xref: /openbmc/linux/net/mac80211/sta_info.c (revision 869b6ca39c08c5b10eeb29d4b3c4bc433bf8ba5e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7  * Copyright (C) 2018-2021 Intel Corporation
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20 
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30 
31 /**
32  * DOC: STA information lifetime rules
33  *
34  * STA info structures (&struct sta_info) are managed in a hash table
35  * for faster lookup and a list for iteration. They are managed using
36  * RCU, i.e. access to the list and hash table is protected by RCU.
37  *
38  * Upon allocating a STA info structure with sta_info_alloc(), the caller
39  * owns that structure. It must then insert it into the hash table using
40  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41  * case (which acquires an rcu read section but must not be called from
42  * within one) will the pointer still be valid after the call. Note that
43  * the caller may not do much with the STA info before inserting it, in
44  * particular, it may not start any mesh peer link management or add
45  * encryption keys.
46  *
47  * When the insertion fails (sta_info_insert()) returns non-zero), the
48  * structure will have been freed by sta_info_insert()!
49  *
50  * Station entries are added by mac80211 when you establish a link with a
51  * peer. This means different things for the different type of interfaces
52  * we support. For a regular station this mean we add the AP sta when we
53  * receive an association response from the AP. For IBSS this occurs when
54  * get to know about a peer on the same IBSS. For WDS we add the sta for
55  * the peer immediately upon device open. When using AP mode we add stations
56  * for each respective station upon request from userspace through nl80211.
57  *
58  * In order to remove a STA info structure, various sta_info_destroy_*()
59  * calls are available.
60  *
61  * There is no concept of ownership on a STA entry, each structure is
62  * owned by the global hash table/list until it is removed. All users of
63  * the structure need to be RCU protected so that the structure won't be
64  * freed before they are done using it.
65  */
66 
67 static const struct rhashtable_params sta_rht_params = {
68 	.nelem_hint = 3, /* start small */
69 	.automatic_shrinking = true,
70 	.head_offset = offsetof(struct sta_info, hash_node),
71 	.key_offset = offsetof(struct sta_info, addr),
72 	.key_len = ETH_ALEN,
73 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
74 };
75 
76 /* Caller must hold local->sta_mtx */
77 static int sta_info_hash_del(struct ieee80211_local *local,
78 			     struct sta_info *sta)
79 {
80 	return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 			       sta_rht_params);
82 }
83 
84 static void __cleanup_single_sta(struct sta_info *sta)
85 {
86 	int ac, i;
87 	struct tid_ampdu_tx *tid_tx;
88 	struct ieee80211_sub_if_data *sdata = sta->sdata;
89 	struct ieee80211_local *local = sdata->local;
90 	struct ps_data *ps;
91 
92 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 			ps = &sdata->bss->ps;
98 		else if (ieee80211_vif_is_mesh(&sdata->vif))
99 			ps = &sdata->u.mesh.ps;
100 		else
101 			return;
102 
103 		clear_sta_flag(sta, WLAN_STA_PS_STA);
104 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
106 
107 		atomic_dec(&ps->num_sta_ps);
108 	}
109 
110 	if (sta->sta.txq[0]) {
111 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 			struct txq_info *txqi;
113 
114 			if (!sta->sta.txq[i])
115 				continue;
116 
117 			txqi = to_txq_info(sta->sta.txq[i]);
118 
119 			ieee80211_txq_purge(local, txqi);
120 		}
121 	}
122 
123 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
127 	}
128 
129 	if (ieee80211_vif_is_mesh(&sdata->vif))
130 		mesh_sta_cleanup(sta);
131 
132 	cancel_work_sync(&sta->drv_deliver_wk);
133 
134 	/*
135 	 * Destroy aggregation state here. It would be nice to wait for the
136 	 * driver to finish aggregation stop and then clean up, but for now
137 	 * drivers have to handle aggregation stop being requested, followed
138 	 * directly by station destruction.
139 	 */
140 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 		if (!tid_tx)
144 			continue;
145 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 		kfree(tid_tx);
147 	}
148 }
149 
150 static void cleanup_single_sta(struct sta_info *sta)
151 {
152 	struct ieee80211_sub_if_data *sdata = sta->sdata;
153 	struct ieee80211_local *local = sdata->local;
154 
155 	__cleanup_single_sta(sta);
156 	sta_info_free(local, sta);
157 }
158 
159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 					 const u8 *addr)
161 {
162 	return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
163 }
164 
165 /* protected by RCU */
166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 			      const u8 *addr)
168 {
169 	struct ieee80211_local *local = sdata->local;
170 	struct rhlist_head *tmp;
171 	struct sta_info *sta;
172 
173 	rcu_read_lock();
174 	for_each_sta_info(local, addr, sta, tmp) {
175 		if (sta->sdata == sdata) {
176 			rcu_read_unlock();
177 			/* this is safe as the caller must already hold
178 			 * another rcu read section or the mutex
179 			 */
180 			return sta;
181 		}
182 	}
183 	rcu_read_unlock();
184 	return NULL;
185 }
186 
187 /*
188  * Get sta info either from the specified interface
189  * or from one of its vlans
190  */
191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 				  const u8 *addr)
193 {
194 	struct ieee80211_local *local = sdata->local;
195 	struct rhlist_head *tmp;
196 	struct sta_info *sta;
197 
198 	rcu_read_lock();
199 	for_each_sta_info(local, addr, sta, tmp) {
200 		if (sta->sdata == sdata ||
201 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 			rcu_read_unlock();
203 			/* this is safe as the caller must already hold
204 			 * another rcu read section or the mutex
205 			 */
206 			return sta;
207 		}
208 	}
209 	rcu_read_unlock();
210 	return NULL;
211 }
212 
213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
214 				       const u8 *sta_addr, const u8 *vif_addr)
215 {
216 	struct rhlist_head *tmp;
217 	struct sta_info *sta;
218 
219 	for_each_sta_info(local, sta_addr, sta, tmp) {
220 		if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
221 			return sta;
222 	}
223 
224 	return NULL;
225 }
226 
227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
228 				     int idx)
229 {
230 	struct ieee80211_local *local = sdata->local;
231 	struct sta_info *sta;
232 	int i = 0;
233 
234 	list_for_each_entry_rcu(sta, &local->sta_list, list,
235 				lockdep_is_held(&local->sta_mtx)) {
236 		if (sdata != sta->sdata)
237 			continue;
238 		if (i < idx) {
239 			++i;
240 			continue;
241 		}
242 		return sta;
243 	}
244 
245 	return NULL;
246 }
247 
248 /**
249  * sta_info_free - free STA
250  *
251  * @local: pointer to the global information
252  * @sta: STA info to free
253  *
254  * This function must undo everything done by sta_info_alloc()
255  * that may happen before sta_info_insert(). It may only be
256  * called when sta_info_insert() has not been attempted (and
257  * if that fails, the station is freed anyway.)
258  */
259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
260 {
261 	/*
262 	 * If we had used sta_info_pre_move_state() then we might not
263 	 * have gone through the state transitions down again, so do
264 	 * it here now (and warn if it's inserted).
265 	 *
266 	 * This will clear state such as fast TX/RX that may have been
267 	 * allocated during state transitions.
268 	 */
269 	while (sta->sta_state > IEEE80211_STA_NONE) {
270 		int ret;
271 
272 		WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED));
273 
274 		ret = sta_info_move_state(sta, sta->sta_state - 1);
275 		if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret))
276 			break;
277 	}
278 
279 	if (sta->rate_ctrl)
280 		rate_control_free_sta(sta);
281 
282 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
283 
284 	if (sta->sta.txq[0])
285 		kfree(to_txq_info(sta->sta.txq[0]));
286 	kfree(rcu_dereference_raw(sta->sta.rates));
287 #ifdef CONFIG_MAC80211_MESH
288 	kfree(sta->mesh);
289 #endif
290 	free_percpu(sta->pcpu_rx_stats);
291 	kfree(sta);
292 }
293 
294 /* Caller must hold local->sta_mtx */
295 static int sta_info_hash_add(struct ieee80211_local *local,
296 			     struct sta_info *sta)
297 {
298 	return rhltable_insert(&local->sta_hash, &sta->hash_node,
299 			       sta_rht_params);
300 }
301 
302 static void sta_deliver_ps_frames(struct work_struct *wk)
303 {
304 	struct sta_info *sta;
305 
306 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
307 
308 	if (sta->dead)
309 		return;
310 
311 	local_bh_disable();
312 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
313 		ieee80211_sta_ps_deliver_wakeup(sta);
314 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
315 		ieee80211_sta_ps_deliver_poll_response(sta);
316 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
317 		ieee80211_sta_ps_deliver_uapsd(sta);
318 	local_bh_enable();
319 }
320 
321 static int sta_prepare_rate_control(struct ieee80211_local *local,
322 				    struct sta_info *sta, gfp_t gfp)
323 {
324 	if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
325 		return 0;
326 
327 	sta->rate_ctrl = local->rate_ctrl;
328 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
329 						     sta, gfp);
330 	if (!sta->rate_ctrl_priv)
331 		return -ENOMEM;
332 
333 	return 0;
334 }
335 
336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
337 				const u8 *addr, gfp_t gfp)
338 {
339 	struct ieee80211_local *local = sdata->local;
340 	struct ieee80211_hw *hw = &local->hw;
341 	struct sta_info *sta;
342 	int i;
343 
344 	sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
345 	if (!sta)
346 		return NULL;
347 
348 	if (ieee80211_hw_check(hw, USES_RSS)) {
349 		sta->pcpu_rx_stats =
350 			alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
351 		if (!sta->pcpu_rx_stats)
352 			goto free;
353 	}
354 
355 	spin_lock_init(&sta->lock);
356 	spin_lock_init(&sta->ps_lock);
357 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
358 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
359 	mutex_init(&sta->ampdu_mlme.mtx);
360 #ifdef CONFIG_MAC80211_MESH
361 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
362 		sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
363 		if (!sta->mesh)
364 			goto free;
365 		sta->mesh->plink_sta = sta;
366 		spin_lock_init(&sta->mesh->plink_lock);
367 		if (ieee80211_vif_is_mesh(&sdata->vif) &&
368 		    !sdata->u.mesh.user_mpm)
369 			timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
370 				    0);
371 		sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
372 	}
373 #endif
374 
375 	memcpy(sta->addr, addr, ETH_ALEN);
376 	memcpy(sta->sta.addr, addr, ETH_ALEN);
377 	sta->sta.max_rx_aggregation_subframes =
378 		local->hw.max_rx_aggregation_subframes;
379 
380 	/* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
381 	 * The Tx path starts to use a key as soon as the key slot ptk_idx
382 	 * references to is not NULL. To not use the initial Rx-only key
383 	 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
384 	 * which always will refer to a NULL key.
