1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * Copyright 2013-2014 Intel Mobile Communications GmbH 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/etherdevice.h> 14 #include <linux/netdevice.h> 15 #include <linux/types.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/if_arp.h> 19 #include <linux/timer.h> 20 #include <linux/rtnetlink.h> 21 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 /* Caller must hold local->sta_mtx */ 68 static int sta_info_hash_del(struct ieee80211_local *local, 69 struct sta_info *sta) 70 { 71 struct sta_info *s; 72 73 s = rcu_dereference_protected(local->sta_hash[STA_HASH(sta->sta.addr)], 74 lockdep_is_held(&local->sta_mtx)); 75 if (!s) 76 return -ENOENT; 77 if (s == sta) { 78 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], 79 s->hnext); 80 return 0; 81 } 82 83 while (rcu_access_pointer(s->hnext) && 84 rcu_access_pointer(s->hnext) != sta) 85 s = rcu_dereference_protected(s->hnext, 86 lockdep_is_held(&local->sta_mtx)); 87 if (rcu_access_pointer(s->hnext)) { 88 rcu_assign_pointer(s->hnext, sta->hnext); 89 return 0; 90 } 91 92 return -ENOENT; 93 } 94 95 static void __cleanup_single_sta(struct sta_info *sta) 96 { 97 int ac, i; 98 struct tid_ampdu_tx *tid_tx; 99 struct ieee80211_sub_if_data *sdata = sta->sdata; 100 struct ieee80211_local *local = sdata->local; 101 struct ps_data *ps; 102 103 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 104 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 105 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 106 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 107 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 108 ps = &sdata->bss->ps; 109 else if (ieee80211_vif_is_mesh(&sdata->vif)) 110 ps = &sdata->u.mesh.ps; 111 else 112 return; 113 114 clear_sta_flag(sta, WLAN_STA_PS_STA); 115 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 116 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 117 118 atomic_dec(&ps->num_sta_ps); 119 sta_info_recalc_tim(sta); 120 } 121 122 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 123 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 124 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 126 } 127 128 if (ieee80211_vif_is_mesh(&sdata->vif)) 129 mesh_sta_cleanup(sta); 130 131 cancel_work_sync(&sta->drv_deliver_wk); 132 133 /* 134 * Destroy aggregation state here. It would be nice to wait for the 135 * driver to finish aggregation stop and then clean up, but for now 136 * drivers have to handle aggregation stop being requested, followed 137 * directly by station destruction. 138 */ 139 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 140 kfree(sta->ampdu_mlme.tid_start_tx[i]); 141 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 142 if (!tid_tx) 143 continue; 144 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 145 kfree(tid_tx); 146 } 147 } 148 149 static void cleanup_single_sta(struct sta_info *sta) 150 { 151 struct ieee80211_sub_if_data *sdata = sta->sdata; 152 struct ieee80211_local *local = sdata->local; 153 154 __cleanup_single_sta(sta); 155 sta_info_free(local, sta); 156 } 157 158 /* protected by RCU */ 159 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 160 const u8 *addr) 161 { 162 struct ieee80211_local *local = sdata->local; 163 struct sta_info *sta; 164 165 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)], 166 lockdep_is_held(&local->sta_mtx)); 167 while (sta) { 168 if (sta->sdata == sdata && 169 ether_addr_equal(sta->sta.addr, addr)) 170 break; 171 sta = rcu_dereference_check(sta->hnext, 172 lockdep_is_held(&local->sta_mtx)); 173 } 174 return sta; 175 } 176 177 /* 178 * Get sta info either from the specified interface 179 * or from one of its vlans 180 */ 181 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 182 const u8 *addr) 183 { 184 struct ieee80211_local *local = sdata->local; 185 struct sta_info *sta; 186 187 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)], 188 lockdep_is_held(&local->sta_mtx)); 189 while (sta) { 190 if ((sta->sdata == sdata || 191 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) && 192 ether_addr_equal(sta->sta.addr, addr)) 193 break; 194 sta = rcu_dereference_check(sta->hnext, 195 lockdep_is_held(&local->sta_mtx)); 196 } 197 return sta; 198 } 199 200 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 201 int idx) 202 { 203 struct ieee80211_local *local = sdata->local; 204 struct sta_info *sta; 205 int i = 0; 206 207 list_for_each_entry_rcu(sta, &local->sta_list, list) { 208 if (sdata != sta->sdata) 209 continue; 210 if (i < idx) { 211 ++i; 212 continue; 213 } 214 return sta; 215 } 216 217 return NULL; 218 } 219 220 /** 221 * sta_info_free - free STA 222 * 223 * @local: pointer to the global information 224 * @sta: STA info to free 225 * 226 * This function must undo everything done by sta_info_alloc() 227 * that may happen before sta_info_insert(). It may only be 228 * called when sta_info_insert() has not been attempted (and 229 * if that fails, the station is freed anyway.) 230 */ 231 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 232 { 233 int i; 234 235 if (sta->rate_ctrl) 236 rate_control_free_sta(sta); 237 238 if (sta->tx_lat) { 239 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 240 kfree(sta->tx_lat[i].bins); 241 kfree(sta->tx_lat); 242 } 243 244 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 245 246 kfree(rcu_dereference_raw(sta->sta.rates)); 247 kfree(sta); 248 } 249 250 /* Caller must hold local->sta_mtx */ 251 static void sta_info_hash_add(struct ieee80211_local *local, 252 struct sta_info *sta) 253 { 254 lockdep_assert_held(&local->sta_mtx); 255 sta->hnext = local->sta_hash[STA_HASH(sta->sta.addr)]; 256 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], sta); 257 } 258 259 static void sta_deliver_ps_frames(struct work_struct *wk) 260 { 261 struct sta_info *sta; 262 263 sta = container_of(wk, struct sta_info, drv_deliver_wk); 264 265 if (sta->dead) 266 return; 267 268 local_bh_disable(); 269 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 270 ieee80211_sta_ps_deliver_wakeup(sta); 271 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 272 ieee80211_sta_ps_deliver_poll_response(sta); 273 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 274 ieee80211_sta_ps_deliver_uapsd(sta); 275 local_bh_enable(); 276 } 277 278 static int sta_prepare_rate_control(struct ieee80211_local *local, 279 struct sta_info *sta, gfp_t gfp) 280 { 281 if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL) 282 return 0; 283 284 sta->rate_ctrl = local->rate_ctrl; 285 