xref: /openbmc/linux/net/mac80211/sta_info.c (revision 8730046c)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
4  * Copyright 2013-2014  Intel Mobile Communications GmbH
5  * Copyright (C) 2015 - 2016 Intel Deutschland GmbH
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/etherdevice.h>
15 #include <linux/netdevice.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/skbuff.h>
19 #include <linux/if_arp.h>
20 #include <linux/timer.h>
21 #include <linux/rtnetlink.h>
22 
23 #include <net/mac80211.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "rate.h"
27 #include "sta_info.h"
28 #include "debugfs_sta.h"
29 #include "mesh.h"
30 #include "wme.h"
31 
32 /**
33  * DOC: STA information lifetime rules
34  *
35  * STA info structures (&struct sta_info) are managed in a hash table
36  * for faster lookup and a list for iteration. They are managed using
37  * RCU, i.e. access to the list and hash table is protected by RCU.
38  *
39  * Upon allocating a STA info structure with sta_info_alloc(), the caller
40  * owns that structure. It must then insert it into the hash table using
41  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
42  * case (which acquires an rcu read section but must not be called from
43  * within one) will the pointer still be valid after the call. Note that
44  * the caller may not do much with the STA info before inserting it, in
45  * particular, it may not start any mesh peer link management or add
46  * encryption keys.
47  *
48  * When the insertion fails (sta_info_insert()) returns non-zero), the
49  * structure will have been freed by sta_info_insert()!
50  *
51  * Station entries are added by mac80211 when you establish a link with a
52  * peer. This means different things for the different type of interfaces
53  * we support. For a regular station this mean we add the AP sta when we
54  * receive an association response from the AP. For IBSS this occurs when
55  * get to know about a peer on the same IBSS. For WDS we add the sta for
56  * the peer immediately upon device open. When using AP mode we add stations
57  * for each respective station upon request from userspace through nl80211.
58  *
59  * In order to remove a STA info structure, various sta_info_destroy_*()
60  * calls are available.
61  *
62  * There is no concept of ownership on a STA entry, each structure is
63  * owned by the global hash table/list until it is removed. All users of
64  * the structure need to be RCU protected so that the structure won't be
65  * freed before they are done using it.
66  */
67 
68 static const struct rhashtable_params sta_rht_params = {
69 	.nelem_hint = 3, /* start small */
70 	.automatic_shrinking = true,
71 	.head_offset = offsetof(struct sta_info, hash_node),
72 	.key_offset = offsetof(struct sta_info, addr),
73 	.key_len = ETH_ALEN,
74 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
75 };
76 
77 /* Caller must hold local->sta_mtx */
78 static int sta_info_hash_del(struct ieee80211_local *local,
79 			     struct sta_info *sta)
80 {
81 	return rhltable_remove(&local->sta_hash, &sta->hash_node,
82 			       sta_rht_params);
83 }
84 
85 static void __cleanup_single_sta(struct sta_info *sta)
86 {
87 	int ac, i;
88 	struct tid_ampdu_tx *tid_tx;
89 	struct ieee80211_sub_if_data *sdata = sta->sdata;
90 	struct ieee80211_local *local = sdata->local;
91 	struct fq *fq = &local->fq;
92 	struct ps_data *ps;
93 
94 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
95 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
96 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
97 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
98 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
99 			ps = &sdata->bss->ps;
100 		else if (ieee80211_vif_is_mesh(&sdata->vif))
101 			ps = &sdata->u.mesh.ps;
102 		else
103 			return;
104 
105 		clear_sta_flag(sta, WLAN_STA_PS_STA);
106 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
107 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
108 
109 		atomic_dec(&ps->num_sta_ps);
110 	}
111 
112 	if (sta->sta.txq[0]) {
113 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
114 			struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
115 
116 			spin_lock_bh(&fq->lock);
117 			ieee80211_txq_purge(local, txqi);
118 			spin_unlock_bh(&fq->lock);
119 		}
120 	}
121 
122 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
123 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
124 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
125 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
126 	}
127 
128 	if (ieee80211_vif_is_mesh(&sdata->vif))
129 		mesh_sta_cleanup(sta);
130 
131 	cancel_work_sync(&sta->drv_deliver_wk);
132 
133 	/*
134 	 * Destroy aggregation state here. It would be nice to wait for the
135 	 * driver to finish aggregation stop and then clean up, but for now
136 	 * drivers have to handle aggregation stop being requested, followed
137 	 * directly by station destruction.
138 	 */
139 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
140 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
141 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
142 		if (!tid_tx)
143 			continue;
144 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
145 		kfree(tid_tx);
146 	}
147 }
148 
149 static void cleanup_single_sta(struct sta_info *sta)
150 {
151 	struct ieee80211_sub_if_data *sdata = sta->sdata;
152 	struct ieee80211_local *local = sdata->local;
153 
154 	__cleanup_single_sta(sta);
155 	sta_info_free(local, sta);
156 }
157 
158 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
159 					 const u8 *addr)
160 {
161 	return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
162 }
163 
164 /* protected by RCU */
165 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
166 			      const u8 *addr)
167 {
168 	struct ieee80211_local *local = sdata->local;
169 	struct rhlist_head *tmp;
170 	struct sta_info *sta;
171 
172 	rcu_read_lock();
173 	for_each_sta_info(local, addr, sta, tmp) {
174 		if (sta->sdata == sdata) {
175 			rcu_read_unlock();
176 			/* this is safe as the caller must already hold
177 			 * another rcu read section or the mutex
178 			 */
179 			return sta;
180 		}
181 	}
182 	rcu_read_unlock();
183 	return NULL;
184 }
185 
186 /*
187  * Get sta info either from the specified interface
188  * or from one of its vlans
189  */
190 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
191 				  const u8 *addr)
192 {
193 	struct ieee80211_local *local = sdata->local;
194 	struct rhlist_head *tmp;
195 	struct sta_info *sta;
196 
197 	rcu_read_lock();
198 	for_each_sta_info(local, addr, sta, tmp) {
199 		if (sta->sdata == sdata ||
200 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
201 			rcu_read_unlock();
202 			/* this is safe as the caller must already hold
203 			 * another rcu read section or the mutex
204 			 */
205 			return sta;
206 		}
207 	}
208 	rcu_read_unlock();
209 	return NULL;
210 }
211 
212 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
213 				     int idx)
214 {
215 	struct ieee80211_local *local = sdata->local;
216 	struct sta_info *sta;
217 	int i = 0;
218 
219 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
220 		if (sdata != sta->sdata)
221 			continue;
222 		if (i < idx) {
223 			++i;
224 			continue;
225 		}
226 		return sta;
227 	}
228 
229 	return NULL;
230 }
231 
232 /**
233  * sta_info_free - free STA
234  *
235  * @local: pointer to the global information
236  * @sta: STA info to free
237  *
238  * This function must undo everything done by sta_info_alloc()
239  * that may happen before sta_info_insert(). It may only be
240  * called when sta_info_insert() has not been attempted (and
241  * if that fails, the station is freed anyway.)