385 	 */
386 	BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
387 	sta->ptk_idx = INVALID_PTK_KEYIDX;
388 
389 	sta->local = local;
390 	sta->sdata = sdata;
391 	sta->rx_stats.last_rx = jiffies;
392 
393 	u64_stats_init(&sta->rx_stats.syncp);
394 
395 	ieee80211_init_frag_cache(&sta->frags);
396 
397 	sta->sta_state = IEEE80211_STA_NONE;
398 
399 	/* Mark TID as unreserved */
400 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
401 
402 	sta->last_connected = ktime_get_seconds();
403 	ewma_signal_init(&sta->rx_stats_avg.signal);
404 	ewma_avg_signal_init(&sta->status_stats.avg_ack_signal);
405 	for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
406 		ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
407 
408 	if (local->ops->wake_tx_queue) {
409 		void *txq_data;
410 		int size = sizeof(struct txq_info) +
411 			   ALIGN(hw->txq_data_size, sizeof(void *));
412 
413 		txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
414 		if (!txq_data)
415 			goto free;
416 
417 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
418 			struct txq_info *txq = txq_data + i * size;
419 
420 			/* might not do anything for the bufferable MMPDU TXQ */
421 			ieee80211_txq_init(sdata, sta, txq, i);
422 		}
423 	}
424 
425 	if (sta_prepare_rate_control(local, sta, gfp))
426 		goto free_txq;
427 
428 
429 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
430 		skb_queue_head_init(&sta->ps_tx_buf[i]);
431 		skb_queue_head_init(&sta->tx_filtered[i]);
432 		init_airtime_info(&sta->airtime[i], &local->airtime[i]);
433 	}
434 
435 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
436 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
437 
438 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
439 		u32 mandatory = 0;
440 		int r;
441 
442 		if (!hw->wiphy->bands[i])
443 			continue;
444 
445 		switch (i) {
446 		case NL80211_BAND_2GHZ:
447 		case NL80211_BAND_LC:
448 			/*
449 			 * We use both here, even if we cannot really know for
450 			 * sure the station will support both, but the only use
451 			 * for this is when we don't know anything yet and send
452 			 * management frames, and then we'll pick the lowest
453 			 * possible rate anyway.
454 			 * If we don't include _G here, we cannot find a rate
455 			 * in P2P, and thus trigger the WARN_ONCE() in rate.c
456 			 */
457 			mandatory = IEEE80211_RATE_MANDATORY_B |
458 				    IEEE80211_RATE_MANDATORY_G;
459 			break;
460 		case NL80211_BAND_5GHZ:
461 			mandatory = IEEE80211_RATE_MANDATORY_A;
462 			break;
463 		case NL80211_BAND_60GHZ:
464 			WARN_ON(1);
465 			mandatory = 0;
466 			break;
467 		}
468 
469 		for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
470 			struct ieee80211_rate *rate;
471 
472 			rate = &hw->wiphy->bands[i]->bitrates[r];
473 
474 			if (!(rate->flags & mandatory))
475 				continue;
476 			sta->sta.supp_rates[i] |= BIT(r);
477 		}
478 	}
479 
480 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
481 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
482 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
483 		struct ieee80211_supported_band *sband;
484 		u8 smps;
485 
486 		sband = ieee80211_get_sband(sdata);
487 		if (!sband)
488 			goto free_txq;
489 
490 		smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
491 			IEEE80211_HT_CAP_SM_PS_SHIFT;
492 		/*
493 		 * Assume that hostapd advertises our caps in the beacon and
494 		 * this is the known_smps_mode for a station that just assciated
495 		 */
496 		switch (smps) {
497 		case WLAN_HT_SMPS_CONTROL_DISABLED:
498 			sta->known_smps_mode = IEEE80211_SMPS_OFF;
499 			break;
500 		case WLAN_HT_SMPS_CONTROL_STATIC:
501 			sta->known_smps_mode = IEEE80211_SMPS_STATIC;
502 			break;
503 		case WLAN_HT_SMPS_CONTROL_DYNAMIC:
504 			sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
505 			break;
506 		default:
507 			WARN_ON(1);
508 		}
509 	}
510 
511 	sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
512 
513 	sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
514 	sta->cparams.target = MS2TIME(20);
515 	sta->cparams.interval = MS2TIME(100);
516 	sta->cparams.ecn = true;
517 	sta->cparams.ce_threshold_selector = 0;
518 	sta->cparams.ce_threshold_mask = 0;
519 
520 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
521 
522 	return sta;
523 
524 free_txq:
525 	if (sta->sta.txq[0])
526 		kfree(to_txq_info(sta->sta.txq[0]));
527 free:
528 	free_percpu(sta->pcpu_rx_stats);
529 #ifdef CONFIG_MAC80211_MESH
530 	kfree(sta->mesh);
531 #endif
532 	kfree(sta);
533 	return NULL;
534 }
535 
536 static int sta_info_insert_check(struct sta_info *sta)
537 {
538 	struct ieee80211_sub_if_data *sdata = sta->sdata;
539 
540 	/*
541 	 * Can't be a WARN_ON because it can be triggered through a race:
542 	 * something inserts a STA (on one CPU) without holding the RTNL
543 	 * and another CPU turns off the net device.
544 	 */
545 	if (unlikely(!ieee80211_sdata_running(sdata)))
546 		return -ENETDOWN;
547 
548 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
549 		    !is_valid_ether_addr(sta->sta.addr)))
550 		return -EINVAL;
551 
552 	/* The RCU read lock is required by rhashtable due to
553 	 * asynchronous resize/rehash.  We also require the mutex
554 	 * for correctness.
555 	 */
556 	rcu_read_lock();
557 	lockdep_assert_held(&sdata->local->sta_mtx);
558 	if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
559 	    ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
560 		rcu_read_unlock();
561 		return -ENOTUNIQ;
562 	}
563 	rcu_read_unlock();
564 
565 	return 0;
566 }
567 
568 static int sta_info_insert_drv_state(struct ieee80211_local *local,
569 				     struct ieee80211_sub_if_data *sdata,
570 				     struct sta_info *sta)
571 {
572 	enum ieee80211_sta_state state;
573 	int err = 0;
574 
575 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
576 		err = drv_sta_state(local, sdata, sta, state, state + 1);
577 		if (err)
578 			break;
579 	}
580 
581 	if (!err) {
582 		/*
583 		 * Drivers using legacy sta_add/sta_remove callbacks only
584 		 * get uploaded set to true after sta_add is called.
585 		 */
586 		if (!local->ops->sta_add)
587 			sta->uploaded = true;
588 		return 0;
589 	}
590 
591 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
592 		sdata_info(sdata,
593 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
594 			   sta->sta.addr, state + 1, err);
595 		err = 0;
596 	}
597 
598 	/* unwind on error */
599 	for (; state > IEEE80211_STA_NOTEXIST; state--)
600 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
601 
602 	return err;
603 }
604 
605 static void
606 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
607 {
608 	struct ieee80211_local *local = sdata->local;
609 	bool allow_p2p_go_ps = sdata->vif.p2p;
610 	struct sta_info *sta;
611 
612 	rcu_read_lock();
613 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
614 		if (sdata != sta->sdata ||
615 		    !test_sta_flag(sta, WLAN_STA_ASSOC))
616 			continue;
617 		if (!sta->sta.support_p2p_ps) {
618 			allow_p2p_go_ps = false;
619 			break;
620 		}
621 	}
622 	rcu_read_unlock();
623 
624 	if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
625 		sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
626 		ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
627 	}
628 }
629 
630 /*
631  * should be called with sta_mtx locked
632  * this function replaces the mutex lock
633  * with a RCU lock
634  */
635 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
636 {
637 	struct ieee80211_local *local = sta->local;
638 	struct ieee80211_sub_if_data *sdata = sta->sdata;
639 	struct station_info *sinfo = NULL;
640 	int err = 0;
641 
642 	lockdep_assert_held(&local->sta_mtx);
643 
644 	/* check if STA exists already */
645 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
646 		err = -EEXIST;
647 		goto out_cleanup;
648 	}
649 
650 	sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
651 	if (!sinfo) {
652 		err = -ENOMEM;
653 		goto out_cleanup;
654 	}
655 
656 	local->num_sta++;
657 	local->sta_generation++;
658 	smp_mb();
659 
660 	/* simplify things and don't accept BA sessions yet */
661 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
662 
663 	/* make the station visible */
664 	err = sta_info_hash_add(local, sta);
665 	if (err)
666 		goto out_drop_sta;
667 
668 	list_add_tail_rcu(&sta->list, &local->sta_list);
669 
670 	/* update channel context before notifying the driver about state
671 	 * change, this enables driver using the updated channel context right away.
