1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * Copyright 2013-2014 Intel Mobile Communications GmbH 5 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 6 * Copyright (C) 2018 Intel Corporation 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/etherdevice.h> 16 #include <linux/netdevice.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/if_arp.h> 21 #include <linux/timer.h> 22 #include <linux/rtnetlink.h> 23 24 #include <net/codel.h> 25 #include <net/mac80211.h> 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "rate.h" 29 #include "sta_info.h" 30 #include "debugfs_sta.h" 31 #include "mesh.h" 32 #include "wme.h" 33 34 /** 35 * DOC: STA information lifetime rules 36 * 37 * STA info structures (&struct sta_info) are managed in a hash table 38 * for faster lookup and a list for iteration. They are managed using 39 * RCU, i.e. access to the list and hash table is protected by RCU. 40 * 41 * Upon allocating a STA info structure with sta_info_alloc(), the caller 42 * owns that structure. It must then insert it into the hash table using 43 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 44 * case (which acquires an rcu read section but must not be called from 45 * within one) will the pointer still be valid after the call. Note that 46 * the caller may not do much with the STA info before inserting it, in 47 * particular, it may not start any mesh peer link management or add 48 * encryption keys. 49 * 50 * When the insertion fails (sta_info_insert()) returns non-zero), the 51 * structure will have been freed by sta_info_insert()! 52 * 53 * Station entries are added by mac80211 when you establish a link with a 54 * peer. This means different things for the different type of interfaces 55 * we support. For a regular station this mean we add the AP sta when we 56 * receive an association response from the AP. For IBSS this occurs when 57 * get to know about a peer on the same IBSS. For WDS we add the sta for 58 * the peer immediately upon device open. When using AP mode we add stations 59 * for each respective station upon request from userspace through nl80211. 60 * 61 * In order to remove a STA info structure, various sta_info_destroy_*() 62 * calls are available. 63 * 64 * There is no concept of ownership on a STA entry, each structure is 65 * owned by the global hash table/list until it is removed. All users of 66 * the structure need to be RCU protected so that the structure won't be 67 * freed before they are done using it. 68 */ 69 70 static const struct rhashtable_params sta_rht_params = { 71 .nelem_hint = 3, /* start small */ 72 .automatic_shrinking = true, 73 .head_offset = offsetof(struct sta_info, hash_node), 74 .key_offset = offsetof(struct sta_info, addr), 75 .key_len = ETH_ALEN, 76 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 77 }; 78 79 /* Caller must hold local->sta_mtx */ 80 static int sta_info_hash_del(struct ieee80211_local *local, 81 struct sta_info *sta) 82 { 83 return rhltable_remove(&local->sta_hash, &sta->hash_node, 84 sta_rht_params); 85 } 86 87 static void __cleanup_single_sta(struct sta_info *sta) 88 { 89 int ac, i; 90 struct tid_ampdu_tx *tid_tx; 91 struct ieee80211_sub_if_data *sdata = sta->sdata; 92 struct ieee80211_local *local = sdata->local; 93 struct fq *fq = &local->fq; 94 struct ps_data *ps; 95 96 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 97 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 98 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 99 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 100 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 101 ps = &sdata->bss->ps; 102 else if (ieee80211_vif_is_mesh(&sdata->vif)) 103 ps = &sdata->u.mesh.ps; 104 else 105 return; 106 107 clear_sta_flag(sta, WLAN_STA_PS_STA); 108 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 109 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 110 111 atomic_dec(&ps->num_sta_ps); 112 } 113 114 if (sta->sta.txq[0]) { 115 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 116 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); 117 118 spin_lock_bh(&fq->lock); 119 ieee80211_txq_purge(local, txqi); 120 spin_unlock_bh(&fq->lock); 121 } 122 } 123 124 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 125 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 126 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 127 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 128 } 129 130 if (ieee80211_vif_is_mesh(&sdata->vif)) 131 mesh_sta_cleanup(sta); 132 133 cancel_work_sync(&sta->drv_deliver_wk); 134 135 /* 136 * Destroy aggregation state here. It would be nice to wait for the 137 * driver to finish aggregation stop and then clean up, but for now 138 * drivers have to handle aggregation stop being requested, followed 139 * directly by station destruction. 140 */ 141 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 142 kfree(sta->ampdu_mlme.tid_start_tx[i]); 143 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 144 if (!tid_tx) 145 continue; 146 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 147 kfree(tid_tx); 148 } 149 } 150 151 static void cleanup_single_sta(struct sta_info *sta) 152 { 153 struct ieee80211_sub_if_data *sdata = sta->sdata; 154 struct ieee80211_local *local = sdata->local; 155 156 __cleanup_single_sta(sta); 157 sta_info_free(local, sta); 158 } 159 160 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 161 const u8 *addr) 162 { 163 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 164 } 165 166 /* protected by RCU */ 167 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 168 const u8 *addr) 169 { 170 struct ieee80211_local *local = sdata->local; 171 struct rhlist_head *tmp; 172 struct sta_info *sta; 173 174 rcu_read_lock(); 175 for_each_sta_info(local, addr, sta, tmp) { 176 if (sta->sdata == sdata) { 177 rcu_read_unlock(); 178 /* this is safe as the caller must already hold 179 * another rcu read section or the mutex 180 */ 181 return sta; 182 } 183 } 184 rcu_read_unlock(); 185 return NULL; 186 } 187 188 /* 189 * Get sta info either from the specified interface 190 * or from one of its vlans 191 */ 192 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 193 const u8 *addr) 194 { 195 struct ieee80211_local *local = sdata->local; 196 struct rhlist_head *tmp; 197 struct sta_info *sta; 198 199 rcu_read_lock(); 200 for_each_sta_info(local, addr, sta, tmp) { 201 if (sta->sdata == sdata || 202 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 203 rcu_read_unlock(); 204 /* this is safe as the caller must already hold 205 * another rcu read section or the mutex 206 */ 207 return sta; 208 } 209 } 210 rcu_read_unlock(); 211 return NULL; 212 } 213 214 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 215 int idx) 216 { 217 struct ieee80211_local *local = sdata->local; 218 struct sta_info *sta; 219 int i = 0; 220 221 list_for_each_entry_rcu(sta, &local->sta_list, list) { 222 if (sdata != sta->sdata) 223 continue; 224 if (i < idx) { 225 ++i; 226 continue; 227 } 228 return sta; 229 } 230 231 return NULL; 232 } 233 234 /** 235 * sta_info_free - free STA 236 * 237 * @local: pointer to the global information 238 * @sta: STA info to free 239 * 240 * This function must undo everything done by sta_info_alloc() 241 * that may happen before sta_info_insert(). It may only be 242 * called when sta_info_insert() has not been attempted (and 243 * if that fails, the station is freed anyway.) 244 */ 245 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 246 { 247 if (sta->rate_ctrl) 248 rate_control_free_sta(sta); 249 250 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 251 252 if (sta->sta.txq[0]) 253 kfree(to_txq_info(sta->sta.txq[0])); 254 kfree(rcu_dereference_raw(sta->sta.rates)); 255 #ifdef CONFIG_MAC80211_MESH 256 kfree(sta->mesh); 257 #endif 258 free_percpu(sta->pcpu_rx_stats); 259 kfree(sta); 260 } 261 262 /* Caller must hold local->sta_mtx */ 263 static int sta_info_hash_add(struct ieee80211_local *local, 264 struct sta_info *sta) 265 { 266 return rhltable_insert(&local->sta_hash, &sta->hash_node, 267 sta_rht_params); 268 } 269 270 static void sta_deliver_ps_frames(struct work_struct *wk) 271 { 272 struct sta_info *sta; 273 274 sta = container_of(wk, struct sta_info, drv_deliver_wk); 275 276 if (sta->dead) 277 return; 278 279 local_bh_disable(); 280 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 281 ieee80211_sta_ps_deliver_wakeup(sta); 282 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 283 ieee80211_sta_ps_deliver_poll_response(sta); 284 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 285 ieee80211_sta_ps_deliver_uapsd(sta); 286 local_bh_enable(); 287 } 288 289 static int sta_prepare_rate_control(struct ieee80211_local *local, 290 struct sta_info *sta, gfp_t gfp) 291 { 292 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 