242  */
243 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
244 {
245 	if (sta->rate_ctrl)
246 		rate_control_free_sta(sta);
247 
248 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
249 
250 	if (sta->sta.txq[0])
251 		kfree(to_txq_info(sta->sta.txq[0]));
252 	kfree(rcu_dereference_raw(sta->sta.rates));
253 #ifdef CONFIG_MAC80211_MESH
254 	kfree(sta->mesh);
255 #endif
256 	free_percpu(sta->pcpu_rx_stats);
257 	kfree(sta);
258 }
259 
260 /* Caller must hold local->sta_mtx */
261 static int sta_info_hash_add(struct ieee80211_local *local,
262 			     struct sta_info *sta)
263 {
264 	return rhltable_insert(&local->sta_hash, &sta->hash_node,
265 			       sta_rht_params);
266 }
267 
268 static void sta_deliver_ps_frames(struct work_struct *wk)
269 {
270 	struct sta_info *sta;
271 
272 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
273 
274 	if (sta->dead)
275 		return;
276 
277 	local_bh_disable();
278 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
279 		ieee80211_sta_ps_deliver_wakeup(sta);
280 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
281 		ieee80211_sta_ps_deliver_poll_response(sta);
282 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
283 		ieee80211_sta_ps_deliver_uapsd(sta);
284 	local_bh_enable();
285 }
286 
287 static int sta_prepare_rate_control(struct ieee80211_local *local,
288 				    struct sta_info *sta, gfp_t gfp)
289 {
290 	if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
291 		return 0;
292 
293 	sta->rate_ctrl = local->rate_ctrl;
294 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
295 						     sta, gfp);
296 	if (!sta->rate_ctrl_priv)
297 		return -ENOMEM;
298 
299 	return 0;
300 }
301 
302 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
303 				const u8 *addr, gfp_t gfp)
304 {
305 	struct ieee80211_local *local = sdata->local;
306 	struct ieee80211_hw *hw = &local->hw;
307 	struct sta_info *sta;
308 	int i;
309 
310 	sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
311 	if (!sta)
312 		return NULL;
313 
314 	if (ieee80211_hw_check(hw, USES_RSS)) {
315 		sta->pcpu_rx_stats =
316 			alloc_percpu(struct ieee80211_sta_rx_stats);
317 		if (!sta->pcpu_rx_stats)
318 			goto free;
319 	}
320 
321 	spin_lock_init(&sta->lock);
322 	spin_lock_init(&sta->ps_lock);
323 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
324 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
325 	mutex_init(&sta->ampdu_mlme.mtx);
326 #ifdef CONFIG_MAC80211_MESH
327 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
328 		sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
329 		if (!sta->mesh)
330 			goto free;
331 		spin_lock_init(&sta->mesh->plink_lock);
332 		if (ieee80211_vif_is_mesh(&sdata->vif) &&
333 		    !sdata->u.mesh.user_mpm)
334 			init_timer(&sta->mesh->plink_timer);
335 		sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
336 	}
337 #endif
338 
339 	memcpy(sta->addr, addr, ETH_ALEN);
340 	memcpy(sta->sta.addr, addr, ETH_ALEN);
341 	sta->sta.max_rx_aggregation_subframes =
342 		local->hw.max_rx_aggregation_subframes;
343 
344 	sta->local = local;
345 	sta->sdata = sdata;
346 	sta->rx_stats.last_rx = jiffies;
347 
348 	u64_stats_init(&sta->rx_stats.syncp);
349 
350 	sta->sta_state = IEEE80211_STA_NONE;
351 
352 	/* Mark TID as unreserved */
353 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
354 
355 	sta->last_connected = ktime_get_seconds();
356 	ewma_signal_init(&sta->rx_stats_avg.signal);
357 	for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
358 		ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
359 
360 	if (local->ops->wake_tx_queue) {
361 		void *txq_data;
362 		int size = sizeof(struct txq_info) +
363 			   ALIGN(hw->txq_data_size, sizeof(void *));
364 
365 		txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
366 		if (!txq_data)
367 			goto free;
368 
369 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
370 			struct txq_info *txq = txq_data + i * size;
371 
372 			ieee80211_txq_init(sdata, sta, txq, i);
373 		}
374 	}
375 
376 	if (sta_prepare_rate_control(local, sta, gfp))
377 		goto free_txq;
378 
379 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
380 		/*
381 		 * timer_to_tid must be initialized with identity mapping
382 		 * to enable session_timer's data differentiation. See
383 		 * sta_rx_agg_session_timer_expired for usage.
384 		 */
385 		sta->timer_to_tid[i] = i;
386 	}
387 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
388 		skb_queue_head_init(&sta->ps_tx_buf[i]);
389 		skb_queue_head_init(&sta->tx_filtered[i]);
390 	}
391 
392 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
393 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
394 
395 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
396 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
397 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
398 		struct ieee80211_supported_band *sband =
399 			hw->wiphy->bands[ieee80211_get_sdata_band(sdata)];
400 		u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
401 				IEEE80211_HT_CAP_SM_PS_SHIFT;
402 		/*
403 		 * Assume that hostapd advertises our caps in the beacon and
404 		 * this is the known_smps_mode for a station that just assciated
405 		 */
406 		switch (smps) {
407 		case WLAN_HT_SMPS_CONTROL_DISABLED:
408 			sta->known_smps_mode = IEEE80211_SMPS_OFF;
409 			break;
410 		case WLAN_HT_SMPS_CONTROL_STATIC:
411 			sta->known_smps_mode = IEEE80211_SMPS_STATIC;
412 			break;
413 		case WLAN_HT_SMPS_CONTROL_DYNAMIC:
414 			sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
415 			break;
416 		default:
417 			WARN_ON(1);
418 		}
419 	}
420 
421 	sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
422 
423 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
424 
425 	return sta;
426 
427 free_txq:
428 	if (sta->sta.txq[0])
429 		kfree(to_txq_info(sta->sta.txq[0]));
430 free:
431 #ifdef CONFIG_MAC80211_MESH
432 	kfree(sta->mesh);
433 #endif
434 	kfree(sta);
435 	return NULL;
436 }
437 
438 static int sta_info_insert_check(struct sta_info *sta)
439 {
440 	struct ieee80211_sub_if_data *sdata = sta->sdata;
441 
442 	/*
443 	 * Can't be a WARN_ON because it can be triggered through a race:
444 	 * something inserts a STA (on one CPU) without holding the RTNL
445 	 * and another CPU turns off the net device.
446 	 */
447 	if (unlikely(!ieee80211_sdata_running(sdata)))
448 		return -ENETDOWN;
449 
450 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
451 		    is_multicast_ether_addr(sta->sta.addr)))
452 		return -EINVAL;
453 
454 	/* The RCU read lock is required by rhashtable due to
455 	 * asynchronous resize/rehash.  We also require the mutex
456 	 * for correctness.
457 	 */
458 	rcu_read_lock();
459 	lockdep_assert_held(&sdata->local->sta_mtx);
460 	if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
461 	    ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
462 		rcu_read_unlock();
463 		return -ENOTUNIQ;
464 	}
465 	rcu_read_unlock();
466 
467 	return 0;
468 }
469 
470 static int sta_info_insert_drv_state(struct ieee80211_local *local,
471 				     struct ieee80211_sub_if_data *sdata,
472 				     struct sta_info *sta)
473 {
474 	enum ieee80211_sta_state state;
475 	int err = 0;
476 
477 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
478 		err = drv_sta_state(local, sdata, sta, state, state + 1);
479 		if (err)
480 			break;
481 	}
482 
483 	if (!err) {
484 		/*
485 		 * Drivers using legacy sta_add/sta_remove callbacks only
486 		 * get uploaded set to true after sta_add is called.
487 		 */
488 		if (!local->ops->sta_add)
489 			sta->uploaded = true;
490 		return 0;
491 	}
492 
493 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
494 		sdata_info(sdata,
495 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
496 			   sta->sta.addr, state + 1, err);
497 		err = 0;
498 	}
499 
500 	/* unwind on error */
501 	for (; state > IEEE80211_STA_NOTEXIST; state--)
502 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
503 
504 	return err;
505 }
506 
507 /*
508  * should be called with sta_mtx locked
509  * this function replaces the mutex lock
510  * with a RCU lock
511  */
512 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
513 {
514 	struct ieee80211_local *local = sta->local;
515 	struct ieee80211_sub_if_data *sdata = sta->sdata;
516 	struct station_info *sinfo;
517 	int err = 0;
518 
519 	lockdep_assert_held(&local->sta_mtx);
520 
521 	sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
522 	if (!sinfo) {
523 		err = -ENOMEM;
524 		goto out_err;
525 	}
526 
527 	/* check if STA exists already */
528 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
529 		err = -EEXIST;
530 		goto out_err;
531 	}
532 
533 	local->num_sta++;
534 	local->sta_generation++;
535 	smp_mb();
536 
537 	/* simplify things and don't accept BA sessions yet */
538 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
539 
540 	/* make the station visible */
541 	err = sta_info_hash_add(local, sta);
542 	if (err)
543 		goto out_drop_sta;
544 
545 	list_add_tail_rcu(&sta->list, &local->sta_list);
546 
547 	/* notify driver */
548 	err = sta_info_insert_drv_state(local, sdata, sta);
549 	if (err)
550 		goto out_remove;
551 
552 	set_sta_flag(sta, WLAN_STA_INSERTED);
553 	/* accept BA sessions now */
554 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
555 
556 	ieee80211_sta_debugfs_add(sta);
557 	rate_control_add_sta_debugfs(sta);
558 
559 	sinfo->generation = local->sta_generation;
560 	cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
561 	kfree(sinfo);
562 
563 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
564 
565 	/* move reference to rcu-protected */
566 	rcu_read_lock();
567 	mutex_unlock(&local->sta_mtx);
568 
569 	if (ieee80211_vif_is_mesh(&sdata->vif))
570 		mesh_accept_plinks_update(sdata);
571 
572 	return 0;
573  out_remove:
574 	sta_info_hash_del(local, sta);
575 	list_del_rcu(&sta->list);
576  out_drop_sta:
577 	local->num_sta--;
578 	synchronize_net();
579 	__cleanup_single_sta(sta);
580  out_err:
581 	mutex_unlock(&local->sta_mtx);
582 	kfree(sinfo);
583 	rcu_read_lock();
584 	return err;
585 }
586 
587 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
588 {
589 	struct ieee80211_local *local = sta->local;
590 	int err;
591 
592 	might_sleep();
593 
594 	mutex_lock(&local->sta_mtx);
595 
596 	err = sta_info_insert_check(sta);
597 	if (err) {
598 		mutex_unlock(&local->sta_mtx);
599 		rcu_read_lock();
600 		goto out_free;
601 	}
602 
603 	err = sta_info_insert_finish(sta);
604 	if (err)
605 		goto out_free;
606 
607 	return 0;
608  out_free:
609 	sta_info_free(local, sta);
610 	return err;
611 }
612 
613 int sta_info_insert(struct sta_info *sta)
614 {
615 	int err = sta_info_insert_rcu(sta);
616 
617 	rcu_read_unlock();
618 
619 	return err;
620 }
621 
622 static inline void __bss_tim_set(u8 *tim, u16 id)
623 {
624 	/*
625 	 * This format has been mandated by the IEEE specifications,
626 	 * so this line may not be changed to use the __set_bit() format.
