1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 7 * Copyright (C) 2018-2019 Intel Corporation 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/codel.h> 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 static const struct rhashtable_params sta_rht_params = { 68 .nelem_hint = 3, /* start small */ 69 .automatic_shrinking = true, 70 .head_offset = offsetof(struct sta_info, hash_node), 71 .key_offset = offsetof(struct sta_info, addr), 72 .key_len = ETH_ALEN, 73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 74 }; 75 76 /* Caller must hold local->sta_mtx */ 77 static int sta_info_hash_del(struct ieee80211_local *local, 78 struct sta_info *sta) 79 { 80 return rhltable_remove(&local->sta_hash, &sta->hash_node, 81 sta_rht_params); 82 } 83 84 static void __cleanup_single_sta(struct sta_info *sta) 85 { 86 int ac, i; 87 struct tid_ampdu_tx *tid_tx; 88 struct ieee80211_sub_if_data *sdata = sta->sdata; 89 struct ieee80211_local *local = sdata->local; 90 struct ps_data *ps; 91 92 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 97 ps = &sdata->bss->ps; 98 else if (ieee80211_vif_is_mesh(&sdata->vif)) 99 ps = &sdata->u.mesh.ps; 100 else 101 return; 102 103 clear_sta_flag(sta, WLAN_STA_PS_STA); 104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 106 107 atomic_dec(&ps->num_sta_ps); 108 } 109 110 if (sta->sta.txq[0]) { 111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 112 struct txq_info *txqi; 113 114 if (!sta->sta.txq[i]) 115 continue; 116 117 txqi = to_txq_info(sta->sta.txq[i]); 118 119 ieee80211_txq_purge(local, txqi); 120 } 121 } 122 123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 127 } 128 129 if (ieee80211_vif_is_mesh(&sdata->vif)) 130 mesh_sta_cleanup(sta); 131 132 cancel_work_sync(&sta->drv_deliver_wk); 133 134 /* 135 * Destroy aggregation state here. It would be nice to wait for the 136 * driver to finish aggregation stop and then clean up, but for now 137 * drivers have to handle aggregation stop being requested, followed 138 * directly by station destruction. 139 */ 140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 141 kfree(sta->ampdu_mlme.tid_start_tx[i]); 142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 143 if (!tid_tx) 144 continue; 145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 146 kfree(tid_tx); 147 } 148 } 149 150 static void cleanup_single_sta(struct sta_info *sta) 151 { 152 struct ieee80211_sub_if_data *sdata = sta->sdata; 153 struct ieee80211_local *local = sdata->local; 154 155 __cleanup_single_sta(sta); 156 sta_info_free(local, sta); 157 } 158 159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 160 const u8 *addr) 161 { 162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 163 } 164 165 /* protected by RCU */ 166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 167 const u8 *addr) 168 { 169 struct ieee80211_local *local = sdata->local; 170 struct rhlist_head *tmp; 171 struct sta_info *sta; 172 173 rcu_read_lock(); 174 for_each_sta_info(local, addr, sta, tmp) { 175 if (sta->sdata == sdata) { 176 rcu_read_unlock(); 177 /* this is safe as the caller must already hold 178 * another rcu read section or the mutex 179 */ 180 return sta; 181 } 182 } 183 rcu_read_unlock(); 184 return NULL; 185 } 186 187 /* 188 * Get sta info either from the specified interface 189 * or from one of its vlans 190 */ 191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 192 const u8 *addr) 193 { 194 struct ieee80211_local *local = sdata->local; 195 struct rhlist_head *tmp; 196 struct sta_info *sta; 197 198 rcu_read_lock(); 199 for_each_sta_info(local, addr, sta, tmp) { 200 if (sta->sdata == sdata || 201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 202 rcu_read_unlock(); 203 /* this is safe as the caller must already hold 204 * another rcu read section or the mutex 205 */ 206 return sta; 207 } 208 } 209 rcu_read_unlock(); 210 return NULL; 211 } 212 213 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 214 int idx) 215 { 216 struct ieee80211_local *local = sdata->local; 217 struct sta_info *sta; 218 int i = 0; 219 220 list_for_each_entry_rcu(sta, &local->sta_list, list) { 221 if (sdata != sta->sdata) 222 continue; 223 if (i < idx) { 224 ++i; 225 continue; 226 } 227 return sta; 228 } 229 230 return NULL; 231 } 232 233 /** 234 * sta_info_free - free STA 235 * 236 * @local: pointer to the global information 237 * @sta: STA info to free 238 * 239 * This function must undo everything done by sta_info_alloc() 240 * that may happen before sta_info_insert(). It may only be 241 * called when sta_info_insert() has not been attempted (and 242 * if that fails, the station is freed anyway.) 243 */ 244 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 245 { 246 if (sta->rate_ctrl) 247 rate_control_free_sta(sta); 248 249 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 250 251 if (sta->sta.txq[0]) 252 kfree(to_txq_info(sta->sta.txq[0])); 253 kfree(rcu_dereference_raw(sta->sta.rates)); 254 #ifdef CONFIG_MAC80211_MESH 255 kfree(sta->mesh); 256 #endif 257 free_percpu(sta->pcpu_rx_stats); 258 kfree(sta); 259 } 260 261 /* Caller must hold local->sta_mtx */ 262 static int sta_info_hash_add(struct ieee80211_local *local, 263 struct sta_info *sta) 264 { 265 return rhltable_insert(&local->sta_hash, &sta->hash_node, 266 sta_rht_params); 267 } 268 269 static void sta_deliver_ps_frames(struct work_struct *wk) 270 { 271 struct sta_info *sta; 272 273 sta = container_of(wk, struct sta_info, drv_deliver_wk); 274 275 if (sta->dead) 276 return; 277 278 local_bh_disable(); 279 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 280 ieee80211_sta_ps_deliver_wakeup(sta); 281 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 282 ieee80211_sta_ps_deliver_poll_response(sta); 283 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 284 ieee80211_sta_ps_deliver_uapsd(sta); 285 local_bh_enable(); 286 } 287 288 static int sta_prepare_rate_control(struct ieee80211_local *local, 289 struct sta_info *sta, gfp_t gfp) 290 { 291 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 292 return 0; 293 294 sta->rate_ctrl = local->rate_ctrl; 295 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 296 sta, gfp); 297 if (!sta->rate_ctrl_priv) 298 return -ENOMEM; 299 300 return 0; 301 } 302 303 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 304 const u8 *addr, gfp_t gfp) 305 { 306 struct ieee80211_local *local = sdata->local; 307 struct ieee80211_hw *hw = &local->hw; 308 struct sta_info *sta; 309 int i; 310 311 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 312 if (!sta) 313 return NULL; 314 315 if (ieee80211_hw_check(hw, USES_RSS)) { 316 sta->pcpu_rx_stats = 317 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); 318 if (!sta->pcpu_rx_stats) 319 goto free; 320 } 321 322 spin_lock_init(&sta->lock); 323 spin_lock_init(&sta->ps_lock); 324 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 325 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 326 mutex_init(&sta->ampdu_mlme.mtx); 327 #ifdef CONFIG_MAC80211_MESH 328 if (ieee80211_vif_is_mesh(&sdata->vif)) { 329 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 330 if (!sta->mesh) 331 goto free; 332 sta->mesh->plink_sta = sta; 333 spin_lock_init(&sta->mesh->plink_lock); 334 if (ieee80211_vif_is_mesh(&sdata->vif) && 335 !sdata->u.mesh.user_mpm) 336 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 337 0); 338 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 339 } 340 #endif 341 342 memcpy(sta->addr, addr, ETH_ALEN); 343 memcpy(sta->sta.addr, addr, ETH_ALEN); 344 sta->sta.max_rx_aggregation_subframes = 345 local->hw.max_rx_aggregation_subframes; 346 347 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only. 348 * The Tx path starts to use a key as soon as the key slot ptk_idx 349 * references to is not NULL. To not use the initial Rx-only key 350 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid 351 * which always will refer to a NULL key. 352 */ 353 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX); 354 sta->ptk_idx = INVALID_PTK_KEYIDX; 355 356 sta->local = local; 357 sta->sdata = sdata; 358 sta->rx_stats.last_rx = jiffies; 359 360 u64_stats_init(&sta->rx_stats.syncp); 361 362 sta->sta_state = IEEE80211_STA_NONE; 363 364 /* Mark TID as unreserved */ 365 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 366 367 sta->last_connected = ktime_get_seconds(); 368 ewma_signal_init(&sta->rx_stats_avg.signal); 369 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal); 370 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 371 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 372 373 if (local->ops->wake_tx_queue) { 374 void *txq_data; 375 int size = sizeof(struct txq_info) + 376 ALIGN(hw->txq_data_size, sizeof(void *)); 377 378 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 379 if (!txq_data) 380 goto free; 381 382 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 383 struct txq_info *txq = txq_data + i * size; 384 385 /* might not do anything for the bufferable MMPDU TXQ */ 386 ieee80211_txq_init(sdata, sta, txq, i); 387 } 388 } 389 390 if (sta_prepare_rate_control(local, sta, gfp)) 391 goto free_txq; 392 393 sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT; 394 395 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 396 skb_queue_head_init(&sta->ps_tx_buf[i]); 397 skb_queue_head_init(&sta->tx_filtered[i]); 398 sta->airtime[i].deficit = sta->airtime_weight; 399 } 400 401 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 402 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 403 404 for (i = 0; i < NUM_NL80211_BANDS; i++) { 405 u32 mandatory = 0; 406 int r; 407 408 if (!hw->wiphy->bands[i]) 409 continue; 410 411 switch (i) { 412 case NL80211_BAND_2GHZ: 413 /* 414 * We use both here, even if we cannot really know for 415 * sure the station will support both, but the only use 416 * for this is when we don't know anything yet and send 417 * management frames, and then we'll pick the lowest 418 * possible rate anyway. 