293 return 0; 294 295 sta->rate_ctrl = local->rate_ctrl; 296 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 297 sta, gfp); 298 if (!sta->rate_ctrl_priv) 299 return -ENOMEM; 300 301 return 0; 302 } 303 304 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 305 const u8 *addr, gfp_t gfp) 306 { 307 struct ieee80211_local *local = sdata->local; 308 struct ieee80211_hw *hw = &local->hw; 309 struct sta_info *sta; 310 int i; 311 312 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 313 if (!sta) 314 return NULL; 315 316 if (ieee80211_hw_check(hw, USES_RSS)) { 317 sta->pcpu_rx_stats = 318 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); 319 if (!sta->pcpu_rx_stats) 320 goto free; 321 } 322 323 spin_lock_init(&sta->lock); 324 spin_lock_init(&sta->ps_lock); 325 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 326 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 327 mutex_init(&sta->ampdu_mlme.mtx); 328 #ifdef CONFIG_MAC80211_MESH 329 if (ieee80211_vif_is_mesh(&sdata->vif)) { 330 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 331 if (!sta->mesh) 332 goto free; 333 sta->mesh->plink_sta = sta; 334 spin_lock_init(&sta->mesh->plink_lock); 335 if (ieee80211_vif_is_mesh(&sdata->vif) && 336 !sdata->u.mesh.user_mpm) 337 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 338 0); 339 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 340 } 341 #endif 342 343 memcpy(sta->addr, addr, ETH_ALEN); 344 memcpy(sta->sta.addr, addr, ETH_ALEN); 345 sta->sta.max_rx_aggregation_subframes = 346 local->hw.max_rx_aggregation_subframes; 347 348 sta->local = local; 349 sta->sdata = sdata; 350 sta->rx_stats.last_rx = jiffies; 351 352 u64_stats_init(&sta->rx_stats.syncp); 353 354 sta->sta_state = IEEE80211_STA_NONE; 355 356 /* Mark TID as unreserved */ 357 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 358 359 sta->last_connected = ktime_get_seconds(); 360 ewma_signal_init(&sta->rx_stats_avg.signal); 361 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal); 362 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 363 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 364 365 if (local->ops->wake_tx_queue) { 366 void *txq_data; 367 int size = sizeof(struct txq_info) + 368 ALIGN(hw->txq_data_size, sizeof(void *)); 369 370 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 371 if (!txq_data) 372 goto free; 373 374 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 375 struct txq_info *txq = txq_data + i * size; 376 377 ieee80211_txq_init(sdata, sta, txq, i); 378 } 379 } 380 381 if (sta_prepare_rate_control(local, sta, gfp)) 382 goto free_txq; 383 384 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 385 skb_queue_head_init(&sta->ps_tx_buf[i]); 386 skb_queue_head_init(&sta->tx_filtered[i]); 387 } 388 389 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 390 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 391 392 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 393 if (sdata->vif.type == NL80211_IFTYPE_AP || 394 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 395 struct ieee80211_supported_band *sband; 396 u8 smps; 397 398 sband = ieee80211_get_sband(sdata); 399 if (!sband) 400 goto free_txq; 401 402 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 403 IEEE80211_HT_CAP_SM_PS_SHIFT; 404 /* 405 * Assume that hostapd advertises our caps in the beacon and 406 * this is the known_smps_mode for a station that just assciated 407 */ 408 switch (smps) { 409 case WLAN_HT_SMPS_CONTROL_DISABLED: 410 sta->known_smps_mode = IEEE80211_SMPS_OFF; 411 break; 412 case WLAN_HT_SMPS_CONTROL_STATIC: 413 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 414 break; 415 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 416 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 417 break; 418 default: 419 WARN_ON(1); 420 } 421 } 422 423 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 424 425 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; 426 sta->cparams.target = MS2TIME(20); 427 sta->cparams.interval = MS2TIME(100); 428 sta->cparams.ecn = true; 429 430 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 431 432 return sta; 433 434 free_txq: 435 if (sta->sta.txq[0]) 436 kfree(to_txq_info(sta->sta.txq[0])); 437 free: 438 free_percpu(sta->pcpu_rx_stats); 439 #ifdef CONFIG_MAC80211_MESH 440 kfree(sta->mesh); 441 #endif 442 kfree(sta); 443 return NULL; 444 } 445 446 static int sta_info_insert_check(struct sta_info *sta) 447 { 448 struct ieee80211_sub_if_data *sdata = sta->sdata; 449 450 /* 451 * Can't be a WARN_ON because it can be triggered through a race: 452 * something inserts a STA (on one CPU) without holding the RTNL 453 * and another CPU turns off the net device. 454 */ 455 if (unlikely(!ieee80211_sdata_running(sdata))) 456 return -ENETDOWN; 457 458 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 459 is_multicast_ether_addr(sta->sta.addr))) 460 return -EINVAL; 461 462 /* The RCU read lock is required by rhashtable due to 463 * asynchronous resize/rehash. We also require the mutex 464 * for correctness. 465 */ 466 rcu_read_lock(); 467 lockdep_assert_held(&sdata->local->sta_mtx); 468 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 469 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 470 rcu_read_unlock(); 471 return -ENOTUNIQ; 472 } 473 rcu_read_unlock(); 474 475 return 0; 476 } 477 478 static int sta_info_insert_drv_state(struct ieee80211_local *local, 479 struct ieee80211_sub_if_data *sdata, 480 struct sta_info *sta) 481 { 482 enum ieee80211_sta_state state; 483 int err = 0; 484 485 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 486 err = drv_sta_state(local, sdata, sta, state, state + 1); 487 if (err) 488 break; 489 } 490 491 if (!err) { 492 /* 493 * Drivers using legacy sta_add/sta_remove callbacks only 494 * get uploaded set to true after sta_add is called. 495 */ 496 if (!local->ops->sta_add) 497 sta->uploaded = true; 498 return 0; 499 } 500 501 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 502 sdata_info(sdata, 503 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 504 sta->sta.addr, state + 1, err); 505 err = 0; 506 } 507 508 /* unwind on error */ 509 for (; state > IEEE80211_STA_NOTEXIST; state--) 510 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 511 512 return err; 513 } 514 515 static void 516 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 517 { 518 struct ieee80211_local *local = sdata->local; 519 bool allow_p2p_go_ps = sdata->vif.p2p; 520 struct sta_info *sta; 521 522 rcu_read_lock(); 523 list_for_each_entry_rcu(sta, &local->sta_list, list) { 524 if (sdata != sta->sdata || 525 !test_sta_flag(sta, WLAN_STA_ASSOC)) 526 continue; 527 if (!sta->sta.support_p2p_ps) { 528 allow_p2p_go_ps = false; 529 break; 530 } 531 } 532 rcu_read_unlock(); 533 534 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 535 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 536 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 537 } 538 } 539 540 /* 541 * should be called with sta_mtx locked 542 * this function replaces the mutex lock 543 * with a RCU lock 544 */ 545 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 546 { 547 struct ieee80211_local *local = sta->local; 548 struct ieee80211_sub_if_data *sdata = sta->sdata; 549 struct station_info *sinfo = NULL; 550 int err = 0; 551 552 lockdep_assert_held(&local->sta_mtx); 553 554 /* check if STA exists already */ 555 if (sta_info_get_bss(sdata, sta->sta.addr)) { 556 err = -EEXIST; 557 goto out_err; 558 } 559 560 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 561 if (!sinfo) { 562 err = -ENOMEM; 563 goto out_err; 564 } 565 566 local->num_sta++; 567 local->sta_generation++; 568 smp_mb(); 569 570 /* simplify things and don't accept BA sessions yet */ 571 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 572 573 /* make the station visible */ 574 err = sta_info_hash_add(local, sta); 575 if (err) 576 goto out_drop_sta; 577 578 list_add_tail_rcu(&sta->list, &local->sta_list); 579 580 /* notify driver */ 581 err = sta_info_insert_drv_state(local, sdata, sta); 582 if (err) 583 goto out_remove; 584 585 set_sta_flag(sta, WLAN_STA_INSERTED); 586 587 if (sta->sta_state >= IEEE80211_STA_ASSOC) { 588 ieee80211_recalc_min_chandef(sta->sdata); 589 if (!sta->sta.support_p2p_ps) 590 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 591 } 592 593 /* accept BA sessions now */ 594 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 595 596 ieee80211_sta_debugfs_add(sta); 597 rate_control_add_sta_debugfs(sta); 598 599 sinfo->generation = local->sta_generation; 600 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 601 kfree(sinfo); 602 603 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 604 605 /* move reference to rcu-protected */ 606 rcu_read_lock(); 607 mutex_unlock(&local->sta_mtx); 608 609 if (ieee80211_vif_is_mesh(&sdata->vif)) 610 mesh_accept_plinks_update(sdata); 611 612 return 0; 613 out_remove: 614 sta_info_hash_del(local, sta); 615 list_del_rcu(&sta->list); 616 out_drop_sta: 617 local->num_sta--; 618 synchronize_net(); 619 __cleanup_single_sta(sta); 620 out_err: 621 mutex_unlock(&local->sta_mtx); 622 kfree(sinfo); 623 rcu_read_lock(); 624 return err; 625 } 626 627 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 628 { 629 struct ieee80211_local *local = sta->local; 630 int err; 631 632 might_sleep(); 633 634 mutex_lock(&local->sta_mtx); 635 636 err = sta_info_insert_check(sta); 637 if (err) { 638 mutex_unlock(&local->sta_mtx); 639 rcu_read_lock(); 640 goto out_free; 641 } 642 643 err = sta_info_insert_finish(sta); 644 if (err) 645 goto out_free; 646 647 return 0; 648 out_free: 649 sta_info_free(local, sta); 650 return err; 651 } 652 653 int sta_info_insert(struct sta_info *sta) 654 { 655 int err = sta_info_insert_rcu(sta); 656 657 rcu_read_unlock(); 658 659 return err; 660 } 661 662 static inline void __bss_tim_set(u8 *tim, u16 id) 663 { 664 /* 665 * This format has been mandated by the IEEE specifications, 666 * so this line may not be changed to use the __set_bit() format. 