627 	 */
628 	tim[id / 8] |= (1 << (id % 8));
629 }
630 
631 static inline void __bss_tim_clear(u8 *tim, u16 id)
632 {
633 	/*
634 	 * This format has been mandated by the IEEE specifications,
635 	 * so this line may not be changed to use the __clear_bit() format.
636 	 */
637 	tim[id / 8] &= ~(1 << (id % 8));
638 }
639 
640 static inline bool __bss_tim_get(u8 *tim, u16 id)
641 {
642 	/*
643 	 * This format has been mandated by the IEEE specifications,
644 	 * so this line may not be changed to use the test_bit() format.
645 	 */
646 	return tim[id / 8] & (1 << (id % 8));
647 }
648 
649 static unsigned long ieee80211_tids_for_ac(int ac)
650 {
651 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
652 	switch (ac) {
653 	case IEEE80211_AC_VO:
654 		return BIT(6) | BIT(7);
655 	case IEEE80211_AC_VI:
656 		return BIT(4) | BIT(5);
657 	case IEEE80211_AC_BE:
658 		return BIT(0) | BIT(3);
659 	case IEEE80211_AC_BK:
660 		return BIT(1) | BIT(2);
661 	default:
662 		WARN_ON(1);
663 		return 0;
664 	}
665 }
666 
667 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
668 {
669 	struct ieee80211_local *local = sta->local;
670 	struct ps_data *ps;
671 	bool indicate_tim = false;
672 	u8 ignore_for_tim = sta->sta.uapsd_queues;
673 	int ac;
674 	u16 id = sta->sta.aid;
675 
676 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
677 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
678 		if (WARN_ON_ONCE(!sta->sdata->bss))
679 			return;
680 
681 		ps = &sta->sdata->bss->ps;
682 #ifdef CONFIG_MAC80211_MESH
683 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
684 		ps = &sta->sdata->u.mesh.ps;
685 #endif
686 	} else {
687 		return;
688 	}
689 
690 	/* No need to do anything if the driver does all */
691 	if (ieee80211_hw_check(&local->hw, AP_LINK_PS))
692 		return;
693 
694 	if (sta->dead)
695 		goto done;
696 
697 	/*
698 	 * If all ACs are delivery-enabled then we should build
699 	 * the TIM bit for all ACs anyway; if only some are then
700 	 * we ignore those and build the TIM bit using only the
701 	 * non-enabled ones.
702 	 */
703 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
704 		ignore_for_tim = 0;
705 
706 	if (ignore_pending)
707 		ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
708 
709 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
710 		unsigned long tids;
711 
712 		if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
713 			continue;
714 
715 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
716 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
717 		if (indicate_tim)
718 			break;
719 
720 		tids = ieee80211_tids_for_ac(ac);
721 
722 		indicate_tim |=
723 			sta->driver_buffered_tids & tids;
724 		indicate_tim |=
725 			sta->txq_buffered_tids & tids;
726 	}
727 
728  done:
729 	spin_lock_bh(&local->tim_lock);
730 
731 	if (indicate_tim == __bss_tim_get(ps->tim, id))
732 		goto out_unlock;
733 
734 	if (indicate_tim)
735 		__bss_tim_set(ps->tim, id);
736 	else
737 		__bss_tim_clear(ps->tim, id);
738 
739 	if (local->ops->set_tim && !WARN_ON(sta->dead)) {
740 		local->tim_in_locked_section = true;
741 		drv_set_tim(local, &sta->sta, indicate_tim);
742 		local->tim_in_locked_section = false;
743 	}
744 
745 out_unlock:
746 	spin_unlock_bh(&local->tim_lock);
747 }
748 
749 void sta_info_recalc_tim(struct sta_info *sta)
750 {
751 	__sta_info_recalc_tim(sta, false);
752 }
753 
754 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
755 {
756 	struct ieee80211_tx_info *info;
757 	int timeout;
758 
759 	if (!skb)
760 		return false;
761 
762 	info = IEEE80211_SKB_CB(skb);
763 
764 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
765 	timeout = (sta->listen_interval *
766 		   sta->sdata->vif.bss_conf.beacon_int *
767 		   32 / 15625) * HZ;
768 	if (timeout < STA_TX_BUFFER_EXPIRE)
769 		timeout = STA_TX_BUFFER_EXPIRE;
770 	return time_after(jiffies, info->control.jiffies + timeout);
771 }
772 
773 
774 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
775 						struct sta_info *sta, int ac)
776 {
777 	unsigned long flags;
778 	struct sk_buff *skb;
779 
780 	/*
781 	 * First check for frames that should expire on the filtered
782 	 * queue. Frames here were rejected by the driver and are on
783 	 * a separate queue to avoid reordering with normal PS-buffered
784 	 * frames. They also aren't accounted for right now in the
785 	 * total_ps_buffered counter.
786 	 */
787 	for (;;) {
788 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
789 		skb = skb_peek(&sta->tx_filtered[ac]);
790 		if (sta_info_buffer_expired(sta, skb))
791 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
792 		else
793 			skb = NULL;
794 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
795 
796 		/*
797 		 * Frames are queued in order, so if this one
798 		 * hasn't expired yet we can stop testing. If
799 		 * we actually reached the end of the queue we
800 		 * also need to stop, of course.
801 		 */
802 		if (!skb)
803 			break;
804 		ieee80211_free_txskb(&local->hw, skb);
805 	}
806 
807 	/*
808 	 * Now also check the normal PS-buffered queue, this will
809 	 * only find something if the filtered queue was emptied
810 	 * since the filtered frames are all before the normal PS
811 	 * buffered frames.
812 	 */
813 	for (;;) {
814 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
815 		skb = skb_peek(&sta->ps_tx_buf[ac]);
816 		if (sta_info_buffer_expired(sta, skb))
817 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
818 		else
819 			skb = NULL;
820 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
821 
822 		/*
823 		 * frames are queued in order, so if this one
824 		 * hasn't expired yet (or we reached the end of
825 		 * the queue) we can stop testing
826 		 */
827 		if (!skb)
828 			break;
829 
830 		local->total_ps_buffered--;
831 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
832 		       sta->sta.addr);
833 		ieee80211_free_txskb(&local->hw, skb);
834 	}
835 
836 	/*
837 	 * Finally, recalculate the TIM bit for this station -- it might
838 	 * now be clear because the station was too slow to retrieve its
839 	 * frames.
840 	 */
841 	sta_info_recalc_tim(sta);
842 
843 	/*
844 	 * Return whether there are any frames still buffered, this is
845 	 * used to check whether the cleanup timer still needs to run,
846 	 * if there are no frames we don't need to rearm the timer.
