1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 7 * Copyright (C) 2018-2021 Intel Corporation 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/codel.h> 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 static const struct rhashtable_params sta_rht_params = { 68 .nelem_hint = 3, /* start small */ 69 .automatic_shrinking = true, 70 .head_offset = offsetof(struct sta_info, hash_node), 71 .key_offset = offsetof(struct sta_info, addr), 72 .key_len = ETH_ALEN, 73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 74 }; 75 76 /* Caller must hold local->sta_mtx */ 77 static int sta_info_hash_del(struct ieee80211_local *local, 78 struct sta_info *sta) 79 { 80 return rhltable_remove(&local->sta_hash, &sta->hash_node, 81 sta_rht_params); 82 } 83 84 static void __cleanup_single_sta(struct sta_info *sta) 85 { 86 int ac, i; 87 struct tid_ampdu_tx *tid_tx; 88 struct ieee80211_sub_if_data *sdata = sta->sdata; 89 struct ieee80211_local *local = sdata->local; 90 struct ps_data *ps; 91 92 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 97 ps = &sdata->bss->ps; 98 else if (ieee80211_vif_is_mesh(&sdata->vif)) 99 ps = &sdata->u.mesh.ps; 100 else 101 return; 102 103 clear_sta_flag(sta, WLAN_STA_PS_STA); 104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 106 107 atomic_dec(&ps->num_sta_ps); 108 } 109 110 if (sta->sta.txq[0]) { 111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 112 struct txq_info *txqi; 113 114 if (!sta->sta.txq[i]) 115 continue; 116 117 txqi = to_txq_info(sta->sta.txq[i]); 118 119 ieee80211_txq_purge(local, txqi); 120 } 121 } 122 123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 127 } 128 129 if (ieee80211_vif_is_mesh(&sdata->vif)) 130 mesh_sta_cleanup(sta); 131 132 cancel_work_sync(&sta->drv_deliver_wk); 133 134 /* 135 * Destroy aggregation state here. It would be nice to wait for the 136 * driver to finish aggregation stop and then clean up, but for now 137 * drivers have to handle aggregation stop being requested, followed 138 * directly by station destruction. 139 */ 140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 141 kfree(sta->ampdu_mlme.tid_start_tx[i]); 142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 143 if (!tid_tx) 144 continue; 145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 146 kfree(tid_tx); 147 } 148 } 149 150 static void cleanup_single_sta(struct sta_info *sta) 151 { 152 struct ieee80211_sub_if_data *sdata = sta->sdata; 153 struct ieee80211_local *local = sdata->local; 154 155 __cleanup_single_sta(sta); 156 sta_info_free(local, sta); 157 } 158 159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 160 const u8 *addr) 161 { 162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 163 } 164 165 /* protected by RCU */ 166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 167 const u8 *addr) 168 { 169 struct ieee80211_local *local = sdata->local; 170 struct rhlist_head *tmp; 171 struct sta_info *sta; 172 173 rcu_read_lock(); 174 for_each_sta_info(local, addr, sta, tmp) { 175 if (sta->sdata == sdata) { 176 rcu_read_unlock(); 177 /* this is safe as the caller must already hold 178 * another rcu read section or the mutex 179 */ 180 return sta; 181 } 182 } 183 rcu_read_unlock(); 184 return NULL; 185 } 186 187 /* 188 * Get sta info either from the specified interface 189 * or from one of its vlans 190 */ 191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 192 const u8 *addr) 193 { 194 struct ieee80211_local *local = sdata->local; 195 struct rhlist_head *tmp; 196 struct sta_info *sta; 197 198 rcu_read_lock(); 199 for_each_sta_info(local, addr, sta, tmp) { 200 if (sta->sdata == sdata || 201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 202 rcu_read_unlock(); 203 /* this is safe as the caller must already hold 204 * another rcu read section or the mutex 205 */ 206 return sta; 207 } 208 } 209 rcu_read_unlock(); 210 return NULL; 211 } 212 213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, 214 const u8 *sta_addr, const u8 *vif_addr) 215 { 216 struct rhlist_head *tmp; 217 struct sta_info *sta; 218 219 for_each_sta_info(local, sta_addr, sta, tmp) { 220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr)) 221 return sta; 222 } 223 224 return NULL; 225 } 226 227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 228 int idx) 229 { 230 struct ieee80211_local *local = sdata->local; 231 struct sta_info *sta; 232 int i = 0; 233 234 list_for_each_entry_rcu(sta, &local->sta_list, list, 235 lockdep_is_held(&local->sta_mtx)) { 236 if (sdata != sta->sdata) 237 continue; 238 if (i < idx) { 239 ++i; 240 continue; 241 } 242 return sta; 243 } 244 245 return NULL; 246 } 247 248 /** 249 * sta_info_free - free STA 250 * 251 * @local: pointer to the global information 252 * @sta: STA info to free 253 * 254 * This function must undo everything done by sta_info_alloc() 255 * that may happen before sta_info_insert(). It may only be 256 * called when sta_info_insert() has not been attempted (and 257 * if that fails, the station is freed anyway.) 258 */ 259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 260 { 261 /* 262 * If we had used sta_info_pre_move_state() then we might not 263 * have gone through the state transitions down again, so do 264 * it here now (and warn if it's inserted). 265 * 266 * This will clear state such as fast TX/RX that may have been 267 * allocated during state transitions. 268 */ 269 while (sta->sta_state > IEEE80211_STA_NONE) { 270 int ret; 271 272 WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED)); 273 274 ret = sta_info_move_state(sta, sta->sta_state - 1); 275 if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret)) 276 break; 277 } 278 279 if (sta->rate_ctrl) 280 rate_control_free_sta(sta); 281 282 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 283 284 if (sta->sta.txq[0]) 285 kfree(to_txq_info(sta->sta.txq[0])); 286 kfree(rcu_dereference_raw(sta->sta.rates)); 287 #ifdef CONFIG_MAC80211_MESH 288 kfree(sta->mesh); 289 #endif 290 free_percpu(sta->pcpu_rx_stats); 291 kfree(sta); 292 } 293 294 /* Caller must hold local->sta_mtx */ 295 static int sta_info_hash_add(struct ieee80211_local *local, 296 struct sta_info *sta) 297 { 298 return rhltable_insert(&local->sta_hash, &sta->hash_node, 299 sta_rht_params); 300 } 301 302 static void sta_deliver_ps_frames(struct work_struct *wk) 303 { 304 struct sta_info *sta; 305 306 sta = container_of(wk, struct sta_info, drv_deliver_wk); 307 308 if (sta->dead) 309 return; 310 311 local_bh_disable(); 312 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 313 ieee80211_sta_ps_deliver_wakeup(sta); 314 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 315 ieee80211_sta_ps_deliver_poll_response(sta); 316 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 317 ieee80211_sta_ps_deliver_uapsd(sta); 318 local_bh_enable(); 319 } 320 321 static int sta_prepare_rate_control(struct ieee80211_local *local, 322 struct sta_info *sta, gfp_t gfp) 323 { 324 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 325 return 0; 326 327 sta->rate_ctrl = local->rate_ctrl; 328 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 329 sta, gfp); 330 if (!sta->rate_ctrl_priv) 331 return -ENOMEM; 332 333 return 0; 334 } 335 336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 337 const u8 *addr, gfp_t gfp) 338 { 339 struct ieee80211_local *local = sdata->local; 340 struct ieee80211_hw *hw = &local->hw; 341 struct sta_info *sta; 342 int i; 343 344 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 345 if (!sta) 346 return NULL; 347 348 if (ieee80211_hw_check(hw, USES_RSS)) { 349 sta->pcpu_rx_stats = 350 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); 351 if (!sta->pcpu_rx_stats) 352 goto free; 353 } 354 355 spin_lock_init(&sta->lock); 356 spin_lock_init(&sta->ps_lock); 357 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 358 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 359 mutex_init(&sta->ampdu_mlme.mtx); 360 #ifdef CONFIG_MAC80211_MESH 361 if (ieee80211_vif_is_mesh(&sdata->vif)) { 362 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 363 if (!sta->mesh) 364 goto free; 365 sta->mesh->plink_sta = sta; 366 spin_lock_init(&sta->mesh->plink_lock); 367 if (ieee80211_vif_is_mesh(&sdata->vif) && 368 !sdata->u.mesh.user_mpm) 369 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 370 0); 371 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 372 } 373 #endif 374 375 memcpy(sta->addr, addr, ETH_ALEN); 376 memcpy(sta->sta.addr, addr, ETH_ALEN); 377 sta->sta.max_rx_aggregation_subframes = 378 local->hw.max_rx_aggregation_subframes; 379 380 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only. 381 * The Tx path starts to use a key as soon as the key slot ptk_idx 382 * references to is not NULL. To not use the initial Rx-only key 383 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid 384 * which always will refer to a NULL key. 385 */ 386 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX); 387 sta->ptk_idx = INVALID_PTK_KEYIDX; 388 389 sta->local = local; 390 sta->sdata = sdata; 391 sta->rx_stats.last_rx = jiffies; 392 393 u64_stats_init(&sta->rx_stats.syncp); 394 395 ieee80211_init_frag_cache(&sta->frags); 396 397 sta->sta_state = IEEE80211_STA_NONE; 398 399 /* Mark TID as unreserved */ 400 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 401 402 sta->last_connected = ktime_get_seconds(); 403 ewma_signal_init(&sta->rx_stats_avg.signal); 