1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 7 * Copyright (C) 2018-2020 Intel Corporation 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/codel.h> 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 static const struct rhashtable_params sta_rht_params = { 68 .nelem_hint = 3, /* start small */ 69 .automatic_shrinking = true, 70 .head_offset = offsetof(struct sta_info, hash_node), 71 .key_offset = offsetof(struct sta_info, addr), 72 .key_len = ETH_ALEN, 73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 74 }; 75 76 /* Caller must hold local->sta_mtx */ 77 static int sta_info_hash_del(struct ieee80211_local *local, 78 struct sta_info *sta) 79 { 80 return rhltable_remove(&local->sta_hash, &sta->hash_node, 81 sta_rht_params); 82 } 83 84 static void __cleanup_single_sta(struct sta_info *sta) 85 { 86 int ac, i; 87 struct tid_ampdu_tx *tid_tx; 88 struct ieee80211_sub_if_data *sdata = sta->sdata; 89 struct ieee80211_local *local = sdata->local; 90 struct ps_data *ps; 91 92 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 97 ps = &sdata->bss->ps; 98 else if (ieee80211_vif_is_mesh(&sdata->vif)) 99 ps = &sdata->u.mesh.ps; 100 else 101 return; 102 103 clear_sta_flag(sta, WLAN_STA_PS_STA); 104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 106 107 atomic_dec(&ps->num_sta_ps); 108 } 109 110 if (sta->sta.txq[0]) { 111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 112 struct txq_info *txqi; 113 114 if (!sta->sta.txq[i]) 115 continue; 116 117 txqi = to_txq_info(sta->sta.txq[i]); 118 119 ieee80211_txq_purge(local, txqi); 120 } 121 } 122 123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 127 } 128 129 if (ieee80211_vif_is_mesh(&sdata->vif)) 130 mesh_sta_cleanup(sta); 131 132 cancel_work_sync(&sta->drv_deliver_wk); 133 134 /* 135 * Destroy aggregation state here. It would be nice to wait for the 136 * driver to finish aggregation stop and then clean up, but for now 137 * drivers have to handle aggregation stop being requested, followed 138 * directly by station destruction. 139 */ 140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 141 kfree(sta->ampdu_mlme.tid_start_tx[i]); 142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 143 if (!tid_tx) 144 continue; 145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 146 kfree(tid_tx); 147 } 148 } 149 150 static void cleanup_single_sta(struct sta_info *sta) 151 { 152 struct ieee80211_sub_if_data *sdata = sta->sdata; 153 struct ieee80211_local *local = sdata->local; 154 155 __cleanup_single_sta(sta); 156 sta_info_free(local, sta); 157 } 158 159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 160 const u8 *addr) 161 { 162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 163 } 164 165 /* protected by RCU */ 166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 167 const u8 *addr) 168 { 169 struct ieee80211_local *local = sdata->local; 170 struct rhlist_head *tmp; 171 struct sta_info *sta; 172 173 rcu_read_lock(); 174 for_each_sta_info(local, addr, sta, tmp) { 175 if (sta->sdata == sdata) { 176 rcu_read_unlock(); 177 /* this is safe as the caller must already hold 178 * another rcu read section or the mutex 179 */ 180 return sta; 181 } 182 } 183 rcu_read_unlock(); 184 return NULL; 185 } 186 187 /* 188 * Get sta info either from the specified interface 189 * or from one of its vlans 190 */ 191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 192 const u8 *addr) 193 { 194 struct ieee80211_local *local = sdata->local; 195 struct rhlist_head *tmp; 196 struct sta_info *sta; 197 198 rcu_read_lock(); 199 for_each_sta_info(local, addr, sta, tmp) { 200 if (sta->sdata == sdata || 201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 202 rcu_read_unlock(); 203 /* this is safe as the caller must already hold 204 * another rcu read section or the mutex 205 */ 206 return sta; 207 } 208 } 209 rcu_read_unlock(); 210 return NULL; 211 } 212 213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, 214 const u8 *sta_addr, const u8 *vif_addr) 215 { 216 struct rhlist_head *tmp; 217 struct sta_info *sta; 218 219 for_each_sta_info(local, sta_addr, sta, tmp) { 220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr)) 221 return sta; 222 } 223 224 return NULL; 225 } 226 227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 228 int idx) 229 { 230 struct ieee80211_local *local = sdata->local; 231 struct sta_info *sta; 232 int i = 0; 233 234 list_for_each_entry_rcu(sta, &local->sta_list, list) { 235 if (sdata != sta->sdata) 236 continue; 237 if (i < idx) { 238 ++i; 239 continue; 240 } 241 return sta; 242 } 243 244 return NULL; 245 } 246 247 /** 248 * sta_info_free - free STA 249 * 250 * @local: pointer to the global information 251 * @sta: STA info to free 252 * 253 * This function must undo everything done by sta_info_alloc() 254 * that may happen before sta_info_insert(). It may only be 255 * called when sta_info_insert() has not been attempted (and 256 * if that fails, the station is freed anyway.) 257 */ 258 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 259 { 260 if (sta->rate_ctrl) 261 rate_control_free_sta(sta); 262 263 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 264 265 if (sta->sta.txq[0]) 266 kfree(to_txq_info(sta->sta.txq[0])); 267 kfree(rcu_dereference_raw(sta->sta.rates)); 268 #ifdef CONFIG_MAC80211_MESH 269 kfree(sta->mesh); 270 #endif 271 free_percpu(sta->pcpu_rx_stats); 272 kfree(sta); 273 } 274 275 /* Caller must hold local->sta_mtx */ 276 static int sta_info_hash_add(struct ieee80211_local *local, 277 struct sta_info *sta) 278 { 279 return rhltable_insert(&local->sta_hash, &sta->hash_node, 280 sta_rht_params); 281 } 282 283 static void sta_deliver_ps_frames(struct work_struct *wk) 284 { 285 struct sta_info *sta; 286 287 sta = container_of(wk, struct sta_info, drv_deliver_wk); 288 289 if (sta->dead) 290 return; 291 292 local_bh_disable(); 293 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 294 ieee80211_sta_ps_deliver_wakeup(sta); 295 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 296 ieee80211_sta_ps_deliver_poll_response(sta); 297 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 298 ieee80211_sta_ps_deliver_uapsd(sta); 299 local_bh_enable(); 300 } 301 302 static int sta_prepare_rate_control(struct ieee80211_local *local, 303 struct sta_info *sta, gfp_t gfp) 304 { 305 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 306 return 0; 307 308 sta->rate_ctrl = local->rate_ctrl; 309 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 310 sta, gfp); 311 if (!sta->rate_ctrl_priv) 312 return -ENOMEM; 313 314 return 0; 315 } 316 317 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 318 const u8 *addr, gfp_t gfp) 319 { 320 struct ieee80211_local *local = sdata->local; 321 struct ieee80211_hw *hw = &local->hw; 322 struct sta_info *sta; 323 int i; 324 325 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 326 if (!sta) 327 return NULL; 328 329 if (ieee80211_hw_check(hw, USES_RSS)) { 330 sta->pcpu_rx_stats = 331 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); 332 if (!sta->pcpu_rx_stats) 333 goto free; 334 } 335 336 spin_lock_init(&sta->lock); 337 spin_lock_init(&sta->ps_lock); 338 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 339 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 340 mutex_init(&sta->ampdu_mlme.mtx); 341 #ifdef CONFIG_MAC80211_MESH 342 if (ieee80211_vif_is_mesh(&sdata->vif)) { 343 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 344 if (!sta->mesh) 345 goto free; 346 sta->mesh->plink_sta = sta; 347 spin_lock_init(&sta->mesh->plink_lock); 348 if (ieee80211_vif_is_mesh(&sdata->vif) && 349 !sdata->u.mesh.user_mpm) 350 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 351 0); 352 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 353 } 354 #endif 355 356 memcpy(sta->addr, addr, ETH_ALEN); 357 memcpy(sta->sta.addr, addr, ETH_ALEN); 358 sta->sta.max_rx_aggregation_subframes = 359 local->hw.max_rx_aggregation_subframes; 360 361 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only. 362 * The Tx path starts to use a key as soon as the key slot ptk_idx 363 * references to is not NULL. To not use the initial Rx-only key 364 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid 365 * which always will refer to a NULL key. 366 */ 367 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX); 368 sta->ptk_idx = INVALID_PTK_KEYIDX; 369 370 sta->local = local; 371 sta->sdata = sdata; 372 sta->rx_stats.last_rx = jiffies; 373 374 u64_stats_init(&sta->rx_stats.syncp); 375 376 sta->sta_state = IEEE80211_STA_NONE; 377 378 /* Mark TID as unreserved */ 379 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 380 381 sta->last_connected = ktime_get_seconds(); 382 ewma_signal_init(&sta->rx_stats_avg.signal); 383 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal); 384 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 385 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 386 387 if (local->ops->wake_tx_queue) { 388 void *txq_data; 389 int size = sizeof(struct txq_info) + 390 ALIGN(hw->txq_data_size, sizeof(void *)); 391 392 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 393 if (!txq_data) 394 goto free; 395 396 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 397 struct txq_info *txq = txq_data + i * size; 398 399 /* might not do anything for the bufferable MMPDU TXQ */ 400 ieee80211_txq_init(sdata, sta, txq, i); 401 } 402 } 403 404 if (sta_prepare_rate_control(local, sta, gfp)) 405 goto free_txq; 406 407 sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT; 408 409 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 410 skb_queue_head_init(&sta->ps_tx_buf[i]); 411 skb_queue_head_init(&sta->tx_filtered[i]); 412 sta->airtime[i].deficit = sta->airtime_weight; 413 atomic_set(&sta->airtime[i].aql_tx_pending, 0); 414 sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i]; 415 sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i]; 416 } 417 418 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 419 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 420 421 for (i = 0; i < NUM_NL80211_BANDS; i++) { 422 u32 mandatory = 0; 423 int r; 424 425 if (!hw->wiphy->bands[i]) 426 continue; 427 428 switch (i) { 429 case NL80211_BAND_2GHZ: 430 /* 431 * We use both here, even if we cannot really know for 432 * sure the station will support both, but the only use 433 * for this is when we don't know anything yet and send 434 * management frames, and then we'll pick the lowest 435 * possible rate anyway. 