847 	 */
848 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
849 		 skb_queue_empty(&sta->tx_filtered[ac]));
850 }
851 
852 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
853 					     struct sta_info *sta)
854 {
855 	bool have_buffered = false;
856 	int ac;
857 
858 	/* This is only necessary for stations on BSS/MBSS interfaces */
859 	if (!sta->sdata->bss &&
860 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
861 		return false;
862 
863 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
864 		have_buffered |=
865 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
866 
867 	return have_buffered;
868 }
869 
870 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
871 {
872 	struct ieee80211_local *local;
873 	struct ieee80211_sub_if_data *sdata;
874 	int ret;
875 
876 	might_sleep();
877 
878 	if (!sta)
879 		return -ENOENT;
880 
881 	local = sta->local;
882 	sdata = sta->sdata;
883 
884 	lockdep_assert_held(&local->sta_mtx);
885 
886 	/*
887 	 * Before removing the station from the driver and
888 	 * rate control, it might still start new aggregation
889 	 * sessions -- block that to make sure the tear-down
890 	 * will be sufficient.
891 	 */
892 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
893 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
894 
895 	/*
896 	 * Before removing the station from the driver there might be pending
897 	 * rx frames on RSS queues sent prior to the disassociation - wait for
898 	 * all such frames to be processed.
899 	 */
900 	drv_sync_rx_queues(local, sta);
901 
902 	ret = sta_info_hash_del(local, sta);
903 	if (WARN_ON(ret))
904 		return ret;
905 
906 	/*
907 	 * for TDLS peers, make sure to return to the base channel before
908 	 * removal.
909 	 */
910 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
911 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
912 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
913 	}
914 
915 	list_del_rcu(&sta->list);
916 	sta->removed = true;
917 
918 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
919 
920 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
921 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
922 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
923 
924 	return 0;
925 }
926 
927 static void __sta_info_destroy_part2(struct sta_info *sta)
928 {
929 	struct ieee80211_local *local = sta->local;
930 	struct ieee80211_sub_if_data *sdata = sta->sdata;
931 	struct station_info *sinfo;
932 	int ret;
933 
934 	/*
935 	 * NOTE: This assumes at least synchronize_net() was done
936 	 *	 after _part1 and before _part2!
937 	 */
938 
939 	might_sleep();
940 	lockdep_assert_held(&local->sta_mtx);
941 
942 	/* now keys can no longer be reached */
943 	ieee80211_free_sta_keys(local, sta);
944 
945 	/* disable TIM bit - last chance to tell driver */
946 	__sta_info_recalc_tim(sta, true);
947 
948 	sta->dead = true;
949 
950 	local->num_sta--;
951 	local->sta_generation++;
952 
953 	while (sta->sta_state > IEEE80211_STA_NONE) {
954 		ret = sta_info_move_state(sta, sta->sta_state - 1);
955 		if (ret) {
956 			WARN_ON_ONCE(1);
957 			break;
958 		}
959 	}
960 
961 	if (sta->uploaded) {
962 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
963 				    IEEE80211_STA_NOTEXIST);
964 		WARN_ON_ONCE(ret != 0);
965 	}
966 
967 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
968 
969 	sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
970 	if (sinfo)
971 		sta_set_sinfo(sta, sinfo);
972 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
973 	kfree(sinfo);
974 
975 	rate_control_remove_sta_debugfs(sta);
976 	ieee80211_sta_debugfs_remove(sta);
977 
978 	cleanup_single_sta(sta);
979 }
980 
981 int __must_check __sta_info_destroy(struct sta_info *sta)
982 {
983 	int err = __sta_info_destroy_part1(sta);
984 
985 	if (err)
986 		return err;
987 
988 	synchronize_net();
989 
990 	__sta_info_destroy_part2(sta);
991 
992 	return 0;
993 }
994 
995 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
996 {
997 	struct sta_info *sta;
998 	int ret;
999 
1000 	mutex_lock(&sdata->local->sta_mtx);
1001 	sta = sta_info_get(sdata, addr);
1002 	ret = __sta_info_destroy(sta);
1003 	mutex_unlock(&sdata->local->sta_mtx);
1004 
1005 	return ret;
1006 }
1007 
1008 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1009 			      const u8 *addr)
1010 {
1011 	struct sta_info *sta;
1012 	int ret;
1013 
1014 	mutex_lock(&sdata->local->sta_mtx);
1015 	sta = sta_info_get_bss(sdata, addr);
1016 	ret = __sta_info_destroy(sta);
1017 	mutex_unlock(&sdata->local->sta_mtx);
1018 
1019 	return ret;
1020 }
1021 
1022 static void sta_info_cleanup(unsigned long data)
1023 {
1024 	struct ieee80211_local *local = (struct ieee80211_local *) data;
1025 	struct sta_info *sta;
1026 	bool timer_needed = false;
1027 
1028 	rcu_read_lock();
1029 	list_for_each_entry_rcu(sta, &local->sta_list, list)
1030 		if (sta_info_cleanup_expire_buffered(local, sta))
1031 			timer_needed = true;
1032 	rcu_read_unlock();
1033 
1034 	if (local->quiescing)
1035 		return;
1036 
1037 	if (!timer_needed)
1038 		return;
1039 
1040 	mod_timer(&local->sta_cleanup,
1041 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1042 }
1043 
1044 int sta_info_init(struct ieee80211_local *local)
1045 {
1046 	int err;
1047 
1048 	err = rhltable_init(&local->sta_hash, &sta_rht_params);
1049 	if (err)
1050 		return err;
1051 
1052 	spin_lock_init(&local->tim_lock);
1053 	mutex_init(&local->sta_mtx);
1054 	INIT_LIST_HEAD(&local->sta_list);
1055 
1056 	setup_timer(&local->sta_cleanup, sta_info_cleanup,
1057 		    (unsigned long)local);
1058 	return 0;
1059 }
1060 
1061 void sta_info_stop(struct ieee80211_local *local)
1062 {
1063 	del_timer_sync(&local->sta_cleanup);
1064 	rhltable_destroy(&local->sta_hash);
1065 }
1066 
1067 
1068 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1069 {
1070 	struct ieee80211_local *local = sdata->local;
1071 	struct sta_info *sta, *tmp;
1072 	LIST_HEAD(free_list);
1073 	int ret = 0;
1074 
1075 	might_sleep();
1076 
1077 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1078 	WARN_ON(vlans && !sdata->bss);
1079 
1080 	mutex_lock(&local->sta_mtx);
1081 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1082 		if (sdata == sta->sdata ||
1083 		    (vlans && sdata->bss == sta->sdata->bss)) {
1084 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1085 				list_add(&sta->free_list, &free_list);
1086 			ret++;
1087 		}
1088 	}
1089 
1090 	if (!list_empty(&free_list)) {
1091 		synchronize_net();
1092 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1093 			__sta_info_destroy_part2(sta);
1094 	}
1095 	mutex_unlock(&local->sta_mtx);
1096 
1097 	return ret;
1098 }
1099 
1100 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1101 			  unsigned long exp_time)
1102 {
1103 	struct ieee80211_local *local = sdata->local;
1104 	struct sta_info *sta, *tmp;
1105 
1106 	mutex_lock(&local->sta_mtx);
1107 
1108 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1109 		unsigned long last_active = ieee80211_sta_last_active(sta);
1110 
1111 		if (sdata != sta->sdata)
1112 			continue;
1113 
1114 		if (time_is_before_jiffies(last_active + exp_time)) {
1115 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1116 				sta->sta.addr);
1117 
1118 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1119 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1120 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1121 
1122 			WARN_ON(__sta_info_destroy(sta));
1123 		}
1124 	}
1125 
1126 	mutex_unlock(&local->sta_mtx);
1127 }
1128 
1129 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1130 						   const u8 *addr,
1131 						   const u8 *localaddr)
1132 {
1133 	struct ieee80211_local *local = hw_to_local(hw);
1134 	struct rhlist_head *tmp;
1135 	struct sta_info *sta;
1136 
1137 	/*
1138 	 * Just return a random station if localaddr is NULL
1139 	 * ... first in list.