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 286 &sta->sta, gfp); 287 if (!sta->rate_ctrl_priv) 288 return -ENOMEM; 289 290 return 0; 291 } 292 293 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 294 const u8 *addr, gfp_t gfp) 295 { 296 struct ieee80211_local *local = sdata->local; 297 struct sta_info *sta; 298 struct timespec uptime; 299 struct ieee80211_tx_latency_bin_ranges *tx_latency; 300 int i; 301 302 sta = kzalloc(sizeof(*sta) + local->hw.sta_data_size, gfp); 303 if (!sta) 304 return NULL; 305 306 rcu_read_lock(); 307 tx_latency = rcu_dereference(local->tx_latency); 308 /* init stations Tx latency statistics && TID bins */ 309 if (tx_latency) { 310 sta->tx_lat = kzalloc(IEEE80211_NUM_TIDS * 311 sizeof(struct ieee80211_tx_latency_stat), 312 GFP_ATOMIC); 313 if (!sta->tx_lat) { 314 rcu_read_unlock(); 315 goto free; 316 } 317 318 if (tx_latency->n_ranges) { 319 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 320 /* size of bins is size of the ranges +1 */ 321 sta->tx_lat[i].bin_count = 322 tx_latency->n_ranges + 1; 323 sta->tx_lat[i].bins = 324 kcalloc(sta->tx_lat[i].bin_count, 325 sizeof(u32), GFP_ATOMIC); 326 if (!sta->tx_lat[i].bins) { 327 rcu_read_unlock(); 328 goto free; 329 } 330 } 331 } 332 } 333 rcu_read_unlock(); 334 335 spin_lock_init(&sta->lock); 336 spin_lock_init(&sta->ps_lock); 337 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 338 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 339 mutex_init(&sta->ampdu_mlme.mtx); 340 #ifdef CONFIG_MAC80211_MESH 341 if (ieee80211_vif_is_mesh(&sdata->vif) && 342 !sdata->u.mesh.user_mpm) 343 init_timer(&sta->plink_timer); 344 sta->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 345 #endif 346 347 memcpy(sta->sta.addr, addr, ETH_ALEN); 348 sta->local = local; 349 sta->sdata = sdata; 350 sta->last_rx = jiffies; 351 352 sta->sta_state = IEEE80211_STA_NONE; 353 354 ktime_get_ts(&uptime); 355 sta->last_connected = uptime.tv_sec; 356 ewma_init(&sta->avg_signal, 1024, 8); 357 for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++) 358 ewma_init(&sta->chain_signal_avg[i], 1024, 8); 359 360 if (sta_prepare_rate_control(local, sta, gfp)) 361 goto free; 362 363 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 364 /* 365 * timer_to_tid must be initialized with identity mapping 366 * to enable session_timer's data differentiation. See 367 * sta_rx_agg_session_timer_expired for usage. 368 */ 369 sta->timer_to_tid[i] = i; 370 } 371 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 372 skb_queue_head_init(&sta->ps_tx_buf[i]); 373 skb_queue_head_init(&sta->tx_filtered[i]); 374 } 375 376 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 377 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 378 379 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 380 if (sdata->vif.type == NL80211_IFTYPE_AP || 381 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 382 struct ieee80211_supported_band *sband = 383 local->hw.wiphy->bands[ieee80211_get_sdata_band(sdata)]; 384 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 385 IEEE80211_HT_CAP_SM_PS_SHIFT; 386 /* 387 * Assume that hostapd advertises our caps in the beacon and 388 * this is the known_smps_mode for a station that just assciated 389 */ 390 switch (smps) { 391 case WLAN_HT_SMPS_CONTROL_DISABLED: 392 sta->known_smps_mode = IEEE80211_SMPS_OFF; 393 break; 394 case WLAN_HT_SMPS_CONTROL_STATIC: 395 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 396 break; 397 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 398 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 399 break; 400 default: 401 WARN_ON(1); 402 } 403 } 404 405 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 406 return sta; 407 408 free: 409 if (sta->tx_lat) { 410 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 411 kfree(sta->tx_lat[i].bins); 412 kfree(sta->tx_lat); 413 } 414 kfree(sta); 415 return NULL; 416 } 417 418 static int sta_info_insert_check(struct sta_info *sta) 419 { 420 struct ieee80211_sub_if_data *sdata = sta->sdata; 421 422 /* 423 * Can't be a WARN_ON because it can be triggered through a race: 424 * something inserts a STA (on one CPU) without holding the RTNL 425 * and another CPU turns off the net device. 426 */ 427 if (unlikely(!ieee80211_sdata_running(sdata))) 428 return -ENETDOWN; 429 430 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 431 is_multicast_ether_addr(sta->sta.addr))) 432 return -EINVAL; 433 434 return 0; 435 } 436 437 static int sta_info_insert_drv_state(struct ieee80211_local *local, 438 struct ieee80211_sub_if_data *sdata, 439 struct sta_info *sta) 440 { 441 enum ieee80211_sta_state state; 442 int err = 0; 443 444 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 445 err = drv_sta_state(local, sdata, sta, state, state + 1); 446 if (err) 447 break; 448 } 449 450 if (!err) { 451 /* 452 * Drivers using legacy sta_add/sta_remove callbacks only 453 * get uploaded set to true after sta_add is called. 454 */ 455 if (!local->ops->sta_add) 456 sta->uploaded = true; 457 return 0; 458 } 459 460 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 461 sdata_info(sdata, 462 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 463 sta->sta.addr, state + 1, err); 464 err = 0; 465 } 466 467 /* unwind on error */ 468 for (; state > IEEE80211_STA_NOTEXIST; state--) 469 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 470 471 return err; 472 } 473 474 /* 475 * should be called with sta_mtx locked 476 * this function replaces the mutex lock 477 * with a RCU lock 478 */ 479 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 480 { 481 struct ieee80211_local *local = sta->local; 482 struct ieee80211_sub_if_data *sdata = sta->sdata; 483 struct station_info sinfo; 484 int err = 0; 485 486 lockdep_assert_held(&local->sta_mtx); 487 488 /* check if STA exists already */ 489 if (sta_info_get_bss(sdata, sta->sta.addr)) { 490 err = -EEXIST; 491 goto out_err; 492 } 493 494 local->num_sta++; 495 local->sta_generation++; 496 smp_mb(); 497 498 /* simplify things and don't accept BA sessions yet */ 499 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 500 501 /* make the station visible */ 502 sta_info_hash_add(local, sta); 503 504 list_add_rcu(&sta->list, &local->sta_list); 505 506 /* notify driver */ 507 err = sta_info_insert_drv_state(local, sdata, sta); 508 if (err) 509 goto out_remove; 510 511 set_sta_flag(sta, WLAN_STA_INSERTED); 512 /* accept BA sessions now */ 513 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 514 515 ieee80211_recalc_min_chandef(sdata); 516 