1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/mac80211.h> 22 #include "ieee80211_i.h" 23 #include "driver-ops.h" 24 #include "rate.h" 25 #include "sta_info.h" 26 #include "debugfs_sta.h" 27 #include "mesh.h" 28 #include "wme.h" 29 30 /** 31 * DOC: STA information lifetime rules 32 * 33 * STA info structures (&struct sta_info) are managed in a hash table 34 * for faster lookup and a list for iteration. They are managed using 35 * RCU, i.e. access to the list and hash table is protected by RCU. 36 * 37 * Upon allocating a STA info structure with sta_info_alloc(), the caller 38 * owns that structure. It must then insert it into the hash table using 39 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 40 * case (which acquires an rcu read section but must not be called from 41 * within one) will the pointer still be valid after the call. Note that 42 * the caller may not do much with the STA info before inserting it, in 43 * particular, it may not start any mesh peer link management or add 44 * encryption keys. 45 * 46 * When the insertion fails (sta_info_insert()) returns non-zero), the 47 * structure will have been freed by sta_info_insert()! 48 * 49 * Station entries are added by mac80211 when you establish a link with a 50 * peer. This means different things for the different type of interfaces 51 * we support. For a regular station this mean we add the AP sta when we 52 * receive an association response from the AP. For IBSS this occurs when 53 * get to know about a peer on the same IBSS. For WDS we add the sta for 54 * the peer immediately upon device open. When using AP mode we add stations 55 * for each respective station upon request from userspace through nl80211. 56 * 57 * In order to remove a STA info structure, various sta_info_destroy_*() 58 * calls are available. 59 * 60 * There is no concept of ownership on a STA entry, each structure is 61 * owned by the global hash table/list until it is removed. All users of 62 * the structure need to be RCU protected so that the structure won't be 63 * freed before they are done using it. 64 */ 65 66 /* Caller must hold local->sta_mtx */ 67 static int sta_info_hash_del(struct ieee80211_local *local, 68 struct sta_info *sta) 69 { 70 struct sta_info *s; 71 72 s = rcu_dereference_protected(local->sta_hash[STA_HASH(sta->sta.addr)], 73 lockdep_is_held(&local->sta_mtx)); 74 if (!s) 75 return -ENOENT; 76 if (s == sta) { 77 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], 78 s->hnext); 79 return 0; 80 } 81 82 while (rcu_access_pointer(s->hnext) && 83 rcu_access_pointer(s->hnext) != sta) 84 s = rcu_dereference_protected(s->hnext, 85 lockdep_is_held(&local->sta_mtx)); 86 if (rcu_access_pointer(s->hnext)) { 87 rcu_assign_pointer(s->hnext, sta->hnext); 88 return 0; 89 } 90 91 return -ENOENT; 92 } 93 94 static void cleanup_single_sta(struct sta_info *sta) 95 { 96 int ac, i; 97 struct tid_ampdu_tx *tid_tx; 98 struct ieee80211_sub_if_data *sdata = sta->sdata; 99 struct ieee80211_local *local = sdata->local; 100 struct ps_data *ps; 101 102 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 103 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 104 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 105 ps = &sdata->bss->ps; 106 else if (ieee80211_vif_is_mesh(&sdata->vif)) 107 ps = &sdata->u.mesh.ps; 108 else 109 return; 110 111 clear_sta_flag(sta, WLAN_STA_PS_STA); 112 113 atomic_dec(&ps->num_sta_ps); 114 sta_info_recalc_tim(sta); 115 } 116 117 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 118 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 119 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 120 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 121 } 122 123 if (ieee80211_vif_is_mesh(&sdata->vif)) 124 mesh_sta_cleanup(sta); 125 126 cancel_work_sync(&sta->drv_unblock_wk); 127 128 /* 129 * Destroy aggregation state here. It would be nice to wait for the 130 * driver to finish aggregation stop and then clean up, but for now 131 * drivers have to handle aggregation stop being requested, followed 132 * directly by station destruction. 133 */ 134 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 135 kfree(sta->ampdu_mlme.tid_start_tx[i]); 136 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 137 if (!tid_tx) 138 continue; 139 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 140 kfree(tid_tx); 141 } 142 143 sta_info_free(local, sta); 144 } 145 146 /* protected by RCU */ 147 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 148 const u8 *addr) 149 { 150 struct ieee80211_local *local = sdata->local; 151 struct sta_info *sta; 152 153 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)], 154 lockdep_is_held(&local->sta_mtx)); 155 while (sta) { 156 if (sta->sdata == sdata && 157 ether_addr_equal(sta->sta.addr, addr)) 158 break; 159 sta = rcu_dereference_check(sta->hnext, 160 lockdep_is_held(&local->sta_mtx)); 161 } 162 return sta; 163 } 164 165 /* 166 * Get sta info either from the specified interface 167 * or from one of its vlans 168 */ 169 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 170 const u8 *addr) 171 { 172 struct ieee80211_local *local = sdata->local; 173 struct sta_info *sta; 174 175 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)], 176 lockdep_is_held(&local->sta_mtx)); 177 while (sta) { 178 if ((sta->sdata == sdata || 179 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) && 180 ether_addr_equal(sta->sta.addr, addr)) 181 break; 182 sta = rcu_dereference_check(sta->hnext, 183 lockdep_is_held(&local->sta_mtx)); 184 } 185 return sta; 186 } 187 188 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 189 int idx) 190 { 191 struct ieee80211_local *local = sdata->local; 192 struct sta_info *sta; 193 int i = 0; 194 195 list_for_each_entry_rcu(sta, &local->sta_list, list) { 196 if (sdata != sta->sdata) 197 continue; 198 if (i < idx) { 199 ++i; 200 continue; 201 } 202 return sta; 203 } 204 205 return NULL; 206 } 207 208 /** 209 * sta_info_free - free STA 210 * 211 * @local: pointer to the global information 212 * @sta: STA info to free 213 * 214 * This function must undo everything done by sta_info_alloc() 215 * that may happen before sta_info_insert(). It may only be 216 * called when sta_info_insert() has not been attempted (and 217 * if that fails, the station is freed anyway.) 