404 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal); 405 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 406 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 407 408 if (local->ops->wake_tx_queue) { 409 void *txq_data; 410 int size = sizeof(struct txq_info) + 411 ALIGN(hw->txq_data_size, sizeof(void *)); 412 413 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 414 if (!txq_data) 415 goto free; 416 417 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 418 struct txq_info *txq = txq_data + i * size; 419 420 /* might not do anything for the bufferable MMPDU TXQ */ 421 ieee80211_txq_init(sdata, sta, txq, i); 422 } 423 } 424 425 if (sta_prepare_rate_control(local, sta, gfp)) 426 goto free_txq; 427 428 429 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 430 skb_queue_head_init(&sta->ps_tx_buf[i]); 431 skb_queue_head_init(&sta->tx_filtered[i]); 432 init_airtime_info(&sta->airtime[i], &local->airtime[i]); 433 } 434 435 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 436 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 437 438 for (i = 0; i < NUM_NL80211_BANDS; i++) { 439 u32 mandatory = 0; 440 int r; 441 442 if (!hw->wiphy->bands[i]) 443 continue; 444 445 switch (i) { 446 case NL80211_BAND_2GHZ: 447 /* 448 * We use both here, even if we cannot really know for 449 * sure the station will support both, but the only use 450 * for this is when we don't know anything yet and send 451 * management frames, and then we'll pick the lowest 452 * possible rate anyway. 453 * If we don't include _G here, we cannot find a rate 454 * in P2P, and thus trigger the WARN_ONCE() in rate.c 455 */ 456 mandatory = IEEE80211_RATE_MANDATORY_B | 457 IEEE80211_RATE_MANDATORY_G; 458 break; 459 case NL80211_BAND_5GHZ: 460 mandatory = IEEE80211_RATE_MANDATORY_A; 461 break; 462 case NL80211_BAND_60GHZ: 463 WARN_ON(1); 464 mandatory = 0; 465 break; 466 } 467 468 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) { 469 struct ieee80211_rate *rate; 470 471 rate = &hw->wiphy->bands[i]->bitrates[r]; 472 473 if (!(rate->flags & mandatory)) 474 continue; 475 sta->sta.supp_rates[i] |= BIT(r); 476 } 477 } 478 479 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 480 if (sdata->vif.type == NL80211_IFTYPE_AP || 481 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 482 struct ieee80211_supported_band *sband; 483 u8 smps; 484 485 sband = ieee80211_get_sband(sdata); 486 if (!sband) 487 goto free_txq; 488 489 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 490 IEEE80211_HT_CAP_SM_PS_SHIFT; 491 /* 492 * Assume that hostapd advertises our caps in the beacon and 493 * this is the known_smps_mode for a station that just assciated 494 */ 495 switch (smps) { 496 case WLAN_HT_SMPS_CONTROL_DISABLED: 497 sta->known_smps_mode = IEEE80211_SMPS_OFF; 498 break; 499 case WLAN_HT_SMPS_CONTROL_STATIC: 500 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 501 break; 502 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 503 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 504 break; 505 default: 506 WARN_ON(1); 507 } 508 } 509 510 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 511 512 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; 513 sta->cparams.target = MS2TIME(20); 514 sta->cparams.interval = MS2TIME(100); 515 sta->cparams.ecn = true; 516 517 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 518 519 return sta; 520 521 free_txq: 522 if (sta->sta.txq[0]) 523 kfree(to_txq_info(sta->sta.txq[0])); 524 free: 525 free_percpu(sta->pcpu_rx_stats); 526 #ifdef CONFIG_MAC80211_MESH 527 kfree(sta->mesh); 528 #endif 529 kfree(sta); 530 return NULL; 531 } 532 533 static int sta_info_insert_check(struct sta_info *sta) 534 { 535 struct ieee80211_sub_if_data *sdata = sta->sdata; 536 537 /* 538 * Can't be a WARN_ON because it can be triggered through a race: 539 * something inserts a STA (on one CPU) without holding the RTNL 540 * and another CPU turns off the net device. 541 */ 542 if (unlikely(!ieee80211_sdata_running(sdata))) 543 return -ENETDOWN; 544 545 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 546 is_multicast_ether_addr(sta->sta.addr))) 547 return -EINVAL; 548 549 /* The RCU read lock is required by rhashtable due to 550 * asynchronous resize/rehash. We also require the mutex 551 * for correctness. 552 */ 553 rcu_read_lock(); 554 lockdep_assert_held(&sdata->local->sta_mtx); 555 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 556 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 557 rcu_read_unlock(); 558 return -ENOTUNIQ; 559 } 560 rcu_read_unlock(); 561 562 return 0; 563 } 564 565 static int sta_info_insert_drv_state(struct ieee80211_local *local, 566 struct ieee80211_sub_if_data *sdata, 567 struct sta_info *sta) 568 { 569 enum ieee80211_sta_state state; 570 int err = 0; 571 572 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 573 err = drv_sta_state(local, sdata, sta, state, state + 1); 574 if (err) 575 break; 576 } 577 578 if (!err) { 579 /* 580 * Drivers using legacy sta_add/sta_remove callbacks only 581 * get uploaded set to true after sta_add is called. 582 */ 583 if (!local->ops->sta_add) 584 sta->uploaded = true; 585 return 0; 586 } 587 588 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 589 sdata_info(sdata, 590 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 591 sta->sta.addr, state + 1, err); 592 err = 0; 593 } 594 595 /* unwind on error */ 596 for (; state > IEEE80211_STA_NOTEXIST; state--) 597 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 598 599 return err; 600 } 601 602 static void 603 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 604 { 605 struct ieee80211_local *local = sdata->local; 606 bool allow_p2p_go_ps = sdata->vif.p2p; 607 struct sta_info *sta; 608 609 rcu_read_lock(); 610 list_for_each_entry_rcu(sta, &local->sta_list, list) { 611 if (sdata != sta->sdata || 612 !test_sta_flag(sta, WLAN_STA_ASSOC)) 613 continue; 614 if (!sta->sta.support_p2p_ps) { 615 allow_p2p_go_ps = false; 616 break; 617 } 618 } 619 rcu_read_unlock(); 620 621 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 622 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 623 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 624 } 625 } 626 627 /* 628 * should be called with sta_mtx locked 629 * this function replaces the mutex lock 630 * with a RCU lock 631 */ 632 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 633 { 634 struct ieee80211_local *local = sta->local; 635 struct ieee80211_sub_if_data *sdata = sta->sdata; 636 struct station_info *sinfo = NULL; 637 int err = 0; 638 639 lockdep_assert_held(&local->sta_mtx); 640 641 /* check if STA exists already */ 642 if (sta_info_get_bss(sdata, sta->sta.addr)) { 643 err = -EEXIST; 644 goto out_err; 645 } 646 647 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 648 if (!sinfo) { 649 err = -ENOMEM; 650 goto out_err; 651 } 652 653 local->num_sta++; 654 local->sta_generation++; 655 smp_mb(); 656 657 /* simplify things and don't accept BA sessions yet */ 658 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 659 660 /* make the station visible */ 661 err = sta_info_hash_add(local, sta); 662 if (err) 663 goto out_drop_sta; 664 665 list_add_tail_rcu(&sta->list, &local->sta_list); 666 667 /* notify driver */ 668 err = sta_info_insert_drv_state(local, sdata, sta); 669 if (err) 670 goto out_remove; 671 672 set_sta_flag(sta, WLAN_STA_INSERTED); 673 674 if (sta->sta_state >= IEEE80211_STA_ASSOC) { 675 ieee80211_recalc_min_chandef(sta->sdata); 676 if (!sta->sta.support_p2p_ps) 677 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 678 } 679 680 /* accept BA sessions now */ 681 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 682 683 ieee80211_sta_debugfs_add(sta); 684 rate_control_add_sta_debugfs(sta); 685 686 sinfo->generation = local->sta_generation; 687 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 688 kfree(sinfo); 689 690 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 691 692 /* move reference to rcu-protected */ 693 rcu_read_lock(); 694 mutex_unlock(&local->sta_mtx); 695 696 if (ieee80211_vif_is_mesh(&sdata->vif)) 697 mesh_accept_plinks_update(sdata); 698 699 return 0; 700 out_remove: 701 sta_info_hash_del(local, sta); 702 list_del_rcu(&sta->list); 703 out_drop_sta: 704 local->num_sta--; 705 synchronize_net(); 706 cleanup_single_sta(sta); 707 out_err: 708 mutex_unlock(&local->sta_mtx); 709 kfree(sinfo); 710 rcu_read_lock(); 711 return err; 712 } 713 714 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 715 { 716 struct ieee80211_local *local = sta->local; 717 int err; 718 719 might_sleep(); 720 721 mutex_lock(&local->sta_mtx); 722 723 err = sta_info_insert_check(sta); 724 if (err) { 725 sta_info_free(local, sta); 726 mutex_unlock(&local->sta_mtx); 727 rcu_read_lock(); 728 return err; 729 } 730 731 return sta_info_insert_finish(sta); 732 } 733 734 int sta_info_insert(struct sta_info *sta) 735 { 736 int err = sta_info_insert_rcu(sta); 737 738 rcu_read_unlock(); 739 740 return err; 741 } 742 743 static inline void __bss_tim_set(u8 *tim, u16 id) 744 { 745 /* 746 * This format has been mandated by the IEEE specifications, 747 * so this line may not be changed to use the __set_bit() format. 748 */ 749 tim[id / 8] |= (1 << (id % 8)); 750 } 751 752 static inline void __bss_tim_clear(u8 *tim, u16 id) 753 { 754 /* 755 * This format has been mandated by the IEEE specifications, 756 * so this line may not be changed to use the __clear_bit() format. 