1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 7 * Copyright (C) 2018-2020 Intel Corporation 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/codel.h> 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 static const struct rhashtable_params sta_rht_params = { 68 .nelem_hint = 3, /* start small */ 69 .automatic_shrinking = true, 70 .head_offset = offsetof(struct sta_info, hash_node), 71 .key_offset = offsetof(struct sta_info, addr), 72 .key_len = ETH_ALEN, 73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 74 }; 75 76 /* Caller must hold local->sta_mtx */ 77 static int sta_info_hash_del(struct ieee80211_local *local, 78 struct sta_info *sta) 79 { 80 return rhltable_remove(&local->sta_hash, &sta->hash_node, 81 sta_rht_params); 82 } 83 84 static void __cleanup_single_sta(struct sta_info *sta) 85 { 86 int ac, i; 87 struct tid_ampdu_tx *tid_tx; 88 struct ieee80211_sub_if_data *sdata = sta->sdata; 89 struct ieee80211_local *local = sdata->local; 90 struct ps_data *ps; 91 92 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 97 ps = &sdata->bss->ps; 98 else if (ieee80211_vif_is_mesh(&sdata->vif)) 99 ps = &sdata->u.mesh.ps; 100 else 101 return; 102 103 clear_sta_flag(sta, WLAN_STA_PS_STA); 104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 106 107 atomic_dec(&ps->num_sta_ps); 108 } 109 110 if (sta->sta.txq[0]) { 111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 112 struct txq_info *txqi; 113 114 if (!sta->sta.txq[i]) 115 continue; 116 117 txqi = to_txq_info(sta->sta.txq[i]); 118 119 ieee80211_txq_purge(local, txqi); 120 } 121 } 122 123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 127 } 128 129 if (ieee80211_vif_is_mesh(&sdata->vif)) 130 mesh_sta_cleanup(sta); 131 132 cancel_work_sync(&sta->drv_deliver_wk); 133 134 /* 135 * Destroy aggregation state here. It would be nice to wait for the 136 * driver to finish aggregation stop and then clean up, but for now 137 * drivers have to handle aggregation stop being requested, followed 138 * directly by station destruction. 139 */ 140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 141 kfree(sta->ampdu_mlme.tid_start_tx[i]); 142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 143 if (!tid_tx) 144 continue; 145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 146 kfree(tid_tx); 147 } 148 } 149 150 static void cleanup_single_sta(struct sta_info *sta) 151 { 152 struct ieee80211_sub_if_data *sdata = sta->sdata; 153 struct ieee80211_local *local = sdata->local; 154 155 __cleanup_single_sta(sta); 156 sta_info_free(local, sta); 157 } 158 159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 160 const u8 *addr) 161 { 162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 163 } 164 165 /* protected by RCU */ 166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 167 const u8 *addr) 168 { 169 struct ieee80211_local *local = sdata->local; 170 struct rhlist_head *tmp; 171 struct sta_info *sta; 172 173 rcu_read_lock(); 174 for_each_sta_info(local, addr, sta, tmp) { 175 if (sta->sdata == sdata) { 176 rcu_read_unlock(); 177 /* this is safe as the caller must already hold 178 * another rcu read section or the mutex 179 */ 180 return sta; 181 } 182 } 183 rcu_read_unlock(); 184 return NULL; 185 } 186 187 /* 188 * Get sta info either from the specified interface 189 * or from one of its vlans 190 */ 191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 192 const u8 *addr) 193 { 194 struct ieee80211_local *local = sdata->local; 195 struct rhlist_head *tmp; 196 struct sta_info *sta; 197 198 rcu_read_lock(); 199 for_each_sta_info(local, addr, sta, tmp) { 200 if (sta->sdata == sdata || 201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 202 rcu_read_unlock(); 203 /* this is safe as the caller must already hold 204 * another rcu read section or the mutex 205 */ 206 return sta; 207 } 208 } 209 rcu_read_unlock(); 210 return NULL; 211 } 212 213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, 214 const u8 *sta_addr, const u8 *vif_addr) 215 { 216 struct rhlist_head *tmp; 217 struct sta_info *sta; 218 219 for_each_sta_info(local, sta_addr, sta, tmp) { 220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr)) 221 return sta; 222 } 223 224 return NULL; 225 } 226 227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 228 int idx) 229 { 230 struct ieee80211_local *local = sdata->local; 231 struct sta_info *sta; 232 int i = 0; 233 234 list_for_each_entry_rcu(sta, &local->sta_list, list) { 235 if (sdata != sta->sdata) 236 continue; 237 if (i < idx) { 238 ++i; 239 continue; 240 } 241 return sta; 242 } 243 244 return NULL; 245 } 246 247 /** 248 * sta_info_free - free STA 249 * 250 * @local: pointer to the global information 251 * @sta: STA info to free 252 * 253 * This function must undo everything done by sta_info_alloc() 254 * that may happen before sta_info_insert(). It may only be 255 * called when sta_info_insert() has not been attempted (and 256 * if that fails, the station is freed anyway.) 257 */ 258 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 259 { 260 if (sta->rate_ctrl) 261 rate_control_free_sta(sta); 262 263 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 264 265 if (sta->sta.txq[0]) 266 kfree(to_txq_info(sta->sta.txq[0])); 267 kfree(rcu_dereference_raw(sta->sta.rates)); 268 #ifdef CONFIG_MAC80211_MESH 269 kfree(sta->mesh); 270 #endif 271 free_percpu(sta->pcpu_rx_stats); 272 kfree(sta); 273 } 274 275 /* Caller must hold local->sta_mtx */ 276 static int sta_info_hash_add(struct ieee80211_local *local, 277 struct sta_info *sta) 278 { 279 return rhltable_insert(&local->sta_hash, &sta->hash_node, 280 sta_rht_params); 281 } 282 283 static void sta_deliver_ps_frames(struct work_struct *wk) 284 { 285 struct sta_info *sta; 286 287 sta = container_of(wk, struct sta_info, drv_deliver_wk); 288 289 if (sta->dead) 290 return; 291 292 local_bh_disable(); 293 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 294 ieee80211_sta_ps_deliver_wakeup(sta); 295 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 296 ieee80211_sta_ps_deliver_poll_response(sta); 297 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 298 ieee80211_sta_ps_deliver_uapsd(sta); 299 local_bh_enable(); 300 } 301 302 static int sta_prepare_rate_control(struct ieee80211_local *local, 303 struct sta_info *sta, gfp_t gfp) 304 { 305 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 306 return 0; 307 308 sta->rate_ctrl = local->rate_ctrl; 309 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 310 sta, gfp); 311 if (!sta->rate_ctrl_priv) 312 return -ENOMEM; 313 314 return 0; 315 } 316 317 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 318 const u8 *addr, gfp_t gfp) 319 { 320 struct ieee80211_local *local = sdata->local; 321 struct ieee80211_hw *hw = &local->hw; 322 struct sta_info *sta; 323 int i; 324 325 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 326 if (!sta) 327 return NULL; 328 329 if (ieee80211_hw_check(hw, USES_RSS)) { 330 sta->pcpu_rx_stats = 331 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); 332 if (!sta->pcpu_rx_stats) 333 goto free; 334 } 335 336 spin_lock_init(&sta->lock); 337 spin_lock_init(&sta->ps_lock); 338 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 339 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 340 mutex_init(&sta->ampdu_mlme.mtx); 341 #ifdef CONFIG_MAC80211_MESH 342 if (ieee80211_vif_is_mesh(&sdata->vif)) { 343 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 344 if (!sta->mesh) 345 goto free; 346 sta->mesh->plink_sta = sta; 347 spin_lock_init(&sta->mesh->plink_lock); 348 if (ieee80211_vif_is_mesh(&sdata->vif) && 349 !sdata->u.mesh.user_mpm) 350 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 351 0); 352 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 353 } 354 #endif 355 356 memcpy(sta->addr, addr, ETH_ALEN); 357 memcpy(sta->sta.addr, addr, ETH_ALEN); 358 sta->sta.max_rx_aggregation_subframes = 359 local->hw.max_rx_aggregation_subframes; 360 361 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only. 362 * The Tx path starts to use a key as soon as the key slot ptk_idx 363 * references to is not NULL. To not use the initial Rx-only key 364 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid 365 * which always will refer to a NULL key. 366 */ 367 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX); 368 sta->ptk_idx = INVALID_PTK_KEYIDX; 369 370 sta->local = local; 371 sta->sdata = sdata; 372 sta->rx_stats.last_rx = jiffies; 373 374 u64_stats_init(&sta->rx_stats.syncp); 375 376 sta->sta_state = IEEE80211_STA_NONE; 377 378 /* Mark TID as unreserved */ 379 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 380 381 sta->last_connected = ktime_get_seconds(); 382 ewma_signal_init(&sta->rx_stats_avg.signal); 383 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal); 384 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 385 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 386 387 if (local->ops->wake_tx_queue) { 388 void *txq_data; 389 int size = sizeof(struct txq_info) + 390 ALIGN(hw->txq_data_size, sizeof(void *)); 391 392 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 393 if (!txq_data) 394 goto free; 395 396 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 397 struct txq_info *txq = txq_data + i * size; 398 399 /* might not do anything for the bufferable MMPDU TXQ */ 400 ieee80211_txq_init(sdata, sta, txq, i); 401 } 402 } 403 404 if (sta_prepare_rate_control(local, sta, gfp)) 405 goto free_txq; 406 407 sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT; 408 409 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 410 skb_queue_head_init(&sta->ps_tx_buf[i]); 411 skb_queue_head_init(&sta->tx_filtered[i]); 412 sta->airtime[i].deficit = sta->airtime_weight; 413 atomic_set(&sta->airtime[i].aql_tx_pending, 0); 414 sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i]; 415 sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i]; 416 } 417 418 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 419 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 420 421 for (i = 0; i < NUM_NL80211_BANDS; i++) { 422 u32 mandatory = 0; 423 int r; 424 425 if (!hw->wiphy->bands[i]) 426 continue; 427 428 switch (i) { 429 case NL80211_BAND_2GHZ: 430 /* 431 * We use both here, even if we cannot really know for 432 * sure the station will support both, but the only use 433 * for this is when we don't know anything yet and send 434 * management frames, and then we'll pick the lowest 435 * possible rate anyway. 