1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * Copyright 2013-2014 Intel Mobile Communications GmbH 5 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 6 * Copyright (C) 2018 Intel Corporation 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/etherdevice.h> 16 #include <linux/netdevice.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/if_arp.h> 21 #include <linux/timer.h> 22 #include <linux/rtnetlink.h> 23 24 #include <net/codel.h> 25 #include <net/mac80211.h> 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "rate.h" 29 #include "sta_info.h" 30 #include "debugfs_sta.h" 31 #include "mesh.h" 32 #include "wme.h" 33 34 /** 35 * DOC: STA information lifetime rules 36 * 37 * STA info structures (&struct sta_info) are managed in a hash table 38 * for faster lookup and a list for iteration. They are managed using 39 * RCU, i.e. access to the list and hash table is protected by RCU. 40 * 41 * Upon allocating a STA info structure with sta_info_alloc(), the caller 42 * owns that structure. It must then insert it into the hash table using 43 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 44 * case (which acquires an rcu read section but must not be called from 45 * within one) will the pointer still be valid after the call. Note that 46 * the caller may not do much with the STA info before inserting it, in 47 * particular, it may not start any mesh peer link management or add 48 * encryption keys. 49 * 50 * When the insertion fails (sta_info_insert()) returns non-zero), the 51 * structure will have been freed by sta_info_insert()! 52 * 53 * Station entries are added by mac80211 when you establish a link with a 54 * peer. This means different things for the different type of interfaces 55 * we support. For a regular station this mean we add the AP sta when we 56 * receive an association response from the AP. For IBSS this occurs when 57 * get to know about a peer on the same IBSS. For WDS we add the sta for 58 * the peer immediately upon device open. When using AP mode we add stations 59 * for each respective station upon request from userspace through nl80211. 60 * 61 * In order to remove a STA info structure, various sta_info_destroy_*() 62 * calls are available. 63 * 64 * There is no concept of ownership on a STA entry, each structure is 65 * owned by the global hash table/list until it is removed. All users of 66 * the structure need to be RCU protected so that the structure won't be 67 * freed before they are done using it. 68 */ 69 70 static const struct rhashtable_params sta_rht_params = { 71 .nelem_hint = 3, /* start small */ 72 .automatic_shrinking = true, 73 .head_offset = offsetof(struct sta_info, hash_node), 74 .key_offset = offsetof(struct sta_info, addr), 75 .key_len = ETH_ALEN, 76 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 77 }; 78 79 /* Caller must hold local->sta_mtx */ 80 static int sta_info_hash_del(struct ieee80211_local *local, 81 struct sta_info *sta) 82 { 83 return rhltable_remove(&local->sta_hash, &sta->hash_node, 84 sta_rht_params); 85 } 86 87 static void __cleanup_single_sta(struct sta_info *sta) 88 { 89 int ac, i; 90 struct tid_ampdu_tx *tid_tx; 91 struct ieee80211_sub_if_data *sdata = sta->sdata; 92 struct ieee80211_local *local = sdata->local; 93 struct ps_data *ps; 94 95 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 96 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 97 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 98 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 99 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 100 ps = &sdata->bss->ps; 101 else if (ieee80211_vif_is_mesh(&sdata->vif)) 102 ps = &sdata->u.mesh.ps; 103 else 104 return; 105 106 clear_sta_flag(sta, WLAN_STA_PS_STA); 107 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 108 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 109 110 atomic_dec(&ps->num_sta_ps); 111 } 112 113 if (sta->sta.txq[0]) { 114 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 115 struct txq_info *txqi; 116 117 if (!sta->sta.txq[i]) 118 continue; 119 120 txqi = to_txq_info(sta->sta.txq[i]); 121 122 ieee80211_txq_purge(local, txqi); 123 } 124 } 125 126 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 127 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 128 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 129 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 130 } 131 132 if (ieee80211_vif_is_mesh(&sdata->vif)) 133 mesh_sta_cleanup(sta); 134 135 cancel_work_sync(&sta->drv_deliver_wk); 136 137 /* 138 * Destroy aggregation state here. It would be nice to wait for the 139 * driver to finish aggregation stop and then clean up, but for now 140 * drivers have to handle aggregation stop being requested, followed 141 * directly by station destruction. 142 */ 143 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 144 kfree(sta->ampdu_mlme.tid_start_tx[i]); 145 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 146 if (!tid_tx) 147 continue; 148 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 149 kfree(tid_tx); 150 } 151 } 152 153 static void cleanup_single_sta(struct sta_info *sta) 154 { 155 struct ieee80211_sub_if_data *sdata = sta->sdata; 156 struct ieee80211_local *local = sdata->local; 157 158 __cleanup_single_sta(sta); 159 sta_info_free(local, sta); 160 } 161 162 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 163 const u8 *addr) 164 { 165 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 166 } 167 168 /* protected by RCU */ 169 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 170 const u8 *addr) 171 { 172 struct ieee80211_local *local = sdata->local; 173 struct rhlist_head *tmp; 174 struct sta_info *sta; 175 176 rcu_read_lock(); 177 for_each_sta_info(local, addr, sta, tmp) { 178 if (sta->sdata == sdata) { 179 rcu_read_unlock(); 180 /* this is safe as the caller must already hold 181 * another rcu read section or the mutex 182 */ 183 return sta; 184 } 185 } 186 rcu_read_unlock(); 187 return NULL; 188 } 189 190 /* 191 * Get sta info either from the specified interface 192 * or from one of its vlans 193 */ 194 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 195 const u8 *addr) 196 { 197 struct ieee80211_local *local = sdata->local; 198 struct rhlist_head *tmp; 199 struct sta_info *sta; 200 201 rcu_read_lock(); 202 for_each_sta_info(local, addr, sta, tmp) { 203 if (sta->sdata == sdata || 204 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 205 rcu_read_unlock(); 206 /* this is safe as the caller must already hold 207 * another rcu read section or the mutex 208 */ 209 return sta; 210 } 211 } 212 rcu_read_unlock(); 213 return NULL; 214 } 215 216 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 217 int idx) 218 { 219 struct ieee80211_local *local = sdata->local; 220 struct sta_info *sta; 221 int i = 0; 222 223 list_for_each_entry_rcu(sta, &local->sta_list, list) { 224 if (sdata != sta->sdata) 225 continue; 226 if (i < idx) { 227 ++i; 228 continue; 229 } 230 return sta; 231 } 232 233 return NULL; 234 } 235 236 /** 237 * sta_info_free - free STA 238 * 239 * @local: pointer to the global information 240 * @sta: STA info to free 241 * 242 * This function must undo everything done by sta_info_alloc() 243 * that may happen before sta_info_insert(). It may only be 244 * called when sta_info_insert() has not been attempted (and 245 * if that fails, the station is freed anyway.) 246 */ 247 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 248 { 249 if (sta->rate_ctrl) 250 rate_control_free_sta(sta); 251 252 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 253 254 if (sta->sta.txq[0]) 255 kfree(to_txq_info(sta->sta.txq[0])); 256 kfree(rcu_dereference_raw(sta->sta.rates)); 257 #ifdef CONFIG_MAC80211_MESH 258 kfree(sta->mesh); 259 #endif 260 free_percpu(sta->pcpu_rx_stats); 261 kfree(sta); 262 } 263 264 /* Caller must hold local->sta_mtx */ 265 static int sta_info_hash_add(struct ieee80211_local *local, 266 struct sta_info *sta) 267 { 268 return rhltable_insert(&local->sta_hash, &sta->hash_node, 269 sta_rht_params); 270 } 271 272 static void sta_deliver_ps_frames(struct work_struct *wk) 273 { 274 struct sta_info *sta; 275 276 sta = container_of(wk, struct sta_info, drv_deliver_wk); 277 278 if (sta->dead) 279 return; 280 281 local_bh_disable(); 282 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 283 ieee80211_sta_ps_deliver_wakeup(sta); 284 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 285 ieee80211_sta_ps_deliver_poll_response(sta); 286 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 287 ieee80211_sta_ps_deliver_uapsd(sta); 288 local_bh_enable(); 289 } 290 291 static int sta_prepare_rate_control(struct ieee80211_local *local, 292 struct sta_info *sta, gfp_t gfp) 293 { 294 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 295 return 0; 296 297 sta->rate_ctrl = local->rate_ctrl; 298 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 299 sta, gfp); 300 if (!sta->rate_ctrl_priv) 301 return -ENOMEM; 302 303 return 0; 304 } 305 306 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 307 const u8 *addr, gfp_t