672 	 */
673 	if (sta->sta_state >= IEEE80211_STA_ASSOC) {
674 		ieee80211_recalc_min_chandef(sta->sdata);
675 		if (!sta->sta.support_p2p_ps)
676 			ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
677 	}
678 
679 	/* notify driver */
680 	err = sta_info_insert_drv_state(local, sdata, sta);
681 	if (err)
682 		goto out_remove;
683 
684 	set_sta_flag(sta, WLAN_STA_INSERTED);
685 
686 	/* accept BA sessions now */
687 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
688 
689 	ieee80211_sta_debugfs_add(sta);
690 	rate_control_add_sta_debugfs(sta);
691 
692 	sinfo->generation = local->sta_generation;
693 	cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
694 	kfree(sinfo);
695 
696 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
697 
698 	/* move reference to rcu-protected */
699 	rcu_read_lock();
700 	mutex_unlock(&local->sta_mtx);
701 
702 	if (ieee80211_vif_is_mesh(&sdata->vif))
703 		mesh_accept_plinks_update(sdata);
704 
705 	return 0;
706  out_remove:
707 	sta_info_hash_del(local, sta);
708 	list_del_rcu(&sta->list);
709  out_drop_sta:
710 	local->num_sta--;
711 	synchronize_net();
712  out_cleanup:
713 	cleanup_single_sta(sta);
714 	mutex_unlock(&local->sta_mtx);
715 	kfree(sinfo);
716 	rcu_read_lock();
717 	return err;
718 }
719 
720 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
721 {
722 	struct ieee80211_local *local = sta->local;
723 	int err;
724 
725 	might_sleep();
726 
727 	mutex_lock(&local->sta_mtx);
728 
729 	err = sta_info_insert_check(sta);
730 	if (err) {
731 		sta_info_free(local, sta);
732 		mutex_unlock(&local->sta_mtx);
733 		rcu_read_lock();
734 		return err;
735 	}
736 
737 	return sta_info_insert_finish(sta);
738 }
739 
740 int sta_info_insert(struct sta_info *sta)
741 {
742 	int err = sta_info_insert_rcu(sta);
743 
744 	rcu_read_unlock();
745 
746 	return err;
747 }
748 
749 static inline void __bss_tim_set(u8 *tim, u16 id)
750 {
751 	/*
752 	 * This format has been mandated by the IEEE specifications,
753 	 * so this line may not be changed to use the __set_bit() format.
754 	 */
755 	tim[id / 8] |= (1 << (id % 8));
756 }
757 
758 static inline void __bss_tim_clear(u8 *tim, u16 id)
759 {
760 	/*
761 	 * This format has been mandated by the IEEE specifications,
762 	 * so this line may not be changed to use the __clear_bit() format.
763 	 */
764 	tim[id / 8] &= ~(1 << (id % 8));
765 }
766 
767 static inline bool __bss_tim_get(u8 *tim, u16 id)
768 {
769 	/*
770 	 * This format has been mandated by the IEEE specifications,
771 	 * so this line may not be changed to use the test_bit() format.
772 	 */
773 	return tim[id / 8] & (1 << (id % 8));
774 }
775 
776 static unsigned long ieee80211_tids_for_ac(int ac)
777 {
778 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
779 	switch (ac) {
780 	case IEEE80211_AC_VO:
781 		return BIT(6) | BIT(7);
782 	case IEEE80211_AC_VI:
783 		return BIT(4) | BIT(5);
784 	case IEEE80211_AC_BE:
785 		return BIT(0) | BIT(3);
786 	case IEEE80211_AC_BK:
787 		return BIT(1) | BIT(2);
788 	default:
789 		WARN_ON(1);
790 		return 0;
791 	}
792 }
793 
794 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
795 {
796 	struct ieee80211_local *local = sta->local;
797 	struct ps_data *ps;
798 	bool indicate_tim = false;
799 	u8 ignore_for_tim = sta->sta.uapsd_queues;
800 	int ac;
801 	u16 id = sta->sta.aid;
802 
803 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
804 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
805 		if (WARN_ON_ONCE(!sta->sdata->bss))
806 			return;
807 
808 		ps = &sta->sdata->bss->ps;
809 #ifdef CONFIG_MAC80211_MESH
810 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
811 		ps = &sta->sdata->u.mesh.ps;
812 #endif
813 	} else {
814 		return;
815 	}
816 
817 	/* No need to do anything if the driver does all */
818 	if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
819 		return;
820 
821 	if (sta->dead)
822 		goto done;
823 
824 	/*
825 	 * If all ACs are delivery-enabled then we should build
826 	 * the TIM bit for all ACs anyway; if only some are then
827 	 * we ignore those and build the TIM bit using only the
828 	 * non-enabled ones.
829 	 */
830 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
831 		ignore_for_tim = 0;
832 
833 	if (ignore_pending)
834 		ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
835 
836 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
837 		unsigned long tids;
838 
839 		if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
840 			continue;
841 
842 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
843 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
844 		if (indicate_tim)
845 			break;
846 
847 		tids = ieee80211_tids_for_ac(ac);
848 
849 		indicate_tim |=
850 			sta->driver_buffered_tids & tids;
851 		indicate_tim |=
852 			sta->txq_buffered_tids & tids;
853 	}
854 
855  done:
856 	spin_lock_bh(&local->tim_lock);
857 
858 	if (indicate_tim == __bss_tim_get(ps->tim, id))
859 		goto out_unlock;
860 
861 	if (indicate_tim)
862 		__bss_tim_set(ps->tim, id);
863 	else
864 		__bss_tim_clear(ps->tim, id);
865 
866 	if (local->ops->set_tim && !WARN_ON(sta->dead)) {
867 		local->tim_in_locked_section = true;
868 		drv_set_tim(local, &sta->sta, indicate_tim);
869 		local->tim_in_locked_section = false;
870 	}
871 
872 out_unlock:
873 	spin_unlock_bh(&local->tim_lock);
874 }
875 
876 void sta_info_recalc_tim(struct sta_info *sta)
877 {
878 	__sta_info_recalc_tim(sta, false);
879 }
880 
881 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
882 {
883 	struct ieee80211_tx_info *info;
884 	int timeout;
885 
886 	if (!skb)
887 		return false;
888 
889 	info = IEEE80211_SKB_CB(skb);
890 
891 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
892 	timeout = (sta->listen_interval *
893 		   sta->sdata->vif.bss_conf.beacon_int *
894 		   32 / 15625) * HZ;
895 	if (timeout < STA_TX_BUFFER_EXPIRE)
896 		timeout = STA_TX_BUFFER_EXPIRE;
897 	return time_after(jiffies, info->control.jiffies + timeout);
898 }
899 
900 
901 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
902 						struct sta_info *sta, int ac)
903 {
904 	unsigned long flags;
905 	struct sk_buff *skb;
906 
907 	/*
908 	 * First check for frames that should expire on the filtered
909 	 * queue. Frames here were rejected by the driver and are on
910 	 * a separate queue to avoid reordering with normal PS-buffered
911 	 * frames. They also aren't accounted for right now in the
912 	 * total_ps_buffered counter.
913 	 */
914 	for (;;) {
915 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
916 		skb = skb_peek(&sta->tx_filtered[ac]);
917 		if (sta_info_buffer_expired(sta, skb))
918 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
919 		else
920 			skb = NULL;
921 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
922 
923 		/*
924 		 * Frames are queued in order, so if this one
925 		 * hasn't expired yet we can stop testing. If
926 		 * we actually reached the end of the queue we
927 		 * also need to stop, of course.
928 		 */
929 		if (!skb)
930 			break;
931 		ieee80211_free_txskb(&local->hw, skb);
932 	}
933 
934 	/*
935 	 * Now also check the normal PS-buffered queue, this will
936 	 * only find something if the filtered queue was emptied
937 	 * since the filtered frames are all before the normal PS
938 	 * buffered frames.
939 	 */
940 	for (;;) {
941 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
942 		skb = skb_peek(&sta->ps_tx_buf[ac]);
943 		if (sta_info_buffer_expired(sta, skb))
944 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
945 		else
946 			skb = NULL;
947 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
948 
949 		/*
950 		 * frames are queued in order, so if this one
951 		 * hasn't expired yet (or we reached the end of
952 		 * the queue) we can stop testing
953 		 */
954 		if (!skb)
955 			break;
956 
957 		local->total_ps_buffered--;
958 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
959 		       sta->sta.addr);
960 		ieee80211_free_txskb(&local->hw, skb);
961 	}
962 
963 	/*
964 	 * Finally, recalculate the TIM bit for this station -- it might
965 	 * now be clear because the station was too slow to retrieve its
966 	 * frames.
967 	 */
968 	sta_info_recalc_tim(sta);
969 
970 	/*
971 	 * Return whether there are any frames still buffered, this is
972 	 * used to check whether the cleanup timer still needs to run,
973 	 * if there are no frames we don't need to rearm the timer.