436 * If we don't include _G here, we cannot find a rate 437 * in P2P, and thus trigger the WARN_ONCE() in rate.c 438 */ 439 mandatory = IEEE80211_RATE_MANDATORY_B | 440 IEEE80211_RATE_MANDATORY_G; 441 break; 442 case NL80211_BAND_5GHZ: 443 mandatory = IEEE80211_RATE_MANDATORY_A; 444 break; 445 case NL80211_BAND_60GHZ: 446 WARN_ON(1); 447 mandatory = 0; 448 break; 449 } 450 451 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) { 452 struct ieee80211_rate *rate; 453 454 rate = &hw->wiphy->bands[i]->bitrates[r]; 455 456 if (!(rate->flags & mandatory)) 457 continue; 458 sta->sta.supp_rates[i] |= BIT(r); 459 } 460 } 461 462 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 463 if (sdata->vif.type == NL80211_IFTYPE_AP || 464 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 465 struct ieee80211_supported_band *sband; 466 u8 smps; 467 468 sband = ieee80211_get_sband(sdata); 469 if (!sband) 470 goto free_txq; 471 472 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 473 IEEE80211_HT_CAP_SM_PS_SHIFT; 474 /* 475 * Assume that hostapd advertises our caps in the beacon and 476 * this is the known_smps_mode for a station that just assciated 477 */ 478 switch (smps) { 479 case WLAN_HT_SMPS_CONTROL_DISABLED: 480 sta->known_smps_mode = IEEE80211_SMPS_OFF; 481 break; 482 case WLAN_HT_SMPS_CONTROL_STATIC: 483 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 484 break; 485 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 486 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 487 break; 488 default: 489 WARN_ON(1); 490 } 491 } 492 493 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 494 495 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; 496 sta->cparams.target = MS2TIME(20); 497 sta->cparams.interval = MS2TIME(100); 498 sta->cparams.ecn = true; 499 500 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 501 502 return sta; 503 504 free_txq: 505 if (sta->sta.txq[0]) 506 kfree(to_txq_info(sta->sta.txq[0])); 507 free: 508 free_percpu(sta->pcpu_rx_stats); 509 #ifdef CONFIG_MAC80211_MESH 510 kfree(sta->mesh); 511 #endif 512 kfree(sta); 513 return NULL; 514 } 515 516 static int sta_info_insert_check(struct sta_info *sta) 517 { 518 struct ieee80211_sub_if_data *sdata = sta->sdata; 519 520 /* 521 * Can't be a WARN_ON because it can be triggered through a race: 522 * something inserts a STA (on one CPU) without holding the RTNL 523 * and another CPU turns off the net device. 524 */ 525 if (unlikely(!ieee80211_sdata_running(sdata))) 526 return -ENETDOWN; 527 528 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 529 is_multicast_ether_addr(sta->sta.addr))) 530 return -EINVAL; 531 532 /* The RCU read lock is required by rhashtable due to 533 * asynchronous resize/rehash. We also require the mutex 534 * for correctness. 535 */ 536 rcu_read_lock(); 537 lockdep_assert_held(&sdata->local->sta_mtx); 538 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 539 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 540 rcu_read_unlock(); 541 return -ENOTUNIQ; 542 } 543 rcu_read_unlock(); 544 545 return 0; 546 } 547 548 static int sta_info_insert_drv_state(struct ieee80211_local *local, 549 struct ieee80211_sub_if_data *sdata, 550 struct sta_info *sta) 551 { 552 enum ieee80211_sta_state state; 553 int err = 0; 554 555 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 556 err = drv_sta_state(local, sdata, sta, state, state + 1); 557 if (err) 558 break; 559 } 560 561 if (!err) { 562 /* 563 * Drivers using legacy sta_add/sta_remove callbacks only 564 * get uploaded set to true after sta_add is called. 565 */ 566 if (!local->ops->sta_add) 567 sta->uploaded = true; 568 return 0; 569 } 570 571 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 572 sdata_info(sdata, 573 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 574 sta->sta.addr, state + 1, err); 575 err = 0; 576 } 577 578 /* unwind on error */ 579 for (; state > IEEE80211_STA_NOTEXIST; state--) 580 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 581 582 return err; 583 } 584 585 static void 586 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 587 { 588 struct ieee80211_local *local = sdata->local; 589 bool allow_p2p_go_ps = sdata->vif.p2p; 590 struct sta_info *sta; 591 592 rcu_read_lock(); 593 list_for_each_entry_rcu(sta, &local->sta_list, list) { 594 if (sdata != sta->sdata || 595 !test_sta_flag(sta, WLAN_STA_ASSOC)) 596 continue; 597 if (!sta->sta.support_p2p_ps) { 598 allow_p2p_go_ps = false; 599 break; 600 } 601 } 602 rcu_read_unlock(); 603 604 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 605 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 606 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 607 } 608 } 609 610 /* 611 * should be called with sta_mtx locked 612 * this function replaces the mutex lock 613 * with a RCU lock 614 */ 615 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 616 { 617 struct ieee80211_local *local = sta->local; 618 struct ieee80211_sub_if_data *sdata = sta->sdata; 619 struct station_info *sinfo = NULL; 620 int err = 0; 621 622 lockdep_assert_held(&local->sta_mtx); 623 624 /* check if STA exists already */ 625 if (sta_info_get_bss(sdata, sta->sta.addr)) { 626 err = -EEXIST; 627 goto out_err; 628 } 629 630 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 631 if (!sinfo) { 632 err = -ENOMEM; 633 goto out_err; 634 } 635 636 local->num_sta++; 637 local->sta_generation++; 638 smp_mb(); 639 640 /* simplify things and don't accept BA sessions yet */ 641 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 642 643 /* make the station visible */ 644 err = sta_info_hash_add(local, sta); 645 if (err) 646 goto out_drop_sta; 647 648 list_add_tail_rcu(&sta->list, &local->sta_list); 649 650 /* notify driver */ 651 err = sta_info_insert_drv_state(local, sdata, sta); 652 if (err) 653 goto out_remove; 654 655 set_sta_flag(sta, WLAN_STA_INSERTED); 656 657 if (sta->sta_state >= IEEE80211_STA_ASSOC) { 658 ieee80211_recalc_min_chandef(sta->sdata); 659 if (!sta->sta.support_p2p_ps) 660 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 661 } 662 663 /* accept BA sessions now */ 664 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 665 666 ieee80211_sta_debugfs_add(sta); 667 rate_control_add_sta_debugfs(sta); 668 669 sinfo->generation = local->sta_generation; 670 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 671 kfree(sinfo); 672 673 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 674 675 /* move reference to rcu-protected */ 676 rcu_read_lock(); 677 mutex_unlock(&local->sta_mtx); 678 679 if (ieee80211_vif_is_mesh(&sdata->vif)) 680 mesh_accept_plinks_update(sdata); 681 682 return 0; 683 out_remove: 684 sta_info_hash_del(local, sta); 685 list_del_rcu(&sta->list); 686 out_drop_sta: 687 local->num_sta--; 688 synchronize_net(); 689 __cleanup_single_sta(sta); 690 out_err: 691 mutex_unlock(&local->sta_mtx); 692 kfree(sinfo); 693 rcu_read_lock(); 694 return err; 695 } 696 697 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 698 { 699 struct ieee80211_local *local = sta->local; 700 int err; 701 702 might_sleep(); 703 704 mutex_lock(&local->sta_mtx); 705 706 err = sta_info_insert_check(sta); 707 if (err) { 708 mutex_unlock(&local->sta_mtx); 709 rcu_read_lock(); 710 goto out_free; 711 } 712 713 err = sta_info_insert_finish(sta); 714 if (err) 715 goto out_free; 716 717 return 0; 718 out_free: 719 sta_info_free(local, sta); 720 return err; 721 } 722 723 int sta_info_insert(struct sta_info *sta) 724 { 725 int err = sta_info_insert_rcu(sta); 726 727 rcu_read_unlock(); 728 729 return err; 730 } 731 732 static inline void __bss_tim_set(u8 *tim, u16 id) 733 { 734 /* 735 * This format has been mandated by the IEEE specifications, 736 * so this line may not be changed to use the __set_bit() format. 