ieee80211_sta_debugfs_add(sta); 517 rate_control_add_sta_debugfs(sta); 518 519 memset(&sinfo, 0, sizeof(sinfo)); 520 sinfo.filled = 0; 521 sinfo.generation = local->sta_generation; 522 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 523 524 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 525 526 /* move reference to rcu-protected */ 527 rcu_read_lock(); 528 mutex_unlock(&local->sta_mtx); 529 530 if (ieee80211_vif_is_mesh(&sdata->vif)) 531 mesh_accept_plinks_update(sdata); 532 533 return 0; 534 out_remove: 535 sta_info_hash_del(local, sta); 536 list_del_rcu(&sta->list); 537 local->num_sta--; 538 synchronize_net(); 539 __cleanup_single_sta(sta); 540 out_err: 541 mutex_unlock(&local->sta_mtx); 542 rcu_read_lock(); 543 return err; 544 } 545 546 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 547 { 548 struct ieee80211_local *local = sta->local; 549 int err; 550 551 might_sleep(); 552 553 err = sta_info_insert_check(sta); 554 if (err) { 555 rcu_read_lock(); 556 goto out_free; 557 } 558 559 mutex_lock(&local->sta_mtx); 560 561 err = sta_info_insert_finish(sta); 562 if (err) 563 goto out_free; 564 565 return 0; 566 out_free: 567 sta_info_free(local, sta); 568 return err; 569 } 570 571 int sta_info_insert(struct sta_info *sta) 572 { 573 int err = sta_info_insert_rcu(sta); 574 575 rcu_read_unlock(); 576 577 return err; 578 } 579 580 static inline void __bss_tim_set(u8 *tim, u16 id) 581 { 582 /* 583 * This format has been mandated by the IEEE specifications, 584 * so this line may not be changed to use the __set_bit() format. 585 */ 586 tim[id / 8] |= (1 << (id % 8)); 587 } 588 589 static inline void __bss_tim_clear(u8 *tim, u16 id) 590 { 591 /* 592 * This format has been mandated by the IEEE specifications, 593 * so this line may not be changed to use the __clear_bit() format. 594 */ 595 tim[id / 8] &= ~(1 << (id % 8)); 596 } 597 598 static inline bool __bss_tim_get(u8 *tim, u16 id) 599 { 600 /* 601 * This format has been mandated by the IEEE specifications, 602 * so this line may not be changed to use the test_bit() format. 603 */ 604 return tim[id / 8] & (1 << (id % 8)); 605 } 606 607 static unsigned long ieee80211_tids_for_ac(int ac) 608 { 609 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 610 switch (ac) { 611 case IEEE80211_AC_VO: 612 return BIT(6) | BIT(7); 613 case IEEE80211_AC_VI: 614 return BIT(4) | BIT(5); 615 case IEEE80211_AC_BE: 616 return BIT(0) | BIT(3); 617 case IEEE80211_AC_BK: 618 return BIT(1) | BIT(2); 619 default: 620 WARN_ON(1); 621 return 0; 622 } 623 } 624 625 void sta_info_recalc_tim(struct sta_info *sta) 626 { 627 struct ieee80211_local *local = sta->local; 628 struct ps_data *ps; 629 bool indicate_tim = false; 630 u8 ignore_for_tim = sta->sta.uapsd_queues; 631 int ac; 632 u16 id; 633 634 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 635 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 636 if (WARN_ON_ONCE(!sta->sdata->bss)) 637 return; 638 639 ps = &sta->sdata->bss->ps; 640 id = sta->sta.aid; 641 #ifdef CONFIG_MAC80211_MESH 642 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 643 ps = &sta->sdata->u.mesh.ps; 644 /* TIM map only for 1 <= PLID <= IEEE80211_MAX_AID */ 645 id = sta->plid % (IEEE80211_MAX_AID + 1); 646 #endif 647 } else { 648 return; 649 } 650 651 /* No need to do anything if the driver does all */ 652 if (local->hw.flags & IEEE80211_HW_AP_LINK_PS) 653 return; 654 655 if (sta->dead) 656 goto done; 657 658 /* 659 * If all ACs are delivery-enabled then we should build 660 * the TIM bit for all ACs anyway; if only some are then 661 * we ignore those and build the TIM bit using only the 662 * non-enabled ones. 663 */ 664 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 665 ignore_for_tim = 0; 666 667 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 668 unsigned long tids; 669 670 if (ignore_for_tim & BIT(ac)) 671 continue; 672 673 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 674 !skb_queue_empty(&sta->ps_tx_buf[ac]); 675 if (indicate_tim) 676 break; 677 678 tids = ieee80211_tids_for_ac(ac); 679 680 indicate_tim |= 681 sta->driver_buffered_tids & tids; 682 } 683 684 done: 685 spin_lock_bh(&local->tim_lock); 686 687 if (indicate_tim == __bss_tim_get(ps->tim, id)) 688 goto out_unlock; 689 690 if (indicate_tim) 691 __bss_tim_set(ps->tim, id); 692 else 693 __bss_tim_clear(ps->tim, id); 694 695 if (local->ops->set_tim) { 696 local->tim_in_locked_section = true; 697 drv_set_tim(local, &sta->sta, indicate_tim); 698 local->tim_in_locked_section = false; 699 } 700 701 out_unlock: 702 spin_unlock_bh(&local->tim_lock); 703 } 704 705 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 706 { 707 struct ieee80211_tx_info *info; 708 int timeout; 709 710 if (!skb) 711 return false; 712 713 info = IEEE80211_SKB_CB(skb); 714 715 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 716 timeout = (sta->listen_interval * 717 sta->sdata->vif.bss_conf.beacon_int * 718 32 / 15625) * HZ; 719 if (timeout < STA_TX_BUFFER_EXPIRE) 720 timeout = STA_TX_BUFFER_EXPIRE; 721 return time_after(jiffies, info->control.jiffies + timeout); 722 } 723 724 725 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 726 struct sta_info *sta, int ac) 727 { 728 unsigned long flags; 729 struct sk_buff *skb; 730 731 /* 732 * First check for frames that should expire on the filtered 733 * queue. Frames here were rejected by the driver and are on 734 * a separate queue to avoid reordering with normal PS-buffered 735 * frames. They also aren't accounted for right now in the 736 * total_ps_buffered counter. 737 */ 738 for (;;) { 739 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 740 skb = skb_peek(&sta->tx_filtered[ac]); 741 if (sta_info_buffer_expired(sta, skb)) 742 skb = __skb_dequeue(&sta->tx_filtered[ac]); 743 else 744 skb = NULL; 745 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 746 747 /* 748 * Frames are queued in order, so if this one 749 * hasn't expired yet we can stop testing. If 750 * we actually reached the end of the queue we 751 * also need to stop, of course. 752 */ 753 if (!skb) 754 break; 755 ieee80211_free_txskb(&local->hw, skb); 756 } 757 758 /* 759 * Now also check the normal PS-buffered queue, this will 760 * only find something if the filtered queue was emptied 761 * since the filtered frames are all before the normal PS 762 * buffered frames. 