974 	 */
975 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
976 		 skb_queue_empty(&sta->tx_filtered[ac]));
977 }
978 
979 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
980 					     struct sta_info *sta)
981 {
982 	bool have_buffered = false;
983 	int ac;
984 
985 	/* This is only necessary for stations on BSS/MBSS interfaces */
986 	if (!sta->sdata->bss &&
987 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
988 		return false;
989 
990 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
991 		have_buffered |=
992 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
993 
994 	return have_buffered;
995 }
996 
997 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
998 {
999 	struct ieee80211_local *local;
1000 	struct ieee80211_sub_if_data *sdata;
1001 	int ret;
1002 
1003 	might_sleep();
1004 
1005 	if (!sta)
1006 		return -ENOENT;
1007 
1008 	local = sta->local;
1009 	sdata = sta->sdata;
1010 
1011 	lockdep_assert_held(&local->sta_mtx);
1012 
1013 	/*
1014 	 * Before removing the station from the driver and
1015 	 * rate control, it might still start new aggregation
1016 	 * sessions -- block that to make sure the tear-down
1017 	 * will be sufficient.
1018 	 */
1019 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1020 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1021 
1022 	/*
1023 	 * Before removing the station from the driver there might be pending
1024 	 * rx frames on RSS queues sent prior to the disassociation - wait for
1025 	 * all such frames to be processed.
1026 	 */
1027 	drv_sync_rx_queues(local, sta);
1028 
1029 	ret = sta_info_hash_del(local, sta);
1030 	if (WARN_ON(ret))
1031 		return ret;
1032 
1033 	/*
1034 	 * for TDLS peers, make sure to return to the base channel before
1035 	 * removal.
1036 	 */
1037 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1038 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1039 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1040 	}
1041 
1042 	list_del_rcu(&sta->list);
1043 	sta->removed = true;
1044 
1045 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1046 
1047 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1048 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
1049 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1050 
1051 	return 0;
1052 }
1053 
1054 static void __sta_info_destroy_part2(struct sta_info *sta)
1055 {
1056 	struct ieee80211_local *local = sta->local;
1057 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1058 	struct station_info *sinfo;
1059 	int ret;
1060 
1061 	/*
1062 	 * NOTE: This assumes at least synchronize_net() was done
1063 	 *	 after _part1 and before _part2!
1064 	 */
1065 
1066 	might_sleep();
1067 	lockdep_assert_held(&local->sta_mtx);
1068 
1069 	if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1070 		ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1071 		WARN_ON_ONCE(ret);
1072 	}
1073 
1074 	/* now keys can no longer be reached */
1075 	ieee80211_free_sta_keys(local, sta);
1076 
1077 	/* disable TIM bit - last chance to tell driver */
1078 	__sta_info_recalc_tim(sta, true);
1079 
1080 	sta->dead = true;
1081 
1082 	local->num_sta--;
1083 	local->sta_generation++;
1084 
1085 	while (sta->sta_state > IEEE80211_STA_NONE) {
1086 		ret = sta_info_move_state(sta, sta->sta_state - 1);
1087 		if (ret) {
1088 			WARN_ON_ONCE(1);
1089 			break;
1090 		}
1091 	}
1092 
1093 	if (sta->uploaded) {
1094 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1095 				    IEEE80211_STA_NOTEXIST);
1096 		WARN_ON_ONCE(ret != 0);
1097 	}
1098 
1099 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1100 
1101 	sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1102 	if (sinfo)
1103 		sta_set_sinfo(sta, sinfo, true);
1104 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1105 	kfree(sinfo);
1106 
1107 	ieee80211_sta_debugfs_remove(sta);
1108 
1109 	ieee80211_destroy_frag_cache(&sta->frags);
1110 
1111 	cleanup_single_sta(sta);
1112 }
1113 
1114 int __must_check __sta_info_destroy(struct sta_info *sta)
1115 {
1116 	int err = __sta_info_destroy_part1(sta);
1117 
1118 	if (err)
1119 		return err;
1120 
1121 	synchronize_net();
1122 
1123 	__sta_info_destroy_part2(sta);
1124 
1125 	return 0;
1126 }
1127 
1128 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1129 {
1130 	struct sta_info *sta;
1131 	int ret;
1132 
1133 	mutex_lock(&sdata->local->sta_mtx);
1134 	sta = sta_info_get(sdata, addr);
1135 	ret = __sta_info_destroy(sta);
1136 	mutex_unlock(&sdata->local->sta_mtx);
1137 
1138 	return ret;
1139 }
1140 
1141 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1142 			      const u8 *addr)
1143 {
1144 	struct sta_info *sta;
1145 	int ret;
1146 
1147 	mutex_lock(&sdata->local->sta_mtx);
1148 	sta = sta_info_get_bss(sdata, addr);
1149 	ret = __sta_info_destroy(sta);
1150 	mutex_unlock(&sdata->local->sta_mtx);
1151 
1152 	return ret;
1153 }
1154 
1155 static void sta_info_cleanup(struct timer_list *t)
1156 {
1157 	struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1158 	struct sta_info *sta;
1159 	bool timer_needed = false;
1160 
1161 	rcu_read_lock();
1162 	list_for_each_entry_rcu(sta, &local->sta_list, list)
1163 		if (sta_info_cleanup_expire_buffered(local, sta))
1164 			timer_needed = true;
1165 	rcu_read_unlock();
1166 
1167 	if (local->quiescing)
1168 		return;
1169 
1170 	if (!timer_needed)
1171 		return;
1172 
1173 	mod_timer(&local->sta_cleanup,
1174 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1175 }
1176 
1177 int sta_info_init(struct ieee80211_local *local)
1178 {
1179 	int err;
1180 
1181 	err = rhltable_init(&local->sta_hash, &sta_rht_params);
1182 	if (err)
1183 		return err;
1184 
1185 	spin_lock_init(&local->tim_lock);
1186 	mutex_init(&local->sta_mtx);
1187 	INIT_LIST_HEAD(&local->sta_list);
1188 
1189 	timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1190 	return 0;
1191 }
1192 
1193 void sta_info_stop(struct ieee80211_local *local)
1194 {
1195 	del_timer_sync(&local->sta_cleanup);
1196 	rhltable_destroy(&local->sta_hash);
1197 }
1198 
1199 
1200 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1201 {
1202 	struct ieee80211_local *local = sdata->local;
1203 	struct sta_info *sta, *tmp;
1204 	LIST_HEAD(free_list);
1205 	int ret = 0;
1206 
1207 	might_sleep();
1208 
1209 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1210 	WARN_ON(vlans && !sdata->bss);
1211 
1212 	mutex_lock(&local->sta_mtx);
1213 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1214 		if (sdata == sta->sdata ||
1215 		    (vlans && sdata->bss == sta->sdata->bss)) {
1216 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1217 				list_add(&sta->free_list, &free_list);
1218 			ret++;
1219 		}
1220 	}
1221 
1222 	if (!list_empty(&free_list)) {
1223 		synchronize_net();
1224 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1225 			__sta_info_destroy_part2(sta);
1226 	}
1227 	mutex_unlock(&local->sta_mtx);
1228 
1229 	return ret;
1230 }
1231 
1232 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1233 			  unsigned long exp_time)
1234 {
1235 	struct ieee80211_local *local = sdata->local;
1236 	struct sta_info *sta, *tmp;
1237 
1238 	mutex_lock(&local->sta_mtx);
1239 
1240 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1241 		unsigned long last_active = ieee80211_sta_last_active(sta);
1242 
1243 		if (sdata != sta->sdata)
1244 			continue;
1245 
1246 		if (time_is_before_jiffies(last_active + exp_time)) {
1247 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1248 				sta->sta.addr);
1249 
1250 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1251 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1252 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1253 
1254 			WARN_ON(__sta_info_destroy(sta));
1255 		}
1256 	}
1257 
1258 	mutex_unlock(&local->sta_mtx);
1259 }
1260 
1261 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1262 						   const u8 *addr,
1263 						   const u8 *localaddr)
1264 {
1265 	struct ieee80211_local *local = hw_to_local(hw);
1266 	struct rhlist_head *tmp;
1267 	struct sta_info *sta;
1268 
1269 	/*
1270 	 * Just return a random station if localaddr is NULL
1271 	 * ... first in list.