737 */ 738 tim[id / 8] |= (1 << (id % 8)); 739 } 740 741 static inline void __bss_tim_clear(u8 *tim, u16 id) 742 { 743 /* 744 * This format has been mandated by the IEEE specifications, 745 * so this line may not be changed to use the __clear_bit() format. 746 */ 747 tim[id / 8] &= ~(1 << (id % 8)); 748 } 749 750 static inline bool __bss_tim_get(u8 *tim, u16 id) 751 { 752 /* 753 * This format has been mandated by the IEEE specifications, 754 * so this line may not be changed to use the test_bit() format. 755 */ 756 return tim[id / 8] & (1 << (id % 8)); 757 } 758 759 static unsigned long ieee80211_tids_for_ac(int ac) 760 { 761 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 762 switch (ac) { 763 case IEEE80211_AC_VO: 764 return BIT(6) | BIT(7); 765 case IEEE80211_AC_VI: 766 return BIT(4) | BIT(5); 767 case IEEE80211_AC_BE: 768 return BIT(0) | BIT(3); 769 case IEEE80211_AC_BK: 770 return BIT(1) | BIT(2); 771 default: 772 WARN_ON(1); 773 return 0; 774 } 775 } 776 777 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 778 { 779 struct ieee80211_local *local = sta->local; 780 struct ps_data *ps; 781 bool indicate_tim = false; 782 u8 ignore_for_tim = sta->sta.uapsd_queues; 783 int ac; 784 u16 id = sta->sta.aid; 785 786 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 787 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 788 if (WARN_ON_ONCE(!sta->sdata->bss)) 789 return; 790 791 ps = &sta->sdata->bss->ps; 792 #ifdef CONFIG_MAC80211_MESH 793 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 794 ps = &sta->sdata->u.mesh.ps; 795 #endif 796 } else { 797 return; 798 } 799 800 /* No need to do anything if the driver does all */ 801 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 802 return; 803 804 if (sta->dead) 805 goto done; 806 807 /* 808 * If all ACs are delivery-enabled then we should build 809 * the TIM bit for all ACs anyway; if only some are then 810 * we ignore those and build the TIM bit using only the 811 * non-enabled ones. 812 */ 813 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 814 ignore_for_tim = 0; 815 816 if (ignore_pending) 817 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 818 819 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 820 unsigned long tids; 821 822 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 823 continue; 824 825 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 826 !skb_queue_empty(&sta->ps_tx_buf[ac]); 827 if (indicate_tim) 828 break; 829 830 tids = ieee80211_tids_for_ac(ac); 831 832 indicate_tim |= 833 sta->driver_buffered_tids & tids; 834 indicate_tim |= 835 sta->txq_buffered_tids & tids; 836 } 837 838 done: 839 spin_lock_bh(&local->tim_lock); 840 841 if (indicate_tim == __bss_tim_get(ps->tim, id)) 842 goto out_unlock; 843 844 if (indicate_tim) 845 __bss_tim_set(ps->tim, id); 846 else 847 __bss_tim_clear(ps->tim, id); 848 849 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 850 local->tim_in_locked_section = true; 851 drv_set_tim(local, &sta->sta, indicate_tim); 852 local->tim_in_locked_section = false; 853 } 854 855 out_unlock: 856 spin_unlock_bh(&local->tim_lock); 857 } 858 859 void sta_info_recalc_tim(struct sta_info *sta) 860 { 861 __sta_info_recalc_tim(sta, false); 862 } 863 864 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 865 { 866 struct ieee80211_tx_info *info; 867 int timeout; 868 869 if (!skb) 870 return false; 871 872 info = IEEE80211_SKB_CB(skb); 873 874 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 875 timeout = (sta->listen_interval * 876 sta->sdata->vif.bss_conf.beacon_int * 877 32 / 15625) * HZ; 878 if (timeout < STA_TX_BUFFER_EXPIRE) 879 timeout = STA_TX_BUFFER_EXPIRE; 880 return time_after(jiffies, info->control.jiffies + timeout); 881 } 882 883 884 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 885 struct sta_info *sta, int ac) 886 { 887 unsigned long flags; 888 struct sk_buff *skb; 889 890 /* 891 * First check for frames that should expire on the filtered 892 * queue. Frames here were rejected by the driver and are on 893 * a separate queue to avoid reordering with normal PS-buffered 894 * frames. They also aren't accounted for right now in the 895 * total_ps_buffered counter. 896 */ 897 for (;;) { 898 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 899 skb = skb_peek(&sta->tx_filtered[ac]); 900 if (sta_info_buffer_expired(sta, skb)) 901 skb = __skb_dequeue(&sta->tx_filtered[ac]); 902 else 903 skb = NULL; 904 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 905 906 /* 907 * Frames are queued in order, so if this one 908 * hasn't expired yet we can stop testing. If 909 * we actually reached the end of the queue we 910 * also need to stop, of course. 911 */ 912 if (!skb) 913 break; 914 ieee80211_free_txskb(&local->hw, skb); 915 } 916 917 /* 918 * Now also check the normal PS-buffered queue, this will 919 * only find something if the filtered queue was emptied 920 * since the filtered frames are all before the normal PS 921 * buffered frames. 922 */ 923 for (;;) { 924 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 925 skb = skb_peek(&sta->ps_tx_buf[ac]); 926 if (sta_info_buffer_expired(sta, skb)) 927 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 928 else 929 skb = NULL; 930 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 931 932 /* 933 * frames are queued in order, so if this one 934 * hasn't expired yet (or we reached the end of 935 * the queue) we can stop testing 936 */ 937 if (!skb) 938 break; 939 940 local->total_ps_buffered--; 941 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 942 sta->sta.addr); 943 ieee80211_free_txskb(&local->hw, skb); 944 } 945 946 /* 947 * Finally, recalculate the TIM bit for this station -- it might 948 * now be clear because the station was too slow to retrieve its 949 * frames. 950 */ 951 sta_info_recalc_tim(sta); 952 953 /* 954 * Return whether there are any frames still buffered, this is 955 * used to check whether the cleanup timer still needs to run, 956 * if there are no frames we don't need to rearm the timer. 957 */ 958 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 959 skb_queue_empty(&sta->tx_filtered[ac])); 960 } 961 962 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 963 struct sta_info *sta) 964 { 965 bool have_buffered = false; 966 int ac; 967 968 /* This is only necessary for stations on BSS/MBSS interfaces */ 969 if (!sta->sdata->bss && 970 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 971 return false; 972 973 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 974 have_buffered |= 975 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 976 977 return have_buffered; 978 } 979 980 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 981 { 982 struct ieee80211_local *local; 983 struct ieee80211_sub_if_data *sdata; 984 int ret; 985 986 might_sleep(); 987 988 if (!sta) 989 return -ENOENT; 990 991 local = sta->local; 992 sdata = sta->sdata; 993 994 lockdep_assert_held(&local->sta_mtx); 995 996 /* 997 * Before removing the station from the driver and 998 * rate control, it might still start new aggregation 999 * sessions -- block that to make sure the tear-down 1000 * will be sufficient. 1001 */ 1002 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 1003 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 1004 1005 /* 1006 * Before removing the station from the driver there might be pending 1007 * rx frames on RSS queues sent prior to the disassociation - wait for 1008 * all such frames to be processed. 1009 */ 1010 drv_sync_rx_queues(local, sta); 1011 1012 ret = sta_info_hash_del(local, sta); 1013 if (WARN_ON(ret)) 1014 return ret; 1015 1016 /* 1017 * for TDLS peers, make sure to return to the base channel before 1018 * removal. 1019 */ 1020 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 1021 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 1022 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 1023 } 1024 1025 list_del_rcu(&sta->list); 1026 sta->removed = true; 1027 1028 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 1029 1030 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1031 rcu_access_pointer(sdata->u.vlan.sta) == sta) 1032 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 1033 1034 return 0; 1035 } 1036 1037 static void __sta_info_destroy_part2(struct sta_info *sta) 1038 { 1039 struct ieee80211_local *local = sta->local; 1040 struct ieee80211_sub_if_data *sdata = sta->sdata; 1041 struct station_info *sinfo; 1042 int ret; 1043 1044 /* 1045 * NOTE: This assumes at least synchronize_net() was done 1046 * after _part1 and before _part2! 