419 * If we don't include _G here, we cannot find a rate 420 * in P2P, and thus trigger the WARN_ONCE() in rate.c 421 */ 422 mandatory = IEEE80211_RATE_MANDATORY_B | 423 IEEE80211_RATE_MANDATORY_G; 424 break; 425 case NL80211_BAND_5GHZ: 426 mandatory = IEEE80211_RATE_MANDATORY_A; 427 break; 428 case NL80211_BAND_60GHZ: 429 WARN_ON(1); 430 mandatory = 0; 431 break; 432 } 433 434 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) { 435 struct ieee80211_rate *rate; 436 437 rate = &hw->wiphy->bands[i]->bitrates[r]; 438 439 if (!(rate->flags & mandatory)) 440 continue; 441 sta->sta.supp_rates[i] |= BIT(r); 442 } 443 } 444 445 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 446 if (sdata->vif.type == NL80211_IFTYPE_AP || 447 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 448 struct ieee80211_supported_band *sband; 449 u8 smps; 450 451 sband = ieee80211_get_sband(sdata); 452 if (!sband) 453 goto free_txq; 454 455 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 456 IEEE80211_HT_CAP_SM_PS_SHIFT; 457 /* 458 * Assume that hostapd advertises our caps in the beacon and 459 * this is the known_smps_mode for a station that just assciated 460 */ 461 switch (smps) { 462 case WLAN_HT_SMPS_CONTROL_DISABLED: 463 sta->known_smps_mode = IEEE80211_SMPS_OFF; 464 break; 465 case WLAN_HT_SMPS_CONTROL_STATIC: 466 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 467 break; 468 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 469 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 470 break; 471 default: 472 WARN_ON(1); 473 } 474 } 475 476 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 477 478 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; 479 sta->cparams.target = MS2TIME(20); 480 sta->cparams.interval = MS2TIME(100); 481 sta->cparams.ecn = true; 482 483 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 484 485 return sta; 486 487 free_txq: 488 if (sta->sta.txq[0]) 489 kfree(to_txq_info(sta->sta.txq[0])); 490 free: 491 free_percpu(sta->pcpu_rx_stats); 492 #ifdef CONFIG_MAC80211_MESH 493 kfree(sta->mesh); 494 #endif 495 kfree(sta); 496 return NULL; 497 } 498 499 static int sta_info_insert_check(struct sta_info *sta) 500 { 501 struct ieee80211_sub_if_data *sdata = sta->sdata; 502 503 /* 504 * Can't be a WARN_ON because it can be triggered through a race: 505 * something inserts a STA (on one CPU) without holding the RTNL 506 * and another CPU turns off the net device. 507 */ 508 if (unlikely(!ieee80211_sdata_running(sdata))) 509 return -ENETDOWN; 510 511 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 512 is_multicast_ether_addr(sta->sta.addr))) 513 return -EINVAL; 514 515 /* The RCU read lock is required by rhashtable due to 516 * asynchronous resize/rehash. We also require the mutex 517 * for correctness. 518 */ 519 rcu_read_lock(); 520 lockdep_assert_held(&sdata->local->sta_mtx); 521 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 522 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 523 rcu_read_unlock(); 524 return -ENOTUNIQ; 525 } 526 rcu_read_unlock(); 527 528 return 0; 529 } 530 531 static int sta_info_insert_drv_state(struct ieee80211_local *local, 532 struct ieee80211_sub_if_data *sdata, 533 struct sta_info *sta) 534 { 535 enum ieee80211_sta_state state; 536 int err = 0; 537 538 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 539 err = drv_sta_state(local, sdata, sta, state, state + 1); 540 if (err) 541 break; 542 } 543 544 if (!err) { 545 /* 546 * Drivers using legacy sta_add/sta_remove callbacks only 547 * get uploaded set to true after sta_add is called. 548 */ 549 if (!local->ops->sta_add) 550 sta->uploaded = true; 551 return 0; 552 } 553 554 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 555 sdata_info(sdata, 556 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 557 sta->sta.addr, state + 1, err); 558 err = 0; 559 } 560 561 /* unwind on error */ 562 for (; state > IEEE80211_STA_NOTEXIST; state--) 563 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 564 565 return err; 566 } 567 568 static void 569 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 570 { 571 struct ieee80211_local *local = sdata->local; 572 bool allow_p2p_go_ps = sdata->vif.p2p; 573 struct sta_info *sta; 574 575 rcu_read_lock(); 576 list_for_each_entry_rcu(sta, &local->sta_list, list) { 577 if (sdata != sta->sdata || 578 !test_sta_flag(sta, WLAN_STA_ASSOC)) 579 continue; 580 if (!sta->sta.support_p2p_ps) { 581 allow_p2p_go_ps = false; 582 break; 583 } 584 } 585 rcu_read_unlock(); 586 587 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 588 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 589 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 590 } 591 } 592 593 /* 594 * should be called with sta_mtx locked 595 * this function replaces the mutex lock 596 * with a RCU lock 597 */ 598 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 599 { 600 struct ieee80211_local *local = sta->local; 601 struct ieee80211_sub_if_data *sdata = sta->sdata; 602 struct station_info *sinfo = NULL; 603 int err = 0; 604 605 lockdep_assert_held(&local->sta_mtx); 606 607 /* check if STA exists already */ 608 if (sta_info_get_bss(sdata, sta->sta.addr)) { 609 err = -EEXIST; 610 goto out_err; 611 } 612 613 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 614 if (!sinfo) { 615 err = -ENOMEM; 616 goto out_err; 617 } 618 619 local->num_sta++; 620 local->sta_generation++; 621 smp_mb(); 622 623 /* simplify things and don't accept BA sessions yet */ 624 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 625 626 /* make the station visible */ 627 err = sta_info_hash_add(local, sta); 628 if (err) 629 goto out_drop_sta; 630 631 list_add_tail_rcu(&sta->list, &local->sta_list); 632 633 /* notify driver */ 634 err = sta_info_insert_drv_state(local, sdata, sta); 635 if (err) 636 goto out_remove; 637 638 set_sta_flag(sta, WLAN_STA_INSERTED); 639 640 if (sta->sta_state >= IEEE80211_STA_ASSOC) { 641 ieee80211_recalc_min_chandef(sta->sdata); 642 if (!sta->sta.support_p2p_ps) 643 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 644 } 645 646 /* accept BA sessions now */ 647 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 648 649 ieee80211_sta_debugfs_add(sta); 650 rate_control_add_sta_debugfs(sta); 651 652 sinfo->generation = local->sta_generation; 653 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 654 kfree(sinfo); 655 656 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 657 658 /* move reference to rcu-protected */ 659 rcu_read_lock(); 660 mutex_unlock(&local->sta_mtx); 661 662 if (ieee80211_vif_is_mesh(&sdata->vif)) 663 mesh_accept_plinks_update(sdata); 664 665 return 0; 666 out_remove: 667 sta_info_hash_del(local, sta); 668 list_del_rcu(&sta->list); 669 out_drop_sta: 670 local->num_sta--; 671 synchronize_net(); 672 __cleanup_single_sta(sta); 673 out_err: 674 mutex_unlock(&local->sta_mtx); 675 kfree(sinfo); 676 rcu_read_lock(); 677 return err; 678 } 679 680 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 681 { 682 struct ieee80211_local *local = sta->local; 683 int err; 684 685 might_sleep(); 686 687 mutex_lock(&local->sta_mtx); 688 689 err = sta_info_insert_check(sta); 690 if (err) { 691 mutex_unlock(&local->sta_mtx); 692 rcu_read_lock(); 693 goto out_free; 694 } 695 696 err = sta_info_insert_finish(sta); 697 if (err) 698 goto out_free; 699 700 return 0; 701 out_free: 702 sta_info_free(local, sta); 703 return err; 704 } 705 706 int sta_info_insert(struct sta_info *sta) 707 { 708 int err = sta_info_insert_rcu(sta); 709 710 rcu_read_unlock(); 711 712 return err; 713 } 714 715 static inline void __bss_tim_set(u8 *tim, u16 id) 716 { 717 /* 718 * This format has been mandated by the IEEE specifications, 719 * so this line may not be changed to use the __set_bit() format. 720 */ 721 tim[id / 8] |= (1 << (id % 8)); 722 } 723 724 static inline void __bss_tim_clear(u8 *tim, u16 id) 725 { 726 /* 727 * This format has been mandated by the IEEE specifications, 728 * so this line may not be changed to use the __clear_bit() format. 