667 */ 668 tim[id / 8] |= (1 << (id % 8)); 669 } 670 671 static inline void __bss_tim_clear(u8 *tim, u16 id) 672 { 673 /* 674 * This format has been mandated by the IEEE specifications, 675 * so this line may not be changed to use the __clear_bit() format. 676 */ 677 tim[id / 8] &= ~(1 << (id % 8)); 678 } 679 680 static inline bool __bss_tim_get(u8 *tim, u16 id) 681 { 682 /* 683 * This format has been mandated by the IEEE specifications, 684 * so this line may not be changed to use the test_bit() format. 685 */ 686 return tim[id / 8] & (1 << (id % 8)); 687 } 688 689 static unsigned long ieee80211_tids_for_ac(int ac) 690 { 691 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 692 switch (ac) { 693 case IEEE80211_AC_VO: 694 return BIT(6) | BIT(7); 695 case IEEE80211_AC_VI: 696 return BIT(4) | BIT(5); 697 case IEEE80211_AC_BE: 698 return BIT(0) | BIT(3); 699 case IEEE80211_AC_BK: 700 return BIT(1) | BIT(2); 701 default: 702 WARN_ON(1); 703 return 0; 704 } 705 } 706 707 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 708 { 709 struct ieee80211_local *local = sta->local; 710 struct ps_data *ps; 711 bool indicate_tim = false; 712 u8 ignore_for_tim = sta->sta.uapsd_queues; 713 int ac; 714 u16 id = sta->sta.aid; 715 716 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 717 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 718 if (WARN_ON_ONCE(!sta->sdata->bss)) 719 return; 720 721 ps = &sta->sdata->bss->ps; 722 #ifdef CONFIG_MAC80211_MESH 723 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 724 ps = &sta->sdata->u.mesh.ps; 725 #endif 726 } else { 727 return; 728 } 729 730 /* No need to do anything if the driver does all */ 731 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 732 return; 733 734 if (sta->dead) 735 goto done; 736 737 /* 738 * If all ACs are delivery-enabled then we should build 739 * the TIM bit for all ACs anyway; if only some are then 740 * we ignore those and build the TIM bit using only the 741 * non-enabled ones. 742 */ 743 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 744 ignore_for_tim = 0; 745 746 if (ignore_pending) 747 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 748 749 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 750 unsigned long tids; 751 752 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 753 continue; 754 755 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 756 !skb_queue_empty(&sta->ps_tx_buf[ac]); 757 if (indicate_tim) 758 break; 759 760 tids = ieee80211_tids_for_ac(ac); 761 762 indicate_tim |= 763 sta->driver_buffered_tids & tids; 764 indicate_tim |= 765 sta->txq_buffered_tids & tids; 766 } 767 768 done: 769 spin_lock_bh(&local->tim_lock); 770 771 if (indicate_tim == __bss_tim_get(ps->tim, id)) 772 goto out_unlock; 773 774 if (indicate_tim) 775 __bss_tim_set(ps->tim, id); 776 else 777 __bss_tim_clear(ps->tim, id); 778 779 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 780 local->tim_in_locked_section = true; 781 drv_set_tim(local, &sta->sta, indicate_tim); 782 local->tim_in_locked_section = false; 783 } 784 785 out_unlock: 786 spin_unlock_bh(&local->tim_lock); 787 } 788 789 void sta_info_recalc_tim(struct sta_info *sta) 790 { 791 __sta_info_recalc_tim(sta, false); 792 } 793 794 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 795 { 796 struct ieee80211_tx_info *info; 797 int timeout; 798 799 if (!skb) 800 return false; 801 802 info = IEEE80211_SKB_CB(skb); 803 804 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 805 timeout = (sta->listen_interval * 806 sta->sdata->vif.bss_conf.beacon_int * 807 32 / 15625) * HZ; 808 if (timeout < STA_TX_BUFFER_EXPIRE) 809 timeout = STA_TX_BUFFER_EXPIRE; 810 return time_after(jiffies, info->control.jiffies + timeout); 811 } 812 813 814 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 815 struct sta_info *sta, int ac) 816 { 817 unsigned long flags; 818 struct sk_buff *skb; 819 820 /* 821 * First check for frames that should expire on the filtered 822 * queue. Frames here were rejected by the driver and are on 823 * a separate queue to avoid reordering with normal PS-buffered 824 * frames. They also aren't accounted for right now in the 825 * total_ps_buffered counter. 826 */ 827 for (;;) { 828 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 829 skb = skb_peek(&sta->tx_filtered[ac]); 830 if (sta_info_buffer_expired(sta, skb)) 831 skb = __skb_dequeue(&sta->tx_filtered[ac]); 832 else 833 skb = NULL; 834 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 835 836 /* 837 * Frames are queued in order, so if this one 838 * hasn't expired yet we can stop testing. If 839 * we actually reached the end of the queue we 840 * also need to stop, of course. 841 */ 842 if (!skb) 843 break; 844 ieee80211_free_txskb(&local->hw, skb); 845 } 846 847 /* 848 * Now also check the normal PS-buffered queue, this will 849 * only find something if the filtered queue was emptied 850 * since the filtered frames are all before the normal PS 851 * buffered frames. 852 */ 853 for (;;) { 854 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 855 skb = skb_peek(&sta->ps_tx_buf[ac]); 856 if (sta_info_buffer_expired(sta, skb)) 857 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 858 else 859 skb = NULL; 860 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 861 862 /* 863 * frames are queued in order, so if this one 864 * hasn't expired yet (or we reached the end of 865 * the queue) we can stop testing 866 */ 867 if (!skb) 868 break; 869 870 local->total_ps_buffered--; 871 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 872 sta->sta.addr); 873 ieee80211_free_txskb(&local->hw, skb); 874 } 875 876 /* 877 * Finally, recalculate the TIM bit for this station -- it might 878 * now be clear because the station was too slow to retrieve its 879 * frames. 880 */ 881 sta_info_recalc_tim(sta); 882 883 /* 884 * Return whether there are any frames still buffered, this is 885 * used to check whether the cleanup timer still needs to run, 886 * if there are no frames we don't need to rearm the timer. 887 */ 888 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 889 skb_queue_empty(&sta->tx_filtered[ac])); 890 } 891 892 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 893 struct sta_info *sta) 894 { 895 bool have_buffered = false; 896 int ac; 897 898 /* This is only necessary for stations on BSS/MBSS interfaces */ 899 if (!sta->sdata->bss && 900 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 901 return false; 902 903 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 904 have_buffered |= 905 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 906 907 return have_buffered; 908 } 909 910 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 911 { 912 struct ieee80211_local *local; 913 struct ieee80211_sub_if_data *sdata; 914 int ret; 915 916 might_sleep(); 917 918 if (!sta) 919 return -ENOENT; 920 921 local = sta->local; 922 sdata = sta->sdata; 923 924 lockdep_assert_held(&local->sta_mtx); 925 926 /* 927 * Before removing the station from the driver and 928 * rate control, it might still start new aggregation 929 * sessions -- block that to make sure the tear-down 930 * will be sufficient. 931 */ 932 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 933 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 934 935 /* 936 * Before removing the station from the driver there might be pending 937 * rx frames on RSS queues sent prior to the disassociation - wait for 938 * all such frames to be processed. 