 delivery_enabled = sta->sta.uapsd_queues; 1590 1591 /* 1592 * If we ever grow support for TSPEC this might happen if 1593 * the TSPEC update from hostapd comes in between a trigger 1594 * frame setting WLAN_STA_UAPSD in the RX path and this 1595 * actually getting called. 1596 */ 1597 if (!delivery_enabled) 1598 return; 1599 1600 switch (sta->sta.max_sp) { 1601 case 1: 1602 n_frames = 2; 1603 break; 1604 case 2: 1605 n_frames = 4; 1606 break; 1607 case 3: 1608 n_frames = 6; 1609 break; 1610 case 0: 1611 /* XXX: what is a good value? */ 1612 n_frames = 128; 1613 break; 1614 } 1615 1616 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1617 IEEE80211_FRAME_RELEASE_UAPSD); 1618 } 1619 1620 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1621 struct ieee80211_sta *pubsta, bool block) 1622 { 1623 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1624 1625 trace_api_sta_block_awake(sta->local, pubsta, block); 1626 1627 if (block) { 1628 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1629 ieee80211_clear_fast_xmit(sta); 1630 return; 1631 } 1632 1633 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1634 return; 1635 1636 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1637 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1638 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1639 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1640 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1641 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1642 /* must be asleep in this case */ 1643 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1644 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1645 } else { 1646 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1647 ieee80211_check_fast_xmit(sta); 1648 } 1649 } 1650 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1651 1652 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1653 { 1654 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1655 struct ieee80211_local *local = sta->local; 1656 1657 trace_api_eosp(local, pubsta); 1658 1659 clear_sta_flag(sta, WLAN_STA_SP); 1660 } 1661 EXPORT_SYMBOL(ieee80211_sta_eosp); 1662 1663 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1664 u8 tid, bool buffered) 1665 { 1666 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1667 1668 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1669 return; 1670 1671 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1672 1673 if (buffered) 1674 set_bit(tid, &sta->driver_buffered_tids); 1675 else 1676 clear_bit(tid, &sta->driver_buffered_tids); 1677 1678 sta_info_recalc_tim(sta); 1679 } 1680 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1681 1682 int sta_info_move_state(struct sta_info *sta, 1683 enum ieee80211_sta_state new_state) 1684 { 1685 might_sleep(); 1686 1687 if (sta->sta_state == new_state) 1688 return 0; 1689 1690 /* check allowed transitions first */ 1691 1692 switch (new_state) { 1693 case IEEE80211_STA_NONE: 1694 if (sta->sta_state != IEEE80211_STA_AUTH) 1695 return -EINVAL; 1696 break; 1697 case IEEE80211_STA_AUTH: 1698 if (sta->sta_state != IEEE80211_STA_NONE && 1699 sta->sta_state != IEEE80211_STA_ASSOC) 1700 return -EINVAL; 1701 break; 1702 case IEEE80211_STA_ASSOC: 1703 if (sta->sta_state != IEEE80211_STA_AUTH && 1704 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1705 return -EINVAL; 1706 break; 1707 case IEEE80211_STA_AUTHORIZED: 1708 if (sta->sta_state != IEEE80211_STA_ASSOC) 1709 return -EINVAL; 1710 break; 1711 default: 1712 WARN(1, "invalid state %d", new_state); 1713 return -EINVAL; 1714 } 1715 1716 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1717 sta->sta.addr, new_state); 1718 1719 /* 1720 * notify the driver before the actual changes so it can 1721 * fail the transition 1722 */ 1723 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1724 int err = drv_sta_state(sta->local, sta->sdata, sta, 1725 sta->sta_state, new_state); 1726 if (err) 1727 return err; 1728 } 1729 1730 /* reflect the change in all state variables */ 1731 1732 switch (new_state) { 1733 case IEEE80211_STA_NONE: 1734 if (sta->sta_state == IEEE80211_STA_AUTH) 1735 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1736 break; 1737 case IEEE80211_STA_AUTH: 1738 if (sta->sta_state == IEEE80211_STA_NONE) 1739 set_bit(WLAN_STA_AUTH, &sta->_flags); 1740 else if (sta->sta_state == IEEE80211_STA_ASSOC) 1741 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1742 break; 1743 case IEEE80211_STA_ASSOC: 1744 if (sta->sta_state == IEEE80211_STA_AUTH) { 1745 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1746 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1747 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1748 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1749 !sta->sdata->u.vlan.sta)) 1750 atomic_dec(&sta->sdata->bss->num_mcast_sta); 1751 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1752 ieee80211_clear_fast_xmit(sta); 1753 } 1754 break; 1755 case IEEE80211_STA_AUTHORIZED: 1756 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1757 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1758 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1759 !sta->sdata->u.vlan.sta)) 1760 atomic_inc(&sta->sdata->bss->num_mcast_sta); 1761 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1762 ieee80211_check_fast_xmit(sta); 1763 } 1764 break; 1765 default: 1766 break; 1767 } 1768 1769 sta->sta_state = new_state; 1770 1771 return 0; 1772 } 1773 1774 u8 sta_info_tx_streams(struct