729 */ 730 tim[id / 8] &= ~(1 << (id % 8)); 731 } 732 733 static inline bool __bss_tim_get(u8 *tim, u16 id) 734 { 735 /* 736 * This format has been mandated by the IEEE specifications, 737 * so this line may not be changed to use the test_bit() format. 738 */ 739 return tim[id / 8] & (1 << (id % 8)); 740 } 741 742 static unsigned long ieee80211_tids_for_ac(int ac) 743 { 744 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 745 switch (ac) { 746 case IEEE80211_AC_VO: 747 return BIT(6) | BIT(7); 748 case IEEE80211_AC_VI: 749 return BIT(4) | BIT(5); 750 case IEEE80211_AC_BE: 751 return BIT(0) | BIT(3); 752 case IEEE80211_AC_BK: 753 return BIT(1) | BIT(2); 754 default: 755 WARN_ON(1); 756 return 0; 757 } 758 } 759 760 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 761 { 762 struct ieee80211_local *local = sta->local; 763 struct ps_data *ps; 764 bool indicate_tim = false; 765 u8 ignore_for_tim = sta->sta.uapsd_queues; 766 int ac; 767 u16 id = sta->sta.aid; 768 769 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 770 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 771 if (WARN_ON_ONCE(!sta->sdata->bss)) 772 return; 773 774 ps = &sta->sdata->bss->ps; 775 #ifdef CONFIG_MAC80211_MESH 776 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 777 ps = &sta->sdata->u.mesh.ps; 778 #endif 779 } else { 780 return; 781 } 782 783 /* No need to do anything if the driver does all */ 784 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 785 return; 786 787 if (sta->dead) 788 goto done; 789 790 /* 791 * If all ACs are delivery-enabled then we should build 792 * the TIM bit for all ACs anyway; if only some are then 793 * we ignore those and build the TIM bit using only the 794 * non-enabled ones. 795 */ 796 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 797 ignore_for_tim = 0; 798 799 if (ignore_pending) 800 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 801 802 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 803 unsigned long tids; 804 805 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 806 continue; 807 808 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 809 !skb_queue_empty(&sta->ps_tx_buf[ac]); 810 if (indicate_tim) 811 break; 812 813 tids = ieee80211_tids_for_ac(ac); 814 815 indicate_tim |= 816 sta->driver_buffered_tids & tids; 817 indicate_tim |= 818 sta->txq_buffered_tids & tids; 819 } 820 821 done: 822 spin_lock_bh(&local->tim_lock); 823 824 if (indicate_tim == __bss_tim_get(ps->tim, id)) 825 goto out_unlock; 826 827 if (indicate_tim) 828 __bss_tim_set(ps->tim, id); 829 else 830 __bss_tim_clear(ps->tim, id); 831 832 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 833 local->tim_in_locked_section = true; 834 drv_set_tim(local, &sta->sta, indicate_tim); 835 local->tim_in_locked_section = false; 836 } 837 838 out_unlock: 839 spin_unlock_bh(&local->tim_lock); 840 } 841 842 void sta_info_recalc_tim(struct sta_info *sta) 843 { 844 __sta_info_recalc_tim(sta, false); 845 } 846 847 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 848 { 849 struct ieee80211_tx_info *info; 850 int timeout; 851 852 if (!skb) 853 return false; 854 855 info = IEEE80211_SKB_CB(skb); 856 857 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 858 timeout = (sta->listen_interval * 859 sta->sdata->vif.bss_conf.beacon_int * 860 32 / 15625) * HZ; 861 if (timeout < STA_TX_BUFFER_EXPIRE) 862 timeout = STA_TX_BUFFER_EXPIRE; 863 return time_after(jiffies, info->control.jiffies + timeout); 864 } 865 866 867 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 868 struct sta_info *sta, int ac) 869 { 870 unsigned long flags; 871 struct sk_buff *skb; 872 873 /* 874 * First check for frames that should expire on the filtered 875 * queue. Frames here were rejected by the driver and are on 876 * a separate queue to avoid reordering with normal PS-buffered 877 * frames. They also aren't accounted for right now in the 878 * total_ps_buffered counter. 879 */ 880 for (;;) { 881 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 882 skb = skb_peek(&sta->tx_filtered[ac]); 883 if (sta_info_buffer_expired(sta, skb)) 884 skb = __skb_dequeue(&sta->tx_filtered[ac]); 885 else 886 skb = NULL; 887 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 888 889 /* 890 * Frames are queued in order, so if this one 891 * hasn't expired yet we can stop testing. If 892 * we actually reached the end of the queue we 893 * also need to stop, of course. 894 */ 895 if (!skb) 896 break; 897 ieee80211_free_txskb(&local->hw, skb); 898 } 899 900 /* 901 * Now also check the normal PS-buffered queue, this will 902 * only find something if the filtered queue was emptied 903 * since the filtered frames are all before the normal PS 904 * buffered frames. 905 */ 906 for (;;) { 907 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 908 skb = skb_peek(&sta->ps_tx_buf[ac]); 909 if (sta_info_buffer_expired(sta, skb)) 910 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 911 else 912 skb = NULL; 913 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 914 915 /* 916 * frames are queued in order, so if this one 917 * hasn't expired yet (or we reached the end of 918 * the queue) we can stop testing 919 */ 920 if (!skb) 921 break; 922 923 local->total_ps_buffered--; 924 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 925 sta->sta.addr); 926 ieee80211_free_txskb(&local->hw, skb); 927 } 928 929 /* 930 * Finally, recalculate the TIM bit for this station -- it might 931 * now be clear because the station was too slow to retrieve its 932 * frames. 933 */ 934 sta_info_recalc_tim(sta); 935 936 /* 937 * Return whether there are any frames still buffered, this is 938 * used to check whether the cleanup timer still needs to run, 939 * if there are no frames we don't need to rearm the timer. 940 */ 941 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 942 skb_queue_empty(&sta->tx_filtered[ac])); 943 } 944 945 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 946 struct sta_info *sta) 947 { 948 bool have_buffered = false; 949 int ac; 950 951 /* This is only necessary for stations on BSS/MBSS interfaces */ 952 if (!sta->sdata->bss && 953 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 954 return false; 955 956 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 957 have_buffered |= 958 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 959 960 return have_buffered; 961 } 962 963 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 964 { 965 struct ieee80211_local *local; 966 struct ieee80211_sub_if_data *sdata; 967 int ret; 968 969 might_sleep(); 970 971 if (!sta) 972 return -ENOENT; 973 974 local = sta->local; 975 sdata = sta->sdata; 976 977 lockdep_assert_held(&local->sta_mtx); 978 979 /* 980 * Before removing the station from the driver and 981 * rate control, it might still start new aggregation 982 * sessions -- block that to make sure the tear-down 983 * will be sufficient. 984 */ 985 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 986 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 987 988 /* 989 * Before removing the station from the driver there might be pending 990 * rx frames on RSS queues sent prior to the disassociation - wait for 991 * all such frames to be processed. 992 */ 993 drv_sync_rx_queues(local, sta); 994 995 ret = sta_info_hash_del(local, sta); 996 if (WARN_ON(ret)) 997 return ret; 998 999 /* 1000 * for TDLS peers, make sure to return to the base channel before 1001 * removal. 1002 */ 1003 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 1004 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 1005 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 1006 } 1007 1008 list_del_rcu(&sta->list); 1009 sta->removed = true; 1010 1011 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 1012 1013 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1014 rcu_access_pointer(sdata->u.vlan.sta) == sta) 1015 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 1016 1017 return 0; 1018 } 1019 1020 static void __sta_info_destroy_part2(struct sta_info *sta) 1021 { 1022 struct ieee80211_local *local = sta->local; 1023 struct ieee80211_sub_if_data *sdata = sta->sdata; 1024 struct station_info *sinfo; 1025 int ret; 1026 1027 /* 1028 * NOTE: This assumes at least synchronize_net() was done 1029 * after _part1 and before _part2! 