xref: /openbmc/linux/net/mac80211/sta_info.c (revision 4f3db074)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
4  * Copyright 2013-2014  Intel Mobile Communications GmbH
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/etherdevice.h>
14 #include <linux/netdevice.h>
15 #include <linux/types.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/if_arp.h>
19 #include <linux/timer.h>
20 #include <linux/rtnetlink.h>
21 
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30 
31 /**
32  * DOC: STA information lifetime rules
33  *
34  * STA info structures (&struct sta_info) are managed in a hash table
35  * for faster lookup and a list for iteration. They are managed using
36  * RCU, i.e. access to the list and hash table is protected by RCU.
37  *
38  * Upon allocating a STA info structure with sta_info_alloc(), the caller
39  * owns that structure. It must then insert it into the hash table using
40  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41  * case (which acquires an rcu read section but must not be called from
42  * within one) will the pointer still be valid after the call. Note that
43  * the caller may not do much with the STA info before inserting it, in
44  * particular, it may not start any mesh peer link management or add
45  * encryption keys.
46  *
47  * When the insertion fails (sta_info_insert()) returns non-zero), the
48  * structure will have been freed by sta_info_insert()!
49  *
50  * Station entries are added by mac80211 when you establish a link with a
51  * peer. This means different things for the different type of interfaces
52  * we support. For a regular station this mean we add the AP sta when we
53  * receive an association response from the AP. For IBSS this occurs when
54  * get to know about a peer on the same IBSS. For WDS we add the sta for
55  * the peer immediately upon device open. When using AP mode we add stations
56  * for each respective station upon request from userspace through nl80211.
57  *
58  * In order to remove a STA info structure, various sta_info_destroy_*()
59  * calls are available.
60  *
61  * There is no concept of ownership on a STA entry, each structure is
62  * owned by the global hash table/list until it is removed. All users of
63  * the structure need to be RCU protected so that the structure won't be
64  * freed before they are done using it.
65  */
66 
67 static const struct rhashtable_params sta_rht_params = {
68 	.nelem_hint = 3, /* start small */
69 	.head_offset = offsetof(struct sta_info, hash_node),
70 	.key_offset = offsetof(struct sta_info, sta.addr),
71 	.key_len = ETH_ALEN,
72 	.hashfn = sta_addr_hash,
73 };
74 
75 /* Caller must hold local->sta_mtx */
76 static int sta_info_hash_del(struct ieee80211_local *local,
77 			     struct sta_info *sta)
78 {
79 	return rhashtable_remove_fast(&local->sta_hash, &sta->hash_node,
80 				      sta_rht_params);
81 }
82 
83 static void __cleanup_single_sta(struct sta_info *sta)
84 {
85 	int ac, i;
86 	struct tid_ampdu_tx *tid_tx;
87 	struct ieee80211_sub_if_data *sdata = sta->sdata;
88 	struct ieee80211_local *local = sdata->local;
89 	struct ps_data *ps;
90 
91 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
92 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
93 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
94 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
95 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
96 			ps = &sdata->bss->ps;
97 		else if (ieee80211_vif_is_mesh(&sdata->vif))
98 			ps = &sdata->u.mesh.ps;
99 		else
100 			return;
101 
102 		clear_sta_flag(sta, WLAN_STA_PS_STA);
103 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
104 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
105 
106 		atomic_dec(&ps->num_sta_ps);
107 	}
108 
109 	if (sta->sta.txq[0]) {
110 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
111 			struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
112 			int n = skb_queue_len(&txqi->queue);
113 
114 			ieee80211_purge_tx_queue(&local->hw, &txqi->queue);
115 			atomic_sub(n, &sdata->txqs_len[txqi->txq.ac]);
116 		}
117 	}
118 
119 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
120 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
121 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
122 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
123 	}
124 
125 	if (ieee80211_vif_is_mesh(&sdata->vif))
126 		mesh_sta_cleanup(sta);
127 
128 	cancel_work_sync(&sta->drv_deliver_wk);
129 
130 	/*
131 	 * Destroy aggregation state here. It would be nice to wait for the
132 	 * driver to finish aggregation stop and then clean up, but for now
133 	 * drivers have to handle aggregation stop being requested, followed
134 	 * directly by station destruction.
135 	 */
136 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
137 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
138 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
139 		if (!tid_tx)
140 			continue;
141 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
142 		kfree(tid_tx);
143 	}
144 }
145 
146 static void cleanup_single_sta(struct sta_info *sta)
147 {
148 	struct ieee80211_sub_if_data *sdata = sta->sdata;
149 	struct ieee80211_local *local = sdata->local;
150 
151 	__cleanup_single_sta(sta);
152 	sta_info_free(local, sta);
153 }
154 
155 /* protected by RCU */
156 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
157 			      const u8 *addr)
158 {
159 	struct ieee80211_local *local = sdata->local;
160 
161 	return rhashtable_lookup_fast(&local->sta_hash, addr, sta_rht_params);
162 }
163 
164 /*
165  * Get sta info either from the specified interface
166  * or from one of its vlans
167  */
168 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
169 				  const u8 *addr)
170 {
171 	struct ieee80211_local *local = sdata->local;
172 	struct sta_info *sta;
173 	struct rhash_head *tmp;
174 	const struct bucket_table *tbl;
175 
176 	rcu_read_lock();
177 	tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
178 
179 	for_each_sta_info(local, tbl, addr, sta, tmp) {
180 		if (sta->sdata == sdata ||
181 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
182 			rcu_read_unlock();
183 			/* this is safe as the caller must already hold
184 			 * another rcu read section or the mutex
185 			 */
186 			return sta;
187 		}
188 	}
189 	rcu_read_unlock();
190 	return NULL;
191 }
192 
193 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
194 				     int idx)
195 {
196 	struct ieee80211_local *local = sdata->local;
197 	struct sta_info *sta;
198 	int i = 0;
199 
200 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
201 		if (sdata != sta->sdata)
202 			continue;
203 		if (i < idx) {
204 			++i;
205 			continue;
206 		}
207 		return sta;
208 	}
209 
210 	return NULL;
211 }
212 
213 /**
214  * sta_info_free - free STA
215  *
216  * @local: pointer to the global information
217  * @sta: STA info to free
218  *
219  * This function must undo everything done by sta_info_alloc()
220  * that may happen before sta_info_insert(). It may only be
221  * called when sta_info_insert() has not been attempted (and
222  * if that fails, the station is freed anyway.)
