xref: /openbmc/linux/net/mac80211/sta_info.c (revision 806b5228)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7  * Copyright (C) 2018-2021 Intel Corporation
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20 
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30 
31 /**
32  * DOC: STA information lifetime rules
33  *
34  * STA info structures (&struct sta_info) are managed in a hash table
35  * for faster lookup and a list for iteration. They are managed using
36  * RCU, i.e. access to the list and hash table is protected by RCU.
37  *
38  * Upon allocating a STA info structure with sta_info_alloc(), the caller
39  * owns that structure. It must then insert it into the hash table using
40  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41  * case (which acquires an rcu read section but must not be called from
42  * within one) will the pointer still be valid after the call. Note that
43  * the caller may not do much with the STA info before inserting it, in
44  * particular, it may not start any mesh peer link management or add
45  * encryption keys.
46  *
47  * When the insertion fails (sta_info_insert()) returns non-zero), the
48  * structure will have been freed by sta_info_insert()!
49  *
50  * Station entries are added by mac80211 when you establish a link with a
51  * peer. This means different things for the different type of interfaces
52  * we support. For a regular station this mean we add the AP sta when we
53  * receive an association response from the AP. For IBSS this occurs when
54  * get to know about a peer on the same IBSS. For WDS we add the sta for
55  * the peer immediately upon device open. When using AP mode we add stations
56  * for each respective station upon request from userspace through nl80211.
57  *
58  * In order to remove a STA info structure, various sta_info_destroy_*()
59  * calls are available.
60  *
61  * There is no concept of ownership on a STA entry, each structure is
62  * owned by the global hash table/list until it is removed. All users of
63  * the structure need to be RCU protected so that the structure won't be
64  * freed before they are done using it.
65  */
66 
67 static const struct rhashtable_params sta_rht_params = {
68 	.nelem_hint = 3, /* start small */
69 	.automatic_shrinking = true,
70 	.head_offset = offsetof(struct sta_info, hash_node),
71 	.key_offset = offsetof(struct sta_info, addr),
72 	.key_len = ETH_ALEN,
73 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
74 };
75 
76 /* Caller must hold local->sta_mtx */
77 static int sta_info_hash_del(struct ieee80211_local *local,
78 			     struct sta_info *sta)
79 {
80 	return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 			       sta_rht_params);
82 }
83 
84 static void __cleanup_single_sta(struct sta_info *sta)
85 {
86 	int ac, i;
87 	struct tid_ampdu_tx *tid_tx;
88 	struct ieee80211_sub_if_data *sdata = sta->sdata;
89 	struct ieee80211_local *local = sdata->local;
90 	struct ps_data *ps;
91 
92 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 			ps = &sdata->bss->ps;
98 		else if (ieee80211_vif_is_mesh(&sdata->vif))
99 			ps = &sdata->u.mesh.ps;
100 		else
101 			return;
102 
103 		clear_sta_flag(sta, WLAN_STA_PS_STA);
104 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
106 
107 		atomic_dec(&ps->num_sta_ps);
108 	}
109 
110 	if (sta->sta.txq[0]) {
111 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 			struct txq_info *txqi;
113 
114 			if (!sta->sta.txq[i])
115 				continue;
116 
117 			txqi = to_txq_info(sta->sta.txq[i]);
118 
119 			ieee80211_txq_purge(local, txqi);
120 		}
121 	}
122 
123 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
127 	}
128 
129 	if (ieee80211_vif_is_mesh(&sdata->vif))
130 		mesh_sta_cleanup(sta);
131 
132 	cancel_work_sync(&sta->drv_deliver_wk);
133 
134 	/*
135 	 * Destroy aggregation state here. It would be nice to wait for the
136 	 * driver to finish aggregation stop and then clean up, but for now
137 	 * drivers have to handle aggregation stop being requested, followed
138 	 * directly by station destruction.
139 	 */
140 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 		if (!tid_tx)
144 			continue;
145 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 		kfree(tid_tx);
147 	}
148 }
149 
150 static void cleanup_single_sta(struct sta_info *sta)
151 {
152 	struct ieee80211_sub_if_data *sdata = sta->sdata;
153 	struct ieee80211_local *local = sdata->local;
154 
155 	__cleanup_single_sta(sta);
156 	sta_info_free(local, sta);
157 }
158 
159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 					 const u8 *addr)
161 {
162 	return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
163 }
164 
165 /* protected by RCU */
166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 			      const u8 *addr)
168 {
169 	struct ieee80211_local *local = sdata->local;
170 	struct rhlist_head *tmp;
171 	struct sta_info *sta;
172 
173 	rcu_read_lock();
174 	for_each_sta_info(local, addr, sta, tmp) {
175 		if (sta->sdata == sdata) {
176 			rcu_read_unlock();
177 			/* this is safe as the caller must already hold
178 			 * another rcu read section or the mutex
179 			 */
180 			return sta;
181 		}
182 	}
183 	rcu_read_unlock();
184 	return NULL;
185 }
186 
187 /*
188  * Get sta info either from the specified interface
189  * or from one of its vlans
190  */
191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 				  const u8 *addr)
193 {
194 	struct ieee80211_local *local = sdata->local;
195 	struct rhlist_head *tmp;
196 	struct sta_info *sta;
197 
198 	rcu_read_lock();
199 	for_each_sta_info(local, addr, sta, tmp) {
200 		if (sta->sdata == sdata ||
201 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 			rcu_read_unlock();
203 			/* this is safe as the caller must already hold
204 			 * another rcu read section or the mutex
205 			 */
206 			return sta;
207 		}
208 	}
209 	rcu_read_unlock();
210 	return NULL;
211 }
212 
213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
214 				       const u8 *sta_addr, const u8 *vif_addr)
215 {
216 	struct rhlist_head *tmp;
217 	struct sta_info *sta;
218 
219 	for_each_sta_info(local, sta_addr, sta, tmp) {
220 		if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
221 			return sta;
222 	}
223 
224 	return NULL;
225 }
226 
227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
228 				     int idx)
229 {
230 	struct ieee80211_local *local = sdata->local;
231 	struct sta_info *sta;
232 	int i = 0;
233 
234 	list_for_each_entry_rcu(sta, &local->sta_list, list,
235 				lockdep_is_held(&local->sta_mtx)) {
236 		if (sdata != sta->sdata)
237 			continue;
238 		if (i < idx) {
239 			++i;
240 			continue;
241 		}
242 		return sta;
243 	}
244 
245 	return NULL;
246 }
247 
248 /**
249  * sta_info_free - free STA
250  *
251  * @local: pointer to the global information
252  * @sta: STA info to free
253  *
254  * This function must undo everything done by sta_info_alloc()
255  * that may happen before sta_info_insert(). It may only be
256  * called when sta_info_insert() has not been attempted (and
257  * if that fails, the station is freed anyway.)
258  */
259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
260 {
261 	/*
262 	 * If we had used sta_info_pre_move_state() then we might not
263 	 * have gone through the state transitions down again, so do
264 	 * it here now (and warn if it's inserted).
265 	 *
266 	 * This will clear state such as fast TX/RX that may have been
267 	 * allocated during state transitions.
268 	 */
269 	while (sta->sta_state > IEEE80211_STA_NONE) {
270 		int ret;
271 
272 		WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED));
273 
274 		ret = sta_info_move_state(sta, sta->sta_state - 1);
275 		if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret))
276 			break;
277 	}
278 
279 	if (sta->rate_ctrl)
280 		rate_control_free_sta(sta);
281 
282 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
283 
284 	if (sta->sta.txq[0])
285 		kfree(to_txq_info(sta->sta.txq[0]));
286 	kfree(rcu_dereference_raw(sta->sta.rates));
287 #ifdef CONFIG_MAC80211_MESH
288 	kfree(sta->mesh);
289 #endif
290 	free_percpu(sta->pcpu_rx_stats);
291 	kfree(sta);
292 }
293 
294 /* Caller must hold local->sta_mtx */
295 static int sta_info_hash_add(struct ieee80211_local *local,
296 			     struct sta_info *sta)
297 {
298 	return rhltable_insert(&local->sta_hash, &sta->hash_node,
299 			       sta_rht_params);
300 }
301 
302 static void sta_deliver_ps_frames(struct work_struct *wk)
303 {
304 	struct sta_info *sta;
305 
306 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
307 
308 	if (sta->dead)
309 		return;
310 
311 	local_bh_disable();
312 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
313 		ieee80211_sta_ps_deliver_wakeup(sta);
314 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
315 		ieee80211_sta_ps_deliver_poll_response(sta);
316 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
317 		ieee80211_sta_ps_deliver_uapsd(sta);
318 	local_bh_enable();
319 }
320 
321 static int sta_prepare_rate_control(struct ieee80211_local *local,
322 				    struct sta_info *sta, gfp_t gfp)
323 {
324 	if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
325 		return 0;
326 
327 	sta->rate_ctrl = local->rate_ctrl;
328 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
329 						     sta, gfp);
330 	if (!sta->rate_ctrl_priv)
331 		return -ENOMEM;
332 
333 	return 0;
334 }
335 
336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
337 				const u8 *addr, gfp_t gfp)
338 {
339 	struct ieee80211_local *local = sdata->local;
340 	struct ieee80211_hw *hw = &local->hw;
341 	struct sta_info *sta;
342 	int i;
343 
344 	sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
345 	if (!sta)
346 		return NULL;
347 
348 	if (ieee80211_hw_check(hw, USES_RSS)) {
349 		sta->pcpu_rx_stats =
350 			alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
351 		if (!sta->pcpu_rx_stats)
352 			goto free;
353 	}
354 
355 	spin_lock_init(&sta->lock);
356 	spin_lock_init(&sta->ps_lock);
357 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
358 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
359 	mutex_init(&sta->ampdu_mlme.mtx);
360 #ifdef CONFIG_MAC80211_MESH
361 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
362 		sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
363 		if (!sta->mesh)
364 			goto free;
365 		sta->mesh->plink_sta = sta;
366 		spin_lock_init(&sta->mesh->plink_lock);
367 		if (!sdata->u.mesh.user_mpm)
368 			timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
369 				    0);
370 		sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
371 	}
372 #endif
373 
374 	memcpy(sta->addr, addr, ETH_ALEN);
375 	memcpy(sta->sta.addr, addr, ETH_ALEN);
376 	sta->sta.max_rx_aggregation_subframes =
377 		local->hw.max_rx_aggregation_subframes;
378 
379 	/* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
380 	 * The Tx path starts to use a key as soon as the key slot ptk_idx
381 	 * references to is not NULL. To not use the initial Rx-only key
382 	 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
383 	 * which always will refer to a NULL key.