757 */ 758 tim[id / 8] &= ~(1 << (id % 8)); 759 } 760 761 static inline bool __bss_tim_get(u8 *tim, u16 id) 762 { 763 /* 764 * This format has been mandated by the IEEE specifications, 765 * so this line may not be changed to use the test_bit() format. 766 */ 767 return tim[id / 8] & (1 << (id % 8)); 768 } 769 770 static unsigned long ieee80211_tids_for_ac(int ac) 771 { 772 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 773 switch (ac) { 774 case IEEE80211_AC_VO: 775 return BIT(6) | BIT(7); 776 case IEEE80211_AC_VI: 777 return BIT(4) | BIT(5); 778 case IEEE80211_AC_BE: 779 return BIT(0) | BIT(3); 780 case IEEE80211_AC_BK: 781 return BIT(1) | BIT(2); 782 default: 783 WARN_ON(1); 784 return 0; 785 } 786 } 787 788 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 789 { 790 struct ieee80211_local *local = sta->local; 791 struct ps_data *ps; 792 bool indicate_tim = false; 793 u8 ignore_for_tim = sta->sta.uapsd_queues; 794 int ac; 795 u16 id = sta->sta.aid; 796 797 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 798 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 799 if (WARN_ON_ONCE(!sta->sdata->bss)) 800 return; 801 802 ps = &sta->sdata->bss->ps; 803 #ifdef CONFIG_MAC80211_MESH 804 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 805 ps = &sta->sdata->u.mesh.ps; 806 #endif 807 } else { 808 return; 809 } 810 811 /* No need to do anything if the driver does all */ 812 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 813 return; 814 815 if (sta->dead) 816 goto done; 817 818 /* 819 * If all ACs are delivery-enabled then we should build 820 * the TIM bit for all ACs anyway; if only some are then 821 * we ignore those and build the TIM bit using only the 822 * non-enabled ones. 823 */ 824 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 825 ignore_for_tim = 0; 826 827 if (ignore_pending) 828 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 829 830 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 831 unsigned long tids; 832 833 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 834 continue; 835 836 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 837 !skb_queue_empty(&sta->ps_tx_buf[ac]); 838 if (indicate_tim) 839 break; 840 841 tids = ieee80211_tids_for_ac(ac); 842 843 indicate_tim |= 844 sta->driver_buffered_tids & tids; 845 indicate_tim |= 846 sta->txq_buffered_tids & tids; 847 } 848 849 done: 850 spin_lock_bh(&local->tim_lock); 851 852 if (indicate_tim == __bss_tim_get(ps->tim, id)) 853 goto out_unlock; 854 855 if (indicate_tim) 856 __bss_tim_set(ps->tim, id); 857 else 858 __bss_tim_clear(ps->tim, id); 859 860 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 861 local->tim_in_locked_section = true; 862 drv_set_tim(local, &sta->sta, indicate_tim); 863 local->tim_in_locked_section = false; 864 } 865 866 out_unlock: 867 spin_unlock_bh(&local->tim_lock); 868 } 869 870 void sta_info_recalc_tim(struct sta_info *sta) 871 { 872 __sta_info_recalc_tim(sta, false); 873 } 874 875 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 876 { 877 struct ieee80211_tx_info *info; 878 int timeout; 879 880 if (!skb) 881 return false; 882 883 info = IEEE80211_SKB_CB(skb); 884 885 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 886 timeout = (sta->listen_interval * 887 sta->sdata->vif.bss_conf.beacon_int * 888 32 / 15625) * HZ; 889 if (timeout < STA_TX_BUFFER_EXPIRE) 890 timeout = STA_TX_BUFFER_EXPIRE; 891 return time_after(jiffies, info->control.jiffies + timeout); 892 } 893 894 895 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 896 struct sta_info *sta, int ac) 897 { 898 unsigned long flags; 899 struct sk_buff *skb; 900 901 /* 902 * First check for frames that should expire on the filtered 903 * queue. Frames here were rejected by the driver and are on 904 * a separate queue to avoid reordering with normal PS-buffered 905 * frames. They also aren't accounted for right now in the 906 * total_ps_buffered counter. 907 */ 908 for (;;) { 909 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 910 skb = skb_peek(&sta->tx_filtered[ac]); 911 if (sta_info_buffer_expired(sta, skb)) 912 skb = __skb_dequeue(&sta->tx_filtered[ac]); 913 else 914 skb = NULL; 915 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 916 917 /* 918 * Frames are queued in order, so if this one 919 * hasn't expired yet we can stop testing. If 920 * we actually reached the end of the queue we 921 * also need to stop, of course. 922 */ 923 if (!skb) 924 break; 925 ieee80211_free_txskb(&local->hw, skb); 926 } 927 928 /* 929 * Now also check the normal PS-buffered queue, this will 930 * only find something if the filtered queue was emptied 931 * since the filtered frames are all before the normal PS 932 * buffered frames. 933 */ 934 for (;;) { 935 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 936 skb = skb_peek(&sta->ps_tx_buf[ac]); 937 if (sta_info_buffer_expired(sta, skb)) 938 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 939 else 940 skb = NULL; 941 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 942 943 /* 944 * frames are queued in order, so if this one 945 * hasn't expired yet (or we reached the end of 946 * the queue) we can stop testing 947 */ 948 if (!skb) 949 break; 950 951 local->total_ps_buffered--; 952 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 953 sta->sta.addr); 954 ieee80211_free_txskb(&local->hw, skb); 955 } 956 957 /* 958 * Finally, recalculate the TIM bit for this station -- it might 959 * now be clear because the station was too slow to retrieve its 960 * frames. 961 */ 962 sta_info_recalc_tim(sta); 963 964 /* 965 * Return whether there are any frames still buffered, this is 966 * used to check whether the cleanup timer still needs to run, 967 * if there are no frames we don't need to rearm the timer. 968 */ 969 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 970 skb_queue_empty(&sta->tx_filtered[ac])); 971 } 972 973 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 974 struct sta_info *sta) 975 { 976 bool have_buffered = false; 977 int ac; 978 979 /* This is only necessary for stations on BSS/MBSS interfaces */ 980 if (!sta->sdata->bss && 981 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 982 return false; 983 984 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 985 have_buffered |= 986 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 987 988 return have_buffered; 989 } 990 991 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 992 { 993 struct ieee80211_local *local; 994 struct ieee80211_sub_if_data *sdata; 995 int ret; 996 997 might_sleep(); 998 999 if (!sta) 1000 return -ENOENT; 1001 1002 local = sta->local; 1003 sdata = sta->sdata; 1004 1005 lockdep_assert_held(&local->sta_mtx); 1006 1007 /* 1008 * Before removing the station from the driver and 1009 * rate control, it might still start new aggregation 1010 * sessions -- block that to make sure the tear-down 1011 * will be sufficient. 1012 */ 1013 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 1014 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 1015 1016 /* 1017 * Before removing the station from the driver there might be pending 1018 * rx frames on RSS queues sent prior to the disassociation - wait for 1019 * all such frames to be processed. 1020 */ 1021 drv_sync_rx_queues(local, sta); 1022 1023 ret = sta_info_hash_del(local, sta); 1024 if (WARN_ON(ret)) 1025 return ret; 1026 1027 /* 1028 * for TDLS peers, make sure to return to the base channel before 1029 * removal. 1030 */ 1031 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 1032 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 1033 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 1034 } 1035 1036 list_del_rcu(&sta->list); 1037 sta->removed = true; 1038 1039 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 1040 1041 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1042 rcu_access_pointer(sdata->u.vlan.sta) == sta) 1043 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 1044 1045 return 0; 1046 } 1047 1048 static void __sta_info_destroy_part2(struct sta_info *sta) 1049 { 1050 struct ieee80211_local *local = sta->local; 1051 struct ieee80211_sub_if_data *sdata = sta->sdata; 1052 struct station_info *sinfo; 1053 int ret; 1054 1055 /* 1056 * NOTE: This assumes at least synchronize_net() was done 1057 * after _part1 and before _part2! 