436 * If we don't include _G here, we cannot find a rate 437 * in P2P, and thus trigger the WARN_ONCE() in rate.c 438 */ 439 mandatory = IEEE80211_RATE_MANDATORY_B | 440 IEEE80211_RATE_MANDATORY_G; 441 break; 442 case NL80211_BAND_5GHZ: 443 mandatory = IEEE80211_RATE_MANDATORY_A; 444 break; 445 case NL80211_BAND_60GHZ: 446 WARN_ON(1); 447 mandatory = 0; 448 break; 449 } 450 451 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) { 452 struct ieee80211_rate *rate; 453 454 rate = &hw->wiphy->bands[i]->bitrates[r]; 455 456 if (!(rate->flags & mandatory)) 457 continue; 458 sta->sta.supp_rates[i] |= BIT(r); 459 } 460 } 461 462 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 463 if (sdata->vif.type == NL80211_IFTYPE_AP || 464 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 465 struct ieee80211_supported_band *sband; 466 u8 smps; 467 468 sband = ieee80211_get_sband(sdata); 469 if (!sband) 470 goto free_txq; 471 472 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 473 IEEE80211_HT_CAP_SM_PS_SHIFT; 474 /* 475 * Assume that hostapd advertises our caps in the beacon and 476 * this is the known_smps_mode for a station that just assciated 477 */ 478 switch (smps) { 479 case WLAN_HT_SMPS_CONTROL_DISABLED: 480 sta->known_smps_mode = IEEE80211_SMPS_OFF; 481 break; 482 case WLAN_HT_SMPS_CONTROL_STATIC: 483 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 484 break; 485 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 486 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 487 break; 488 default: 489 WARN_ON(1); 490 } 491 } 492 493 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 494 495 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; 496 sta->cparams.target = MS2TIME(20); 497 sta->cparams.interval = MS2TIME(100); 498 sta->cparams.ecn = true; 499 500 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 501 502 return sta; 503 504 free_txq: 505 if (sta->sta.txq[0]) 506 kfree(to_txq_info(sta->sta.txq[0])); 507 free: 508 free_percpu(sta->pcpu_rx_stats); 509 #ifdef CONFIG_MAC80211_MESH 510 kfree(sta->mesh); 511 #endif 512 kfree(sta); 513 return NULL; 514 } 515 516 static int sta_info_insert_check(struct sta_info *sta) 517 { 518 struct ieee80211_sub_if_data *sdata = sta->sdata; 519 520 /* 521 * Can't be a WARN_ON because it can be triggered through a race: 522 * something inserts a STA (on one CPU) without holding the RTNL 523 * and another CPU turns off the net device. 524 */ 525 if (unlikely(!ieee80211_sdata_running(sdata))) 526 return -ENETDOWN; 527 528 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 529 is_multicast_ether_addr(sta->sta.addr))) 530 return -EINVAL; 531 532 /* The RCU read lock is required by rhashtable due to 533 * asynchronous resize/rehash. We also require the mutex 534 * for correctness. 535 */ 536 rcu_read_lock(); 537 lockdep_assert_held(&sdata->local->sta_mtx); 538 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 539 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 540 rcu_read_unlock(); 541 return -ENOTUNIQ; 542 } 543 rcu_read_unlock(); 544 545 return 0; 546 } 547 548 static int sta_info_insert_drv_state(struct ieee80211_local *local, 549 struct ieee80211_sub_if_data *sdata, 550 struct sta_info *sta) 551 { 552 enum ieee80211_sta_state state; 553 int err = 0; 554 555 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 556 err = drv_sta_state(local, sdata, sta, state, state + 1); 557 if (err) 558 break; 559 } 560 561 if (!err) { 562 /* 563 * Drivers using legacy sta_add/sta_remove callbacks only 564 * get uploaded set to true after sta_add is called. 565 */ 566 if (!local->ops->sta_add) 567 sta->uploaded = true; 568 return 0; 569 } 570 571 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 572 sdata_info(sdata, 573 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 574 sta->sta.addr, state + 1, err); 575 err = 0; 576 } 577 578 /* unwind on error */ 579 for (; state > IEEE80211_STA_NOTEXIST; state--) 580 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 581 582 return err; 583 } 584 585 static void 586 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 587 { 588 struct ieee80211_local *local = sdata->local; 589 bool allow_p2p_go_ps = sdata->vif.p2p; 590 struct sta_info *sta; 591 592 rcu_read_lock(); 593 list_for_each_entry_rcu(sta, &local->sta_list, list) { 594 if (sdata != sta->sdata || 595 !test_sta_flag(sta, WLAN_STA_ASSOC)) 596 continue; 597 if (!sta->sta.support_p2p_ps) { 598 allow_p2p_go_ps = false; 599 break; 600 } 601 } 602 rcu_read_unlock(); 603 604 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 605 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 606 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 607 } 608 } 609 610 /* 611 * should be called with sta_mtx locked 612 * this function replaces the mutex lock 613 * with a RCU lock 614 */ 615 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 616 { 617 struct ieee80211_local *local = sta->local; 618 struct ieee80211_sub_if_data *sdata = sta->sdata; 619 struct station_info *sinfo = NULL; 620 int err = 0; 621 622 lockdep_assert_held(&local->sta_mtx); 623 624 /* check if STA exists already */ 625 if (sta_info_get_bss(sdata, sta->sta.addr)) { 626 err = -EEXIST; 627 goto out_err; 628 } 629 630 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 631 if (!sinfo) { 632 err = -ENOMEM; 633 goto out_err; 634 } 635 636 local->num_sta++; 637 local->sta_generation++; 638 smp_mb(); 639 640 /* simplify things and don't accept BA sessions yet */ 641 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 642 643 /* make the station visible */ 644 err = sta_info_hash_add(local, sta); 645 if (err) 646 goto out_drop_sta; 647 648 list_add_tail_rcu(&sta->list, &local->sta_list); 649 650 /* notify driver */ 651 err = sta_info_insert_drv_state(local, sdata, sta); 652 if (err) 653 goto out_remove; 654 655 set_sta_flag(sta, WLAN_STA_INSERTED); 656 657 if (sta->sta_state >= IEEE80211_STA_ASSOC) { 658 ieee80211_recalc_min_chandef(sta->sdata); 659 if (!sta->sta.support_p2p_ps) 660 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 661 } 662 663 /* accept BA sessions now */ 664 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 665 666 ieee80211_sta_debugfs_add(sta); 667 rate_control_add_sta_debugfs(sta); 668 669 sinfo->generation = local->sta_generation; 670 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 671 kfree(sinfo); 672 673 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 674 675 /* move reference to rcu-protected */ 676 rcu_read_lock(); 677 mutex_unlock(&local->sta_mtx); 678 679 if (ieee80211_vif_is_mesh(&sdata->vif)) 680 mesh_accept_plinks_update(sdata); 681 682 return 0; 683 out_remove: 684 sta_info_hash_del(local, sta); 685 list_del_rcu(&sta->list); 686 out_drop_sta: 687 local->num_sta--; 688 synchronize_net(); 689 __cleanup_single_sta(sta); 690 out_err: 691 mutex_unlock(&local->sta_mtx); 692 kfree(sinfo); 693 rcu_read_lock(); 694 return err; 695 } 696 697 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 698 { 699 struct ieee80211_local *local = sta->local; 700 int err; 701 702 might_sleep(); 703 704 mutex_lock(&local->sta_mtx); 705 706 err = sta_info_insert_check(sta); 707 if (err) { 708 mutex_unlock(&local->sta_mtx); 709 rcu_read_lock(); 710 goto out_free; 711 } 712 713 err = sta_info_insert_finish(sta); 714 if (err) 715 goto out_free; 716 717 return 0; 718 out_free: 719 sta_info_free(local, sta); 720 return err; 721 } 722 723 int sta_info_insert(struct sta_info *sta) 724 { 725 int err = sta_info_insert_rcu(sta); 726 727 rcu_read_unlock(); 728 729 return err; 730 } 731 732 static inline void __bss_tim_set(u8 *tim, u16 id) 733 { 734 /* 735 * This format has been mandated by the IEEE specifications, 736 * so this line may not be changed to use the __set_bit() format. 737 */ 738 tim[id / 8] |= (1 << (id % 8)); 739 } 740 741 static inline void __bss_tim_clear(u8 *tim, u16 id) 742 { 743 /* 744 * This format has been mandated by the IEEE specifications, 745 * so this line may not be changed to use the __clear_bit() format. 