384 	 */
385 	BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
386 	sta->ptk_idx = INVALID_PTK_KEYIDX;
387 
388 	sta->local = local;
389 	sta->sdata = sdata;
390 	sta->rx_stats.last_rx = jiffies;
391 
392 	u64_stats_init(&sta->rx_stats.syncp);
393 
394 	ieee80211_init_frag_cache(&sta->frags);
395 
396 	sta->sta_state = IEEE80211_STA_NONE;
397 
398 	/* Mark TID as unreserved */
399 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
400 
401 	sta->last_connected = ktime_get_seconds();
402 	ewma_signal_init(&sta->rx_stats_avg.signal);
403 	ewma_avg_signal_init(&sta->status_stats.avg_ack_signal);
404 	for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
405 		ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
406 
407 	if (local->ops->wake_tx_queue) {
408 		void *txq_data;
409 		int size = sizeof(struct txq_info) +
410 			   ALIGN(hw->txq_data_size, sizeof(void *));
411 
412 		txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
413 		if (!txq_data)
414 			goto free;
415 
416 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
417 			struct txq_info *txq = txq_data + i * size;
418 
419 			/* might not do anything for the bufferable MMPDU TXQ */
420 			ieee80211_txq_init(sdata, sta, txq, i);
421 		}
422 	}
423 
424 	if (sta_prepare_rate_control(local, sta, gfp))
425 		goto free_txq;
426 
427 
428 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
429 		skb_queue_head_init(&sta->ps_tx_buf[i]);
430 		skb_queue_head_init(&sta->tx_filtered[i]);
431 		init_airtime_info(&sta->airtime[i], &local->airtime[i]);
432 	}
433 
434 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
435 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
436 
437 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
438 		u32 mandatory = 0;
439 		int r;
440 
441 		if (!hw->wiphy->bands[i])
442 			continue;
443 
444 		switch (i) {
445 		case NL80211_BAND_2GHZ:
446 		case NL80211_BAND_LC:
447 			/*
448 			 * We use both here, even if we cannot really know for
449 			 * sure the station will support both, but the only use
450 			 * for this is when we don't know anything yet and send
451 			 * management frames, and then we'll pick the lowest
452 			 * possible rate anyway.
453 			 * If we don't include _G here, we cannot find a rate
454 			 * in P2P, and thus trigger the WARN_ONCE() in rate.c
455 			 */
456 			mandatory = IEEE80211_RATE_MANDATORY_B |
457 				    IEEE80211_RATE_MANDATORY_G;
458 			break;
459 		case NL80211_BAND_5GHZ:
460 			mandatory = IEEE80211_RATE_MANDATORY_A;
461 			break;
462 		case NL80211_BAND_60GHZ:
463 			WARN_ON(1);
464 			mandatory = 0;
465 			break;
466 		}
467 
468 		for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
469 			struct ieee80211_rate *rate;
470 
471 			rate = &hw->wiphy->bands[i]->bitrates[r];
472 
473 			if (!(rate->flags & mandatory))
474 				continue;
475 			sta->sta.supp_rates[i] |= BIT(r);
476 		}
477 	}
478 
479 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
480 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
481 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
482 		struct ieee80211_supported_band *sband;
483 		u8 smps;
484 
485 		sband = ieee80211_get_sband(sdata);
486 		if (!sband)
487 			goto free_txq;
488 
489 		smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
490 			IEEE80211_HT_CAP_SM_PS_SHIFT;
491 		/*
492 		 * Assume that hostapd advertises our caps in the beacon and
493 		 * this is the known_smps_mode for a station that just assciated
494 		 */
495 		switch (smps) {
496 		case WLAN_HT_SMPS_CONTROL_DISABLED:
497 			sta->known_smps_mode = IEEE80211_SMPS_OFF;
498 			break;
499 		case WLAN_HT_SMPS_CONTROL_STATIC:
500 			sta->known_smps_mode = IEEE80211_SMPS_STATIC;
501 			break;
502 		case WLAN_HT_SMPS_CONTROL_DYNAMIC:
503 			sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
504 			break;
505 		default:
506 			WARN_ON(1);
507 		}
508 	}
509 
510 	sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
511 
512 	sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
513 	sta->cparams.target = MS2TIME(20);
514 	sta->cparams.interval = MS2TIME(100);
515 	sta->cparams.ecn = true;
516 	sta->cparams.ce_threshold_selector = 0;
517 	sta->cparams.ce_threshold_mask = 0;
518 
519 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
520 
521 	return sta;
522 
523 free_txq:
524 	if (sta->sta.txq[0])
525 		kfree(to_txq_info(sta->sta.txq[0]));
526 free:
527 	free_percpu(sta->pcpu_rx_stats);
528 #ifdef CONFIG_MAC80211_MESH
529 	kfree(sta->mesh);
530 #endif
531 	kfree(sta);
532 	return NULL;
533 }
534 
535 static int sta_info_insert_check(struct sta_info *sta)
536 {
537 	struct ieee80211_sub_if_data *sdata = sta->sdata;
538 
539 	/*
540 	 * Can't be a WARN_ON because it can be triggered through a race:
541 	 * something inserts a STA (on one CPU) without holding the RTNL
542 	 * and another CPU turns off the net device.
543 	 */
544 	if (unlikely(!ieee80211_sdata_running(sdata)))
545 		return -ENETDOWN;
546 
547 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
548 		    !is_valid_ether_addr(sta->sta.addr)))
549 		return -EINVAL;
550 
551 	/* The RCU read lock is required by rhashtable due to
552 	 * asynchronous resize/rehash.  We also require the mutex
553 	 * for correctness.
554 	 */
555 	rcu_read_lock();
556 	lockdep_assert_held(&sdata->local->sta_mtx);
557 	if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
558 	    ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
559 		rcu_read_unlock();
560 		return -ENOTUNIQ;
561 	}
562 	rcu_read_unlock();
563 
564 	return 0;
565 }
566 
567 static int sta_info_insert_drv_state(struct ieee80211_local *local,
568 				     struct ieee80211_sub_if_data *sdata,
569 				     struct sta_info *sta)
570 {
571 	enum ieee80211_sta_state state;
572 	int err = 0;
573 
574 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
575 		err = drv_sta_state(local, sdata, sta, state, state + 1);
576 		if (err)
577 			break;
578 	}
579 
580 	if (!err) {
581 		/*
582 		 * Drivers using legacy sta_add/sta_remove callbacks only
583 		 * get uploaded set to true after sta_add is called.
584 		 */
585 		if (!local->ops->sta_add)
586 			sta->uploaded = true;
587 		return 0;
588 	}
589 
590 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
591 		sdata_info(sdata,
592 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
593 			   sta->sta.addr, state + 1, err);
594 		err = 0;
595 	}
596 
597 	/* unwind on error */
598 	for (; state > IEEE80211_STA_NOTEXIST; state--)
599 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
600 
601 	return err;
602 }
603 
604 static void
605 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
606 {
607 	struct ieee80211_local *local = sdata->local;
608 	bool allow_p2p_go_ps = sdata->vif.p2p;
609 	struct sta_info *sta;
610 
611 	rcu_read_lock();
612 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
613 		if (sdata != sta->sdata ||
614 		    !test_sta_flag(sta, WLAN_STA_ASSOC))
615 			continue;
616 		if (!sta->sta.support_p2p_ps) {
617 			allow_p2p_go_ps = false;
618 			break;
619 		}
620 	}
621 	rcu_read_unlock();
622 
623 	if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
624 		sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
625 		ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
626 	}
627 }
628 
629 /*
630  * should be called with sta_mtx locked
631  * this function replaces the mutex lock
632  * with a RCU lock
633  */
634 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
635 {
636 	struct ieee80211_local *local = sta->local;
637 	struct ieee80211_sub_if_data *sdata = sta->sdata;
638 	struct station_info *sinfo = NULL;
639 	int err = 0;
640 
641 	lockdep_assert_held(&local->sta_mtx);
642 
643 	/* check if STA exists already */
644 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
645 		err = -EEXIST;
646 		goto out_cleanup;
647 	}
648 
649 	sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
650 	if (!sinfo) {
651 		err = -ENOMEM;
652 		goto out_cleanup;
653 	}
654 
655 	local->num_sta++;
656 	local->sta_generation++;
657 	smp_mb();
658 
659 	/* simplify things and don't accept BA sessions yet */
660 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
661 
662 	/* make the station visible */
663 	err = sta_info_hash_add(local, sta);
664 	if (err)
665 		goto out_drop_sta;
666 
667 	list_add_tail_rcu(&sta->list, &local->sta_list);
668 
669 	/* update channel context before notifying the driver about state
670 	 * change, this enables driver using the updated channel context right away.