939 */ 940 drv_sync_rx_queues(local, sta); 941 942 ret = sta_info_hash_del(local, sta); 943 if (WARN_ON(ret)) 944 return ret; 945 946 /* 947 * for TDLS peers, make sure to return to the base channel before 948 * removal. 949 */ 950 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 951 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 952 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 953 } 954 955 list_del_rcu(&sta->list); 956 sta->removed = true; 957 958 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 959 960 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 961 rcu_access_pointer(sdata->u.vlan.sta) == sta) 962 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 963 964 return 0; 965 } 966 967 static void __sta_info_destroy_part2(struct sta_info *sta) 968 { 969 struct ieee80211_local *local = sta->local; 970 struct ieee80211_sub_if_data *sdata = sta->sdata; 971 struct station_info *sinfo; 972 int ret; 973 974 /* 975 * NOTE: This assumes at least synchronize_net() was done 976 * after _part1 and before _part2! 977 */ 978 979 might_sleep(); 980 lockdep_assert_held(&local->sta_mtx); 981 982 /* now keys can no longer be reached */ 983 ieee80211_free_sta_keys(local, sta); 984 985 /* disable TIM bit - last chance to tell driver */ 986 __sta_info_recalc_tim(sta, true); 987 988 sta->dead = true; 989 990 local->num_sta--; 991 local->sta_generation++; 992 993 while (sta->sta_state > IEEE80211_STA_NONE) { 994 ret = sta_info_move_state(sta, sta->sta_state - 1); 995 if (ret) { 996 WARN_ON_ONCE(1); 997 break; 998 } 999 } 1000 1001 if (sta->uploaded) { 1002 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 1003 IEEE80211_STA_NOTEXIST); 1004 WARN_ON_ONCE(ret != 0); 1005 } 1006 1007 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 1008 1009 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 1010 if (sinfo) 1011 sta_set_sinfo(sta, sinfo, true); 1012 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 1013 kfree(sinfo); 1014 1015 rate_control_remove_sta_debugfs(sta); 1016 ieee80211_sta_debugfs_remove(sta); 1017 1018 cleanup_single_sta(sta); 1019 } 1020 1021 int __must_check __sta_info_destroy(struct sta_info *sta) 1022 { 1023 int err = __sta_info_destroy_part1(sta); 1024 1025 if (err) 1026 return err; 1027 1028 synchronize_net(); 1029 1030 __sta_info_destroy_part2(sta); 1031 1032 return 0; 1033 } 1034 1035 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1036 { 1037 struct sta_info *sta; 1038 int ret; 1039 1040 mutex_lock(&sdata->local->sta_mtx); 1041 sta = sta_info_get(sdata, addr); 1042 ret = __sta_info_destroy(sta); 1043 mutex_unlock(&sdata->local->sta_mtx); 1044 1045 return ret; 1046 } 1047 1048 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1049 const u8 *addr) 1050 { 1051 struct sta_info *sta; 1052 int ret; 1053 1054 mutex_lock(&sdata->local->sta_mtx); 1055 sta = sta_info_get_bss(sdata, addr); 1056 ret = __sta_info_destroy(sta); 1057 mutex_unlock(&sdata->local->sta_mtx); 1058 1059 return ret; 1060 } 1061 1062 static void sta_info_cleanup(struct timer_list *t) 1063 { 1064 struct ieee80211_local *local = from_timer(local, t, sta_cleanup); 1065 struct sta_info *sta; 1066 bool timer_needed = false; 1067 1068 rcu_read_lock(); 1069 list_for_each_entry_rcu(sta, &local->sta_list, list) 1070 if (sta_info_cleanup_expire_buffered(local, sta)) 1071 timer_needed = true; 1072 rcu_read_unlock(); 1073 1074 if (local->quiescing) 1075 return; 1076 1077 if (!timer_needed) 1078 return; 1079 1080 mod_timer(&local->sta_cleanup, 1081 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1082 } 1083 1084 int sta_info_init(struct ieee80211_local *local) 1085 { 1086 int err; 1087 1088 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1089 if (err) 1090 return err; 1091 1092 spin_lock_init(&local->tim_lock); 1093 mutex_init(&local->sta_mtx); 1094 INIT_LIST_HEAD(&local->sta_list); 1095 1096 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); 1097 return 0; 1098 } 1099 1100 void sta_info_stop(struct ieee80211_local *local) 1101 { 1102 del_timer_sync(&local->sta_cleanup); 1103 rhltable_destroy(&local->sta_hash); 1104 } 1105 1106 1107 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1108 { 1109 struct ieee80211_local *local = sdata->local; 1110 struct sta_info *sta, *tmp; 1111 LIST_HEAD(free_list); 1112 int ret = 0; 1113 1114 might_sleep(); 1115 1116 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1117 WARN_ON(vlans && !sdata->bss); 1118 1119 mutex_lock(&local->sta_mtx); 1120 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1121 if (sdata == sta->sdata || 1122 (vlans && sdata->bss == sta->sdata->bss)) { 1123 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1124 list_add(&sta->free_list, &free_list); 1125 ret++; 1126 } 1127 } 1128 1129 if (!list_empty(&free_list)) { 1130 synchronize_net(); 1131 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1132 __sta_info_destroy_part2(sta); 1133 } 1134 mutex_unlock(&local->sta_mtx); 1135 1136 return ret; 1137 } 1138 1139 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1140 unsigned long exp_time) 1141 { 1142 struct ieee80211_local *local = sdata->local; 1143 struct sta_info *sta, *tmp; 1144 1145 mutex_lock(&local->sta_mtx); 1146 1147 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1148 unsigned long last_active = ieee80211_sta_last_active(sta); 1149 1150 if (sdata != sta->sdata) 1151 continue; 1152 1153 if (time_is_before_jiffies(last_active + exp_time)) { 1154 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1155 sta->sta.addr); 1156 1157 if (ieee80211_vif_is_mesh(&sdata->vif) && 1158 test_sta_flag(sta, WLAN_STA_PS_STA)) 1159 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1160 1161 WARN_ON(__sta_info_destroy(sta)); 1162 } 1163 } 1164 1165 mutex_unlock(&local->sta_mtx); 1166 } 1167 1168 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1169 const u8 *addr, 1170 const u8 *localaddr) 1171 { 1172 struct ieee80211_local *local = hw_to_local(hw); 1173 struct rhlist_head *tmp; 1174 struct sta_info *sta; 1175 1176 /* 1177 * Just return a random station if localaddr is NULL 1178 * ... first in list. 1179 */ 1180 for_each_sta_info(local, addr, sta, tmp) { 1181 if (localaddr && 1182 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1183 continue; 1184 if (!sta->uploaded) 1185 return NULL; 1186 return &sta->sta; 1187 } 1188 1189 return NULL; 1190 } 1191 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1192 1193 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1194 const u8 *addr) 1195 { 1196 struct sta_info *sta; 1197 1198 if (!vif) 1199 return NULL; 1200 1201 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1202 if (!sta) 1203 return NULL; 1204 1205 if (!sta->uploaded) 1206 return NULL; 1207 1208 return &sta->sta; 1209 } 1210 EXPORT_SYMBOL(ieee80211_find_sta); 1211 1212 /* powersave support code */ 1213 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1214 { 1215 struct ieee80211_sub_if_data *sdata = sta->sdata; 1216 struct ieee80211_local *local = sdata->local; 1217 struct sk_buff_head pending; 1218 int filtered = 0, buffered = 0, ac, i; 1219 unsigned long flags; 1220 struct ps_data *ps; 1221 1222 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1223 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1224 u.ap); 1225 1226 if (sdata->vif.type == NL80211_IFTYPE_AP) 1227 ps = &sdata->bss->ps; 1228 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1229 ps = &sdata->u.mesh.ps; 1230 else 1231 return; 1232 1233 clear_sta_flag(sta, WLAN_STA_SP); 1234 1235 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1236 sta->driver_buffered_tids = 0; 1237 sta->txq_buffered_tids = 0; 1238 1239 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1240 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1241 1242 if (sta->sta.txq[0]) { 1243 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1244 if (!txq_has_queue(sta->sta.txq[i])) 1245 continue; 1246 1247 drv_wake_tx_queue(local, to_txq_info(sta->sta.txq[i])); 1248 } 1249 } 1250 1251 skb_queue_head_init(&pending); 1252 1253 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1254 spin_lock(&sta->ps_lock); 1255 /* Send all buffered frames to the station */ 1256 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1257 int count = skb_queue_len(&pending), tmp; 1258 1259 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1260 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1261 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1262 tmp = skb_queue_len(&pending); 1263 filtered += tmp - count; 1264 count = tmp; 1265 1266 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1267 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1268 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1269 tmp = skb_queue_len(&pending); 1270 buffered += tmp - count; 1271 } 1272 1273 ieee80211_add_pending_skbs(local, &pending); 1274 1275 /* now we're no longer in the deliver code */ 1276 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1277 1278 /* The station might have polled and then woken up before we responded, 1279 * so clear these flags now to avoid them sticking around. 