746 */ 747 tim[id / 8] &= ~(1 << (id % 8)); 748 } 749 750 static inline bool __bss_tim_get(u8 *tim, u16 id) 751 { 752 /* 753 * This format has been mandated by the IEEE specifications, 754 * so this line may not be changed to use the test_bit() format. 755 */ 756 return tim[id / 8] & (1 << (id % 8)); 757 } 758 759 static unsigned long ieee80211_tids_for_ac(int ac) 760 { 761 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 762 switch (ac) { 763 case IEEE80211_AC_VO: 764 return BIT(6) | BIT(7); 765 case IEEE80211_AC_VI: 766 return BIT(4) | BIT(5); 767 case IEEE80211_AC_BE: 768 return BIT(0) | BIT(3); 769 case IEEE80211_AC_BK: 770 return BIT(1) | BIT(2); 771 default: 772 WARN_ON(1); 773 return 0; 774 } 775 } 776 777 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 778 { 779 struct ieee80211_local *local = sta->local; 780 struct ps_data *ps; 781 bool indicate_tim = false; 782 u8 ignore_for_tim = sta->sta.uapsd_queues; 783 int ac; 784 u16 id = sta->sta.aid; 785 786 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 787 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 788 if (WARN_ON_ONCE(!sta->sdata->bss)) 789 return; 790 791 ps = &sta->sdata->bss->ps; 792 #ifdef CONFIG_MAC80211_MESH 793 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 794 ps = &sta->sdata->u.mesh.ps; 795 #endif 796 } else { 797 return; 798 } 799 800 /* No need to do anything if the driver does all */ 801 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 802 return; 803 804 if (sta->dead) 805 goto done; 806 807 /* 808 * If all ACs are delivery-enabled then we should build 809 * the TIM bit for all ACs anyway; if only some are then 810 * we ignore those and build the TIM bit using only the 811 * non-enabled ones. 812 */ 813 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 814 ignore_for_tim = 0; 815 816 if (ignore_pending) 817 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 818 819 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 820 unsigned long tids; 821 822 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 823 continue; 824 825 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 826 !skb_queue_empty(&sta->ps_tx_buf[ac]); 827 if (indicate_tim) 828 break; 829 830 tids = ieee80211_tids_for_ac(ac); 831 832 indicate_tim |= 833 sta->driver_buffered_tids & tids; 834 indicate_tim |= 835 sta->txq_buffered_tids & tids; 836 } 837 838 done: 839 spin_lock_bh(&local->tim_lock); 840 841 if (indicate_tim == __bss_tim_get(ps->tim, id)) 842 goto out_unlock; 843 844 if (indicate_tim) 845 __bss_tim_set(ps->tim, id); 846 else 847 __bss_tim_clear(ps->tim, id); 848 849 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 850 local->tim_in_locked_section = true; 851 drv_set_tim(local, &sta->sta, indicate_tim); 852 local->tim_in_locked_section = false; 853 } 854 855 out_unlock: 856 spin_unlock_bh(&local->tim_lock); 857 } 858 859 void sta_info_recalc_tim(struct sta_info *sta) 860 { 861 __sta_info_recalc_tim(sta, false); 862 } 863 864 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 865 { 866 struct ieee80211_tx_info *info; 867 int timeout; 868 869 if (!skb) 870 return false; 871 872 info = IEEE80211_SKB_CB(skb); 873 874 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 875 timeout = (sta->listen_interval * 876 sta->sdata->vif.bss_conf.beacon_int * 877 32 / 15625) * HZ; 878 if (timeout < STA_TX_BUFFER_EXPIRE) 879 timeout = STA_TX_BUFFER_EXPIRE; 880 return time_after(jiffies, info->control.jiffies + timeout); 881 } 882 883 884 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 885 struct sta_info *sta, int ac) 886 { 887 unsigned long flags; 888 struct sk_buff *skb; 889 890 /* 891 * First check for frames that should expire on the filtered 892 * queue. Frames here were rejected by the driver and are on 893 * a separate queue to avoid reordering with normal PS-buffered 894 * frames. They also aren't accounted for right now in the 895 * total_ps_buffered counter. 896 */ 897 for (;;) { 898 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 899 skb = skb_peek(&sta->tx_filtered[ac]); 900 if (sta_info_buffer_expired(sta, skb)) 901 skb = __skb_dequeue(&sta->tx_filtered[ac]); 902 else 903 skb = NULL; 904 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 905 906 /* 907 * Frames are queued in order, so if this one 908 * hasn't expired yet we can stop testing. If 909 * we actually reached the end of the queue we 910 * also need to stop, of course. 911 */ 912 if (!skb) 913 break; 914 ieee80211_free_txskb(&local->hw, skb); 915 } 916 917 /* 918 * Now also check the normal PS-buffered queue, this will 919 * only find something if the filtered queue was emptied 920 * since the filtered frames are all before the normal PS 921 * buffered frames. 922 */ 923 for (;;) { 924 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 925 skb = skb_peek(&sta->ps_tx_buf[ac]); 926 if (sta_info_buffer_expired(sta, skb)) 927 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 928 else 929 skb = NULL; 930 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 931 932 /* 933 * frames are queued in order, so if this one 934 * hasn't expired yet (or we reached the end of 935 * the queue) we can stop testing 936 */ 937 if (!skb) 938 break; 939 940 local->total_ps_buffered--; 941 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 942 sta->sta.addr); 943 ieee80211_free_txskb(&local->hw, skb); 944 } 945 946 /* 947 * Finally, recalculate the TIM bit for this station -- it might 948 * now be clear because the station was too slow to retrieve its 949 * frames. 950 */ 951 sta_info_recalc_tim(sta); 952 953 /* 954 * Return whether there are any frames still buffered, this is 955 * used to check whether the cleanup timer still needs to run, 956 * if there are no frames we don't need to rearm the timer. 957 */ 958 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 959 skb_queue_empty(&sta->tx_filtered[ac])); 960 } 961 962 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 963 struct sta_info *sta) 964 { 965 bool have_buffered = false; 966 int ac; 967 968 /* This is only necessary for stations on BSS/MBSS interfaces */ 969 if (!sta->sdata->bss && 970 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 971 return false; 972 973 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 974 have_buffered |= 975 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 976 977 return have_buffered; 978 } 979 980 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 981 { 982 struct ieee80211_local *local; 983 struct ieee80211_sub_if_data *sdata; 984 int ret; 985 986 might_sleep(); 987 988 if (!sta) 989 return -ENOENT; 990 991 local = sta->local; 992 sdata = sta->sdata; 993 994 lockdep_assert_held(&local->sta_mtx); 995 996 /* 997 * Before removing the station from the driver and 998 * rate control, it might still start new aggregation 999 * sessions -- block that to make sure the tear-down 1000 * will be sufficient. 1001 */ 1002 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 1003 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 1004 1005 /* 1006 * Before removing the station from the driver there might be pending 1007 * rx frames on RSS queues sent prior to the disassociation - wait for 1008 * all such frames to be processed. 1009 */ 1010 drv_sync_rx_queues(local, sta); 1011 1012 ret = sta_info_hash_del(local, sta); 1013 if (WARN_ON(ret)) 1014 return ret; 1015 1016 /* 1017 * for TDLS peers, make sure to return to the base channel before 1018 * removal. 1019 */ 1020 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 1021 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 1022 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 1023 } 1024 1025 list_del_rcu(&sta->list); 1026 sta->removed = true; 1027 1028 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 1029 1030 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1031 rcu_access_pointer(sdata->u.vlan.sta) == sta) 1032 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 1033 1034 return 0; 1035 } 1036 1037 static void __sta_info_destroy_part2(struct sta_info *sta) 1038 { 1039 struct ieee80211_local *local = sta->local; 1040 struct ieee80211_sub_if_data *sdata = sta->sdata; 1041 struct station_info *sinfo; 1042 int ret; 1043 1044 /* 1045 * NOTE: This assumes at least synchronize_net() was done 1046 * after _part1 and before _part2! 