218 */ 219 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 220 { 221 int i; 222 223 if (sta->rate_ctrl) 224 rate_control_free_sta(sta); 225 226 if (sta->tx_lat) { 227 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 228 kfree(sta->tx_lat[i].bins); 229 kfree(sta->tx_lat); 230 } 231 232 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 233 234 kfree(sta); 235 } 236 237 /* Caller must hold local->sta_mtx */ 238 static void sta_info_hash_add(struct ieee80211_local *local, 239 struct sta_info *sta) 240 { 241 lockdep_assert_held(&local->sta_mtx); 242 sta->hnext = local->sta_hash[STA_HASH(sta->sta.addr)]; 243 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], sta); 244 } 245 246 static void sta_unblock(struct work_struct *wk) 247 { 248 struct sta_info *sta; 249 250 sta = container_of(wk, struct sta_info, drv_unblock_wk); 251 252 if (sta->dead) 253 return; 254 255 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 256 local_bh_disable(); 257 ieee80211_sta_ps_deliver_wakeup(sta); 258 local_bh_enable(); 259 } else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) { 260 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 261 262 local_bh_disable(); 263 ieee80211_sta_ps_deliver_poll_response(sta); 264 local_bh_enable(); 265 } else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) { 266 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 267 268 local_bh_disable(); 269 ieee80211_sta_ps_deliver_uapsd(sta); 270 local_bh_enable(); 271 } else 272 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 273 } 274 275 static int sta_prepare_rate_control(struct ieee80211_local *local, 276 struct sta_info *sta, gfp_t gfp) 277 { 278 if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL) 279 return 0; 280 281 sta->rate_ctrl = local->rate_ctrl; 282 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 283 &sta->sta, gfp); 284 if (!sta->rate_ctrl_priv) 285 return -ENOMEM; 286 287 return 0; 288 } 289 290 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 291 const u8 *addr, gfp_t gfp) 292 { 293 struct ieee80211_local *local = sdata->local; 294 struct sta_info *sta; 295 struct timespec uptime; 296 struct ieee80211_tx_latency_bin_ranges *tx_latency; 297 int i; 298 299 sta = kzalloc(sizeof(*sta) + local->hw.sta_data_size, gfp); 300 if (!sta) 301 return NULL; 302 303 rcu_read_lock(); 304 tx_latency = rcu_dereference(local->tx_latency); 305 /* init stations Tx latency statistics && TID bins */ 306 if (tx_latency) { 307 sta->tx_lat = kzalloc(IEEE80211_NUM_TIDS * 308 sizeof(struct ieee80211_tx_latency_stat), 309 GFP_ATOMIC); 310 if (!sta->tx_lat) { 311 rcu_read_unlock(); 312 goto free; 313 } 314 315 if (tx_latency->n_ranges) { 316 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 317 /* size of bins is size of the ranges +1 */ 318 sta->tx_lat[i].bin_count = 319 tx_latency->n_ranges + 1; 320 sta->tx_lat[i].bins = 321 kcalloc(sta->tx_lat[i].bin_count, 322 sizeof(u32), GFP_ATOMIC); 323 if (!sta->tx_lat[i].bins) { 324 rcu_read_unlock(); 325 goto free; 326 } 327 } 328 } 329 } 330 rcu_read_unlock(); 331 332 spin_lock_init(&sta->lock); 333 INIT_WORK(&sta->drv_unblock_wk, sta_unblock); 334 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 335 mutex_init(&sta->ampdu_mlme.mtx); 336 #ifdef CONFIG_MAC80211_MESH 337 if (ieee80211_vif_is_mesh(&sdata->vif) && 338 !sdata->u.mesh.user_mpm) 339 init_timer(&sta->plink_timer); 340 sta->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 341 #endif 342 343 memcpy(sta->sta.addr, addr, ETH_ALEN); 344 sta->local = local; 345 sta->sdata = sdata; 346 sta->last_rx = jiffies; 347 348 sta->sta_state = IEEE80211_STA_NONE; 349 350 do_posix_clock_monotonic_gettime(&uptime); 351 sta->last_connected = uptime.tv_sec; 352 ewma_init(&sta->avg_signal, 1024, 8); 353 for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++) 354 ewma_init(&sta->chain_signal_avg[i], 1024, 8); 355 356 if (sta_prepare_rate_control(local, sta, gfp)) 357 goto free; 358 359 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 360 /* 361 * timer_to_tid must be initialized with identity mapping 362 * to enable session_timer's data differentiation. See 363 * sta_rx_agg_session_timer_expired for usage. 364 */ 365 sta->timer_to_tid[i] = i; 366 } 367 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 368 skb_queue_head_init(&sta->ps_tx_buf[i]); 369 skb_queue_head_init(&sta->tx_filtered[i]); 370 } 371 372 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 373 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 374 375 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 376 if (sdata->vif.type == NL80211_IFTYPE_AP || 377 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 378 struct ieee80211_supported_band *sband = 379 local->hw.wiphy->bands[ieee80211_get_sdata_band(sdata)]; 380 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 381 IEEE80211_HT_CAP_SM_PS_SHIFT; 382 /* 383 * Assume that hostapd advertises our caps in the beacon and 384 * this is the known_smps_mode for a station that just assciated 385 */ 386 switch (smps) { 387 case WLAN_HT_SMPS_CONTROL_DISABLED: 388 sta->known_smps_mode = IEEE80211_SMPS_OFF; 389 break; 390 case WLAN_HT_SMPS_CONTROL_STATIC: 391 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 392 break; 393 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 394 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 395 break; 396 default: 397 WARN_ON(1); 398 } 399 } 400 401 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 402 return sta; 403 404 free: 405 if (sta->tx_lat) { 406 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 407 kfree(sta->tx_lat[i].bins); 408 kfree(sta->tx_lat); 409 } 410 kfree(sta); 411 return NULL; 412 } 413 414 static int sta_info_insert_check(struct sta_info *sta) 415 { 416 struct ieee80211_sub_if_data *sdata = sta->sdata; 417 418 /* 419 * Can't be a WARN_ON because it can be triggered through a race: 420 * something inserts a STA (on one CPU) without holding the RTNL 421 * and another CPU turns off the net device. 