671 	 */
672 	if (sta->sta_state >= IEEE80211_STA_ASSOC) {
673 		ieee80211_recalc_min_chandef(sta->sdata);
674 		if (!sta->sta.support_p2p_ps)
675 			ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
676 	}
677 
678 	/* notify driver */
679 	err = sta_info_insert_drv_state(local, sdata, sta);
680 	if (err)
681 		goto out_remove;
682 
683 	set_sta_flag(sta, WLAN_STA_INSERTED);
684 
685 	/* accept BA sessions now */
686 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
687 
688 	ieee80211_sta_debugfs_add(sta);
689 	rate_control_add_sta_debugfs(sta);
690 
691 	sinfo->generation = local->sta_generation;
692 	cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
693 	kfree(sinfo);
694 
695 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
696 
697 	/* move reference to rcu-protected */
698 	rcu_read_lock();
699 	mutex_unlock(&local->sta_mtx);
700 
701 	if (ieee80211_vif_is_mesh(&sdata->vif))
702 		mesh_accept_plinks_update(sdata);
703 
704 	return 0;
705  out_remove:
706 	sta_info_hash_del(local, sta);
707 	list_del_rcu(&sta->list);
708  out_drop_sta:
709 	local->num_sta--;
710 	synchronize_net();
711  out_cleanup:
712 	cleanup_single_sta(sta);
713 	mutex_unlock(&local->sta_mtx);
714 	kfree(sinfo);
715 	rcu_read_lock();
716 	return err;
717 }
718 
719 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
720 {
721 	struct ieee80211_local *local = sta->local;
722 	int err;
723 
724 	might_sleep();
725 
726 	mutex_lock(&local->sta_mtx);
727 
728 	err = sta_info_insert_check(sta);
729 	if (err) {
730 		sta_info_free(local, sta);
731 		mutex_unlock(&local->sta_mtx);
732 		rcu_read_lock();
733 		return err;
734 	}
735 
736 	return sta_info_insert_finish(sta);
737 }
738 
739 int sta_info_insert(struct sta_info *sta)
740 {
741 	int err = sta_info_insert_rcu(sta);
742 
743 	rcu_read_unlock();
744 
745 	return err;
746 }
747 
748 static inline void __bss_tim_set(u8 *tim, u16 id)
749 {
750 	/*
751 	 * This format has been mandated by the IEEE specifications,
752 	 * so this line may not be changed to use the __set_bit() format.
753 	 */
754 	tim[id / 8] |= (1 << (id % 8));
755 }
756 
757 static inline void __bss_tim_clear(u8 *tim, u16 id)
758 {
759 	/*
760 	 * This format has been mandated by the IEEE specifications,
761 	 * so this line may not be changed to use the __clear_bit() format.
762 	 */
763 	tim[id / 8] &= ~(1 << (id % 8));
764 }
765 
766 static inline bool __bss_tim_get(u8 *tim, u16 id)
767 {
768 	/*
769 	 * This format has been mandated by the IEEE specifications,
770 	 * so this line may not be changed to use the test_bit() format.
771 	 */
772 	return tim[id / 8] & (1 << (id % 8));
773 }
774 
775 static unsigned long ieee80211_tids_for_ac(int ac)
776 {
777 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
778 	switch (ac) {
779 	case IEEE80211_AC_VO:
780 		return BIT(6) | BIT(7);
781 	case IEEE80211_AC_VI:
782 		return BIT(4) | BIT(5);
783 	case IEEE80211_AC_BE:
784 		return BIT(0) | BIT(3);
785 	case IEEE80211_AC_BK:
786 		return BIT(1) | BIT(2);
787 	default:
788 		WARN_ON(1);
789 		return 0;
790 	}
791 }
792 
793 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
794 {
795 	struct ieee80211_local *local = sta->local;
796 	struct ps_data *ps;
797 	bool indicate_tim = false;
798 	u8 ignore_for_tim = sta->sta.uapsd_queues;
799 	int ac;
800 	u16 id = sta->sta.aid;
801 
802 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
803 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
804 		if (WARN_ON_ONCE(!sta->sdata->bss))
805 			return;
806 
807 		ps = &sta->sdata->bss->ps;
808 #ifdef CONFIG_MAC80211_MESH
809 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
810 		ps = &sta->sdata->u.mesh.ps;
811 #endif
812 	} else {
813 		return;
814 	}
815 
816 	/* No need to do anything if the driver does all */
817 	if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
818 		return;
819 
820 	if (sta->dead)
821 		goto done;
822 
823 	/*
824 	 * If all ACs are delivery-enabled then we should build
825 	 * the TIM bit for all ACs anyway; if only some are then
826 	 * we ignore those and build the TIM bit using only the
827 	 * non-enabled ones.
828 	 */
829 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
830 		ignore_for_tim = 0;
831 
832 	if (ignore_pending)
833 		ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
834 
835 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
836 		unsigned long tids;
837 
838 		if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
839 			continue;
840 
841 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
842 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
843 		if (indicate_tim)
844 			break;
845 
846 		tids = ieee80211_tids_for_ac(ac);
847 
848 		indicate_tim |=
849 			sta->driver_buffered_tids & tids;
850 		indicate_tim |=
851 			sta->txq_buffered_tids & tids;
852 	}
853 
854  done:
855 	spin_lock_bh(&local->tim_lock);
856 
857 	if (indicate_tim == __bss_tim_get(ps->tim, id))
858 		goto out_unlock;
859 
860 	if (indicate_tim)
861 		__bss_tim_set(ps->tim, id);
862 	else
863 		__bss_tim_clear(ps->tim, id);
864 
865 	if (local->ops->set_tim && !WARN_ON(sta->dead)) {
866 		local->tim_in_locked_section = true;
867 		drv_set_tim(local, &sta->sta, indicate_tim);
868 		local->tim_in_locked_section = false;
869 	}
870 
871 out_unlock:
872 	spin_unlock_bh(&local->tim_lock);
873 }
874 
875 void sta_info_recalc_tim(struct sta_info *sta)
876 {
877 	__sta_info_recalc_tim(sta, false);
878 }
879 
880 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
881 {
882 	struct ieee80211_tx_info *info;
883 	int timeout;
884 
885 	if (!skb)
886 		return false;
887 
888 	info = IEEE80211_SKB_CB(skb);
889 
890 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
891 	timeout = (sta->listen_interval *
892 		   sta->sdata->vif.bss_conf.beacon_int *
893 		   32 / 15625) * HZ;
894 	if (timeout < STA_TX_BUFFER_EXPIRE)
895 		timeout = STA_TX_BUFFER_EXPIRE;
896 	return time_after(jiffies, info->control.jiffies + timeout);
897 }
898 
899 
900 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
901 						struct sta_info *sta, int ac)
902 {
903 	unsigned long flags;
904 	struct sk_buff *skb;
905 
906 	/*
907 	 * First check for frames that should expire on the filtered
908 	 * queue. Frames here were rejected by the driver and are on
909 	 * a separate queue to avoid reordering with normal PS-buffered
910 	 * frames. They also aren't accounted for right now in the
911 	 * total_ps_buffered counter.
912 	 */
913 	for (;;) {
914 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
915 		skb = skb_peek(&sta->tx_filtered[ac]);
916 		if (sta_info_buffer_expired(sta, skb))
917 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
918 		else
919 			skb = NULL;
920 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
921 
922 		/*
923 		 * Frames are queued in order, so if this one
924 		 * hasn't expired yet we can stop testing. If
925 		 * we actually reached the end of the queue we
926 		 * also need to stop, of course.
927 		 */
928 		if (!skb)
929 			break;
930 		ieee80211_free_txskb(&local->hw, skb);
931 	}
932 
933 	/*
934 	 * Now also check the normal PS-buffered queue, this will
935 	 * only find something if the filtered queue was emptied
936 	 * since the filtered frames are all before the normal PS
937 	 * buffered frames.
938 	 */
939 	for (;;) {
940 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
941 		skb = skb_peek(&sta->ps_tx_buf[ac]);
942 		if (sta_info_buffer_expired(sta, skb))
943 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
944 		else
945 			skb = NULL;
946 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
947 
948 		/*
949 		 * frames are queued in order, so if this one
950 		 * hasn't expired yet (or we reached the end of
951 		 * the queue) we can stop testing
952 		 */
953 		if (!skb)
954 			break;
955 
956 		local->total_ps_buffered--;
957 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
958 		       sta->sta.addr);
959 		ieee80211_free_txskb(&local->hw, skb);
960 	}
961 
962 	/*
963 	 * Finally, recalculate the TIM bit for this station -- it might
964 	 * now be clear because the station was too slow to retrieve its
965 	 * frames.
966 	 */
967 	sta_info_recalc_tim(sta);
968 
969 	/*
970 	 * Return whether there are any frames still buffered, this is
971 	 * used to check whether the cleanup timer still needs to run,
972 	 * if there are no frames we don't need to rearm the timer.