gfp) 308 { 309 struct ieee80211_local *local = sdata->local; 310 struct ieee80211_hw *hw = &local->hw; 311 struct sta_info *sta; 312 int i; 313 314 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 315 if (!sta) 316 return NULL; 317 318 if (ieee80211_hw_check(hw, USES_RSS)) { 319 sta->pcpu_rx_stats = 320 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); 321 if (!sta->pcpu_rx_stats) 322 goto free; 323 } 324 325 spin_lock_init(&sta->lock); 326 spin_lock_init(&sta->ps_lock); 327 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 328 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 329 mutex_init(&sta->ampdu_mlme.mtx); 330 #ifdef CONFIG_MAC80211_MESH 331 if (ieee80211_vif_is_mesh(&sdata->vif)) { 332 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 333 if (!sta->mesh) 334 goto free; 335 sta->mesh->plink_sta = sta; 336 spin_lock_init(&sta->mesh->plink_lock); 337 if (ieee80211_vif_is_mesh(&sdata->vif) && 338 !sdata->u.mesh.user_mpm) 339 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 340 0); 341 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 342 } 343 #endif 344 345 memcpy(sta->addr, addr, ETH_ALEN); 346 memcpy(sta->sta.addr, addr, ETH_ALEN); 347 sta->sta.max_rx_aggregation_subframes = 348 local->hw.max_rx_aggregation_subframes; 349 350 sta->local = local; 351 sta->sdata = sdata; 352 sta->rx_stats.last_rx = jiffies; 353 354 u64_stats_init(&sta->rx_stats.syncp); 355 356 sta->sta_state = IEEE80211_STA_NONE; 357 358 /* Mark TID as unreserved */ 359 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 360 361 sta->last_connected = ktime_get_seconds(); 362 ewma_signal_init(&sta->rx_stats_avg.signal); 363 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal); 364 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 365 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 366 367 if (local->ops->wake_tx_queue) { 368 void *txq_data; 369 int size = sizeof(struct txq_info) + 370 ALIGN(hw->txq_data_size, sizeof(void *)); 371 372 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 373 if (!txq_data) 374 goto free; 375 376 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 377 struct txq_info *txq = txq_data + i * size; 378 379 /* might not do anything for the bufferable MMPDU TXQ */ 380 ieee80211_txq_init(sdata, sta, txq, i); 381 } 382 } 383 384 if (sta_prepare_rate_control(local, sta, gfp)) 385 goto free_txq; 386 387 sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT; 388 389 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 390 skb_queue_head_init(&sta->ps_tx_buf[i]); 391 skb_queue_head_init(&sta->tx_filtered[i]); 392 sta->airtime[i].deficit = sta->airtime_weight; 393 } 394 395 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 396 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 397 398 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 399 if (sdata->vif.type == NL80211_IFTYPE_AP || 400 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 401 struct ieee80211_supported_band *sband; 402 u8 smps; 403 404 sband = ieee80211_get_sband(sdata); 405 if (!sband) 406 goto free_txq; 407 408 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 409 IEEE80211_HT_CAP_SM_PS_SHIFT; 410 /* 411 * Assume that hostapd advertises our caps in the beacon and 412 * this is the known_smps_mode for a station that just assciated 413 */ 414 switch (smps) { 415 case WLAN_HT_SMPS_CONTROL_DISABLED: 416 sta->known_smps_mode = IEEE80211_SMPS_OFF; 417 break; 418 case WLAN_HT_SMPS_CONTROL_STATIC: 419 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 420 break; 421 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 422 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 423 break; 424 default: 425 WARN_ON(1); 426 } 427 } 428 429 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 430 431 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; 432 sta->cparams.target = MS2TIME(20); 433 sta->cparams.interval = MS2TIME(100); 434 sta->cparams.ecn = true; 435 436 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 437 438 return sta; 439 440 free_txq: 441 if (sta->sta.txq[0]) 442 kfree(to_txq_info(sta->sta.txq[0])); 443 free: 444 free_percpu(sta->pcpu_rx_stats); 445 #ifdef CONFIG_MAC80211_MESH 446 kfree(sta->mesh); 447 #endif 448 kfree(sta); 449 return NULL; 450 } 451 452 static int sta_info_insert_check(struct sta_info *sta) 453 { 454 struct ieee80211_sub_if_data *sdata = sta->sdata; 455 456 /* 457 * Can't be a WARN_ON because it can be triggered through a race: 458 * something inserts a STA (on one CPU) without holding the RTNL 459 * and another CPU turns off the net device. 460 */ 461 if (unlikely(!ieee80211_sdata_running(sdata))) 462 return -ENETDOWN; 463 464 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 465 is_multicast_ether_addr(sta->sta.addr))) 466 return -EINVAL; 467 468 /* The RCU read lock is required by rhashtable due to 469 * asynchronous resize/rehash. We also require the mutex 470 * for correctness. 471 */ 472 rcu_read_lock(); 473 lockdep_assert_held(&sdata->local->sta_mtx); 474 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 475 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 476 rcu_read_unlock(); 477 return -ENOTUNIQ; 478 } 479 rcu_read_unlock(); 480 481 return 0; 482 } 483 484 static int sta_info_insert_drv_state(struct ieee80211_local *local, 485 struct ieee80211_sub_if_data *sdata, 486 struct sta_info *sta) 487 { 488 enum ieee80211_sta_state state; 489 int err = 0; 490 491 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 492 err = drv_sta_state(local, sdata, sta, state, state + 1); 493 if (err) 494 break; 495 } 496 497 if (!err) { 498 /* 499 * Drivers using legacy sta_add/sta_remove callbacks only 500 * get uploaded set to true after sta_add is called. 501 */ 502 if (!local->ops->sta_add) 503 sta->uploaded = true; 504 return 0; 505 } 506 507 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 508 sdata_info(sdata, 509 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 510 sta->sta.addr, state + 1, err); 511 err = 0; 512 } 513 514 /* unwind on error */ 515 for (; state > IEEE80211_STA_NOTEXIST; state--) 516 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 517 518 return err; 519 } 520 521 static void 522 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 523 { 524 struct ieee80211_local *local = sdata->local; 525 bool allow_p2p_go_ps = sdata->vif.p2p; 526 struct sta_info *sta; 527 528 rcu_read_lock(); 529 list_for_each_entry_rcu(sta, &local->sta_list, list) { 530 if (sdata != sta->sdata || 531 !test_sta_flag(sta, WLAN_STA_ASSOC)) 532 continue; 533 if (!sta->sta.support_p2p_ps) { 534 allow_p2p_go_ps = false; 535 break; 536 } 537 } 538 rcu_read_unlock(); 539 540 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 541 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 542 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 543 } 544 } 545 546 /* 547 * should be called with sta_mtx locked 548 * this function replaces the mutex lock 549 * with a RCU lock 550 */ 551 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 552 { 553 struct ieee80211_local *local = sta->local; 554 struct ieee80211_sub_if_data *sdata = sta->sdata; 555 struct station_info *sinfo = NULL; 556 int err = 0; 557 558 lockdep_assert_held(&local->sta_mtx); 559 560 /* check if STA exists already */ 561 if (sta_info_get_bss(sdata, sta->sta.addr)) { 562 err = -EEXIST; 563 goto out_err; 564 } 565 566 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 567 if (!sinfo) { 568 err = -ENOMEM; 569 goto out_err; 570 } 571 572 local->num_sta++; 573 local->sta_generation++; 574 smp_mb(); 575 576 /* simplify things and don't accept BA sessions yet */ 577 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 578 579 /* make the station visible */ 580 err = sta_info_hash_add(local, sta); 581 if (err) 582 goto out_drop_sta; 583 584 list_add_tail_rcu(&sta->list, &local->sta_list); 585 586 /* notify driver */ 587 err = sta_info_insert_drv_state(local, sdata, sta); 588 if (err) 589 goto out_remove; 590 591 set_sta_flag(sta, WLAN_STA_INSERTED); 592 593 if (sta->sta_state >= IEEE80211_STA_ASSOC) { 594 ieee80211_recalc_min_chandef(sta->sdata); 595 if (!sta->sta.support_p2p_ps) 596 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 597 } 598 599 /* accept BA sessions now */ 600 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 601 602 ieee80211_sta_debugfs_add(sta); 603 rate_control_add_sta_debugfs(sta); 604 605 sinfo->generation = local->sta_generation; 606 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 607 kfree(sinfo); 608 609 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 610 611 /* move reference to rcu-protected */ 612 rcu_read_lock(); 613 mutex_unlock(&local->sta_mtx); 614 615 if (ieee80211_vif_is_mesh(&sdata->vif)) 616 mesh_accept_plinks_update(sdata); 617 618 return 0; 619 out_remove: 620 sta_info_hash_del(local, sta); 621 list_del_rcu(&sta->list); 622 out_drop_sta: 623 local->num_sta--; 624 synchronize_net(); 625 __cleanup_single_sta(sta); 626 out_err: 627 mutex_unlock(&local->sta_mtx); 628 kfree(sinfo); 629 rcu_read_lock(); 630 return err; 631 } 632 633 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 634 { 635 struct ieee80211_local *local = sta->local; 636 int err; 637 638 might_sleep(); 639 640 mutex_lock(&local->sta_mtx); 641 642 err = sta_info_insert_check(sta); 643 if (err) { 644 mutex_unlock(&local->sta_mtx); 645 rcu_read_lock(); 646 goto out_free; 647 } 648 649 err = sta_info_insert_finish(sta); 650 if (err) 651 goto out_free; 652 653 return 0; 654 out_free: 655 sta_info_free(local, sta); 656 return err; 657 } 658 659 int sta_info_insert(struct sta_info *sta) 660 { 661 int err = sta_info_insert_rcu(sta); 662 663 rcu_read_unlock(); 664 665 return err; 666 } 667 668 static inline void __bss_tim_set(u8 *tim, u16 id) 669 { 670 /* 671 * This format has been mandated by the IEEE specifications, 672 * so this line may not be changed to use the __set_bit() format. 