422 */ 423 if (unlikely(!ieee80211_sdata_running(sdata))) 424 return -ENETDOWN; 425 426 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 427 is_multicast_ether_addr(sta->sta.addr))) 428 return -EINVAL; 429 430 return 0; 431 } 432 433 static int sta_info_insert_drv_state(struct ieee80211_local *local, 434 struct ieee80211_sub_if_data *sdata, 435 struct sta_info *sta) 436 { 437 enum ieee80211_sta_state state; 438 int err = 0; 439 440 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 441 err = drv_sta_state(local, sdata, sta, state, state + 1); 442 if (err) 443 break; 444 } 445 446 if (!err) { 447 /* 448 * Drivers using legacy sta_add/sta_remove callbacks only 449 * get uploaded set to true after sta_add is called. 450 */ 451 if (!local->ops->sta_add) 452 sta->uploaded = true; 453 return 0; 454 } 455 456 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 457 sdata_info(sdata, 458 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 459 sta->sta.addr, state + 1, err); 460 err = 0; 461 } 462 463 /* unwind on error */ 464 for (; state > IEEE80211_STA_NOTEXIST; state--) 465 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 466 467 return err; 468 } 469 470 /* 471 * should be called with sta_mtx locked 472 * this function replaces the mutex lock 473 * with a RCU lock 474 */ 475 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 476 { 477 struct ieee80211_local *local = sta->local; 478 struct ieee80211_sub_if_data *sdata = sta->sdata; 479 struct station_info sinfo; 480 int err = 0; 481 482 lockdep_assert_held(&local->sta_mtx); 483 484 /* check if STA exists already */ 485 if (sta_info_get_bss(sdata, sta->sta.addr)) { 486 err = -EEXIST; 487 goto out_err; 488 } 489 490 /* notify driver */ 491 err = sta_info_insert_drv_state(local, sdata, sta); 492 if (err) 493 goto out_err; 494 495 local->num_sta++; 496 local->sta_generation++; 497 smp_mb(); 498 499 /* make the station visible */ 500 sta_info_hash_add(local, sta); 501 502 list_add_rcu(&sta->list, &local->sta_list); 503 504 set_sta_flag(sta, WLAN_STA_INSERTED); 505 506 ieee80211_recalc_min_chandef(sdata); 507 ieee80211_sta_debugfs_add(sta); 508 rate_control_add_sta_debugfs(sta); 509 510 memset(&sinfo, 0, sizeof(sinfo)); 511 sinfo.filled = 0; 512 sinfo.generation = local->sta_generation; 513 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 514 515 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 516 517 /* move reference to rcu-protected */ 518 rcu_read_lock(); 519 mutex_unlock(&local->sta_mtx); 520 521 if (ieee80211_vif_is_mesh(&sdata->vif)) 522 mesh_accept_plinks_update(sdata); 523 524 return 0; 525 out_err: 526 mutex_unlock(&local->sta_mtx); 527 rcu_read_lock(); 528 return err; 529 } 530 531 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 532 { 533 struct ieee80211_local *local = sta->local; 534 int err = 0; 535 536 might_sleep(); 537 538 err = sta_info_insert_check(sta); 539 if (err) { 540 rcu_read_lock(); 541 goto out_free; 542 } 543 544 mutex_lock(&local->sta_mtx); 545 546 err = sta_info_insert_finish(sta); 547 if (err) 548 goto out_free; 549 550 return 0; 551 out_free: 552 BUG_ON(!err); 553 sta_info_free(local, sta); 554 return err; 555 } 556 557 int sta_info_insert(struct sta_info *sta) 558 { 559 int err = sta_info_insert_rcu(sta); 560 561 rcu_read_unlock(); 562 563 return err; 564 } 565 566 static inline void __bss_tim_set(u8 *tim, u16 id) 567 { 568 /* 569 * This format has been mandated by the IEEE specifications, 570 * so this line may not be changed to use the __set_bit() format. 571 */ 572 tim[id / 8] |= (1 << (id % 8)); 573 } 574 575 static inline void __bss_tim_clear(u8 *tim, u16 id) 576 { 577 /* 578 * This format has been mandated by the IEEE specifications, 579 * so this line may not be changed to use the __clear_bit() format. 580 */ 581 tim[id / 8] &= ~(1 << (id % 8)); 582 } 583 584 static inline bool __bss_tim_get(u8 *tim, u16 id) 585 { 586 /* 587 * This format has been mandated by the IEEE specifications, 588 * so this line may not be changed to use the test_bit() format. 589 */ 590 return tim[id / 8] & (1 << (id % 8)); 591 } 592 593 static unsigned long ieee80211_tids_for_ac(int ac) 594 { 595 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 596 switch (ac) { 597 case IEEE80211_AC_VO: 598 return BIT(6) | BIT(7); 599 case IEEE80211_AC_VI: 600 return BIT(4) | BIT(5); 601 case IEEE80211_AC_BE: 602 return BIT(0) | BIT(3); 603 case IEEE80211_AC_BK: 604 return BIT(1) | BIT(2); 605 default: 606 WARN_ON(1); 607 return 0; 608 } 609 } 610 611 void sta_info_recalc_tim(struct sta_info *sta) 612 { 613 struct ieee80211_local *local = sta->local; 614 struct ps_data *ps; 615 bool indicate_tim = false; 616 u8 ignore_for_tim = sta->sta.uapsd_queues; 617 int ac; 618 u16 id; 619 620 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 621 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 622 if (WARN_ON_ONCE(!sta->sdata->bss)) 623 return; 624 625 ps = &sta->sdata->bss->ps; 626 id = sta->sta.aid; 627 #ifdef CONFIG_MAC80211_MESH 628 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 629 ps = &sta->sdata->u.mesh.ps; 630 /* TIM map only for 1 <= PLID <= IEEE80211_MAX_AID */ 631 id = sta->plid % (IEEE80211_MAX_AID + 1); 632 #endif 633 } else { 634 return; 635 } 636 637 /* No need to do anything if the driver does all */ 638 if (local->hw.flags & IEEE80211_HW_AP_LINK_PS) 639 return; 640 641 if (sta->dead) 642 goto done; 643 644 /* 645 * If all ACs are delivery-enabled then we should build 646 * the TIM bit for all ACs anyway; if only some are then 647 * we ignore those