1047 */ 1048 1049 might_sleep(); 1050 lockdep_assert_held(&local->sta_mtx); 1051 1052 /* now keys can no longer be reached */ 1053 ieee80211_free_sta_keys(local, sta); 1054 1055 /* disable TIM bit - last chance to tell driver */ 1056 __sta_info_recalc_tim(sta, true); 1057 1058 sta->dead = true; 1059 1060 local->num_sta--; 1061 local->sta_generation++; 1062 1063 while (sta->sta_state > IEEE80211_STA_NONE) { 1064 ret = sta_info_move_state(sta, sta->sta_state - 1); 1065 if (ret) { 1066 WARN_ON_ONCE(1); 1067 break; 1068 } 1069 } 1070 1071 if (sta->uploaded) { 1072 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 1073 IEEE80211_STA_NOTEXIST); 1074 WARN_ON_ONCE(ret != 0); 1075 } 1076 1077 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 1078 1079 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 1080 if (sinfo) 1081 sta_set_sinfo(sta, sinfo, true); 1082 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 1083 kfree(sinfo); 1084 1085 ieee80211_sta_debugfs_remove(sta); 1086 1087 cleanup_single_sta(sta); 1088 } 1089 1090 int __must_check __sta_info_destroy(struct sta_info *sta) 1091 { 1092 int err = __sta_info_destroy_part1(sta); 1093 1094 if (err) 1095 return err; 1096 1097 synchronize_net(); 1098 1099 __sta_info_destroy_part2(sta); 1100 1101 return 0; 1102 } 1103 1104 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1105 { 1106 struct sta_info *sta; 1107 int ret; 1108 1109 mutex_lock(&sdata->local->sta_mtx); 1110 sta = sta_info_get(sdata, addr); 1111 ret = __sta_info_destroy(sta); 1112 mutex_unlock(&sdata->local->sta_mtx); 1113 1114 return ret; 1115 } 1116 1117 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1118 const u8 *addr) 1119 { 1120 struct sta_info *sta; 1121 int ret; 1122 1123 mutex_lock(&sdata->local->sta_mtx); 1124 sta = sta_info_get_bss(sdata, addr); 1125 ret = __sta_info_destroy(sta); 1126 mutex_unlock(&sdata->local->sta_mtx); 1127 1128 return ret; 1129 } 1130 1131 static void sta_info_cleanup(struct timer_list *t) 1132 { 1133 struct ieee80211_local *local = from_timer(local, t, sta_cleanup); 1134 struct sta_info *sta; 1135 bool timer_needed = false; 1136 1137 rcu_read_lock(); 1138 list_for_each_entry_rcu(sta, &local->sta_list, list) 1139 if (sta_info_cleanup_expire_buffered(local, sta)) 1140 timer_needed = true; 1141 rcu_read_unlock(); 1142 1143 if (local->quiescing) 1144 return; 1145 1146 if (!timer_needed) 1147 return; 1148 1149 mod_timer(&local->sta_cleanup, 1150 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1151 } 1152 1153 int sta_info_init(struct ieee80211_local *local) 1154 { 1155 int err; 1156 1157 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1158 if (err) 1159 return err; 1160 1161 spin_lock_init(&local->tim_lock); 1162 mutex_init(&local->sta_mtx); 1163 INIT_LIST_HEAD(&local->sta_list); 1164 1165 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); 1166 return 0; 1167 } 1168 1169 void sta_info_stop(struct ieee80211_local *local) 1170 { 1171 del_timer_sync(&local->sta_cleanup); 1172 rhltable_destroy(&local->sta_hash); 1173 } 1174 1175 1176 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1177 { 1178 struct ieee80211_local *local = sdata->local; 1179 struct sta_info *sta, *tmp; 1180 LIST_HEAD(free_list); 1181 int ret = 0; 1182 1183 might_sleep(); 1184 1185 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1186 WARN_ON(vlans && !sdata->bss); 1187 1188 mutex_lock(&local->sta_mtx); 1189 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1190 if (sdata == sta->sdata || 1191 (vlans && sdata->bss == sta->sdata->bss)) { 1192 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1193 list_add(&sta->free_list, &free_list); 1194 ret++; 1195 } 1196 } 1197 1198 if (!list_empty(&free_list)) { 1199 synchronize_net(); 1200 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1201 __sta_info_destroy_part2(sta); 1202 } 1203 mutex_unlock(&local->sta_mtx); 1204 1205 return ret; 1206 } 1207 1208 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1209 unsigned long exp_time) 1210 { 1211 struct ieee80211_local *local = sdata->local; 1212 struct sta_info *sta, *tmp; 1213 1214 mutex_lock(&local->sta_mtx); 1215 1216 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1217 unsigned long last_active = ieee80211_sta_last_active(sta); 1218 1219 if (sdata != sta->sdata) 1220 continue; 1221 1222 if (time_is_before_jiffies(last_active + exp_time)) { 1223 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1224 sta->sta.addr); 1225 1226 if (ieee80211_vif_is_mesh(&sdata->vif) && 1227 test_sta_flag(sta, WLAN_STA_PS_STA)) 1228 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1229 1230 WARN_ON(__sta_info_destroy(sta)); 1231 } 1232 } 1233 1234 mutex_unlock(&local->sta_mtx); 1235 } 1236 1237 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1238 const u8 *addr, 1239 const u8 *localaddr) 1240 { 1241 struct ieee80211_local *local = hw_to_local(hw); 1242 struct rhlist_head *tmp; 1243 struct sta_info *sta; 1244 1245 /* 1246 * Just return a random station if localaddr is NULL 1247 * ... first in list. 1248 */ 1249 for_each_sta_info(local, addr, sta, tmp) { 1250 if (localaddr && 1251 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1252 continue; 1253 if (!sta->uploaded) 1254 return NULL; 1255 return &sta->sta; 1256 } 1257 1258 return NULL; 1259 } 1260 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1261 1262 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1263 const u8 *addr) 1264 { 1265 struct sta_info *sta; 1266 1267 if (!vif) 1268 return NULL; 1269 1270 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1271 if (!sta) 1272 return NULL; 1273 1274 if (!sta->uploaded) 1275 return NULL; 1276 1277 return &sta->sta; 1278 } 1279 EXPORT_SYMBOL(ieee80211_find_sta); 1280 1281 /* powersave support code */ 1282 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1283 { 1284 struct ieee80211_sub_if_data *sdata = sta->sdata; 1285 struct ieee80211_local *local = sdata->local; 1286 struct sk_buff_head pending; 1287 int filtered = 0, buffered = 0, ac, i; 1288 unsigned long flags; 1289 struct ps_data *ps; 1290 1291 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1292 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1293 u.ap); 1294 1295 if (sdata->vif.type == NL80211_IFTYPE_AP) 1296 ps = &sdata->bss->ps; 1297 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1298 ps = &sdata->u.mesh.ps; 1299 else 1300 return; 1301 1302 clear_sta_flag(sta, WLAN_STA_SP); 1303 1304 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1305 sta->driver_buffered_tids = 0; 1306 sta->txq_buffered_tids = 0; 1307 1308 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1309 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1310 1311 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1312 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) 1313 continue; 1314 1315 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); 1316 } 1317 1318 skb_queue_head_init(&pending); 1319 1320 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1321 spin_lock(&sta->ps_lock); 1322 /* Send all buffered frames to the station */ 1323 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1324 int count = skb_queue_len(&pending), tmp; 1325 1326 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1327 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1328 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1329 tmp = skb_queue_len(&pending); 1330 filtered += tmp - count; 1331 count = tmp; 1332 1333 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1334 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1335 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1336 tmp = skb_queue_len(&pending); 1337 buffered += tmp - count; 1338 } 1339 1340 ieee80211_add_pending_skbs(local, &pending); 1341 1342 /* now we're no longer in the deliver code */ 1343 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1344 1345 /* The station might have polled and then woken up before we responded, 1346 * so clear these flags now to avoid them sticking around. 1347 */ 1348 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1349 clear_sta_flag(sta, WLAN_STA_UAPSD); 1350 spin_unlock(&sta->ps_lock); 1351 1352 atomic_dec(&ps->num_sta_ps); 1353 1354 local->total_ps_buffered -= buffered; 1355 1356 sta_info_recalc_tim(sta); 1357 1358 ps_dbg(sdata, 1359 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1360 sta->sta.addr, sta->sta.aid, filtered, buffered); 1361 1362 ieee80211_check_fast_xmit(sta); 1363 } 1364 1365 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1366 enum ieee80211_frame_release_type reason, 1367 bool call_driver, bool more_data) 1368 { 1369 struct ieee80211_sub_if_data *sdata = sta->sdata; 1370 struct ieee80211_local *local = sdata->local; 1371 struct ieee80211_qos_hdr *nullfunc; 1372 struct sk_buff *skb; 1373 int size = sizeof(*nullfunc); 1374 __le16 fc; 1375 bool qos = sta->sta.wme; 1376 struct ieee80211_tx_info *info; 1377 struct ieee80211_chanctx_conf *chanctx_conf; 1378 1379 /* Don't send NDPs when STA is connected HE */ 1380 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1381 !