1030 */ 1031 1032 might_sleep(); 1033 lockdep_assert_held(&local->sta_mtx); 1034 1035 /* now keys can no longer be reached */ 1036 ieee80211_free_sta_keys(local, sta); 1037 1038 /* disable TIM bit - last chance to tell driver */ 1039 __sta_info_recalc_tim(sta, true); 1040 1041 sta->dead = true; 1042 1043 local->num_sta--; 1044 local->sta_generation++; 1045 1046 while (sta->sta_state > IEEE80211_STA_NONE) { 1047 ret = sta_info_move_state(sta, sta->sta_state - 1); 1048 if (ret) { 1049 WARN_ON_ONCE(1); 1050 break; 1051 } 1052 } 1053 1054 if (sta->uploaded) { 1055 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 1056 IEEE80211_STA_NOTEXIST); 1057 WARN_ON_ONCE(ret != 0); 1058 } 1059 1060 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 1061 1062 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 1063 if (sinfo) 1064 sta_set_sinfo(sta, sinfo, true); 1065 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 1066 kfree(sinfo); 1067 1068 ieee80211_sta_debugfs_remove(sta); 1069 1070 cleanup_single_sta(sta); 1071 } 1072 1073 int __must_check __sta_info_destroy(struct sta_info *sta) 1074 { 1075 int err = __sta_info_destroy_part1(sta); 1076 1077 if (err) 1078 return err; 1079 1080 synchronize_net(); 1081 1082 __sta_info_destroy_part2(sta); 1083 1084 return 0; 1085 } 1086 1087 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1088 { 1089 struct sta_info *sta; 1090 int ret; 1091 1092 mutex_lock(&sdata->local->sta_mtx); 1093 sta = sta_info_get(sdata, addr); 1094 ret = __sta_info_destroy(sta); 1095 mutex_unlock(&sdata->local->sta_mtx); 1096 1097 return ret; 1098 } 1099 1100 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1101 const u8 *addr) 1102 { 1103 struct sta_info *sta; 1104 int ret; 1105 1106 mutex_lock(&sdata->local->sta_mtx); 1107 sta = sta_info_get_bss(sdata, addr); 1108 ret = __sta_info_destroy(sta); 1109 mutex_unlock(&sdata->local->sta_mtx); 1110 1111 return ret; 1112 } 1113 1114 static void sta_info_cleanup(struct timer_list *t) 1115 { 1116 struct ieee80211_local *local = from_timer(local, t, sta_cleanup); 1117 struct sta_info *sta; 1118 bool timer_needed = false; 1119 1120 rcu_read_lock(); 1121 list_for_each_entry_rcu(sta, &local->sta_list, list) 1122 if (sta_info_cleanup_expire_buffered(local, sta)) 1123 timer_needed = true; 1124 rcu_read_unlock(); 1125 1126 if (local->quiescing) 1127 return; 1128 1129 if (!timer_needed) 1130 return; 1131 1132 mod_timer(&local->sta_cleanup, 1133 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1134 } 1135 1136 int sta_info_init(struct ieee80211_local *local) 1137 { 1138 int err; 1139 1140 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1141 if (err) 1142 return err; 1143 1144 spin_lock_init(&local->tim_lock); 1145 mutex_init(&local->sta_mtx); 1146 INIT_LIST_HEAD(&local->sta_list); 1147 1148 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); 1149 return 0; 1150 } 1151 1152 void sta_info_stop(struct ieee80211_local *local) 1153 { 1154 del_timer_sync(&local->sta_cleanup); 1155 rhltable_destroy(&local->sta_hash); 1156 } 1157 1158 1159 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1160 { 1161 struct ieee80211_local *local = sdata->local; 1162 struct sta_info *sta, *tmp; 1163 LIST_HEAD(free_list); 1164 int ret = 0; 1165 1166 might_sleep(); 1167 1168 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1169 WARN_ON(vlans && !sdata->bss); 1170 1171 mutex_lock(&local->sta_mtx); 1172 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1173 if (sdata == sta->sdata || 1174 (vlans && sdata->bss == sta->sdata->bss)) { 1175 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1176 list_add(&sta->free_list, &free_list); 1177 ret++; 1178 } 1179 } 1180 1181 if (!list_empty(&free_list)) { 1182 synchronize_net(); 1183 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1184 __sta_info_destroy_part2(sta); 1185 } 1186 mutex_unlock(&local->sta_mtx); 1187 1188 return ret; 1189 } 1190 1191 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1192 unsigned long exp_time) 1193 { 1194 struct ieee80211_local *local = sdata->local; 1195 struct sta_info *sta, *tmp; 1196 1197 mutex_lock(&local->sta_mtx); 1198 1199 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1200 unsigned long last_active = ieee80211_sta_last_active(sta); 1201 1202 if (sdata != sta->sdata) 1203 continue; 1204 1205 if (time_is_before_jiffies(last_active + exp_time)) { 1206 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1207 sta->sta.addr); 1208 1209 if (ieee80211_vif_is_mesh(&sdata->vif) && 1210 test_sta_flag(sta, WLAN_STA_PS_STA)) 1211 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1212 1213 WARN_ON(__sta_info_destroy(sta)); 1214 } 1215 } 1216 1217 mutex_unlock(&local->sta_mtx); 1218 } 1219 1220 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1221 const u8 *addr, 1222 const u8 *localaddr) 1223 { 1224 struct ieee80211_local *local = hw_to_local(hw); 1225 struct rhlist_head *tmp; 1226 struct sta_info *sta; 1227 1228 /* 1229 * Just return a random station if localaddr is NULL 1230 * ... first in list. 1231 */ 1232 for_each_sta_info(local, addr, sta, tmp) { 1233 if (localaddr && 1234 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1235 continue; 1236 if (!sta->uploaded) 1237 return NULL; 1238 return &sta->sta; 1239 } 1240 1241 return NULL; 1242 } 1243 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1244 1245 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1246 const u8 *addr) 1247 { 1248 struct sta_info *sta; 1249 1250 if (!vif) 1251 return NULL; 1252 1253 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1254 if (!sta) 1255 return NULL; 1256 1257 if (!sta->uploaded) 1258 return NULL; 1259 1260 return &sta->sta; 1261 } 1262 EXPORT_SYMBOL(ieee80211_find_sta); 1263 1264 /* powersave support code */ 1265 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1266 { 1267 struct ieee80211_sub_if_data *sdata = sta->sdata; 1268 struct ieee80211_local *local = sdata->local; 1269 struct sk_buff_head pending; 1270 int filtered = 0, buffered = 0, ac, i; 1271 unsigned long flags; 1272 struct ps_data *ps; 1273 1274 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1275 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1276 u.ap); 1277 1278 if (sdata->vif.type == NL80211_IFTYPE_AP) 1279 ps = &sdata->bss->ps; 1280 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1281 ps = &sdata->u.mesh.ps; 1282 else 1283 return; 1284 1285 clear_sta_flag(sta, WLAN_STA_SP); 1286 1287 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1288 sta->driver_buffered_tids = 0; 1289 sta->txq_buffered_tids = 0; 1290 1291 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1292 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1293 1294 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1295 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) 1296 continue; 1297 1298 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); 1299 } 1300 1301 skb_queue_head_init(&pending); 1302 1303 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1304 spin_lock(&sta->ps_lock); 1305 /* Send all buffered frames to the station */ 1306 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1307 int count = skb_queue_len(&pending), tmp; 1308 1309 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1310 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1311 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1312 tmp = skb_queue_len(&pending); 1313 filtered += tmp - count; 1314 count = tmp; 1315 1316 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1317 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1318 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1319 tmp = skb_queue_len(&pending); 1320 buffered += tmp - count; 1321 } 1322 1323 ieee80211_add_pending_skbs(local, &pending); 1324 1325 /* now we're no longer in the deliver code */ 1326 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1327 1328 /* The station might have polled and then woken up before we responded, 1329 * so clear these flags now to avoid them sticking around. 1330 */ 1331 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1332 clear_sta_flag(sta, WLAN_STA_UAPSD); 1333 spin_unlock(&sta->ps_lock); 1334 1335 atomic_dec(&ps->num_sta_ps); 1336 1337 /* This station just woke up and isn't aware of our SMPS state */ 1338 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1339 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1340 sdata->smps_mode) && 1341 sta->known_smps_mode != sdata->bss->req_smps && 1342 sta_info_tx_streams(sta) != 1) { 1343 ht_dbg(sdata, 1344 "%pM just woke up and MIMO capable - update SMPS\n", 1345 sta->sta.addr); 1346 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1347 sta->sta.addr, 1348 sdata->vif.bss_conf.bssid); 1349 } 1350 1351 local->total_ps_buffered -= buffered; 1352 1353 sta_info_recalc_tim(sta); 1354 1355 ps_dbg(sdata, 1356 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1357 sta->sta.addr, sta->sta.aid, filtered, buffered); 1358 1359 ieee80211_check_fast_xmit(sta); 1360 } 1361 1362 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1363 enum ieee80211_frame_release_type reason, 1364 bool call_driver, bool more_data) 1365 { 1366 struct ieee80211_sub_if_data *sdata = sta->sdata; 1367 struct ieee80211_local *local = sdata->local; 1368 struct ieee80211_qos_hdr *nullfunc; 1369 struct sk_buff *skb; 1370 int size = sizeof(*nullfunc); 1371 __le16 fc; 1372 bool qos = sta->sta.wme; 1373 struct ieee80211_tx_info *info; 1374 struct ieee80211_chanctx_conf *chanctx_conf; 1375 1376 /* Don't send NDPs when STA is connected HE */ 1377 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1378 !