673 */ 674 tim[id / 8] |= (1 << (id % 8)); 675 } 676 677 static inline void __bss_tim_clear(u8 *tim, u16 id) 678 { 679 /* 680 * This format has been mandated by the IEEE specifications, 681 * so this line may not be changed to use the __clear_bit() format. 682 */ 683 tim[id / 8] &= ~(1 << (id % 8)); 684 } 685 686 static inline bool __bss_tim_get(u8 *tim, u16 id) 687 { 688 /* 689 * This format has been mandated by the IEEE specifications, 690 * so this line may not be changed to use the test_bit() format. 691 */ 692 return tim[id / 8] & (1 << (id % 8)); 693 } 694 695 static unsigned long ieee80211_tids_for_ac(int ac) 696 { 697 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 698 switch (ac) { 699 case IEEE80211_AC_VO: 700 return BIT(6) | BIT(7); 701 case IEEE80211_AC_VI: 702 return BIT(4) | BIT(5); 703 case IEEE80211_AC_BE: 704 return BIT(0) | BIT(3); 705 case IEEE80211_AC_BK: 706 return BIT(1) | BIT(2); 707 default: 708 WARN_ON(1); 709 return 0; 710 } 711 } 712 713 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 714 { 715 struct ieee80211_local *local = sta->local; 716 struct ps_data *ps; 717 bool indicate_tim = false; 718 u8 ignore_for_tim = sta->sta.uapsd_queues; 719 int ac; 720 u16 id = sta->sta.aid; 721 722 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 723 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 724 if (WARN_ON_ONCE(!sta->sdata->bss)) 725 return; 726 727 ps = &sta->sdata->bss->ps; 728 #ifdef CONFIG_MAC80211_MESH 729 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 730 ps = &sta->sdata->u.mesh.ps; 731 #endif 732 } else { 733 return; 734 } 735 736 /* No need to do anything if the driver does all */ 737 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 738 return; 739 740 if (sta->dead) 741 goto done; 742 743 /* 744 * If all ACs are delivery-enabled then we should build 745 * the TIM bit for all ACs anyway; if only some are then 746 * we ignore those and build the TIM bit using only the 747 * non-enabled ones. 748 */ 749 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 750 ignore_for_tim = 0; 751 752 if (ignore_pending) 753 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 754 755 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 756 unsigned long tids; 757 758 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 759 continue; 760 761 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 762 !skb_queue_empty(&sta->ps_tx_buf[ac]); 763 if (indicate_tim) 764 break; 765 766 tids = ieee80211_tids_for_ac(ac); 767 768 indicate_tim |= 769 sta->driver_buffered_tids & tids; 770 indicate_tim |= 771 sta->txq_buffered_tids & tids; 772 } 773 774 done: 775 spin_lock_bh(&local->tim_lock); 776 777 if (indicate_tim == __bss_tim_get(ps->tim, id)) 778 goto out_unlock; 779 780 if (indicate_tim) 781 __bss_tim_set(ps->tim, id); 782 else 783 __bss_tim_clear(ps->tim, id); 784 785 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 786 local->tim_in_locked_section = true; 787 drv_set_tim(local, &sta->sta, indicate_tim); 788 local->tim_in_locked_section = false; 789 } 790 791 out_unlock: 792 spin_unlock_bh(&local->tim_lock); 793 } 794 795 void sta_info_recalc_tim(struct sta_info *sta) 796 { 797 __sta_info_recalc_tim(sta, false); 798 } 799 800 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 801 { 802 struct ieee80211_tx_info *info; 803 int timeout; 804 805 if (!skb) 806 return false; 807 808 info = IEEE80211_SKB_CB(skb); 809 810 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 811 timeout = (sta->listen_interval * 812 sta->sdata->vif.bss_conf.beacon_int * 813 32 / 15625) * HZ; 814 if (timeout < STA_TX_BUFFER_EXPIRE) 815 timeout = STA_TX_BUFFER_EXPIRE; 816 return time_after(jiffies, info->control.jiffies + timeout); 817 } 818 819 820 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 821 struct sta_info *sta, int ac) 822 { 823 unsigned long flags; 824 struct sk_buff *skb; 825 826 /* 827 * First check for frames that should expire on the filtered 828 * queue. Frames here were rejected by the driver and are on 829 * a separate queue to avoid reordering with normal PS-buffered 830 * frames. They also aren't accounted for right now in the 831 * total_ps_buffered counter. 832 */ 833 for (;;) { 834 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 835 skb = skb_peek(&sta->tx_filtered[ac]); 836 if (sta_info_buffer_expired(sta, skb)) 837 skb = __skb_dequeue(&sta->tx_filtered[ac]); 838 else 839 skb = NULL; 840 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 841 842 /* 843 * Frames are queued in order, so if this one 844 * hasn't expired yet we can stop testing. If 845 * we actually reached the end of the queue we 846 * also need to stop, of course. 847 */ 848 if (!skb) 849 break; 850 ieee80211_free_txskb(&local->hw, skb); 851 } 852 853 /* 854 * Now also check the normal PS-buffered queue, this will 855 * only find something if the filtered queue was emptied 856 * since the filtered frames are all before the normal PS 857 * buffered frames. 858 */ 859 for (;;) { 860 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 861 skb = skb_peek(&sta->ps_tx_buf[ac]); 862 if (sta_info_buffer_expired(sta, skb)) 863 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 864 else 865 skb = NULL; 866 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 867 868 /* 869 * frames are queued in order, so if this one 870 * hasn't expired yet (or we reached the end of 871 * the queue) we can stop testing 872 */ 873 if (!skb) 874 break; 875 876 local->total_ps_buffered--; 877 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 878 sta->sta.addr); 879 ieee80211_free_txskb(&local->hw, skb); 880 } 881 882 /* 883 * Finally, recalculate the TIM bit for this station -- it might 884 * now be clear because the station was too slow to retrieve its 885 * frames. 886 */ 887 sta_info_recalc_tim(sta); 888 889 /* 890 * Return whether there are any frames still buffered, this is 891 * used to check whether the cleanup timer still needs to run, 892 * if there are no frames we don't need to rearm the timer. 893 */ 894 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 895 skb_queue_empty(&sta->tx_filtered[ac])); 896 } 897 898 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 899 struct sta_info *sta) 900 { 901 bool have_buffered = false; 902 int ac; 903 904 /* This is only necessary for stations on BSS/MBSS interfaces */ 905 if (!sta->sdata->bss && 906 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 907 return false; 908 909 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 910 have_buffered |= 911 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 912 913 return have_buffered; 914 } 915 916 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 917 { 918 struct ieee80211_local *local; 919 struct ieee80211_sub_if_data *sdata; 920 int ret; 921 922 might_sleep(); 923 924 if (!sta) 925 return -ENOENT; 926 927 local = sta->local; 928 sdata = sta->sdata; 929 930 lockdep_assert_held(&local->sta_mtx); 931 932 /* 933 * Before removing the station from the driver and 934 * rate control, it might still start new aggregation 935 * sessions -- block that to make sure the tear-down 936 * will be sufficient. 937 */ 938 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 939 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 940 941 /* 942 * Before removing the station from the driver there might be pending 943 * rx frames on RSS queues sent prior to the disassociation - wait for 944 * all such frames to be processed. 945 */ 946 drv_sync_rx_queues(local, sta); 947 948 ret = sta_info_hash_del(local, sta); 949 if (WARN_ON(ret)) 950 return ret; 951 952 /* 953 * for TDLS peers, make sure to return to the base channel before 954 * removal. 955 */ 956 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 957 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 958 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 959 } 960 961 list_del_rcu(&sta->list); 962 sta->removed = true; 963 964 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 965 966 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 967 rcu_access_pointer(sdata->u.vlan.sta) == sta) 968 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 969 970 return 0; 971 } 972 973 static void __sta_info_destroy_part2(struct sta_info *sta) 974 { 975 struct ieee80211_local *local = sta->local; 976 struct ieee80211_sub_if_data *sdata = sta->sdata; 977 struct station_info *sinfo; 978 int ret; 979 980 /* 981 * NOTE: This assumes at least synchronize_net() was done 982 * after _part1 and before _part2! 