1058 */ 1059 1060 might_sleep(); 1061 lockdep_assert_held(&local->sta_mtx); 1062 1063 if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1064 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC); 1065 WARN_ON_ONCE(ret); 1066 } 1067 1068 /* now keys can no longer be reached */ 1069 ieee80211_free_sta_keys(local, sta); 1070 1071 /* disable TIM bit - last chance to tell driver */ 1072 __sta_info_recalc_tim(sta, true); 1073 1074 sta->dead = true; 1075 1076 local->num_sta--; 1077 local->sta_generation++; 1078 1079 while (sta->sta_state > IEEE80211_STA_NONE) { 1080 ret = sta_info_move_state(sta, sta->sta_state - 1); 1081 if (ret) { 1082 WARN_ON_ONCE(1); 1083 break; 1084 } 1085 } 1086 1087 if (sta->uploaded) { 1088 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 1089 IEEE80211_STA_NOTEXIST); 1090 WARN_ON_ONCE(ret != 0); 1091 } 1092 1093 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 1094 1095 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 1096 if (sinfo) 1097 sta_set_sinfo(sta, sinfo, true); 1098 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 1099 kfree(sinfo); 1100 1101 ieee80211_sta_debugfs_remove(sta); 1102 1103 ieee80211_destroy_frag_cache(&sta->frags); 1104 1105 cleanup_single_sta(sta); 1106 } 1107 1108 int __must_check __sta_info_destroy(struct sta_info *sta) 1109 { 1110 int err = __sta_info_destroy_part1(sta); 1111 1112 if (err) 1113 return err; 1114 1115 synchronize_net(); 1116 1117 __sta_info_destroy_part2(sta); 1118 1119 return 0; 1120 } 1121 1122 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1123 { 1124 struct sta_info *sta; 1125 int ret; 1126 1127 mutex_lock(&sdata->local->sta_mtx); 1128 sta = sta_info_get(sdata, addr); 1129 ret = __sta_info_destroy(sta); 1130 mutex_unlock(&sdata->local->sta_mtx); 1131 1132 return ret; 1133 } 1134 1135 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1136 const u8 *addr) 1137 { 1138 struct sta_info *sta; 1139 int ret; 1140 1141 mutex_lock(&sdata->local->sta_mtx); 1142 sta = sta_info_get_bss(sdata, addr); 1143 ret = __sta_info_destroy(sta); 1144 mutex_unlock(&sdata->local->sta_mtx); 1145 1146 return ret; 1147 } 1148 1149 static void sta_info_cleanup(struct timer_list *t) 1150 { 1151 struct ieee80211_local *local = from_timer(local, t, sta_cleanup); 1152 struct sta_info *sta; 1153 bool timer_needed = false; 1154 1155 rcu_read_lock(); 1156 list_for_each_entry_rcu(sta, &local->sta_list, list) 1157 if (sta_info_cleanup_expire_buffered(local, sta)) 1158 timer_needed = true; 1159 rcu_read_unlock(); 1160 1161 if (local->quiescing) 1162 return; 1163 1164 if (!timer_needed) 1165 return; 1166 1167 mod_timer(&local->sta_cleanup, 1168 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1169 } 1170 1171 int sta_info_init(struct ieee80211_local *local) 1172 { 1173 int err; 1174 1175 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1176 if (err) 1177 return err; 1178 1179 spin_lock_init(&local->tim_lock); 1180 mutex_init(&local->sta_mtx); 1181 INIT_LIST_HEAD(&local->sta_list); 1182 1183 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); 1184 return 0; 1185 } 1186 1187 void sta_info_stop(struct ieee80211_local *local) 1188 { 1189 del_timer_sync(&local->sta_cleanup); 1190 rhltable_destroy(&local->sta_hash); 1191 } 1192 1193 1194 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1195 { 1196 struct ieee80211_local *local = sdata->local; 1197 struct sta_info *sta, *tmp; 1198 LIST_HEAD(free_list); 1199 int ret = 0; 1200 1201 might_sleep(); 1202 1203 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1204 WARN_ON(vlans && !sdata->bss); 1205 1206 mutex_lock(&local->sta_mtx); 1207 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1208 if (sdata == sta->sdata || 1209 (vlans && sdata->bss == sta->sdata->bss)) { 1210 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1211 list_add(&sta->free_list, &free_list); 1212 ret++; 1213 } 1214 } 1215 1216 if (!list_empty(&free_list)) { 1217 synchronize_net(); 1218 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1219 __sta_info_destroy_part2(sta); 1220 } 1221 mutex_unlock(&local->sta_mtx); 1222 1223 return ret; 1224 } 1225 1226 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1227 unsigned long exp_time) 1228 { 1229 struct ieee80211_local *local = sdata->local; 1230 struct sta_info *sta, *tmp; 1231 1232 mutex_lock(&local->sta_mtx); 1233 1234 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1235 unsigned long last_active = ieee80211_sta_last_active(sta); 1236 1237 if (sdata != sta->sdata) 1238 continue; 1239 1240 if (time_is_before_jiffies(last_active + exp_time)) { 1241 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1242 sta->sta.addr); 1243 1244 if (ieee80211_vif_is_mesh(&sdata->vif) && 1245 test_sta_flag(sta, WLAN_STA_PS_STA)) 1246 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1247 1248 WARN_ON(__sta_info_destroy(sta)); 1249 } 1250 } 1251 1252 mutex_unlock(&local->sta_mtx); 1253 } 1254 1255 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1256 const u8 *addr, 1257 const u8 *localaddr) 1258 { 1259 struct ieee80211_local *local = hw_to_local(hw); 1260 struct rhlist_head *tmp; 1261 struct sta_info *sta; 1262 1263 /* 1264 * Just return a random station if localaddr is NULL 1265 * ... first in list. 1266 */ 1267 for_each_sta_info(local, addr, sta, tmp) { 1268 if (localaddr && 1269 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1270 continue; 1271 if (!sta->uploaded) 1272 return NULL; 1273 return &sta->sta; 1274 } 1275 1276 return NULL; 1277 } 1278 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1279 1280 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1281 const u8 *addr) 1282 { 1283 struct sta_info *sta; 1284 1285 if (!vif) 1286 return NULL; 1287 1288 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1289 if (!sta) 1290 return NULL; 1291 1292 if (!sta->uploaded) 1293 return NULL; 1294 1295 return &sta->sta; 1296 } 1297 EXPORT_SYMBOL(ieee80211_find_sta); 1298 1299 /* powersave support code */ 1300 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1301 { 1302 struct ieee80211_sub_if_data *sdata = sta->sdata; 1303 struct ieee80211_local *local = sdata->local; 1304 struct sk_buff_head pending; 1305 int filtered = 0, buffered = 0, ac, i; 1306 unsigned long flags; 1307 struct ps_data *ps; 1308 1309 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1310 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1311 u.ap); 1312 1313 if (sdata->vif.type == NL80211_IFTYPE_AP) 1314 ps = &sdata->bss->ps; 1315 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1316 ps = &sdata->u.mesh.ps; 1317 else 1318 return; 1319 1320 clear_sta_flag(sta, WLAN_STA_SP); 1321 1322 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1323 sta->driver_buffered_tids = 0; 1324 sta->txq_buffered_tids = 0; 1325 1326 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1327 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1328 1329 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1330 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) 1331 continue; 1332 1333 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); 1334 } 1335 1336 skb_queue_head_init(&pending); 1337 1338 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1339 spin_lock(&sta->ps_lock); 1340 /* Send all buffered frames to the station */ 1341 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1342 int count = skb_queue_len(&pending), tmp; 1343 1344 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1345 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1346 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1347 tmp = skb_queue_len(&pending); 1348 filtered += tmp - count; 1349 count = tmp; 1350 1351 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1352 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1353 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1354 tmp = skb_queue_len(&pending); 1355 buffered += tmp - count; 1356 } 1357 1358 ieee80211_add_pending_skbs(local, &pending); 1359 1360 /* now we're no longer in the deliver code */ 1361 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1362 1363 /* The station might have polled and then woken up before we responded, 1364 * so clear these flags now to avoid them sticking around. 1365 */ 1366 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1367 clear_sta_flag(sta, WLAN_STA_UAPSD); 1368 spin_unlock(&sta->ps_lock); 1369 1370 atomic_dec(&ps->num_sta_ps); 1371 1372 local->total_ps_buffered -= buffered; 1373 1374 sta_info_recalc_tim(sta); 1375 1376 ps_dbg(sdata, 1377 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1378 sta->sta.addr, sta->sta.aid, filtered, buffered); 1379 1380 ieee80211_check_fast_xmit(sta); 1381 } 1382 1383 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1384 enum ieee80211_frame_release_type reason, 1385 bool call_driver, bool more_data) 1386 { 1387 struct ieee80211_sub_if_data *sdata = sta->sdata; 1388 struct ieee80211_local *local = sdata->local; 1389 struct ieee80211_qos_hdr *nullfunc; 1390 struct sk_buff *skb; 1391 int size = sizeof(*nullfunc); 1392 __le16 fc; 1393 bool qos = sta->sta.wme; 1394 struct ieee80211_tx_info *info; 1395 struct ieee80211_chanctx_conf *chanctx_conf; 1396 1397 if (qos) { 1398 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1399 IEEE80211_STYPE_QOS_NULLFUNC | 1400 IEEE80211_FCTL_FROMDS); 1401 } else { 1402 size -= 2; 1403 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1404 IEEE80211_STYPE_NULLFUNC | 1405 IEEE80211_FCTL_FROMDS); 1406 } 1407 1408 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1409 if (!skb) 1410 return; 1411 1412 skb_reserve(skb, local->hw.extra_tx_headroom); 1413 1414 nullfunc = skb_put(skb, size); 1415 nullfunc->frame_control = fc; 1416 nullfunc->duration_id = 0; 1417 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1418 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1419 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1420 nullfunc->seq_ctrl = 0; 1421 1422 skb->priority = tid; 1423 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1424 if (qos) { 1425 nullfunc->qos_ctrl = cpu_to_le16(tid); 1426 1427 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1428 nullfunc->qos_ctrl |= 1429 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1430 if (more_data) 1431 nullfunc->frame_control |= 1432 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1433 } 1434 } 1435 1436 info = IEEE80211_SKB_CB(skb); 1437 1438 /* 1439 * Tell TX path to send this frame even though the 1440 * STA may still remain is PS mode after this frame 1441 * exchange. Also set EOSP to indicate this packet 1442 * ends the poll/service period. 