973 	 */
974 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
975 		 skb_queue_empty(&sta->tx_filtered[ac]));
976 }
977 
978 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
979 					     struct sta_info *sta)
980 {
981 	bool have_buffered = false;
982 	int ac;
983 
984 	/* This is only necessary for stations on BSS/MBSS interfaces */
985 	if (!sta->sdata->bss &&
986 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
987 		return false;
988 
989 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
990 		have_buffered |=
991 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
992 
993 	return have_buffered;
994 }
995 
996 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
997 {
998 	struct ieee80211_local *local;
999 	struct ieee80211_sub_if_data *sdata;
1000 	int ret;
1001 
1002 	might_sleep();
1003 
1004 	if (!sta)
1005 		return -ENOENT;
1006 
1007 	local = sta->local;
1008 	sdata = sta->sdata;
1009 
1010 	lockdep_assert_held(&local->sta_mtx);
1011 
1012 	/*
1013 	 * Before removing the station from the driver and
1014 	 * rate control, it might still start new aggregation
1015 	 * sessions -- block that to make sure the tear-down
1016 	 * will be sufficient.
1017 	 */
1018 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1019 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1020 
1021 	/*
1022 	 * Before removing the station from the driver there might be pending
1023 	 * rx frames on RSS queues sent prior to the disassociation - wait for
1024 	 * all such frames to be processed.
1025 	 */
1026 	drv_sync_rx_queues(local, sta);
1027 
1028 	ret = sta_info_hash_del(local, sta);
1029 	if (WARN_ON(ret))
1030 		return ret;
1031 
1032 	/*
1033 	 * for TDLS peers, make sure to return to the base channel before
1034 	 * removal.
1035 	 */
1036 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1037 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1038 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1039 	}
1040 
1041 	list_del_rcu(&sta->list);
1042 	sta->removed = true;
1043 
1044 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1045 
1046 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1047 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
1048 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1049 
1050 	return 0;
1051 }
1052 
1053 static void __sta_info_destroy_part2(struct sta_info *sta)
1054 {
1055 	struct ieee80211_local *local = sta->local;
1056 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1057 	struct station_info *sinfo;
1058 	int ret;
1059 
1060 	/*
1061 	 * NOTE: This assumes at least synchronize_net() was done
1062 	 *	 after _part1 and before _part2!
1063 	 */
1064 
1065 	might_sleep();
1066 	lockdep_assert_held(&local->sta_mtx);
1067 
1068 	if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1069 		ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1070 		WARN_ON_ONCE(ret);
1071 	}
1072 
1073 	/* now keys can no longer be reached */
1074 	ieee80211_free_sta_keys(local, sta);
1075 
1076 	/* disable TIM bit - last chance to tell driver */
1077 	__sta_info_recalc_tim(sta, true);
1078 
1079 	sta->dead = true;
1080 
1081 	local->num_sta--;
1082 	local->sta_generation++;
1083 
1084 	while (sta->sta_state > IEEE80211_STA_NONE) {
1085 		ret = sta_info_move_state(sta, sta->sta_state - 1);
1086 		if (ret) {
1087 			WARN_ON_ONCE(1);
1088 			break;
1089 		}
1090 	}
1091 
1092 	if (sta->uploaded) {
1093 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1094 				    IEEE80211_STA_NOTEXIST);
1095 		WARN_ON_ONCE(ret != 0);
1096 	}
1097 
1098 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1099 
1100 	sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1101 	if (sinfo)
1102 		sta_set_sinfo(sta, sinfo, true);
1103 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1104 	kfree(sinfo);
1105 
1106 	ieee80211_sta_debugfs_remove(sta);
1107 
1108 	ieee80211_destroy_frag_cache(&sta->frags);
1109 
1110 	cleanup_single_sta(sta);
1111 }
1112 
1113 int __must_check __sta_info_destroy(struct sta_info *sta)
1114 {
1115 	int err = __sta_info_destroy_part1(sta);
1116 
1117 	if (err)
1118 		return err;
1119 
1120 	synchronize_net();
1121 
1122 	__sta_info_destroy_part2(sta);
1123 
1124 	return 0;
1125 }
1126 
1127 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1128 {
1129 	struct sta_info *sta;
1130 	int ret;
1131 
1132 	mutex_lock(&sdata->local->sta_mtx);
1133 	sta = sta_info_get(sdata, addr);
1134 	ret = __sta_info_destroy(sta);
1135 	mutex_unlock(&sdata->local->sta_mtx);
1136 
1137 	return ret;
1138 }
1139 
1140 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1141 			      const u8 *addr)
1142 {
1143 	struct sta_info *sta;
1144 	int ret;
1145 
1146 	mutex_lock(&sdata->local->sta_mtx);
1147 	sta = sta_info_get_bss(sdata, addr);
1148 	ret = __sta_info_destroy(sta);
1149 	mutex_unlock(&sdata->local->sta_mtx);
1150 
1151 	return ret;
1152 }
1153 
1154 static void sta_info_cleanup(struct timer_list *t)
1155 {
1156 	struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1157 	struct sta_info *sta;
1158 	bool timer_needed = false;
1159 
1160 	rcu_read_lock();
1161 	list_for_each_entry_rcu(sta, &local->sta_list, list)
1162 		if (sta_info_cleanup_expire_buffered(local, sta))
1163 			timer_needed = true;
1164 	rcu_read_unlock();
1165 
1166 	if (local->quiescing)
1167 		return;
1168 
1169 	if (!timer_needed)
1170 		return;
1171 
1172 	mod_timer(&local->sta_cleanup,
1173 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1174 }
1175 
1176 int sta_info_init(struct ieee80211_local *local)
1177 {
1178 	int err;
1179 
1180 	err = rhltable_init(&local->sta_hash, &sta_rht_params);
1181 	if (err)
1182 		return err;
1183 
1184 	spin_lock_init(&local->tim_lock);
1185 	mutex_init(&local->sta_mtx);
1186 	INIT_LIST_HEAD(&local->sta_list);
1187 
1188 	timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1189 	return 0;
1190 }
1191 
1192 void sta_info_stop(struct ieee80211_local *local)
1193 {
1194 	del_timer_sync(&local->sta_cleanup);
1195 	rhltable_destroy(&local->sta_hash);
1196 }
1197 
1198 
1199 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1200 {
1201 	struct ieee80211_local *local = sdata->local;
1202 	struct sta_info *sta, *tmp;
1203 	LIST_HEAD(free_list);
1204 	int ret = 0;
1205 
1206 	might_sleep();
1207 
1208 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1209 	WARN_ON(vlans && !sdata->bss);
1210 
1211 	mutex_lock(&local->sta_mtx);
1212 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1213 		if (sdata == sta->sdata ||
1214 		    (vlans && sdata->bss == sta->sdata->bss)) {
1215 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1216 				list_add(&sta->free_list, &free_list);
1217 			ret++;
1218 		}
1219 	}
1220 
1221 	if (!list_empty(&free_list)) {
1222 		synchronize_net();
1223 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1224 			__sta_info_destroy_part2(sta);
1225 	}
1226 	mutex_unlock(&local->sta_mtx);
1227 
1228 	return ret;
1229 }
1230 
1231 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1232 			  unsigned long exp_time)
1233 {
1234 	struct ieee80211_local *local = sdata->local;
1235 	struct sta_info *sta, *tmp;
1236 
1237 	mutex_lock(&local->sta_mtx);
1238 
1239 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1240 		unsigned long last_active = ieee80211_sta_last_active(sta);
1241 
1242 		if (sdata != sta->sdata)
1243 			continue;
1244 
1245 		if (time_is_before_jiffies(last_active + exp_time)) {
1246 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1247 				sta->sta.addr);
1248 
1249 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1250 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1251 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1252 
1253 			WARN_ON(__sta_info_destroy(sta));
1254 		}
1255 	}
1256 
1257 	mutex_unlock(&local->sta_mtx);
1258 }
1259 
1260 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1261 						   const u8 *addr,
1262 						   const u8 *localaddr)
1263 {
1264 	struct ieee80211_local *local = hw_to_local(hw);
1265 	struct rhlist_head *tmp;
1266 	struct sta_info *sta;
1267 
1268 	/*
1269 	 * Just return a random station if localaddr is NULL
1270 	 * ... first in list.