983 */ 984 985 might_sleep(); 986 lockdep_assert_held(&local->sta_mtx); 987 988 /* now keys can no longer be reached */ 989 ieee80211_free_sta_keys(local, sta); 990 991 /* disable TIM bit - last chance to tell driver */ 992 __sta_info_recalc_tim(sta, true); 993 994 sta->dead = true; 995 996 local->num_sta--; 997 local->sta_generation++; 998 999 while (sta->sta_state > IEEE80211_STA_NONE) { 1000 ret = sta_info_move_state(sta, sta->sta_state - 1); 1001 if (ret) { 1002 WARN_ON_ONCE(1); 1003 break; 1004 } 1005 } 1006 1007 if (sta->uploaded) { 1008 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 1009 IEEE80211_STA_NOTEXIST); 1010 WARN_ON_ONCE(ret != 0); 1011 } 1012 1013 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 1014 1015 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 1016 if (sinfo) 1017 sta_set_sinfo(sta, sinfo, true); 1018 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 1019 kfree(sinfo); 1020 1021 rate_control_remove_sta_debugfs(sta); 1022 ieee80211_sta_debugfs_remove(sta); 1023 1024 cleanup_single_sta(sta); 1025 } 1026 1027 int __must_check __sta_info_destroy(struct sta_info *sta) 1028 { 1029 int err = __sta_info_destroy_part1(sta); 1030 1031 if (err) 1032 return err; 1033 1034 synchronize_net(); 1035 1036 __sta_info_destroy_part2(sta); 1037 1038 return 0; 1039 } 1040 1041 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1042 { 1043 struct sta_info *sta; 1044 int ret; 1045 1046 mutex_lock(&sdata->local->sta_mtx); 1047 sta = sta_info_get(sdata, addr); 1048 ret = __sta_info_destroy(sta); 1049 mutex_unlock(&sdata->local->sta_mtx); 1050 1051 return ret; 1052 } 1053 1054 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1055 const u8 *addr) 1056 { 1057 struct sta_info *sta; 1058 int ret; 1059 1060 mutex_lock(&sdata->local->sta_mtx); 1061 sta = sta_info_get_bss(sdata, addr); 1062 ret = __sta_info_destroy(sta); 1063 mutex_unlock(&sdata->local->sta_mtx); 1064 1065 return ret; 1066 } 1067 1068 static void sta_info_cleanup(struct timer_list *t) 1069 { 1070 struct ieee80211_local *local = from_timer(local, t, sta_cleanup); 1071 struct sta_info *sta; 1072 bool timer_needed = false; 1073 1074 rcu_read_lock(); 1075 list_for_each_entry_rcu(sta, &local->sta_list, list) 1076 if (sta_info_cleanup_expire_buffered(local, sta)) 1077 timer_needed = true; 1078 rcu_read_unlock(); 1079 1080 if (local->quiescing) 1081 return; 1082 1083 if (!timer_needed) 1084 return; 1085 1086 mod_timer(&local->sta_cleanup, 1087 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1088 } 1089 1090 int sta_info_init(struct ieee80211_local *local) 1091 { 1092 int err; 1093 1094 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1095 if (err) 1096 return err; 1097 1098 spin_lock_init(&local->tim_lock); 1099 mutex_init(&local->sta_mtx); 1100 INIT_LIST_HEAD(&local->sta_list); 1101 1102 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); 1103 return 0; 1104 } 1105 1106 void sta_info_stop(struct ieee80211_local *local) 1107 { 1108 del_timer_sync(&local->sta_cleanup); 1109 rhltable_destroy(&local->sta_hash); 1110 } 1111 1112 1113 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1114 { 1115 struct ieee80211_local *local = sdata->local; 1116 struct sta_info *sta, *tmp; 1117 LIST_HEAD(free_list); 1118 int ret = 0; 1119 1120 might_sleep(); 1121 1122 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1123 WARN_ON(vlans && !sdata->bss); 1124 1125 mutex_lock(&local->sta_mtx); 1126 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1127 if (sdata == sta->sdata || 1128 (vlans && sdata->bss == sta->sdata->bss)) { 1129 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1130 list_add(&sta->free_list, &free_list); 1131 ret++; 1132 } 1133 } 1134 1135 if (!list_empty(&free_list)) { 1136 synchronize_net(); 1137 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1138 __sta_info_destroy_part2(sta); 1139 } 1140 mutex_unlock(&local->sta_mtx); 1141 1142 return ret; 1143 } 1144 1145 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1146 unsigned long exp_time) 1147 { 1148 struct ieee80211_local *local = sdata->local; 1149 struct sta_info *sta, *tmp; 1150 1151 mutex_lock(&local->sta_mtx); 1152 1153 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1154 unsigned long last_active = ieee80211_sta_last_active(sta); 1155 1156 if (sdata != sta->sdata) 1157 continue; 1158 1159 if (time_is_before_jiffies(last_active + exp_time)) { 1160 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1161 sta->sta.addr); 1162 1163 if (ieee80211_vif_is_mesh(&sdata->vif) && 1164 test_sta_flag(sta, WLAN_STA_PS_STA)) 1165 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1166 1167 WARN_ON(__sta_info_destroy(sta)); 1168 } 1169 } 1170 1171 mutex_unlock(&local->sta_mtx); 1172 } 1173 1174 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1175 const u8 *addr, 1176 const u8 *localaddr) 1177 { 1178 struct ieee80211_local *local = hw_to_local(hw); 1179 struct rhlist_head *tmp; 1180 struct sta_info *sta; 1181 1182 /* 1183 * Just return a random station if localaddr is NULL 1184 * ... first in list. 1185 */ 1186 for_each_sta_info(local, addr, sta, tmp) { 1187 if (localaddr && 1188 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1189 continue; 1190 if (!sta->uploaded) 1191 return NULL; 1192 return &sta->sta; 1193 } 1194 1195 return NULL; 1196 } 1197 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1198 1199 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1200 const u8 *addr) 1201 { 1202 struct sta_info *sta; 1203 1204 if (!vif) 1205 return NULL; 1206 1207 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1208 if (!sta) 1209 return NULL; 1210 1211 if (!sta->uploaded) 1212 return NULL; 1213 1214 return &sta->sta; 1215 } 1216 EXPORT_SYMBOL(ieee80211_find_sta); 1217 1218 /* powersave support code */ 1219 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1220 { 1221 struct ieee80211_sub_if_data *sdata = sta->sdata; 1222 struct ieee80211_local *local = sdata->local; 1223 struct sk_buff_head pending; 1224 int filtered = 0, buffered = 0, ac, i; 1225 unsigned long flags; 1226 struct ps_data *ps; 1227 1228 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1229 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1230 u.ap); 1231 1232 if (sdata->vif.type == NL80211_IFTYPE_AP) 1233 ps = &sdata->bss->ps; 1234 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1235 ps = &sdata->u.mesh.ps; 1236 else 1237 return; 1238 1239 clear_sta_flag(sta, WLAN_STA_SP); 1240 1241 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1242 sta->driver_buffered_tids = 0; 1243 sta->txq_buffered_tids = 0; 1244 1245 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1246 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1247 1248 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1249 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) 1250 continue; 1251 1252 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); 1253 } 1254 1255 skb_queue_head_init(&pending); 1256 1257 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1258 spin_lock(&sta->ps_lock); 1259 /* Send all buffered frames to the station */ 1260 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1261 int count = skb_queue_len(&pending), tmp; 1262 1263 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1264 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1265 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1266 tmp = skb_queue_len(&pending); 1267 filtered += tmp - count; 1268 count = tmp; 1269 1270 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1271 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1272 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1273 tmp = skb_queue_len(&pending); 1274 buffered += tmp - count; 1275 } 1276 1277 ieee80211_add_pending_skbs(local, &pending); 1278 1279 /* now we're no longer in the deliver code */ 1280 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1281 1282 /* The station might have polled and then woken up before we responded, 1283 * so clear these flags now to avoid them sticking around. 1284 */ 1285 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1286 clear_sta_flag(sta, WLAN_STA_UAPSD); 1287 spin_unlock(&sta->ps_lock); 1288 1289 atomic_dec(&ps->num_sta_ps); 1290 1291 /* This station just woke up and isn't aware of our SMPS state */ 1292 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1293 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1294 sdata->smps_mode) && 1295 sta->known_smps_mode != sdata->bss->req_smps && 1296 sta_info_tx_streams(sta) != 1) { 1297 ht_dbg(sdata, 1298 "%pM just woke up and MIMO capable - update SMPS\n", 1299 sta->sta.addr); 1300 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1301 sta->sta.addr, 1302 sdata->vif.bss_conf.bssid); 1303 } 1304 1305 local->total_ps_buffered -= buffered; 1306 1307 sta_info_recalc_tim(sta); 1308 1309 ps_dbg(sdata, 1310 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1311 sta->sta.addr, sta->sta.aid, filtered, buffered); 1312 1313 ieee80211_check_fast_xmit(sta); 1314 } 1315 1316 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1317 enum ieee80211_frame_release_type reason, 1318 bool call_driver, bool more_data) 1319 { 1320 struct ieee80211_sub_if_data *sdata = sta->sdata; 1321 struct ieee80211_local *local = sdata->local; 1322 struct ieee80211_qos_hdr *nullfunc; 1323 struct sk_buff *skb; 1324 int size = sizeof(*nullfunc); 1325 __le16 fc; 1326 bool qos = sta->sta.wme; 1327 struct ieee80211_tx_info *info; 1328 struct ieee80211_chanctx_conf *chanctx_conf; 1329 1330 /* Don't send NDPs when STA is connected HE */ 1331 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1332 !