1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * Copyright 2013-2014 Intel Mobile Communications GmbH 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/etherdevice.h> 14 #include <linux/netdevice.h> 15 #include <linux/types.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/if_arp.h> 19 #include <linux/timer.h> 20 #include <linux/rtnetlink.h> 21 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 static const struct rhashtable_params sta_rht_params = { 68 .nelem_hint = 3, /* start small */ 69 .automatic_shrinking = true, 70 .head_offset = offsetof(struct sta_info, hash_node), 71 .key_offset = offsetof(struct sta_info, sta.addr), 72 .key_len = ETH_ALEN, 73 .hashfn = sta_addr_hash, 74 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 75 }; 76 77 /* Caller must hold local->sta_mtx */ 78 static int sta_info_hash_del(struct ieee80211_local *local, 79 struct sta_info *sta) 80 { 81 return rhashtable_remove_fast(&local->sta_hash, &sta->hash_node, 82 sta_rht_params); 83 } 84 85 static void __cleanup_single_sta(struct sta_info *sta) 86 { 87 int ac, i; 88 struct tid_ampdu_tx *tid_tx; 89 struct ieee80211_sub_if_data *sdata = sta->sdata; 90 struct ieee80211_local *local = sdata->local; 91 struct ps_data *ps; 92 93 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 94 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 95 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 96 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 97 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 98 ps = &sdata->bss->ps; 99 else if (ieee80211_vif_is_mesh(&sdata->vif)) 100 ps = &sdata->u.mesh.ps; 101 else 102 return; 103 104 clear_sta_flag(sta, WLAN_STA_PS_STA); 105 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 106 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 107 108 atomic_dec(&ps->num_sta_ps); 109 } 110 111 if (sta->sta.txq[0]) { 112 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 113 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); 114 int n = skb_queue_len(&txqi->queue); 115 116 ieee80211_purge_tx_queue(&local->hw, &txqi->queue); 117 atomic_sub(n, &sdata->txqs_len[txqi->txq.ac]); 118 } 119 } 120 121 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 122 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 123 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 124 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 125 } 126 127 if (ieee80211_vif_is_mesh(&sdata->vif)) 128 mesh_sta_cleanup(sta); 129 130 cancel_work_sync(&sta->drv_deliver_wk); 131 132 /* 133 * Destroy aggregation state here. It would be nice to wait for the 134 * driver to finish aggregation stop and then clean up, but for now 135 * drivers have to handle aggregation stop being requested, followed 136 * directly by station destruction. 137 */ 138 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 139 kfree(sta->ampdu_mlme.tid_start_tx[i]); 140 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 141 if (!tid_tx) 142 continue; 143 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 144 kfree(tid_tx); 145 } 146 } 147 148 static void cleanup_single_sta(struct sta_info *sta) 149 { 150 struct ieee80211_sub_if_data *sdata = sta->sdata; 151 struct ieee80211_local *local = sdata->local; 152 153 __cleanup_single_sta(sta); 154 sta_info_free(local, sta); 155 } 156 157 /* protected by RCU */ 158 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 159 const u8 *addr) 160 { 161 struct ieee80211_local *local = sdata->local; 162 struct sta_info *sta; 163 struct rhash_head *tmp; 164 const struct bucket_table *tbl; 165 166 rcu_read_lock(); 167 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 168 169 for_each_sta_info(local, tbl, addr, sta, tmp) { 170 if (sta->sdata == sdata) { 171 rcu_read_unlock(); 172 /* this is safe as the caller must already hold 173 * another rcu read section or the mutex 174 */ 175 return sta; 176 } 177 } 178 rcu_read_unlock(); 179 return NULL; 180 } 181 182 /* 183 * Get sta info either from the specified interface 184 * or from one of its vlans 185 */ 186 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 187 const u8 *addr) 188 { 189 struct ieee80211_local *local = sdata->local; 190 struct sta_info *sta; 191 struct rhash_head *tmp; 192 const struct bucket_table *tbl; 193 194 rcu_read_lock(); 195 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 196 197 for_each_sta_info(local, tbl, addr, sta, tmp) { 198 if (sta->sdata == sdata || 199 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 200 rcu_read_unlock(); 201 /* this is safe as the caller must already hold 202 * another rcu read section or the mutex 203 */ 204 return sta; 205 } 206 } 207 rcu_read_unlock(); 208 return NULL; 209 } 210 211 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 212 int idx) 213 { 214 struct ieee80211_local *local = sdata->local; 215 struct sta_info *sta; 216 int i = 0; 217 218 list_for_each_entry_rcu(sta, &local->sta_list, list) { 219 if (sdata != sta->sdata) 220 continue; 221 if (i < idx) { 222 ++i; 223 continue; 224 } 225 return sta; 226 } 227 228 return NULL; 229 } 230 231 /** 232 * sta_info_free - free STA 233 * 234 * @local: pointer to the global information 235 * @sta: STA info to free 236 * 237 * This function must undo everything done by sta_info_alloc() 238 * that may happen before sta_info_insert(). It may only be 239 * called when sta_info_insert() has not been attempted (and 240 * if that fails, the station is freed anyway.) 241 */ 242 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 243 { 244 if (sta->rate_ctrl) 245 rate_control_free_sta(sta); 246 247 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 248 249 if (sta->sta.txq[0]) 250 kfree(to_txq_info(sta->sta.txq[0])); 251 kfree(rcu_dereference_raw(sta->sta.rates)); 252 kfree(sta); 253 } 254 255 /* Caller must hold local->sta_mtx */ 256 static void sta_info_hash_add(struct ieee80211_local *local, 257 struct sta_info *sta) 258 { 259 rhashtable_insert_fast(&local->sta_hash, &sta->hash_node, 260 sta_rht_params); 261 } 262 263 static void sta_deliver_ps_frames(struct work_struct *wk) 264 { 265 struct sta_info *sta; 266 267 sta = container_of(wk, struct sta_info, drv_deliver_wk); 268 269 if (sta->dead) 270 return; 271 272 local_bh_disable(); 273 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 274 ieee80211_sta_ps_deliver_wakeup(sta); 275 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 276 ieee80211_sta_ps_deliver_poll_response(sta); 277 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 278 ieee80211_sta_ps_deliver_uapsd(sta); 279 local_bh_enable(); 280 } 281 282 static int sta_prepare_rate_control(struct ieee80211_local *local, 283 struct sta_info *sta, gfp_t gfp) 284 { 285 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 286 return 0; 287 288 sta->rate_ctrl = local->rate_ctrl; 289 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 290 sta, gfp); 291 if (!sta->rate_ctrl_priv) 292 return -ENOMEM; 293 294 return 0; 295 } 296 297 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 298 const u8 *addr, gfp_t gfp) 299 { 300 struct ieee80211_local *local = sdata->local; 301 struct ieee80211_hw *hw = &local->hw; 302 struct sta_info *sta; 303 struct timespec uptime; 304 int i; 305 306 