and build the TIM bit using only the 648 * non-enabled ones. 649 */ 650 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 651 ignore_for_tim = 0; 652 653 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 654 unsigned long tids; 655 656 if (ignore_for_tim & BIT(ac)) 657 continue; 658 659 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 660 !skb_queue_empty(&sta->ps_tx_buf[ac]); 661 if (indicate_tim) 662 break; 663 664 tids = ieee80211_tids_for_ac(ac); 665 666 indicate_tim |= 667 sta->driver_buffered_tids & tids; 668 } 669 670 done: 671 spin_lock_bh(&local->tim_lock); 672 673 if (indicate_tim == __bss_tim_get(ps->tim, id)) 674 goto out_unlock; 675 676 if (indicate_tim) 677 __bss_tim_set(ps->tim, id); 678 else 679 __bss_tim_clear(ps->tim, id); 680 681 if (local->ops->set_tim) { 682 local->tim_in_locked_section = true; 683 drv_set_tim(local, &sta->sta, indicate_tim); 684 local->tim_in_locked_section = false; 685 } 686 687 out_unlock: 688 spin_unlock_bh(&local->tim_lock); 689 } 690 691 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 692 { 693 struct ieee80211_tx_info *info; 694 int timeout; 695 696 if (!skb) 697 return false; 698 699 info = IEEE80211_SKB_CB(skb); 700 701 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 702 timeout = (sta->listen_interval * 703 sta->sdata->vif.bss_conf.beacon_int * 704 32 / 15625) * HZ; 705 if (timeout < STA_TX_BUFFER_EXPIRE) 706 timeout = STA_TX_BUFFER_EXPIRE; 707 return time_after(jiffies, info->control.jiffies + timeout); 708 } 709 710 711 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 712 struct sta_info *sta, int ac) 713 { 714 unsigned long flags; 715 struct sk_buff *skb; 716 717 /* 718 * First check for frames that should expire on the filtered 719 * queue. Frames here were rejected by the driver and are on 720 * a separate queue to avoid reordering with normal PS-buffered 721 * frames. They also aren't accounted for right now in the 722 * total_ps_buffered counter. 723 */ 724 for (;;) { 725 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 726 skb = skb_peek(&sta->tx_filtered[ac]); 727 if (sta_info_buffer_expired(sta, skb)) 728 skb = __skb_dequeue(&sta->tx_filtered[ac]); 729 else 730 skb = NULL; 731 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 732 733 /* 734 * Frames are queued in order, so if this one 735 * hasn't expired yet we can stop testing. If 736 * we actually reached the end of the queue we 737 * also need to stop, of course. 738 */ 739 if (!skb) 740 break; 741 ieee80211_free_txskb(&local->hw, skb); 742 } 743 744 /* 745 * Now also check the normal PS-buffered queue, this will 746 * only find something if the filtered queue was emptied 747 * since the filtered frames are all before the normal PS 748 * buffered frames. 749 */ 750 for (;;) { 751 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 752 skb = skb_peek(&sta->ps_tx_buf[ac]); 753 if (sta_info_buffer_expired(sta, skb)) 754 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 755 else 756 skb = NULL; 757 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 758 759 /* 760 * frames are queued in order, so if this one 761 * hasn't expired yet (or we reached the end of 762 * the queue) we can stop testing 763 */ 764 if (!skb) 765 break; 766 767 local->total_ps_buffered--; 768 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 769 sta->sta.addr); 770 ieee80211_free_txskb(&local->hw, skb); 771 } 772 773 /* 774 * Finally, recalculate the TIM bit for this station -- it might 775 * now be clear because the station was too slow to retrieve its 776 * frames. 777 */ 778 sta_info_recalc_tim(sta); 779 780 /* 781 * Return whether there are any frames still buffered, this is 782 * used to check whether the cleanup timer still needs to run, 783 * if there are no frames we don't need to rearm the timer. 784 */ 785 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 786 skb_queue_empty(&sta->tx_filtered[ac])); 787 } 788 789 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 790 struct sta_info *sta) 791 { 792 bool have_buffered = false; 793 int ac; 794 795 /* This is only necessary for stations on BSS/MBSS interfaces */ 796 if (!sta->sdata->bss && 797 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 798 return false; 799 800 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 801 have_buffered |= 802 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 803 804 return have_buffered; 805 } 806 807 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 808 { 809 struct ieee80211_local *local; 810 struct ieee80211_sub_if_data *sdata; 811 int ret; 812 813 might_sleep(); 814 815 if (!sta) 816 return -ENOENT; 817 818 local = sta->local; 819 sdata = sta->sdata; 820 821 lockdep_assert_held(&local->sta_mtx); 822 823 /* 824 * Before removing the station from the driver and 825 * rate control, it might still start new aggregation 826 * sessions -- block that to make sure the tear-down 827 * will be sufficient. 828 */ 829 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 830 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 831 832 ret = sta_info_hash_del(local, sta); 833 if (WARN_ON(ret)) 834 return ret; 835 836 list_del_rcu(&sta->list); 837 838 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 839 840 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 841 rcu_access_pointer(sdata->u.vlan.sta) == sta) 842 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 843 844 return 0; 845 } 846 847 static void __sta_info_destroy_part2(struct sta_info *sta) 848 { 849 struct ieee80211_local *local = sta->local; 850 struct ieee80211_sub_if_data *sdata = sta->sdata; 851 int ret; 852 853 /* 854 * NOTE: This assumes at least synchronize_net() was done 855 * after _part1 and before _part2! 