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE)) 1333 return; 1334 1335 if (qos) { 1336 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1337 IEEE80211_STYPE_QOS_NULLFUNC | 1338 IEEE80211_FCTL_FROMDS); 1339 } else { 1340 size -= 2; 1341 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1342 IEEE80211_STYPE_NULLFUNC | 1343 IEEE80211_FCTL_FROMDS); 1344 } 1345 1346 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1347 if (!skb) 1348 return; 1349 1350 skb_reserve(skb, local->hw.extra_tx_headroom); 1351 1352 nullfunc = skb_put(skb, size); 1353 nullfunc->frame_control = fc; 1354 nullfunc->duration_id = 0; 1355 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1356 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1357 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1358 nullfunc->seq_ctrl = 0; 1359 1360 skb->priority = tid; 1361 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1362 if (qos) { 1363 nullfunc->qos_ctrl = cpu_to_le16(tid); 1364 1365 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1366 nullfunc->qos_ctrl |= 1367 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1368 if (more_data) 1369 nullfunc->frame_control |= 1370 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1371 } 1372 } 1373 1374 info = IEEE80211_SKB_CB(skb); 1375 1376 /* 1377 * Tell TX path to send this frame even though the 1378 * STA may still remain is PS mode after this frame 1379 * exchange. Also set EOSP to indicate this packet 1380 * ends the poll/service period. 1381 */ 1382 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1383 IEEE80211_TX_STATUS_EOSP | 1384 IEEE80211_TX_CTL_REQ_TX_STATUS; 1385 1386 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1387 1388 if (call_driver) 1389 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1390 reason, false); 1391 1392 skb->dev = sdata->dev; 1393 1394 rcu_read_lock(); 1395 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1396 if (WARN_ON(!chanctx_conf)) { 1397 rcu_read_unlock(); 1398 kfree_skb(skb); 1399 return; 1400 } 1401 1402 info->band = chanctx_conf->def.chan->band; 1403 ieee80211_xmit(sdata, sta, skb, 0); 1404 rcu_read_unlock(); 1405 } 1406 1407 static int find_highest_prio_tid(unsigned long tids) 1408 { 1409 /* lower 3 TIDs aren't ordered perfectly */ 1410 if (tids & 0xF8) 1411 return fls(tids) - 1; 1412 /* TID 0 is BE just like TID 3 */ 1413 if (tids & BIT(0)) 1414 return 0; 1415 return fls(tids) - 1; 1416 } 1417 1418 /* Indicates if the MORE_DATA bit should be set in the last 1419 * frame obtained by ieee80211_sta_ps_get_frames. 1420 * Note that driver_release_tids is relevant only if 1421 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1422 */ 1423 static bool 1424 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1425 enum ieee80211_frame_release_type reason, 1426 unsigned long driver_release_tids) 1427 { 1428 int ac; 1429 1430 /* If the driver has data on more than one TID then 1431 * certainly there's more data if we release just a 1432 * single frame now (from a single TID). This will 1433 * only happen for PS-Poll. 1434 */ 1435 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1436 hweight16(driver_release_tids) > 1) 1437 return true; 1438 1439 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1440 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1441 continue; 1442 1443 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1444 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1445 return true; 1446 } 1447 1448 return false; 1449 } 1450 1451 static void 1452 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1453 enum ieee80211_frame_release_type reason, 1454 struct sk_buff_head *frames, 1455 unsigned long *driver_release_tids) 1456 { 1457 struct ieee80211_sub_if_data *sdata = sta->sdata; 1458 struct ieee80211_local *local = sdata->local; 1459 int ac; 1460 1461 /* Get response frame(s) and more data bit for the last one. */ 1462 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1463 unsigned long tids; 1464 1465 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1466 continue; 1467 1468 tids = ieee80211_tids_for_ac(ac); 1469 1470 /* if we already have frames from software, then we can't also 1471 * release from hardware queues 1472 */ 1473 if (skb_queue_empty(frames)) { 1474 *driver_release_tids |= 1475 sta->driver_buffered_tids & tids; 1476 *driver_release_tids |= sta->txq_buffered_tids & tids; 1477 } 1478 1479 if (!*driver_release_tids) { 1480 struct sk_buff *skb; 1481 1482 while (n_frames > 0) { 1483 skb = skb_dequeue(&sta->tx_filtered[ac]); 1484 if (!skb) { 1485 skb = skb_dequeue( 1486 &sta->ps_tx_buf[ac]); 1487 if (skb) 1488 local->total_ps_buffered--; 1489 } 1490 if (!skb) 1491 break; 1492 n_frames--; 1493 __skb_queue_tail(frames, skb); 1494 } 1495 } 1496 1497 /* If we have more frames buffered on this AC, then abort the 1498 * loop since we can't send more data from other ACs before 1499 * the buffered frames from this. 1500 */ 1501 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1502 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1503 break; 1504 } 1505 } 1506 1507 static void 1508 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1509 int n_frames, u8 ignored_acs, 1510 enum ieee80211_frame_release_type reason) 1511 { 1512 struct ieee80211_sub_if_data *sdata = sta->sdata; 1513 struct ieee80211_local *local = sdata->local; 1514 unsigned long driver_release_tids = 0; 1515 struct sk_buff_head frames; 1516 bool more_data; 1517 1518 /* Service or PS-Poll period starts */ 1519 set_sta_flag(sta, WLAN_STA_SP); 1520 1521 __skb_queue_head_init(&frames); 1522 1523 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1524 &frames, &driver_release_tids); 1525 1526 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1527 1528 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1529 driver_release_tids = 1530 BIT(find_highest_prio_tid(driver_release_tids)); 1531 1532 if (skb_queue_empty(&frames) && !driver_release_tids) { 1533 int tid, ac; 1534 1535 /* 1536 * For PS-Poll, this can only happen due to a race condition 1537 * when we set the TIM bit and the station notices it, but 1538 * before it can poll for the frame we expire it. 1539 * 1540 * For uAPSD, this is said in the standard (11.2.1.5 h): 1541 * At each unscheduled SP for a non-AP STA, the AP shall 1542 * attempt to transmit at least one MSDU or MMPDU, but no 1543 * more than the value specified in the Max SP Length field 1544 * in the QoS Capability element from delivery-enabled ACs, 1545 * that are destined for the non-AP STA. 1546 * 1547 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1548 */ 1549 1550 /* This will evaluate to 1, 3, 5 or 7. */ 1551 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1552 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1553 break; 1554 tid = 7 - 2 * ac; 1555 1556 ieee80211_send_null_response(sta, tid, reason, true, false); 1557 } else if (!driver_release_tids) { 1558 struct sk_buff_head pending; 1559 struct sk_buff *skb; 1560 int num = 0; 1561 u16 tids = 0; 1562 bool need_null = false; 1563 1564 skb_queue_head_init(&pending); 1565 1566 while ((skb = __skb_dequeue(&frames))) { 1567 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1568 struct ieee80211_hdr *hdr = (void *) skb->data; 1569 u8 *qoshdr = NULL; 1570 1571 num++; 1572 1573 /* 1574 * Tell TX path to send this frame even though the 1575 * STA may still remain is PS mode after this frame 1576 * exchange. 1577 */ 1578 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1579 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1580 1581 /* 1582 * Use MoreData flag to indicate whether there are 1583 * more buffered frames for this STA 1584 */ 1585 if (more_data || !skb_queue_empty(&frames)) 1586 hdr->frame_control |= 1587 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1588 else 1589 hdr->frame_control &= 1590 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1591 1592 if (ieee80211_is_data_qos(hdr->frame_control) || 1593 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1594 qoshdr = ieee80211_get_qos_ctl(hdr); 1595 1596 tids |= BIT(skb->priority); 1597 1598 __skb_queue_tail(&pending, skb); 1599 1600 /* end service period after last frame or add one */ 1601 if (!skb_queue_empty(&frames)) 1602 continue; 1603 1604 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1605 /* for PS-Poll, there's only one frame */ 1606 info->flags |= IEEE80211_TX_STATUS_EOSP | 1607 IEEE80211_TX_CTL_REQ_TX_STATUS; 1608 break; 1609 } 1610 1611 /* For uAPSD, things are a bit more complicated. If the 1612 * last frame has a QoS header (i.e. is a QoS-data or 1613 * QoS-nulldata frame) then just set the EOSP bit there 1614 * and be done. 1615 * If the frame doesn't have a QoS header (which means 1616 * it should be a bufferable MMPDU) then we can't set 1617 * the EOSP bit in the QoS header; add a QoS-nulldata 1618 * frame to the list to send it after the MMPDU. 