1443 */ 1444 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1445 IEEE80211_TX_STATUS_EOSP | 1446 IEEE80211_TX_CTL_REQ_TX_STATUS; 1447 1448 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1449 1450 if (call_driver) 1451 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1452 reason, false); 1453 1454 skb->dev = sdata->dev; 1455 1456 rcu_read_lock(); 1457 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1458 if (WARN_ON(!chanctx_conf)) { 1459 rcu_read_unlock(); 1460 kfree_skb(skb); 1461 return; 1462 } 1463 1464 info->band = chanctx_conf->def.chan->band; 1465 ieee80211_xmit(sdata, sta, skb); 1466 rcu_read_unlock(); 1467 } 1468 1469 static int find_highest_prio_tid(unsigned long tids) 1470 { 1471 /* lower 3 TIDs aren't ordered perfectly */ 1472 if (tids & 0xF8) 1473 return fls(tids) - 1; 1474 /* TID 0 is BE just like TID 3 */ 1475 if (tids & BIT(0)) 1476 return 0; 1477 return fls(tids) - 1; 1478 } 1479 1480 /* Indicates if the MORE_DATA bit should be set in the last 1481 * frame obtained by ieee80211_sta_ps_get_frames. 1482 * Note that driver_release_tids is relevant only if 1483 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1484 */ 1485 static bool 1486 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1487 enum ieee80211_frame_release_type reason, 1488 unsigned long driver_release_tids) 1489 { 1490 int ac; 1491 1492 /* If the driver has data on more than one TID then 1493 * certainly there's more data if we release just a 1494 * single frame now (from a single TID). This will 1495 * only happen for PS-Poll. 1496 */ 1497 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1498 hweight16(driver_release_tids) > 1) 1499 return true; 1500 1501 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1502 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1503 continue; 1504 1505 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1506 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1507 return true; 1508 } 1509 1510 return false; 1511 } 1512 1513 static void 1514 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1515 enum ieee80211_frame_release_type reason, 1516 struct sk_buff_head *frames, 1517 unsigned long *driver_release_tids) 1518 { 1519 struct ieee80211_sub_if_data *sdata = sta->sdata; 1520 struct ieee80211_local *local = sdata->local; 1521 int ac; 1522 1523 /* Get response frame(s) and more data bit for the last one. */ 1524 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1525 unsigned long tids; 1526 1527 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1528 continue; 1529 1530 tids = ieee80211_tids_for_ac(ac); 1531 1532 /* if we already have frames from software, then we can't also 1533 * release from hardware queues 1534 */ 1535 if (skb_queue_empty(frames)) { 1536 *driver_release_tids |= 1537 sta->driver_buffered_tids & tids; 1538 *driver_release_tids |= sta->txq_buffered_tids & tids; 1539 } 1540 1541 if (!*driver_release_tids) { 1542 struct sk_buff *skb; 1543 1544 while (n_frames > 0) { 1545 skb = skb_dequeue(&sta->tx_filtered[ac]); 1546 if (!skb) { 1547 skb = skb_dequeue( 1548 &sta->ps_tx_buf[ac]); 1549 if (skb) 1550 local->total_ps_buffered--; 1551 } 1552 if (!skb) 1553 break; 1554 n_frames--; 1555 __skb_queue_tail(frames, skb); 1556 } 1557 } 1558 1559 /* If we have more frames buffered on this AC, then abort the 1560 * loop since we can't send more data from other ACs before 1561 * the buffered frames from this. 1562 */ 1563 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1564 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1565 break; 1566 } 1567 } 1568 1569 static void 1570 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1571 int n_frames, u8 ignored_acs, 1572 enum ieee80211_frame_release_type reason) 1573 { 1574 struct ieee80211_sub_if_data *sdata = sta->sdata; 1575 struct ieee80211_local *local = sdata->local; 1576 unsigned long driver_release_tids = 0; 1577 struct sk_buff_head frames; 1578 bool more_data; 1579 1580 /* Service or PS-Poll period starts */ 1581 set_sta_flag(sta, WLAN_STA_SP); 1582 1583 __skb_queue_head_init(&frames); 1584 1585 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1586 &frames, &driver_release_tids); 1587 1588 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1589 1590 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1591 driver_release_tids = 1592 BIT(find_highest_prio_tid(driver_release_tids)); 1593 1594 if (skb_queue_empty(&frames) && !driver_release_tids) { 1595 int tid, ac; 1596 1597 /* 1598 * For PS-Poll, this can only happen due to a race condition 1599 * when we set the TIM bit and the station notices it, but 1600 * before it can poll for the frame we expire it. 1601 * 1602 * For uAPSD, this is said in the standard (11.2.1.5 h): 1603 * At each unscheduled SP for a non-AP STA, the AP shall 1604 * attempt to transmit at least one MSDU or MMPDU, but no 1605 * more than the value specified in the Max SP Length field 1606 * in the QoS Capability element from delivery-enabled ACs, 1607 * that are destined for the non-AP STA. 1608 * 1609 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1610 */ 1611 1612 /* This will evaluate to 1, 3, 5 or 7. */ 1613 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1614 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1615 break; 1616 tid = 7 - 2 * ac; 1617 1618 ieee80211_send_null_response(sta, tid, reason, true, false); 1619 } else if (!driver_release_tids) { 1620 struct sk_buff_head pending; 1621 struct sk_buff *skb; 1622 int num = 0; 1623 u16 tids = 0; 1624 bool need_null = false; 1625 1626 skb_queue_head_init(&pending); 1627 1628 while ((skb = __skb_dequeue(&frames))) { 1629 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1630 struct ieee80211_hdr *hdr = (void *) skb->data; 1631 u8 *qoshdr = NULL; 1632 1633 num++; 1634 1635 /* 1636 * Tell TX path to send this frame even though the 1637 * STA may still remain is PS mode after this frame 1638 * exchange. 1639 */ 1640 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1641 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1642 1643 /* 1644 * Use MoreData flag to indicate whether there are 1645 * more buffered frames for this STA 1646 */ 1647 if (more_data || !skb_queue_empty(&frames)) 1648 hdr->frame_control |= 1649 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1650 else 1651 hdr->frame_control &= 1652 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1653 1654 if (ieee80211_is_data_qos(hdr->frame_control) || 1655 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1656 qoshdr = ieee80211_get_qos_ctl(hdr); 1657 1658 tids |= BIT(skb->priority); 1659 1660 __skb_queue_tail(&pending, skb); 1661 1662 /* end service period after last frame or add one */ 1663 if (!skb_queue_empty(&frames)) 1664 continue; 1665 1666 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1667 /* for PS-Poll, there's only one frame */ 1668 info->flags |= IEEE80211_TX_STATUS_EOSP | 1669 IEEE80211_TX_CTL_REQ_TX_STATUS; 1670 break; 1671 } 1672 1673 /* For uAPSD, things are a bit more complicated. If the 1674 * last frame has a QoS header (i.e. is a QoS-data or 1675 * QoS-nulldata frame) then just set the EOSP bit there 1676 * and be done. 1677 * If the frame doesn't have a QoS header (which means 1678 * it should be a bufferable MMPDU) then we can't set 1679 * the EOSP bit in the QoS header; add a QoS-nulldata 1680 * frame to the list to send it after the MMPDU. 1681 * 1682 * Note that this code is only in the mac80211-release 1683 * code path, we assume that the driver will not buffer 1684 * anything but QoS-data frames, or if it does, will 1685 * create the QoS-nulldata frame by itself if needed. 1686 * 1687 * Cf. 802.11-2012 10.2.1.10 (c). 1688 */ 1689 if (qoshdr) { 1690 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1691 1692 info->flags |= IEEE80211_TX_STATUS_EOSP | 1693 IEEE80211_TX_CTL_REQ_TX_STATUS; 1694 } else { 1695 /* The standard isn't completely clear on this 1696 * as it says the more-data bit should be set 1697 * if there are more BUs. The QoS-Null frame 1698 * we're about to send isn't buffered yet, we 1699 * only create it below, but let's pretend it 1700 * was buffered just in case some clients only 1701 * expect more-data=0 when eosp=1. 1702 */ 1703 hdr->frame_control |= 1704 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1705 need_null = true; 1706 num++; 1707 } 1708 break; 1709 } 1710 1711 drv_allow_buffered_frames(local, sta, tids, num, 1712 reason, more_data); 1713 1714 ieee80211_add_pending_skbs(local, &pending); 1715 1716 if (need_null) 1717 ieee80211_send_null_response( 1718 sta, find_highest_prio_tid(tids), 1719 reason, false, false); 1720 1721 sta_info_recalc_tim(sta); 1722 } else { 1723 int tid; 1724 1725 /* 1726 * We need to release a frame that is buffered somewhere in the 1727 * driver ... it'll have to handle that. 1728 * Note that the driver also has to check the number of frames 1729 * on the TIDs we're releasing from - if there are more than 1730 * n_frames it has to set the more-data bit (if we didn't ask 1731 * it to set it anyway due to other buffered frames); if there 1732 * are fewer than n_frames it has to make sure to adjust that 1733 * to allow the service period to end properly. 