1271 	 */
1272 	for_each_sta_info(local, addr, sta, tmp) {
1273 		if (localaddr &&
1274 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1275 			continue;
1276 		if (!sta->uploaded)
1277 			return NULL;
1278 		return &sta->sta;
1279 	}
1280 
1281 	return NULL;
1282 }
1283 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1284 
1285 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1286 					 const u8 *addr)
1287 {
1288 	struct sta_info *sta;
1289 
1290 	if (!vif)
1291 		return NULL;
1292 
1293 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1294 	if (!sta)
1295 		return NULL;
1296 
1297 	if (!sta->uploaded)
1298 		return NULL;
1299 
1300 	return &sta->sta;
1301 }
1302 EXPORT_SYMBOL(ieee80211_find_sta);
1303 
1304 /* powersave support code */
1305 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1306 {
1307 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1308 	struct ieee80211_local *local = sdata->local;
1309 	struct sk_buff_head pending;
1310 	int filtered = 0, buffered = 0, ac, i;
1311 	unsigned long flags;
1312 	struct ps_data *ps;
1313 
1314 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1315 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1316 				     u.ap);
1317 
1318 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1319 		ps = &sdata->bss->ps;
1320 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1321 		ps = &sdata->u.mesh.ps;
1322 	else
1323 		return;
1324 
1325 	clear_sta_flag(sta, WLAN_STA_SP);
1326 
1327 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1328 	sta->driver_buffered_tids = 0;
1329 	sta->txq_buffered_tids = 0;
1330 
1331 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1332 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1333 
1334 	for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1335 		if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1336 			continue;
1337 
1338 		schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1339 	}
1340 
1341 	skb_queue_head_init(&pending);
1342 
1343 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1344 	spin_lock(&sta->ps_lock);
1345 	/* Send all buffered frames to the station */
1346 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1347 		int count = skb_queue_len(&pending), tmp;
1348 
1349 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1350 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1351 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1352 		tmp = skb_queue_len(&pending);
1353 		filtered += tmp - count;
1354 		count = tmp;
1355 
1356 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1357 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1358 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1359 		tmp = skb_queue_len(&pending);
1360 		buffered += tmp - count;
1361 	}
1362 
1363 	ieee80211_add_pending_skbs(local, &pending);
1364 
1365 	/* now we're no longer in the deliver code */
1366 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1367 
1368 	/* The station might have polled and then woken up before we responded,
1369 	 * so clear these flags now to avoid them sticking around.
1370 	 */
1371 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1372 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1373 	spin_unlock(&sta->ps_lock);
1374 
1375 	atomic_dec(&ps->num_sta_ps);
1376 
1377 	local->total_ps_buffered -= buffered;
1378 
1379 	sta_info_recalc_tim(sta);
1380 
1381 	ps_dbg(sdata,
1382 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1383 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1384 
1385 	ieee80211_check_fast_xmit(sta);
1386 }
1387 
1388 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1389 					 enum ieee80211_frame_release_type reason,
1390 					 bool call_driver, bool more_data)
1391 {
1392 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1393 	struct ieee80211_local *local = sdata->local;
1394 	struct ieee80211_qos_hdr *nullfunc;
1395 	struct sk_buff *skb;
1396 	int size = sizeof(*nullfunc);
1397 	__le16 fc;
1398 	bool qos = sta->sta.wme;
1399 	struct ieee80211_tx_info *info;
1400 	struct ieee80211_chanctx_conf *chanctx_conf;
1401 
1402 	if (qos) {
1403 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1404 				 IEEE80211_STYPE_QOS_NULLFUNC |
1405 				 IEEE80211_FCTL_FROMDS);
1406 	} else {
1407 		size -= 2;
1408 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1409 				 IEEE80211_STYPE_NULLFUNC |
1410 				 IEEE80211_FCTL_FROMDS);
1411 	}
1412 
1413 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1414 	if (!skb)
1415 		return;
1416 
1417 	skb_reserve(skb, local->hw.extra_tx_headroom);
1418 
1419 	nullfunc = skb_put(skb, size);
1420 	nullfunc->frame_control = fc;
1421 	nullfunc->duration_id = 0;
1422 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1423 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1424 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1425 	nullfunc->seq_ctrl = 0;
1426 
1427 	skb->priority = tid;
1428 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1429 	if (qos) {
1430 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1431 
1432 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1433 			nullfunc->qos_ctrl |=
1434 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1435 			if (more_data)
1436 				nullfunc->frame_control |=
1437 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1438 		}
1439 	}
1440 
1441 	info = IEEE80211_SKB_CB(skb);
1442 
1443 	/*
1444 	 * Tell TX path to send this frame even though the
1445 	 * STA may still remain is PS mode after this frame
1446 	 * exchange. Also set EOSP to indicate this packet
1447 	 * ends the poll/service period.
1448 	 */
1449 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1450 		       IEEE80211_TX_STATUS_EOSP |
1451 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1452 
1453 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1454 
1455 	if (call_driver)
1456 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1457 					  reason, false);
1458 
1459 	skb->dev = sdata->dev;
1460 
1461 	rcu_read_lock();
1462 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1463 	if (WARN_ON(!chanctx_conf)) {
1464 		rcu_read_unlock();
1465 		kfree_skb(skb);
1466 		return;
1467 	}
1468 
1469 	info->band = chanctx_conf->def.chan->band;
1470 	ieee80211_xmit(sdata, sta, skb);
1471 	rcu_read_unlock();
1472 }
1473 
1474 static int find_highest_prio_tid(unsigned long tids)
1475 {
1476 	/* lower 3 TIDs aren't ordered perfectly */
1477 	if (tids & 0xF8)
1478 		return fls(tids) - 1;
1479 	/* TID 0 is BE just like TID 3 */
1480 	if (tids & BIT(0))
1481 		return 0;
1482 	return fls(tids) - 1;
1483 }
1484 
1485 /* Indicates if the MORE_DATA bit should be set in the last
1486  * frame obtained by ieee80211_sta_ps_get_frames.
1487  * Note that driver_release_tids is relevant only if
1488  * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1489  */
1490 static bool
1491 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1492 			   enum ieee80211_frame_release_type reason,
1493 			   unsigned long driver_release_tids)
1494 {
1495 	int ac;
1496 
1497 	/* If the driver has data on more than one TID then
1498 	 * certainly there's more data if we release just a
1499 	 * single frame now (from a single TID). This will
1500 	 * only happen for PS-Poll.
1501 	 */
1502 	if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1503 	    hweight16(driver_release_tids) > 1)
1504 		return true;
1505 
1506 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1507 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1508 			continue;
1509 
1510 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1511 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1512 			return true;
1513 	}
1514 
1515 	return false;
1516 }
1517 
1518 static void
1519 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1520 			    enum ieee80211_frame_release_type reason,
1521 			    struct sk_buff_head *frames,
1522 			    unsigned long *driver_release_tids)
1523 {
1524 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1525 	struct ieee80211_local *local = sdata->local;
1526 	int ac;
1527 
1528 	/* Get response frame(s) and more data bit for the last one. */
1529 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1530 		unsigned long tids;
1531 
1532 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1533 			continue;
1534 
1535 		tids = ieee80211_tids_for_ac(ac);
1536 
1537 		/* if we already have frames from software, then we can't also
1538 		 * release from hardware queues
1539 		 */
1540 		if (skb_queue_empty(frames)) {
1541 			*driver_release_tids |=
1542 				sta->driver_buffered_tids & tids;
1543 			*driver_release_tids |= sta->txq_buffered_tids & tids;
1544 		}
1545 
1546 		if (!*driver_release_tids) {
1547 			struct sk_buff *skb;
1548 
1549 			while (n_frames > 0) {
1550 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1551 				if (!skb) {
1552 					skb = skb_dequeue(
1553 						&sta->ps_tx_buf[ac]);
1554 					if (skb)
1555 						local->total_ps_buffered--;
1556 				}
1557 				if (!skb)
1558 					break;
1559 				n_frames--;
1560 				__skb_queue_tail(frames, skb);
1561 			}
1562 		}
1563 
1564 		/* If we have more frames buffered on this AC, then abort the
1565 		 * loop since we can't send more data from other ACs before
1566 		 * the buffered frames from this.
1567 		 */
1568 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1569 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1570 			break;
1571 	}
1572 }
1573 
1574 static void
1575 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1576 				  int n_frames, u8 ignored_acs,
1577 				  enum ieee80211_frame_release_type reason)
1578 {
1579 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1580 	struct ieee80211_local *local = sdata->local;
1581 	unsigned long driver_release_tids = 0;
1582 	struct sk_buff_head frames;
1583 	bool more_data;
1584 
1585 	/* Service or PS-Poll period starts */
1586 	set_sta_flag(sta, WLAN_STA_SP);
1587 
1588 	__skb_queue_head_init(&frames);
1589 
1590 	ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1591 				    &frames, &driver_release_tids);
1592 
1593 	more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1594 
1595 	if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1596 		driver_release_tids =
1597 			BIT(find_highest_prio_tid(driver_release_tids));
1598 
1599 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1600 		int tid, ac;
1601 
1602 		/*
1603 		 * For PS-Poll, this can only happen due to a race condition
1604 		 * when we set the TIM bit and the station notices it, but
1605 		 * before it can poll for the frame we expire it.
1606 		 *
1607 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1608 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1609 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1610 		 *	more than the value specified in the Max SP Length field
1611 		 *	in the QoS Capability element from delivery-enabled ACs,
1612 		 *	that are destined for the non-AP STA.
1613 		 *
1614 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1615 		 */
1616 
1617 		/* This will evaluate to 1, 3, 5 or 7. */
1618 		for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1619 			if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1620 				break;
1621 		tid = 7 - 2 * ac;
1622 
1623 		ieee80211_send_null_response(sta, tid, reason, true, false);
1624 	} else if (!driver_release_tids) {
1625 		struct sk_buff_head pending;
1626 		struct sk_buff *skb;
1627 		int num = 0;
1628 		u16 tids = 0;
1629 		bool need_null = false;
1630 
1631 		skb_queue_head_init(&pending);
1632 
1633 		while ((skb = __skb_dequeue(&frames))) {
1634 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1635 			struct ieee80211_hdr *hdr = (void *) skb->data;
1636 			u8 *qoshdr = NULL;
1637 
1638 			num++;
1639 
1640 			/*
1641 			 * Tell TX path to send this frame even though the
1642 			 * STA may still remain is PS mode after this frame
1643 			 * exchange.