1619 * 1620 * Note that this code is only in the mac80211-release 1621 * code path, we assume that the driver will not buffer 1622 * anything but QoS-data frames, or if it does, will 1623 * create the QoS-nulldata frame by itself if needed. 1624 * 1625 * Cf. 802.11-2012 10.2.1.10 (c). 1626 */ 1627 if (qoshdr) { 1628 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1629 1630 info->flags |= IEEE80211_TX_STATUS_EOSP | 1631 IEEE80211_TX_CTL_REQ_TX_STATUS; 1632 } else { 1633 /* The standard isn't completely clear on this 1634 * as it says the more-data bit should be set 1635 * if there are more BUs. The QoS-Null frame 1636 * we're about to send isn't buffered yet, we 1637 * only create it below, but let's pretend it 1638 * was buffered just in case some clients only 1639 * expect more-data=0 when eosp=1. 1640 */ 1641 hdr->frame_control |= 1642 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1643 need_null = true; 1644 num++; 1645 } 1646 break; 1647 } 1648 1649 drv_allow_buffered_frames(local, sta, tids, num, 1650 reason, more_data); 1651 1652 ieee80211_add_pending_skbs(local, &pending); 1653 1654 if (need_null) 1655 ieee80211_send_null_response( 1656 sta, find_highest_prio_tid(tids), 1657 reason, false, false); 1658 1659 sta_info_recalc_tim(sta); 1660 } else { 1661 int tid; 1662 1663 /* 1664 * We need to release a frame that is buffered somewhere in the 1665 * driver ... it'll have to handle that. 1666 * Note that the driver also has to check the number of frames 1667 * on the TIDs we're releasing from - if there are more than 1668 * n_frames it has to set the more-data bit (if we didn't ask 1669 * it to set it anyway due to other buffered frames); if there 1670 * are fewer than n_frames it has to make sure to adjust that 1671 * to allow the service period to end properly. 1672 */ 1673 drv_release_buffered_frames(local, sta, driver_release_tids, 1674 n_frames, reason, more_data); 1675 1676 /* 1677 * Note that we don't recalculate the TIM bit here as it would 1678 * most likely have no effect at all unless the driver told us 1679 * that the TID(s) became empty before returning here from the 1680 * release function. 1681 * Either way, however, when the driver tells us that the TID(s) 1682 * became empty or we find that a txq became empty, we'll do the 1683 * TIM recalculation. 1684 */ 1685 1686 if (!sta->sta.txq[0]) 1687 return; 1688 1689 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1690 if (!sta->sta.txq[tid] || 1691 !(driver_release_tids & BIT(tid)) || 1692 txq_has_queue(sta->sta.txq[tid])) 1693 continue; 1694 1695 sta_info_recalc_tim(sta); 1696 break; 1697 } 1698 } 1699 } 1700 1701 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1702 { 1703 u8 ignore_for_response = sta->sta.uapsd_queues; 1704 1705 /* 1706 * If all ACs are delivery-enabled then we should reply 1707 * from any of them, if only some are enabled we reply 1708 * only from the non-enabled ones. 1709 */ 1710 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1711 ignore_for_response = 0; 1712 1713 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1714 IEEE80211_FRAME_RELEASE_PSPOLL); 1715 } 1716 1717 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1718 { 1719 int n_frames = sta->sta.max_sp; 1720 u8 delivery_enabled = sta->sta.uapsd_queues; 1721 1722 /* 1723 * If we ever grow support for TSPEC this might happen if 1724 * the TSPEC update from hostapd comes in between a trigger 1725 * frame setting WLAN_STA_UAPSD in the RX path and this 1726 * actually getting called. 1727 */ 1728 if (!delivery_enabled) 1729 return; 1730 1731 switch (sta->sta.max_sp) { 1732 case 1: 1733 n_frames = 2; 1734 break; 1735 case 2: 1736 n_frames = 4; 1737 break; 1738 case 3: 1739 n_frames = 6; 1740 break; 1741 case 0: 1742 /* XXX: what is a good value? */ 1743 n_frames = 128; 1744 break; 1745 } 1746 1747 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1748 IEEE80211_FRAME_RELEASE_UAPSD); 1749 } 1750 1751 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1752 struct ieee80211_sta *pubsta, bool block) 1753 { 1754 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1755 1756 trace_api_sta_block_awake(sta->local, pubsta, block); 1757 1758 if (block) { 1759 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1760 ieee80211_clear_fast_xmit(sta); 1761 return; 1762 } 1763 1764 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1765 return; 1766 1767 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1768 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1769 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1770 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1771 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1772 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1773 /* must be asleep in this case */ 1774 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1775 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1776 } else { 1777 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1778 ieee80211_check_fast_xmit(sta); 1779 } 1780 } 1781 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1782 1783 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1784 { 1785 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1786 struct ieee80211_local *local = sta->local; 1787 1788 trace_api_eosp(local, pubsta); 1789 1790 clear_sta_flag(sta, WLAN_STA_SP); 1791 } 1792 EXPORT_SYMBOL(ieee80211_sta_eosp); 1793 1794 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1795 { 1796 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1797 enum ieee80211_frame_release_type reason; 1798 bool more_data; 1799 1800 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1801 1802 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1803 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1804 reason, 0); 1805 1806 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1807 } 1808 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1809 1810 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1811 u8 tid, bool buffered) 1812 { 1813 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1814 1815 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1816 return; 1817 1818 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1819 1820 if (buffered) 1821 set_bit(tid, &sta->driver_buffered_tids); 1822 else 1823 clear_bit(tid, &sta->driver_buffered_tids); 1824 1825 sta_info_recalc_tim(sta); 1826 } 1827 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1828 1829 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, 1830 u32 tx_airtime, u32 rx_airtime) 1831 { 1832 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1833 struct ieee80211_local *local = sta->sdata->local; 1834 u8 ac = ieee80211_ac_from_tid(tid); 1835 u32 airtime = 0; 1836 1837 if (sta->local->airtime_flags & AIRTIME_USE_TX) 1838 airtime += tx_airtime; 1839 if (sta->local->airtime_flags & AIRTIME_USE_RX) 1840 airtime += rx_airtime; 1841 1842 spin_lock_bh(&local->active_txq_lock[ac]); 1843 sta->airtime[ac].tx_airtime += tx_airtime; 1844 sta->airtime[ac].rx_airtime += rx_airtime; 1845 sta->airtime[ac].deficit -= airtime; 1846 spin_unlock_bh(&local->active_txq_lock[ac]); 1847 } 1848 EXPORT_SYMBOL(ieee80211_sta_register_airtime); 1849 1850 int sta_info_move_state(struct sta_info *sta, 1851 enum ieee80211_sta_state new_state) 1852 { 1853 might_sleep(); 1854 1855 if (sta->sta_state == new_state) 1856 return 0; 1857 1858 /* check allowed transitions first */ 1859 1860 switch (new_state) { 1861 case IEEE80211_STA_NONE: 1862 if (sta->sta_state != IEEE80211_STA_AUTH) 1863 return -EINVAL; 1864 break; 1865 case IEEE80211_STA_AUTH: 1866 if (sta->sta_state != IEEE80211_STA_NONE && 1867 sta->sta_state != IEEE80211_STA_ASSOC) 1868 return -EINVAL; 1869 break; 1870 case IEEE80211_STA_ASSOC: 1871 if (sta->sta_state != IEEE80211_STA_AUTH && 1872 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1873 return -EINVAL; 1874 break; 1875 case IEEE80211_STA_AUTHORIZED: 1876 if (sta->sta_state != IEEE80211_STA_ASSOC) 1877 return -EINVAL; 1878 break; 1879 default: 1880 WARN(1, "invalid state %d", new_state); 1881 return -EINVAL; 1882 } 1883 1884 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1885 sta->sta.addr, new_state); 1886 1887 /* 1888 * notify the driver before the actual changes so it can 1889 * fail the transition 1890 */ 1891 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1892 int err = drv_sta_state(sta->local, sta->sdata, sta, 1893 sta->sta_state, new_state); 1894 if (err) 1895 return err; 1896 } 1897 