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 307 if (!sta) 308 return NULL; 309 310 spin_lock_init(&sta->lock); 311 spin_lock_init(&sta->ps_lock); 312 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 313 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 314 mutex_init(&sta->ampdu_mlme.mtx); 315 #ifdef CONFIG_MAC80211_MESH 316 spin_lock_init(&sta->plink_lock); 317 if (ieee80211_vif_is_mesh(&sdata->vif) && 318 !sdata->u.mesh.user_mpm) 319 init_timer(&sta->plink_timer); 320 sta->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 321 #endif 322 323 memcpy(sta->sta.addr, addr, ETH_ALEN); 324 sta->local = local; 325 sta->sdata = sdata; 326 sta->last_rx = jiffies; 327 328 sta->sta_state = IEEE80211_STA_NONE; 329 330 /* Mark TID as unreserved */ 331 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 332 333 ktime_get_ts(&uptime); 334 sta->last_connected = uptime.tv_sec; 335 ewma_init(&sta->avg_signal, 1024, 8); 336 for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++) 337 ewma_init(&sta->chain_signal_avg[i], 1024, 8); 338 339 if (local->ops->wake_tx_queue) { 340 void *txq_data; 341 int size = sizeof(struct txq_info) + 342 ALIGN(hw->txq_data_size, sizeof(void *)); 343 344 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 345 if (!txq_data) 346 goto free; 347 348 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 349 struct txq_info *txq = txq_data + i * size; 350 351 ieee80211_init_tx_queue(sdata, sta, txq, i); 352 } 353 } 354 355 if (sta_prepare_rate_control(local, sta, gfp)) 356 goto free_txq; 357 358 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 359 /* 360 * timer_to_tid must be initialized with identity mapping 361 * to enable session_timer's data differentiation. See 362 * sta_rx_agg_session_timer_expired for usage. 363 */ 364 sta->timer_to_tid[i] = i; 365 } 366 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 367 skb_queue_head_init(&sta->ps_tx_buf[i]); 368 skb_queue_head_init(&sta->tx_filtered[i]); 369 } 370 371 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 372 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 373 374 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 375 if (sdata->vif.type == NL80211_IFTYPE_AP || 376 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 377 struct ieee80211_supported_band *sband = 378 hw->wiphy->bands[ieee80211_get_sdata_band(sdata)]; 379 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 380 IEEE80211_HT_CAP_SM_PS_SHIFT; 381 /* 382 * Assume that hostapd advertises our caps in the beacon and 383 * this is the known_smps_mode for a station that just assciated 384 */ 385 switch (smps) { 386 case WLAN_HT_SMPS_CONTROL_DISABLED: 387 sta->known_smps_mode = IEEE80211_SMPS_OFF; 388 break; 389 case WLAN_HT_SMPS_CONTROL_STATIC: 390 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 391 break; 392 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 393 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 394 break; 395 default: 396 WARN_ON(1); 397 } 398 } 399 400 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 401 402 return sta; 403 404 free_txq: 405 if (sta->sta.txq[0]) 406 kfree(to_txq_info(sta->sta.txq[0])); 407 free: 408 kfree(sta); 409 return NULL; 410 } 411 412 static int sta_info_insert_check(struct sta_info *sta) 413 { 414 struct ieee80211_sub_if_data *sdata = sta->sdata; 415 416 /* 417 * Can't be a WARN_ON because it can be triggered through a race: 418 * something inserts a STA (on one CPU) without holding the RTNL 419 * and another CPU turns off the net device. 420 */ 421 if (unlikely(!ieee80211_sdata_running(sdata))) 422 return -ENETDOWN; 423 424 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 425 is_multicast_ether_addr(sta->sta.addr))) 426 return -EINVAL; 427 428 return 0; 429 } 430 431 static int sta_info_insert_drv_state(struct ieee80211_local *local, 432 struct ieee80211_sub_if_data *sdata, 433 struct sta_info *sta) 434 { 435 enum ieee80211_sta_state state; 436 int err = 0; 437 438 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 439 err = drv_sta_state(local, sdata, sta, state, state + 1); 440 if (err) 441 break; 442 } 443 444 if (!err) { 445 /* 446 * Drivers using legacy sta_add/sta_remove callbacks only 447 * get uploaded set to true after sta_add is called. 448 */ 449 if (!local->ops->sta_add) 450 sta->uploaded = true; 451 return 0; 452 } 453 454 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 455 sdata_info(sdata, 456 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 457 sta->sta.addr, state + 1, err); 458 err = 0; 459 } 460 461 /* unwind on error */ 462 for (; state > IEEE80211_STA_NOTEXIST; state--) 463 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 464 465 return err; 466 } 467 468 /* 469 * should be called with sta_mtx locked 470 * this function replaces the mutex lock 471 * with a RCU lock 472 */ 473 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 474 { 475 struct ieee80211_local *local = sta->local; 476 struct ieee80211_sub_if_data *sdata = sta->sdata; 477 struct station_info sinfo; 478 int err = 0; 479 480 lockdep_assert_held(&local->sta_mtx); 481 482 /* check if STA exists already */ 483 if (sta_info_get_bss(sdata, sta->sta.addr)) { 484 err = -EEXIST; 485 goto out_err; 486 } 487 488 local->num_sta++; 489 local->sta_generation++; 490 smp_mb(); 491 492 /* simplify things and don't accept BA sessions yet */ 493 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 494 495 /* make the station visible */ 496 sta_info_hash_add(local, sta); 497 498 list_add_tail_rcu(&sta->list, &local->sta_list); 499 500 /* notify driver */ 501 err = sta_info_insert_drv_state(local, sdata, sta); 502 if (err) 503 goto out_remove; 504 505 set_sta_flag(sta, WLAN_STA_INSERTED); 506 /* accept BA sessions now */ 507 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 508 509 ieee80211_recalc_min_chandef(sdata); 510 ieee80211_sta_debugfs_add(sta); 511 rate_control_add_sta_debugfs(sta); 512 513 memset(&sinfo, 0, sizeof(sinfo)); 514 sinfo.filled = 0; 515 sinfo.generation = local->sta_generation; 516 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 517 518 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 519 520 /* move reference to rcu-protected */ 521 rcu_read_lock(); 522 mutex_unlock(&local->sta_mtx); 523 524 if (ieee80211_vif_is_mesh(&sdata->vif)) 525 mesh_accept_plinks_update(sdata); 526 527 return 0; 528 out_remove: 529 sta_info_hash_del(local, sta); 530 list_del_rcu(&sta->list); 531 local->num_sta--; 532 synchronize_net(); 533 __cleanup_single_sta(sta); 534 out_err: 535 mutex_unlock(&local->sta_mtx); 536 rcu_read_lock(); 537 return err; 538 } 539 540 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 541 { 542 struct ieee80211_local *local = sta->local; 543 int err; 544 545 might_sleep(); 546 547 err = sta_info_insert_check(sta); 548 if (err) { 549 rcu_read_lock(); 550 goto out_free; 551 } 552 553 mutex_lock(&local->sta_mtx); 554 555 err = sta_info_insert_finish(sta); 556 if (err) 557 goto out_free; 558 559 return 0; 560 out_free: 561 sta_info_free(local, sta); 562 return err; 563 } 564 565 int sta_info_insert(struct sta_info *sta) 566 { 567 int err = sta_info_insert_rcu(sta); 568 569 rcu_read_unlock(); 570 571 return err; 572 } 573 574 static inline void __bss_tim_set(u8 *tim, u16 id) 575 { 576 /* 577 * This format has been mandated by the IEEE specifications, 578 * so this line may not be changed to use the __set_bit() format. 