1644 			 */
1645 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1646 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1647 
1648 			/*
1649 			 * Use MoreData flag to indicate whether there are
1650 			 * more buffered frames for this STA
1651 			 */
1652 			if (more_data || !skb_queue_empty(&frames))
1653 				hdr->frame_control |=
1654 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1655 			else
1656 				hdr->frame_control &=
1657 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1658 
1659 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1660 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1661 				qoshdr = ieee80211_get_qos_ctl(hdr);
1662 
1663 			tids |= BIT(skb->priority);
1664 
1665 			__skb_queue_tail(&pending, skb);
1666 
1667 			/* end service period after last frame or add one */
1668 			if (!skb_queue_empty(&frames))
1669 				continue;
1670 
1671 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1672 				/* for PS-Poll, there's only one frame */
1673 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1674 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1675 				break;
1676 			}
1677 
1678 			/* For uAPSD, things are a bit more complicated. If the
1679 			 * last frame has a QoS header (i.e. is a QoS-data or
1680 			 * QoS-nulldata frame) then just set the EOSP bit there
1681 			 * and be done.
1682 			 * If the frame doesn't have a QoS header (which means
1683 			 * it should be a bufferable MMPDU) then we can't set
1684 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1685 			 * frame to the list to send it after the MMPDU.
1686 			 *
1687 			 * Note that this code is only in the mac80211-release
1688 			 * code path, we assume that the driver will not buffer
1689 			 * anything but QoS-data frames, or if it does, will
1690 			 * create the QoS-nulldata frame by itself if needed.
1691 			 *
1692 			 * Cf. 802.11-2012 10.2.1.10 (c).
1693 			 */
1694 			if (qoshdr) {
1695 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1696 
1697 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1698 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1699 			} else {
1700 				/* The standard isn't completely clear on this
1701 				 * as it says the more-data bit should be set
1702 				 * if there are more BUs. The QoS-Null frame
1703 				 * we're about to send isn't buffered yet, we
1704 				 * only create it below, but let's pretend it
1705 				 * was buffered just in case some clients only
1706 				 * expect more-data=0 when eosp=1.
1707 				 */
1708 				hdr->frame_control |=
1709 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1710 				need_null = true;
1711 				num++;
1712 			}
1713 			break;
1714 		}
1715 
1716 		drv_allow_buffered_frames(local, sta, tids, num,
1717 					  reason, more_data);
1718 
1719 		ieee80211_add_pending_skbs(local, &pending);
1720 
1721 		if (need_null)
1722 			ieee80211_send_null_response(
1723 				sta, find_highest_prio_tid(tids),
1724 				reason, false, false);
1725 
1726 		sta_info_recalc_tim(sta);
1727 	} else {
1728 		int tid;
1729 
1730 		/*
1731 		 * We need to release a frame that is buffered somewhere in the
1732 		 * driver ... it'll have to handle that.
1733 		 * Note that the driver also has to check the number of frames
1734 		 * on the TIDs we're releasing from - if there are more than
1735 		 * n_frames it has to set the more-data bit (if we didn't ask
1736 		 * it to set it anyway due to other buffered frames); if there
1737 		 * are fewer than n_frames it has to make sure to adjust that
1738 		 * to allow the service period to end properly.
1739 		 */
1740 		drv_release_buffered_frames(local, sta, driver_release_tids,
1741 					    n_frames, reason, more_data);
1742 
1743 		/*
1744 		 * Note that we don't recalculate the TIM bit here as it would
1745 		 * most likely have no effect at all unless the driver told us
1746 		 * that the TID(s) became empty before returning here from the
1747 		 * release function.
1748 		 * Either way, however, when the driver tells us that the TID(s)
1749 		 * became empty or we find that a txq became empty, we'll do the
1750 		 * TIM recalculation.
1751 		 */
1752 
1753 		if (!sta->sta.txq[0])
1754 			return;
1755 
1756 		for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1757 			if (!sta->sta.txq[tid] ||
1758 			    !(driver_release_tids & BIT(tid)) ||
1759 			    txq_has_queue(sta->sta.txq[tid]))
1760 				continue;
1761 
1762 			sta_info_recalc_tim(sta);
1763 			break;
1764 		}
1765 	}
1766 }
1767 
1768 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1769 {
1770 	u8 ignore_for_response = sta->sta.uapsd_queues;
1771 
1772 	/*
1773 	 * If all ACs are delivery-enabled then we should reply
1774 	 * from any of them, if only some are enabled we reply
1775 	 * only from the non-enabled ones.
1776 	 */
1777 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1778 		ignore_for_response = 0;
1779 
1780 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1781 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1782 }
1783 
1784 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1785 {
1786 	int n_frames = sta->sta.max_sp;
1787 	u8 delivery_enabled = sta->sta.uapsd_queues;
1788 
1789 	/*
1790 	 * If we ever grow support for TSPEC this might happen if
1791 	 * the TSPEC update from hostapd comes in between a trigger
1792 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1793 	 * actually getting called.
1794 	 */
1795 	if (!delivery_enabled)
1796 		return;
1797 
1798 	switch (sta->sta.max_sp) {
1799 	case 1:
1800 		n_frames = 2;
1801 		break;
1802 	case 2:
1803 		n_frames = 4;
1804 		break;
1805 	case 3:
1806 		n_frames = 6;
1807 		break;
1808 	case 0:
1809 		/* XXX: what is a good value? */
1810 		n_frames = 128;
1811 		break;
1812 	}
1813 
1814 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1815 					  IEEE80211_FRAME_RELEASE_UAPSD);
1816 }
1817 
1818 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1819 			       struct ieee80211_sta *pubsta, bool block)
1820 {
1821 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1822 
1823 	trace_api_sta_block_awake(sta->local, pubsta, block);
1824 
1825 	if (block) {
1826 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1827 		ieee80211_clear_fast_xmit(sta);
1828 		return;
1829 	}
1830 
1831 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1832 		return;
1833 
1834 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1835 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1836 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1837 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1838 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1839 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
1840 		/* must be asleep in this case */
1841 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1842 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1843 	} else {
1844 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1845 		ieee80211_check_fast_xmit(sta);
1846 	}
1847 }
1848 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1849 
1850 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1851 {
1852 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1853 	struct ieee80211_local *local = sta->local;
1854 
1855 	trace_api_eosp(local, pubsta);
1856 
1857 	clear_sta_flag(sta, WLAN_STA_SP);
1858 }
1859 EXPORT_SYMBOL(ieee80211_sta_eosp);
1860 
1861 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1862 {
1863 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1864 	enum ieee80211_frame_release_type reason;
1865 	bool more_data;
1866 
1867 	trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1868 
1869 	reason = IEEE80211_FRAME_RELEASE_UAPSD;
1870 	more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1871 					       reason, 0);
1872 
1873 	ieee80211_send_null_response(sta, tid, reason, false, more_data);
1874 }
1875 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1876 
1877 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1878 				u8 tid, bool buffered)
1879 {
1880 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1881 
1882 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1883 		return;
1884 
1885 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1886 
1887 	if (buffered)
1888 		set_bit(tid, &sta->driver_buffered_tids);
1889 	else
1890 		clear_bit(tid, &sta->driver_buffered_tids);
1891 
1892 	sta_info_recalc_tim(sta);
1893 }
1894 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1895 
1896 void ieee80211_register_airtime(struct ieee80211_txq *txq,
1897 				u32 tx_airtime, u32 rx_airtime)
1898 {
1899 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif);
1900 	struct ieee80211_local *local = sdata->local;
1901 	u64 weight_sum, weight_sum_reciprocal;
1902 	struct airtime_sched_info *air_sched;
1903 	struct airtime_info *air_info;
1904 	u32 airtime = 0;
1905 
1906 	air_sched = &local->airtime[txq->ac];
1907 	air_info = to_airtime_info(txq);
1908 
1909 	if (local->airtime_flags & AIRTIME_USE_TX)
1910 		airtime += tx_airtime;
1911 	if (local->airtime_flags & AIRTIME_USE_RX)
1912 		airtime += rx_airtime;
1913 
1914 	/* Weights scale so the unit weight is 256 */
1915 	airtime <<= 8;
1916 
1917 	spin_lock_bh(&air_sched->lock);
1918 
1919 	air_info->tx_airtime += tx_airtime;
1920 	air_info->rx_airtime += rx_airtime;
1921 
1922 	if (air_sched->weight_sum) {
1923 		weight_sum = air_sched->weight_sum;
1924 		weight_sum_reciprocal = air_sched->weight_sum_reciprocal;
1925 	} else {
1926 		weight_sum = air_info->weight;
1927 		weight_sum_reciprocal = air_info->weight_reciprocal;
1928 	}
1929 
1930 	/* Round the calculation of global vt */
1931 	air_sched->v_t += (u64)((airtime + (weight_sum >> 1)) *
1932 				weight_sum_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_64;
1933 	air_info->v_t += (u32)((airtime + (air_info->weight >> 1)) *
1934 			       air_info->weight_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_32;
1935 	ieee80211_resort_txq(&local->hw, txq);
1936 
1937 	spin_unlock_bh(&air_sched->lock);
1938 }
1939 
1940 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1941 				    u32 tx_airtime, u32 rx_airtime)
1942 {
1943 	struct ieee80211_txq *txq = pubsta->txq[tid];
1944 
1945 	if (!txq)
1946 		return;
1947 
1948 	ieee80211_register_airtime(txq, tx_airtime, rx_airtime);
1949 }
1950 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1951 
1952 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
1953 					  struct sta_info *sta, u8 ac,
1954 					  u16 tx_airtime, bool tx_completed)
1955 {
1956 	int tx_pending;
1957 
1958 	if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
1959 		return;
1960 
1961 	if (!tx_completed) {
1962 		if (sta)
1963 			atomic_add(tx_airtime,
1964 				   &sta->airtime[ac].aql_tx_pending);
1965 
1966 		atomic_add(tx_airtime, &local->aql_total_pending_airtime);
1967 		return;
1968 	}
1969 
1970 	if (sta) {
1971 		tx_pending = atomic_sub_return(tx_airtime,
1972 					       &sta->airtime[ac].aql_tx_pending);