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE)) 1379 return; 1380 1381 if (qos) { 1382 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1383 IEEE80211_STYPE_QOS_NULLFUNC | 1384 IEEE80211_FCTL_FROMDS); 1385 } else { 1386 size -= 2; 1387 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1388 IEEE80211_STYPE_NULLFUNC | 1389 IEEE80211_FCTL_FROMDS); 1390 } 1391 1392 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1393 if (!skb) 1394 return; 1395 1396 skb_reserve(skb, local->hw.extra_tx_headroom); 1397 1398 nullfunc = skb_put(skb, size); 1399 nullfunc->frame_control = fc; 1400 nullfunc->duration_id = 0; 1401 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1402 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1403 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1404 nullfunc->seq_ctrl = 0; 1405 1406 skb->priority = tid; 1407 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1408 if (qos) { 1409 nullfunc->qos_ctrl = cpu_to_le16(tid); 1410 1411 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1412 nullfunc->qos_ctrl |= 1413 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1414 if (more_data) 1415 nullfunc->frame_control |= 1416 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1417 } 1418 } 1419 1420 info = IEEE80211_SKB_CB(skb); 1421 1422 /* 1423 * Tell TX path to send this frame even though the 1424 * STA may still remain is PS mode after this frame 1425 * exchange. Also set EOSP to indicate this packet 1426 * ends the poll/service period. 1427 */ 1428 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1429 IEEE80211_TX_STATUS_EOSP | 1430 IEEE80211_TX_CTL_REQ_TX_STATUS; 1431 1432 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1433 1434 if (call_driver) 1435 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1436 reason, false); 1437 1438 skb->dev = sdata->dev; 1439 1440 rcu_read_lock(); 1441 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1442 if (WARN_ON(!chanctx_conf)) { 1443 rcu_read_unlock(); 1444 kfree_skb(skb); 1445 return; 1446 } 1447 1448 info->band = chanctx_conf->def.chan->band; 1449 ieee80211_xmit(sdata, sta, skb, 0); 1450 rcu_read_unlock(); 1451 } 1452 1453 static int find_highest_prio_tid(unsigned long tids) 1454 { 1455 /* lower 3 TIDs aren't ordered perfectly */ 1456 if (tids & 0xF8) 1457 return fls(tids) - 1; 1458 /* TID 0 is BE just like TID 3 */ 1459 if (tids & BIT(0)) 1460 return 0; 1461 return fls(tids) - 1; 1462 } 1463 1464 /* Indicates if the MORE_DATA bit should be set in the last 1465 * frame obtained by ieee80211_sta_ps_get_frames. 1466 * Note that driver_release_tids is relevant only if 1467 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1468 */ 1469 static bool 1470 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1471 enum ieee80211_frame_release_type reason, 1472 unsigned long driver_release_tids) 1473 { 1474 int ac; 1475 1476 /* If the driver has data on more than one TID then 1477 * certainly there's more data if we release just a 1478 * single frame now (from a single TID). This will 1479 * only happen for PS-Poll. 1480 */ 1481 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1482 hweight16(driver_release_tids) > 1) 1483 return true; 1484 1485 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1486 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1487 continue; 1488 1489 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1490 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1491 return true; 1492 } 1493 1494 return false; 1495 } 1496 1497 static void 1498 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1499 enum ieee80211_frame_release_type reason, 1500 struct sk_buff_head *frames, 1501 unsigned long *driver_release_tids) 1502 { 1503 struct ieee80211_sub_if_data *sdata = sta->sdata; 1504 struct ieee80211_local *local = sdata->local; 1505 int ac; 1506 1507 /* Get response frame(s) and more data bit for the last one. */ 1508 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1509 unsigned long tids; 1510 1511 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1512 continue; 1513 1514 tids = ieee80211_tids_for_ac(ac); 1515 1516 /* if we already have frames from software, then we can't also 1517 * release from hardware queues 1518 */ 1519 if (skb_queue_empty(frames)) { 1520 *driver_release_tids |= 1521 sta->driver_buffered_tids & tids; 1522 *driver_release_tids |= sta->txq_buffered_tids & tids; 1523 } 1524 1525 if (!*driver_release_tids) { 1526 struct sk_buff *skb; 1527 1528 while (n_frames > 0) { 1529 skb = skb_dequeue(&sta->tx_filtered[ac]); 1530 if (!skb) { 1531 skb = skb_dequeue( 1532 &sta->ps_tx_buf[ac]); 1533 if (skb) 1534 local->total_ps_buffered--; 1535 } 1536 if (!skb) 1537 break; 1538 n_frames--; 1539 __skb_queue_tail(frames, skb); 1540 } 1541 } 1542 1543 /* If we have more frames buffered on this AC, then abort the 1544 * loop since we can't send more data from other ACs before 1545 * the buffered frames from this. 1546 */ 1547 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1548 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1549 break; 1550 } 1551 } 1552 1553 static void 1554 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1555 int n_frames, u8 ignored_acs, 1556 enum ieee80211_frame_release_type reason) 1557 { 1558 struct ieee80211_sub_if_data *sdata = sta->sdata; 1559 struct ieee80211_local *local = sdata->local; 1560 unsigned long driver_release_tids = 0; 1561 struct sk_buff_head frames; 1562 bool more_data; 1563 1564 /* Service or PS-Poll period starts */ 1565 set_sta_flag(sta, WLAN_STA_SP); 1566 1567 __skb_queue_head_init(&frames); 1568 1569 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1570 &frames, &driver_release_tids); 1571 1572 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1573 1574 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1575 driver_release_tids = 1576 BIT(find_highest_prio_tid(driver_release_tids)); 1577 1578 if (skb_queue_empty(&frames) && !driver_release_tids) { 1579 int tid, ac; 1580 1581 /* 1582 * For PS-Poll, this can only happen due to a race condition 1583 * when we set the TIM bit and the station notices it, but 1584 * before it can poll for the frame we expire it. 1585 * 1586 * For uAPSD, this is said in the standard (11.2.1.5 h): 1587 * At each unscheduled SP for a non-AP STA, the AP shall 1588 * attempt to transmit at least one MSDU or MMPDU, but no 1589 * more than the value specified in the Max SP Length field 1590 * in the QoS Capability element from delivery-enabled ACs, 1591 * that are destined for the non-AP STA. 1592 * 1593 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1594 */ 1595 1596 /* This will evaluate to 1, 3, 5 or 7. */ 1597 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1598 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1599 break; 1600 tid = 7 - 2 * ac; 1601 1602 ieee80211_send_null_response(sta, tid, reason, true, false); 1603 } else if (!driver_release_tids) { 1604 struct sk_buff_head pending; 1605 struct sk_buff *skb; 1606 int num = 0; 1607 u16 tids = 0; 1608 bool need_null = false; 1609 1610 skb_queue_head_init(&pending); 1611 1612 while ((skb = __skb_dequeue(&frames))) { 1613 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1614 struct ieee80211_hdr *hdr = (void *) skb->data; 1615 u8 *qoshdr = NULL; 1616 1617 num++; 1618 1619 /* 1620 * Tell TX path to send this frame even though the 1621 * STA may still remain is PS mode after this frame 1622 * exchange. 1623 */ 1624 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1625 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1626 1627 /* 1628 * Use MoreData flag to indicate whether there are 1629 * more buffered frames for this STA 1630 */ 1631 if (more_data || !skb_queue_empty(&frames)) 1632 hdr->frame_control |= 1633 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1634 else 1635 hdr->frame_control &= 1636 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1637 1638 if (ieee80211_is_data_qos(hdr->frame_control) || 1639 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1640 qoshdr = ieee80211_get_qos_ctl(hdr); 1641 1642 tids |= BIT(skb->priority); 1643 1644 __skb_queue_tail(&pending, skb); 1645 1646 /* end service period after last frame or add one */ 1647 if (!skb_queue_empty(&frames)) 1648 continue; 1649 1650 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1651 /* for PS-Poll, there's only one frame */ 1652 info->flags |= IEEE80211_TX_STATUS_EOSP | 1653 IEEE80211_TX_CTL_REQ_TX_STATUS; 1654 break; 1655 } 1656 1657 /* For uAPSD, things are a bit more complicated. If the 1658 * last frame has a QoS header (i.e. is a QoS-data or 1659 * QoS-nulldata frame) then just set the EOSP bit there 1660 * and be done. 1661 * If the frame doesn't have a QoS header (which means 1662 * it should be a bufferable MMPDU) then we can't set 1663 * the EOSP bit in the QoS header; add a QoS-nulldata 1664 * frame to the list to send it after the MMPDU. 1665 * 1666 * Note that this code is only in the mac80211-release 1667 * code path, we assume that the driver will not buffer 1668 * anything but QoS-data frames, or if it does, will 1669 * create the QoS-nulldata frame by itself if needed. 