579 */ 580 tim[id / 8] |= (1 << (id % 8)); 581 } 582 583 static inline void __bss_tim_clear(u8 *tim, u16 id) 584 { 585 /* 586 * This format has been mandated by the IEEE specifications, 587 * so this line may not be changed to use the __clear_bit() format. 588 */ 589 tim[id / 8] &= ~(1 << (id % 8)); 590 } 591 592 static inline bool __bss_tim_get(u8 *tim, u16 id) 593 { 594 /* 595 * This format has been mandated by the IEEE specifications, 596 * so this line may not be changed to use the test_bit() format. 597 */ 598 return tim[id / 8] & (1 << (id % 8)); 599 } 600 601 static unsigned long ieee80211_tids_for_ac(int ac) 602 { 603 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 604 switch (ac) { 605 case IEEE80211_AC_VO: 606 return BIT(6) | BIT(7); 607 case IEEE80211_AC_VI: 608 return BIT(4) | BIT(5); 609 case IEEE80211_AC_BE: 610 return BIT(0) | BIT(3); 611 case IEEE80211_AC_BK: 612 return BIT(1) | BIT(2); 613 default: 614 WARN_ON(1); 615 return 0; 616 } 617 } 618 619 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 620 { 621 struct ieee80211_local *local = sta->local; 622 struct ps_data *ps; 623 bool indicate_tim = false; 624 u8 ignore_for_tim = sta->sta.uapsd_queues; 625 int ac; 626 u16 id; 627 628 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 629 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 630 if (WARN_ON_ONCE(!sta->sdata->bss)) 631 return; 632 633 ps = &sta->sdata->bss->ps; 634 id = sta->sta.aid; 635 #ifdef CONFIG_MAC80211_MESH 636 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 637 ps = &sta->sdata->u.mesh.ps; 638 /* TIM map only for 1 <= PLID <= IEEE80211_MAX_AID */ 639 id = sta->plid % (IEEE80211_MAX_AID + 1); 640 #endif 641 } else { 642 return; 643 } 644 645 /* No need to do anything if the driver does all */ 646 if (ieee80211_hw_check(&local->hw, AP_LINK_PS)) 647 return; 648 649 if (sta->dead) 650 goto done; 651 652 /* 653 * If all ACs are delivery-enabled then we should build 654 * the TIM bit for all ACs anyway; if only some are then 655 * we ignore those and build the TIM bit using only the 656 * non-enabled ones. 657 */ 658 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 659 ignore_for_tim = 0; 660 661 if (ignore_pending) 662 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 663 664 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 665 unsigned long tids; 666 667 if (ignore_for_tim & BIT(ac)) 668 continue; 669 670 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 671 !skb_queue_empty(&sta->ps_tx_buf[ac]); 672 if (indicate_tim) 673 break; 674 675 tids = ieee80211_tids_for_ac(ac); 676 677 indicate_tim |= 678 sta->driver_buffered_tids & tids; 679 indicate_tim |= 680 sta->txq_buffered_tids & tids; 681 } 682 683 done: 684 spin_lock_bh(&local->tim_lock); 685 686 if (indicate_tim == __bss_tim_get(ps->tim, id)) 687 goto out_unlock; 688 689 if (indicate_tim) 690 __bss_tim_set(ps->tim, id); 691 else 692 __bss_tim_clear(ps->tim, id); 693 694 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 695 local->tim_in_locked_section = true; 696 drv_set_tim(local, &sta->sta, indicate_tim); 697 local->tim_in_locked_section = false; 698 } 699 700 out_unlock: 701 spin_unlock_bh(&local->tim_lock); 702 } 703 704 void sta_info_recalc_tim(struct sta_info *sta) 705 { 706 __sta_info_recalc_tim(sta, false); 707 } 708 709 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 710 { 711 struct ieee80211_tx_info *info; 712 int timeout; 713 714 if (!skb) 715 return false; 716 717 info = IEEE80211_SKB_CB(skb); 718 719 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 720 timeout = (sta->listen_interval * 721 sta->sdata->vif.bss_conf.beacon_int * 722 32 / 15625) * HZ; 723 if (timeout < STA_TX_BUFFER_EXPIRE) 724 timeout = STA_TX_BUFFER_EXPIRE; 725 return time_after(jiffies, info->control.jiffies + timeout); 726 } 727 728 729 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 730 struct sta_info *sta, int ac) 731 { 732 unsigned long flags; 733 struct sk_buff *skb; 734 735 /* 736 * First check for frames that should expire on the filtered 737 * queue. Frames here were rejected by the driver and are on 738 * a separate queue to avoid reordering with normal PS-buffered 739 * frames. They also aren't accounted for right now in the 740 * total_ps_buffered counter. 741 */ 742 for (;;) { 743 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 744 skb = skb_peek(&sta->tx_filtered[ac]); 745 if (sta_info_buffer_expired(sta, skb)) 746 skb = __skb_dequeue(&sta->tx_filtered[ac]); 747 else 748 skb = NULL; 749 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 750 751 /* 752 * Frames are queued in order, so if this one 753 * hasn't expired yet we can stop testing. If 754 * we actually reached the end of the queue we 755 * also need to stop, of course. 756 */ 757 if (!skb) 758 break; 759 ieee80211_free_txskb(&local->hw, skb); 760 } 761 762 /* 763 * Now also check the normal PS-buffered queue, this will 764 * only find something if the filtered queue was emptied 765 * since the filtered frames are all before the normal PS 766 * buffered frames. 767 */ 768 for (;;) { 769 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 770 skb = skb_peek(&sta->ps_tx_buf[ac]); 771 if (sta_info_buffer_expired(sta, skb)) 772 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 773 else 774 skb = NULL; 775 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 776 777 /* 778 * frames are queued in order, so if this one 779 * hasn't expired yet (or we reached the end of 780 * the queue) we can stop testing 781 */ 782 if (!skb) 783 break; 784 785 local->total_ps_buffered--; 786 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 787 sta->sta.addr); 788 ieee80211_free_txskb(&local->hw, skb); 789 } 790 791 /* 792 * Finally, recalculate the TIM bit for this station -- it might 793 * now be clear because the station was too slow to retrieve its 794 * frames. 795 */ 796 sta_info_recalc_tim(sta); 797 798 /* 799 * Return whether there are any frames still buffered, this is 800 * used to check whether the cleanup timer still needs to run, 801 * if there are no frames we don't need to rearm the timer. 802 */ 803 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 804 skb_queue_empty(&sta->tx_filtered[ac])); 805 } 806 807 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 808 struct sta_info *sta) 809 { 810 bool have_buffered = false; 811 int ac; 812 813 /* This is only necessary for stations on BSS/MBSS interfaces */ 814 if (!sta->sdata->bss && 815 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 816 return false; 817 818 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 819 have_buffered |= 820 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 821 822 return have_buffered; 823 } 824 825 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 826 { 827 struct ieee80211_local *local; 828 struct ieee80211_sub_if_data *sdata; 829 int ret; 830 831 might_sleep(); 832 833 if (!sta) 834 return -ENOENT; 835 836 local = sta->local; 837 sdata = sta->sdata; 838 839 lockdep_assert_held(&local->sta_mtx); 840 841 /* 842 * Before removing the station from the driver and 843 * rate control, it might still start new aggregation 844 * sessions -- block that to make sure the tear-down 845 * will be sufficient. 