1973 		if (tx_pending < 0)
1974 			atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
1975 				       tx_pending, 0);
1976 	}
1977 
1978 	tx_pending = atomic_sub_return(tx_airtime,
1979 				       &local->aql_total_pending_airtime);
1980 	if (WARN_ONCE(tx_pending < 0,
1981 		      "Device %s AC %d pending airtime underflow: %u, %u",
1982 		      wiphy_name(local->hw.wiphy), ac, tx_pending,
1983 		      tx_airtime))
1984 		atomic_cmpxchg(&local->aql_total_pending_airtime,
1985 			       tx_pending, 0);
1986 }
1987 
1988 int sta_info_move_state(struct sta_info *sta,
1989 			enum ieee80211_sta_state new_state)
1990 {
1991 	might_sleep();
1992 
1993 	if (sta->sta_state == new_state)
1994 		return 0;
1995 
1996 	/* check allowed transitions first */
1997 
1998 	switch (new_state) {
1999 	case IEEE80211_STA_NONE:
2000 		if (sta->sta_state != IEEE80211_STA_AUTH)
2001 			return -EINVAL;
2002 		break;
2003 	case IEEE80211_STA_AUTH:
2004 		if (sta->sta_state != IEEE80211_STA_NONE &&
2005 		    sta->sta_state != IEEE80211_STA_ASSOC)
2006 			return -EINVAL;
2007 		break;
2008 	case IEEE80211_STA_ASSOC:
2009 		if (sta->sta_state != IEEE80211_STA_AUTH &&
2010 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
2011 			return -EINVAL;
2012 		break;
2013 	case IEEE80211_STA_AUTHORIZED:
2014 		if (sta->sta_state != IEEE80211_STA_ASSOC)
2015 			return -EINVAL;
2016 		break;
2017 	default:
2018 		WARN(1, "invalid state %d", new_state);
2019 		return -EINVAL;
2020 	}
2021 
2022 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
2023 		sta->sta.addr, new_state);
2024 
2025 	/*
2026 	 * notify the driver before the actual changes so it can
2027 	 * fail the transition
2028 	 */
2029 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
2030 		int err = drv_sta_state(sta->local, sta->sdata, sta,
2031 					sta->sta_state, new_state);
2032 		if (err)
2033 			return err;
2034 	}
2035 
2036 	/* reflect the change in all state variables */
2037 
2038 	switch (new_state) {
2039 	case IEEE80211_STA_NONE:
2040 		if (sta->sta_state == IEEE80211_STA_AUTH)
2041 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
2042 		break;
2043 	case IEEE80211_STA_AUTH:
2044 		if (sta->sta_state == IEEE80211_STA_NONE) {
2045 			set_bit(WLAN_STA_AUTH, &sta->_flags);
2046 		} else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2047 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2048 			ieee80211_recalc_min_chandef(sta->sdata);
2049 			if (!sta->sta.support_p2p_ps)
2050 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2051 		}
2052 		break;
2053 	case IEEE80211_STA_ASSOC:
2054 		if (sta->sta_state == IEEE80211_STA_AUTH) {
2055 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
2056 			sta->assoc_at = ktime_get_boottime_ns();
2057 			ieee80211_recalc_min_chandef(sta->sdata);
2058 			if (!sta->sta.support_p2p_ps)
2059 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2060 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2061 			ieee80211_vif_dec_num_mcast(sta->sdata);
2062 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2063 			ieee80211_clear_fast_xmit(sta);
2064 			ieee80211_clear_fast_rx(sta);
2065 		}
2066 		break;
2067 	case IEEE80211_STA_AUTHORIZED:
2068 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
2069 			ieee80211_vif_inc_num_mcast(sta->sdata);
2070 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2071 			ieee80211_check_fast_xmit(sta);
2072 			ieee80211_check_fast_rx(sta);
2073 		}
2074 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2075 		    sta->sdata->vif.type == NL80211_IFTYPE_AP)
2076 			cfg80211_send_layer2_update(sta->sdata->dev,
2077 						    sta->sta.addr);
2078 		break;
2079 	default:
2080 		break;
2081 	}
2082 
2083 	sta->sta_state = new_state;
2084 
2085 	return 0;
2086 }
2087 
2088 u8 sta_info_tx_streams(struct sta_info *sta)
2089 {
2090 	struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
2091 	u8 rx_streams;
2092 
2093 	if (!sta->sta.ht_cap.ht_supported)
2094 		return 1;
2095 
2096 	if (sta->sta.vht_cap.vht_supported) {
2097 		int i;
2098 		u16 tx_mcs_map =
2099 			le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
2100 
2101 		for (i = 7; i >= 0; i--)
2102 			if ((tx_mcs_map & (0x3 << (i * 2))) !=
2103 			    IEEE80211_VHT_MCS_NOT_SUPPORTED)
2104 				return i + 1;
2105 	}
2106 
2107 	if (ht_cap->mcs.rx_mask[3])
2108 		rx_streams = 4;
2109 	else if (ht_cap->mcs.rx_mask[2])
2110 		rx_streams = 3;
2111 	else if (ht_cap->mcs.rx_mask[1])
2112 		rx_streams = 2;
2113 	else
2114 		rx_streams = 1;
2115 
2116 	if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2117 		return rx_streams;
2118 
2119 	return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2120 			>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2121 }
2122 
2123 static struct ieee80211_sta_rx_stats *
2124 sta_get_last_rx_stats(struct sta_info *sta)
2125 {
2126 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
2127 	int cpu;
2128 
2129 	if (!sta->pcpu_rx_stats)
2130 		return stats;
2131 
2132 	for_each_possible_cpu(cpu) {
2133 		struct ieee80211_sta_rx_stats *cpustats;
2134 
2135 		cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2136 
2137 		if (time_after(cpustats->last_rx, stats->last_rx))
2138 			stats = cpustats;
2139 	}
2140 
2141 	return stats;
2142 }
2143 
2144 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2145 				  struct rate_info *rinfo)
2146 {
2147 	rinfo->bw = STA_STATS_GET(BW, rate);
2148 
2149 	switch (STA_STATS_GET(TYPE, rate)) {
2150 	case STA_STATS_RATE_TYPE_VHT:
2151 		rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2152 		rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2153 		rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2154 		if (STA_STATS_GET(SGI, rate))
2155 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2156 		break;
2157 	case STA_STATS_RATE_TYPE_HT:
2158 		rinfo->flags = RATE_INFO_FLAGS_MCS;
2159 		rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2160 		if (STA_STATS_GET(SGI, rate))
2161 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2162 		break;
2163 	case STA_STATS_RATE_TYPE_LEGACY: {
2164 		struct ieee80211_supported_band *sband;
2165 		u16 brate;
2166 		unsigned int shift;
2167 		int band = STA_STATS_GET(LEGACY_BAND, rate);
2168 		int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2169 
2170 		sband = local->hw.wiphy->bands[band];
2171 
2172 		if (WARN_ON_ONCE(!sband->bitrates))
2173 			break;
2174 
2175 		brate = sband->bitrates[rate_idx].bitrate;
2176 		if (rinfo->bw == RATE_INFO_BW_5)
2177 			shift = 2;
2178 		else if (rinfo->bw == RATE_INFO_BW_10)
2179 			shift = 1;
2180 		else
2181 			shift = 0;
2182 		rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2183 		break;
2184 		}
2185 	case STA_STATS_RATE_TYPE_HE:
2186 		rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2187 		rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2188 		rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2189 		rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2190 		rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2191 		rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2192 		break;
2193 	}
2194 }
2195 
2196 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2197 {
2198 	u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2199 
2200 	if (rate == STA_STATS_RATE_INVALID)
2201 		return -EINVAL;
2202 
2203 	sta_stats_decode_rate(sta->local, rate, rinfo);
2204 	return 0;
2205 }
2206 
2207 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats,
2208 					int tid)
2209 {
2210 	unsigned int start;
2211 	u64 value;
2212 
2213 	do {
2214 		start = u64_stats_fetch_begin(&rxstats->syncp);
2215 		value = rxstats->msdu[tid];
2216 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2217 
2218 	return value;
2219 }
2220 
2221 static void sta_set_tidstats(struct sta_info *sta,
2222 			     struct cfg80211_tid_stats *tidstats,
2223 			     int tid)
2224 {
2225 	struct ieee80211_local *local = sta->local;
2226 	int cpu;
2227 
2228 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2229 		tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->rx_stats, tid);
2230 
2231 		if (sta->pcpu_rx_stats) {
2232 			for_each_possible_cpu(cpu) {
2233 				struct ieee80211_sta_rx_stats *cpurxs;
2234 
2235 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2236 				tidstats->rx_msdu +=
2237 					sta_get_tidstats_msdu(cpurxs, tid);
2238 			}
2239 		}
2240 
2241 		tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2242 	}
2243 
2244 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2245 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2246 		tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2247 	}
2248 
2249 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2250 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2251 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2252 		tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2253 	}
2254 
2255 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2256 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2257 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2258 		tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2259 	}
2260 
2261 	if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2262 		spin_lock_bh(&local->fq.lock);
2263 		rcu_read_lock();
2264 
2265 		tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2266 		ieee80211_fill_txq_stats(&tidstats->txq_stats,
2267 					 to_txq_info(sta->sta.txq[tid]));
2268 
2269 		rcu_read_unlock();
2270 		spin_unlock_bh(&local->fq.lock);
2271 	}
2272 }
2273 
2274 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2275 {
2276 	unsigned int start;
2277 	u64 value;
2278 
2279 	do {
2280 		start = u64_stats_fetch_begin(&rxstats->syncp);
2281 		value = rxstats->bytes;
2282 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2283 
2284 	return value;
2285 }
2286 
2287 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2288 		   bool tidstats)
2289 {
2290 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2291 	struct ieee80211_local *local = sdata->local;
2292 	u32 thr = 0;
2293 	int i, ac, cpu;
2294 	struct ieee80211_sta_rx_stats *last_rxstats;
2295 
2296 	last_rxstats = sta_get_last_rx_stats(sta);
2297 
2298 	sinfo->generation = sdata->local->sta_generation;
2299 
2300 	/* do before driver, so beacon filtering drivers have a
2301 	 * chance to e.g. just add the number of filtered beacons
2302 	 * (or just modify the value entirely, of course)
2303 	 */
2304 	if (sdata->vif.type == NL80211_IFTYPE_STATION)
2305 		sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2306 
2307 	drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2308 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2309 			 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2310 			 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2311 			 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2312 			 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2313 			 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2314 