1272 	 */
1273 	for_each_sta_info(local, addr, sta, tmp) {
1274 		if (localaddr &&
1275 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1276 			continue;
1277 		if (!sta->uploaded)
1278 			return NULL;
1279 		return &sta->sta;
1280 	}
1281 
1282 	return NULL;
1283 }
1284 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1285 
1286 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1287 					 const u8 *addr)
1288 {
1289 	struct sta_info *sta;
1290 
1291 	if (!vif)
1292 		return NULL;
1293 
1294 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1295 	if (!sta)
1296 		return NULL;
1297 
1298 	if (!sta->uploaded)
1299 		return NULL;
1300 
1301 	return &sta->sta;
1302 }
1303 EXPORT_SYMBOL(ieee80211_find_sta);
1304 
1305 /* powersave support code */
1306 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1307 {
1308 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1309 	struct ieee80211_local *local = sdata->local;
1310 	struct sk_buff_head pending;
1311 	int filtered = 0, buffered = 0, ac, i;
1312 	unsigned long flags;
1313 	struct ps_data *ps;
1314 
1315 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1316 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1317 				     u.ap);
1318 
1319 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1320 		ps = &sdata->bss->ps;
1321 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1322 		ps = &sdata->u.mesh.ps;
1323 	else
1324 		return;
1325 
1326 	clear_sta_flag(sta, WLAN_STA_SP);
1327 
1328 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1329 	sta->driver_buffered_tids = 0;
1330 	sta->txq_buffered_tids = 0;
1331 
1332 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1333 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1334 
1335 	for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1336 		if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1337 			continue;
1338 
1339 		schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1340 	}
1341 
1342 	skb_queue_head_init(&pending);
1343 
1344 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1345 	spin_lock(&sta->ps_lock);
1346 	/* Send all buffered frames to the station */
1347 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1348 		int count = skb_queue_len(&pending), tmp;
1349 
1350 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1351 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1352 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1353 		tmp = skb_queue_len(&pending);
1354 		filtered += tmp - count;
1355 		count = tmp;
1356 
1357 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1358 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1359 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1360 		tmp = skb_queue_len(&pending);
1361 		buffered += tmp - count;
1362 	}
1363 
1364 	ieee80211_add_pending_skbs(local, &pending);
1365 
1366 	/* now we're no longer in the deliver code */
1367 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1368 
1369 	/* The station might have polled and then woken up before we responded,
1370 	 * so clear these flags now to avoid them sticking around.
1371 	 */
1372 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1373 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1374 	spin_unlock(&sta->ps_lock);
1375 
1376 	atomic_dec(&ps->num_sta_ps);
1377 
1378 	local->total_ps_buffered -= buffered;
1379 
1380 	sta_info_recalc_tim(sta);
1381 
1382 	ps_dbg(sdata,
1383 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1384 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1385 
1386 	ieee80211_check_fast_xmit(sta);
1387 }
1388 
1389 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1390 					 enum ieee80211_frame_release_type reason,
1391 					 bool call_driver, bool more_data)
1392 {
1393 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1394 	struct ieee80211_local *local = sdata->local;
1395 	struct ieee80211_qos_hdr *nullfunc;
1396 	struct sk_buff *skb;
1397 	int size = sizeof(*nullfunc);
1398 	__le16 fc;
1399 	bool qos = sta->sta.wme;
1400 	struct ieee80211_tx_info *info;
1401 	struct ieee80211_chanctx_conf *chanctx_conf;
1402 
1403 	if (qos) {
1404 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1405 				 IEEE80211_STYPE_QOS_NULLFUNC |
1406 				 IEEE80211_FCTL_FROMDS);
1407 	} else {
1408 		size -= 2;
1409 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1410 				 IEEE80211_STYPE_NULLFUNC |
1411 				 IEEE80211_FCTL_FROMDS);
1412 	}
1413 
1414 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1415 	if (!skb)
1416 		return;
1417 
1418 	skb_reserve(skb, local->hw.extra_tx_headroom);
1419 
1420 	nullfunc = skb_put(skb, size);
1421 	nullfunc->frame_control = fc;
1422 	nullfunc->duration_id = 0;
1423 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1424 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1425 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1426 	nullfunc->seq_ctrl = 0;
1427 
1428 	skb->priority = tid;
1429 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1430 	if (qos) {
1431 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1432 
1433 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1434 			nullfunc->qos_ctrl |=
1435 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1436 			if (more_data)
1437 				nullfunc->frame_control |=
1438 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1439 		}
1440 	}
1441 
1442 	info = IEEE80211_SKB_CB(skb);
1443 
1444 	/*
1445 	 * Tell TX path to send this frame even though the
1446 	 * STA may still remain is PS mode after this frame
1447 	 * exchange. Also set EOSP to indicate this packet
1448 	 * ends the poll/service period.
1449 	 */
1450 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1451 		       IEEE80211_TX_STATUS_EOSP |
1452 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1453 
1454 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1455 
1456 	if (call_driver)
1457 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1458 					  reason, false);
1459 
1460 	skb->dev = sdata->dev;
1461 
1462 	rcu_read_lock();
1463 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1464 	if (WARN_ON(!chanctx_conf)) {
1465 		rcu_read_unlock();
1466 		kfree_skb(skb);
1467 		return;
1468 	}
1469 
1470 	info->band = chanctx_conf->def.chan->band;
1471 	ieee80211_xmit(sdata, sta, skb);
1472 	rcu_read_unlock();
1473 }
1474 
1475 static int find_highest_prio_tid(unsigned long tids)
1476 {
1477 	/* lower 3 TIDs aren't ordered perfectly */
1478 	if (tids & 0xF8)
1479 		return fls(tids) - 1;
1480 	/* TID 0 is BE just like TID 3 */
1481 	if (tids & BIT(0))
1482 		return 0;
1483 	return fls(tids) - 1;
1484 }
1485 
1486 /* Indicates if the MORE_DATA bit should be set in the last
1487  * frame obtained by ieee80211_sta_ps_get_frames.
1488  * Note that driver_release_tids is relevant only if
1489  * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1490  */
1491 static bool
1492 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1493 			   enum ieee80211_frame_release_type reason,
1494 			   unsigned long driver_release_tids)
1495 {
1496 	int ac;
1497 
1498 	/* If the driver has data on more than one TID then
1499 	 * certainly there's more data if we release just a
1500 	 * single frame now (from a single TID). This will
1501 	 * only happen for PS-Poll.
1502 	 */
1503 	if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1504 	    hweight16(driver_release_tids) > 1)
1505 		return true;
1506 
1507 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1508 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1509 			continue;
1510 
1511 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1512 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1513 			return true;
1514 	}
1515 
1516 	return false;
1517 }
1518 
1519 static void
1520 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1521 			    enum ieee80211_frame_release_type reason,
1522 			    struct sk_buff_head *frames,
1523 			    unsigned long *driver_release_tids)
1524 {
1525 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1526 	struct ieee80211_local *local = sdata->local;
1527 	int ac;
1528 
1529 	/* Get response frame(s) and more data bit for the last one. */
1530 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1531 		unsigned long tids;
1532 
1533 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1534 			continue;
1535 
1536 		tids = ieee80211_tids_for_ac(ac);
1537 
1538 		/* if we already have frames from software, then we can't also
1539 		 * release from hardware queues
1540 		 */
1541 		if (skb_queue_empty(frames)) {
1542 			*driver_release_tids |=
1543 				sta->driver_buffered_tids & tids;
1544 			*driver_release_tids |= sta->txq_buffered_tids & tids;
1545 		}
1546 
1547 		if (!*driver_release_tids) {
1548 			struct sk_buff *skb;
1549 
1550 			while (n_frames > 0) {
1551 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1552 				if (!skb) {
1553 					skb = skb_dequeue(
1554 						&sta->ps_tx_buf[ac]);
1555 					if (skb)
1556 						local->total_ps_buffered--;
1557 				}
1558 				if (!skb)
1559 					break;
1560 				n_frames--;
1561 				__skb_queue_tail(frames, skb);
1562 			}
1563 		}
1564 
1565 		/* If we have more frames buffered on this AC, then abort the
1566 		 * loop since we can't send more data from other ACs before
1567 		 * the buffered frames from this.
1568 		 */
1569 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1570 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1571 			break;
1572 	}
1573 }
1574 
1575 static void
1576 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1577 				  int n_frames, u8 ignored_acs,
1578 				  enum ieee80211_frame_release_type reason)
1579 {
1580 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1581 	struct ieee80211_local *local = sdata->local;
1582 	unsigned long driver_release_tids = 0;
1583 	struct sk_buff_head frames;
1584 	bool more_data;
1585 
1586 	/* Service or PS-Poll period starts */
1587 	set_sta_flag(sta, WLAN_STA_SP);
1588 
1589 	__skb_queue_head_init(&frames);
1590 
1591 	ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1592 				    &frames, &driver_release_tids);
1593 
1594 	more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1595 
1596 	if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1597 		driver_release_tids =
1598 			BIT(find_highest_prio_tid(driver_release_tids));
1599 
1600 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1601 		int tid, ac;
1602 
1603 		/*
1604 		 * For PS-Poll, this can only happen due to a race condition
1605 		 * when we set the TIM bit and the station notices it, but
1606 		 * before it can poll for the frame we expire it.
1607 		 *
1608 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1609 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1610 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1611 		 *	more than the value specified in the Max SP Length field
1612 		 *	in the QoS Capability element from delivery-enabled ACs,
1613 		 *	that are destined for the non-AP STA.
1614 		 *
1615 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1616 		 */
1617 
1618 		/* This will evaluate to 1, 3, 5 or 7. */
1619 		for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1620 			if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1621 				break;
1622 		tid = 7 - 2 * ac;
1623 
1624 		ieee80211_send_null_response(sta, tid, reason, true, false);
1625 	} else if (!driver_release_tids) {
1626 		struct sk_buff_head pending;
1627 		struct sk_buff *skb;
1628 		int num = 0;
1629 		u16 tids = 0;
1630 		bool need_null = false;
1631 
1632 		skb_queue_head_init(&pending);
1633 
1634 		while ((skb = __skb_dequeue(&frames))) {
1635 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1636 			struct ieee80211_hdr *hdr = (void *) skb->data;
1637 			u8 *qoshdr = NULL;
1638 
1639 			num++;
1640 
1641 			/*
1642 			 * Tell TX path to send this frame even though the
1643 			 * STA may still remain is PS mode after this frame
1644 			 * exchange.