846 */ 847 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 848 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 849 850 ret = sta_info_hash_del(local, sta); 851 if (WARN_ON(ret)) 852 return ret; 853 854 /* 855 * for TDLS peers, make sure to return to the base channel before 856 * removal. 857 */ 858 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 859 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 860 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 861 } 862 863 list_del_rcu(&sta->list); 864 865 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 866 867 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 868 rcu_access_pointer(sdata->u.vlan.sta) == sta) 869 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 870 871 return 0; 872 } 873 874 static void __sta_info_destroy_part2(struct sta_info *sta) 875 { 876 struct ieee80211_local *local = sta->local; 877 struct ieee80211_sub_if_data *sdata = sta->sdata; 878 struct station_info sinfo = {}; 879 int ret; 880 881 /* 882 * NOTE: This assumes at least synchronize_net() was done 883 * after _part1 and before _part2! 884 */ 885 886 might_sleep(); 887 lockdep_assert_held(&local->sta_mtx); 888 889 /* now keys can no longer be reached */ 890 ieee80211_free_sta_keys(local, sta); 891 892 /* disable TIM bit - last chance to tell driver */ 893 __sta_info_recalc_tim(sta, true); 894 895 sta->dead = true; 896 897 local->num_sta--; 898 local->sta_generation++; 899 900 while (sta->sta_state > IEEE80211_STA_NONE) { 901 ret = sta_info_move_state(sta, sta->sta_state - 1); 902 if (ret) { 903 WARN_ON_ONCE(1); 904 break; 905 } 906 } 907 908 if (sta->uploaded) { 909 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 910 IEEE80211_STA_NOTEXIST); 911 WARN_ON_ONCE(ret != 0); 912 } 913 914 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 915 916 sta_set_sinfo(sta, &sinfo); 917 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 918 919 rate_control_remove_sta_debugfs(sta); 920 ieee80211_sta_debugfs_remove(sta); 921 ieee80211_recalc_min_chandef(sdata); 922 923 cleanup_single_sta(sta); 924 } 925 926 int __must_check __sta_info_destroy(struct sta_info *sta) 927 { 928 int err = __sta_info_destroy_part1(sta); 929 930 if (err) 931 return err; 932 933 synchronize_net(); 934 935 __sta_info_destroy_part2(sta); 936 937 return 0; 938 } 939 940 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 941 { 942 struct sta_info *sta; 943 int ret; 944 945 mutex_lock(&sdata->local->sta_mtx); 946 sta = sta_info_get(sdata, addr); 947 ret = __sta_info_destroy(sta); 948 mutex_unlock(&sdata->local->sta_mtx); 949 950 return ret; 951 } 952 953 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 954 const u8 *addr) 955 { 956 struct sta_info *sta; 957 int ret; 958 959 mutex_lock(&sdata->local->sta_mtx); 960 sta = sta_info_get_bss(sdata, addr); 961 ret = __sta_info_destroy(sta); 962 mutex_unlock(&sdata->local->sta_mtx); 963 964 return ret; 965 } 966 967 static void sta_info_cleanup(unsigned long data) 968 { 969 struct ieee80211_local *local = (struct ieee80211_local *) data; 970 struct sta_info *sta; 971 bool timer_needed = false; 972 973 rcu_read_lock(); 974 list_for_each_entry_rcu(sta, &local->sta_list, list) 975 if (sta_info_cleanup_expire_buffered(local, sta)) 976 timer_needed = true; 977 rcu_read_unlock(); 978 979 if (local->quiescing) 980 return; 981 982 if (!timer_needed) 983 return; 984 985 mod_timer(&local->sta_cleanup, 986 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 987 } 988 989 u32 sta_addr_hash(const void *key, u32 length, u32 seed) 990 { 991 return jhash(key, ETH_ALEN, seed); 992 } 993 994 int sta_info_init(struct ieee80211_local *local) 995 { 996 int err; 997 998 err = rhashtable_init(&local->sta_hash, &sta_rht_params); 999 if (err) 1000 return err; 1001 1002 spin_lock_init(&local->tim_lock); 1003 mutex_init(&local->sta_mtx); 1004 INIT_LIST_HEAD(&local->sta_list); 1005 1006 setup_timer(&local->sta_cleanup, sta_info_cleanup, 1007 (unsigned long)local); 1008 return 0; 1009 } 1010 1011 void sta_info_stop(struct ieee80211_local *local) 1012 { 1013 del_timer_sync(&local->sta_cleanup); 1014 rhashtable_destroy(&local->sta_hash); 1015 } 1016 1017 1018 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1019 { 1020 struct ieee80211_local *local = sdata->local; 1021 struct sta_info *sta, *tmp; 1022 LIST_HEAD(free_list); 1023 int ret = 0; 1024 1025 might_sleep(); 1026 1027 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1028 WARN_ON(vlans && !sdata->bss); 1029 1030 mutex_lock(&local->sta_mtx); 1031 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1032 if (sdata == sta->sdata || 1033 (vlans && sdata->bss == sta->sdata->bss)) { 1034 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1035 list_add(&sta->free_list, &free_list); 1036 ret++; 1037 } 1038 } 1039 1040 if (!list_empty(&free_list)) { 1041 synchronize_net(); 1042 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1043 __sta_info_destroy_part2(sta); 1044 } 1045 mutex_unlock(&local->sta_mtx); 1046 1047 return ret; 1048 } 1049 1050 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1051 unsigned long exp_time) 1052 { 1053 struct ieee80211_local *local = sdata->local; 1054 struct sta_info *sta, *tmp; 1055 1056 mutex_lock(&local->sta_mtx); 1057 1058 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1059 if (sdata != sta->sdata) 1060 continue; 1061 1062 if (time_after(jiffies, sta->last_rx + exp_time)) { 1063 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1064 sta->sta.addr); 1065 1066 if (ieee80211_vif_is_mesh(&sdata->vif) && 1067 test_sta_flag(sta, WLAN_STA_PS_STA)) 1068 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1069 1070 WARN_ON(__sta_info_destroy(sta)); 1071 } 1072 } 1073 1074 mutex_unlock(&local->sta_mtx); 1075 } 1076 1077 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1078 const u8 *addr, 1079 const u8 *localaddr) 1080 { 1081 struct ieee80211_local *local = hw_to_local(hw); 1082 struct sta_info *sta; 1083 struct rhash_head *tmp; 1084 const struct bucket_table *tbl; 1085 1086 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 1087 1088 /* 1089 * Just return a random station if localaddr is NULL 1090 * ... first in list. 1091 */ 1092 for_each_sta_info(local, tbl, addr, sta, tmp) { 1093 if (localaddr && 1094 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1095 continue; 1096 if (!sta->uploaded) 1097 return NULL; 1098 return &sta->sta; 1099 } 1100 1101 return NULL; 1102 } 1103 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1104 1105 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1106 const u8 *addr) 1107 { 1108 struct sta_info *sta; 1109 1110 if (!vif) 1111 return NULL; 1112 1113 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1114 if (!sta) 1115 return NULL; 1116 1117 if (!sta->uploaded) 1118 return NULL; 1119 1120 return &sta->sta; 1121 } 1122 EXPORT_SYMBOL(ieee80211_find_sta); 1123 1124 /* powersave support code */ 1125 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1126 { 1127 struct ieee80211_sub_if_data *sdata = sta->sdata; 1128 struct ieee80211_local *local = sdata->local; 1129 struct sk_buff_head pending; 1130 int filtered = 0, buffered = 0, ac, i; 1131 unsigned long flags; 1132 struct ps_data *ps; 1133 1134 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1135 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1136 u.ap); 1137 1138 if (sdata->vif.type == NL80211_IFTYPE_AP) 1139 ps = &sdata->bss->ps; 1140 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1141 ps = &sdata->u.mesh.ps; 1142 else 1143 return; 1144 1145 clear_sta_flag(sta, WLAN_STA_SP); 1146 1147 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1148 sta->driver_buffered_tids = 0; 1149 sta->txq_buffered_tids = 0; 1150 1151 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1152 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1153 1154 if (sta->sta.txq[0]) { 1155 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1156 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); 1157 1158 if (!skb_queue_len(&txqi->queue)) 1159 continue; 1160 1161 drv_wake_tx_queue(local, txqi); 1162 } 1163 } 1164 1165 skb_queue_head_init(&pending); 1166 1167 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1168 spin_lock(&sta->ps_lock); 1169 /* Send all buffered frames to the station */ 1170 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1171 int count = skb_queue_len(&pending), tmp; 1172 1173 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1174 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1175 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1176 tmp = skb_queue_len(&pending); 1177 filtered += tmp - count; 1178 count = tmp; 1179 1180 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1181 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1182 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1183 tmp = skb_queue_len(&pending); 1184 buffered += tmp - count; 1185 } 1186 1187 ieee80211_add_pending_skbs(local, &pending); 1188 1189 /* now we're no longer in the deliver code */ 1190 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1191 1192 /* The station might have polled and then woken up before we responded, 1193 * so clear these flags now to avoid them sticking around. 1194 */ 1195 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1196 clear_sta_flag(sta, WLAN_STA_UAPSD); 1197 spin_unlock(&sta->ps_lock); 1198 1199 atomic_dec(&ps->num_sta_ps); 1200 1201 /* This station just woke up and isn't aware of our SMPS state */ 1202 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1203 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1204 sdata->smps_mode) && 1205 sta->known_smps_mode != sdata->bss->req_smps && 1206 sta_info_tx_streams(sta) != 1) { 1207 ht_dbg(sdata, 1208 "%pM just woke up and MIMO capable - update SMPS\n", 1209 sta->sta.addr); 1210 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1211 sta->sta.addr, 1212 sdata->vif.bss_conf.bssid); 1213 } 1214 1215 local->total_ps_buffered -= buffered; 1216 1217 sta_info_recalc_tim(sta); 1218 1219 ps_dbg(sdata, 1220 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n", 1221 sta->sta.addr, sta->sta.aid, filtered, buffered); 1222 1223 ieee80211_check_fast_xmit(sta); 1224 } 1225 1226 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata, 1227 struct sta_info *sta, int tid, 1228 enum ieee80211_frame_release_type reason, 1229 bool call_driver) 1230 { 1231 struct ieee80211_local *local = sdata->local; 1232 struct ieee80211_qos_hdr *nullfunc; 1233 struct sk_buff *skb; 1234 int size = sizeof(*nullfunc); 1235 __le16 fc; 1236 bool qos = sta->sta.wme; 1237 struct ieee80211_tx_info *info; 1238 struct ieee80211_chanctx_conf *chanctx_conf; 1239 1240 if (qos) { 1241 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1242 IEEE80211_STYPE_QOS_NULLFUNC | 1243 IEEE80211_FCTL_FROMDS); 1244 } else { 1245 size -= 2; 1246 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1247 IEEE80211_STYPE_NULLFUNC | 1248 IEEE80211_FCTL_FROMDS); 1249 } 1250 1251 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1252 if (!skb) 1253 return; 1254 1255 skb_reserve(skb, local->hw.extra_tx_headroom); 1256 1257 nullfunc = (void *) skb_put(skb, size); 1258 nullfunc->frame_control = fc; 1259 nullfunc->duration_id = 0; 1260 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1261 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1262 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1263 nullfunc->seq_ctrl = 0; 1264 1265 skb->priority = tid; 1266 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1267 if (qos) { 1268 nullfunc->qos_ctrl = cpu_to_le16(tid); 1269 1270 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) 1271 nullfunc->qos_ctrl |= 1272 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1273 } 1274 1275 info = IEEE80211_SKB_CB(skb); 1276 1277 /* 1278 * Tell TX path to send this frame even though the 1279 * STA may still remain is PS mode after this frame 1280 * exchange. Also set EOSP to indicate this packet 1281 * ends the poll/service period. 1282 */ 1283 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1284 IEEE80211_TX_STATUS_EOSP | 1285 IEEE80211_TX_CTL_REQ_TX_STATUS; 1286 1287 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1288 1289 if (call_driver) 1290 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1291 reason, false); 1292 1293 skb->dev = sdata->dev; 1294 1295 rcu_read_lock(); 1296 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1297 if (WARN_ON(!chanctx_conf)) { 1298 rcu_read_unlock(); 1299 kfree_skb(skb); 1300 return; 1301 } 1302 1303 info->band = chanctx_conf->def.chan->band; 1304 ieee80211_xmit(sdata, sta, skb); 1305 rcu_read_unlock(); 1306 } 1307 1308 static int find_highest_prio_tid(unsigned long tids) 1309 { 1310 /* lower 3 TIDs aren't ordered perfectly */ 1311 if (tids & 0xF8) 1312 return fls(tids) - 1; 1313 /* TID 0 is BE just like TID 3 */ 1314 if (tids & BIT(0)) 1315 return 0; 1316 return fls(tids) - 1; 1317 } 1318 1319 static void 1320 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1321 int n_frames, u8 ignored_acs, 1322 enum ieee80211_frame_release_type reason) 1323 { 1324 struct ieee80211_sub_if_data *sdata = sta->sdata; 1325 struct ieee80211_local *local = sdata->local; 1326 bool more_data = false; 1327 int ac; 1328 unsigned long driver_release_tids = 0; 1329 struct sk_buff_head frames; 1330 1331 /* Service or PS-Poll period starts */ 1332 set_sta_flag(sta, WLAN_STA_SP); 1333 1334 __skb_queue_head_init(&frames); 1335 1336 /* Get response frame(s) and more data bit for the last one. */ 1337 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1338 unsigned long tids; 1339 1340 if (ignored_acs & BIT(ac)) 1341 continue; 1342 1343 tids = ieee80211_tids_for_ac(ac); 1344 1345 /* if we already have frames from software, then we can't also 1346 * release from hardware queues 1347 */ 1348 if (skb_queue_empty(&frames)) { 1349 driver_release_tids |= sta->driver_buffered_tids & tids; 1350 driver_release_tids |= sta->txq_buffered_tids & tids; 1351 } 1352 1353 if (driver_release_tids) { 1354 /* If the driver has data on more than one TID then 1355 * certainly there's more data if we release just a 1356 * single frame now (from a single TID). This will 1357 * only happen for PS-Poll. 1358 */ 1359 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1360 hweight16(driver_release_tids) > 