sta_info *sta) 1775 { 1776 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1777 u8 rx_streams; 1778 1779 if (!sta->sta.ht_cap.ht_supported) 1780 return 1; 1781 1782 if (sta->sta.vht_cap.vht_supported) { 1783 int i; 1784 u16 tx_mcs_map = 1785 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1786 1787 for (i = 7; i >= 0; i--) 1788 if ((tx_mcs_map & (0x3 << (i * 2))) != 1789 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1790 return i + 1; 1791 } 1792 1793 if (ht_cap->mcs.rx_mask[3]) 1794 rx_streams = 4; 1795 else if (ht_cap->mcs.rx_mask[2]) 1796 rx_streams = 3; 1797 else if (ht_cap->mcs.rx_mask[1]) 1798 rx_streams = 2; 1799 else 1800 rx_streams = 1; 1801 1802 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1803 return rx_streams; 1804 1805 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1806 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1807 } 1808 1809 static void sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 1810 { 1811 rinfo->flags = 0; 1812 1813 if (sta->rx_stats.last_rate_flag & RX_FLAG_HT) { 1814 rinfo->flags |= RATE_INFO_FLAGS_MCS; 1815 rinfo->mcs = sta->rx_stats.last_rate_idx; 1816 } else if (sta->rx_stats.last_rate_flag & RX_FLAG_VHT) { 1817 rinfo->flags |= RATE_INFO_FLAGS_VHT_MCS; 1818 rinfo->nss = sta->rx_stats.last_rate_vht_nss; 1819 rinfo->mcs = sta->rx_stats.last_rate_idx; 1820 } else { 1821 struct ieee80211_supported_band *sband; 1822 int shift = ieee80211_vif_get_shift(&sta->sdata->vif); 1823 u16 brate; 1824 1825 sband = sta->local->hw.wiphy->bands[ 1826 ieee80211_get_sdata_band(sta->sdata)]; 1827 brate = sband->bitrates[sta->rx_stats.last_rate_idx].bitrate; 1828 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 1829 } 1830 1831 if (sta->rx_stats.last_rate_flag & RX_FLAG_SHORT_GI) 1832 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 1833 1834 if (sta->rx_stats.last_rate_flag & RX_FLAG_5MHZ) 1835 rinfo->bw = RATE_INFO_BW_5; 1836 else if (sta->rx_stats.last_rate_flag & RX_FLAG_10MHZ) 1837 rinfo->bw = RATE_INFO_BW_10; 1838 else if (sta->rx_stats.last_rate_flag & RX_FLAG_40MHZ) 1839 rinfo->bw = RATE_INFO_BW_40; 1840 else if (sta->rx_stats.last_rate_vht_flag & RX_VHT_FLAG_80MHZ) 1841 rinfo->bw = RATE_INFO_BW_80; 1842 else if (sta->rx_stats.last_rate_vht_flag & RX_VHT_FLAG_160MHZ) 1843 rinfo->bw = RATE_INFO_BW_160; 1844 else 1845 rinfo->bw = RATE_INFO_BW_20; 1846 } 1847 1848 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo) 1849 { 1850 struct ieee80211_sub_if_data *sdata = sta->sdata; 1851 struct ieee80211_local *local = sdata->local; 1852 struct rate_control_ref *ref = NULL; 1853 u32 thr = 0; 1854 int i, ac; 1855 1856 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 1857 ref = local->rate_ctrl; 1858 1859 sinfo->generation = sdata->local->sta_generation; 1860 1861 /* do before driver, so beacon filtering drivers have a 1862 * chance to e.g. just add the number of filtered beacons 1863 * (or just modify the value entirely, of course) 1864 */ 1865 if (sdata->vif.type == NL80211_IFTYPE_STATION) 1866 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 1867 1868 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 1869 1870 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) | 1871 BIT(NL80211_STA_INFO_STA_FLAGS) | 1872 BIT(NL80211_STA_INFO_BSS_PARAM) | 1873 BIT(NL80211_STA_INFO_CONNECTED_TIME) | 1874 BIT(NL80211_STA_INFO_RX_DROP_MISC); 1875 1876 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 1877 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 1878 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS); 1879 } 1880 1881 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 1882 sinfo->inactive_time = 1883 jiffies_to_msecs(jiffies - sta->rx_stats.last_rx); 1884 1885 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) | 1886 BIT(NL80211_STA_INFO_TX_BYTES)))) { 1887 sinfo->tx_bytes = 0; 1888 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 1889 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 1890 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64); 1891 } 1892 1893 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) { 1894 sinfo->tx_packets = 0; 1895 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 1896 sinfo->tx_packets += sta->tx_stats.packets[ac]; 1897 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS); 1898 } 1899 1900 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) | 1901 BIT(NL80211_STA_INFO_RX_BYTES)))) { 1902 sinfo->rx_bytes = sta->rx_stats.bytes; 1903 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64); 1904 } 1905 1906 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) { 1907 sinfo->rx_packets = sta->rx_stats.packets; 1908 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS); 1909 } 1910 1911 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) { 1912 sinfo->tx_retries = sta->status_stats.retry_count; 1913 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES); 1914 } 1915 1916 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) { 1917 sinfo->tx_failed = sta->status_stats.retry_failed; 1918 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED); 1919 } 1920 1921 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 1922 1923 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1924 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 1925 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) | 1926 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 1927 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 