1670 * 1671 * Cf. 802.11-2012 10.2.1.10 (c). 1672 */ 1673 if (qoshdr) { 1674 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1675 1676 info->flags |= IEEE80211_TX_STATUS_EOSP | 1677 IEEE80211_TX_CTL_REQ_TX_STATUS; 1678 } else { 1679 /* The standard isn't completely clear on this 1680 * as it says the more-data bit should be set 1681 * if there are more BUs. The QoS-Null frame 1682 * we're about to send isn't buffered yet, we 1683 * only create it below, but let's pretend it 1684 * was buffered just in case some clients only 1685 * expect more-data=0 when eosp=1. 1686 */ 1687 hdr->frame_control |= 1688 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1689 need_null = true; 1690 num++; 1691 } 1692 break; 1693 } 1694 1695 drv_allow_buffered_frames(local, sta, tids, num, 1696 reason, more_data); 1697 1698 ieee80211_add_pending_skbs(local, &pending); 1699 1700 if (need_null) 1701 ieee80211_send_null_response( 1702 sta, find_highest_prio_tid(tids), 1703 reason, false, false); 1704 1705 sta_info_recalc_tim(sta); 1706 } else { 1707 int tid; 1708 1709 /* 1710 * We need to release a frame that is buffered somewhere in the 1711 * driver ... it'll have to handle that. 1712 * Note that the driver also has to check the number of frames 1713 * on the TIDs we're releasing from - if there are more than 1714 * n_frames it has to set the more-data bit (if we didn't ask 1715 * it to set it anyway due to other buffered frames); if there 1716 * are fewer than n_frames it has to make sure to adjust that 1717 * to allow the service period to end properly. 1718 */ 1719 drv_release_buffered_frames(local, sta, driver_release_tids, 1720 n_frames, reason, more_data); 1721 1722 /* 1723 * Note that we don't recalculate the TIM bit here as it would 1724 * most likely have no effect at all unless the driver told us 1725 * that the TID(s) became empty before returning here from the 1726 * release function. 1727 * Either way, however, when the driver tells us that the TID(s) 1728 * became empty or we find that a txq became empty, we'll do the 1729 * TIM recalculation. 1730 */ 1731 1732 if (!sta->sta.txq[0]) 1733 return; 1734 1735 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1736 if (!sta->sta.txq[tid] || 1737 !(driver_release_tids & BIT(tid)) || 1738 txq_has_queue(sta->sta.txq[tid])) 1739 continue; 1740 1741 sta_info_recalc_tim(sta); 1742 break; 1743 } 1744 } 1745 } 1746 1747 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1748 { 1749 u8 ignore_for_response = sta->sta.uapsd_queues; 1750 1751 /* 1752 * If all ACs are delivery-enabled then we should reply 1753 * from any of them, if only some are enabled we reply 1754 * only from the non-enabled ones. 1755 */ 1756 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1757 ignore_for_response = 0; 1758 1759 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1760 IEEE80211_FRAME_RELEASE_PSPOLL); 1761 } 1762 1763 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1764 { 1765 int n_frames = sta->sta.max_sp; 1766 u8 delivery_enabled = sta->sta.uapsd_queues; 1767 1768 /* 1769 * If we ever grow support for TSPEC this might happen if 1770 * the TSPEC update from hostapd comes in between a trigger 1771 * frame setting WLAN_STA_UAPSD in the RX path and this 1772 * actually getting called. 1773 */ 1774 if (!delivery_enabled) 1775 return; 1776 1777 switch (sta->sta.max_sp) { 1778 case 1: 1779 n_frames = 2; 1780 break; 1781 case 2: 1782 n_frames = 4; 1783 break; 1784 case 3: 1785 n_frames = 6; 1786 break; 1787 case 0: 1788 /* XXX: what is a good value? */ 1789 n_frames = 128; 1790 break; 1791 } 1792 1793 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1794 IEEE80211_FRAME_RELEASE_UAPSD); 1795 } 1796 1797 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1798 struct ieee80211_sta *pubsta, bool block) 1799 { 1800 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1801 1802 trace_api_sta_block_awake(sta->local, pubsta, block); 1803 1804 if (block) { 1805 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1806 ieee80211_clear_fast_xmit(sta); 1807 return; 1808 } 1809 1810 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1811 return; 1812 1813 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1814 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1815 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1816 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1817 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1818 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1819 /* must be asleep in this case */ 1820 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1821 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1822 } else { 1823 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1824 ieee80211_check_fast_xmit(sta); 1825 } 1826 } 1827 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1828 1829 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1830 { 1831 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1832 struct ieee80211_local *local = sta->local; 1833 1834 trace_api_eosp(local, pubsta); 1835 1836 clear_sta_flag(sta, WLAN_STA_SP); 1837 } 1838 EXPORT_SYMBOL(ieee80211_sta_eosp); 1839 1840 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1841 { 1842 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1843 enum ieee80211_frame_release_type reason; 1844 bool more_data; 1845 1846 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1847 1848 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1849 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1850 reason, 0); 1851 1852 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1853 } 1854 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1855 1856 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1857 u8 tid, bool buffered) 1858 { 1859 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1860 1861 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1862 return; 1863 1864 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1865 1866 if (buffered) 1867 set_bit(tid, &sta->driver_buffered_tids); 1868 else 1869 clear_bit(tid, &sta->driver_buffered_tids); 1870 1871 sta_info_recalc_tim(sta); 1872 } 1873 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1874 1875 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, 1876 u32 tx_airtime, u32 rx_airtime) 1877 { 1878 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1879 struct ieee80211_local *local = sta->sdata->local; 1880 u8 ac = ieee80211_ac_from_tid(tid); 1881 u32 airtime = 0; 1882 1883 if (sta->local->airtime_flags & AIRTIME_USE_TX) 1884 airtime += tx_airtime; 1885 if (sta->local->airtime_flags & AIRTIME_USE_RX) 1886 airtime += rx_airtime; 1887 1888 spin_lock_bh(&local->active_txq_lock[ac]); 1889 sta->airtime[ac].tx_airtime += tx_airtime; 1890 sta->airtime[ac].rx_airtime += rx_airtime; 1891 sta->airtime[ac].deficit -= airtime; 1892 spin_unlock_bh(&local->active_txq_lock[ac]); 1893 } 1894 EXPORT_SYMBOL(ieee80211_sta_register_airtime); 1895 1896 int sta_info_move_state(struct sta_info *sta, 1897 enum ieee80211_sta_state new_state) 1898 { 1899 might_sleep(); 1900 1901 if (sta->sta_state == new_state) 1902 return 0; 1903 1904 /* check allowed transitions first */ 1905 1906 switch (new_state) { 1907 case IEEE80211_STA_NONE: 1908 if (sta->sta_state != IEEE80211_STA_AUTH) 1909 return -EINVAL; 1910 break; 1911 case IEEE80211_STA_AUTH: 1912 if (sta->sta_state != IEEE80211_STA_NONE && 1913 sta->sta_state != IEEE80211_STA_ASSOC) 1914 return -EINVAL; 1915 break; 1916 case IEEE80211_STA_ASSOC: 1917 if (sta->sta_state != IEEE80211_STA_AUTH && 1918 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1919 return -EINVAL; 1920 break; 1921 case IEEE80211_STA_AUTHORIZED: 1922 if (sta->sta_state != IEEE80211_STA_ASSOC) 1923 return -EINVAL; 1924 break; 1925 default: 1926 WARN(1, "invalid state %d", new_state); 1927 return -EINVAL; 1928 } 1929 1930 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1931 sta->sta.addr, new_state); 1932 1933 /* 1934 * notify the driver before the actual changes so it can 1935 * fail the transition 1936 */ 1937 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1938 int err = drv_sta_state(sta->local, sta->sdata, sta, 1939 sta->sta_state, new_state); 1940 if (err) 1941 return err; 1942 } 1943 1944 /* reflect the change in all state variables */ 1945 1946 switch (new_state) { 1947 case IEEE80211_STA_NONE: 1948 if (sta->sta_state == IEEE80211_STA_AUTH) 1949 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1950 break; 1951 case IEEE80211_STA_AUTH: 1952 if (sta->sta_state == IEEE80211_STA_NONE) { 1953 set_bit(WLAN_STA_AUTH, &sta->_flags); 1954 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 1955 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1956 ieee80211_recalc_min_chandef(sta->sdata); 1957 if (!sta->sta.support_p2p_ps) 1958 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 1959 } 1960 break; 1961 case IEEE80211_STA_ASSOC: 1962 if (sta->sta_state == IEEE80211_STA_AUTH) { 