763 */ 764 for (;;) { 765 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 766 skb = skb_peek(&sta->ps_tx_buf[ac]); 767 if (sta_info_buffer_expired(sta, skb)) 768 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 769 else 770 skb = NULL; 771 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 772 773 /* 774 * frames are queued in order, so if this one 775 * hasn't expired yet (or we reached the end of 776 * the queue) we can stop testing 777 */ 778 if (!skb) 779 break; 780 781 local->total_ps_buffered--; 782 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 783 sta->sta.addr); 784 ieee80211_free_txskb(&local->hw, skb); 785 } 786 787 /* 788 * Finally, recalculate the TIM bit for this station -- it might 789 * now be clear because the station was too slow to retrieve its 790 * frames. 791 */ 792 sta_info_recalc_tim(sta); 793 794 /* 795 * Return whether there are any frames still buffered, this is 796 * used to check whether the cleanup timer still needs to run, 797 * if there are no frames we don't need to rearm the timer. 798 */ 799 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 800 skb_queue_empty(&sta->tx_filtered[ac])); 801 } 802 803 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 804 struct sta_info *sta) 805 { 806 bool have_buffered = false; 807 int ac; 808 809 /* This is only necessary for stations on BSS/MBSS interfaces */ 810 if (!sta->sdata->bss && 811 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 812 return false; 813 814 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 815 have_buffered |= 816 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 817 818 return have_buffered; 819 } 820 821 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 822 { 823 struct ieee80211_local *local; 824 struct ieee80211_sub_if_data *sdata; 825 int ret; 826 827 might_sleep(); 828 829 if (!sta) 830 return -ENOENT; 831 832 local = sta->local; 833 sdata = sta->sdata; 834 835 lockdep_assert_held(&local->sta_mtx); 836 837 /* 838 * Before removing the station from the driver and 839 * rate control, it might still start new aggregation 840 * sessions -- block that to make sure the tear-down 841 * will be sufficient. 842 */ 843 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 844 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 845 846 ret = sta_info_hash_del(local, sta); 847 if (WARN_ON(ret)) 848 return ret; 849 850 list_del_rcu(&sta->list); 851 852 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 853 854 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 855 rcu_access_pointer(sdata->u.vlan.sta) == sta) 856 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 857 858 return 0; 859 } 860 861 static void __sta_info_destroy_part2(struct sta_info *sta) 862 { 863 struct ieee80211_local *local = sta->local; 864 struct ieee80211_sub_if_data *sdata = sta->sdata; 865 int ret; 866 867 /* 868 * NOTE: This assumes at least synchronize_net() was done 869 * after _part1 and before _part2! 870 */ 871 872 might_sleep(); 873 lockdep_assert_held(&local->sta_mtx); 874 875 /* now keys can no longer be reached */ 876 ieee80211_free_sta_keys(local, sta); 877 878 sta->dead = true; 879 880 local->num_sta--; 881 local->sta_generation++; 882 883 while (sta->sta_state > IEEE80211_STA_NONE) { 884 ret = sta_info_move_state(sta, sta->sta_state - 1); 885 if (ret) { 886 WARN_ON_ONCE(1); 887 break; 888 } 889 } 890 891 if (sta->uploaded) { 892 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 893 IEEE80211_STA_NOTEXIST); 894 WARN_ON_ONCE(ret != 0); 895 } 896 897 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 898 899 cfg80211_del_sta(sdata->dev, sta->sta.addr, GFP_KERNEL); 900 901 rate_control_remove_sta_debugfs(sta); 902 ieee80211_sta_debugfs_remove(sta); 903 ieee80211_recalc_min_chandef(sdata); 904 905 cleanup_single_sta(sta); 906 } 907 908 int __must_check __sta_info_destroy(struct sta_info *sta) 909 { 910 int err = __sta_info_destroy_part1(sta); 911 912 if (err) 913 return err; 914 915 synchronize_net(); 916 917 __sta_info_destroy_part2(sta); 918 919 return 0; 920 } 921 922 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 923 { 924 struct sta_info *sta; 925 int ret; 926 927 mutex_lock(&sdata->local->sta_mtx); 928 sta = sta_info_get(sdata, addr); 929 ret = __sta_info_destroy(sta); 930 mutex_unlock(&sdata->local->sta_mtx); 931 932 return ret; 933 } 934 935 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 936 const u8 *addr) 937 { 938 struct sta_info *sta; 939 int ret; 940 941 mutex_lock(&sdata->local->sta_mtx); 942 sta = sta_info_get_bss(sdata, addr); 943 ret = __sta_info_destroy(sta); 944 mutex_unlock(&sdata->local->sta_mtx); 945 946 return ret; 947 } 948 949 static void sta_info_cleanup(unsigned long data) 950 { 951 struct ieee80211_local *local = (struct ieee80211_local *) data; 952 struct sta_info *sta; 953 bool timer_needed = false; 954 955 rcu_read_lock(); 956 list_for_each_entry_rcu(sta, &local->sta_list, list) 957 if (sta_info_cleanup_expire_buffered(local, sta)) 958 timer_needed = true; 959 rcu_read_unlock(); 960 961 if (local->quiescing) 962 return; 963 964 if (!timer_needed) 965 return; 966 967 mod_timer(&local->sta_cleanup, 968 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 969 } 970 971 void sta_info_init(struct ieee80211_local *local) 972 { 973 spin_lock_init(&local->tim_lock); 974 mutex_init(&local->sta_mtx); 975 INIT_LIST_HEAD(&local->sta_list); 976 977 setup_timer(&local->sta_cleanup, sta_info_cleanup, 978 (unsigned long)local); 979 } 980 981 void sta_info_stop(struct ieee80211_local *local) 982 { 983 del_timer_sync(&local->sta_cleanup); 984 } 985 986 987 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 988 { 989 struct ieee80211_local *local = sdata->local; 990 struct sta_info *sta, *tmp; 991 LIST_HEAD(free_list); 992 int ret = 0; 993 994 might_sleep(); 995 996 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 997 WARN_ON(vlans && !sdata->bss); 998 999 mutex_lock(&local->sta_mtx); 1000 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1001 if (sdata == sta->sdata || 1002 (vlans && sdata->bss == sta->sdata->bss)) { 1003 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1004 list_add(&sta->free_list, &free_list); 1005 ret++; 1006 } 1007 } 1008 1009 if (!list_empty(&free_list)) { 1010 synchronize_net(); 1011 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1012 __sta_info_destroy_part2(sta); 1013 } 1014 mutex_unlock(&local->sta_mtx); 1015 1016 return ret; 1017 } 1018 1019 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1020 unsigned long exp_time) 1021 { 1022 struct ieee80211_local *local = sdata->local; 1023 struct sta_info *sta, *tmp; 1024 1025 mutex_lock(&local->sta_mtx); 1026 1027 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1028 if (sdata != sta->sdata) 1029 continue; 1030 1031 if (time_after(jiffies, sta->last_rx + exp_time)) { 1032 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1033 sta->sta.addr); 1034 1035 if (ieee80211_vif_is_mesh(&sdata->vif) && 1036 test_sta_flag(sta, WLAN_STA_PS_STA)) 1037 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1038 1039 WARN_ON(__sta_info_destroy(sta)); 1040 } 1041 } 1042 1043 mutex_unlock(&local->sta_mtx); 1044 } 1045 1046 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1047 const u8 *addr, 1048 const u8 *localaddr) 1049 { 1050 struct sta_info *sta, *nxt; 1051 1052 /* 1053 * Just return a random station if localaddr is NULL 1054 * ... first in list. 1055 */ 1056 for_each_sta_info(hw_to_local(hw), addr, sta, nxt) { 1057 if (localaddr && 1058 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1059 continue; 1060 if (!sta->uploaded) 1061 return NULL; 1062 return &sta->sta; 1063 } 1064 1065 return NULL; 1066 } 1067 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1068 1069 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1070 const u8 *addr) 1071 { 1072 struct sta_info *sta; 1073 1074 if (!vif) 1075 return NULL; 1076 1077 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1078 if (!sta) 1079 return NULL; 1080 1081 if (!sta->uploaded) 1082 return NULL; 1083 1084 return &sta->sta; 1085 } 1086 EXPORT_SYMBOL(ieee80211_find_sta); 1087 1088 /* powersave support code */ 1089 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1090 { 1091 struct ieee80211_sub_if_data *sdata = sta->sdata; 1092 struct ieee80211_local *local = sdata->local; 1093 struct sk_buff_head pending; 1094 int filtered = 0, buffered = 0, ac; 1095 unsigned long flags; 1096 struct ps_data *ps; 1097 1098 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1099 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1100 u.ap); 1101 1102 if (sdata->vif.type == NL80211_IFTYPE_AP) 1103 ps = &sdata->bss->ps; 1104 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1105 ps = &sdata->u.mesh.ps; 1106 else 1107 return; 1108 1109 clear_sta_flag(sta, WLAN_STA_SP); 1110 1111 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1112 sta->driver_buffered_tids = 0; 1113 1114 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1115 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1116 1117 skb_queue_head_init(&pending); 1118 1119 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1120 spin_lock(&sta->ps_lock); 1121 /* Send all buffered frames to the station */ 1122 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1123 int count = skb_queue_len(&pending), tmp; 1124 1125 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1126 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1127 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1128 tmp = skb_queue_len(&pending); 1129 filtered += tmp - count; 1130 count = tmp; 1131 1132 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1133 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1134 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1135 tmp = skb_queue_len(&pending); 1136 buffered += tmp - count; 1137 } 1138 1139 ieee80211_add_pending_skbs(local, &pending); 1140 1141 /* now we're no longer in the deliver code */ 1142 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1143 1144 /* The station might have polled and then woken up before we responded, 1145 * so clear these flags now to avoid them sticking around. 1146 */ 1147 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1148 clear_sta_flag(sta, WLAN_STA_UAPSD); 1149 spin_unlock(&sta->ps_lock); 1150 1151 atomic_dec(&ps->num_sta_ps); 1152 1153 /* This station just woke up and isn't aware of our SMPS state */ 1154 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1155 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1156 sdata->smps_mode) && 1157 sta->known_smps_mode != sdata->bss->req_smps && 1158 sta_info_tx_streams(sta) != 1) { 1159 ht_dbg(sdata, 1160 "%pM just woke up and MIMO capable - update SMPS\n", 1161 sta->sta.addr); 1162 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1163 sta->sta.addr, 1164 sdata->vif.bss_conf.bssid); 1165 } 1166 1167 local->total_ps_buffered -= buffered; 1168 1169 sta_info_recalc_tim(sta); 1170 1171 ps_dbg(sdata, 1172 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n", 1173 sta->sta.addr, sta->sta.aid, filtered, buffered); 1174 } 1175 1176 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata, 1177 struct sta_info *sta, int tid, 1178 enum ieee80211_frame_release_type reason, 1179 bool call_driver) 1180 { 1181 struct ieee80211_local *local = sdata->local; 1182 struct ieee80211_qos_hdr *nullfunc; 1183 struct sk_buff *skb; 1184 int size = sizeof(*nullfunc); 1185 __le16 fc; 1186 bool qos = sta->sta.wme; 1187 struct ieee80211_tx_info *info; 1188 struct ieee80211_chanctx_conf *chanctx_conf; 1189 1190 if (qos) { 1191 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1192 IEEE80211_STYPE_QOS_NULLFUNC | 1193 IEEE80211_FCTL_FROMDS); 1194 } else { 1195 size -= 2; 1196 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1197 IEEE80211_STYPE_NULLFUNC | 1198 IEEE80211_FCTL_FROMDS); 1199 } 1200 1201 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1202 if (!skb) 1203 return; 1204 1205 skb_reserve(skb, local->hw.extra_tx_headroom); 1206 1207 nullfunc = (void *) skb_put(skb, size); 1208 nullfunc->frame_control = fc; 1209 nullfunc->duration_id = 0; 1210 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1211 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1212 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1213 nullfunc->seq_ctrl = 0; 1214 1215 skb->priority = tid; 1216 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1217 if (qos) { 1218 nullfunc->qos_ctrl = cpu_to_le16(tid); 1219 1220 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) 1221 nullfunc->qos_ctrl |= 1222 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1223 } 1224 1225 info = IEEE80211_SKB_CB(skb); 1226 1227 /* 1228 * Tell TX path to send this frame even though the 1229 * STA may still remain is PS mode after this frame 1230 * exchange. Also set EOSP to indicate this packet 1231 * ends the poll/service period. 