1047 */ 1048 1049 might_sleep(); 1050 lockdep_assert_held(&local->sta_mtx); 1051 1052 while (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1053 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC); 1054 WARN_ON_ONCE(ret); 1055 } 1056 1057 /* now keys can no longer be reached */ 1058 ieee80211_free_sta_keys(local, sta); 1059 1060 /* disable TIM bit - last chance to tell driver */ 1061 __sta_info_recalc_tim(sta, true); 1062 1063 sta->dead = true; 1064 1065 local->num_sta--; 1066 local->sta_generation++; 1067 1068 while (sta->sta_state > IEEE80211_STA_NONE) { 1069 ret = sta_info_move_state(sta, sta->sta_state - 1); 1070 if (ret) { 1071 WARN_ON_ONCE(1); 1072 break; 1073 } 1074 } 1075 1076 if (sta->uploaded) { 1077 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 1078 IEEE80211_STA_NOTEXIST); 1079 WARN_ON_ONCE(ret != 0); 1080 } 1081 1082 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 1083 1084 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 1085 if (sinfo) 1086 sta_set_sinfo(sta, sinfo, true); 1087 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 1088 kfree(sinfo); 1089 1090 ieee80211_sta_debugfs_remove(sta); 1091 1092 cleanup_single_sta(sta); 1093 } 1094 1095 int __must_check __sta_info_destroy(struct sta_info *sta) 1096 { 1097 int err = __sta_info_destroy_part1(sta); 1098 1099 if (err) 1100 return err; 1101 1102 synchronize_net(); 1103 1104 __sta_info_destroy_part2(sta); 1105 1106 return 0; 1107 } 1108 1109 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1110 { 1111 struct sta_info *sta; 1112 int ret; 1113 1114 mutex_lock(&sdata->local->sta_mtx); 1115 sta = sta_info_get(sdata, addr); 1116 ret = __sta_info_destroy(sta); 1117 mutex_unlock(&sdata->local->sta_mtx); 1118 1119 return ret; 1120 } 1121 1122 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1123 const u8 *addr) 1124 { 1125 struct sta_info *sta; 1126 int ret; 1127 1128 mutex_lock(&sdata->local->sta_mtx); 1129 sta = sta_info_get_bss(sdata, addr); 1130 ret = __sta_info_destroy(sta); 1131 mutex_unlock(&sdata->local->sta_mtx); 1132 1133 return ret; 1134 } 1135 1136 static void sta_info_cleanup(struct timer_list *t) 1137 { 1138 struct ieee80211_local *local = from_timer(local, t, sta_cleanup); 1139 struct sta_info *sta; 1140 bool timer_needed = false; 1141 1142 rcu_read_lock(); 1143 list_for_each_entry_rcu(sta, &local->sta_list, list) 1144 if (sta_info_cleanup_expire_buffered(local, sta)) 1145 timer_needed = true; 1146 rcu_read_unlock(); 1147 1148 if (local->quiescing) 1149 return; 1150 1151 if (!timer_needed) 1152 return; 1153 1154 mod_timer(&local->sta_cleanup, 1155 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1156 } 1157 1158 int sta_info_init(struct ieee80211_local *local) 1159 { 1160 int err; 1161 1162 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1163 if (err) 1164 return err; 1165 1166 spin_lock_init(&local->tim_lock); 1167 mutex_init(&local->sta_mtx); 1168 INIT_LIST_HEAD(&local->sta_list); 1169 1170 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); 1171 return 0; 1172 } 1173 1174 void sta_info_stop(struct ieee80211_local *local) 1175 { 1176 del_timer_sync(&local->sta_cleanup); 1177 rhltable_destroy(&local->sta_hash); 1178 } 1179 1180 1181 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1182 { 1183 struct ieee80211_local *local = sdata->local; 1184 struct sta_info *sta, *tmp; 1185 LIST_HEAD(free_list); 1186 int ret = 0; 1187 1188 might_sleep(); 1189 1190 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1191 WARN_ON(vlans && !sdata->bss); 1192 1193 mutex_lock(&local->sta_mtx); 1194 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1195 if (sdata == sta->sdata || 1196 (vlans && sdata->bss == sta->sdata->bss)) { 1197 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1198 list_add(&sta->free_list, &free_list); 1199 ret++; 1200 } 1201 } 1202 1203 if (!list_empty(&free_list)) { 1204 synchronize_net(); 1205 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1206 __sta_info_destroy_part2(sta); 1207 } 1208 mutex_unlock(&local->sta_mtx); 1209 1210 return ret; 1211 } 1212 1213 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1214 unsigned long exp_time) 1215 { 1216 struct ieee80211_local *local = sdata->local; 1217 struct sta_info *sta, *tmp; 1218 1219 mutex_lock(&local->sta_mtx); 1220 1221 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1222 unsigned long last_active = ieee80211_sta_last_active(sta); 1223 1224 if (sdata != sta->sdata) 1225 continue; 1226 1227 if (time_is_before_jiffies(last_active + exp_time)) { 1228 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1229 sta->sta.addr); 1230 1231 if (ieee80211_vif_is_mesh(&sdata->vif) && 1232 test_sta_flag(sta, WLAN_STA_PS_STA)) 1233 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1234 1235 WARN_ON(__sta_info_destroy(sta)); 1236 } 1237 } 1238 1239 mutex_unlock(&local->sta_mtx); 1240 } 1241 1242 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1243 const u8 *addr, 1244 const u8 *localaddr) 1245 { 1246 struct ieee80211_local *local = hw_to_local(hw); 1247 struct rhlist_head *tmp; 1248 struct sta_info *sta; 1249 1250 /* 1251 * Just return a random station if localaddr is NULL 1252 * ... first in list. 1253 */ 1254 for_each_sta_info(local, addr, sta, tmp) { 1255 if (localaddr && 1256 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1257 continue; 1258 if (!sta->uploaded) 1259 return NULL; 1260 return &sta->sta; 1261 } 1262 1263 return NULL; 1264 } 1265 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1266 1267 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1268 const u8 *addr) 1269 { 1270 struct sta_info *sta; 1271 1272 if (!vif) 1273 return NULL; 1274 1275 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1276 if (!sta) 1277 return NULL; 1278 1279 if (!sta->uploaded) 1280 return NULL; 1281 1282 return &sta->sta; 1283 } 1284 EXPORT_SYMBOL(ieee80211_find_sta); 1285 1286 /* powersave support code */ 1287 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1288 { 1289 struct ieee80211_sub_if_data *sdata = sta->sdata; 1290 struct ieee80211_local *local = sdata->local; 1291 struct sk_buff_head pending; 1292 int filtered = 0, buffered = 0, ac, i; 1293 unsigned long flags; 1294 struct ps_data *ps; 1295 1296 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1297 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1298 u.ap); 1299 1300 if (sdata->vif.type == NL80211_IFTYPE_AP) 1301 ps = &sdata->bss->ps; 1302 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1303 ps = &sdata->u.mesh.ps; 1304 else 1305 return; 1306 1307 clear_sta_flag(sta, WLAN_STA_SP); 1308 1309 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1310 sta->driver_buffered_tids = 0; 1311 sta->txq_buffered_tids = 0; 1312 1313 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1314 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1315 1316 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1317 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) 1318 continue; 1319 1320 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); 1321 } 1322 1323 skb_queue_head_init(&pending); 1324 1325 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1326 spin_lock(&sta->ps_lock); 1327 /* Send all buffered frames to the station */ 1328 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1329 int count = skb_queue_len(&pending), tmp; 1330 1331 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1332 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1333 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1334 tmp = skb_queue_len(&pending); 1335 filtered += tmp - count; 1336 count = tmp; 1337 1338 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1339 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1340 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1341 tmp = skb_queue_len(&pending); 1342 buffered += tmp - count; 1343 } 1344 1345 ieee80211_add_pending_skbs(local, &pending); 1346 1347 /* now we're no longer in the deliver code */ 1348 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1349 1350 /* The station might have polled and then woken up before we responded, 1351 * so clear these flags now to avoid them sticking around. 1352 */ 1353 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1354 clear_sta_flag(sta, WLAN_STA_UAPSD); 1355 spin_unlock(&sta->ps_lock); 1356 1357 atomic_dec(&ps->num_sta_ps); 1358 1359 /* This station just woke up and isn't aware of our SMPS state */ 1360 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1361 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1362 sdata->smps_mode) && 1363 sta->known_smps_mode != sdata->bss->req_smps && 1364 sta_info_tx_streams(sta) != 1) { 1365 ht_dbg(sdata, 1366 "%pM just woke up and MIMO capable - update SMPS\n", 1367 sta->sta.addr); 1368 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1369 sta->sta.addr, 1370 sdata->vif.bss_conf.bssid); 1371 } 1372 1373 local->total_ps_buffered -= buffered; 1374 1375 sta_info_recalc_tim(sta); 1376 1377 ps_dbg(sdata, 1378 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1379 sta->sta.addr, sta->sta.aid, filtered, buffered); 1380 1381 ieee80211_check_fast_xmit(sta); 1382 } 1383 1384 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1385 enum ieee80211_frame_release_type reason, 1386 bool call_driver, bool more_data) 1387 { 1388 struct ieee80211_sub_if_data *sdata = sta->sdata; 1389 struct ieee80211_local *local = sdata->local; 1390 struct ieee80211_qos_hdr *nullfunc; 1391 struct sk_buff *skb; 1392 int size = sizeof(*nullfunc); 1393 __le16 fc; 1394 bool qos = sta->sta.wme; 1395 struct ieee80211_tx_info *info; 1396 struct ieee80211_chanctx_conf *chanctx_conf; 1397 1398 /* Don't send NDPs when STA is connected HE */ 1399 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1400 !