1963 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1964 sta->assoc_at = ktime_get_boottime_ns(); 1965 ieee80211_recalc_min_chandef(sta->sdata); 1966 if (!sta->sta.support_p2p_ps) 1967 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 1968 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1969 ieee80211_vif_dec_num_mcast(sta->sdata); 1970 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1971 ieee80211_clear_fast_xmit(sta); 1972 ieee80211_clear_fast_rx(sta); 1973 } 1974 break; 1975 case IEEE80211_STA_AUTHORIZED: 1976 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1977 ieee80211_vif_inc_num_mcast(sta->sdata); 1978 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1979 ieee80211_check_fast_xmit(sta); 1980 ieee80211_check_fast_rx(sta); 1981 } 1982 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 1983 sta->sdata->vif.type == NL80211_IFTYPE_AP) 1984 cfg80211_send_layer2_update(sta->sdata->dev, 1985 sta->sta.addr); 1986 break; 1987 default: 1988 break; 1989 } 1990 1991 sta->sta_state = new_state; 1992 1993 return 0; 1994 } 1995 1996 u8 sta_info_tx_streams(struct sta_info *sta) 1997 { 1998 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1999 u8 rx_streams; 2000 2001 if (!sta->sta.ht_cap.ht_supported) 2002 return 1; 2003 2004 if (sta->sta.vht_cap.vht_supported) { 2005 int i; 2006 u16 tx_mcs_map = 2007 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 2008 2009 for (i = 7; i >= 0; i--) 2010 if ((tx_mcs_map & (0x3 << (i * 2))) != 2011 IEEE80211_VHT_MCS_NOT_SUPPORTED) 2012 return i + 1; 2013 } 2014 2015 if (ht_cap->mcs.rx_mask[3]) 2016 rx_streams = 4; 2017 else if (ht_cap->mcs.rx_mask[2]) 2018 rx_streams = 3; 2019 else if (ht_cap->mcs.rx_mask[1]) 2020 rx_streams = 2; 2021 else 2022 rx_streams = 1; 2023 2024 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 2025 return rx_streams; 2026 2027 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 2028 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 2029 } 2030 2031 static struct ieee80211_sta_rx_stats * 2032 sta_get_last_rx_stats(struct sta_info *sta) 2033 { 2034 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 2035 struct ieee80211_local *local = sta->local; 2036 int cpu; 2037 2038 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 2039 return stats; 2040 2041 for_each_possible_cpu(cpu) { 2042 struct ieee80211_sta_rx_stats *cpustats; 2043 2044 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2045 2046 if (time_after(cpustats->last_rx, stats->last_rx)) 2047 stats = cpustats; 2048 } 2049 2050 return stats; 2051 } 2052 2053 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, 2054 struct rate_info *rinfo) 2055 { 2056 rinfo->bw = STA_STATS_GET(BW, rate); 2057 2058 switch (STA_STATS_GET(TYPE, rate)) { 2059 case STA_STATS_RATE_TYPE_VHT: 2060 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 2061 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 2062 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 2063 if (STA_STATS_GET(SGI, rate)) 2064 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2065 break; 2066 case STA_STATS_RATE_TYPE_HT: 2067 rinfo->flags = RATE_INFO_FLAGS_MCS; 2068 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 2069 if (STA_STATS_GET(SGI, rate)) 2070 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2071 break; 2072 case STA_STATS_RATE_TYPE_LEGACY: { 2073 struct ieee80211_supported_band *sband; 2074 u16 brate; 2075 unsigned int shift; 2076 int band = STA_STATS_GET(LEGACY_BAND, rate); 2077 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 2078 2079 sband = local->hw.wiphy->bands[band]; 2080 brate = sband->bitrates[rate_idx].bitrate; 2081 if (rinfo->bw == RATE_INFO_BW_5) 2082 shift = 2; 2083 else if (rinfo->bw == RATE_INFO_BW_10) 2084 shift = 1; 2085 else 2086 shift = 0; 2087 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 2088 break; 2089 } 2090 case STA_STATS_RATE_TYPE_HE: 2091 rinfo->flags = RATE_INFO_FLAGS_HE_MCS; 2092 rinfo->mcs = STA_STATS_GET(HE_MCS, rate); 2093 rinfo->nss = STA_STATS_GET(HE_NSS, rate); 2094 rinfo->he_gi = STA_STATS_GET(HE_GI, rate); 2095 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); 2096 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); 2097 break; 2098 } 2099 } 2100 2101 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2102 { 2103 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2104 2105 if (rate == STA_STATS_RATE_INVALID) 2106 return -EINVAL; 2107 2108 sta_stats_decode_rate(sta->local, rate, rinfo); 2109 return 0; 2110 } 2111 2112 static void sta_set_tidstats(struct sta_info *sta, 2113 struct cfg80211_tid_stats *tidstats, 2114 int tid) 2115 { 2116 struct ieee80211_local *local = sta->local; 2117 2118 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2119 unsigned int start; 2120 2121 do { 2122 start = u64_stats_fetch_begin(&sta->rx_stats.syncp); 2123 tidstats->rx_msdu = sta->rx_stats.msdu[tid]; 2124 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start)); 2125 2126 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2127 } 2128 2129 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2130 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2131 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2132 } 2133 2134 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2135 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2136 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2137 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2138 } 2139 2140 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2141 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2142 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2143 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2144 } 2145 2146 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) { 2147 spin_lock_bh(&local->fq.lock); 2148 rcu_read_lock(); 2149 2150 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); 2151 ieee80211_fill_txq_stats(&tidstats->txq_stats, 2152 to_txq_info(sta->sta.txq[tid])); 2153 2154 rcu_read_unlock(); 2155 spin_unlock_bh(&local->fq.lock); 2156 } 2157 } 2158 2159 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2160 { 2161 unsigned int start; 2162 u64 value; 2163 2164 do { 2165 start = u64_stats_fetch_begin(&rxstats->syncp); 2166 value = rxstats->bytes; 2167 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2168 2169 return value; 2170 } 2171 2172 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, 2173 bool tidstats) 2174 { 2175 struct ieee80211_sub_if_data *sdata = sta->sdata; 2176 struct ieee80211_local *local = sdata->local; 2177 u32 thr = 0; 2178 int i, ac, cpu; 2179 struct ieee80211_sta_rx_stats *last_rxstats; 2180 2181 last_rxstats = sta_get_last_rx_stats(sta); 2182 2183 sinfo->generation = sdata->local->sta_generation; 2184 2185 /* do before driver, so beacon filtering drivers have a 2186 * chance to e.g. just add the number of filtered beacons 2187 * (or just modify the value entirely, of course) 2188 */ 2189 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2190 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2191 2192 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2193 2194 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | 2195 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | 2196 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | 2197 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | 2198 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) | 2199 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); 2200 2201 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2202 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2203 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); 2204 } 2205 2206 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2207 sinfo->assoc_at = sta->assoc_at; 2208 sinfo->inactive_time = 2209 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2210 2211 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | 2212 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { 2213 sinfo->tx_bytes = 0; 2214 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2215 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2216 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); 2217 } 2218 2219 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { 2220 sinfo->tx_packets = 0; 2221 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2222 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2223 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); 2224 } 2225 2226 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | 2227 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { 2228 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2229 2230 if (sta->pcpu_rx_stats) { 2231 for_each_possible_cpu(cpu) { 2232 struct ieee80211_sta_rx_stats *cpurxs; 2233 2234 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2235 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2236 } 2237 } 2238 2239 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); 2240 } 2241 2242 