856 */ 857 858 might_sleep(); 859 lockdep_assert_held(&local->sta_mtx); 860 861 /* now keys can no longer be reached */ 862 ieee80211_free_sta_keys(local, sta); 863 864 sta->dead = true; 865 866 local->num_sta--; 867 local->sta_generation++; 868 869 while (sta->sta_state > IEEE80211_STA_NONE) { 870 ret = sta_info_move_state(sta, sta->sta_state - 1); 871 if (ret) { 872 WARN_ON_ONCE(1); 873 break; 874 } 875 } 876 877 if (sta->uploaded) { 878 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 879 IEEE80211_STA_NOTEXIST); 880 WARN_ON_ONCE(ret != 0); 881 } 882 883 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 884 885 cfg80211_del_sta(sdata->dev, sta->sta.addr, GFP_KERNEL); 886 887 rate_control_remove_sta_debugfs(sta); 888 ieee80211_sta_debugfs_remove(sta); 889 ieee80211_recalc_min_chandef(sdata); 890 891 cleanup_single_sta(sta); 892 } 893 894 int __must_check __sta_info_destroy(struct sta_info *sta) 895 { 896 int err = __sta_info_destroy_part1(sta); 897 898 if (err) 899 return err; 900 901 synchronize_net(); 902 903 __sta_info_destroy_part2(sta); 904 905 return 0; 906 } 907 908 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 909 { 910 struct sta_info *sta; 911 int ret; 912 913 mutex_lock(&sdata->local->sta_mtx); 914 sta = sta_info_get(sdata, addr); 915 ret = __sta_info_destroy(sta); 916 mutex_unlock(&sdata->local->sta_mtx); 917 918 return ret; 919 } 920 921 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 922 const u8 *addr) 923 { 924 struct sta_info *sta; 925 int ret; 926 927 mutex_lock(&sdata->local->sta_mtx); 928 sta = sta_info_get_bss(sdata, addr); 929 ret = __sta_info_destroy(sta); 930 mutex_unlock(&sdata->local->sta_mtx); 931 932 return ret; 933 } 934 935 static void sta_info_cleanup(unsigned long data) 936 { 937 struct ieee80211_local *local = (struct ieee80211_local *) data; 938 struct sta_info *sta; 939 bool timer_needed = false; 940 941 rcu_read_lock(); 942 list_for_each_entry_rcu(sta, &local->sta_list, list) 943 if (sta_info_cleanup_expire_buffered(local, sta)) 944 timer_needed = true; 945 rcu_read_unlock(); 946 947 if (local->quiescing) 948 return; 949 950 if (!timer_needed) 951 return; 952 953 mod_timer(&local->sta_cleanup, 954 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 955 } 956 957 void sta_info_init(struct ieee80211_local *local) 958 { 959 spin_lock_init(&local->tim_lock); 960 mutex_init(&local->sta_mtx); 961 INIT_LIST_HEAD(&local->sta_list); 962 963 setup_timer(&local->sta_cleanup, sta_info_cleanup, 964 (unsigned long)local); 965 } 966 967 void sta_info_stop(struct ieee80211_local *local) 968 { 969 del_timer_sync(&local->sta_cleanup); 970 } 971 972 973 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 974 { 975 struct ieee80211_local *local = sdata->local; 976 struct sta_info *sta, *tmp; 977 LIST_HEAD(free_list); 978 int ret = 0; 979 980 might_sleep(); 981 982 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 983 WARN_ON(vlans && !sdata->bss); 984 985 mutex_lock(&local->sta_mtx); 986 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 987 if (sdata == sta->sdata || 988 (vlans && sdata->bss == sta->sdata->bss)) { 989 if (!WARN_ON(__sta_info_destroy_part1(sta))) 990 list_add(&sta->free_list, &free_list); 991 ret++; 992 } 993 } 994 995 if (!list_empty(&free_list)) { 996 synchronize_net(); 997 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 998 __sta_info_destroy_part2(sta); 999 } 1000 mutex_unlock(&local->sta_mtx); 1001 1002 return ret; 1003 } 1004 1005 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1006 unsigned long exp_time) 1007 { 1008 struct ieee80211_local *local = sdata->local; 1009 struct sta_info *sta, *tmp; 1010 1011 mutex_lock(&local->sta_mtx); 1012 1013 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1014 if (sdata != sta->sdata) 1015 continue; 1016 1017 if (time_after(jiffies, sta->last_rx + exp_time)) { 1018 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1019 sta->sta.addr); 1020 1021 if (ieee80211_vif_is_mesh(&sdata->vif) && 1022 test_sta_flag(sta, WLAN_STA_PS_STA)) 1023 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1024 1025 WARN_ON(__sta_info_destroy(sta)); 1026 } 1027 } 1028 1029 mutex_unlock(&local->sta_mtx); 1030 } 1031 1032 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1033 const u8 *addr, 1034 const u8 *localaddr) 1035 { 1036 struct sta_info *sta, *nxt; 1037 1038 /* 1039 * Just return a random station if localaddr is NULL 1040 * ... first in list. 1041 */ 1042 for_each_sta_info(hw_to_local(hw), addr, sta, nxt) { 1043 if (localaddr && 1044 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1045 continue; 1046 if (!sta->uploaded) 1047 return NULL; 1048 return &sta->sta; 1049 } 1050 1051 return NULL; 1052 } 1053 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1054 1055 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1056 const u8 *addr) 1057 { 1058 struct sta_info *sta; 1059 1060 if (!vif) 1061 return NULL; 1062 1063 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1064 if (!sta) 1065 return NULL; 1066 1067 if (!sta->uploaded) 1068 return NULL; 1069 1070 return &sta->sta; 1071 } 1072 EXPORT_SYMBOL(ieee80211_find_sta); 1073 1074 static void clear_sta_ps_flags(void *_sta) 1075 { 1076 struct sta_info *sta = _sta; 1077 struct ieee80211_sub_if_data *sdata = sta->sdata; 1078 struct ps_data *ps; 1079 1080 if (sdata->vif.type == NL80211_IFTYPE_AP || 1081 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1082 ps = &sdata->bss->ps; 1083 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1084 ps = &sdata->u.mesh.ps; 1085 else 1086 return; 1087 1088 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1089 if (test_and_clear_sta_flag(sta, WLAN_STA_PS_STA)) 1090 atomic_dec(&ps->num_sta_ps); 1091 } 1092 1093 /* powersave support code */ 1094 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1095 { 1096 struct ieee80211_sub_if_data *sdata = sta->sdata; 1097 struct ieee80211_local *local = sdata->local; 1098 struct sk_buff_head pending; 1099 int filtered = 0, buffered = 0, ac; 1100 unsigned long flags; 1101 1102 clear_sta_flag(sta, WLAN_STA_SP); 1103 1104 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1105 sta->driver_buffered_tids = 0; 1106 1107 