1734 */ 1735 drv_release_buffered_frames(local, sta, driver_release_tids, 1736 n_frames, reason, more_data); 1737 1738 /* 1739 * Note that we don't recalculate the TIM bit here as it would 1740 * most likely have no effect at all unless the driver told us 1741 * that the TID(s) became empty before returning here from the 1742 * release function. 1743 * Either way, however, when the driver tells us that the TID(s) 1744 * became empty or we find that a txq became empty, we'll do the 1745 * TIM recalculation. 1746 */ 1747 1748 if (!sta->sta.txq[0]) 1749 return; 1750 1751 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1752 if (!sta->sta.txq[tid] || 1753 !(driver_release_tids & BIT(tid)) || 1754 txq_has_queue(sta->sta.txq[tid])) 1755 continue; 1756 1757 sta_info_recalc_tim(sta); 1758 break; 1759 } 1760 } 1761 } 1762 1763 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1764 { 1765 u8 ignore_for_response = sta->sta.uapsd_queues; 1766 1767 /* 1768 * If all ACs are delivery-enabled then we should reply 1769 * from any of them, if only some are enabled we reply 1770 * only from the non-enabled ones. 1771 */ 1772 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1773 ignore_for_response = 0; 1774 1775 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1776 IEEE80211_FRAME_RELEASE_PSPOLL); 1777 } 1778 1779 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1780 { 1781 int n_frames = sta->sta.max_sp; 1782 u8 delivery_enabled = sta->sta.uapsd_queues; 1783 1784 /* 1785 * If we ever grow support for TSPEC this might happen if 1786 * the TSPEC update from hostapd comes in between a trigger 1787 * frame setting WLAN_STA_UAPSD in the RX path and this 1788 * actually getting called. 1789 */ 1790 if (!delivery_enabled) 1791 return; 1792 1793 switch (sta->sta.max_sp) { 1794 case 1: 1795 n_frames = 2; 1796 break; 1797 case 2: 1798 n_frames = 4; 1799 break; 1800 case 3: 1801 n_frames = 6; 1802 break; 1803 case 0: 1804 /* XXX: what is a good value? */ 1805 n_frames = 128; 1806 break; 1807 } 1808 1809 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1810 IEEE80211_FRAME_RELEASE_UAPSD); 1811 } 1812 1813 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1814 struct ieee80211_sta *pubsta, bool block) 1815 { 1816 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1817 1818 trace_api_sta_block_awake(sta->local, pubsta, block); 1819 1820 if (block) { 1821 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1822 ieee80211_clear_fast_xmit(sta); 1823 return; 1824 } 1825 1826 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1827 return; 1828 1829 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1830 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1831 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1832 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1833 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1834 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1835 /* must be asleep in this case */ 1836 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1837 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1838 } else { 1839 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1840 ieee80211_check_fast_xmit(sta); 1841 } 1842 } 1843 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1844 1845 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1846 { 1847 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1848 struct ieee80211_local *local = sta->local; 1849 1850 trace_api_eosp(local, pubsta); 1851 1852 clear_sta_flag(sta, WLAN_STA_SP); 1853 } 1854 EXPORT_SYMBOL(ieee80211_sta_eosp); 1855 1856 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1857 { 1858 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1859 enum ieee80211_frame_release_type reason; 1860 bool more_data; 1861 1862 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1863 1864 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1865 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1866 reason, 0); 1867 1868 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1869 } 1870 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1871 1872 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1873 u8 tid, bool buffered) 1874 { 1875 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1876 1877 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1878 return; 1879 1880 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1881 1882 if (buffered) 1883 set_bit(tid, &sta->driver_buffered_tids); 1884 else 1885 clear_bit(tid, &sta->driver_buffered_tids); 1886 1887 sta_info_recalc_tim(sta); 1888 } 1889 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1890 1891 void ieee80211_register_airtime(struct ieee80211_txq *txq, 1892 u32 tx_airtime, u32 rx_airtime) 1893 { 1894 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 1895 struct ieee80211_local *local = sdata->local; 1896 u64 weight_sum, weight_sum_reciprocal; 1897 struct airtime_sched_info *air_sched; 1898 struct airtime_info *air_info; 1899 u32 airtime = 0; 1900 1901 air_sched = &local->airtime[txq->ac]; 1902 air_info = to_airtime_info(txq); 1903 1904 if (local->airtime_flags & AIRTIME_USE_TX) 1905 airtime += tx_airtime; 1906 if (local->airtime_flags & AIRTIME_USE_RX) 1907 airtime += rx_airtime; 1908 1909 /* Weights scale so the unit weight is 256 */ 1910 airtime <<= 8; 1911 1912 spin_lock_bh(&air_sched->lock); 1913 1914 air_info->tx_airtime += tx_airtime; 1915 air_info->rx_airtime += rx_airtime; 1916 1917 if (air_sched->weight_sum) { 1918 weight_sum = air_sched->weight_sum; 1919 weight_sum_reciprocal = air_sched->weight_sum_reciprocal; 1920 } else { 1921 weight_sum = air_info->weight; 1922 weight_sum_reciprocal = air_info->weight_reciprocal; 1923 } 1924 1925 /* Round the calculation of global vt */ 1926 air_sched->v_t += (u64)((airtime + (weight_sum >> 1)) * 1927 weight_sum_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_64; 1928 air_info->v_t += (u32)((airtime + (air_info->weight >> 1)) * 1929 air_info->weight_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_32; 1930 ieee80211_resort_txq(&local->hw, txq); 1931 1932 spin_unlock_bh(&air_sched->lock); 1933 } 1934 1935 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, 1936 u32 tx_airtime, u32 rx_airtime) 1937 { 1938 struct ieee80211_txq *txq = pubsta->txq[tid]; 1939 1940 if (!txq) 1941 return; 1942 1943 ieee80211_register_airtime(txq, tx_airtime, rx_airtime); 1944 } 1945 EXPORT_SYMBOL(ieee80211_sta_register_airtime); 1946 1947 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, 1948 struct sta_info *sta, u8 ac, 1949 u16 tx_airtime, bool tx_completed) 1950 { 1951 int tx_pending; 1952 1953 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) 1954 return; 1955 1956 if (!tx_completed) { 1957 if (sta) 1958 atomic_add(tx_airtime, 1959 &sta->airtime[ac].aql_tx_pending); 1960 1961 atomic_add(tx_airtime, &local->aql_total_pending_airtime); 1962 return; 1963 } 1964 1965 if (sta) { 1966 tx_pending = atomic_sub_return(tx_airtime, 1967 &sta->airtime[ac].aql_tx_pending); 1968 if (tx_pending < 0) 1969 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending, 1970 tx_pending, 0); 1971 } 1972 1973 tx_pending = atomic_sub_return(tx_airtime, 1974 &local->aql_total_pending_airtime); 1975 if (WARN_ONCE(tx_pending < 0, 1976 "Device %s AC %d pending airtime underflow: %u, %u", 1977 wiphy_name(local->hw.wiphy), ac, tx_pending, 1978 tx_airtime)) 1979 atomic_cmpxchg(&local->aql_total_pending_airtime, 1980 tx_pending, 0); 1981 } 1982 1983 int sta_info_move_state(struct sta_info *sta, 1984 enum ieee80211_sta_state new_state) 1985 { 1986 might_sleep(); 1987 1988 if (sta->sta_state == new_state) 1989 return 0; 1990 1991 /* check allowed transitions first */ 1992 1993 switch (new_state) { 1994 case IEEE80211_STA_NONE: 1995 if (sta->sta_state != IEEE80211_STA_AUTH) 1996 return -EINVAL; 1997 break; 1998 case IEEE80211_STA_AUTH: 1999 if (sta->sta_state != IEEE80211_STA_NONE && 2000 sta->sta_state != IEEE80211_STA_ASSOC) 2001 return -EINVAL; 2002 break; 2003 case IEEE80211_STA_ASSOC: 2004 if (sta->sta_state != IEEE80211_STA_AUTH && 2005 sta->sta_state != IEEE80211_STA_AUTHORIZED) 2006 return -EINVAL; 2007 break; 2008 case IEEE80211_STA_AUTHORIZED: 2009 if (sta->sta_state != IEEE80211_STA_ASSOC) 2010 return -EINVAL; 2011 break; 2012 default: 2013 WARN(1, "invalid state %d", new_state); 2014 return -EINVAL; 2015 } 2016 2017 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 2018 sta->sta.addr, new_state); 2019 2020 /* 2021 * notify the driver before the actual changes so it can 2022 * fail the transition 2023 */ 2024 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 2025 int err = drv_sta_state(sta->local, sta->sdata, sta, 2026 sta->sta_state, new_state); 2027 if (err) 2028 return err; 2029 } 2030 2031 /* reflect the change in all state variables */ 2032 2033 switch (new_state) { 2034 case IEEE80211_STA_NONE: 2035 if (sta->sta_state == IEEE80211_STA_AUTH) 2036 clear_bit(WLAN_STA_AUTH, &sta->_flags); 2037 break; 2038 case IEEE80211_STA_AUTH: 2039 if (sta->sta_state == IEEE80211_STA_NONE) { 2040 set_bit(WLAN_STA_AUTH, &sta->_flags); 2041 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 2042 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 2043 ieee80211_recalc_min_chandef(sta->sdata); 2044 