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE)) 1401 return; 1402 1403 if (qos) { 1404 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1405 IEEE80211_STYPE_QOS_NULLFUNC | 1406 IEEE80211_FCTL_FROMDS); 1407 } else { 1408 size -= 2; 1409 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1410 IEEE80211_STYPE_NULLFUNC | 1411 IEEE80211_FCTL_FROMDS); 1412 } 1413 1414 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1415 if (!skb) 1416 return; 1417 1418 skb_reserve(skb, local->hw.extra_tx_headroom); 1419 1420 nullfunc = skb_put(skb, size); 1421 nullfunc->frame_control = fc; 1422 nullfunc->duration_id = 0; 1423 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1424 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1425 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1426 nullfunc->seq_ctrl = 0; 1427 1428 skb->priority = tid; 1429 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1430 if (qos) { 1431 nullfunc->qos_ctrl = cpu_to_le16(tid); 1432 1433 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1434 nullfunc->qos_ctrl |= 1435 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1436 if (more_data) 1437 nullfunc->frame_control |= 1438 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1439 } 1440 } 1441 1442 info = IEEE80211_SKB_CB(skb); 1443 1444 /* 1445 * Tell TX path to send this frame even though the 1446 * STA may still remain is PS mode after this frame 1447 * exchange. Also set EOSP to indicate this packet 1448 * ends the poll/service period. 1449 */ 1450 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1451 IEEE80211_TX_STATUS_EOSP | 1452 IEEE80211_TX_CTL_REQ_TX_STATUS; 1453 1454 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1455 1456 if (call_driver) 1457 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1458 reason, false); 1459 1460 skb->dev = sdata->dev; 1461 1462 rcu_read_lock(); 1463 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1464 if (WARN_ON(!chanctx_conf)) { 1465 rcu_read_unlock(); 1466 kfree_skb(skb); 1467 return; 1468 } 1469 1470 info->band = chanctx_conf->def.chan->band; 1471 ieee80211_xmit(sdata, sta, skb, 0); 1472 rcu_read_unlock(); 1473 } 1474 1475 static int find_highest_prio_tid(unsigned long tids) 1476 { 1477 /* lower 3 TIDs aren't ordered perfectly */ 1478 if (tids & 0xF8) 1479 return fls(tids) - 1; 1480 /* TID 0 is BE just like TID 3 */ 1481 if (tids & BIT(0)) 1482 return 0; 1483 return fls(tids) - 1; 1484 } 1485 1486 /* Indicates if the MORE_DATA bit should be set in the last 1487 * frame obtained by ieee80211_sta_ps_get_frames. 1488 * Note that driver_release_tids is relevant only if 1489 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1490 */ 1491 static bool 1492 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1493 enum ieee80211_frame_release_type reason, 1494 unsigned long driver_release_tids) 1495 { 1496 int ac; 1497 1498 /* If the driver has data on more than one TID then 1499 * certainly there's more data if we release just a 1500 * single frame now (from a single TID). This will 1501 * only happen for PS-Poll. 1502 */ 1503 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1504 hweight16(driver_release_tids) > 1) 1505 return true; 1506 1507 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1508 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1509 continue; 1510 1511 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1512 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1513 return true; 1514 } 1515 1516 return false; 1517 } 1518 1519 static void 1520 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1521 enum ieee80211_frame_release_type reason, 1522 struct sk_buff_head *frames, 1523 unsigned long *driver_release_tids) 1524 { 1525 struct ieee80211_sub_if_data *sdata = sta->sdata; 1526 struct ieee80211_local *local = sdata->local; 1527 int ac; 1528 1529 /* Get response frame(s) and more data bit for the last one. */ 1530 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1531 unsigned long tids; 1532 1533 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1534 continue; 1535 1536 tids = ieee80211_tids_for_ac(ac); 1537 1538 /* if we already have frames from software, then we can't also 1539 * release from hardware queues 1540 */ 1541 if (skb_queue_empty(frames)) { 1542 *driver_release_tids |= 1543 sta->driver_buffered_tids & tids; 1544 *driver_release_tids |= sta->txq_buffered_tids & tids; 1545 } 1546 1547 if (!*driver_release_tids) { 1548 struct sk_buff *skb; 1549 1550 while (n_frames > 0) { 1551 skb = skb_dequeue(&sta->tx_filtered[ac]); 1552 if (!skb) { 1553 skb = skb_dequeue( 1554 &sta->ps_tx_buf[ac]); 1555 if (skb) 1556 local->total_ps_buffered--; 1557 } 1558 if (!skb) 1559 break; 1560 n_frames--; 1561 __skb_queue_tail(frames, skb); 1562 } 1563 } 1564 1565 /* If we have more frames buffered on this AC, then abort the 1566 * loop since we can't send more data from other ACs before 1567 * the buffered frames from this. 1568 */ 1569 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1570 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1571 break; 1572 } 1573 } 1574 1575 static void 1576 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1577 int n_frames, u8 ignored_acs, 1578 enum ieee80211_frame_release_type reason) 1579 { 1580 struct ieee80211_sub_if_data *sdata = sta->sdata; 1581 struct ieee80211_local *local = sdata->local; 1582 unsigned long driver_release_tids = 0; 1583 struct sk_buff_head frames; 1584 bool more_data; 1585 1586 /* Service or PS-Poll period starts */ 1587 set_sta_flag(sta, WLAN_STA_SP); 1588 1589 __skb_queue_head_init(&frames); 1590 1591 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1592 &frames, &driver_release_tids); 1593 1594 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1595 1596 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1597 driver_release_tids = 1598 BIT(find_highest_prio_tid(driver_release_tids)); 1599 1600 if (skb_queue_empty(&frames) && !driver_release_tids) { 1601 int tid, ac; 1602 1603 /* 1604 * For PS-Poll, this can only happen due to a race condition 1605 * when we set the TIM bit and the station notices it, but 1606 * before it can poll for the frame we expire it. 1607 * 1608 * For uAPSD, this is said in the standard (11.2.1.5 h): 1609 * At each unscheduled SP for a non-AP STA, the AP shall 1610 * attempt to transmit at least one MSDU or MMPDU, but no 1611 * more than the value specified in the Max SP Length field 1612 * in the QoS Capability element from delivery-enabled ACs, 1613 * that are destined for the non-AP STA. 1614 * 1615 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1616 */ 1617 1618 /* This will evaluate to 1, 3, 5 or 7. */ 1619 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1620 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1621 break; 1622 tid = 7 - 2 * ac; 1623 1624 ieee80211_send_null_response(sta, tid, reason, true, false); 1625 } else if (!driver_release_tids) { 1626 struct sk_buff_head pending; 1627 struct sk_buff *skb; 1628 int num = 0; 1629 u16 tids = 0; 1630 bool need_null = false; 1631 1632 skb_queue_head_init(&pending); 1633 1634 while ((skb = __skb_dequeue(&frames))) { 1635 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1636 struct ieee80211_hdr *hdr = (void *) skb->data; 1637 u8 *qoshdr = NULL; 1638 1639 num++; 1640 1641 /* 1642 * Tell TX path to send this frame even though the 1643 * STA may still remain is PS mode after this frame 1644 * exchange. 1645 */ 1646 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1647 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1648 1649 /* 1650 * Use MoreData flag to indicate whether there are 1651 * more buffered frames for this STA 1652 */ 1653 if (more_data || !skb_queue_empty(&frames)) 1654 hdr->frame_control |= 1655 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1656 else 1657 hdr->frame_control &= 1658 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1659 1660 if (ieee80211_is_data_qos(hdr->frame_control) || 1661 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1662 qoshdr = ieee80211_get_qos_ctl(hdr); 1663 1664 tids |= BIT(skb->priority); 1665 1666 __skb_queue_tail(&pending, skb); 1667 1668 /* end service period after last frame or add one */ 1669 if (!skb_queue_empty(&frames)) 1670 continue; 1671 1672 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1673 /* for PS-Poll, there's only one frame */ 1674 info->flags |= IEEE80211_TX_STATUS_EOSP | 1675 IEEE80211_TX_CTL_REQ_TX_STATUS; 1676 break; 1677 } 1678 1679 /* For uAPSD, things are a bit more complicated. If the 1680 * last frame has a QoS header (i.e. is a QoS-data or 1681 * QoS-nulldata frame) then just set the EOSP bit there 1682 * and be done. 1683 * If the frame doesn't have a QoS header (which means 1684 * it should be a bufferable MMPDU) then we can't set 1685 * the EOSP bit in the QoS header; add a QoS-nulldata 1686 * frame to the list to send it after the MMPDU. 1687 * 1688 * Note that this code is only in the mac80211-release 1689 * code path, we assume that the driver will not buffer 1690 * anything but QoS-data frames, or if it does, will 1691 * create the QoS-nulldata frame by itself if needed. 1692 * 1693 * Cf. 802.11-2012 10.2.1.10 (c). 1694 */ 1695 if (qoshdr) { 1696 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1697 1698 info->flags |= IEEE80211_TX_STATUS_EOSP | 1699 IEEE80211_TX_CTL_REQ_TX_STATUS; 1700 } else { 1701 /* The standard isn't completely clear on this 1702 * as it says the more-data bit should be set 1703 * if there are more BUs. The QoS-Null frame 1704 * we're about to send isn't buffered yet, we 1705 * only create it below, but let's pretend it 1706 * was buffered just in case some clients only 1707 * expect more-data=0 when eosp=1. 