1280 */ 1281 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1282 clear_sta_flag(sta, WLAN_STA_UAPSD); 1283 spin_unlock(&sta->ps_lock); 1284 1285 atomic_dec(&ps->num_sta_ps); 1286 1287 /* This station just woke up and isn't aware of our SMPS state */ 1288 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1289 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1290 sdata->smps_mode) && 1291 sta->known_smps_mode != sdata->bss->req_smps && 1292 sta_info_tx_streams(sta) != 1) { 1293 ht_dbg(sdata, 1294 "%pM just woke up and MIMO capable - update SMPS\n", 1295 sta->sta.addr); 1296 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1297 sta->sta.addr, 1298 sdata->vif.bss_conf.bssid); 1299 } 1300 1301 local->total_ps_buffered -= buffered; 1302 1303 sta_info_recalc_tim(sta); 1304 1305 ps_dbg(sdata, 1306 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1307 sta->sta.addr, sta->sta.aid, filtered, buffered); 1308 1309 ieee80211_check_fast_xmit(sta); 1310 } 1311 1312 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1313 enum ieee80211_frame_release_type reason, 1314 bool call_driver, bool more_data) 1315 { 1316 struct ieee80211_sub_if_data *sdata = sta->sdata; 1317 struct ieee80211_local *local = sdata->local; 1318 struct ieee80211_qos_hdr *nullfunc; 1319 struct sk_buff *skb; 1320 int size = sizeof(*nullfunc); 1321 __le16 fc; 1322 bool qos = sta->sta.wme; 1323 struct ieee80211_tx_info *info; 1324 struct ieee80211_chanctx_conf *chanctx_conf; 1325 1326 if (qos) { 1327 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1328 IEEE80211_STYPE_QOS_NULLFUNC | 1329 IEEE80211_FCTL_FROMDS); 1330 } else { 1331 size -= 2; 1332 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1333 IEEE80211_STYPE_NULLFUNC | 1334 IEEE80211_FCTL_FROMDS); 1335 } 1336 1337 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1338 if (!skb) 1339 return; 1340 1341 skb_reserve(skb, local->hw.extra_tx_headroom); 1342 1343 nullfunc = skb_put(skb, size); 1344 nullfunc->frame_control = fc; 1345 nullfunc->duration_id = 0; 1346 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1347 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1348 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1349 nullfunc->seq_ctrl = 0; 1350 1351 skb->priority = tid; 1352 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1353 if (qos) { 1354 nullfunc->qos_ctrl = cpu_to_le16(tid); 1355 1356 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1357 nullfunc->qos_ctrl |= 1358 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1359 if (more_data) 1360 nullfunc->frame_control |= 1361 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1362 } 1363 } 1364 1365 info = IEEE80211_SKB_CB(skb); 1366 1367 /* 1368 * Tell TX path to send this frame even though the 1369 * STA may still remain is PS mode after this frame 1370 * exchange. Also set EOSP to indicate this packet 1371 * ends the poll/service period. 1372 */ 1373 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1374 IEEE80211_TX_STATUS_EOSP | 1375 IEEE80211_TX_CTL_REQ_TX_STATUS; 1376 1377 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1378 1379 if (call_driver) 1380 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1381 reason, false); 1382 1383 skb->dev = sdata->dev; 1384 1385 rcu_read_lock(); 1386 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1387 if (WARN_ON(!chanctx_conf)) { 1388 rcu_read_unlock(); 1389 kfree_skb(skb); 1390 return; 1391 } 1392 1393 info->band = chanctx_conf->def.chan->band; 1394 ieee80211_xmit(sdata, sta, skb); 1395 rcu_read_unlock(); 1396 } 1397 1398 static int find_highest_prio_tid(unsigned long tids) 1399 { 1400 /* lower 3 TIDs aren't ordered perfectly */ 1401 if (tids & 0xF8) 1402 return fls(tids) - 1; 1403 /* TID 0 is BE just like TID 3 */ 1404 if (tids & BIT(0)) 1405 return 0; 1406 return fls(tids) - 1; 1407 } 1408 1409 /* Indicates if the MORE_DATA bit should be set in the last 1410 * frame obtained by ieee80211_sta_ps_get_frames. 1411 * Note that driver_release_tids is relevant only if 1412 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1413 */ 1414 static bool 1415 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1416 enum ieee80211_frame_release_type reason, 1417 unsigned long driver_release_tids) 1418 { 1419 int ac; 1420 1421 /* If the driver has data on more than one TID then 1422 * certainly there's more data if we release just a 1423 * single frame now (from a single TID). This will 1424 * only happen for PS-Poll. 1425 */ 1426 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1427 hweight16(driver_release_tids) > 1) 1428 return true; 1429 1430 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1431 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1432 continue; 1433 1434 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1435 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1436 return true; 1437 } 1438 1439 return false; 1440 } 1441 1442 static void 1443 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1444 enum ieee80211_frame_release_type reason, 1445 struct sk_buff_head *frames, 1446 unsigned long *driver_release_tids) 1447 { 1448 struct ieee80211_sub_if_data *sdata = sta->sdata; 1449 struct ieee80211_local *local = sdata->local; 1450 int ac; 1451 1452 /* Get response frame(s) and more data bit for the last one. */ 1453 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1454 unsigned long tids; 1455 1456 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1457 continue; 1458 1459 tids = ieee80211_tids_for_ac(ac); 1460 1461 /* if we already have frames from software, then we can't also 1462 * release from hardware queues 1463 */ 1464 if (skb_queue_empty(frames)) { 1465 *driver_release_tids |= 1466 sta->driver_buffered_tids & tids; 1467 *driver_release_tids |= sta->txq_buffered_tids & tids; 1468 } 1469 1470 if (!*driver_release_tids) { 1471 struct sk_buff *skb; 1472 1473 while (n_frames > 0) { 1474 skb = skb_dequeue(&sta->tx_filtered[ac]); 1475 if (!skb) { 1476 skb = skb_dequeue( 1477 &sta->ps_tx_buf[ac]); 1478 if (skb) 1479 local->total_ps_buffered--; 1480 } 1481 if (!skb) 1482 break; 1483 n_frames--; 1484 __skb_queue_tail(frames, skb); 1485 } 1486 } 1487 1488 /* If we have more frames buffered on this AC, then abort the 1489 * loop since we can't send more data from other ACs before 1490 * the buffered frames from this. 1491 */ 1492 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1493 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1494 break; 1495 } 1496 } 1497 1498 static void 1499 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1500 int n_frames, u8 ignored_acs, 1501 enum ieee80211_frame_release_type reason) 1502 { 1503 struct ieee80211_sub_if_data *sdata = sta->sdata; 1504 struct ieee80211_local *local = sdata->local; 1505 unsigned long driver_release_tids = 0; 1506 struct sk_buff_head frames; 1507 bool more_data; 1508 1509 /* Service or PS-Poll period starts */ 1510 set_sta_flag(sta, WLAN_STA_SP); 1511 1512 __skb_queue_head_init(&frames); 1513 1514 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1515 &frames, &driver_release_tids); 1516 1517 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1518 1519 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1520 driver_release_tids = 1521 BIT(find_highest_prio_tid(driver_release_tids)); 1522 1523 if (skb_queue_empty(&frames) && !driver_release_tids) { 1524 int tid, ac; 1525 1526 /* 1527 * For PS-Poll, this can only happen due to a race condition 1528 * when we set the TIM bit and the station notices it, but 1529 * before it can poll for the frame we expire it. 1530 * 1531 * For uAPSD, this is said in the standard (11.2.1.5 h): 1532 * At each unscheduled SP for a non-AP STA, the AP shall 1533 * attempt to transmit at least one MSDU or MMPDU, but no 1534 * more than the value specified in the Max SP Length field 1535 * in the QoS Capability element from delivery-enabled ACs, 1536 * that are destined for the non-AP STA. 1537 * 1538 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1539 */ 1540 1541 /* This will evaluate to 1, 3, 5 or 7. */ 1542 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1543 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1544 break; 1545 tid = 7 - 2 * ac; 1546 1547 ieee80211_send_null_response(sta, tid, reason, true, false); 1548 } else if (!driver_release_tids) { 1549 struct sk_buff_head pending; 1550 struct sk_buff *skb; 1551 int num = 0; 1552 u16 tids = 0; 1553 bool need_null = false; 1554 1555 skb_queue_head_init(&pending); 1556 1557 while ((skb = __skb_dequeue(&frames))) { 1558 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1559 struct ieee80211_hdr *hdr = (void *) skb->data; 1560 u8 *qoshdr = NULL; 1561 1562 num++; 1563 1564 /* 1565 * Tell TX path to send this frame even though the 1566 * STA may still remain is PS mode after this frame 1567 * exchange. 