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { 2243 sinfo->rx_packets = sta->rx_stats.packets; 2244 if (sta->pcpu_rx_stats) { 2245 for_each_possible_cpu(cpu) { 2246 struct ieee80211_sta_rx_stats *cpurxs; 2247 2248 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2249 sinfo->rx_packets += cpurxs->packets; 2250 } 2251 } 2252 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 2253 } 2254 2255 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { 2256 sinfo->tx_retries = sta->status_stats.retry_count; 2257 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); 2258 } 2259 2260 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { 2261 sinfo->tx_failed = sta->status_stats.retry_failed; 2262 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); 2263 } 2264 2265 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { 2266 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2267 sinfo->rx_duration += sta->airtime[ac].rx_airtime; 2268 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 2269 } 2270 2271 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { 2272 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2273 sinfo->tx_duration += sta->airtime[ac].tx_airtime; 2274 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 2275 } 2276 2277 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { 2278 sinfo->airtime_weight = sta->airtime_weight; 2279 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); 2280 } 2281 2282 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2283 if (sta->pcpu_rx_stats) { 2284 for_each_possible_cpu(cpu) { 2285 struct ieee80211_sta_rx_stats *cpurxs; 2286 2287 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2288 sinfo->rx_dropped_misc += cpurxs->dropped; 2289 } 2290 } 2291 2292 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2293 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2294 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | 2295 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2296 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2297 } 2298 2299 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2300 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2301 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { 2302 sinfo->signal = (s8)last_rxstats->last_signal; 2303 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 2304 } 2305 2306 if (!sta->pcpu_rx_stats && 2307 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { 2308 sinfo->signal_avg = 2309 -ewma_signal_read(&sta->rx_stats_avg.signal); 2310 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 2311 } 2312 } 2313 2314 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2315 * the sta->rx_stats struct, so the check here is fine with and without 2316 * pcpu statistics 2317 */ 2318 if (last_rxstats->chains && 2319 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | 2320 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2321 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 2322 if (!sta->pcpu_rx_stats) 2323 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2324 2325 sinfo->chains = last_rxstats->chains; 2326 2327 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2328 sinfo->chain_signal[i] = 2329 last_rxstats->chain_signal_last[i]; 2330 sinfo->chain_signal_avg[i] = 2331 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2332 } 2333 } 2334 2335 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) { 2336 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2337 &sinfo->txrate); 2338 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 2339 } 2340 2341 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) { 2342 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2343 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); 2344 } 2345 2346 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { 2347 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 2348 sta_set_tidstats(sta, &sinfo->pertid[i], i); 2349 } 2350 2351 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2352 #ifdef CONFIG_MAC80211_MESH 2353 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | 2354 BIT_ULL(NL80211_STA_INFO_PLID) | 2355 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | 2356 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | 2357 BIT_ULL(NL80211_STA_INFO_PEER_PM) | 2358 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | 2359 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE); 2360 2361 sinfo->llid = sta->mesh->llid; 2362 sinfo->plid = sta->mesh->plid; 2363 sinfo->plink_state = sta->mesh->plink_state; 2364 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2365 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); 2366 sinfo->t_offset = sta->mesh->t_offset; 2367 } 2368 sinfo->local_pm = sta->mesh->local_pm; 2369 sinfo->peer_pm = sta->mesh->peer_pm; 2370 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2371 sinfo->connected_to_gate = sta->mesh->connected_to_gate; 2372 #endif 2373 } 2374 2375 sinfo->bss_param.flags = 0; 2376 if (sdata->vif.bss_conf.use_cts_prot) 2377 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2378 if (sdata->vif.bss_conf.use_short_preamble) 2379 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2380 if (sdata->vif.bss_conf.use_short_slot) 2381 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2382 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2383 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2384 2385 sinfo->sta_flags.set = 0; 2386 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2387 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2388 BIT(NL80211_STA_FLAG_WME) | 2389 BIT(NL80211_STA_FLAG_MFP) | 2390 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2391 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2392 BIT(NL80211_STA_FLAG_TDLS_PEER); 2393 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2394 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2395 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2396 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2397 if (sta->sta.wme) 2398 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2399 if (test_sta_flag(sta, WLAN_STA_MFP)) 2400 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2401 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2402 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2403 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2404 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2405 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2406 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2407 2408 thr = sta_get_expected_throughput(sta); 2409 2410 if (thr != 0) { 2411 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2412 sinfo->expected_throughput = thr; 2413 } 2414 2415 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && 2416 sta->status_stats.ack_signal_filled) { 2417 sinfo->ack_signal = sta->status_stats.last_ack_signal; 2418 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); 2419 } 2420 2421 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && 2422 sta->status_stats.ack_signal_filled) { 2423 sinfo->avg_ack_signal = 2424 -(s8)ewma_avg_signal_read( 2425 &sta->status_stats.avg_ack_signal); 2426 sinfo->filled |= 2427 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); 2428 } 2429 2430 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2431 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC); 2432 sinfo->airtime_link_metric = 2433 airtime_link_metric_get(local, sta); 2434 } 2435 } 2436 2437 u32 sta_get_expected_throughput(struct sta_info *sta) 2438 { 2439 struct ieee80211_sub_if_data *sdata = sta->sdata; 2440 struct ieee80211_local *local = sdata->local; 2441 struct rate_control_ref *ref = NULL; 2442 u32 thr = 0; 2443 2444 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2445 ref = local->rate_ctrl; 2446 2447 /* check if the driver has a SW RC implementation */ 2448 if (ref && ref->ops->get_expected_throughput) 2449 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2450 else 2451 thr = drv_get_expected_throughput(local, sta); 2452 2453 return thr; 2454 } 2455 2456 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2457 { 2458 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2459 2460 if (time_after(stats->last_rx, sta->status_stats.last_ack)) 2461 return stats->last_rx; 2462 return sta->status_stats.last_ack; 2463 } 2464 2465 static void sta_update_codel_params(struct sta_info *sta, u32 thr) 2466 { 2467 if (!sta->sdata->local->ops->wake_tx_queue) 2468 return; 2469 2470 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { 2471 sta->cparams.target = MS2TIME(50); 2472 sta->cparams.interval = MS2TIME(300); 2473 sta->cparams.ecn = false; 2474 } else { 2475 sta->cparams.target = MS2TIME(20); 2476 sta->cparams.interval = MS2TIME(100); 2477 sta->cparams.ecn = true; 2478 } 2479 } 2480 2481 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, 2482 u32 thr) 2483 { 2484 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2485 2486 sta_update_codel_params(sta, thr); 2487 } 2488