1708 */ 1709 hdr->frame_control |= 1710 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1711 need_null = true; 1712 num++; 1713 } 1714 break; 1715 } 1716 1717 drv_allow_buffered_frames(local, sta, tids, num, 1718 reason, more_data); 1719 1720 ieee80211_add_pending_skbs(local, &pending); 1721 1722 if (need_null) 1723 ieee80211_send_null_response( 1724 sta, find_highest_prio_tid(tids), 1725 reason, false, false); 1726 1727 sta_info_recalc_tim(sta); 1728 } else { 1729 int tid; 1730 1731 /* 1732 * We need to release a frame that is buffered somewhere in the 1733 * driver ... it'll have to handle that. 1734 * Note that the driver also has to check the number of frames 1735 * on the TIDs we're releasing from - if there are more than 1736 * n_frames it has to set the more-data bit (if we didn't ask 1737 * it to set it anyway due to other buffered frames); if there 1738 * are fewer than n_frames it has to make sure to adjust that 1739 * to allow the service period to end properly. 1740 */ 1741 drv_release_buffered_frames(local, sta, driver_release_tids, 1742 n_frames, reason, more_data); 1743 1744 /* 1745 * Note that we don't recalculate the TIM bit here as it would 1746 * most likely have no effect at all unless the driver told us 1747 * that the TID(s) became empty before returning here from the 1748 * release function. 1749 * Either way, however, when the driver tells us that the TID(s) 1750 * became empty or we find that a txq became empty, we'll do the 1751 * TIM recalculation. 1752 */ 1753 1754 if (!sta->sta.txq[0]) 1755 return; 1756 1757 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1758 if (!sta->sta.txq[tid] || 1759 !(driver_release_tids & BIT(tid)) || 1760 txq_has_queue(sta->sta.txq[tid])) 1761 continue; 1762 1763 sta_info_recalc_tim(sta); 1764 break; 1765 } 1766 } 1767 } 1768 1769 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1770 { 1771 u8 ignore_for_response = sta->sta.uapsd_queues; 1772 1773 /* 1774 * If all ACs are delivery-enabled then we should reply 1775 * from any of them, if only some are enabled we reply 1776 * only from the non-enabled ones. 1777 */ 1778 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1779 ignore_for_response = 0; 1780 1781 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1782 IEEE80211_FRAME_RELEASE_PSPOLL); 1783 } 1784 1785 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1786 { 1787 int n_frames = sta->sta.max_sp; 1788 u8 delivery_enabled = sta->sta.uapsd_queues; 1789 1790 /* 1791 * If we ever grow support for TSPEC this might happen if 1792 * the TSPEC update from hostapd comes in between a trigger 1793 * frame setting WLAN_STA_UAPSD in the RX path and this 1794 * actually getting called. 1795 */ 1796 if (!delivery_enabled) 1797 return; 1798 1799 switch (sta->sta.max_sp) { 1800 case 1: 1801 n_frames = 2; 1802 break; 1803 case 2: 1804 n_frames = 4; 1805 break; 1806 case 3: 1807 n_frames = 6; 1808 break; 1809 case 0: 1810 /* XXX: what is a good value? */ 1811 n_frames = 128; 1812 break; 1813 } 1814 1815 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1816 IEEE80211_FRAME_RELEASE_UAPSD); 1817 } 1818 1819 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1820 struct ieee80211_sta *pubsta, bool block) 1821 { 1822 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1823 1824 trace_api_sta_block_awake(sta->local, pubsta, block); 1825 1826 if (block) { 1827 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1828 ieee80211_clear_fast_xmit(sta); 1829 return; 1830 } 1831 1832 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1833 return; 1834 1835 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1836 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1837 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1838 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1839 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1840 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1841 /* must be asleep in this case */ 1842 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1843 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1844 } else { 1845 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1846 ieee80211_check_fast_xmit(sta); 1847 } 1848 } 1849 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1850 1851 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1852 { 1853 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1854 struct ieee80211_local *local = sta->local; 1855 1856 trace_api_eosp(local, pubsta); 1857 1858 clear_sta_flag(sta, WLAN_STA_SP); 1859 } 1860 EXPORT_SYMBOL(ieee80211_sta_eosp); 1861 1862 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1863 { 1864 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1865 enum ieee80211_frame_release_type reason; 1866 bool more_data; 1867 1868 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1869 1870 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1871 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1872 reason, 0); 1873 1874 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1875 } 1876 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1877 1878 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1879 u8 tid, bool buffered) 1880 { 1881 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1882 1883 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1884 return; 1885 1886 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1887 1888 if (buffered) 1889 set_bit(tid, &sta->driver_buffered_tids); 1890 else 1891 clear_bit(tid, &sta->driver_buffered_tids); 1892 1893 sta_info_recalc_tim(sta); 1894 } 1895 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1896 1897 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, 1898 u32 tx_airtime, u32 rx_airtime) 1899 { 1900 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1901 struct ieee80211_local *local = sta->sdata->local; 1902 u8 ac = ieee80211_ac_from_tid(tid); 1903 u32 airtime = 0; 1904 1905 if (sta->local->airtime_flags & AIRTIME_USE_TX) 1906 airtime += tx_airtime; 1907 if (sta->local->airtime_flags & AIRTIME_USE_RX) 1908 airtime += rx_airtime; 1909 1910 spin_lock_bh(&local->active_txq_lock[ac]); 1911 sta->airtime[ac].tx_airtime += tx_airtime; 1912 sta->airtime[ac].rx_airtime += rx_airtime; 1913 sta->airtime[ac].deficit -= airtime; 1914 spin_unlock_bh(&local->active_txq_lock[ac]); 1915 } 1916 EXPORT_SYMBOL(ieee80211_sta_register_airtime); 1917 1918 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, 1919 struct sta_info *sta, u8 ac, 1920 u16 tx_airtime, bool tx_completed) 1921 { 1922 int tx_pending; 1923 1924 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) 1925 return; 1926 1927 if (!tx_completed) { 1928 if (sta) 1929 atomic_add(tx_airtime, 1930 &sta->airtime[ac].aql_tx_pending); 1931 1932 atomic_add(tx_airtime, &local->aql_total_pending_airtime); 1933 return; 1934 } 1935 1936 if (sta) { 1937 tx_pending = atomic_sub_return(tx_airtime, 1938 &sta->airtime[ac].aql_tx_pending); 1939 if (WARN_ONCE(tx_pending < 0, 1940 "STA %pM AC %d txq pending airtime underflow: %u, %u", 1941 sta->addr, ac, tx_pending, tx_airtime)) 1942 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending, 1943 tx_pending, 0); 1944 } 1945 1946 tx_pending = atomic_sub_return(tx_airtime, 1947 &local->aql_total_pending_airtime); 1948 if (WARN_ONCE(tx_pending < 0, 1949 "Device %s AC %d pending airtime underflow: %u, %u", 1950 wiphy_name(local->hw.wiphy), ac, tx_pending, 1951 tx_airtime)) 1952 atomic_cmpxchg(&local->aql_total_pending_airtime, 1953 tx_pending, 0); 1954 } 1955 1956 int sta_info_move_state(struct sta_info *sta, 1957 enum ieee80211_sta_state new_state) 1958 { 1959 might_sleep(); 1960 1961 if (sta->sta_state == new_state) 1962 return 0; 1963 1964 /* check allowed transitions first */ 1965 1966 switch (new_state) { 1967 case IEEE80211_STA_NONE: 1968 if (sta->sta_state != IEEE80211_STA_AUTH) 1969 return -EINVAL; 1970 break; 1971 case IEEE80211_STA_AUTH: 1972 if (sta->sta_state != IEEE80211_STA_NONE && 1973 sta->sta_state != IEEE80211_STA_ASSOC) 1974 return -EINVAL; 1975 break; 1976 case IEEE80211_STA_ASSOC: 1977 if (sta->sta_state != IEEE80211_STA_AUTH && 1978 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1979 return -EINVAL; 1980 break; 1981 case IEEE80211_STA_AUTHORIZED: 1982 if (sta->sta_state != IEEE80211_STA_ASSOC) 1983 return -EINVAL; 1984 break; 1985 default: 1986 WARN(1, "invalid state %d", new_state); 1987 return -EINVAL; 1988 } 1989 1990 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1991 sta->sta.addr, new_state); 1992 1993 /* 1994 * notify the driver before the actual changes so it can 1995 * fail the transition 1996 */ 1997 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1998 int err = drv_sta_state(sta->local, sta->sdata, sta, 1999 sta->sta_state, new_state); 2000 if (err) 2001 return err; 2002 } 2003 2004 /* reflect the change in all state variables */ 2005 2006 switch (new_state) { 2007 case IEEE80211_STA_NONE: 2008 if (sta->sta_state == IEEE80211_STA_AUTH) 2009 clear_bit(WLAN_STA_AUTH, &sta->_flags); 2010 break; 2011 case IEEE80211_STA_AUTH: 2012 