1645 			 */
1646 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1647 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1648 
1649 			/*
1650 			 * Use MoreData flag to indicate whether there are
1651 			 * more buffered frames for this STA
1652 			 */
1653 			if (more_data || !skb_queue_empty(&frames))
1654 				hdr->frame_control |=
1655 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1656 			else
1657 				hdr->frame_control &=
1658 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1659 
1660 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1661 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1662 				qoshdr = ieee80211_get_qos_ctl(hdr);
1663 
1664 			tids |= BIT(skb->priority);
1665 
1666 			__skb_queue_tail(&pending, skb);
1667 
1668 			/* end service period after last frame or add one */
1669 			if (!skb_queue_empty(&frames))
1670 				continue;
1671 
1672 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1673 				/* for PS-Poll, there's only one frame */
1674 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1675 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1676 				break;
1677 			}
1678 
1679 			/* For uAPSD, things are a bit more complicated. If the
1680 			 * last frame has a QoS header (i.e. is a QoS-data or
1681 			 * QoS-nulldata frame) then just set the EOSP bit there
1682 			 * and be done.
1683 			 * If the frame doesn't have a QoS header (which means
1684 			 * it should be a bufferable MMPDU) then we can't set
1685 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1686 			 * frame to the list to send it after the MMPDU.
1687 			 *
1688 			 * Note that this code is only in the mac80211-release
1689 			 * code path, we assume that the driver will not buffer
1690 			 * anything but QoS-data frames, or if it does, will
1691 			 * create the QoS-nulldata frame by itself if needed.
1692 			 *
1693 			 * Cf. 802.11-2012 10.2.1.10 (c).
1694 			 */
1695 			if (qoshdr) {
1696 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1697 
1698 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1699 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1700 			} else {
1701 				/* The standard isn't completely clear on this
1702 				 * as it says the more-data bit should be set
1703 				 * if there are more BUs. The QoS-Null frame
1704 				 * we're about to send isn't buffered yet, we
1705 				 * only create it below, but let's pretend it
1706 				 * was buffered just in case some clients only
1707 				 * expect more-data=0 when eosp=1.
1708 				 */
1709 				hdr->frame_control |=
1710 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1711 				need_null = true;
1712 				num++;
1713 			}
1714 			break;
1715 		}
1716 
1717 		drv_allow_buffered_frames(local, sta, tids, num,
1718 					  reason, more_data);
1719 
1720 		ieee80211_add_pending_skbs(local, &pending);
1721 
1722 		if (need_null)
1723 			ieee80211_send_null_response(
1724 				sta, find_highest_prio_tid(tids),
1725 				reason, false, false);
1726 
1727 		sta_info_recalc_tim(sta);
1728 	} else {
1729 		int tid;
1730 
1731 		/*
1732 		 * We need to release a frame that is buffered somewhere in the
1733 		 * driver ... it'll have to handle that.
1734 		 * Note that the driver also has to check the number of frames
1735 		 * on the TIDs we're releasing from - if there are more than
1736 		 * n_frames it has to set the more-data bit (if we didn't ask
1737 		 * it to set it anyway due to other buffered frames); if there
1738 		 * are fewer than n_frames it has to make sure to adjust that
1739 		 * to allow the service period to end properly.
1740 		 */
1741 		drv_release_buffered_frames(local, sta, driver_release_tids,
1742 					    n_frames, reason, more_data);
1743 
1744 		/*
1745 		 * Note that we don't recalculate the TIM bit here as it would
1746 		 * most likely have no effect at all unless the driver told us
1747 		 * that the TID(s) became empty before returning here from the
1748 		 * release function.
1749 		 * Either way, however, when the driver tells us that the TID(s)
1750 		 * became empty or we find that a txq became empty, we'll do the
1751 		 * TIM recalculation.
1752 		 */
1753 
1754 		if (!sta->sta.txq[0])
1755 			return;
1756 
1757 		for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1758 			if (!sta->sta.txq[tid] ||
1759 			    !(driver_release_tids & BIT(tid)) ||
1760 			    txq_has_queue(sta->sta.txq[tid]))
1761 				continue;
1762 
1763 			sta_info_recalc_tim(sta);
1764 			break;
1765 		}
1766 	}
1767 }
1768 
1769 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1770 {
1771 	u8 ignore_for_response = sta->sta.uapsd_queues;
1772 
1773 	/*
1774 	 * If all ACs are delivery-enabled then we should reply
1775 	 * from any of them, if only some are enabled we reply
1776 	 * only from the non-enabled ones.
1777 	 */
1778 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1779 		ignore_for_response = 0;
1780 
1781 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1782 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1783 }
1784 
1785 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1786 {
1787 	int n_frames = sta->sta.max_sp;
1788 	u8 delivery_enabled = sta->sta.uapsd_queues;
1789 
1790 	/*
1791 	 * If we ever grow support for TSPEC this might happen if
1792 	 * the TSPEC update from hostapd comes in between a trigger
1793 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1794 	 * actually getting called.
1795 	 */
1796 	if (!delivery_enabled)
1797 		return;
1798 
1799 	switch (sta->sta.max_sp) {
1800 	case 1:
1801 		n_frames = 2;
1802 		break;
1803 	case 2:
1804 		n_frames = 4;
1805 		break;
1806 	case 3:
1807 		n_frames = 6;
1808 		break;
1809 	case 0:
1810 		/* XXX: what is a good value? */
1811 		n_frames = 128;
1812 		break;
1813 	}
1814 
1815 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1816 					  IEEE80211_FRAME_RELEASE_UAPSD);
1817 }
1818 
1819 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1820 			       struct ieee80211_sta *pubsta, bool block)
1821 {
1822 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1823 
1824 	trace_api_sta_block_awake(sta->local, pubsta, block);
1825 
1826 	if (block) {
1827 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1828 		ieee80211_clear_fast_xmit(sta);
1829 		return;
1830 	}
1831 
1832 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1833 		return;
1834 
1835 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1836 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1837 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1838 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1839 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1840 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
1841 		/* must be asleep in this case */
1842 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1843 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1844 	} else {
1845 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1846 		ieee80211_check_fast_xmit(sta);
1847 	}
1848 }
1849 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1850 
1851 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1852 {
1853 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1854 	struct ieee80211_local *local = sta->local;
1855 
1856 	trace_api_eosp(local, pubsta);
1857 
1858 	clear_sta_flag(sta, WLAN_STA_SP);
1859 }
1860 EXPORT_SYMBOL(ieee80211_sta_eosp);
1861 
1862 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1863 {
1864 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1865 	enum ieee80211_frame_release_type reason;
1866 	bool more_data;
1867 
1868 	trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1869 
1870 	reason = IEEE80211_FRAME_RELEASE_UAPSD;
1871 	more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1872 					       reason, 0);
1873 
1874 	ieee80211_send_null_response(sta, tid, reason, false, more_data);
1875 }
1876 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1877 
1878 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1879 				u8 tid, bool buffered)
1880 {
1881 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1882 
1883 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1884 		return;
1885 
1886 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1887 
1888 	if (buffered)
1889 		set_bit(tid, &sta->driver_buffered_tids);
1890 	else
1891 		clear_bit(tid, &sta->driver_buffered_tids);
1892 
1893 	sta_info_recalc_tim(sta);
1894 }
1895 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1896 
1897 void ieee80211_register_airtime(struct ieee80211_txq *txq,
1898 				u32 tx_airtime, u32 rx_airtime)
1899 {
1900 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif);
1901 	struct ieee80211_local *local = sdata->local;
1902 	u64 weight_sum, weight_sum_reciprocal;
1903 	struct airtime_sched_info *air_sched;
1904 	struct airtime_info *air_info;
1905 	u32 airtime = 0;
1906 
1907 	air_sched = &local->airtime[txq->ac];
1908 	air_info = to_airtime_info(txq);
1909 
1910 	if (local->airtime_flags & AIRTIME_USE_TX)
1911 		airtime += tx_airtime;
1912 	if (local->airtime_flags & AIRTIME_USE_RX)
1913 		airtime += rx_airtime;
1914 
1915 	/* Weights scale so the unit weight is 256 */
1916 	airtime <<= 8;
1917 
1918 	spin_lock_bh(&air_sched->lock);
1919 
1920 	air_info->tx_airtime += tx_airtime;
1921 	air_info->rx_airtime += rx_airtime;
1922 
1923 	if (air_sched->weight_sum) {
1924 		weight_sum = air_sched->weight_sum;
1925 		weight_sum_reciprocal = air_sched->weight_sum_reciprocal;
1926 	} else {
1927 		weight_sum = air_info->weight;
1928 		weight_sum_reciprocal = air_info->weight_reciprocal;
1929 	}
1930 
1931 	/* Round the calculation of global vt */
1932 	air_sched->v_t += (u64)((airtime + (weight_sum >> 1)) *
1933 				weight_sum_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_64;
1934 	air_info->v_t += (u32)((airtime + (air_info->weight >> 1)) *
1935 			       air_info->weight_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_32;
1936 	ieee80211_resort_txq(&local->hw, txq);
1937 
1938 	spin_unlock_bh(&air_sched->lock);
1939 }
1940 
1941 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1942 				    u32 tx_airtime, u32 rx_airtime)
1943 {
1944 	struct ieee80211_txq *txq = pubsta->txq[tid];
1945 
1946 	if (!txq)
1947 		return;
1948 
1949 	ieee80211_register_airtime(txq, tx_airtime, rx_airtime);
1950 }
1951 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1952 
1953 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
1954 					  struct sta_info *sta, u8 ac,
1955 					  u16 tx_airtime, bool tx_completed)
1956 {
1957 	int tx_pending;
1958 
1959 	if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
1960 		return;
1961 
1962 	if (!tx_completed) {
1963 		if (sta)
1964 			atomic_add(tx_airtime,
1965 				   &sta->airtime[ac].aql_tx_pending);
1966 
1967 		atomic_add(tx_airtime, &local->aql_total_pending_airtime);
1968 		return;
1969 	}
1970 
1971 	if (sta) {
1972 		tx_pending = atomic_sub_return(tx_airtime,
1973 					       &sta->airtime[ac].aql_tx_pending);