1568 */ 1569 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1570 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1571 1572 /* 1573 * Use MoreData flag to indicate whether there are 1574 * more buffered frames for this STA 1575 */ 1576 if (more_data || !skb_queue_empty(&frames)) 1577 hdr->frame_control |= 1578 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1579 else 1580 hdr->frame_control &= 1581 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1582 1583 if (ieee80211_is_data_qos(hdr->frame_control) || 1584 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1585 qoshdr = ieee80211_get_qos_ctl(hdr); 1586 1587 tids |= BIT(skb->priority); 1588 1589 __skb_queue_tail(&pending, skb); 1590 1591 /* end service period after last frame or add one */ 1592 if (!skb_queue_empty(&frames)) 1593 continue; 1594 1595 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1596 /* for PS-Poll, there's only one frame */ 1597 info->flags |= IEEE80211_TX_STATUS_EOSP | 1598 IEEE80211_TX_CTL_REQ_TX_STATUS; 1599 break; 1600 } 1601 1602 /* For uAPSD, things are a bit more complicated. If the 1603 * last frame has a QoS header (i.e. is a QoS-data or 1604 * QoS-nulldata frame) then just set the EOSP bit there 1605 * and be done. 1606 * If the frame doesn't have a QoS header (which means 1607 * it should be a bufferable MMPDU) then we can't set 1608 * the EOSP bit in the QoS header; add a QoS-nulldata 1609 * frame to the list to send it after the MMPDU. 1610 * 1611 * Note that this code is only in the mac80211-release 1612 * code path, we assume that the driver will not buffer 1613 * anything but QoS-data frames, or if it does, will 1614 * create the QoS-nulldata frame by itself if needed. 1615 * 1616 * Cf. 802.11-2012 10.2.1.10 (c). 1617 */ 1618 if (qoshdr) { 1619 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1620 1621 info->flags |= IEEE80211_TX_STATUS_EOSP | 1622 IEEE80211_TX_CTL_REQ_TX_STATUS; 1623 } else { 1624 /* The standard isn't completely clear on this 1625 * as it says the more-data bit should be set 1626 * if there are more BUs. The QoS-Null frame 1627 * we're about to send isn't buffered yet, we 1628 * only create it below, but let's pretend it 1629 * was buffered just in case some clients only 1630 * expect more-data=0 when eosp=1. 1631 */ 1632 hdr->frame_control |= 1633 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1634 need_null = true; 1635 num++; 1636 } 1637 break; 1638 } 1639 1640 drv_allow_buffered_frames(local, sta, tids, num, 1641 reason, more_data); 1642 1643 ieee80211_add_pending_skbs(local, &pending); 1644 1645 if (need_null) 1646 ieee80211_send_null_response( 1647 sta, find_highest_prio_tid(tids), 1648 reason, false, false); 1649 1650 sta_info_recalc_tim(sta); 1651 } else { 1652 int tid; 1653 1654 /* 1655 * We need to release a frame that is buffered somewhere in the 1656 * driver ... it'll have to handle that. 1657 * Note that the driver also has to check the number of frames 1658 * on the TIDs we're releasing from - if there are more than 1659 * n_frames it has to set the more-data bit (if we didn't ask 1660 * it to set it anyway due to other buffered frames); if there 1661 * are fewer than n_frames it has to make sure to adjust that 1662 * to allow the service period to end properly. 1663 */ 1664 drv_release_buffered_frames(local, sta, driver_release_tids, 1665 n_frames, reason, more_data); 1666 1667 /* 1668 * Note that we don't recalculate the TIM bit here as it would 1669 * most likely have no effect at all unless the driver told us 1670 * that the TID(s) became empty before returning here from the 1671 * release function. 1672 * Either way, however, when the driver tells us that the TID(s) 1673 * became empty or we find that a txq became empty, we'll do the 1674 * TIM recalculation. 1675 */ 1676 1677 if (!sta->sta.txq[0]) 1678 return; 1679 1680 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1681 if (!(driver_release_tids & BIT(tid)) || 1682 txq_has_queue(sta->sta.txq[tid])) 1683 continue; 1684 1685 sta_info_recalc_tim(sta); 1686 break; 1687 } 1688 } 1689 } 1690 1691 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1692 { 1693 u8 ignore_for_response = sta->sta.uapsd_queues; 1694 1695 /* 1696 * If all ACs are delivery-enabled then we should reply 1697 * from any of them, if only some are enabled we reply 1698 * only from the non-enabled ones. 1699 */ 1700 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1701 ignore_for_response = 0; 1702 1703 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1704 IEEE80211_FRAME_RELEASE_PSPOLL); 1705 } 1706 1707 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1708 { 1709 int n_frames = sta->sta.max_sp; 1710 u8 delivery_enabled = sta->sta.uapsd_queues; 1711 1712 /* 1713 * If we ever grow support for TSPEC this might happen if 1714 * the TSPEC update from hostapd comes in between a trigger 1715 * frame setting WLAN_STA_UAPSD in the RX path and this 1716 * actually getting called. 1717 */ 1718 if (!delivery_enabled) 1719 return; 1720 1721 switch (sta->sta.max_sp) { 1722 case 1: 1723 n_frames = 2; 1724 break; 1725 case 2: 1726 n_frames = 4; 1727 break; 1728 case 3: 1729 n_frames = 6; 1730 break; 1731 case 0: 1732 /* XXX: what is a good value? */ 1733 n_frames = 128; 1734 break; 1735 } 1736 1737 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1738 IEEE80211_FRAME_RELEASE_UAPSD); 1739 } 1740 1741 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1742 struct ieee80211_sta *pubsta, bool block) 1743 { 1744 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1745 1746 trace_api_sta_block_awake(sta->local, pubsta, block); 1747 1748 if (block) { 1749 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1750 ieee80211_clear_fast_xmit(sta); 1751 return; 1752 } 1753 1754 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1755 return; 1756 1757 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1758 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1759 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1760 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1761 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1762 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1763 /* must be asleep in this case */ 1764 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1765 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1766 } else { 1767 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1768 ieee80211_check_fast_xmit(sta); 1769 } 1770 } 1771 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1772 1773 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1774 { 1775 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1776 struct ieee80211_local *local = sta->local; 1777 1778 trace_api_eosp(local, pubsta); 1779 1780 clear_sta_flag(sta, WLAN_STA_SP); 1781 } 1782 EXPORT_SYMBOL(ieee80211_sta_eosp); 1783 1784 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1785 { 1786 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1787 enum ieee80211_frame_release_type reason; 1788 bool more_data; 1789 1790 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1791 1792 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1793 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1794 reason, 0); 1795 1796 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1797 } 1798 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1799 1800 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1801 u8 tid, bool buffered) 1802 { 1803 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1804 1805 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1806 return; 1807 1808 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1809 1810 if (buffered) 1811 set_bit(tid, &sta->driver_buffered_tids); 1812 else 1813 clear_bit(tid, &sta->driver_buffered_tids); 1814 1815 sta_info_recalc_tim(sta); 1816 } 1817 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1818 1819 int sta_info_move_state(struct sta_info *sta, 1820 enum ieee80211_sta_state new_state) 1821 { 1822 might_sleep(); 1823 1824 if (sta->sta_state == new_state) 1825 return 0; 1826 1827 /* check allowed transitions first */ 1828 1829 switch (new_state) { 1830 case IEEE80211_STA_NONE: 1831 if (sta->sta_state != IEEE80211_STA_AUTH) 1832 return -EINVAL; 1833 break; 1834 case IEEE80211_STA_AUTH: 1835 if (sta->sta_state != IEEE80211_STA_NONE && 1836 sta->sta_state != IEEE80211_STA_ASSOC) 1837 return -EINVAL; 1838 break; 1839 case IEEE80211_STA_ASSOC: 1840 if (sta->sta_state != IEEE80211_STA_AUTH && 1841 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1842 return -EINVAL; 1843 break; 1844 case