1) { 1361 more_data = true; 1362 driver_release_tids = 1363 BIT(find_highest_prio_tid( 1364 driver_release_tids)); 1365 break; 1366 } 1367 } else { 1368 struct sk_buff *skb; 1369 1370 while (n_frames > 0) { 1371 skb = skb_dequeue(&sta->tx_filtered[ac]); 1372 if (!skb) { 1373 skb = skb_dequeue( 1374 &sta->ps_tx_buf[ac]); 1375 if (skb) 1376 local->total_ps_buffered--; 1377 } 1378 if (!skb) 1379 break; 1380 n_frames--; 1381 __skb_queue_tail(&frames, skb); 1382 } 1383 } 1384 1385 /* If we have more frames buffered on this AC, then set the 1386 * more-data bit and abort the loop since we can't send more 1387 * data from other ACs before the buffered frames from this. 1388 */ 1389 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1390 !skb_queue_empty(&sta->ps_tx_buf[ac])) { 1391 more_data = true; 1392 break; 1393 } 1394 } 1395 1396 if (skb_queue_empty(&frames) && !driver_release_tids) { 1397 int tid; 1398 1399 /* 1400 * For PS-Poll, this can only happen due to a race condition 1401 * when we set the TIM bit and the station notices it, but 1402 * before it can poll for the frame we expire it. 1403 * 1404 * For uAPSD, this is said in the standard (11.2.1.5 h): 1405 * At each unscheduled SP for a non-AP STA, the AP shall 1406 * attempt to transmit at least one MSDU or MMPDU, but no 1407 * more than the value specified in the Max SP Length field 1408 * in the QoS Capability element from delivery-enabled ACs, 1409 * that are destined for the non-AP STA. 1410 * 1411 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1412 */ 1413 1414 /* This will evaluate to 1, 3, 5 or 7. */ 1415 tid = 7 - ((ffs(~ignored_acs) - 1) << 1); 1416 1417 ieee80211_send_null_response(sdata, sta, tid, reason, true); 1418 } else if (!driver_release_tids) { 1419 struct sk_buff_head pending; 1420 struct sk_buff *skb; 1421 int num = 0; 1422 u16 tids = 0; 1423 bool need_null = false; 1424 1425 skb_queue_head_init(&pending); 1426 1427 while ((skb = __skb_dequeue(&frames))) { 1428 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1429 struct ieee80211_hdr *hdr = (void *) skb->data; 1430 u8 *qoshdr = NULL; 1431 1432 num++; 1433 1434 /* 1435 * Tell TX path to send this frame even though the 1436 * STA may still remain is PS mode after this frame 1437 * exchange. 1438 */ 1439 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1440 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1441 1442 /* 1443 * Use MoreData flag to indicate whether there are 1444 * more buffered frames for this STA 1445 */ 1446 if (more_data || !skb_queue_empty(&frames)) 1447 hdr->frame_control |= 1448 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1449 else 1450 hdr->frame_control &= 1451 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1452 1453 if (ieee80211_is_data_qos(hdr->frame_control) || 1454 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1455 qoshdr = ieee80211_get_qos_ctl(hdr); 1456 1457 tids |= BIT(skb->priority); 1458 1459 __skb_queue_tail(&pending, skb); 1460 1461 /* end service period after last frame or add one */ 1462 if (!skb_queue_empty(&frames)) 1463 continue; 1464 1465 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1466 /* for PS-Poll, there's only one frame */ 1467 info->flags |= IEEE80211_TX_STATUS_EOSP | 1468 IEEE80211_TX_CTL_REQ_TX_STATUS; 1469 break; 1470 } 1471 1472 /* For uAPSD, things are a bit more complicated. If the 1473 * last frame has a QoS header (i.e. is a QoS-data or 1474 * QoS-nulldata frame) then just set the EOSP bit there 1475 * and be done. 1476 * If the frame doesn't have a QoS header (which means 1477 * it should be a bufferable MMPDU) then we can't set 1478 * the EOSP bit in the QoS header; add a QoS-nulldata 1479 * frame to the list to send it after the MMPDU. 1480 * 1481 * Note that this code is only in the mac80211-release 1482 * code path, we assume that the driver will not buffer 1483 * anything but QoS-data frames, or if it does, will 1484 * create the QoS-nulldata frame by itself if needed. 1485 * 1486 * Cf. 802.11-2012 10.2.1.10 (c). 1487 */ 1488 if (qoshdr) { 1489 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1490 1491 info->flags |= IEEE80211_TX_STATUS_EOSP | 1492 IEEE80211_TX_CTL_REQ_TX_STATUS; 1493 } else { 1494 /* The standard isn't completely clear on this 1495 * as it says the more-data bit should be set 1496 * if there are more BUs. The QoS-Null frame 1497 * we're about to send isn't buffered yet, we 1498 * only create it below, but let's pretend it 1499 * was buffered just in case some clients only 1500 * expect more-data=0 when eosp=1. 1501 */ 1502 hdr->frame_control |= 1503 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1504 need_null = true; 1505 num++; 1506 } 1507 break; 1508 } 1509 1510 drv_allow_buffered_frames(local, sta, tids, num, 1511 reason, more_data); 1512 1513 ieee80211_add_pending_skbs(local, &pending); 1514 1515 if (need_null) 1516 ieee80211_send_null_response( 1517 sdata, sta, find_highest_prio_tid(tids), 1518 reason, false); 1519 1520 sta_info_recalc_tim(sta); 1521 } else { 1522 unsigned long tids = sta->txq_buffered_tids & driver_release_tids; 1523 int tid; 1524 1525 /* 1526 * We need to release a frame that is buffered somewhere in the 1527 * driver ... it'll have to handle that. 1528 * Note that the driver also has to check the number of frames 1529 * on the TIDs we're releasing from - if there are more than 1530 * n_frames it has to set the more-data bit (if we didn't ask 1531 * it to set it anyway due to other buffered frames); if there 1532 * are fewer than n_frames it has to make sure to adjust that 1533 * to allow the service period to end properly. 1534 */ 1535 drv_release_buffered_frames(local, sta, driver_release_tids, 1536 n_frames, reason, more_data); 1537 1538 /* 1539 * Note that we don't recalculate the TIM bit here as it would 1540 * most likely have no effect at all unless the driver told us 1541 * that the TID(s) became empty before returning here from the 1542 * release function. 1543 * Either way, however, when the driver tells us that the TID(s) 1544 * became empty or we find that a txq became empty, we'll do the 1545 * TIM recalculation. 1546 */ 1547 1548 if (!sta->sta.txq[0]) 1549 return; 1550 1551 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1552 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]); 1553 1554 if (!(tids & BIT(tid)) || skb_queue_len(&txqi->queue)) 1555 continue; 1556 1557 sta_info_recalc_tim(sta); 1558 break; 1559 } 1560 } 1561 } 1562 1563 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1564 { 1565 u8 ignore_for_response = sta->sta.uapsd_queues; 1566 1567 /* 1568 * If all ACs are delivery-enabled then we should reply 1569 * from any of them, if only some are enabled we reply 1570 * only from the non-enabled ones. 1571 */ 1572 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1573 ignore_for_response = 0; 1574 1575 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1576 IEEE80211_FRAME_RELEASE_PSPOLL); 1577 } 1578 1579 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1580 { 1581 int n_frames = sta->sta.max_sp; 1582 u8 delivery_enabled = sta->sta.uapsd_queues; 1583 1584 /* 1585 * If we ever grow support for TSPEC this might happen if 1586 * the TSPEC update from hostapd comes in between a trigger 1587 * frame setting WLAN_STA_UAPSD in the RX path and this 1588 * actually getting called. 