2315 	if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2316 		sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2317 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2318 	}
2319 
2320 	sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2321 	sinfo->assoc_at = sta->assoc_at;
2322 	sinfo->inactive_time =
2323 		jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2324 
2325 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2326 			       BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2327 		sinfo->tx_bytes = 0;
2328 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2329 			sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2330 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2331 	}
2332 
2333 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2334 		sinfo->tx_packets = 0;
2335 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2336 			sinfo->tx_packets += sta->tx_stats.packets[ac];
2337 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2338 	}
2339 
2340 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2341 			       BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2342 		sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2343 
2344 		if (sta->pcpu_rx_stats) {
2345 			for_each_possible_cpu(cpu) {
2346 				struct ieee80211_sta_rx_stats *cpurxs;
2347 
2348 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2349 				sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2350 			}
2351 		}
2352 
2353 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2354 	}
2355 
2356 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2357 		sinfo->rx_packets = sta->rx_stats.packets;
2358 		if (sta->pcpu_rx_stats) {
2359 			for_each_possible_cpu(cpu) {
2360 				struct ieee80211_sta_rx_stats *cpurxs;
2361 
2362 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2363 				sinfo->rx_packets += cpurxs->packets;
2364 			}
2365 		}
2366 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2367 	}
2368 
2369 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2370 		sinfo->tx_retries = sta->status_stats.retry_count;
2371 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2372 	}
2373 
2374 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2375 		sinfo->tx_failed = sta->status_stats.retry_failed;
2376 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2377 	}
2378 
2379 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2380 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2381 			sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2382 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2383 	}
2384 
2385 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2386 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2387 			sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2388 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2389 	}
2390 
2391 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2392 		sinfo->airtime_weight = sta->airtime[0].weight;
2393 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2394 	}
2395 
2396 	sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2397 	if (sta->pcpu_rx_stats) {
2398 		for_each_possible_cpu(cpu) {
2399 			struct ieee80211_sta_rx_stats *cpurxs;
2400 
2401 			cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2402 			sinfo->rx_dropped_misc += cpurxs->dropped;
2403 		}
2404 	}
2405 
2406 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2407 	    !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2408 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2409 				 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2410 		sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2411 	}
2412 
2413 	if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2414 	    ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2415 		if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2416 			sinfo->signal = (s8)last_rxstats->last_signal;
2417 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2418 		}
2419 
2420 		if (!sta->pcpu_rx_stats &&
2421 		    !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2422 			sinfo->signal_avg =
2423 				-ewma_signal_read(&sta->rx_stats_avg.signal);
2424 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2425 		}
2426 	}
2427 
2428 	/* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2429 	 * the sta->rx_stats struct, so the check here is fine with and without
2430 	 * pcpu statistics
2431 	 */
2432 	if (last_rxstats->chains &&
2433 	    !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2434 			       BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2435 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2436 		if (!sta->pcpu_rx_stats)
2437 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2438 
2439 		sinfo->chains = last_rxstats->chains;
2440 
2441 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2442 			sinfo->chain_signal[i] =
2443 				last_rxstats->chain_signal_last[i];
2444 			sinfo->chain_signal_avg[i] =
2445 				-ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2446 		}
2447 	}
2448 
2449 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2450 		sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2451 				     &sinfo->txrate);
2452 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2453 	}
2454 
2455 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2456 		if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2457 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2458 	}
2459 
2460 	if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2461 		for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2462 			sta_set_tidstats(sta, &sinfo->pertid[i], i);
2463 	}
2464 
2465 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2466 #ifdef CONFIG_MAC80211_MESH
2467 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2468 				 BIT_ULL(NL80211_STA_INFO_PLID) |
2469 				 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2470 				 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2471 				 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2472 				 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2473 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) |
2474 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS);
2475 
2476 		sinfo->llid = sta->mesh->llid;
2477 		sinfo->plid = sta->mesh->plid;
2478 		sinfo->plink_state = sta->mesh->plink_state;
2479 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2480 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2481 			sinfo->t_offset = sta->mesh->t_offset;
2482 		}
2483 		sinfo->local_pm = sta->mesh->local_pm;
2484 		sinfo->peer_pm = sta->mesh->peer_pm;
2485 		sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2486 		sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2487 		sinfo->connected_to_as = sta->mesh->connected_to_as;
2488 #endif
2489 	}
2490 
2491 	sinfo->bss_param.flags = 0;
2492 	if (sdata->vif.bss_conf.use_cts_prot)
2493 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2494 	if (sdata->vif.bss_conf.use_short_preamble)
2495 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2496 	if (sdata->vif.bss_conf.use_short_slot)
2497 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2498 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2499 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2500 
2501 	sinfo->sta_flags.set = 0;
2502 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2503 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2504 				BIT(NL80211_STA_FLAG_WME) |
2505 				BIT(NL80211_STA_FLAG_MFP) |
2506 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2507 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
2508 				BIT(NL80211_STA_FLAG_TDLS_PEER);
2509 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2510 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2511 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2512 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2513 	if (sta->sta.wme)
2514 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2515 	if (test_sta_flag(sta, WLAN_STA_MFP))
2516 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2517 	if (test_sta_flag(sta, WLAN_STA_AUTH))
2518 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2519 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
2520 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2521 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2522 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2523 
2524 	thr = sta_get_expected_throughput(sta);
2525 
2526 	if (thr != 0) {
2527 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2528 		sinfo->expected_throughput = thr;
2529 	}
2530 
2531 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2532 	    sta->status_stats.ack_signal_filled) {
2533 		sinfo->ack_signal = sta->status_stats.last_ack_signal;
2534 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2535 	}
2536 
2537 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2538 	    sta->status_stats.ack_signal_filled) {
2539 		sinfo->avg_ack_signal =
2540 			-(s8)ewma_avg_signal_read(
2541 				&sta->status_stats.avg_ack_signal);
2542 		sinfo->filled |=
2543 			BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2544 	}
2545 
2546 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2547 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2548 		sinfo->airtime_link_metric =
2549 			airtime_link_metric_get(local, sta);
2550 	}
2551 }
2552 
2553 u32 sta_get_expected_throughput(struct sta_info *sta)
2554 {
2555 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2556 	struct ieee80211_local *local = sdata->local;
2557 	struct rate_control_ref *ref = NULL;
2558 	u32 thr = 0;
2559 
2560 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2561 		ref = local->rate_ctrl;
2562 
2563 	/* check if the driver has a SW RC implementation */
2564 	if (ref && ref->ops->get_expected_throughput)
2565 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2566 	else
2567 		thr = drv_get_expected_throughput(local, sta);
2568 
2569 	return thr;
2570 }
2571 
2572 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2573 {
2574 	struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2575 
2576 	if (!sta->status_stats.last_ack ||
2577 	    time_after(stats->last_rx, sta->status_stats.last_ack))
2578 		return stats->last_rx;
2579 	return sta->status_stats.last_ack;
2580 }
2581 
2582 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2583 {
2584 	if (!sta->sdata->local->ops->wake_tx_queue)
2585 		return;
2586 
2587 	if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2588 		sta->cparams.target = MS2TIME(50);
2589 		sta->cparams.interval = MS2TIME(300);
2590 		sta->cparams.ecn = false;
2591 	} else {
2592 		sta->cparams.target = MS2TIME(20);
2593 		sta->cparams.interval = MS2TIME(100);
2594 		sta->cparams.ecn = true;
2595 	}
2596 }
2597 
2598 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2599 					   u32 thr)
2600 {
2601 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2602 
2603 	sta_update_codel_params(sta, thr);
2604 }
2605