1140 	 */
1141 	for_each_sta_info(local, addr, sta, tmp) {
1142 		if (localaddr &&
1143 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1144 			continue;
1145 		if (!sta->uploaded)
1146 			return NULL;
1147 		return &sta->sta;
1148 	}
1149 
1150 	return NULL;
1151 }
1152 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1153 
1154 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1155 					 const u8 *addr)
1156 {
1157 	struct sta_info *sta;
1158 
1159 	if (!vif)
1160 		return NULL;
1161 
1162 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1163 	if (!sta)
1164 		return NULL;
1165 
1166 	if (!sta->uploaded)
1167 		return NULL;
1168 
1169 	return &sta->sta;
1170 }
1171 EXPORT_SYMBOL(ieee80211_find_sta);
1172 
1173 /* powersave support code */
1174 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1175 {
1176 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1177 	struct ieee80211_local *local = sdata->local;
1178 	struct sk_buff_head pending;
1179 	int filtered = 0, buffered = 0, ac, i;
1180 	unsigned long flags;
1181 	struct ps_data *ps;
1182 
1183 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1184 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1185 				     u.ap);
1186 
1187 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1188 		ps = &sdata->bss->ps;
1189 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1190 		ps = &sdata->u.mesh.ps;
1191 	else
1192 		return;
1193 
1194 	clear_sta_flag(sta, WLAN_STA_SP);
1195 
1196 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1197 	sta->driver_buffered_tids = 0;
1198 	sta->txq_buffered_tids = 0;
1199 
1200 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1201 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1202 
1203 	if (sta->sta.txq[0]) {
1204 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1205 			if (!txq_has_queue(sta->sta.txq[i]))
1206 				continue;
1207 
1208 			drv_wake_tx_queue(local, to_txq_info(sta->sta.txq[i]));
1209 		}
1210 	}
1211 
1212 	skb_queue_head_init(&pending);
1213 
1214 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1215 	spin_lock(&sta->ps_lock);
1216 	/* Send all buffered frames to the station */
1217 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1218 		int count = skb_queue_len(&pending), tmp;
1219 
1220 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1221 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1222 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1223 		tmp = skb_queue_len(&pending);
1224 		filtered += tmp - count;
1225 		count = tmp;
1226 
1227 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1228 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1229 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1230 		tmp = skb_queue_len(&pending);
1231 		buffered += tmp - count;
1232 	}
1233 
1234 	ieee80211_add_pending_skbs(local, &pending);
1235 
1236 	/* now we're no longer in the deliver code */
1237 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1238 
1239 	/* The station might have polled and then woken up before we responded,
1240 	 * so clear these flags now to avoid them sticking around.
1241 	 */
1242 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1243 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1244 	spin_unlock(&sta->ps_lock);
1245 
1246 	atomic_dec(&ps->num_sta_ps);
1247 
1248 	/* This station just woke up and isn't aware of our SMPS state */
1249 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1250 	    !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1251 					   sdata->smps_mode) &&
1252 	    sta->known_smps_mode != sdata->bss->req_smps &&
1253 	    sta_info_tx_streams(sta) != 1) {
1254 		ht_dbg(sdata,
1255 		       "%pM just woke up and MIMO capable - update SMPS\n",
1256 		       sta->sta.addr);
1257 		ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1258 					   sta->sta.addr,
1259 					   sdata->vif.bss_conf.bssid);
1260 	}
1261 
1262 	local->total_ps_buffered -= buffered;
1263 
1264 	sta_info_recalc_tim(sta);
1265 
1266 	ps_dbg(sdata,
1267 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n",
1268 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1269 
1270 	ieee80211_check_fast_xmit(sta);
1271 }
1272 
1273 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1274 					 enum ieee80211_frame_release_type reason,
1275 					 bool call_driver, bool more_data)
1276 {
1277 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1278 	struct ieee80211_local *local = sdata->local;
1279 	struct ieee80211_qos_hdr *nullfunc;
1280 	struct sk_buff *skb;
1281 	int size = sizeof(*nullfunc);
1282 	__le16 fc;
1283 	bool qos = sta->sta.wme;
1284 	struct ieee80211_tx_info *info;
1285 	struct ieee80211_chanctx_conf *chanctx_conf;
1286 
1287 	if (qos) {
1288 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1289 				 IEEE80211_STYPE_QOS_NULLFUNC |
1290 				 IEEE80211_FCTL_FROMDS);
1291 	} else {
1292 		size -= 2;
1293 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1294 				 IEEE80211_STYPE_NULLFUNC |
1295 				 IEEE80211_FCTL_FROMDS);
1296 	}
1297 
1298 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1299 	if (!skb)
1300 		return;
1301 
1302 	skb_reserve(skb, local->hw.extra_tx_headroom);
1303 
1304 	nullfunc = (void *) skb_put(skb, size);
1305 	nullfunc->frame_control = fc;
1306 	nullfunc->duration_id = 0;
1307 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1308 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1309 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1310 	nullfunc->seq_ctrl = 0;
1311 
1312 	skb->priority = tid;
1313 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1314 	if (qos) {
1315 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1316 
1317 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1318 			nullfunc->qos_ctrl |=
1319 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1320 			if (more_data)
1321 				nullfunc->frame_control |=
1322 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1323 		}
1324 	}
1325 
1326 	info = IEEE80211_SKB_CB(skb);
1327 
1328 	/*
1329 	 * Tell TX path to send this frame even though the
1330 	 * STA may still remain is PS mode after this frame
1331 	 * exchange. Also set EOSP to indicate this packet
1332 	 * ends the poll/service period.
1333 	 */
1334 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1335 		       IEEE80211_TX_STATUS_EOSP |
1336 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1337 
1338 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1339 
1340 	if (call_driver)
1341 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1342 					  reason, false);
1343 
1344 	skb->dev = sdata->dev;
1345 
1346 	rcu_read_lock();
1347 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1348 	if (WARN_ON(!chanctx_conf)) {
1349 		rcu_read_unlock();
1350 		kfree_skb(skb);
1351 		return;
1352 	}
1353 
1354 	info->band = chanctx_conf->def.chan->band;
1355 	ieee80211_xmit(sdata, sta, skb);
1356 	rcu_read_unlock();
1357 }
1358 
1359 static int find_highest_prio_tid(unsigned long tids)
1360 {
1361 	/* lower 3 TIDs aren't ordered perfectly */
1362 	if (tids & 0xF8)
1363 		return fls(tids) - 1;
1364 	/* TID 0 is BE just like TID 3 */
1365 	if (tids & BIT(0))
1366 		return 0;
1367 	return fls(tids) - 1;
1368 }
1369 
1370 /* Indicates if the MORE_DATA bit should be set in the last
1371  * frame obtained by ieee80211_sta_ps_get_frames.
1372  * Note that driver_release_tids is relevant only if
1373  * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1374  */
1375 static bool
1376 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1377 			   enum ieee80211_frame_release_type reason,
1378 			   unsigned long driver_release_tids)
1379 {
1380 	int ac;
1381 
1382 	/* If the driver has data on more than one TID then
1383 	 * certainly there's more data if we release just a
1384 	 * single frame now (from a single TID). This will
1385 	 * only happen for PS-Poll.
1386 	 */
1387 	if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1388 	    hweight16(driver_release_tids) > 1)
1389 		return true;
1390 
1391 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1392 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1393 			continue;
1394 
1395 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1396 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1397 			return true;
1398 	}
1399 
1400 	return false;
1401 }
1402 
1403 static void
1404 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1405 			    enum ieee80211_frame_release_type reason,
1406 			    struct sk_buff_head *frames,
1407 			    unsigned long *driver_release_tids)
1408 {
1409 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1410 	struct ieee80211_local *local = sdata->local;
1411 	int ac;
1412 
1413 	/* Get response frame(s) and more data bit for the last one. */
1414 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1415 		unsigned long tids;
1416 
1417 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1418 			continue;
1419 
1420 		tids = ieee80211_tids_for_ac(ac);
1421 
1422 		/* if we already have frames from software, then we can't also
1423 		 * release from hardware queues
1424 		 */
1425 		if (skb_queue_empty(frames)) {
1426 			*driver_release_tids |=
1427 				sta->driver_buffered_tids & tids;
1428 			*driver_release_tids |= sta->txq_buffered_tids & tids;
1429 		}
1430 
1431 		if (!*driver_release_tids) {
1432 			struct sk_buff *skb;
1433 
1434 			while (n_frames > 0) {
1435 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1436 				if (!skb) {
1437 					skb = skb_dequeue(
1438 						&sta->ps_tx_buf[ac]);
1439 					if (skb)
1440 						local->total_ps_buffered--;
1441 				}
1442 				if (!skb)
1443 					break;
1444 				n_frames--;
1445 				__skb_queue_tail(frames, skb);
1446 			}
1447 		}
1448 
1449 		/* If we have more frames buffered on this AC, then abort the
1450 		 * loop since we can't send more data from other ACs before
1451 		 * the buffered frames from this.