if (!sta->sta.support_p2p_ps) 2045 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2046 } 2047 break; 2048 case IEEE80211_STA_ASSOC: 2049 if (sta->sta_state == IEEE80211_STA_AUTH) { 2050 set_bit(WLAN_STA_ASSOC, &sta->_flags); 2051 sta->assoc_at = ktime_get_boottime_ns(); 2052 ieee80211_recalc_min_chandef(sta->sdata); 2053 if (!sta->sta.support_p2p_ps) 2054 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2055 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 2056 ieee80211_vif_dec_num_mcast(sta->sdata); 2057 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2058 ieee80211_clear_fast_xmit(sta); 2059 ieee80211_clear_fast_rx(sta); 2060 } 2061 break; 2062 case IEEE80211_STA_AUTHORIZED: 2063 if (sta->sta_state == IEEE80211_STA_ASSOC) { 2064 ieee80211_vif_inc_num_mcast(sta->sdata); 2065 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2066 ieee80211_check_fast_xmit(sta); 2067 ieee80211_check_fast_rx(sta); 2068 } 2069 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 2070 sta->sdata->vif.type == NL80211_IFTYPE_AP) 2071 cfg80211_send_layer2_update(sta->sdata->dev, 2072 sta->sta.addr); 2073 break; 2074 default: 2075 break; 2076 } 2077 2078 sta->sta_state = new_state; 2079 2080 return 0; 2081 } 2082 2083 u8 sta_info_tx_streams(struct sta_info *sta) 2084 { 2085 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 2086 u8 rx_streams; 2087 2088 if (!sta->sta.ht_cap.ht_supported) 2089 return 1; 2090 2091 if (sta->sta.vht_cap.vht_supported) { 2092 int i; 2093 u16 tx_mcs_map = 2094 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 2095 2096 for (i = 7; i >= 0; i--) 2097 if ((tx_mcs_map & (0x3 << (i * 2))) != 2098 IEEE80211_VHT_MCS_NOT_SUPPORTED) 2099 return i + 1; 2100 } 2101 2102 if (ht_cap->mcs.rx_mask[3]) 2103 rx_streams = 4; 2104 else if (ht_cap->mcs.rx_mask[2]) 2105 rx_streams = 3; 2106 else if (ht_cap->mcs.rx_mask[1]) 2107 rx_streams = 2; 2108 else 2109 rx_streams = 1; 2110 2111 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 2112 return rx_streams; 2113 2114 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 2115 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 2116 } 2117 2118 static struct ieee80211_sta_rx_stats * 2119 sta_get_last_rx_stats(struct sta_info *sta) 2120 { 2121 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 2122 int cpu; 2123 2124 if (!sta->pcpu_rx_stats) 2125 return stats; 2126 2127 for_each_possible_cpu(cpu) { 2128 struct ieee80211_sta_rx_stats *cpustats; 2129 2130 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2131 2132 if (time_after(cpustats->last_rx, stats->last_rx)) 2133 stats = cpustats; 2134 } 2135 2136 return stats; 2137 } 2138 2139 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, 2140 struct rate_info *rinfo) 2141 { 2142 rinfo->bw = STA_STATS_GET(BW, rate); 2143 2144 switch (STA_STATS_GET(TYPE, rate)) { 2145 case STA_STATS_RATE_TYPE_VHT: 2146 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 2147 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 2148 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 2149 if (STA_STATS_GET(SGI, rate)) 2150 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2151 break; 2152 case STA_STATS_RATE_TYPE_HT: 2153 rinfo->flags = RATE_INFO_FLAGS_MCS; 2154 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 2155 if (STA_STATS_GET(SGI, rate)) 2156 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2157 break; 2158 case STA_STATS_RATE_TYPE_LEGACY: { 2159 struct ieee80211_supported_band *sband; 2160 u16 brate; 2161 unsigned int shift; 2162 int band = STA_STATS_GET(LEGACY_BAND, rate); 2163 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 2164 2165 sband = local->hw.wiphy->bands[band]; 2166 2167 if (WARN_ON_ONCE(!sband->bitrates)) 2168 break; 2169 2170 brate = sband->bitrates[rate_idx].bitrate; 2171 if (rinfo->bw == RATE_INFO_BW_5) 2172 shift = 2; 2173 else if (rinfo->bw == RATE_INFO_BW_10) 2174 shift = 1; 2175 else 2176 shift = 0; 2177 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 2178 break; 2179 } 2180 case STA_STATS_RATE_TYPE_HE: 2181 rinfo->flags = RATE_INFO_FLAGS_HE_MCS; 2182 rinfo->mcs = STA_STATS_GET(HE_MCS, rate); 2183 rinfo->nss = STA_STATS_GET(HE_NSS, rate); 2184 rinfo->he_gi = STA_STATS_GET(HE_GI, rate); 2185 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); 2186 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); 2187 break; 2188 } 2189 } 2190 2191 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2192 { 2193 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2194 2195 if (rate == STA_STATS_RATE_INVALID) 2196 return -EINVAL; 2197 2198 sta_stats_decode_rate(sta->local, rate, rinfo); 2199 return 0; 2200 } 2201 2202 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats, 2203 int tid) 2204 { 2205 unsigned int start; 2206 u64 value; 2207 2208 do { 2209 start = u64_stats_fetch_begin(&rxstats->syncp); 2210 value = rxstats->msdu[tid]; 2211 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2212 2213 return value; 2214 } 2215 2216 static void sta_set_tidstats(struct sta_info *sta, 2217 struct cfg80211_tid_stats *tidstats, 2218 int tid) 2219 { 2220 struct ieee80211_local *local = sta->local; 2221 int cpu; 2222 2223 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2224 tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->rx_stats, tid); 2225 2226 if (sta->pcpu_rx_stats) { 2227 for_each_possible_cpu(cpu) { 2228 struct ieee80211_sta_rx_stats *cpurxs; 2229 2230 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2231 tidstats->rx_msdu += 2232 sta_get_tidstats_msdu(cpurxs, tid); 2233 } 2234 } 2235 2236 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2237 } 2238 2239 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2240 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2241 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2242 } 2243 2244 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2245 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2246 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2247 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2248 } 2249 2250 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2251 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2252 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2253 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2254 } 2255 2256 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) { 2257 spin_lock_bh(&local->fq.lock); 2258 rcu_read_lock(); 2259 2260 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); 2261 ieee80211_fill_txq_stats(&tidstats->txq_stats, 2262 to_txq_info(sta->sta.txq[tid])); 2263 2264 rcu_read_unlock(); 2265 spin_unlock_bh(&local->fq.lock); 2266 } 2267 } 2268 2269 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2270 { 2271 unsigned int start; 2272 u64 value; 2273 2274 do { 2275 start = u64_stats_fetch_begin(&rxstats->syncp); 2276 value = rxstats->bytes; 2277 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2278 2279 return value; 2280 } 2281 2282 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, 2283 bool tidstats) 2284 { 2285 struct ieee80211_sub_if_data *sdata = sta->sdata; 2286 struct ieee80211_local *local = sdata->local; 2287 u32 thr = 0; 2288 int i, ac, cpu; 2289 struct ieee80211_sta_rx_stats *last_rxstats; 2290 2291 last_rxstats = sta_get_last_rx_stats(sta); 2292 2293 sinfo->generation = sdata->local->sta_generation; 2294 2295 /* do before driver, so beacon filtering drivers have a 2296 * chance to e.g. just add the number of filtered beacons 2297 * (or just modify the value entirely, of course) 2298 */ 2299 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2300 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2301 2302 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2303 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | 2304 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | 2305 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | 2306 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | 2307 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) | 2308 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); 2309 2310 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2311 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2312 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); 2313 } 2314 2315 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2316 sinfo->assoc_at = sta->assoc_at; 2317 sinfo->inactive_time = 2318 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2319 2320 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | 2321 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { 2322 sinfo->tx_bytes = 0; 2323 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2324 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2325 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); 2326 } 2327 2328 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { 2329 sinfo->tx_packets = 0; 2330 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2331 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2332 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); 2333 } 2334 2335 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | 2336 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { 2337 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2338 2339 if (sta->pcpu_rx_stats) { 2340 for_each_possible_cpu(cpu) { 2341 struct ieee80211_sta_rx_stats *cpurxs; 2342 