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1108 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1109 1110 skb_queue_head_init(&pending); 1111 1112 /* Send all buffered frames to the station */ 1113 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1114 int count = skb_queue_len(&pending), tmp; 1115 1116 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1117 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1118 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1119 tmp = skb_queue_len(&pending); 1120 filtered += tmp - count; 1121 count = tmp; 1122 1123 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1124 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1125 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1126 tmp = skb_queue_len(&pending); 1127 buffered += tmp - count; 1128 } 1129 1130 ieee80211_add_pending_skbs_fn(local, &pending, clear_sta_ps_flags, sta); 1131 1132 /* This station just woke up and isn't aware of our SMPS state */ 1133 if (!ieee80211_smps_is_restrictive(sta->known_smps_mode, 1134 sdata->smps_mode) && 1135 sta->known_smps_mode != sdata->bss->req_smps && 1136 sta_info_tx_streams(sta) != 1) { 1137 ht_dbg(sdata, 1138 "%pM just woke up and MIMO capable - update SMPS\n", 1139 sta->sta.addr); 1140 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1141 sta->sta.addr, 1142 sdata->vif.bss_conf.bssid); 1143 } 1144 1145 local->total_ps_buffered -= buffered; 1146 1147 sta_info_recalc_tim(sta); 1148 1149 ps_dbg(sdata, 1150 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n", 1151 sta->sta.addr, sta->sta.aid, filtered, buffered); 1152 } 1153 1154 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata, 1155 struct sta_info *sta, int tid, 1156 enum ieee80211_frame_release_type reason, 1157 bool call_driver) 1158 { 1159 struct ieee80211_local *local = sdata->local; 1160 struct ieee80211_qos_hdr *nullfunc; 1161 struct sk_buff *skb; 1162 int size = sizeof(*nullfunc); 1163 __le16 fc; 1164 bool qos = test_sta_flag(sta, WLAN_STA_WME); 1165 struct ieee80211_tx_info *info; 1166 struct ieee80211_chanctx_conf *chanctx_conf; 1167 1168 if (qos) { 1169 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1170 IEEE80211_STYPE_QOS_NULLFUNC | 1171 IEEE80211_FCTL_FROMDS); 1172 } else { 1173 size -= 2; 1174 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1175 IEEE80211_STYPE_NULLFUNC | 1176 IEEE80211_FCTL_FROMDS); 1177 } 1178 1179 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1180 if (!skb) 1181 return; 1182 1183 skb_reserve(skb, local->hw.extra_tx_headroom); 1184 1185 nullfunc = (void *) skb_put(skb, size); 1186 nullfunc->frame_control = fc; 1187 nullfunc->duration_id = 0; 1188 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1189 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1190 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1191 1192 skb->priority = tid; 1193 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1194 if (qos) { 1195 nullfunc->qos_ctrl = cpu_to_le16(tid); 1196 1197 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) 1198 nullfunc->qos_ctrl |= 1199 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1200 } 1201 1202 info = IEEE80211_SKB_CB(skb); 1203 1204 /* 1205 * Tell TX path to send this frame even though the 1206 * STA may still remain is PS mode after this frame 1207 * exchange. Also set EOSP to indicate this packet 1208 * ends the poll/service period. 1209 */ 1210 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1211 IEEE80211_TX_CTL_PS_RESPONSE | 1212 IEEE80211_TX_STATUS_EOSP | 1213 IEEE80211_TX_CTL_REQ_TX_STATUS; 1214 1215 if (call_driver) 1216 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1217 reason, false); 1218 1219 skb->dev = sdata->dev; 1220 1221 rcu_read_lock(); 1222 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1223 if (WARN_ON(!chanctx_conf)) { 1224 rcu_read_unlock(); 1225 kfree_skb(skb); 1226 return; 1227 } 1228 1229 ieee80211_xmit(sdata, skb, chanctx_conf->def.chan->band); 1230 rcu_read_unlock(); 1231 } 1232 1233 static int find_highest_prio_tid(unsigned long tids) 1234 { 1235 /* lower 3 TIDs aren't ordered perfectly */ 1236 if (tids & 0xF8) 1237 return fls(tids) - 1; 1238 /* TID 0 is BE just like TID 3 */ 1239 if (tids & BIT(0)) 1240 return 0; 1241 return fls(tids) - 1; 1242 } 1243 1244 static void 1245 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1246 int n_frames, u8 ignored_acs, 1247 enum ieee80211_frame_release_type reason) 1248 { 1249 struct ieee80211_sub_if_data *sdata = sta->sdata; 1250 struct ieee80211_local *local = sdata->local; 1251 bool more_data = false; 1252 int ac; 1253 unsigned long driver_release_tids = 0; 1254 struct sk_buff_head frames; 1255 1256 /* Service or PS-Poll period starts */ 1257 set_sta_flag(sta, WLAN_STA_SP); 1258 1259 __skb_queue_head_init(&frames); 1260 1261 /* Get response frame(s) and more data bit for the last one. */ 1262 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1263 unsigned long tids; 1264 1265 if (ignored_acs & BIT(ac)) 1266 continue; 1267 1268 tids = ieee80211_tids_for_ac(ac); 1269 1270 /* if we already have frames from software, then we can't also 1271 * release from hardware queues 1272 */ 1273 if (skb_queue_empty(&frames)) 1274 driver_release_tids |= sta->driver_buffered_tids & tids; 1275 1276 if (driver_release_tids) { 1277 /* If the driver has data on more than one TID then 1278 * certainly there's more data if we release just a 1279 * single frame now (from a single TID). This will 1280 * only happen for PS-Poll. 1281 */ 1282 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1283 hweight16(driver_release_tids) > 1) { 1284 more_data = true; 1285 driver_release_tids = 1286 BIT(find_highest_prio_tid( 1287 driver_release_tids)); 1288 break; 1289 } 1290 } else { 1291 struct sk_buff *skb; 1292 1293 while (n_frames > 0) { 1294 skb = skb_dequeue(&sta->tx_filtered[ac]); 1295 if (!skb) { 1296 skb = skb_dequeue( 1297 &sta->ps_tx_buf[ac]); 1298 if (skb) 1299 