1452 		 */
1453 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1454 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1455 			break;
1456 	}
1457 }
1458 
1459 static void
1460 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1461 				  int n_frames, u8 ignored_acs,
1462 				  enum ieee80211_frame_release_type reason)
1463 {
1464 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1465 	struct ieee80211_local *local = sdata->local;
1466 	unsigned long driver_release_tids = 0;
1467 	struct sk_buff_head frames;
1468 	bool more_data;
1469 
1470 	/* Service or PS-Poll period starts */
1471 	set_sta_flag(sta, WLAN_STA_SP);
1472 
1473 	__skb_queue_head_init(&frames);
1474 
1475 	ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1476 				    &frames, &driver_release_tids);
1477 
1478 	more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1479 
1480 	if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1481 		driver_release_tids =
1482 			BIT(find_highest_prio_tid(driver_release_tids));
1483 
1484 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1485 		int tid, ac;
1486 
1487 		/*
1488 		 * For PS-Poll, this can only happen due to a race condition
1489 		 * when we set the TIM bit and the station notices it, but
1490 		 * before it can poll for the frame we expire it.
1491 		 *
1492 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1493 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1494 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1495 		 *	more than the value specified in the Max SP Length field
1496 		 *	in the QoS Capability element from delivery-enabled ACs,
1497 		 *	that are destined for the non-AP STA.
1498 		 *
1499 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1500 		 */
1501 
1502 		/* This will evaluate to 1, 3, 5 or 7. */
1503 		for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1504 			if (ignored_acs & BIT(ac))
1505 				continue;
1506 		tid = 7 - 2 * ac;
1507 
1508 		ieee80211_send_null_response(sta, tid, reason, true, false);
1509 	} else if (!driver_release_tids) {
1510 		struct sk_buff_head pending;
1511 		struct sk_buff *skb;
1512 		int num = 0;
1513 		u16 tids = 0;
1514 		bool need_null = false;
1515 
1516 		skb_queue_head_init(&pending);
1517 
1518 		while ((skb = __skb_dequeue(&frames))) {
1519 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1520 			struct ieee80211_hdr *hdr = (void *) skb->data;
1521 			u8 *qoshdr = NULL;
1522 
1523 			num++;
1524 
1525 			/*
1526 			 * Tell TX path to send this frame even though the
1527 			 * STA may still remain is PS mode after this frame
1528 			 * exchange.
1529 			 */
1530 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1531 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1532 
1533 			/*
1534 			 * Use MoreData flag to indicate whether there are
1535 			 * more buffered frames for this STA
1536 			 */
1537 			if (more_data || !skb_queue_empty(&frames))
1538 				hdr->frame_control |=
1539 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1540 			else
1541 				hdr->frame_control &=
1542 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1543 
1544 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1545 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1546 				qoshdr = ieee80211_get_qos_ctl(hdr);
1547 
1548 			tids |= BIT(skb->priority);
1549 
1550 			__skb_queue_tail(&pending, skb);
1551 
1552 			/* end service period after last frame or add one */
1553 			if (!skb_queue_empty(&frames))
1554 				continue;
1555 
1556 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1557 				/* for PS-Poll, there's only one frame */
1558 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1559 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1560 				break;
1561 			}
1562 
1563 			/* For uAPSD, things are a bit more complicated. If the
1564 			 * last frame has a QoS header (i.e. is a QoS-data or
1565 			 * QoS-nulldata frame) then just set the EOSP bit there
1566 			 * and be done.
1567 			 * If the frame doesn't have a QoS header (which means
1568 			 * it should be a bufferable MMPDU) then we can't set
1569 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1570 			 * frame to the list to send it after the MMPDU.
1571 			 *
1572 			 * Note that this code is only in the mac80211-release
1573 			 * code path, we assume that the driver will not buffer
1574 			 * anything but QoS-data frames, or if it does, will
1575 			 * create the QoS-nulldata frame by itself if needed.
1576 			 *
1577 			 * Cf. 802.11-2012 10.2.1.10 (c).
1578 			 */
1579 			if (qoshdr) {
1580 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1581 
1582 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1583 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1584 			} else {
1585 				/* The standard isn't completely clear on this
1586 				 * as it says the more-data bit should be set
1587 				 * if there are more BUs. The QoS-Null frame
1588 				 * we're about to send isn't buffered yet, we
1589 				 * only create it below, but let's pretend it
1590 				 * was buffered just in case some clients only
1591 				 * expect more-data=0 when eosp=1.
1592 				 */
1593 				hdr->frame_control |=
1594 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1595 				need_null = true;
1596 				num++;
1597 			}
1598 			break;
1599 		}
1600 
1601 		drv_allow_buffered_frames(local, sta, tids, num,
1602 					  reason, more_data);
1603 
1604 		ieee80211_add_pending_skbs(local, &pending);
1605 
1606 		if (need_null)
1607 			ieee80211_send_null_response(
1608 				sta, find_highest_prio_tid(tids),
1609 				reason, false, false);
1610 
1611 		sta_info_recalc_tim(sta);
1612 	} else {
1613 		int tid;
1614 
1615 		/*
1616 		 * We need to release a frame that is buffered somewhere in the
1617 		 * driver ... it'll have to handle that.
1618 		 * Note that the driver also has to check the number of frames
1619 		 * on the TIDs we're releasing from - if there are more than
1620 		 * n_frames it has to set the more-data bit (if we didn't ask
1621 		 * it to set it anyway due to other buffered frames); if there
1622 		 * are fewer than n_frames it has to make sure to adjust that
1623 		 * to allow the service period to end properly.
1624 		 */
1625 		drv_release_buffered_frames(local, sta, driver_release_tids,
1626 					    n_frames, reason, more_data);
1627 
1628 		/*
1629 		 * Note that we don't recalculate the TIM bit here as it would
1630 		 * most likely have no effect at all unless the driver told us
1631 		 * that the TID(s) became empty before returning here from the
1632 		 * release function.
1633 		 * Either way, however, when the driver tells us that the TID(s)
1634 		 * became empty or we find that a txq became empty, we'll do the
1635 		 * TIM recalculation.
1636 		 */
1637 
1638 		if (!sta->sta.txq[0])
1639 			return;
1640 
1641 		for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1642 			if (!(driver_release_tids & BIT(tid)) ||
1643 			    txq_has_queue(sta->sta.txq[tid]))
1644 				continue;
1645 
1646 			sta_info_recalc_tim(sta);
1647 			break;
1648 		}
1649 	}
1650 }
1651 
1652 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1653 {
1654 	u8 ignore_for_response = sta->sta.uapsd_queues;
1655 
1656 	/*
1657 	 * If all ACs are delivery-enabled then we should reply
1658 	 * from any of them, if only some are enabled we reply
1659 	 * only from the non-enabled ones.
1660 	 */
1661 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1662 		ignore_for_response = 0;
1663 
1664 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1665 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1666 }
1667 
1668 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1669 {
1670 	int n_frames = sta->sta.max_sp;
1671 	u8 delivery_enabled = sta->sta.uapsd_queues;
1672 
1673 	/*
1674 	 * If we ever grow support for TSPEC this might happen if
1675 	 * the TSPEC update from hostapd comes in between a trigger
1676 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1677 	 * actually getting called.