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE)) 1382 return; 1383 1384 if (qos) { 1385 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1386 IEEE80211_STYPE_QOS_NULLFUNC | 1387 IEEE80211_FCTL_FROMDS); 1388 } else { 1389 size -= 2; 1390 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1391 IEEE80211_STYPE_NULLFUNC | 1392 IEEE80211_FCTL_FROMDS); 1393 } 1394 1395 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1396 if (!skb) 1397 return; 1398 1399 skb_reserve(skb, local->hw.extra_tx_headroom); 1400 1401 nullfunc = skb_put(skb, size); 1402 nullfunc->frame_control = fc; 1403 nullfunc->duration_id = 0; 1404 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1405 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1406 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1407 nullfunc->seq_ctrl = 0; 1408 1409 skb->priority = tid; 1410 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1411 if (qos) { 1412 nullfunc->qos_ctrl = cpu_to_le16(tid); 1413 1414 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1415 nullfunc->qos_ctrl |= 1416 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1417 if (more_data) 1418 nullfunc->frame_control |= 1419 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1420 } 1421 } 1422 1423 info = IEEE80211_SKB_CB(skb); 1424 1425 /* 1426 * Tell TX path to send this frame even though the 1427 * STA may still remain is PS mode after this frame 1428 * exchange. Also set EOSP to indicate this packet 1429 * ends the poll/service period. 1430 */ 1431 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1432 IEEE80211_TX_STATUS_EOSP | 1433 IEEE80211_TX_CTL_REQ_TX_STATUS; 1434 1435 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1436 1437 if (call_driver) 1438 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1439 reason, false); 1440 1441 skb->dev = sdata->dev; 1442 1443 rcu_read_lock(); 1444 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1445 if (WARN_ON(!chanctx_conf)) { 1446 rcu_read_unlock(); 1447 kfree_skb(skb); 1448 return; 1449 } 1450 1451 info->band = chanctx_conf->def.chan->band; 1452 ieee80211_xmit(sdata, sta, skb, 0); 1453 rcu_read_unlock(); 1454 } 1455 1456 static int find_highest_prio_tid(unsigned long tids) 1457 { 1458 /* lower 3 TIDs aren't ordered perfectly */ 1459 if (tids & 0xF8) 1460 return fls(tids) - 1; 1461 /* TID 0 is BE just like TID 3 */ 1462 if (tids & BIT(0)) 1463 return 0; 1464 return fls(tids) - 1; 1465 } 1466 1467 /* Indicates if the MORE_DATA bit should be set in the last 1468 * frame obtained by ieee80211_sta_ps_get_frames. 1469 * Note that driver_release_tids is relevant only if 1470 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1471 */ 1472 static bool 1473 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1474 enum ieee80211_frame_release_type reason, 1475 unsigned long driver_release_tids) 1476 { 1477 int ac; 1478 1479 /* If the driver has data on more than one TID then 1480 * certainly there's more data if we release just a 1481 * single frame now (from a single TID). This will 1482 * only happen for PS-Poll. 1483 */ 1484 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1485 hweight16(driver_release_tids) > 1) 1486 return true; 1487 1488 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1489 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1490 continue; 1491 1492 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1493 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1494 return true; 1495 } 1496 1497 return false; 1498 } 1499 1500 static void 1501 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1502 enum ieee80211_frame_release_type reason, 1503 struct sk_buff_head *frames, 1504 unsigned long *driver_release_tids) 1505 { 1506 struct ieee80211_sub_if_data *sdata = sta->sdata; 1507 struct ieee80211_local *local = sdata->local; 1508 int ac; 1509 1510 /* Get response frame(s) and more data bit for the last one. */ 1511 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1512 unsigned long tids; 1513 1514 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1515 continue; 1516 1517 tids = ieee80211_tids_for_ac(ac); 1518 1519 /* if we already have frames from software, then we can't also 1520 * release from hardware queues 1521 */ 1522 if (skb_queue_empty(frames)) { 1523 *driver_release_tids |= 1524 sta->driver_buffered_tids & tids; 1525 *driver_release_tids |= sta->txq_buffered_tids & tids; 1526 } 1527 1528 if (!*driver_release_tids) { 1529 struct sk_buff *skb; 1530 1531 while (n_frames > 0) { 1532 skb = skb_dequeue(&sta->tx_filtered[ac]); 1533 if (!skb) { 1534 skb = skb_dequeue( 1535 &sta->ps_tx_buf[ac]); 1536 if (skb) 1537 local->total_ps_buffered--; 1538 } 1539 if (!skb) 1540 break; 1541 n_frames--; 1542 __skb_queue_tail(frames, skb); 1543 } 1544 } 1545 1546 /* If we have more frames buffered on this AC, then abort the 1547 * loop since we can't send more data from other ACs before 1548 * the buffered frames from this. 1549 */ 1550 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1551 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1552 break; 1553 } 1554 } 1555 1556 static void 1557 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1558 int n_frames, u8 ignored_acs, 1559 enum ieee80211_frame_release_type reason) 1560 { 1561 struct ieee80211_sub_if_data *sdata = sta->sdata; 1562 struct ieee80211_local *local = sdata->local; 1563 unsigned long driver_release_tids = 0; 1564 struct sk_buff_head frames; 1565 bool more_data; 1566 1567 /* Service or PS-Poll period starts */ 1568 set_sta_flag(sta, WLAN_STA_SP); 1569 1570 __skb_queue_head_init(&frames); 1571 1572 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1573 &frames, &driver_release_tids); 1574 1575 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1576 1577 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1578 driver_release_tids = 1579 BIT(find_highest_prio_tid(driver_release_tids)); 1580 1581 if (skb_queue_empty(&frames) && !driver_release_tids) { 1582 int tid, ac; 1583 1584 /* 1585 * For PS-Poll, this can only happen due to a race condition 1586 * when we set the TIM bit and the station notices it, but 1587 * before it can poll for the frame we expire it. 1588 * 1589 * For uAPSD, this is said in the standard (11.2.1.5 h): 1590 * At each unscheduled SP for a non-AP STA, the AP shall 1591 * attempt to transmit at least one MSDU or MMPDU, but no 1592 * more than the value specified in the Max SP Length field 1593 * in the QoS Capability element from delivery-enabled ACs, 1594 * that are destined for the non-AP STA. 1595 * 1596 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1597 */ 1598 1599 /* This will evaluate to 1, 3, 5 or 7. */ 1600 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1601 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1602 break; 1603 tid = 7 - 2 * ac; 1604 1605 ieee80211_send_null_response(sta, tid, reason, true, false); 1606 } else if (!driver_release_tids) { 1607 struct sk_buff_head pending; 1608 struct sk_buff *skb; 1609 int num = 0; 1610 u16 tids = 0; 1611 bool need_null = false; 1612 1613 skb_queue_head_init(&pending); 1614 1615 while ((skb = __skb_dequeue(&frames))) { 1616 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1617 struct ieee80211_hdr *hdr = (void *) skb->data; 1618 u8 *qoshdr = NULL; 1619 1620 num++; 1621 1622 /* 1623 * Tell TX path to send this frame even though the 1624 * STA may still remain is PS mode after this frame 1625 * exchange. 1626 */ 1627 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1628 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1629 1630 /* 1631 * Use MoreData flag to indicate whether there are 1632 * more buffered frames for this STA 1633 */ 1634 if (more_data || !skb_queue_empty(&frames)) 1635 hdr->frame_control |= 1636 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1637 else 1638 hdr->frame_control &= 1639 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1640 1641 if (ieee80211_is_data_qos(hdr->frame_control) || 1642 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1643 qoshdr = ieee80211_get_qos_ctl(hdr); 1644 1645 tids |= BIT(skb->priority); 1646 1647 __skb_queue_tail(&pending, skb); 1648 1649 /* end service period after last frame or add one */ 1650 if (!skb_queue_empty(&frames)) 1651 continue; 1652 1653 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1654 /* for PS-Poll, there's only one frame */ 1655 info->flags |= IEEE80211_TX_STATUS_EOSP | 1656 IEEE80211_TX_CTL_REQ_TX_STATUS; 1657 break; 1658 } 1659 1660 /* For uAPSD, things are a bit more complicated. If the 1661 * last frame has a QoS header (i.e. is a QoS-data or 1662 * QoS-nulldata frame) then just set the EOSP bit there 1663 * and be done. 1664 * If the frame doesn't have a QoS header (which means 1665 * it should be a bufferable MMPDU) then we can't set 1666 * the EOSP bit in the QoS header; add a QoS-nulldata 1667 * frame to the list to send it after the MMPDU. 1668 * 1669 * Note that this code is only in the mac80211-release 1670 * code path, we assume that the driver will not buffer 1671 * anything but QoS-data frames, or if it does, will 1672 * create the QoS-nulldata frame by itself if needed. 1673 * 1674 * Cf. 802.11-2012 10.2.1.10 (c). 1675 */ 1676 if (qoshdr) { 1677 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1678 1679 info->flags |= IEEE80211_TX_STATUS_EOSP | 1680 IEEE80211_TX_CTL_REQ_TX_STATUS; 1681 } else { 1682 /* The standard isn't completely clear on this 1683 * as it says the more-data bit should be set 1684 * if there are more BUs. The QoS-Null frame 1685 * we're about to send isn't buffered yet, we 1686 * only create it below, but let's pretend it 1687 * was buffered just in case some clients only 1688 * expect more-data=0 when eosp=1. 