1232 */ 1233 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1234 IEEE80211_TX_CTL_PS_RESPONSE | 1235 IEEE80211_TX_STATUS_EOSP | 1236 IEEE80211_TX_CTL_REQ_TX_STATUS; 1237 1238 if (call_driver) 1239 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1240 reason, false); 1241 1242 skb->dev = sdata->dev; 1243 1244 rcu_read_lock(); 1245 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1246 if (WARN_ON(!chanctx_conf)) { 1247 rcu_read_unlock(); 1248 kfree_skb(skb); 1249 return; 1250 } 1251 1252 ieee80211_xmit(sdata, skb, chanctx_conf->def.chan->band); 1253 rcu_read_unlock(); 1254 } 1255 1256 static int find_highest_prio_tid(unsigned long tids) 1257 { 1258 /* lower 3 TIDs aren't ordered perfectly */ 1259 if (tids & 0xF8) 1260 return fls(tids) - 1; 1261 /* TID 0 is BE just like TID 3 */ 1262 if (tids & BIT(0)) 1263 return 0; 1264 return fls(tids) - 1; 1265 } 1266 1267 static void 1268 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1269 int n_frames, u8 ignored_acs, 1270 enum ieee80211_frame_release_type reason) 1271 { 1272 struct ieee80211_sub_if_data *sdata = sta->sdata; 1273 struct ieee80211_local *local = sdata->local; 1274 bool more_data = false; 1275 int ac; 1276 unsigned long driver_release_tids = 0; 1277 struct sk_buff_head frames; 1278 1279 /* Service or PS-Poll period starts */ 1280 set_sta_flag(sta, WLAN_STA_SP); 1281 1282 __skb_queue_head_init(&frames); 1283 1284 /* Get response frame(s) and more data bit for the last one. */ 1285 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1286 unsigned long tids; 1287 1288 if (ignored_acs & BIT(ac)) 1289 continue; 1290 1291 tids = ieee80211_tids_for_ac(ac); 1292 1293 /* if we already have frames from software, then we can't also 1294 * release from hardware queues 1295 */ 1296 if (skb_queue_empty(&frames)) 1297 driver_release_tids |= sta->driver_buffered_tids & tids; 1298 1299 if (driver_release_tids) { 1300 /* If the driver has data on more than one TID then 1301 * certainly there's more data if we release just a 1302 * single frame now (from a single TID). This will 1303 * only happen for PS-Poll. 1304 */ 1305 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1306 hweight16(driver_release_tids) > 1) { 1307 more_data = true; 1308 driver_release_tids = 1309 BIT(find_highest_prio_tid( 1310 driver_release_tids)); 1311 break; 1312 } 1313 } else { 1314 struct sk_buff *skb; 1315 1316 while (n_frames > 0) { 1317 skb = skb_dequeue(&sta->tx_filtered[ac]); 1318 if (!skb) { 1319 skb = skb_dequeue( 1320 &sta->ps_tx_buf[ac]); 1321 if (skb) 1322 local->total_ps_buffered--; 1323 } 1324 if (!skb) 1325 break; 1326 n_frames--; 1327 __skb_queue_tail(&frames, skb); 1328 } 1329 } 1330 1331 /* If we have more frames buffered on this AC, then set the 1332 * more-data bit and abort the loop since we can't send more 1333 * data from other ACs before the buffered frames from this. 1334 */ 1335 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1336 !skb_queue_empty(&sta->ps_tx_buf[ac])) { 1337 more_data = true; 1338 break; 1339 } 1340 } 1341 1342 if (skb_queue_empty(&frames) && !driver_release_tids) { 1343 int tid; 1344 1345 /* 1346 * For PS-Poll, this can only happen due to a race condition 1347 * when we set the TIM bit and the station notices it, but 1348 * before it can poll for the frame we expire it. 1349 * 1350 * For uAPSD, this is said in the standard (11.2.1.5 h): 1351 * At each unscheduled SP for a non-AP STA, the AP shall 1352 * attempt to transmit at least one MSDU or MMPDU, but no 1353 * more than the value specified in the Max SP Length field 1354 * in the QoS Capability element from delivery-enabled ACs, 1355 * that are destined for the non-AP STA. 1356 * 1357 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1358 */ 1359 1360 /* This will evaluate to 1, 3, 5 or 7. */ 1361 tid = 7 - ((ffs(~ignored_acs) - 1) << 1); 1362 1363 ieee80211_send_null_response(sdata, sta, tid, reason, true); 1364 } else if (!driver_release_tids) { 1365 struct sk_buff_head pending; 1366 struct sk_buff *skb; 1367 int num = 0; 1368 u16 tids = 0; 1369 bool need_null = false; 1370 1371 skb_queue_head_init(&pending); 1372 1373 while ((skb = __skb_dequeue(&frames))) { 1374 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1375 struct ieee80211_hdr *hdr = (void *) skb->data; 1376 u8 *qoshdr = NULL; 1377 1378 num++; 1379 1380 /* 1381 * Tell TX path to send this frame even though the 1382 * STA may still remain is PS mode after this frame 1383 * exchange. 1384 */ 1385 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1386 IEEE80211_TX_CTL_PS_RESPONSE; 1387 1388 /* 1389 * Use MoreData flag to indicate whether there are 1390 * more buffered frames for this STA 1391 */ 1392 if (more_data || !skb_queue_empty(&frames)) 1393 hdr->frame_control |= 1394 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1395 else 1396 hdr->frame_control &= 1397 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1398 1399 if (ieee80211_is_data_qos(hdr->frame_control) || 1400 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1401 qoshdr = ieee80211_get_qos_ctl(hdr); 1402 1403 tids |= BIT(skb->priority); 1404 1405 __skb_queue_tail(&pending, skb); 1406 1407 /* end service period after last frame or add one */ 1408 if (!skb_queue_empty(&frames)) 1409 continue; 1410 1411 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1412 /* for PS-Poll, there's only one frame */ 1413 info->flags |= IEEE80211_TX_STATUS_EOSP | 1414 IEEE80211_TX_CTL_REQ_TX_STATUS; 1415 break; 1416 } 1417 1418 /* For uAPSD, things are a bit more complicated. If the 1419 * last frame has a QoS header (i.e. is a QoS-data or 1420 * QoS-nulldata frame) then just set the EOSP bit there 1421 * and be done. 1422 * If the frame doesn't have a QoS header (which means 1423 * it should be a bufferable MMPDU) then we can't set 1424 * the EOSP bit in the QoS header; add a QoS-nulldata 1425 * frame to the list to send it after the MMPDU. 1426 * 1427 * Note that this code is only in the mac80211-release 1428 * code path, we assume that the driver will not buffer 1429 * anything but QoS-data frames, or if it does, will 1430 * create the QoS-nulldata frame by itself if needed. 1431 * 1432 * Cf. 802.11-2012 10.2.1.10 (c). 1433 */ 1434 if (qoshdr) { 1435 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1436 1437 info->flags |= IEEE80211_TX_STATUS_EOSP | 1438 IEEE80211_TX_CTL_REQ_TX_STATUS; 1439 } else { 1440 /* The standard isn't completely clear on this 1441 * as it says the more-data bit should be set 1442 * if there are more BUs. The QoS-Null frame 1443 * we're about to send isn't buffered yet, we 1444 * only create it below, but let's pretend it 1445 * was buffered just in case some clients only 1446 * expect more-data=0 when eosp=1. 