1678 	 */
1679 	if (!delivery_enabled)
1680 		return;
1681 
1682 	switch (sta->sta.max_sp) {
1683 	case 1:
1684 		n_frames = 2;
1685 		break;
1686 	case 2:
1687 		n_frames = 4;
1688 		break;
1689 	case 3:
1690 		n_frames = 6;
1691 		break;
1692 	case 0:
1693 		/* XXX: what is a good value? */
1694 		n_frames = 128;
1695 		break;
1696 	}
1697 
1698 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1699 					  IEEE80211_FRAME_RELEASE_UAPSD);
1700 }
1701 
1702 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1703 			       struct ieee80211_sta *pubsta, bool block)
1704 {
1705 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1706 
1707 	trace_api_sta_block_awake(sta->local, pubsta, block);
1708 
1709 	if (block) {
1710 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1711 		ieee80211_clear_fast_xmit(sta);
1712 		return;
1713 	}
1714 
1715 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1716 		return;
1717 
1718 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1719 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1720 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1721 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1722 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1723 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
1724 		/* must be asleep in this case */
1725 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1726 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1727 	} else {
1728 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1729 		ieee80211_check_fast_xmit(sta);
1730 	}
1731 }
1732 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1733 
1734 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1735 {
1736 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1737 	struct ieee80211_local *local = sta->local;
1738 
1739 	trace_api_eosp(local, pubsta);
1740 
1741 	clear_sta_flag(sta, WLAN_STA_SP);
1742 }
1743 EXPORT_SYMBOL(ieee80211_sta_eosp);
1744 
1745 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1746 {
1747 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1748 	enum ieee80211_frame_release_type reason;
1749 	bool more_data;
1750 
1751 	trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1752 
1753 	reason = IEEE80211_FRAME_RELEASE_UAPSD;
1754 	more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1755 					       reason, 0);
1756 
1757 	ieee80211_send_null_response(sta, tid, reason, false, more_data);
1758 }
1759 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1760 
1761 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1762 				u8 tid, bool buffered)
1763 {
1764 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1765 
1766 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1767 		return;
1768 
1769 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1770 
1771 	if (buffered)
1772 		set_bit(tid, &sta->driver_buffered_tids);
1773 	else
1774 		clear_bit(tid, &sta->driver_buffered_tids);
1775 
1776 	sta_info_recalc_tim(sta);
1777 }
1778 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1779 
1780 static void
1781 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
1782 {
1783 	struct ieee80211_local *local = sdata->local;
1784 	bool allow_p2p_go_ps = sdata->vif.p2p;
1785 	struct sta_info *sta;
1786 
1787 	rcu_read_lock();
1788 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
1789 		if (sdata != sta->sdata ||
1790 		    !test_sta_flag(sta, WLAN_STA_ASSOC))
1791 			continue;
1792 		if (!sta->sta.support_p2p_ps) {
1793 			allow_p2p_go_ps = false;
1794 			break;
1795 		}
1796 	}
1797 	rcu_read_unlock();
1798 
1799 	if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
1800 		sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
1801 		ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
1802 	}
1803 }
1804 
1805 int sta_info_move_state(struct sta_info *sta,
1806 			enum ieee80211_sta_state new_state)
1807 {
1808 	might_sleep();
1809 
1810 	if (sta->sta_state == new_state)
1811 		return 0;
1812 
1813 	/* check allowed transitions first */
1814 
1815 	switch (new_state) {
1816 	case IEEE80211_STA_NONE:
1817 		if (sta->sta_state != IEEE80211_STA_AUTH)
1818 			return -EINVAL;
1819 		break;
1820 	case IEEE80211_STA_AUTH:
1821 		if (sta->sta_state != IEEE80211_STA_NONE &&
1822 		    sta->sta_state != IEEE80211_STA_ASSOC)
1823 			return -EINVAL;
1824 		break;
1825 	case IEEE80211_STA_ASSOC:
1826 		if (sta->sta_state != IEEE80211_STA_AUTH &&
1827 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
1828 			return -EINVAL;
1829 		break;
1830 	case IEEE80211_STA_AUTHORIZED:
1831 		if (sta->sta_state != IEEE80211_STA_ASSOC)
1832 			return -EINVAL;
1833 		break;
1834 	default:
1835 		WARN(1, "invalid state %d", new_state);
1836 		return -EINVAL;
1837 	}
1838 
1839 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1840 		sta->sta.addr, new_state);
1841 
1842 	/*
1843 	 * notify the driver before the actual changes so it can
1844 	 * fail the transition
1845 	 */
1846 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1847 		int err = drv_sta_state(sta->local, sta->sdata, sta,
1848 					sta->sta_state, new_state);
1849 		if (err)
1850 			return err;
1851 	}
1852 
1853 	/* reflect the change in all state variables */
1854 
1855 	switch (new_state) {
1856 	case IEEE80211_STA_NONE:
1857 		if (sta->sta_state == IEEE80211_STA_AUTH)
1858 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
1859 		break;
1860 	case IEEE80211_STA_AUTH:
1861 		if (sta->sta_state == IEEE80211_STA_NONE) {
1862 			set_bit(WLAN_STA_AUTH, &sta->_flags);
1863 		} else if (sta->sta_state == IEEE80211_STA_ASSOC) {
1864 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1865 			ieee80211_recalc_min_chandef(sta->sdata);
1866 			if (!sta->sta.support_p2p_ps)
1867 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1868 		}
1869 		break;
1870 	case IEEE80211_STA_ASSOC:
1871 		if (sta->sta_state == IEEE80211_STA_AUTH) {
1872 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
1873 			ieee80211_recalc_min_chandef(sta->sdata);
1874 			if (!sta->sta.support_p2p_ps)
1875 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1876 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1877 			ieee80211_vif_dec_num_mcast(sta->sdata);
1878 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1879 			ieee80211_clear_fast_xmit(sta);
1880 			ieee80211_clear_fast_rx(sta);
1881 		}
1882 		break;
1883 	case IEEE80211_STA_AUTHORIZED:
1884 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
1885 			ieee80211_vif_inc_num_mcast(sta->sdata);
1886 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1887 			ieee80211_check_fast_xmit(sta);
1888 			ieee80211_check_fast_rx(sta);
1889 		}
1890 		break;
1891 	default:
1892 		break;
1893 	}
1894 
1895 	sta->sta_state = new_state;
1896 
1897 	return 0;
1898 }
1899 
1900 u8 sta_info_tx_streams(struct sta_info *sta)
1901 {
1902 	struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1903 	u8 rx_streams;
1904 
1905 	if (!sta->sta.ht_cap.ht_supported)
1906 		return 1;
1907 
1908 	if (sta->sta.vht_cap.vht_supported) {
1909 		int i;
1910 		u16 tx_mcs_map =
1911 			le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1912 
1913 		for (i = 7; i >= 0; i--)
1914 			if ((tx_mcs_map & (0x3 << (i * 2))) !=
1915 			    IEEE80211_VHT_MCS_NOT_SUPPORTED)
1916 				return i + 1;
1917 	}
1918 
1919 	if (ht_cap->mcs.rx_mask[3])
1920 		rx_streams = 4;
1921 	else if (ht_cap->mcs.rx_mask[2])
1922 		rx_streams = 3;
1923 	else if (ht_cap->mcs.rx_mask[1])
1924 		rx_streams = 2;
1925 	else
1926 		rx_streams = 1;
1927 
1928 	if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1929 		return rx_streams;
1930 
1931 	return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1932 			>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
1933 }
1934 
1935 static struct ieee80211_sta_rx_stats *
1936 sta_get_last_rx_stats(struct sta_info *sta)
1937 {
1938 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
1939 	struct ieee80211_local *local = sta->local;
1940 	int cpu;
1941 
1942 	if (!ieee80211_hw_check(&local->hw, USES_RSS))
1943 		return stats;
1944 
1945 	for_each_possible_cpu(cpu) {
1946 		struct ieee80211_sta_rx_stats *cpustats;
1947 
1948 		cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
1949 
1950 		if (time_after(cpustats->last_rx, stats->last_rx))
1951 			stats = cpustats;
1952 	}
1953 
1954 	return stats;
1955 }
1956 
1957 static void sta_stats_decode_rate(struct ieee80211_local *local, u16 rate,
1958 				  struct rate_info *rinfo)
1959 {
1960 	rinfo->bw = (rate & STA_STATS_RATE_BW_MASK) >>
1961 		STA_STATS_RATE_BW_SHIFT;
1962 
1963 	if (rate & STA_STATS_RATE_VHT) {
1964 		rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
1965 		rinfo->mcs = rate & 0xf;
1966 		rinfo->nss = (rate & 0xf0) >> 4;
1967 	} else if (rate & STA_STATS_RATE_HT) {
1968 		rinfo->flags = RATE_INFO_FLAGS_MCS;
1969 		rinfo->mcs = rate & 0xff;
1970 	} else if (rate & STA_STATS_RATE_LEGACY) {
1971 		struct ieee80211_supported_band *sband;
1972 		u16 brate;
1973 		unsigned int shift;
1974 
1975 		rinfo->flags = 0;
1976 		sband = local->hw.wiphy->bands[(rate >> 4) & 0xf];
1977 		brate = sband->bitrates[rate & 0xf].bitrate;
1978 		if (rinfo->bw == RATE_INFO_BW_5)
1979 			shift = 2;
1980 		else if (rinfo->bw == RATE_INFO_BW_10)
1981 			shift = 1;
1982 		else
1983 			shift = 0;
1984 		rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
1985 	}
1986 
1987 	if (rate & STA_STATS_RATE_SGI)
1988 		rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
1989 }
1990 
1991 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
1992 {
1993 	u16 rate = ACCESS_ONCE(sta_get_last_rx_stats(sta)->last_rate);
1994 
1995 	if (rate == STA_STATS_RATE_INVALID)
1996 		return -EINVAL;
1997 
1998 	sta_stats_decode_rate(sta->local, rate, rinfo);
1999 	return 0;
2000 }
2001 
2002 static void sta_set_tidstats(struct sta_info *sta,
2003 			     struct cfg80211_tid_stats *tidstats,
2004 			     int tid)
2005 {
2006 	struct ieee80211_local *local = sta->local;
2007 
2008 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2009 		unsigned int start;
2010 
2011 		do {
2012 			start = u64_stats_fetch_begin(&sta->rx_stats.syncp);
2013 			tidstats->rx_msdu = sta->rx_stats.msdu[tid];
2014 		} while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start));
2015 
2016 		tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2017 	}
2018 
2019 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2020 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2021 		tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2022 	}
2023 