if (sta->sta_state == IEEE80211_STA_NONE) { 2013 set_bit(WLAN_STA_AUTH, &sta->_flags); 2014 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 2015 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 2016 ieee80211_recalc_min_chandef(sta->sdata); 2017 if (!sta->sta.support_p2p_ps) 2018 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2019 } 2020 break; 2021 case IEEE80211_STA_ASSOC: 2022 if (sta->sta_state == IEEE80211_STA_AUTH) { 2023 set_bit(WLAN_STA_ASSOC, &sta->_flags); 2024 sta->assoc_at = ktime_get_boottime_ns(); 2025 ieee80211_recalc_min_chandef(sta->sdata); 2026 if (!sta->sta.support_p2p_ps) 2027 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2028 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 2029 ieee80211_vif_dec_num_mcast(sta->sdata); 2030 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2031 ieee80211_clear_fast_xmit(sta); 2032 ieee80211_clear_fast_rx(sta); 2033 } 2034 break; 2035 case IEEE80211_STA_AUTHORIZED: 2036 if (sta->sta_state == IEEE80211_STA_ASSOC) { 2037 ieee80211_vif_inc_num_mcast(sta->sdata); 2038 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2039 ieee80211_check_fast_xmit(sta); 2040 ieee80211_check_fast_rx(sta); 2041 } 2042 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 2043 sta->sdata->vif.type == NL80211_IFTYPE_AP) 2044 cfg80211_send_layer2_update(sta->sdata->dev, 2045 sta->sta.addr); 2046 break; 2047 default: 2048 break; 2049 } 2050 2051 sta->sta_state = new_state; 2052 2053 return 0; 2054 } 2055 2056 u8 sta_info_tx_streams(struct sta_info *sta) 2057 { 2058 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 2059 u8 rx_streams; 2060 2061 if (!sta->sta.ht_cap.ht_supported) 2062 return 1; 2063 2064 if (sta->sta.vht_cap.vht_supported) { 2065 int i; 2066 u16 tx_mcs_map = 2067 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 2068 2069 for (i = 7; i >= 0; i--) 2070 if ((tx_mcs_map & (0x3 << (i * 2))) != 2071 IEEE80211_VHT_MCS_NOT_SUPPORTED) 2072 return i + 1; 2073 } 2074 2075 if (ht_cap->mcs.rx_mask[3]) 2076 rx_streams = 4; 2077 else if (ht_cap->mcs.rx_mask[2]) 2078 rx_streams = 3; 2079 else if (ht_cap->mcs.rx_mask[1]) 2080 rx_streams = 2; 2081 else 2082 rx_streams = 1; 2083 2084 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 2085 return rx_streams; 2086 2087 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 2088 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 2089 } 2090 2091 static struct ieee80211_sta_rx_stats * 2092 sta_get_last_rx_stats(struct sta_info *sta) 2093 { 2094 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 2095 struct ieee80211_local *local = sta->local; 2096 int cpu; 2097 2098 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 2099 return stats; 2100 2101 for_each_possible_cpu(cpu) { 2102 struct ieee80211_sta_rx_stats *cpustats; 2103 2104 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2105 2106 if (time_after(cpustats->last_rx, stats->last_rx)) 2107 stats = cpustats; 2108 } 2109 2110 return stats; 2111 } 2112 2113 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, 2114 struct rate_info *rinfo) 2115 { 2116 rinfo->bw = STA_STATS_GET(BW, rate); 2117 2118 switch (STA_STATS_GET(TYPE, rate)) { 2119 case STA_STATS_RATE_TYPE_VHT: 2120 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 2121 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 2122 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 2123 if (STA_STATS_GET(SGI, rate)) 2124 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2125 break; 2126 case STA_STATS_RATE_TYPE_HT: 2127 rinfo->flags = RATE_INFO_FLAGS_MCS; 2128 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 2129 if (STA_STATS_GET(SGI, rate)) 2130 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2131 break; 2132 case STA_STATS_RATE_TYPE_LEGACY: { 2133 struct ieee80211_supported_band *sband; 2134 u16 brate; 2135 unsigned int shift; 2136 int band = STA_STATS_GET(LEGACY_BAND, rate); 2137 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 2138 2139 sband = local->hw.wiphy->bands[band]; 2140 brate = sband->bitrates[rate_idx].bitrate; 2141 if (rinfo->bw == RATE_INFO_BW_5) 2142 shift = 2; 2143 else if (rinfo->bw == RATE_INFO_BW_10) 2144 shift = 1; 2145 else 2146 shift = 0; 2147 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 2148 break; 2149 } 2150 case STA_STATS_RATE_TYPE_HE: 2151 rinfo->flags = RATE_INFO_FLAGS_HE_MCS; 2152 rinfo->mcs = STA_STATS_GET(HE_MCS, rate); 2153 rinfo->nss = STA_STATS_GET(HE_NSS, rate); 2154 rinfo->he_gi = STA_STATS_GET(HE_GI, rate); 2155 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); 2156 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); 2157 break; 2158 } 2159 } 2160 2161 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2162 { 2163 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2164 2165 if (rate == STA_STATS_RATE_INVALID) 2166 return -EINVAL; 2167 2168 sta_stats_decode_rate(sta->local, rate, rinfo); 2169 return 0; 2170 } 2171 2172 static void sta_set_tidstats(struct sta_info *sta, 2173 struct cfg80211_tid_stats *tidstats, 2174 int tid) 2175 { 2176 struct ieee80211_local *local = sta->local; 2177 2178 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2179 unsigned int start; 2180 2181 do { 2182 start = u64_stats_fetch_begin(&sta->rx_stats.syncp); 2183 tidstats->rx_msdu = sta->rx_stats.msdu[tid]; 2184 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start)); 2185 2186 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2187 } 2188 2189 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2190 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2191 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2192 } 2193 2194 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2195 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2196 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2197 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2198 } 2199 2200 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2201 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2202 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2203 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2204 } 2205 2206 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) { 2207 spin_lock_bh(&local->fq.lock); 2208 rcu_read_lock(); 2209 2210 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); 2211 ieee80211_fill_txq_stats(&tidstats->txq_stats, 2212 to_txq_info(sta->sta.txq[tid])); 2213 2214 rcu_read_unlock(); 2215 spin_unlock_bh(&local->fq.lock); 2216 } 2217 } 2218 2219 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2220 { 2221 unsigned int start; 2222 u64 value; 2223 2224 do { 2225 start = u64_stats_fetch_begin(&rxstats->syncp); 2226 value = rxstats->bytes; 2227 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2228 2229 return value; 2230 } 2231 2232 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, 2233 bool tidstats) 2234 { 2235 struct ieee80211_sub_if_data *sdata = sta->sdata; 2236 struct ieee80211_local *local = sdata->local; 2237 u32 thr = 0; 2238 int i, ac, cpu; 2239 struct ieee80211_sta_rx_stats *last_rxstats; 2240 2241 last_rxstats = sta_get_last_rx_stats(sta); 2242 2243 sinfo->generation = sdata->local->sta_generation; 2244 2245 /* do before driver, so beacon filtering drivers have a 2246 * chance to e.g. just add the number of filtered beacons 2247 * (or just modify the value entirely, of course) 2248 */ 2249 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2250 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2251 2252 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2253 2254 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | 2255 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | 2256 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | 2257 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | 2258 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) | 2259 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); 2260 2261 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2262 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2263 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); 2264 } 2265 2266 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2267 sinfo->assoc_at = sta->assoc_at; 2268 sinfo->inactive_time = 2269 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2270 2271 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | 2272 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { 2273 sinfo->tx_bytes = 0; 2274 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2275 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2276 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); 2277 } 2278 2279 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { 2280 sinfo->tx_packets = 0; 2281 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2282 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2283 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); 2284 } 2285 2286 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | 2287 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { 2288 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2289 2290 if (sta->pcpu_rx_stats) { 2291 for_each_possible_cpu(cpu) { 2292 struct ieee80211_sta_rx_stats *cpurxs; 2293 2294 