1589 */ 1590 if (!delivery_enabled) 1591 return; 1592 1593 switch (sta->sta.max_sp) { 1594 case 1: 1595 n_frames = 2; 1596 break; 1597 case 2: 1598 n_frames = 4; 1599 break; 1600 case 3: 1601 n_frames = 6; 1602 break; 1603 case 0: 1604 /* XXX: what is a good value? */ 1605 n_frames = 128; 1606 break; 1607 } 1608 1609 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1610 IEEE80211_FRAME_RELEASE_UAPSD); 1611 } 1612 1613 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1614 struct ieee80211_sta *pubsta, bool block) 1615 { 1616 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1617 1618 trace_api_sta_block_awake(sta->local, pubsta, block); 1619 1620 if (block) { 1621 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1622 ieee80211_clear_fast_xmit(sta); 1623 return; 1624 } 1625 1626 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1627 return; 1628 1629 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1630 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1631 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1632 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1633 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1634 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1635 /* must be asleep in this case */ 1636 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1637 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1638 } else { 1639 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1640 ieee80211_check_fast_xmit(sta); 1641 } 1642 } 1643 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1644 1645 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1646 { 1647 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1648 struct ieee80211_local *local = sta->local; 1649 1650 trace_api_eosp(local, pubsta); 1651 1652 clear_sta_flag(sta, WLAN_STA_SP); 1653 } 1654 EXPORT_SYMBOL(ieee80211_sta_eosp); 1655 1656 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1657 u8 tid, bool buffered) 1658 { 1659 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1660 1661 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1662 return; 1663 1664 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1665 1666 if (buffered) 1667 set_bit(tid, &sta->driver_buffered_tids); 1668 else 1669 clear_bit(tid, &sta->driver_buffered_tids); 1670 1671 sta_info_recalc_tim(sta); 1672 } 1673 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1674 1675 int sta_info_move_state(struct sta_info *sta, 1676 enum ieee80211_sta_state new_state) 1677 { 1678 might_sleep(); 1679 1680 if (sta->sta_state == new_state) 1681 return 0; 1682 1683 /* check allowed transitions first */ 1684 1685 switch (new_state) { 1686 case IEEE80211_STA_NONE: 1687 if (sta->sta_state != IEEE80211_STA_AUTH) 1688 return -EINVAL; 1689 break; 1690 case IEEE80211_STA_AUTH: 1691 if (sta->sta_state != IEEE80211_STA_NONE && 1692 sta->sta_state != IEEE80211_STA_ASSOC) 1693 return -EINVAL; 1694 break; 1695 case IEEE80211_STA_ASSOC: 1696 if (sta->sta_state != IEEE80211_STA_AUTH && 1697 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1698 return -EINVAL; 1699 break; 1700 case IEEE80211_STA_AUTHORIZED: 1701 if (sta->sta_state != IEEE80211_STA_ASSOC) 1702 return -EINVAL; 1703 break; 1704 default: 1705 WARN(1, "invalid state %d", new_state); 1706 return -EINVAL; 1707 } 1708 1709 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1710 sta->sta.addr, new_state); 1711 1712 /* 1713 * notify the driver before the actual changes so it can 1714 * fail the transition 1715 */ 1716 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1717 int err = drv_sta_state(sta->local, sta->sdata, sta, 1718 sta->sta_state, new_state); 1719 if (err) 1720 return err; 1721 } 1722 1723 /* reflect the change in all state variables */ 1724 1725 switch (new_state) { 1726 case IEEE80211_STA_NONE: 1727 if (sta->sta_state == IEEE80211_STA_AUTH) 1728 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1729 break; 1730 case IEEE80211_STA_AUTH: 1731 if (sta->sta_state == IEEE80211_STA_NONE) 1732 set_bit(WLAN_STA_AUTH, &sta->_flags); 1733 else if (sta->sta_state == IEEE80211_STA_ASSOC) 1734 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1735 break; 1736 case IEEE80211_STA_ASSOC: 1737 if (sta->sta_state == IEEE80211_STA_AUTH) { 1738 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1739 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1740 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1741 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1742 !sta->sdata->u.vlan.sta)) 1743 atomic_dec(&sta->sdata->bss->num_mcast_sta); 1744 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1745 ieee80211_clear_fast_xmit(sta); 1746 } 1747 break; 1748 case IEEE80211_STA_AUTHORIZED: 1749 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1750 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1751 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1752 !sta->sdata->u.vlan.sta)) 1753 atomic_inc(&sta->sdata->bss->num_mcast_sta); 1754 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1755 ieee80211_check_fast_xmit(sta); 1756 } 1757 break; 1758 default: 1759 break; 1760 } 1761 1762 sta->sta_state = new_state; 1763 1764 return 0; 1765 } 1766 1767 u8 sta_info_tx_streams(struct sta_info *sta) 1768 { 1769 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1770 u8 rx_streams; 1771 1772 if (!sta->sta.ht_cap.ht_supported) 1773 return 1; 1774 1775 if (sta->sta.vht_cap.vht_supported) { 1776 int i; 1777 u16 tx_mcs_map = 1778 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1779 1780 for (i = 7; i >= 0; i--) 1781 if ((tx_mcs_map & (0x3 << (i * 2))) != 1782 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1783 return i + 1; 1784 } 1785 1786 if (ht_cap->mcs.rx_mask[3]) 1787 rx_streams = 4; 1788 else if (ht_cap->mcs.rx_mask[2]) 1789 rx_streams = 3; 1790 else if (ht_cap->mcs.rx_mask[1]) 1791 rx_streams = 2; 1792 else 1793 rx_streams = 1; 1794 1795 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1796 return rx_streams; 1797 1798 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1799 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1800 } 1801 1802 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo) 1803 { 1804 struct ieee80211_sub_if_data *sdata = sta->sdata; 1805 struct ieee80211_local *local = sdata->local; 1806 struct rate_control_ref *ref = NULL; 1807 struct timespec uptime; 1808 u32 thr = 0; 1809 int i, ac; 1810 1811 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 1812 ref = local->rate_ctrl; 1813 1814 sinfo->generation = sdata->local->sta_generation; 1815 1816 /* do before driver, so beacon filtering drivers have a 1817 * chance to e.g. just add the number of filtered beacons 1818 * (or just modify the value entirely, of course) 1819 */ 1820 if (sdata->vif.type == NL80211_IFTYPE_STATION) 1821 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 1822 1823 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 1824 1825 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) | 1826 BIT(NL80211_STA_INFO_STA_FLAGS) | 1827 BIT(NL80211_STA_INFO_BSS_PARAM) | 1828 BIT(NL80211_STA_INFO_CONNECTED_TIME) | 1829 BIT(NL80211_STA_INFO_RX_DROP_MISC) | 