1974 		if (tx_pending < 0)
1975 			atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
1976 				       tx_pending, 0);
1977 	}
1978 
1979 	tx_pending = atomic_sub_return(tx_airtime,
1980 				       &local->aql_total_pending_airtime);
1981 	if (WARN_ONCE(tx_pending < 0,
1982 		      "Device %s AC %d pending airtime underflow: %u, %u",
1983 		      wiphy_name(local->hw.wiphy), ac, tx_pending,
1984 		      tx_airtime))
1985 		atomic_cmpxchg(&local->aql_total_pending_airtime,
1986 			       tx_pending, 0);
1987 }
1988 
1989 int sta_info_move_state(struct sta_info *sta,
1990 			enum ieee80211_sta_state new_state)
1991 {
1992 	might_sleep();
1993 
1994 	if (sta->sta_state == new_state)
1995 		return 0;
1996 
1997 	/* check allowed transitions first */
1998 
1999 	switch (new_state) {
2000 	case IEEE80211_STA_NONE:
2001 		if (sta->sta_state != IEEE80211_STA_AUTH)
2002 			return -EINVAL;
2003 		break;
2004 	case IEEE80211_STA_AUTH:
2005 		if (sta->sta_state != IEEE80211_STA_NONE &&
2006 		    sta->sta_state != IEEE80211_STA_ASSOC)
2007 			return -EINVAL;
2008 		break;
2009 	case IEEE80211_STA_ASSOC:
2010 		if (sta->sta_state != IEEE80211_STA_AUTH &&
2011 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
2012 			return -EINVAL;
2013 		break;
2014 	case IEEE80211_STA_AUTHORIZED:
2015 		if (sta->sta_state != IEEE80211_STA_ASSOC)
2016 			return -EINVAL;
2017 		break;
2018 	default:
2019 		WARN(1, "invalid state %d", new_state);
2020 		return -EINVAL;
2021 	}
2022 
2023 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
2024 		sta->sta.addr, new_state);
2025 
2026 	/*
2027 	 * notify the driver before the actual changes so it can
2028 	 * fail the transition
2029 	 */
2030 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
2031 		int err = drv_sta_state(sta->local, sta->sdata, sta,
2032 					sta->sta_state, new_state);
2033 		if (err)
2034 			return err;
2035 	}
2036 
2037 	/* reflect the change in all state variables */
2038 
2039 	switch (new_state) {
2040 	case IEEE80211_STA_NONE:
2041 		if (sta->sta_state == IEEE80211_STA_AUTH)
2042 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
2043 		break;
2044 	case IEEE80211_STA_AUTH:
2045 		if (sta->sta_state == IEEE80211_STA_NONE) {
2046 			set_bit(WLAN_STA_AUTH, &sta->_flags);
2047 		} else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2048 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2049 			ieee80211_recalc_min_chandef(sta->sdata);
2050 			if (!sta->sta.support_p2p_ps)
2051 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2052 		}
2053 		break;
2054 	case IEEE80211_STA_ASSOC:
2055 		if (sta->sta_state == IEEE80211_STA_AUTH) {
2056 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
2057 			sta->assoc_at = ktime_get_boottime_ns();
2058 			ieee80211_recalc_min_chandef(sta->sdata);
2059 			if (!sta->sta.support_p2p_ps)
2060 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2061 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2062 			ieee80211_vif_dec_num_mcast(sta->sdata);
2063 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2064 			ieee80211_clear_fast_xmit(sta);
2065 			ieee80211_clear_fast_rx(sta);
2066 		}
2067 		break;
2068 	case IEEE80211_STA_AUTHORIZED:
2069 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
2070 			ieee80211_vif_inc_num_mcast(sta->sdata);
2071 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2072 			ieee80211_check_fast_xmit(sta);
2073 			ieee80211_check_fast_rx(sta);
2074 		}
2075 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2076 		    sta->sdata->vif.type == NL80211_IFTYPE_AP)
2077 			cfg80211_send_layer2_update(sta->sdata->dev,
2078 						    sta->sta.addr);
2079 		break;
2080 	default:
2081 		break;
2082 	}
2083 
2084 	sta->sta_state = new_state;
2085 
2086 	return 0;
2087 }
2088 
2089 u8 sta_info_tx_streams(struct sta_info *sta)
2090 {
2091 	struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
2092 	u8 rx_streams;
2093 
2094 	if (!sta->sta.ht_cap.ht_supported)
2095 		return 1;
2096 
2097 	if (sta->sta.vht_cap.vht_supported) {
2098 		int i;
2099 		u16 tx_mcs_map =
2100 			le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
2101 
2102 		for (i = 7; i >= 0; i--)
2103 			if ((tx_mcs_map & (0x3 << (i * 2))) !=
2104 			    IEEE80211_VHT_MCS_NOT_SUPPORTED)
2105 				return i + 1;
2106 	}
2107 
2108 	if (ht_cap->mcs.rx_mask[3])
2109 		rx_streams = 4;
2110 	else if (ht_cap->mcs.rx_mask[2])
2111 		rx_streams = 3;
2112 	else if (ht_cap->mcs.rx_mask[1])
2113 		rx_streams = 2;
2114 	else
2115 		rx_streams = 1;
2116 
2117 	if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2118 		return rx_streams;
2119 
2120 	return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2121 			>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2122 }
2123 
2124 static struct ieee80211_sta_rx_stats *
2125 sta_get_last_rx_stats(struct sta_info *sta)
2126 {
2127 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
2128 	int cpu;
2129 
2130 	if (!sta->pcpu_rx_stats)
2131 		return stats;
2132 
2133 	for_each_possible_cpu(cpu) {
2134 		struct ieee80211_sta_rx_stats *cpustats;
2135 
2136 		cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2137 
2138 		if (time_after(cpustats->last_rx, stats->last_rx))
2139 			stats = cpustats;
2140 	}
2141 
2142 	return stats;
2143 }
2144 
2145 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2146 				  struct rate_info *rinfo)
2147 {
2148 	rinfo->bw = STA_STATS_GET(BW, rate);
2149 
2150 	switch (STA_STATS_GET(TYPE, rate)) {
2151 	case STA_STATS_RATE_TYPE_VHT:
2152 		rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2153 		rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2154 		rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2155 		if (STA_STATS_GET(SGI, rate))
2156 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2157 		break;
2158 	case STA_STATS_RATE_TYPE_HT:
2159 		rinfo->flags = RATE_INFO_FLAGS_MCS;
2160 		rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2161 		if (STA_STATS_GET(SGI, rate))
2162 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2163 		break;
2164 	case STA_STATS_RATE_TYPE_LEGACY: {
2165 		struct ieee80211_supported_band *sband;
2166 		u16 brate;
2167 		unsigned int shift;
2168 		int band = STA_STATS_GET(LEGACY_BAND, rate);
2169 		int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2170 
2171 		sband = local->hw.wiphy->bands[band];
2172 
2173 		if (WARN_ON_ONCE(!sband->bitrates))
2174 			break;
2175 
2176 		brate = sband->bitrates[rate_idx].bitrate;
2177 		if (rinfo->bw == RATE_INFO_BW_5)
2178 			shift = 2;
2179 		else if (rinfo->bw == RATE_INFO_BW_10)
2180 			shift = 1;
2181 		else
2182 			shift = 0;
2183 		rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2184 		break;
2185 		}
2186 	case STA_STATS_RATE_TYPE_HE:
2187 		rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2188 		rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2189 		rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2190 		rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2191 		rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2192 		rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2193 		break;
2194 	}
2195 }
2196 
2197 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2198 {
2199 	u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2200 
2201 	if (rate == STA_STATS_RATE_INVALID)
2202 		return -EINVAL;
2203 
2204 	sta_stats_decode_rate(sta->local, rate, rinfo);
2205 	return 0;
2206 }
2207 
2208 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats,
2209 					int tid)
2210 {
2211 	unsigned int start;
2212 	u64 value;
2213 
2214 	do {
2215 		start = u64_stats_fetch_begin(&rxstats->syncp);
2216 		value = rxstats->msdu[tid];
2217 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2218 
2219 	return value;
2220 }
2221 
2222 static void sta_set_tidstats(struct sta_info *sta,
2223 			     struct cfg80211_tid_stats *tidstats,
2224 			     int tid)
2225 {
2226 	struct ieee80211_local *local = sta->local;
2227 	int cpu;
2228 
2229 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2230 		tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->rx_stats, tid);
2231 
2232 		if (sta->pcpu_rx_stats) {
2233 			for_each_possible_cpu(cpu) {
2234 				struct ieee80211_sta_rx_stats *cpurxs;
2235 
2236 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2237 				tidstats->rx_msdu +=
2238 					sta_get_tidstats_msdu(cpurxs, tid);
2239 			}
2240 		}
2241 
2242 		tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2243 	}
2244 
2245 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2246 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2247 		tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2248 	}
2249 
2250 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2251 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2252 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2253 		tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2254 	}
2255 
2256 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2257 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2258 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2259 		tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2260 	}
2261 
2262 	if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2263 		spin_lock_bh(&local->fq.lock);
2264 		rcu_read_lock();
2265 
2266 		tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2267 		ieee80211_fill_txq_stats(&tidstats->txq_stats,
2268 					 to_txq_info(sta->sta.txq[tid]));
2269 
2270 		rcu_read_unlock();
2271 		spin_unlock_bh(&local->fq.lock);
2272 	}
2273 }
2274 
2275 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2276 {
2277 	unsigned int start;
2278 	u64 value;
2279 
2280 	do {
2281 		start = u64_stats_fetch_begin(&rxstats->syncp);
2282 		value = rxstats->bytes;
2283 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2284 
2285 	return value;
2286 }
2287 
2288 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2289 		   bool tidstats)
2290 {
2291 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2292 	struct ieee80211_local *local = sdata->local;
2293 	u32 thr = 0;
2294 	int i, ac, cpu;
2295 	struct ieee80211_sta_rx_stats *last_rxstats;
2296 
2297 	last_rxstats = sta_get_last_rx_stats(sta);
2298 
2299 	sinfo->generation = sdata->local->sta_generation;
2300 
2301 	/* do before driver, so beacon filtering drivers have a
2302 	 * chance to e.g. just add the number of filtered beacons
2303 	 * (or just modify the value entirely, of course)
2304 	 */
2305 	if (sdata->vif.type == NL80211_IFTYPE_STATION)
2306 		sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2307 
2308 	drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2309 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2310 			 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2311 			 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2312 			 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2313 			 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2314 			 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2315 