1689 */ 1690 hdr->frame_control |= 1691 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1692 need_null = true; 1693 num++; 1694 } 1695 break; 1696 } 1697 1698 drv_allow_buffered_frames(local, sta, tids, num, 1699 reason, more_data); 1700 1701 ieee80211_add_pending_skbs(local, &pending); 1702 1703 if (need_null) 1704 ieee80211_send_null_response( 1705 sta, find_highest_prio_tid(tids), 1706 reason, false, false); 1707 1708 sta_info_recalc_tim(sta); 1709 } else { 1710 int tid; 1711 1712 /* 1713 * We need to release a frame that is buffered somewhere in the 1714 * driver ... it'll have to handle that. 1715 * Note that the driver also has to check the number of frames 1716 * on the TIDs we're releasing from - if there are more than 1717 * n_frames it has to set the more-data bit (if we didn't ask 1718 * it to set it anyway due to other buffered frames); if there 1719 * are fewer than n_frames it has to make sure to adjust that 1720 * to allow the service period to end properly. 1721 */ 1722 drv_release_buffered_frames(local, sta, driver_release_tids, 1723 n_frames, reason, more_data); 1724 1725 /* 1726 * Note that we don't recalculate the TIM bit here as it would 1727 * most likely have no effect at all unless the driver told us 1728 * that the TID(s) became empty before returning here from the 1729 * release function. 1730 * Either way, however, when the driver tells us that the TID(s) 1731 * became empty or we find that a txq became empty, we'll do the 1732 * TIM recalculation. 1733 */ 1734 1735 if (!sta->sta.txq[0]) 1736 return; 1737 1738 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1739 if (!sta->sta.txq[tid] || 1740 !(driver_release_tids & BIT(tid)) || 1741 txq_has_queue(sta->sta.txq[tid])) 1742 continue; 1743 1744 sta_info_recalc_tim(sta); 1745 break; 1746 } 1747 } 1748 } 1749 1750 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1751 { 1752 u8 ignore_for_response = sta->sta.uapsd_queues; 1753 1754 /* 1755 * If all ACs are delivery-enabled then we should reply 1756 * from any of them, if only some are enabled we reply 1757 * only from the non-enabled ones. 1758 */ 1759 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1760 ignore_for_response = 0; 1761 1762 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1763 IEEE80211_FRAME_RELEASE_PSPOLL); 1764 } 1765 1766 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1767 { 1768 int n_frames = sta->sta.max_sp; 1769 u8 delivery_enabled = sta->sta.uapsd_queues; 1770 1771 /* 1772 * If we ever grow support for TSPEC this might happen if 1773 * the TSPEC update from hostapd comes in between a trigger 1774 * frame setting WLAN_STA_UAPSD in the RX path and this 1775 * actually getting called. 1776 */ 1777 if (!delivery_enabled) 1778 return; 1779 1780 switch (sta->sta.max_sp) { 1781 case 1: 1782 n_frames = 2; 1783 break; 1784 case 2: 1785 n_frames = 4; 1786 break; 1787 case 3: 1788 n_frames = 6; 1789 break; 1790 case 0: 1791 /* XXX: what is a good value? */ 1792 n_frames = 128; 1793 break; 1794 } 1795 1796 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1797 IEEE80211_FRAME_RELEASE_UAPSD); 1798 } 1799 1800 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1801 struct ieee80211_sta *pubsta, bool block) 1802 { 1803 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1804 1805 trace_api_sta_block_awake(sta->local, pubsta, block); 1806 1807 if (block) { 1808 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1809 ieee80211_clear_fast_xmit(sta); 1810 return; 1811 } 1812 1813 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1814 return; 1815 1816 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1817 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1818 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1819 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1820 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1821 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1822 /* must be asleep in this case */ 1823 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1824 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1825 } else { 1826 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1827 ieee80211_check_fast_xmit(sta); 1828 } 1829 } 1830 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1831 1832 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1833 { 1834 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1835 struct ieee80211_local *local = sta->local; 1836 1837 trace_api_eosp(local, pubsta); 1838 1839 clear_sta_flag(sta, WLAN_STA_SP); 1840 } 1841 EXPORT_SYMBOL(ieee80211_sta_eosp); 1842 1843 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1844 { 1845 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1846 enum ieee80211_frame_release_type reason; 1847 bool more_data; 1848 1849 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1850 1851 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1852 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1853 reason, 0); 1854 1855 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1856 } 1857 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1858 1859 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1860 u8 tid, bool buffered) 1861 { 1862 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1863 1864 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1865 return; 1866 1867 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1868 1869 if (buffered) 1870 set_bit(tid, &sta->driver_buffered_tids); 1871 else 1872 clear_bit(tid, &sta->driver_buffered_tids); 1873 1874 sta_info_recalc_tim(sta); 1875 } 1876 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1877 1878 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, 1879 u32 tx_airtime, u32 rx_airtime) 1880 { 1881 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1882 struct ieee80211_local *local = sta->sdata->local; 1883 u8 ac = ieee80211_ac_from_tid(tid); 1884 u32 airtime = 0; 1885 1886 if (sta->local->airtime_flags & AIRTIME_USE_TX) 1887 airtime += tx_airtime; 1888 if (sta->local->airtime_flags & AIRTIME_USE_RX) 1889 airtime += rx_airtime; 1890 1891 spin_lock_bh(&local->active_txq_lock[ac]); 1892 sta->airtime[ac].tx_airtime += tx_airtime; 1893 sta->airtime[ac].rx_airtime += rx_airtime; 1894 sta->airtime[ac].deficit -= airtime; 1895 spin_unlock_bh(&local->active_txq_lock[ac]); 1896 } 1897 EXPORT_SYMBOL(ieee80211_sta_register_airtime); 1898 1899 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, 1900 struct sta_info *sta, u8 ac, 1901 u16 tx_airtime, bool tx_completed) 1902 { 1903 int tx_pending; 1904 1905 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) 1906 return; 1907 1908 if (!tx_completed) { 1909 if (sta) 1910 atomic_add(tx_airtime, 1911 &sta->airtime[ac].aql_tx_pending); 1912 1913 atomic_add(tx_airtime, &local->aql_total_pending_airtime); 1914 return; 1915 } 1916 1917 if (sta) { 1918 tx_pending = atomic_sub_return(tx_airtime, 1919 &sta->airtime[ac].aql_tx_pending); 1920 if (WARN_ONCE(tx_pending < 0, 1921 "STA %pM AC %d txq pending airtime underflow: %u, %u", 1922 sta->addr, ac, tx_pending, tx_airtime)) 1923 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending, 1924 tx_pending, 0); 1925 } 1926 1927 tx_pending = atomic_sub_return(tx_airtime, 1928 &local->aql_total_pending_airtime); 1929 if (WARN_ONCE(tx_pending < 0, 1930 "Device %s AC %d pending airtime underflow: %u, %u", 1931 wiphy_name(local->hw.wiphy), ac, tx_pending, 1932 tx_airtime)) 1933 atomic_cmpxchg(&local->aql_total_pending_airtime, 1934 tx_pending, 0); 1935 } 1936 1937 int sta_info_move_state(struct sta_info *sta, 1938 enum ieee80211_sta_state new_state) 1939 { 1940 might_sleep(); 1941 1942 if (sta->sta_state == new_state) 1943 return 0; 1944 1945 /* check allowed transitions first */ 1946 1947 switch (new_state) { 1948 case IEEE80211_STA_NONE: 1949 if (sta->sta_state != IEEE80211_STA_AUTH) 1950 return -EINVAL; 1951 break; 1952 case IEEE80211_STA_AUTH: 1953 if (sta->sta_state != IEEE80211_STA_NONE && 1954 sta->sta_state != IEEE80211_STA_ASSOC) 1955 return -EINVAL; 1956 break; 1957 case IEEE80211_STA_ASSOC: 1958 if (sta->sta_state != IEEE80211_STA_AUTH && 1959 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1960 return -EINVAL; 1961 break; 1962 case IEEE80211_STA_AUTHORIZED: 1963 if (sta->sta_state != IEEE80211_STA_ASSOC) 1964 return -EINVAL; 1965 break; 1966 default: 1967 WARN(1, "invalid state %d", new_state); 1968 return -EINVAL; 1969 } 1970 1971 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1972 sta->sta.addr, new_state); 1973 1974 /* 1975 * notify the driver before the actual changes so it can 1976 * fail the transition 1977 */ 1978 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1979 int err = drv_sta_state(sta->local, sta->sdata, sta, 1980 sta->sta_state, new_state); 1981 if (err) 1982 return err; 1983 } 1984 1985 /* reflect the change in all state variables */ 1986 1987 switch (new_state) { 1988 case IEEE80211_STA_NONE: 1989 if (sta->sta_state == IEEE80211_STA_AUTH) 1990 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1991 break; 1992 case IEEE80211_STA_AUTH: 1993 if (sta->sta_state == IEEE80211_STA_NONE) { 1994 set_bit(WLAN_STA_AUTH, &sta->_flags); 1995 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 1996 