1830 BIT(NL80211_STA_INFO_BEACON_LOSS); 1831 1832 ktime_get_ts(&uptime); 1833 sinfo->connected_time = uptime.tv_sec - sta->last_connected; 1834 sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx); 1835 1836 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) | 1837 BIT(NL80211_STA_INFO_TX_BYTES)))) { 1838 sinfo->tx_bytes = 0; 1839 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 1840 sinfo->tx_bytes += sta->tx_bytes[ac]; 1841 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64); 1842 } 1843 1844 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) { 1845 sinfo->tx_packets = 0; 1846 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 1847 sinfo->tx_packets += sta->tx_packets[ac]; 1848 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS); 1849 } 1850 1851 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) | 1852 BIT(NL80211_STA_INFO_RX_BYTES)))) { 1853 sinfo->rx_bytes = sta->rx_bytes; 1854 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64); 1855 } 1856 1857 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) { 1858 sinfo->rx_packets = sta->rx_packets; 1859 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS); 1860 } 1861 1862 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) { 1863 sinfo->tx_retries = sta->tx_retry_count; 1864 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES); 1865 } 1866 1867 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) { 1868 sinfo->tx_failed = sta->tx_retry_failed; 1869 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED); 1870 } 1871 1872 sinfo->rx_dropped_misc = sta->rx_dropped; 1873 sinfo->beacon_loss_count = sta->beacon_loss_count; 1874 1875 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1876 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 1877 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) | 1878 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 1879 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 1880 } 1881 1882 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 1883 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 1884 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) { 1885 sinfo->signal = (s8)sta->last_signal; 1886 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL); 1887 } 1888 1889 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) { 1890 sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal); 1891 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG); 1892 } 1893 } 1894 1895 if (sta->chains && 1896 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) | 1897 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 1898 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL) | 1899 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 1900 1901 sinfo->chains = sta->chains; 1902 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 1903 sinfo->chain_signal[i] = sta->chain_signal_last[i]; 1904 sinfo->chain_signal_avg[i] = 1905 (s8) -ewma_read(&sta->chain_signal_avg[i]); 1906 } 1907 } 1908 1909 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) { 1910 sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate); 1911 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE); 1912 } 1913 1914 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) { 1915 sta_set_rate_info_rx(sta, &sinfo->rxrate); 1916 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE); 1917 } 1918 1919 sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS); 1920 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) { 1921 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i]; 1922 1923 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 1924 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 1925 tidstats->rx_msdu = sta->rx_msdu[i]; 1926 } 1927 1928 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 1929 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 1930 tidstats->tx_msdu = sta->tx_msdu[i]; 1931 } 1932 1933 if (!(tidstats->filled & 1934 BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 1935 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 1936 tidstats->filled |= 1937 BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 1938 tidstats->tx_msdu_retries = sta->tx_msdu_retries[i]; 1939 } 1940 1941 if (!(tidstats->filled & 1942 BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 1943 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 1944 tidstats->filled |= 1945 BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 1946 tidstats->tx_msdu_failed = sta->tx_msdu_failed[i]; 1947 } 1948 } 1949 1950 if (ieee80211_vif_is_mesh(&sdata->vif)) { 1951 #ifdef CONFIG_MAC80211_MESH 1952 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) | 1953 BIT(NL80211_STA_INFO_PLID) | 1954 BIT(NL80211_STA_INFO_PLINK_STATE) | 1955 BIT(NL80211_STA_INFO_LOCAL_PM) | 1956 BIT(NL80211_STA_INFO_PEER_PM) | 1957 BIT(NL80211_STA_INFO_NONPEER_PM); 1958 1959 sinfo->llid = sta->llid; 1960 sinfo->plid = sta->plid; 1961 sinfo->plink_state = sta->plink_state; 1962 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 1963 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET); 1964 sinfo->t_offset = sta->t_offset; 1965 } 1966 sinfo->local_pm = sta->local_pm; 1967 sinfo->peer_pm = sta->peer_pm; 1968 sinfo->nonpeer_pm = sta->nonpeer_pm; 1969 #endif 1970 } 1971 1972 sinfo->bss_param.flags = 0; 1973 if (sdata->vif.bss_conf.use_cts_prot) 1974 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 1975 if (sdata->vif.bss_conf.use_short_preamble) 1976 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 1977 if (sdata->vif.bss_conf.use_short_slot) 1978 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 1979 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 1980 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 1981 1982 sinfo->sta_flags.set = 0; 1983 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 1984 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 1985 BIT(NL80211_STA_FLAG_WME) | 1986 BIT(NL80211_STA_FLAG_MFP) | 1987 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 1988 BIT(NL80211_STA_FLAG_ASSOCIATED) | 1989 BIT(NL80211_STA_FLAG_TDLS_PEER); 1990 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 1991 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 1992 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 1993 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 1994 if (sta->sta.wme) 1995 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 1996 if (test_sta_flag(sta, WLAN_STA_MFP)) 1997 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 1998 if (test_sta_flag(sta, WLAN_STA_AUTH)) 1999 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2000 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2001 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2002 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2003 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2004 2005 /* check if the driver has a SW RC implementation */ 2006 if (ref && ref->ops->get_expected_throughput) 2007 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2008 else 2009 thr = drv_get_expected_throughput(local, &sta->sta); 2010 2011 if (thr != 0) { 2012 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2013 sinfo->expected_throughput = thr; 2014 } 2015 } 2016