1898 /* reflect the change in all state variables */ 1899 1900 switch (new_state) { 1901 case IEEE80211_STA_NONE: 1902 if (sta->sta_state == IEEE80211_STA_AUTH) 1903 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1904 break; 1905 case IEEE80211_STA_AUTH: 1906 if (sta->sta_state == IEEE80211_STA_NONE) { 1907 set_bit(WLAN_STA_AUTH, &sta->_flags); 1908 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 1909 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1910 ieee80211_recalc_min_chandef(sta->sdata); 1911 if (!sta->sta.support_p2p_ps) 1912 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 1913 } 1914 break; 1915 case IEEE80211_STA_ASSOC: 1916 if (sta->sta_state == IEEE80211_STA_AUTH) { 1917 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1918 ieee80211_recalc_min_chandef(sta->sdata); 1919 if (!sta->sta.support_p2p_ps) 1920 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 1921 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1922 ieee80211_vif_dec_num_mcast(sta->sdata); 1923 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1924 ieee80211_clear_fast_xmit(sta); 1925 ieee80211_clear_fast_rx(sta); 1926 } 1927 break; 1928 case IEEE80211_STA_AUTHORIZED: 1929 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1930 ieee80211_vif_inc_num_mcast(sta->sdata); 1931 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1932 ieee80211_check_fast_xmit(sta); 1933 ieee80211_check_fast_rx(sta); 1934 } 1935 break; 1936 default: 1937 break; 1938 } 1939 1940 sta->sta_state = new_state; 1941 1942 return 0; 1943 } 1944 1945 u8 sta_info_tx_streams(struct sta_info *sta) 1946 { 1947 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1948 u8 rx_streams; 1949 1950 if (!sta->sta.ht_cap.ht_supported) 1951 return 1; 1952 1953 if (sta->sta.vht_cap.vht_supported) { 1954 int i; 1955 u16 tx_mcs_map = 1956 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1957 1958 for (i = 7; i >= 0; i--) 1959 if ((tx_mcs_map & (0x3 << (i * 2))) != 1960 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1961 return i + 1; 1962 } 1963 1964 if (ht_cap->mcs.rx_mask[3]) 1965 rx_streams = 4; 1966 else if (ht_cap->mcs.rx_mask[2]) 1967 rx_streams = 3; 1968 else if (ht_cap->mcs.rx_mask[1]) 1969 rx_streams = 2; 1970 else 1971 rx_streams = 1; 1972 1973 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1974 return rx_streams; 1975 1976 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1977 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1978 } 1979 1980 static struct ieee80211_sta_rx_stats * 1981 sta_get_last_rx_stats(struct sta_info *sta) 1982 { 1983 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 1984 struct ieee80211_local *local = sta->local; 1985 int cpu; 1986 1987 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 1988 return stats; 1989 1990 for_each_possible_cpu(cpu) { 1991 struct ieee80211_sta_rx_stats *cpustats; 1992 1993 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 1994 1995 if (time_after(cpustats->last_rx, stats->last_rx)) 1996 stats = cpustats; 1997 } 1998 1999 return stats; 2000 } 2001 2002 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, 2003 struct rate_info *rinfo) 2004 { 2005 rinfo->bw = STA_STATS_GET(BW, rate); 2006 2007 switch (STA_STATS_GET(TYPE, rate)) { 2008 case STA_STATS_RATE_TYPE_VHT: 2009 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 2010 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 2011 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 2012 if (STA_STATS_GET(SGI, rate)) 2013 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2014 break; 2015 case STA_STATS_RATE_TYPE_HT: 2016 rinfo->flags = RATE_INFO_FLAGS_MCS; 2017 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 2018 if (STA_STATS_GET(SGI, rate)) 2019 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2020 break; 2021 case STA_STATS_RATE_TYPE_LEGACY: { 2022 struct ieee80211_supported_band *sband; 2023 u16 brate; 2024 unsigned int shift; 2025 int band = STA_STATS_GET(LEGACY_BAND, rate); 2026 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 2027 2028 sband = local->hw.wiphy->bands[band]; 2029 brate = sband->bitrates[rate_idx].bitrate; 2030 if (rinfo->bw == RATE_INFO_BW_5) 2031 shift = 2; 2032 else if (rinfo->bw == RATE_INFO_BW_10) 2033 shift = 1; 2034 else 2035 shift = 0; 2036 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 2037 break; 2038 } 2039 case STA_STATS_RATE_TYPE_HE: 2040 rinfo->flags = RATE_INFO_FLAGS_HE_MCS; 2041 rinfo->mcs = STA_STATS_GET(HE_MCS, rate); 2042 rinfo->nss = STA_STATS_GET(HE_NSS, rate); 2043 rinfo->he_gi = STA_STATS_GET(HE_GI, rate); 2044 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); 2045 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); 2046 break; 2047 } 2048 } 2049 2050 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2051 { 2052 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2053 2054 if (rate == STA_STATS_RATE_INVALID) 2055 return -EINVAL; 2056 2057 sta_stats_decode_rate(sta->local, rate, rinfo); 2058 return 0; 2059 } 2060 2061 static void sta_set_tidstats(struct sta_info *sta, 2062 struct cfg80211_tid_stats *tidstats, 2063 int tid) 2064 { 2065 struct ieee80211_local *local = sta->local; 2066 2067 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2068 unsigned int start; 2069 2070 do { 2071 start = u64_stats_fetch_begin(&sta->rx_stats.syncp); 2072 tidstats->rx_msdu = sta->rx_stats.msdu[tid]; 2073 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start)); 2074 2075 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2076 } 2077 2078 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2079 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2080 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2081 } 2082 2083 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2084 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2085 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2086 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2087 } 2088 2089 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2090 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2091 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2092 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2093 } 2094 2095 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) { 2096 spin_lock_bh(&local->fq.lock); 2097 rcu_read_lock(); 2098 2099 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); 2100 ieee80211_fill_txq_stats(&tidstats->txq_stats, 2101 to_txq_info(sta->sta.txq[tid])); 2102 2103 rcu_read_unlock(); 2104 spin_unlock_bh(&local->fq.lock); 2105 } 2106 } 2107 2108 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2109 { 2110 unsigned int start; 2111 u64 value; 2112 2113 do { 2114 start = u64_stats_fetch_begin(&rxstats->syncp); 2115 value = rxstats->bytes; 2116 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2117 2118 return value; 2119 } 2120 2121 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, 2122 bool tidstats) 2123 { 2124 struct ieee80211_sub_if_data *sdata = sta->sdata; 2125 struct ieee80211_local *local = sdata->local; 2126 u32 thr = 0; 2127 int i, ac, cpu; 2128 struct ieee80211_sta_rx_stats *last_rxstats; 2129 2130 last_rxstats = sta_get_last_rx_stats(sta); 2131 2132 sinfo->generation = sdata->local->sta_generation; 2133 2134 /* do before driver, so beacon filtering drivers have a 2135 * chance to e.g. just add the number of filtered beacons 2136 * (or just modify the value entirely, of course) 2137 */ 2138 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2139 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2140 2141 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2142 2143 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | 2144 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | 2145 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | 2146 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | 2147 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); 2148 2149 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2150 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2151 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); 2152 } 2153 2154 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2155 sinfo->inactive_time = 2156 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2157 2158 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | 2159 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { 2160 sinfo->tx_bytes = 0; 2161 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2162 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2163 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); 2164 } 2165 2166 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { 2167 sinfo->tx_packets = 0; 2168 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2169 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2170 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); 2171 } 2172 2173 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | 2174 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { 2175 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2176 2177 if (sta->pcpu_rx_stats) { 