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2295 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2296 } 2297 } 2298 2299 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); 2300 } 2301 2302 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { 2303 sinfo->rx_packets = sta->rx_stats.packets; 2304 if (sta->pcpu_rx_stats) { 2305 for_each_possible_cpu(cpu) { 2306 struct ieee80211_sta_rx_stats *cpurxs; 2307 2308 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2309 sinfo->rx_packets += cpurxs->packets; 2310 } 2311 } 2312 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 2313 } 2314 2315 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { 2316 sinfo->tx_retries = sta->status_stats.retry_count; 2317 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); 2318 } 2319 2320 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { 2321 sinfo->tx_failed = sta->status_stats.retry_failed; 2322 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); 2323 } 2324 2325 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { 2326 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2327 sinfo->rx_duration += sta->airtime[ac].rx_airtime; 2328 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 2329 } 2330 2331 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { 2332 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2333 sinfo->tx_duration += sta->airtime[ac].tx_airtime; 2334 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 2335 } 2336 2337 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { 2338 sinfo->airtime_weight = sta->airtime_weight; 2339 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); 2340 } 2341 2342 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2343 if (sta->pcpu_rx_stats) { 2344 for_each_possible_cpu(cpu) { 2345 struct ieee80211_sta_rx_stats *cpurxs; 2346 2347 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2348 sinfo->rx_dropped_misc += cpurxs->dropped; 2349 } 2350 } 2351 2352 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2353 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2354 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | 2355 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2356 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2357 } 2358 2359 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2360 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2361 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { 2362 sinfo->signal = (s8)last_rxstats->last_signal; 2363 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 2364 } 2365 2366 if (!sta->pcpu_rx_stats && 2367 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { 2368 sinfo->signal_avg = 2369 -ewma_signal_read(&sta->rx_stats_avg.signal); 2370 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 2371 } 2372 } 2373 2374 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2375 * the sta->rx_stats struct, so the check here is fine with and without 2376 * pcpu statistics 2377 */ 2378 if (last_rxstats->chains && 2379 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | 2380 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2381 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 2382 if (!sta->pcpu_rx_stats) 2383 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2384 2385 sinfo->chains = last_rxstats->chains; 2386 2387 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2388 sinfo->chain_signal[i] = 2389 last_rxstats->chain_signal_last[i]; 2390 sinfo->chain_signal_avg[i] = 2391 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2392 } 2393 } 2394 2395 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) { 2396 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2397 &sinfo->txrate); 2398 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 2399 } 2400 2401 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) { 2402 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2403 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); 2404 } 2405 2406 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { 2407 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 2408 sta_set_tidstats(sta, &sinfo->pertid[i], i); 2409 } 2410 2411 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2412 #ifdef CONFIG_MAC80211_MESH 2413 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | 2414 BIT_ULL(NL80211_STA_INFO_PLID) | 2415 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | 2416 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | 2417 BIT_ULL(NL80211_STA_INFO_PEER_PM) | 2418 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | 2419 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE); 2420 2421 sinfo->llid = sta->mesh->llid; 2422 sinfo->plid = sta->mesh->plid; 2423 sinfo->plink_state = sta->mesh->plink_state; 2424 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2425 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); 2426 sinfo->t_offset = sta->mesh->t_offset; 2427 } 2428 sinfo->local_pm = sta->mesh->local_pm; 2429 sinfo->peer_pm = sta->mesh->peer_pm; 2430 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2431 sinfo->connected_to_gate = sta->mesh->connected_to_gate; 2432 #endif 2433 } 2434 2435 sinfo->bss_param.flags = 0; 2436 if (sdata->vif.bss_conf.use_cts_prot) 2437 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2438 if (sdata->vif.bss_conf.use_short_preamble) 2439 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2440 if (sdata->vif.bss_conf.use_short_slot) 2441 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2442 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2443 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2444 2445 sinfo->sta_flags.set = 0; 2446 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2447 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2448 BIT(NL80211_STA_FLAG_WME) | 2449 BIT(NL80211_STA_FLAG_MFP) | 2450 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2451 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2452 BIT(NL80211_STA_FLAG_TDLS_PEER); 2453 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2454 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2455 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2456 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2457 if (sta->sta.wme) 2458 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2459 if (test_sta_flag(sta, WLAN_STA_MFP)) 2460 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2461 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2462 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2463 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2464 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2465 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2466 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2467 2468 thr = sta_get_expected_throughput(sta); 2469 2470 if (thr != 0) { 2471 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2472 sinfo->expected_throughput = thr; 2473 } 2474 2475 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && 2476 sta->status_stats.ack_signal_filled) { 2477 sinfo->ack_signal = sta->status_stats.last_ack_signal; 2478 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); 2479 } 2480 2481 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && 2482 sta->status_stats.ack_signal_filled) { 2483 sinfo->avg_ack_signal = 2484 -(s8)ewma_avg_signal_read( 2485 &sta->status_stats.avg_ack_signal); 2486 sinfo->filled |= 2487 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); 2488 } 2489 2490 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2491 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC); 2492 sinfo->airtime_link_metric = 2493 airtime_link_metric_get(local, sta); 2494 } 2495 } 2496 2497 u32 sta_get_expected_throughput(struct sta_info *sta) 2498 { 2499 struct ieee80211_sub_if_data *sdata = sta->sdata; 2500 struct ieee80211_local *local = sdata->local; 2501 struct rate_control_ref *ref = NULL; 2502 u32 thr = 0; 2503 2504 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2505 ref = local->rate_ctrl; 2506 2507 /* check if the driver has a SW RC implementation */ 2508 if (ref && ref->ops->get_expected_throughput) 2509 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2510 else 2511 thr = drv_get_expected_throughput(local, sta); 2512 2513 return thr; 2514 } 2515 2516 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2517 { 2518 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2519 2520 if (!sta->status_stats.last_ack || 2521 time_after(stats->last_rx, sta->status_stats.last_ack)) 2522 return stats->last_rx; 2523 return sta->status_stats.last_ack; 2524 } 2525 2526 static void sta_update_codel_params(struct sta_info *sta, u32 thr) 2527 { 2528 if (!sta->sdata->local->ops->wake_tx_queue) 2529 return; 2530 2531 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { 2532 sta->cparams.target = MS2TIME(50); 2533 sta->cparams.interval = MS2TIME(300); 2534 sta->cparams.ecn = false; 2535 } else { 2536 sta->cparams.target = MS2TIME(20); 2537 sta->cparams.interval = MS2TIME(100); 2538 sta->cparams.ecn = true; 2539 } 2540 } 2541 2542 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, 2543 u32 thr) 2544 { 2545 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2546 2547 sta_update_codel_params(sta, thr); 2548 } 2549