2316 	if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2317 		sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2318 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2319 	}
2320 
2321 	sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2322 	sinfo->assoc_at = sta->assoc_at;
2323 	sinfo->inactive_time =
2324 		jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2325 
2326 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2327 			       BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2328 		sinfo->tx_bytes = 0;
2329 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2330 			sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2331 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2332 	}
2333 
2334 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2335 		sinfo->tx_packets = 0;
2336 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2337 			sinfo->tx_packets += sta->tx_stats.packets[ac];
2338 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2339 	}
2340 
2341 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2342 			       BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2343 		sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2344 
2345 		if (sta->pcpu_rx_stats) {
2346 			for_each_possible_cpu(cpu) {
2347 				struct ieee80211_sta_rx_stats *cpurxs;
2348 
2349 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2350 				sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2351 			}
2352 		}
2353 
2354 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2355 	}
2356 
2357 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2358 		sinfo->rx_packets = sta->rx_stats.packets;
2359 		if (sta->pcpu_rx_stats) {
2360 			for_each_possible_cpu(cpu) {
2361 				struct ieee80211_sta_rx_stats *cpurxs;
2362 
2363 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2364 				sinfo->rx_packets += cpurxs->packets;
2365 			}
2366 		}
2367 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2368 	}
2369 
2370 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2371 		sinfo->tx_retries = sta->status_stats.retry_count;
2372 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2373 	}
2374 
2375 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2376 		sinfo->tx_failed = sta->status_stats.retry_failed;
2377 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2378 	}
2379 
2380 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2381 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2382 			sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2383 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2384 	}
2385 
2386 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2387 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2388 			sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2389 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2390 	}
2391 
2392 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2393 		sinfo->airtime_weight = sta->airtime[0].weight;
2394 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2395 	}
2396 
2397 	sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2398 	if (sta->pcpu_rx_stats) {
2399 		for_each_possible_cpu(cpu) {
2400 			struct ieee80211_sta_rx_stats *cpurxs;
2401 
2402 			cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2403 			sinfo->rx_dropped_misc += cpurxs->dropped;
2404 		}
2405 	}
2406 
2407 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2408 	    !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2409 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2410 				 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2411 		sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2412 	}
2413 
2414 	if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2415 	    ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2416 		if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2417 			sinfo->signal = (s8)last_rxstats->last_signal;
2418 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2419 		}
2420 
2421 		if (!sta->pcpu_rx_stats &&
2422 		    !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2423 			sinfo->signal_avg =
2424 				-ewma_signal_read(&sta->rx_stats_avg.signal);
2425 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2426 		}
2427 	}
2428 
2429 	/* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2430 	 * the sta->rx_stats struct, so the check here is fine with and without
2431 	 * pcpu statistics
2432 	 */
2433 	if (last_rxstats->chains &&
2434 	    !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2435 			       BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2436 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2437 		if (!sta->pcpu_rx_stats)
2438 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2439 
2440 		sinfo->chains = last_rxstats->chains;
2441 
2442 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2443 			sinfo->chain_signal[i] =
2444 				last_rxstats->chain_signal_last[i];
2445 			sinfo->chain_signal_avg[i] =
2446 				-ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2447 		}
2448 	}
2449 
2450 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2451 		sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2452 				     &sinfo->txrate);
2453 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2454 	}
2455 
2456 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2457 		if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2458 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2459 	}
2460 
2461 	if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2462 		for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2463 			sta_set_tidstats(sta, &sinfo->pertid[i], i);
2464 	}
2465 
2466 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2467 #ifdef CONFIG_MAC80211_MESH
2468 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2469 				 BIT_ULL(NL80211_STA_INFO_PLID) |
2470 				 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2471 				 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2472 				 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2473 				 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2474 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) |
2475 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS);
2476 
2477 		sinfo->llid = sta->mesh->llid;
2478 		sinfo->plid = sta->mesh->plid;
2479 		sinfo->plink_state = sta->mesh->plink_state;
2480 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2481 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2482 			sinfo->t_offset = sta->mesh->t_offset;
2483 		}
2484 		sinfo->local_pm = sta->mesh->local_pm;
2485 		sinfo->peer_pm = sta->mesh->peer_pm;
2486 		sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2487 		sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2488 		sinfo->connected_to_as = sta->mesh->connected_to_as;
2489 #endif
2490 	}
2491 
2492 	sinfo->bss_param.flags = 0;
2493 	if (sdata->vif.bss_conf.use_cts_prot)
2494 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2495 	if (sdata->vif.bss_conf.use_short_preamble)
2496 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2497 	if (sdata->vif.bss_conf.use_short_slot)
2498 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2499 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2500 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2501 
2502 	sinfo->sta_flags.set = 0;
2503 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2504 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2505 				BIT(NL80211_STA_FLAG_WME) |
2506 				BIT(NL80211_STA_FLAG_MFP) |
2507 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2508 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
2509 				BIT(NL80211_STA_FLAG_TDLS_PEER);
2510 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2511 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2512 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2513 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2514 	if (sta->sta.wme)
2515 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2516 	if (test_sta_flag(sta, WLAN_STA_MFP))
2517 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2518 	if (test_sta_flag(sta, WLAN_STA_AUTH))
2519 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2520 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
2521 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2522 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2523 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2524 
2525 	thr = sta_get_expected_throughput(sta);
2526 
2527 	if (thr != 0) {
2528 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2529 		sinfo->expected_throughput = thr;
2530 	}
2531 
2532 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2533 	    sta->status_stats.ack_signal_filled) {
2534 		sinfo->ack_signal = sta->status_stats.last_ack_signal;
2535 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2536 	}
2537 
2538 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2539 	    sta->status_stats.ack_signal_filled) {
2540 		sinfo->avg_ack_signal =
2541 			-(s8)ewma_avg_signal_read(
2542 				&sta->status_stats.avg_ack_signal);
2543 		sinfo->filled |=
2544 			BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2545 	}
2546 
2547 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2548 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2549 		sinfo->airtime_link_metric =
2550 			airtime_link_metric_get(local, sta);
2551 	}
2552 }
2553 
2554 u32 sta_get_expected_throughput(struct sta_info *sta)
2555 {
2556 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2557 	struct ieee80211_local *local = sdata->local;
2558 	struct rate_control_ref *ref = NULL;
2559 	u32 thr = 0;
2560 
2561 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2562 		ref = local->rate_ctrl;
2563 
2564 	/* check if the driver has a SW RC implementation */
2565 	if (ref && ref->ops->get_expected_throughput)
2566 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2567 	else
2568 		thr = drv_get_expected_throughput(local, sta);
2569 
2570 	return thr;
2571 }
2572 
2573 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2574 {
2575 	struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2576 
2577 	if (!sta->status_stats.last_ack ||
2578 	    time_after(stats->last_rx, sta->status_stats.last_ack))
2579 		return stats->last_rx;
2580 	return sta->status_stats.last_ack;
2581 }
2582 
2583 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2584 {
2585 	if (!sta->sdata->local->ops->wake_tx_queue)
2586 		return;
2587 
2588 	if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2589 		sta->cparams.target = MS2TIME(50);
2590 		sta->cparams.interval = MS2TIME(300);
2591 		sta->cparams.ecn = false;
2592 	} else {
2593 		sta->cparams.target = MS2TIME(20);
2594 		sta->cparams.interval = MS2TIME(100);
2595 		sta->cparams.ecn = true;
2596 	}
2597 }
2598 
2599 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2600 					   u32 thr)
2601 {
2602 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2603 
2604 	sta_update_codel_params(sta, thr);
2605 }
2606