2178 for_each_possible_cpu(cpu) { 2179 struct ieee80211_sta_rx_stats *cpurxs; 2180 2181 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2182 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2183 } 2184 } 2185 2186 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); 2187 } 2188 2189 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { 2190 sinfo->rx_packets = sta->rx_stats.packets; 2191 if (sta->pcpu_rx_stats) { 2192 for_each_possible_cpu(cpu) { 2193 struct ieee80211_sta_rx_stats *cpurxs; 2194 2195 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2196 sinfo->rx_packets += cpurxs->packets; 2197 } 2198 } 2199 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 2200 } 2201 2202 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { 2203 sinfo->tx_retries = sta->status_stats.retry_count; 2204 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); 2205 } 2206 2207 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { 2208 sinfo->tx_failed = sta->status_stats.retry_failed; 2209 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); 2210 } 2211 2212 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { 2213 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2214 sinfo->rx_duration += sta->airtime[ac].rx_airtime; 2215 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 2216 } 2217 2218 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { 2219 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2220 sinfo->tx_duration += sta->airtime[ac].tx_airtime; 2221 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 2222 } 2223 2224 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { 2225 sinfo->airtime_weight = sta->airtime_weight; 2226 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); 2227 } 2228 2229 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2230 if (sta->pcpu_rx_stats) { 2231 for_each_possible_cpu(cpu) { 2232 struct ieee80211_sta_rx_stats *cpurxs; 2233 2234 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2235 sinfo->rx_dropped_misc += cpurxs->dropped; 2236 } 2237 } 2238 2239 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2240 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2241 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | 2242 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2243 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2244 } 2245 2246 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2247 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2248 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { 2249 sinfo->signal = (s8)last_rxstats->last_signal; 2250 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 2251 } 2252 2253 if (!sta->pcpu_rx_stats && 2254 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { 2255 sinfo->signal_avg = 2256 -ewma_signal_read(&sta->rx_stats_avg.signal); 2257 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 2258 } 2259 } 2260 2261 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2262 * the sta->rx_stats struct, so the check here is fine with and without 2263 * pcpu statistics 2264 */ 2265 if (last_rxstats->chains && 2266 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | 2267 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2268 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 2269 if (!sta->pcpu_rx_stats) 2270 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2271 2272 sinfo->chains = last_rxstats->chains; 2273 2274 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2275 sinfo->chain_signal[i] = 2276 last_rxstats->chain_signal_last[i]; 2277 sinfo->chain_signal_avg[i] = 2278 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2279 } 2280 } 2281 2282 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) { 2283 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2284 &sinfo->txrate); 2285 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 2286 } 2287 2288 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) { 2289 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2290 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); 2291 } 2292 2293 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { 2294 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 2295 sta_set_tidstats(sta, &sinfo->pertid[i], i); 2296 } 2297 2298 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2299 #ifdef CONFIG_MAC80211_MESH 2300 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | 2301 BIT_ULL(NL80211_STA_INFO_PLID) | 2302 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | 2303 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | 2304 BIT_ULL(NL80211_STA_INFO_PEER_PM) | 2305 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | 2306 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE); 2307 2308 sinfo->llid = sta->mesh->llid; 2309 sinfo->plid = sta->mesh->plid; 2310 sinfo->plink_state = sta->mesh->plink_state; 2311 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2312 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); 2313 sinfo->t_offset = sta->mesh->t_offset; 2314 } 2315 sinfo->local_pm = sta->mesh->local_pm; 2316 sinfo->peer_pm = sta->mesh->peer_pm; 2317 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2318 sinfo->connected_to_gate = sta->mesh->connected_to_gate; 2319 #endif 2320 } 2321 2322 sinfo->bss_param.flags = 0; 2323 if (sdata->vif.bss_conf.use_cts_prot) 2324 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2325 if (sdata->vif.bss_conf.use_short_preamble) 2326 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2327 if (sdata->vif.bss_conf.use_short_slot) 2328 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2329 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2330 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2331 2332 sinfo->sta_flags.set = 0; 2333 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2334 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2335 BIT(NL80211_STA_FLAG_WME) | 2336 BIT(NL80211_STA_FLAG_MFP) | 2337 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2338 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2339 BIT(NL80211_STA_FLAG_TDLS_PEER); 2340 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2341 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2342 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2343 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2344 if (sta->sta.wme) 2345 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2346 if (test_sta_flag(sta, WLAN_STA_MFP)) 2347 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2348 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2349 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2350 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2351 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2352 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2353 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2354 2355 thr = sta_get_expected_throughput(sta); 2356 2357 if (thr != 0) { 2358 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2359 sinfo->expected_throughput = thr; 2360 } 2361 2362 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && 2363 sta->status_stats.ack_signal_filled) { 2364 sinfo->ack_signal = sta->status_stats.last_ack_signal; 2365 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); 2366 } 2367 2368 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && 2369 sta->status_stats.ack_signal_filled) { 2370 sinfo->avg_ack_signal = 2371 -(s8)ewma_avg_signal_read( 2372 &sta->status_stats.avg_ack_signal); 2373 sinfo->filled |= 2374 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); 2375 } 2376 } 2377 2378 u32 sta_get_expected_throughput(struct sta_info *sta) 2379 { 2380 struct ieee80211_sub_if_data *sdata = sta->sdata; 2381 struct ieee80211_local *local = sdata->local; 2382 struct rate_control_ref *ref = NULL; 2383 u32 thr = 0; 2384 2385 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2386 ref = local->rate_ctrl; 2387 2388 /* check if the driver has a SW RC implementation */ 2389 if (ref && ref->ops->get_expected_throughput) 2390 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2391 else 2392 thr = drv_get_expected_throughput(local, sta); 2393 2394 return thr; 2395 } 2396 2397 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2398 { 2399 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2400 2401 if (time_after(stats->last_rx, sta->status_stats.last_ack)) 2402 return stats->last_rx; 2403 return sta->status_stats.last_ack; 2404 } 2405 2406 static void sta_update_codel_params(struct sta_info *sta, u32 thr) 2407 { 2408 if (!sta->sdata->local->ops->wake_tx_queue) 2409 return; 2410 2411 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { 2412 sta->cparams.target = MS2TIME(50); 2413 sta->cparams.interval = MS2TIME(300); 2414 sta->cparams.ecn = false; 2415 } else { 2416 sta->cparams.target = MS2TIME(20); 2417 sta->cparams.interval = MS2TIME(100); 2418 sta->cparams.ecn = true; 2419 } 2420 } 2421 2422 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, 2423 u32 thr) 2424 { 2425 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2426 2427 sta_update_codel_params(sta, thr); 2428 } 2429