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1997 ieee80211_recalc_min_chandef(sta->sdata); 1998 if (!sta->sta.support_p2p_ps) 1999 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2000 } 2001 break; 2002 case IEEE80211_STA_ASSOC: 2003 if (sta->sta_state == IEEE80211_STA_AUTH) { 2004 set_bit(WLAN_STA_ASSOC, &sta->_flags); 2005 sta->assoc_at = ktime_get_boottime_ns(); 2006 ieee80211_recalc_min_chandef(sta->sdata); 2007 if (!sta->sta.support_p2p_ps) 2008 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2009 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 2010 ieee80211_vif_dec_num_mcast(sta->sdata); 2011 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2012 ieee80211_clear_fast_xmit(sta); 2013 ieee80211_clear_fast_rx(sta); 2014 } 2015 break; 2016 case IEEE80211_STA_AUTHORIZED: 2017 if (sta->sta_state == IEEE80211_STA_ASSOC) { 2018 ieee80211_vif_inc_num_mcast(sta->sdata); 2019 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2020 ieee80211_check_fast_xmit(sta); 2021 ieee80211_check_fast_rx(sta); 2022 } 2023 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 2024 sta->sdata->vif.type == NL80211_IFTYPE_AP) 2025 cfg80211_send_layer2_update(sta->sdata->dev, 2026 sta->sta.addr); 2027 break; 2028 default: 2029 break; 2030 } 2031 2032 sta->sta_state = new_state; 2033 2034 return 0; 2035 } 2036 2037 u8 sta_info_tx_streams(struct sta_info *sta) 2038 { 2039 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 2040 u8 rx_streams; 2041 2042 if (!sta->sta.ht_cap.ht_supported) 2043 return 1; 2044 2045 if (sta->sta.vht_cap.vht_supported) { 2046 int i; 2047 u16 tx_mcs_map = 2048 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 2049 2050 for (i = 7; i >= 0; i--) 2051 if ((tx_mcs_map & (0x3 << (i * 2))) != 2052 IEEE80211_VHT_MCS_NOT_SUPPORTED) 2053 return i + 1; 2054 } 2055 2056 if (ht_cap->mcs.rx_mask[3]) 2057 rx_streams = 4; 2058 else if (ht_cap->mcs.rx_mask[2]) 2059 rx_streams = 3; 2060 else if (ht_cap->mcs.rx_mask[1]) 2061 rx_streams = 2; 2062 else 2063 rx_streams = 1; 2064 2065 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 2066 return rx_streams; 2067 2068 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 2069 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 2070 } 2071 2072 static struct ieee80211_sta_rx_stats * 2073 sta_get_last_rx_stats(struct sta_info *sta) 2074 { 2075 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 2076 struct ieee80211_local *local = sta->local; 2077 int cpu; 2078 2079 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 2080 return stats; 2081 2082 for_each_possible_cpu(cpu) { 2083 struct ieee80211_sta_rx_stats *cpustats; 2084 2085 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2086 2087 if (time_after(cpustats->last_rx, stats->last_rx)) 2088 stats = cpustats; 2089 } 2090 2091 return stats; 2092 } 2093 2094 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, 2095 struct rate_info *rinfo) 2096 { 2097 rinfo->bw = STA_STATS_GET(BW, rate); 2098 2099 switch (STA_STATS_GET(TYPE, rate)) { 2100 case STA_STATS_RATE_TYPE_VHT: 2101 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 2102 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 2103 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 2104 if (STA_STATS_GET(SGI, rate)) 2105 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2106 break; 2107 case STA_STATS_RATE_TYPE_HT: 2108 rinfo->flags = RATE_INFO_FLAGS_MCS; 2109 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 2110 if (STA_STATS_GET(SGI, rate)) 2111 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2112 break; 2113 case STA_STATS_RATE_TYPE_LEGACY: { 2114 struct ieee80211_supported_band *sband; 2115 u16 brate; 2116 unsigned int shift; 2117 int band = STA_STATS_GET(LEGACY_BAND, rate); 2118 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 2119 2120 sband = local->hw.wiphy->bands[band]; 2121 brate = sband->bitrates[rate_idx].bitrate; 2122 if (rinfo->bw == RATE_INFO_BW_5) 2123 shift = 2; 2124 else if (rinfo->bw == RATE_INFO_BW_10) 2125 shift = 1; 2126 else 2127 shift = 0; 2128 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 2129 break; 2130 } 2131 case STA_STATS_RATE_TYPE_HE: 2132 rinfo->flags = RATE_INFO_FLAGS_HE_MCS; 2133 rinfo->mcs = STA_STATS_GET(HE_MCS, rate); 2134 rinfo->nss = STA_STATS_GET(HE_NSS, rate); 2135 rinfo->he_gi = STA_STATS_GET(HE_GI, rate); 2136 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); 2137 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); 2138 break; 2139 } 2140 } 2141 2142 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2143 { 2144 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2145 2146 if (rate == STA_STATS_RATE_INVALID) 2147 return -EINVAL; 2148 2149 sta_stats_decode_rate(sta->local, rate, rinfo); 2150 return 0; 2151 } 2152 2153 static void sta_set_tidstats(struct sta_info *sta, 2154 struct cfg80211_tid_stats *tidstats, 2155 int tid) 2156 { 2157 struct ieee80211_local *local = sta->local; 2158 2159 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2160 unsigned int start; 2161 2162 do { 2163 start = u64_stats_fetch_begin(&sta->rx_stats.syncp); 2164 tidstats->rx_msdu = sta->rx_stats.msdu[tid]; 2165 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start)); 2166 2167 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2168 } 2169 2170 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2171 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2172 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2173 } 2174 2175 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2176 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2177 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2178 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2179 } 2180 2181 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2182 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2183 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2184 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2185 } 2186 2187 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) { 2188 spin_lock_bh(&local->fq.lock); 2189 rcu_read_lock(); 2190 2191 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); 2192 ieee80211_fill_txq_stats(&tidstats->txq_stats, 2193 to_txq_info(sta->sta.txq[tid])); 2194 2195 rcu_read_unlock(); 2196 spin_unlock_bh(&local->fq.lock); 2197 } 2198 } 2199 2200 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2201 { 2202 unsigned int start; 2203 u64 value; 2204 2205 do { 2206 start = u64_stats_fetch_begin(&rxstats->syncp); 2207 value = rxstats->bytes; 2208 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2209 2210 return value; 2211 } 2212 2213 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, 2214 bool tidstats) 2215 { 2216 struct ieee80211_sub_if_data *sdata = sta->sdata; 2217 struct ieee80211_local *local = sdata->local; 2218 u32 thr = 0; 2219 int i, ac, cpu; 2220 struct ieee80211_sta_rx_stats *last_rxstats; 2221 2222 last_rxstats = sta_get_last_rx_stats(sta); 2223 2224 sinfo->generation = sdata->local->sta_generation; 2225 2226 /* do before driver, so beacon filtering drivers have a 2227 * chance to e.g. just add the number of filtered beacons 2228 * (or just modify the value entirely, of course) 2229 */ 2230 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2231 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2232 2233 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2234 2235 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | 2236 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | 2237 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | 2238 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | 2239 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) | 2240 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); 2241 2242 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2243 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2244 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); 2245 } 2246 2247 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2248 sinfo->assoc_at = sta->assoc_at; 2249 sinfo->inactive_time = 2250 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2251 2252 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | 2253 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { 2254 sinfo->tx_bytes = 0; 2255 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2256 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2257 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); 2258 } 2259 2260 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { 2261 sinfo->tx_packets = 0; 2262 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2263 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2264 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); 2265 } 2266 2267 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | 2268 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { 2269 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2270 2271 if (sta->pcpu_rx_stats) { 2272 for_each_possible_cpu(cpu) { 2273 struct ieee80211_sta_rx_stats *cpurxs; 2274 2275 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2276 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2277 } 2278 } 2279 2280 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); 2281 } 2282 2283 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { 2284 sinfo->rx_packets = sta->rx_stats.packets; 2285 if (sta->pcpu_rx_stats) { 2286 for_each_possible_cpu(cpu) { 2287 struct ieee80211_sta_rx_stats *cpurxs; 2288 2289 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2290 sinfo->rx_packets += cpurxs->packets; 2291 } 2292 } 2293 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 2294 } 2295 2296 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { 2297 sinfo->tx_retries = sta->status_stats.retry_count; 2298 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); 2299 } 2300 2301 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { 2302 sinfo->tx_failed = sta->status_stats.retry_failed; 2303 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); 2304 } 2305 2306 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { 2307 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2308 sinfo->rx_duration += sta->airtime[ac].rx_airtime; 2309 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 2310 } 2311 2312 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { 2313 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2314 sinfo->tx_duration += sta->airtime[ac].tx_airtime; 2315 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 2316 } 2317 2318 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { 2319 sinfo->airtime_weight = sta->airtime_weight; 2320 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); 2321 } 2322 2323 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2324 if (sta->pcpu_rx_stats) { 2325 for_each_possible_cpu(cpu) { 2326 struct ieee80211_sta_rx_stats *cpurxs; 2327 2328 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2329 sinfo->rx_dropped_misc += cpurxs->dropped; 2330 } 2331 } 2332 2333 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2334 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2335 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | 2336 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2337 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2338 } 2339 2340 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2341 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2342 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { 2343 sinfo->signal = (s8)last_rxstats->last_signal; 2344 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 2345 } 2346 2347 if (!sta->pcpu_rx_stats && 2348 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { 2349 sinfo->signal_avg = 2350 -ewma_signal_read(&sta->rx_stats_avg.signal); 2351 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 2352 } 2353 } 2354 2355 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2356 * the sta->rx_stats struct, so the check here is fine with and without 2357 * pcpu statistics 2358 */ 2359 if (last_rxstats->chains && 2360 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | 2361 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2362 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 2363 if (!sta->pcpu_rx_stats) 2364 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2365 2366 sinfo->chains = last_rxstats->chains; 2367 2368 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2369 sinfo->chain_signal[i] = 2370 last_rxstats->chain_signal_last[i]; 2371 sinfo->chain_signal_avg[i] = 2372 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2373 } 2374 } 2375 2376 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) { 2377 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2378 &sinfo->txrate); 2379 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 2380 } 2381 2382 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) { 2383 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2384 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); 2385 } 2386 2387 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { 2388 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 2389 sta_set_tidstats(sta, &sinfo->pertid[i], i); 2390 } 2391 2392 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2393 #ifdef CONFIG_MAC80211_MESH 2394 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | 2395 BIT_ULL(NL80211_STA_INFO_PLID) | 2396 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | 2397 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | 2398 BIT_ULL(NL80211_STA_INFO_PEER_PM) | 2399 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | 2400 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE); 2401 2402 sinfo->llid = sta->mesh->llid; 2403 sinfo->plid = sta->mesh->plid; 2404 sinfo->plink_state = sta->mesh->plink_state; 2405 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2406 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); 2407 sinfo->t_offset = sta->mesh->t_offset; 2408 } 2409 sinfo->local_pm = sta->mesh->local_pm; 2410 sinfo->peer_pm = sta->mesh->peer_pm; 2411 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2412 sinfo->connected_to_gate = sta->mesh->connected_to_gate; 2413 #endif 2414 } 2415 2416 sinfo->bss_param.flags = 0; 2417 if (sdata->vif.bss_conf.use_cts_prot) 2418 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2419 if (sdata->vif.bss_conf.use_short_preamble) 2420 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2421 if (sdata->vif.bss_conf.use_short_slot) 2422 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2423 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2424 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2425 2426 sinfo->sta_flags.set = 0; 2427 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2428 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2429 BIT(NL80211_STA_FLAG_WME) | 2430 BIT(NL80211_STA_FLAG_MFP) | 2431 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2432 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2433 BIT(NL80211_STA_FLAG_TDLS_PEER); 2434 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2435 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2436 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2437 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2438 if (sta->sta.wme) 2439 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2440 if (test_sta_flag(sta, WLAN_STA_MFP)) 2441 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2442 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2443 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2444 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2445 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2446 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2447 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2448 2449 thr = sta_get_expected_throughput(sta); 2450 2451 if (thr != 0) { 2452 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2453 sinfo->expected_throughput = thr; 2454 } 2455 2456 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && 2457 sta->status_stats.ack_signal_filled) { 2458 sinfo->ack_signal = sta->status_stats.last_ack_signal; 2459 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); 2460 } 2461 2462 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && 2463 sta->status_stats.ack_signal_filled) { 2464 sinfo->avg_ack_signal = 2465 -(s8)ewma_avg_signal_read( 2466 &sta->status_stats.avg_ack_signal); 2467 sinfo->filled |= 2468 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); 2469 } 2470 2471 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2472 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC); 2473 sinfo->airtime_link_metric = 2474 airtime_link_metric_get(local, sta); 2475 } 2476 } 2477 2478 u32 sta_get_expected_throughput(struct sta_info *sta) 2479 { 2480 struct ieee80211_sub_if_data *sdata = sta->sdata; 2481 struct ieee80211_local *local = sdata->local; 2482 struct rate_control_ref *ref = NULL; 2483 u32 thr = 0; 2484 2485 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2486 ref = local->rate_ctrl; 2487 2488 /* check if the driver has a SW RC implementation */ 2489 if (ref && ref->ops->get_expected_throughput) 2490 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2491 else 2492 thr = drv_get_expected_throughput(local, sta); 2493 2494 return thr; 2495 } 2496 2497 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2498 { 2499 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2500 2501 if (!sta->status_stats.last_ack || 2502 time_after(stats->last_rx, sta->status_stats.last_ack)) 2503 return stats->last_rx; 2504 return sta->status_stats.last_ack; 2505 } 2506 2507 static void sta_update_codel_params(struct sta_info *sta, u32 thr) 2508 { 2509 if (!sta->sdata->local->ops->wake_tx_queue) 2510 return; 2511 2512 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { 2513 sta->cparams.target = MS2TIME(50); 2514 sta->cparams.interval = MS2TIME(300); 2515 sta->cparams.ecn = false; 2516 } else { 2517 sta->cparams.target = MS2TIME(20); 2518 sta->cparams.interval = MS2TIME(100); 2519 sta->cparams.ecn = true; 2520 } 2521 } 2522 2523 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, 2524 u32 thr) 2525 { 2526 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2527 2528 sta_update_codel_params(sta, thr); 2529 } 2530