1447 */ 1448 hdr->frame_control |= 1449 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1450 need_null = true; 1451 num++; 1452 } 1453 break; 1454 } 1455 1456 drv_allow_buffered_frames(local, sta, tids, num, 1457 reason, more_data); 1458 1459 ieee80211_add_pending_skbs(local, &pending); 1460 1461 if (need_null) 1462 ieee80211_send_null_response( 1463 sdata, sta, find_highest_prio_tid(tids), 1464 reason, false); 1465 1466 sta_info_recalc_tim(sta); 1467 } else { 1468 /* 1469 * We need to release a frame that is buffered somewhere in the 1470 * driver ... it'll have to handle that. 1471 * Note that the driver also has to check the number of frames 1472 * on the TIDs we're releasing from - if there are more than 1473 * n_frames it has to set the more-data bit (if we didn't ask 1474 * it to set it anyway due to other buffered frames); if there 1475 * are fewer than n_frames it has to make sure to adjust that 1476 * to allow the service period to end properly. 1477 */ 1478 drv_release_buffered_frames(local, sta, driver_release_tids, 1479 n_frames, reason, more_data); 1480 1481 /* 1482 * Note that we don't recalculate the TIM bit here as it would 1483 * most likely have no effect at all unless the driver told us 1484 * that the TID(s) became empty before returning here from the 1485 * release function. 1486 * Either way, however, when the driver tells us that the TID(s) 1487 * became empty we'll do the TIM recalculation. 1488 */ 1489 } 1490 } 1491 1492 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1493 { 1494 u8 ignore_for_response = sta->sta.uapsd_queues; 1495 1496 /* 1497 * If all ACs are delivery-enabled then we should reply 1498 * from any of them, if only some are enabled we reply 1499 * only from the non-enabled ones. 1500 */ 1501 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1502 ignore_for_response = 0; 1503 1504 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1505 IEEE80211_FRAME_RELEASE_PSPOLL); 1506 } 1507 1508 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1509 { 1510 int n_frames = sta->sta.max_sp; 1511 u8 delivery_enabled = sta->sta.uapsd_queues; 1512 1513 /* 1514 * If we ever grow support for TSPEC this might happen if 1515 * the TSPEC update from hostapd comes in between a trigger 1516 * frame setting WLAN_STA_UAPSD in the RX path and this 1517 * actually getting called. 1518 */ 1519 if (!delivery_enabled) 1520 return; 1521 1522 switch (sta->sta.max_sp) { 1523 case 1: 1524 n_frames = 2; 1525 break; 1526 case 2: 1527 n_frames = 4; 1528 break; 1529 case 3: 1530 n_frames = 6; 1531 break; 1532 case 0: 1533 /* XXX: what is a good value? */ 1534 n_frames = 8; 1535 break; 1536 } 1537 1538 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1539 IEEE80211_FRAME_RELEASE_UAPSD); 1540 } 1541 1542 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1543 struct ieee80211_sta *pubsta, bool block) 1544 { 1545 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1546 1547 trace_api_sta_block_awake(sta->local, pubsta, block); 1548 1549 if (block) { 1550 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1551 return; 1552 } 1553 1554 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1555 return; 1556 1557 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1558 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1559 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1560 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1561 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1562 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1563 /* must be asleep in this case */ 1564 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1565 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1566 } else { 1567 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1568 } 1569 } 1570 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1571 1572 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1573 { 1574 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1575 struct ieee80211_local *local = sta->local; 1576 1577 trace_api_eosp(local, pubsta); 1578 1579 clear_sta_flag(sta, WLAN_STA_SP); 1580 } 1581 EXPORT_SYMBOL(ieee80211_sta_eosp); 1582 1583 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1584 u8 tid, bool buffered) 1585 { 1586 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1587 1588 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1589 return; 1590 1591 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1592 1593 if (buffered) 1594 set_bit(tid, &sta->driver_buffered_tids); 1595 else 1596 clear_bit(tid, &sta->driver_buffered_tids); 1597 1598 sta_info_recalc_tim(sta); 1599 } 1600 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1601 1602 int sta_info_move_state(struct sta_info *sta, 1603 enum ieee80211_sta_state new_state) 1604 { 1605 might_sleep(); 1606 1607 if (sta->sta_state == new_state) 1608 return 0; 1609 1610 /* check allowed transitions first */ 1611 1612 switch (new_state) { 1613 case IEEE80211_STA_NONE: 1614 if (sta->sta_state != IEEE80211_STA_AUTH) 1615 return -EINVAL; 1616 break; 1617 case IEEE80211_STA_AUTH: 1618 if (sta->sta_state != IEEE80211_STA_NONE && 1619 sta->sta_state != IEEE80211_STA_ASSOC) 1620 return -EINVAL; 1621 break; 1622 case IEEE80211_STA_ASSOC: 1623 if (sta->sta_state != IEEE80211_STA_AUTH && 1624 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1625 return -EINVAL; 1626 break; 1627 case IEEE80211_STA_AUTHORIZED: 1628 if (sta->sta_state != IEEE80211_STA_ASSOC) 1629 return -EINVAL; 1630 break; 1631 default: 1632 WARN(1, "invalid state %d", new_state); 1633 return -EINVAL; 1634 } 1635 1636 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1637 sta->sta.addr, new_state); 1638 1639 /* 1640 * notify the driver before the actual changes so it can 1641 * fail the transition 1642 */ 1643 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1644 int err = drv_sta_state(sta->local, sta->sdata, sta, 1645 sta->sta_state, new_state); 1646 if (err) 1647 return err; 1648 } 1649 1650 /* reflect the change in all state variables */ 1651 1652 switch (new_state) { 1653 case IEEE80211_STA_NONE: 1654 if (sta->sta_state == IEEE80211_STA_AUTH) 1655 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1656 break; 1657 case IEEE80211_STA_AUTH: 1658 if (sta->sta_state == IEEE80211_STA_NONE) 1659 set_bit(WLAN_STA_AUTH, &sta->_flags); 1660 else if (sta->sta_state == IEEE80211_STA_ASSOC) 1661 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1662 break; 1663 case IEEE80211_STA_ASSOC: 1664 if (sta->sta_state == IEEE80211_STA_AUTH) { 1665 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1666 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1667 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1668 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1669 !sta->sdata->u.vlan.sta)) 1670 atomic_dec(&sta->sdata->bss->num_mcast_sta); 1671 