2024 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2025 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2026 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2027 		tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2028 	}
2029 
2030 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2031 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2032 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2033 		tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2034 	}
2035 }
2036 
2037 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2038 {
2039 	unsigned int start;
2040 	u64 value;
2041 
2042 	do {
2043 		start = u64_stats_fetch_begin(&rxstats->syncp);
2044 		value = rxstats->bytes;
2045 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2046 
2047 	return value;
2048 }
2049 
2050 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
2051 {
2052 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2053 	struct ieee80211_local *local = sdata->local;
2054 	struct rate_control_ref *ref = NULL;
2055 	u32 thr = 0;
2056 	int i, ac, cpu;
2057 	struct ieee80211_sta_rx_stats *last_rxstats;
2058 
2059 	last_rxstats = sta_get_last_rx_stats(sta);
2060 
2061 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2062 		ref = local->rate_ctrl;
2063 
2064 	sinfo->generation = sdata->local->sta_generation;
2065 
2066 	/* do before driver, so beacon filtering drivers have a
2067 	 * chance to e.g. just add the number of filtered beacons
2068 	 * (or just modify the value entirely, of course)
2069 	 */
2070 	if (sdata->vif.type == NL80211_IFTYPE_STATION)
2071 		sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2072 
2073 	drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2074 
2075 	sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) |
2076 			 BIT(NL80211_STA_INFO_STA_FLAGS) |
2077 			 BIT(NL80211_STA_INFO_BSS_PARAM) |
2078 			 BIT(NL80211_STA_INFO_CONNECTED_TIME) |
2079 			 BIT(NL80211_STA_INFO_RX_DROP_MISC);
2080 
2081 	if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2082 		sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2083 		sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS);
2084 	}
2085 
2086 	sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2087 	sinfo->inactive_time =
2088 		jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2089 
2090 	if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) |
2091 			       BIT(NL80211_STA_INFO_TX_BYTES)))) {
2092 		sinfo->tx_bytes = 0;
2093 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2094 			sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2095 		sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64);
2096 	}
2097 
2098 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) {
2099 		sinfo->tx_packets = 0;
2100 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2101 			sinfo->tx_packets += sta->tx_stats.packets[ac];
2102 		sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS);
2103 	}
2104 
2105 	if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) |
2106 			       BIT(NL80211_STA_INFO_RX_BYTES)))) {
2107 		sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2108 
2109 		if (sta->pcpu_rx_stats) {
2110 			for_each_possible_cpu(cpu) {
2111 				struct ieee80211_sta_rx_stats *cpurxs;
2112 
2113 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2114 				sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2115 			}
2116 		}
2117 
2118 		sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64);
2119 	}
2120 
2121 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) {
2122 		sinfo->rx_packets = sta->rx_stats.packets;
2123 		if (sta->pcpu_rx_stats) {
2124 			for_each_possible_cpu(cpu) {
2125 				struct ieee80211_sta_rx_stats *cpurxs;
2126 
2127 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2128 				sinfo->rx_packets += cpurxs->packets;
2129 			}
2130 		}
2131 		sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS);
2132 	}
2133 
2134 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) {
2135 		sinfo->tx_retries = sta->status_stats.retry_count;
2136 		sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES);
2137 	}
2138 
2139 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) {
2140 		sinfo->tx_failed = sta->status_stats.retry_failed;
2141 		sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED);
2142 	}
2143 
2144 	sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2145 	if (sta->pcpu_rx_stats) {
2146 		for_each_possible_cpu(cpu) {
2147 			struct ieee80211_sta_rx_stats *cpurxs;
2148 
2149 			cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2150 			sinfo->rx_packets += cpurxs->dropped;
2151 		}
2152 	}
2153 
2154 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2155 	    !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2156 		sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) |
2157 				 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2158 		sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2159 	}
2160 
2161 	if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2162 	    ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2163 		if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) {
2164 			sinfo->signal = (s8)last_rxstats->last_signal;
2165 			sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL);
2166 		}
2167 
2168 		if (!sta->pcpu_rx_stats &&
2169 		    !(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) {
2170 			sinfo->signal_avg =
2171 				-ewma_signal_read(&sta->rx_stats_avg.signal);
2172 			sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG);
2173 		}
2174 	}
2175 
2176 	/* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2177 	 * the sta->rx_stats struct, so the check here is fine with and without
2178 	 * pcpu statistics
2179 	 */
2180 	if (last_rxstats->chains &&
2181 	    !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) |
2182 			       BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2183 		sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL);
2184 		if (!sta->pcpu_rx_stats)
2185 			sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2186 
2187 		sinfo->chains = last_rxstats->chains;
2188 
2189 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2190 			sinfo->chain_signal[i] =
2191 				last_rxstats->chain_signal_last[i];
2192 			sinfo->chain_signal_avg[i] =
2193 				-ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2194 		}
2195 	}
2196 
2197 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) {
2198 		sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2199 				     &sinfo->txrate);
2200 		sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE);
2201 	}
2202 
2203 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) {
2204 		if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2205 			sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE);
2206 	}
2207 
2208 	sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS);
2209 	for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) {
2210 		struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i];
2211 
2212 		sta_set_tidstats(sta, tidstats, i);
2213 	}
2214 
2215 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2216 #ifdef CONFIG_MAC80211_MESH
2217 		sinfo->filled |= BIT(NL80211_STA_INFO_LLID) |
2218 				 BIT(NL80211_STA_INFO_PLID) |
2219 				 BIT(NL80211_STA_INFO_PLINK_STATE) |
2220 				 BIT(NL80211_STA_INFO_LOCAL_PM) |
2221 				 BIT(NL80211_STA_INFO_PEER_PM) |
2222 				 BIT(NL80211_STA_INFO_NONPEER_PM);
2223 
2224 		sinfo->llid = sta->mesh->llid;
2225 		sinfo->plid = sta->mesh->plid;
2226 		sinfo->plink_state = sta->mesh->plink_state;
2227 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2228 			sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET);
2229 			sinfo->t_offset = sta->mesh->t_offset;
2230 		}
2231 		sinfo->local_pm = sta->mesh->local_pm;
2232 		sinfo->peer_pm = sta->mesh->peer_pm;
2233 		sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2234 #endif
2235 	}
2236 
2237 	sinfo->bss_param.flags = 0;
2238 	if (sdata->vif.bss_conf.use_cts_prot)
2239 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2240 	if (sdata->vif.bss_conf.use_short_preamble)
2241 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2242 	if (sdata->vif.bss_conf.use_short_slot)
2243 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2244 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2245 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2246 
2247 	sinfo->sta_flags.set = 0;
2248 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2249 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2250 				BIT(NL80211_STA_FLAG_WME) |
2251 				BIT(NL80211_STA_FLAG_MFP) |
2252 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2253 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
2254 				BIT(NL80211_STA_FLAG_TDLS_PEER);
2255 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2256 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2257 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2258 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2259 	if (sta->sta.wme)
2260 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2261 	if (test_sta_flag(sta, WLAN_STA_MFP))
2262 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2263 	if (test_sta_flag(sta, WLAN_STA_AUTH))
2264 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2265 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
2266 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2267 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2268 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2269 
2270 	thr = sta_get_expected_throughput(sta);
2271 
2272 	if (thr != 0) {
2273 		sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2274 		sinfo->expected_throughput = thr;
2275 	}
2276 }
2277 
2278 u32 sta_get_expected_throughput(struct sta_info *sta)
2279 {
2280 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2281 	struct ieee80211_local *local = sdata->local;
2282 	struct rate_control_ref *ref = NULL;
2283 	u32 thr = 0;
2284 
2285 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2286 		ref = local->rate_ctrl;
2287 
2288 	/* check if the driver has a SW RC implementation */
2289 	if (ref && ref->ops->get_expected_throughput)
2290 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2291 	else
2292 		thr = drv_get_expected_throughput(local, sta);
2293 
2294 	return thr;
2295 }
2296 
2297 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2298 {
2299 	struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2300 
2301 	if (time_after(stats->last_rx, sta->status_stats.last_ack))
2302 		return stats->last_rx;
2303 	return sta->status_stats.last_ack;
2304 }
2305