IEEE80211_STA_AUTHORIZED: 1845 if (sta->sta_state != IEEE80211_STA_ASSOC) 1846 return -EINVAL; 1847 break; 1848 default: 1849 WARN(1, "invalid state %d", new_state); 1850 return -EINVAL; 1851 } 1852 1853 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1854 sta->sta.addr, new_state); 1855 1856 /* 1857 * notify the driver before the actual changes so it can 1858 * fail the transition 1859 */ 1860 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1861 int err = drv_sta_state(sta->local, sta->sdata, sta, 1862 sta->sta_state, new_state); 1863 if (err) 1864 return err; 1865 } 1866 1867 /* reflect the change in all state variables */ 1868 1869 switch (new_state) { 1870 case IEEE80211_STA_NONE: 1871 if (sta->sta_state == IEEE80211_STA_AUTH) 1872 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1873 break; 1874 case IEEE80211_STA_AUTH: 1875 if (sta->sta_state == IEEE80211_STA_NONE) { 1876 set_bit(WLAN_STA_AUTH, &sta->_flags); 1877 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 1878 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1879 ieee80211_recalc_min_chandef(sta->sdata); 1880 if (!sta->sta.support_p2p_ps) 1881 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 1882 } 1883 break; 1884 case IEEE80211_STA_ASSOC: 1885 if (sta->sta_state == IEEE80211_STA_AUTH) { 1886 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1887 ieee80211_recalc_min_chandef(sta->sdata); 1888 if (!sta->sta.support_p2p_ps) 1889 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 1890 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1891 ieee80211_vif_dec_num_mcast(sta->sdata); 1892 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1893 ieee80211_clear_fast_xmit(sta); 1894 ieee80211_clear_fast_rx(sta); 1895 } 1896 break; 1897 case IEEE80211_STA_AUTHORIZED: 1898 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1899 ieee80211_vif_inc_num_mcast(sta->sdata); 1900 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1901 ieee80211_check_fast_xmit(sta); 1902 ieee80211_check_fast_rx(sta); 1903 } 1904 break; 1905 default: 1906 break; 1907 } 1908 1909 sta->sta_state = new_state; 1910 1911 return 0; 1912 } 1913 1914 u8 sta_info_tx_streams(struct sta_info *sta) 1915 { 1916 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1917 u8 rx_streams; 1918 1919 if (!sta->sta.ht_cap.ht_supported) 1920 return 1; 1921 1922 if (sta->sta.vht_cap.vht_supported) { 1923 int i; 1924 u16 tx_mcs_map = 1925 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1926 1927 for (i = 7; i >= 0; i--) 1928 if ((tx_mcs_map & (0x3 << (i * 2))) != 1929 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1930 return i + 1; 1931 } 1932 1933 if (ht_cap->mcs.rx_mask[3]) 1934 rx_streams = 4; 1935 else if (ht_cap->mcs.rx_mask[2]) 1936 rx_streams = 3; 1937 else if (ht_cap->mcs.rx_mask[1]) 1938 rx_streams = 2; 1939 else 1940 rx_streams = 1; 1941 1942 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1943 return rx_streams; 1944 1945 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1946 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1947 } 1948 1949 static struct ieee80211_sta_rx_stats * 1950 sta_get_last_rx_stats(struct sta_info *sta) 1951 { 1952 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 1953 struct ieee80211_local *local = sta->local; 1954 int cpu; 1955 1956 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 1957 return stats; 1958 1959 for_each_possible_cpu(cpu) { 1960 struct ieee80211_sta_rx_stats *cpustats; 1961 1962 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 1963 1964 if (time_after(cpustats->last_rx, stats->last_rx)) 1965 stats = cpustats; 1966 } 1967 1968 return stats; 1969 } 1970 1971 static void sta_stats_decode_rate(struct ieee80211_local *local, u16 rate, 1972 struct rate_info *rinfo) 1973 { 1974 rinfo->bw = STA_STATS_GET(BW, rate); 1975 1976 switch (STA_STATS_GET(TYPE, rate)) { 1977 case STA_STATS_RATE_TYPE_VHT: 1978 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 1979 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 1980 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 1981 if (STA_STATS_GET(SGI, rate)) 1982 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 1983 break; 1984 case STA_STATS_RATE_TYPE_HT: 1985 rinfo->flags = RATE_INFO_FLAGS_MCS; 1986 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 1987 if (STA_STATS_GET(SGI, rate)) 1988 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 1989 break; 1990 case STA_STATS_RATE_TYPE_LEGACY: { 1991 struct ieee80211_supported_band *sband; 1992 u16 brate; 1993 unsigned int shift; 1994 int band = STA_STATS_GET(LEGACY_BAND, rate); 1995 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 1996 1997 sband = local->hw.wiphy->bands[band]; 1998 brate = sband->bitrates[rate_idx].bitrate; 1999 if (rinfo->bw == RATE_INFO_BW_5) 2000 shift = 2; 2001 else if (rinfo->bw == RATE_INFO_BW_10) 2002 shift = 1; 2003 else 2004 shift = 0; 2005 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 2006 break; 2007 } 2008 } 2009 } 2010 2011 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2012 { 2013 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2014 2015 if (rate == STA_STATS_RATE_INVALID) 2016 return -EINVAL; 2017 2018 sta_stats_decode_rate(sta->local, rate, rinfo); 2019 return 0; 2020 } 2021 2022 static void sta_set_tidstats(struct sta_info *sta, 2023 struct cfg80211_tid_stats *tidstats, 2024 int tid) 2025 { 2026 struct ieee80211_local *local = sta->local; 2027 2028 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2029 unsigned int start; 2030 2031 do { 2032 start = u64_stats_fetch_begin(&sta->rx_stats.syncp); 2033 tidstats->rx_msdu = sta->rx_stats.msdu[tid]; 2034 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start)); 2035 2036 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2037 } 2038 2039 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2040 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2041 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2042 } 2043 2044 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2045 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2046 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2047 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2048 } 2049 2050 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2051 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2052 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2053 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2054 } 2055 2056 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) { 2057 spin_lock_bh(&local->fq.lock); 2058 rcu_read_lock(); 2059 2060 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); 2061 ieee80211_fill_txq_stats(&tidstats->txq_stats, 2062 to_txq_info(sta->sta.txq[tid])); 2063 2064 rcu_read_unlock(); 2065 spin_unlock_bh(&local->fq.lock); 2066 } 2067 } 2068 2069 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2070 { 2071 unsigned int start; 2072 u64 value; 2073 2074 do { 2075 start = u64_stats_fetch_begin(&rxstats->syncp); 2076 value = rxstats->bytes; 2077 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2078 2079 return value; 2080 } 2081 2082 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, 2083 bool tidstats) 2084 { 2085 struct ieee80211_sub_if_data *sdata = sta->sdata; 2086 struct ieee80211_local *local = sdata->local; 2087 u32 thr = 0; 2088 int i, ac, cpu; 2089 struct ieee80211_sta_rx_stats *last_rxstats; 2090 2091 last_rxstats = sta_get_last_rx_stats(sta); 2092 2093 sinfo->generation = sdata->local->sta_generation; 2094 2095 /* do before driver, so beacon filtering drivers have a 2096 * chance to e.g. just add the number of filtered beacons 2097 * (or just modify the value entirely, of course) 2098 */ 2099 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2100 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2101 2102 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2103 2104 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) | 2105 BIT(NL80211_STA_INFO_STA_FLAGS) | 2106 BIT(NL80211_STA_INFO_BSS_PARAM) | 2107 BIT(NL80211_STA_INFO_CONNECTED_TIME) | 2108 BIT(NL80211_STA_INFO_RX_DROP_MISC); 2109 2110 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2111 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2112 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS); 2113 } 2114 2115 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2116 sinfo->inactive_time = 2117 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2118 2119 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) | 2120 BIT(NL80211_STA_INFO_TX_BYTES)))) { 2121 sinfo->tx_bytes = 0; 2122 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2123 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2124 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64); 2125 } 2126 2127 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) { 