2343 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2344 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2345 } 2346 } 2347 2348 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); 2349 } 2350 2351 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { 2352 sinfo->rx_packets = sta->rx_stats.packets; 2353 if (sta->pcpu_rx_stats) { 2354 for_each_possible_cpu(cpu) { 2355 struct ieee80211_sta_rx_stats *cpurxs; 2356 2357 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2358 sinfo->rx_packets += cpurxs->packets; 2359 } 2360 } 2361 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 2362 } 2363 2364 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { 2365 sinfo->tx_retries = sta->status_stats.retry_count; 2366 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); 2367 } 2368 2369 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { 2370 sinfo->tx_failed = sta->status_stats.retry_failed; 2371 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); 2372 } 2373 2374 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { 2375 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2376 sinfo->rx_duration += sta->airtime[ac].rx_airtime; 2377 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 2378 } 2379 2380 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { 2381 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2382 sinfo->tx_duration += sta->airtime[ac].tx_airtime; 2383 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 2384 } 2385 2386 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { 2387 sinfo->airtime_weight = sta->airtime[0].weight; 2388 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); 2389 } 2390 2391 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2392 if (sta->pcpu_rx_stats) { 2393 for_each_possible_cpu(cpu) { 2394 struct ieee80211_sta_rx_stats *cpurxs; 2395 2396 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2397 sinfo->rx_dropped_misc += cpurxs->dropped; 2398 } 2399 } 2400 2401 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2402 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2403 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | 2404 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2405 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2406 } 2407 2408 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2409 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2410 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { 2411 sinfo->signal = (s8)last_rxstats->last_signal; 2412 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 2413 } 2414 2415 if (!sta->pcpu_rx_stats && 2416 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { 2417 sinfo->signal_avg = 2418 -ewma_signal_read(&sta->rx_stats_avg.signal); 2419 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 2420 } 2421 } 2422 2423 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2424 * the sta->rx_stats struct, so the check here is fine with and without 2425 * pcpu statistics 2426 */ 2427 if (last_rxstats->chains && 2428 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | 2429 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2430 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 2431 if (!sta->pcpu_rx_stats) 2432 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2433 2434 sinfo->chains = last_rxstats->chains; 2435 2436 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2437 sinfo->chain_signal[i] = 2438 last_rxstats->chain_signal_last[i]; 2439 sinfo->chain_signal_avg[i] = 2440 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2441 } 2442 } 2443 2444 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) { 2445 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2446 &sinfo->txrate); 2447 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 2448 } 2449 2450 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) { 2451 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2452 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); 2453 } 2454 2455 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { 2456 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 2457 sta_set_tidstats(sta, &sinfo->pertid[i], i); 2458 } 2459 2460 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2461 #ifdef CONFIG_MAC80211_MESH 2462 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | 2463 BIT_ULL(NL80211_STA_INFO_PLID) | 2464 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | 2465 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | 2466 BIT_ULL(NL80211_STA_INFO_PEER_PM) | 2467 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | 2468 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) | 2469 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS); 2470 2471 sinfo->llid = sta->mesh->llid; 2472 sinfo->plid = sta->mesh->plid; 2473 sinfo->plink_state = sta->mesh->plink_state; 2474 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2475 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); 2476 sinfo->t_offset = sta->mesh->t_offset; 2477 } 2478 sinfo->local_pm = sta->mesh->local_pm; 2479 sinfo->peer_pm = sta->mesh->peer_pm; 2480 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2481 sinfo->connected_to_gate = sta->mesh->connected_to_gate; 2482 sinfo->connected_to_as = sta->mesh->connected_to_as; 2483 #endif 2484 } 2485 2486 sinfo->bss_param.flags = 0; 2487 if (sdata->vif.bss_conf.use_cts_prot) 2488 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2489 if (sdata->vif.bss_conf.use_short_preamble) 2490 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2491 if (sdata->vif.bss_conf.use_short_slot) 2492 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2493 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2494 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2495 2496 sinfo->sta_flags.set = 0; 2497 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2498 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2499 BIT(NL80211_STA_FLAG_WME) | 2500 BIT(NL80211_STA_FLAG_MFP) | 2501 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2502 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2503 BIT(NL80211_STA_FLAG_TDLS_PEER); 2504 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2505 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2506 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2507 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2508 if (sta->sta.wme) 2509 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2510 if (test_sta_flag(sta, WLAN_STA_MFP)) 2511 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2512 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2513 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2514 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2515 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2516 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2517 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2518 2519 thr = sta_get_expected_throughput(sta); 2520 2521 if (thr != 0) { 2522 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2523 sinfo->expected_throughput = thr; 2524 } 2525 2526 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && 2527 sta->status_stats.ack_signal_filled) { 2528 sinfo->ack_signal = sta->status_stats.last_ack_signal; 2529 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); 2530 } 2531 2532 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && 2533 sta->status_stats.ack_signal_filled) { 2534 sinfo->avg_ack_signal = 2535 -(s8)ewma_avg_signal_read( 2536 &sta->status_stats.avg_ack_signal); 2537 sinfo->filled |= 2538 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); 2539 } 2540 2541 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2542 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC); 2543 sinfo->airtime_link_metric = 2544 airtime_link_metric_get(local, sta); 2545 } 2546 } 2547 2548 u32 sta_get_expected_throughput(struct sta_info *sta) 2549 { 2550 struct ieee80211_sub_if_data *sdata = sta->sdata; 2551 struct ieee80211_local *local = sdata->local; 2552 struct rate_control_ref *ref = NULL; 2553 u32 thr = 0; 2554 2555 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2556 ref = local->rate_ctrl; 2557 2558 /* check if the driver has a SW RC implementation */ 2559 if (ref && ref->ops->get_expected_throughput) 2560 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2561 else 2562 thr = drv_get_expected_throughput(local, sta); 2563 2564 return thr; 2565 } 2566 2567 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2568 { 2569 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2570 2571 if (!sta->status_stats.last_ack || 2572 time_after(stats->last_rx, sta->status_stats.last_ack)) 2573 return stats->last_rx; 2574 return sta->status_stats.last_ack; 2575 } 2576 2577 static void sta_update_codel_params(struct sta_info *sta, u32 thr) 2578 { 2579 if (!sta->sdata->local->ops->wake_tx_queue) 2580 return; 2581 2582 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { 2583 sta->cparams.target = MS2TIME(50); 2584 sta->cparams.interval = MS2TIME(300); 2585 sta->cparams.ecn = false; 2586 } else { 2587 sta->cparams.target = MS2TIME(20); 2588 sta->cparams.interval = MS2TIME(100); 2589 sta->cparams.ecn = true; 2590 } 2591 } 2592 2593 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, 2594 u32 thr) 2595 { 2596 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2597 2598 sta_update_codel_params(sta, thr); 2599 } 2600