1928 } 1929 1930 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 1931 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 1932 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) { 1933 sinfo->signal = (s8)sta->rx_stats.last_signal; 1934 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL); 1935 } 1936 1937 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) { 1938 sinfo->signal_avg = 1939 -ewma_signal_read(&sta->rx_stats.avg_signal); 1940 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG); 1941 } 1942 } 1943 1944 if (sta->rx_stats.chains && 1945 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) | 1946 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 1947 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL) | 1948 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 1949 1950 sinfo->chains = sta->rx_stats.chains; 1951 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 1952 sinfo->chain_signal[i] = 1953 sta->rx_stats.chain_signal_last[i]; 1954 sinfo->chain_signal_avg[i] = 1955 -ewma_signal_read(&sta->rx_stats.chain_signal_avg[i]); 1956 } 1957 } 1958 1959 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) { 1960 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 1961 &sinfo->txrate); 1962 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE); 1963 } 1964 1965 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) { 1966 sta_set_rate_info_rx(sta, &sinfo->rxrate); 1967 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE); 1968 } 1969 1970 sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS); 1971 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) { 1972 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i]; 1973 1974 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 1975 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 1976 tidstats->rx_msdu = sta->rx_stats.msdu[i]; 1977 } 1978 1979 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 1980 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 1981 tidstats->tx_msdu = sta->tx_stats.msdu[i]; 1982 } 1983 1984 if (!(tidstats->filled & 1985 BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 1986 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 1987 tidstats->filled |= 1988 BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 1989 tidstats->tx_msdu_retries = 1990 sta->status_stats.msdu_retries[i]; 1991 } 1992 1993 if (!(tidstats->filled & 1994 BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 1995 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 1996 tidstats->filled |= 1997 BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 1998 tidstats->tx_msdu_failed = 1999 sta->status_stats.msdu_failed[i]; 2000 } 2001 } 2002 2003 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2004 #ifdef CONFIG_MAC80211_MESH 2005 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) | 2006 BIT(NL80211_STA_INFO_PLID) | 2007 BIT(NL80211_STA_INFO_PLINK_STATE) | 2008 BIT(NL80211_STA_INFO_LOCAL_PM) | 2009 BIT(NL80211_STA_INFO_PEER_PM) | 2010 BIT(NL80211_STA_INFO_NONPEER_PM); 2011 2012 sinfo->llid = sta->mesh->llid; 2013 sinfo->plid = sta->mesh->plid; 2014 sinfo->plink_state = sta->mesh->plink_state; 2015 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2016 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET); 2017 sinfo->t_offset = sta->mesh->t_offset; 2018 } 2019 sinfo->local_pm = sta->mesh->local_pm; 2020 sinfo->peer_pm = sta->mesh->peer_pm; 2021 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2022 #endif 2023 } 2024 2025 sinfo->bss_param.flags = 0; 2026 if (sdata->vif.bss_conf.use_cts_prot) 2027 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2028 if (sdata->vif.bss_conf.use_short_preamble) 2029 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2030 if (sdata->vif.bss_conf.use_short_slot) 2031 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2032 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2033 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2034 2035 sinfo->sta_flags.set = 0; 2036 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2037 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2038 BIT(NL80211_STA_FLAG_WME) | 2039 BIT(NL80211_STA_FLAG_MFP) | 2040 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2041 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2042 BIT(NL80211_STA_FLAG_TDLS_PEER); 2043 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2044 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2045 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2046 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2047 if (sta->sta.wme) 2048 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2049 if (test_sta_flag(sta, WLAN_STA_MFP)) 2050 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2051 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2052 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2053 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2054 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2055 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2056 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2057 2058 /* check if the driver has a SW RC implementation */ 2059 if (ref && ref->ops->get_expected_throughput) 2060 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2061 else 2062 thr = drv_get_expected_throughput(local, &sta->sta); 2063 2064 if (thr != 0) { 2065 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2066 sinfo->expected_throughput = thr; 2067 } 2068 } 2069