2128 sinfo->tx_packets = 0; 2129 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2130 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2131 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS); 2132 } 2133 2134 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) | 2135 BIT(NL80211_STA_INFO_RX_BYTES)))) { 2136 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2137 2138 if (sta->pcpu_rx_stats) { 2139 for_each_possible_cpu(cpu) { 2140 struct ieee80211_sta_rx_stats *cpurxs; 2141 2142 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2143 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2144 } 2145 } 2146 2147 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64); 2148 } 2149 2150 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) { 2151 sinfo->rx_packets = sta->rx_stats.packets; 2152 if (sta->pcpu_rx_stats) { 2153 for_each_possible_cpu(cpu) { 2154 struct ieee80211_sta_rx_stats *cpurxs; 2155 2156 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2157 sinfo->rx_packets += cpurxs->packets; 2158 } 2159 } 2160 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS); 2161 } 2162 2163 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) { 2164 sinfo->tx_retries = sta->status_stats.retry_count; 2165 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES); 2166 } 2167 2168 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) { 2169 sinfo->tx_failed = sta->status_stats.retry_failed; 2170 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED); 2171 } 2172 2173 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2174 if (sta->pcpu_rx_stats) { 2175 for_each_possible_cpu(cpu) { 2176 struct ieee80211_sta_rx_stats *cpurxs; 2177 2178 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2179 sinfo->rx_dropped_misc += cpurxs->dropped; 2180 } 2181 } 2182 2183 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2184 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2185 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) | 2186 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2187 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2188 } 2189 2190 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2191 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2192 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) { 2193 sinfo->signal = (s8)last_rxstats->last_signal; 2194 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL); 2195 } 2196 2197 if (!sta->pcpu_rx_stats && 2198 !(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) { 2199 sinfo->signal_avg = 2200 -ewma_signal_read(&sta->rx_stats_avg.signal); 2201 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG); 2202 } 2203 } 2204 2205 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2206 * the sta->rx_stats struct, so the check here is fine with and without 2207 * pcpu statistics 2208 */ 2209 if (last_rxstats->chains && 2210 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) | 2211 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2212 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL); 2213 if (!sta->pcpu_rx_stats) 2214 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2215 2216 sinfo->chains = last_rxstats->chains; 2217 2218 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2219 sinfo->chain_signal[i] = 2220 last_rxstats->chain_signal_last[i]; 2221 sinfo->chain_signal_avg[i] = 2222 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2223 } 2224 } 2225 2226 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) { 2227 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2228 &sinfo->txrate); 2229 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE); 2230 } 2231 2232 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) { 2233 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2234 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE); 2235 } 2236 2237 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { 2238 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) { 2239 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i]; 2240 2241 sta_set_tidstats(sta, tidstats, i); 2242 } 2243 } 2244 2245 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2246 #ifdef CONFIG_MAC80211_MESH 2247 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) | 2248 BIT(NL80211_STA_INFO_PLID) | 2249 BIT(NL80211_STA_INFO_PLINK_STATE) | 2250 BIT(NL80211_STA_INFO_LOCAL_PM) | 2251 BIT(NL80211_STA_INFO_PEER_PM) | 2252 BIT(NL80211_STA_INFO_NONPEER_PM); 2253 2254 sinfo->llid = sta->mesh->llid; 2255 sinfo->plid = sta->mesh->plid; 2256 sinfo->plink_state = sta->mesh->plink_state; 2257 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2258 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET); 2259 sinfo->t_offset = sta->mesh->t_offset; 2260 } 2261 sinfo->local_pm = sta->mesh->local_pm; 2262 sinfo->peer_pm = sta->mesh->peer_pm; 2263 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2264 #endif 2265 } 2266 2267 sinfo->bss_param.flags = 0; 2268 if (sdata->vif.bss_conf.use_cts_prot) 2269 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2270 if (sdata->vif.bss_conf.use_short_preamble) 2271 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2272 if (sdata->vif.bss_conf.use_short_slot) 2273 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2274 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2275 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2276 2277 sinfo->sta_flags.set = 0; 2278 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2279 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2280 BIT(NL80211_STA_FLAG_WME) | 2281 BIT(NL80211_STA_FLAG_MFP) | 2282 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2283 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2284 BIT(NL80211_STA_FLAG_TDLS_PEER); 2285 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2286 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2287 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2288 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2289 if (sta->sta.wme) 2290 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2291 if (test_sta_flag(sta, WLAN_STA_MFP)) 2292 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2293 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2294 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2295 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2296 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2297 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2298 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2299 2300 thr = sta_get_expected_throughput(sta); 2301 2302 if (thr != 0) { 2303 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2304 sinfo->expected_throughput = thr; 2305 } 2306 2307 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && 2308 sta->status_stats.ack_signal_filled) { 2309 sinfo->ack_signal = sta->status_stats.last_ack_signal; 2310 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); 2311 } 2312 2313 if (ieee80211_hw_check(&sta->local->hw, REPORTS_TX_ACK_STATUS) && 2314 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_DATA_ACK_SIGNAL_AVG))) { 2315 sinfo->avg_ack_signal = 2316 -(s8)ewma_avg_signal_read( 2317 &sta->status_stats.avg_ack_signal); 2318 sinfo->filled |= 2319 BIT_ULL(NL80211_STA_INFO_DATA_ACK_SIGNAL_AVG); 2320 } 2321 } 2322 2323 u32 sta_get_expected_throughput(struct sta_info *sta) 2324 { 2325 struct ieee80211_sub_if_data *sdata = sta->sdata; 2326 struct ieee80211_local *local = sdata->local; 2327 struct rate_control_ref *ref = NULL; 2328 u32 thr = 0; 2329 2330 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2331 ref = local->rate_ctrl; 2332 2333 /* check if the driver has a SW RC implementation */ 2334 if (ref && ref->ops->get_expected_throughput) 2335 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2336 else 2337 thr = drv_get_expected_throughput(local, sta); 2338 2339 return thr; 2340 } 2341 2342 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2343 { 2344 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2345 2346 if (time_after(stats->last_rx, sta->status_stats.last_ack)) 2347 return stats->last_rx; 2348 return sta->status_stats.last_ack; 2349 } 2350 2351 static void sta_update_codel_params(struct sta_info *sta, u32 thr) 2352 { 2353 if (!sta->sdata->local->ops->wake_tx_queue) 2354 return; 2355 2356 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { 2357 sta->cparams.target = MS2TIME(50); 2358 sta->cparams.interval = MS2TIME(300); 2359 sta->cparams.ecn = false; 2360 } else { 2361 sta->cparams.target = MS2TIME(20); 2362 sta->cparams.interval = MS2TIME(100); 2363 sta->cparams.ecn = true; 2364 } 2365 } 2366 2367 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, 2368 u32 thr) 2369 { 2370 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2371 2372 sta_update_codel_params(sta, thr); 2373 } 2374