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1672 } 1673 break; 1674 case IEEE80211_STA_AUTHORIZED: 1675 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1676 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1677 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1678 !sta->sdata->u.vlan.sta)) 1679 atomic_inc(&sta->sdata->bss->num_mcast_sta); 1680 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1681 } 1682 break; 1683 default: 1684 break; 1685 } 1686 1687 sta->sta_state = new_state; 1688 1689 return 0; 1690 } 1691 1692 u8 sta_info_tx_streams(struct sta_info *sta) 1693 { 1694 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1695 u8 rx_streams; 1696 1697 if (!sta->sta.ht_cap.ht_supported) 1698 return 1; 1699 1700 if (sta->sta.vht_cap.vht_supported) { 1701 int i; 1702 u16 tx_mcs_map = 1703 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1704 1705 for (i = 7; i >= 0; i--) 1706 if ((tx_mcs_map & (0x3 << (i * 2))) != 1707 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1708 return i + 1; 1709 } 1710 1711 if (ht_cap->mcs.rx_mask[3]) 1712 rx_streams = 4; 1713 else if (ht_cap->mcs.rx_mask[2]) 1714 rx_streams = 3; 1715 else if (ht_cap->mcs.rx_mask[1]) 1716 rx_streams = 2; 1717 else 1718 rx_streams = 1; 1719 1720 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1721 return rx_streams; 1722 1723 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1724 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1725 } 1726 1727 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo) 1728 { 1729 struct ieee80211_sub_if_data *sdata = sta->sdata; 1730 struct ieee80211_local *local = sdata->local; 1731 struct rate_control_ref *ref = NULL; 1732 struct timespec uptime; 1733 u64 packets = 0; 1734 u32 thr = 0; 1735 int i, ac; 1736 1737 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 1738 ref = local->rate_ctrl; 1739 1740 sinfo->generation = sdata->local->sta_generation; 1741 1742 sinfo->filled = STATION_INFO_INACTIVE_TIME | 1743 STATION_INFO_RX_BYTES64 | 1744 STATION_INFO_TX_BYTES64 | 1745 STATION_INFO_RX_PACKETS | 1746 STATION_INFO_TX_PACKETS | 1747 STATION_INFO_TX_RETRIES | 1748 STATION_INFO_TX_FAILED | 1749 STATION_INFO_TX_BITRATE | 1750 STATION_INFO_RX_BITRATE | 1751 STATION_INFO_RX_DROP_MISC | 1752 STATION_INFO_BSS_PARAM | 1753 STATION_INFO_CONNECTED_TIME | 1754 STATION_INFO_STA_FLAGS | 1755 STATION_INFO_BEACON_LOSS_COUNT; 1756 1757 ktime_get_ts(&uptime); 1758 sinfo->connected_time = uptime.tv_sec - sta->last_connected; 1759 1760 sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx); 1761 sinfo->tx_bytes = 0; 1762 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1763 sinfo->tx_bytes += sta->tx_bytes[ac]; 1764 packets += sta->tx_packets[ac]; 1765 } 1766 sinfo->tx_packets = packets; 1767 sinfo->rx_bytes = sta->rx_bytes; 1768 sinfo->rx_packets = sta->rx_packets; 1769 sinfo->tx_retries = sta->tx_retry_count; 1770 sinfo->tx_failed = sta->tx_retry_failed; 1771 sinfo->rx_dropped_misc = sta->rx_dropped; 1772 sinfo->beacon_loss_count = sta->beacon_loss_count; 1773 1774 if ((sta->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) || 1775 (sta->local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)) { 1776 sinfo->filled |= STATION_INFO_SIGNAL | STATION_INFO_SIGNAL_AVG; 1777 if (!local->ops->get_rssi || 1778 drv_get_rssi(local, sdata, &sta->sta, &sinfo->signal)) 1779 sinfo->signal = (s8)sta->last_signal; 1780 sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal); 1781 } 1782 if (sta->chains) { 1783 sinfo->filled |= STATION_INFO_CHAIN_SIGNAL | 1784 STATION_INFO_CHAIN_SIGNAL_AVG; 1785 1786 sinfo->chains = sta->chains; 1787 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 1788 sinfo->chain_signal[i] = sta->chain_signal_last[i]; 1789 sinfo->chain_signal_avg[i] = 1790 (s8) -ewma_read(&sta->chain_signal_avg[i]); 1791 } 1792 } 1793 1794 sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate); 1795 sta_set_rate_info_rx(sta, &sinfo->rxrate); 1796 1797 if (ieee80211_vif_is_mesh(&sdata->vif)) { 1798 #ifdef CONFIG_MAC80211_MESH 1799 sinfo->filled |= STATION_INFO_LLID | 1800 STATION_INFO_PLID | 1801 STATION_INFO_PLINK_STATE | 1802 STATION_INFO_LOCAL_PM | 1803 STATION_INFO_PEER_PM | 1804 STATION_INFO_NONPEER_PM; 1805 1806 sinfo->llid = sta->llid; 1807 sinfo->plid = sta->plid; 1808 sinfo->plink_state = sta->plink_state; 1809 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 1810 sinfo->filled |= STATION_INFO_T_OFFSET; 1811 sinfo->t_offset = sta->t_offset; 1812 } 1813 sinfo->local_pm = sta->local_pm; 1814 sinfo->peer_pm = sta->peer_pm; 1815 sinfo->nonpeer_pm = sta->nonpeer_pm; 1816 #endif 1817 } 1818 1819 sinfo->bss_param.flags = 0; 1820 if (sdata->vif.bss_conf.use_cts_prot) 1821 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 1822 if (sdata->vif.bss_conf.use_short_preamble) 1823 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 1824 if (sdata->vif.bss_conf.use_short_slot) 1825 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 1826 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 1827 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 1828 1829 sinfo->sta_flags.set = 0; 1830 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 1831 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 1832 BIT(NL80211_STA_FLAG_WME) | 1833 BIT(NL80211_STA_FLAG_MFP) | 1834 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 1835 BIT(NL80211_STA_FLAG_ASSOCIATED) | 1836 BIT(NL80211_STA_FLAG_TDLS_PEER); 1837 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 1838 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 1839 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 1840 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 1841 if (sta->sta.wme) 1842 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 1843 if (test_sta_flag(sta, WLAN_STA_MFP)) 1844 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 1845 if (test_sta_flag(sta, WLAN_STA_AUTH)) 1846 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 1847 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 1848 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 1849 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 1850 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 1851 1852 /* check if the driver has a SW RC implementation */ 1853 if (ref && ref->ops->get_expected_throughput) 1854 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 1855 else 1856 thr = drv_get_expected_throughput(local, &sta->sta); 1857 1858 if (thr != 0) { 1859 sinfo->filled |= STATION_INFO_EXPECTED_THROUGHPUT; 1860 sinfo->expected_throughput = thr; 1861 } 1862 } 1863