local->total_ps_buffered--; 1300 } 1301 if (!skb) 1302 break; 1303 n_frames--; 1304 __skb_queue_tail(&frames, skb); 1305 } 1306 } 1307 1308 /* If we have more frames buffered on this AC, then set the 1309 * more-data bit and abort the loop since we can't send more 1310 * data from other ACs before the buffered frames from this. 1311 */ 1312 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1313 !skb_queue_empty(&sta->ps_tx_buf[ac])) { 1314 more_data = true; 1315 break; 1316 } 1317 } 1318 1319 if (skb_queue_empty(&frames) && !driver_release_tids) { 1320 int tid; 1321 1322 /* 1323 * For PS-Poll, this can only happen due to a race condition 1324 * when we set the TIM bit and the station notices it, but 1325 * before it can poll for the frame we expire it. 1326 * 1327 * For uAPSD, this is said in the standard (11.2.1.5 h): 1328 * At each unscheduled SP for a non-AP STA, the AP shall 1329 * attempt to transmit at least one MSDU or MMPDU, but no 1330 * more than the value specified in the Max SP Length field 1331 * in the QoS Capability element from delivery-enabled ACs, 1332 * that are destined for the non-AP STA. 1333 * 1334 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1335 */ 1336 1337 /* This will evaluate to 1, 3, 5 or 7. */ 1338 tid = 7 - ((ffs(~ignored_acs) - 1) << 1); 1339 1340 ieee80211_send_null_response(sdata, sta, tid, reason, true); 1341 } else if (!driver_release_tids) { 1342 struct sk_buff_head pending; 1343 struct sk_buff *skb; 1344 int num = 0; 1345 u16 tids = 0; 1346 bool need_null = false; 1347 1348 skb_queue_head_init(&pending); 1349 1350 while ((skb = __skb_dequeue(&frames))) { 1351 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1352 struct ieee80211_hdr *hdr = (void *) skb->data; 1353 u8 *qoshdr = NULL; 1354 1355 num++; 1356 1357 /* 1358 * Tell TX path to send this frame even though the 1359 * STA may still remain is PS mode after this frame 1360 * exchange. 1361 */ 1362 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1363 IEEE80211_TX_CTL_PS_RESPONSE; 1364 1365 /* 1366 * Use MoreData flag to indicate whether there are 1367 * more buffered frames for this STA 1368 */ 1369 if (more_data || !skb_queue_empty(&frames)) 1370 hdr->frame_control |= 1371 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1372 else 1373 hdr->frame_control &= 1374 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1375 1376 if (ieee80211_is_data_qos(hdr->frame_control) || 1377 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1378 qoshdr = ieee80211_get_qos_ctl(hdr); 1379 1380 tids |= BIT(skb->priority); 1381 1382 __skb_queue_tail(&pending, skb); 1383 1384 /* end service period after last frame or add one */ 1385 if (!skb_queue_empty(&frames)) 1386 continue; 1387 1388 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1389 /* for PS-Poll, there's only one frame */ 1390 info->flags |= IEEE80211_TX_STATUS_EOSP | 1391 IEEE80211_TX_CTL_REQ_TX_STATUS; 1392 break; 1393 } 1394 1395 /* For uAPSD, things are a bit more complicated. If the 1396 * last frame has a QoS header (i.e. is a QoS-data or 1397 * QoS-nulldata frame) then just set the EOSP bit there 1398 * and be done. 1399 * If the frame doesn't have a QoS header (which means 1400 * it should be a bufferable MMPDU) then we can't set 1401 * the EOSP bit in the QoS header; add a QoS-nulldata 1402 * frame to the list to send it after the MMPDU. 1403 * 1404 * Note that this code is only in the mac80211-release 1405 * code path, we assume that the driver will not buffer 1406 * anything but QoS-data frames, or if it does, will 1407 * create the QoS-nulldata frame by itself if needed. 1408 * 1409 * Cf. 802.11-2012 10.2.1.10 (c). 1410 */ 1411 if (qoshdr) { 1412 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1413 1414 info->flags |= IEEE80211_TX_STATUS_EOSP | 1415 IEEE80211_TX_CTL_REQ_TX_STATUS; 1416 } else { 1417 /* The standard isn't completely clear on this 1418 * as it says the more-data bit should be set 1419 * if there are more BUs. The QoS-Null frame 1420 * we're about to send isn't buffered yet, we 1421 * only create it below, but let's pretend it 1422 * was buffered just in case some clients only 1423 * expect more-data=0 when eosp=1. 1424 */ 1425 hdr->frame_control |= 1426 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1427 need_null = true; 1428 num++; 1429 } 1430 break; 1431 } 1432 1433 drv_allow_buffered_frames(local, sta, tids, num, 1434 reason, more_data); 1435 1436 ieee80211_add_pending_skbs(local, &pending); 1437 1438 if (need_null) 1439 ieee80211_send_null_response( 1440 sdata, sta, find_highest_prio_tid(tids), 1441 reason, false); 1442 1443 sta_info_recalc_tim(sta); 1444 } else { 1445 /* 1446 * We need to release a frame that is buffered somewhere in the 1447 * driver ... it'll have to handle that. 1448 * Note that the driver also has to check the number of frames 1449 * on the TIDs we're releasing from - if there are more than 1450 * n_frames it has to set the more-data bit (if we didn't ask 1451 * it to set it anyway due to other buffered frames); if there 1452 * are fewer than n_frames it has to make sure to adjust that 1453 * to allow the service period to end properly. 1454 */ 1455 drv_release_buffered_frames(local, sta, driver_release_tids, 1456 n_frames, reason, more_data); 1457 1458 /* 1459 * Note that we don't recalculate the TIM bit here as it would 1460 * most likely have no effect at all unless the driver told us 1461 * that the TID(s) became empty before returning here from the 1462 * release function. 1463 * Either way, however, when the driver tells us that the TID(s) 1464 * became empty we'll do the TIM recalculation. 1465 */ 1466 } 1467 } 1468 1469 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1470 { 1471 u8 ignore_for_response = sta->sta.uapsd_queues; 1472 1473 /* 1474 * If all ACs are delivery-enabled then we should reply 1475 * from any of them, if only some are enabled we reply 1476 * only from the non-enabled ones. 1477 */ 1478 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1479 ignore_for_response = 0; 1480 1481 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1482 IEEE80211_FRAME_RELEASE_PSPOLL); 1483 } 1484 1485 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1486 { 1487 int n_frames = sta->sta.max_sp; 1488 u8 delivery_enabled = sta->sta.uapsd_queues; 1489 1490 /* 1491 * If we ever grow support for TSPEC this might happen if 1492 * the TSPEC update from hostapd comes in between a trigger 1493 * frame setting WLAN_STA_UAPSD in the RX path and this 1494 * actually getting called. 1495 */ 1496 if (!delivery_enabled) 1497 return; 1498 1499 switch (sta->sta.max_sp) { 1500 case 1: 1501 n_frames = 2; 1502 break; 1503 case 2: 1504 n_frames = 4; 1505 break; 1506 case 3: 1507 n_frames = 6; 1508 break; 1509 case 0: 1510 /* XXX: what is a good value? */ 1511 n_frames = 8; 1512 break; 1513 } 1514 1515 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1516 IEEE80211_FRAME_RELEASE_UAPSD); 1517 } 1518 1519 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1520 struct ieee80211_sta *pubsta, bool block) 1521 { 1522 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1523 1524 trace_api_sta_block_awake(sta->local, pubsta, block); 1525 1526 if (block) 1527 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1528 else if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1529 ieee80211_queue_work(hw, &sta->drv_unblock_wk); 1530 } 1531 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1532 1533 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1534 { 1535 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1536 struct ieee80211_local *local = sta->local; 1537 1538 trace_api_eosp(local, pubsta); 1539 1540 clear_sta_flag(sta, WLAN_STA_SP); 1541 } 1542 EXPORT_SYMBOL(ieee80211_sta_eosp); 1543 1544 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1545 u8 tid, bool buffered) 1546 { 1547 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1548 1549 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1550 return; 1551 1552 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1553 1554 if (buffered) 1555 set_bit(tid, &sta->driver_buffered_tids); 1556 else 1557 clear_bit(tid, &sta->driver_buffered_tids); 1558 1559 sta_info_recalc_tim(sta); 1560 } 1561 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1562 1563 int sta_info_move_state(struct sta_info *sta, 1564 enum ieee80211_sta_state new_state) 1565 { 1566 might_sleep(); 1567 1568 if (sta->sta_state == new_state) 1569 return 0; 1570 1571 /* check allowed transitions first */ 1572 1573 switch (new_state) { 1574 case IEEE80211_STA_NONE: 1575 if (sta->sta_state != IEEE80211_STA_AUTH) 1576 return -EINVAL; 1577 break; 1578 case IEEE80211_STA_AUTH: 1579 if (sta->sta_state != IEEE80211_STA_NONE && 1580 sta->sta_state != IEEE80211_STA_ASSOC) 1581 return -EINVAL; 1582 break; 1583 case IEEE80211_STA_ASSOC: 1584 if (sta->sta_state != IEEE80211_STA_AUTH && 1585 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1586 return -EINVAL; 1587 break; 1588 case IEEE80211_STA_AUTHORIZED: 1589 if (sta->sta_state != IEEE80211_STA_ASSOC) 1590 return -EINVAL; 1591 break; 1592 default: 1593 WARN(1, "invalid state %d", new_state); 1594 return -EINVAL; 1595 } 1596 1597 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1598 sta->sta.addr, new_state); 1599 1600 /* 1601 * notify the driver before the actual changes so it can 1602 * fail the transition 1603 */ 1604 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1605 int err = drv_sta_state(sta->local, sta->sdata, sta, 1606 sta->sta_state, new_state); 1607 if (err) 1608 return err; 1609 } 1610 1611 /* reflect the change in all state variables */ 1612 1613 switch (new_state) { 1614 case IEEE80211_STA_NONE: 1615 if (sta->sta_state == IEEE80211_STA_AUTH) 1616 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1617 break; 1618 case IEEE80211_STA_AUTH: 1619 if (sta->sta_state == IEEE80211_STA_NONE) 1620 set_bit(WLAN_STA_AUTH, &sta->_flags); 1621 else if (sta->sta_state == IEEE80211_STA_ASSOC) 1622 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1623 break; 1624 case IEEE80211_STA_ASSOC: 1625 if (sta->sta_state == IEEE80211_STA_AUTH) { 1626 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1627 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1628 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1629 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1630 !sta->sdata->u.vlan.sta)) 1631 atomic_dec(&sta->sdata->bss->num_mcast_sta); 1632 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1633 } 1634 break; 1635 case IEEE80211_STA_AUTHORIZED: 1636 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1637 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1638 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1639 !sta->sdata->u.vlan.sta)) 1640 atomic_inc(&sta->sdata->bss->num_mcast_sta); 1641 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1642 } 1643 break; 1644 default: 1645 break; 1646 } 1647 1648 sta->sta_state = new_state; 1649 1650 return 0; 1651 } 1652 1653 u8 sta_info_tx_streams(struct sta_info *sta) 1654 { 1655 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1656 u8 rx_streams; 1657 1658 if (!sta->sta.ht_cap.ht_supported) 1659 return 1; 1660 1661 if (sta->sta.vht_cap.vht_supported) { 1662 int i; 1663 u16 tx_mcs_map = 1664 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1665 1666 for (i = 7; i >= 0; i--) 1667 if ((tx_mcs_map & (0x3 << (i * 2))) != 1668 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1669 return i + 1; 1670 } 1671 1672 if (ht_cap->mcs.rx_mask[3]) 1673 rx_streams = 4; 1674 else if (ht_cap->mcs.rx_mask[2]) 1675 rx_streams = 3; 1676 else if (ht_cap->mcs.rx_mask[1]) 1677 rx_streams = 2; 1678 else 1679 rx_streams = 1; 1680 1681 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1682 return rx_streams; 1683 1684 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1685 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1686 } 1687