223  */
224 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
225 {
226 	if (sta->rate_ctrl)
227 		rate_control_free_sta(sta);
228 
229 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
230 
231 	if (sta->sta.txq[0])
232 		kfree(to_txq_info(sta->sta.txq[0]));
233 	kfree(rcu_dereference_raw(sta->sta.rates));
234 	kfree(sta);
235 }
236 
237 /* Caller must hold local->sta_mtx */
238 static void sta_info_hash_add(struct ieee80211_local *local,
239 			      struct sta_info *sta)
240 {
241 	rhashtable_insert_fast(&local->sta_hash, &sta->hash_node,
242 			       sta_rht_params);
243 }
244 
245 static void sta_deliver_ps_frames(struct work_struct *wk)
246 {
247 	struct sta_info *sta;
248 
249 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
250 
251 	if (sta->dead)
252 		return;
253 
254 	local_bh_disable();
255 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
256 		ieee80211_sta_ps_deliver_wakeup(sta);
257 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
258 		ieee80211_sta_ps_deliver_poll_response(sta);
259 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
260 		ieee80211_sta_ps_deliver_uapsd(sta);
261 	local_bh_enable();
262 }
263 
264 static int sta_prepare_rate_control(struct ieee80211_local *local,
265 				    struct sta_info *sta, gfp_t gfp)
266 {
267 	if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)
268 		return 0;
269 
270 	sta->rate_ctrl = local->rate_ctrl;
271 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
272 						     &sta->sta, gfp);
273 	if (!sta->rate_ctrl_priv)
274 		return -ENOMEM;
275 
276 	return 0;
277 }
278 
279 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
280 				const u8 *addr, gfp_t gfp)
281 {
282 	struct ieee80211_local *local = sdata->local;
283 	struct ieee80211_hw *hw = &local->hw;
284 	struct sta_info *sta;
285 	struct timespec uptime;
286 	int i;
287 
288 	sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
289 	if (!sta)
290 		return NULL;
291 
292 	spin_lock_init(&sta->lock);
293 	spin_lock_init(&sta->ps_lock);
294 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
295 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
296 	mutex_init(&sta->ampdu_mlme.mtx);
297 #ifdef CONFIG_MAC80211_MESH
298 	if (ieee80211_vif_is_mesh(&sdata->vif) &&
299 	    !sdata->u.mesh.user_mpm)
300 		init_timer(&sta->plink_timer);
301 	sta->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
302 #endif
303 
304 	memcpy(sta->sta.addr, addr, ETH_ALEN);
305 	sta->local = local;
306 	sta->sdata = sdata;
307 	sta->last_rx = jiffies;
308 
309 	sta->sta_state = IEEE80211_STA_NONE;
310 
311 	/* Mark TID as unreserved */
312 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
313 
314 	ktime_get_ts(&uptime);
315 	sta->last_connected = uptime.tv_sec;
316 	ewma_init(&sta->avg_signal, 1024, 8);
317 	for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++)
318 		ewma_init(&sta->chain_signal_avg[i], 1024, 8);
319 
320 	if (local->ops->wake_tx_queue) {
321 		void *txq_data;
322 		int size = sizeof(struct txq_info) +
323 			   ALIGN(hw->txq_data_size, sizeof(void *));
324 
325 		txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
326 		if (!txq_data)
327 			goto free;
328 
329 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
330 			struct txq_info *txq = txq_data + i * size;
331 
332 			ieee80211_init_tx_queue(sdata, sta, txq, i);
333 		}
334 	}
335 
336 	if (sta_prepare_rate_control(local, sta, gfp))
337 		goto free_txq;
338 
339 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
340 		/*
341 		 * timer_to_tid must be initialized with identity mapping
342 		 * to enable session_timer's data differentiation. See
343 		 * sta_rx_agg_session_timer_expired for usage.
344 		 */
345 		sta->timer_to_tid[i] = i;
346 	}
347 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
348 		skb_queue_head_init(&sta->ps_tx_buf[i]);
349 		skb_queue_head_init(&sta->tx_filtered[i]);
350 	}
351 
352 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
353 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
354 
355 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
356 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
357 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
358 		struct ieee80211_supported_band *sband =
359 			hw->wiphy->bands[ieee80211_get_sdata_band(sdata)];
360 		u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
361 				IEEE80211_HT_CAP_SM_PS_SHIFT;
362 		/*
363 		 * Assume that hostapd advertises our caps in the beacon and
364 		 * this is the known_smps_mode for a station that just assciated
365 		 */
366 		switch (smps) {
367 		case WLAN_HT_SMPS_CONTROL_DISABLED:
368 			sta->known_smps_mode = IEEE80211_SMPS_OFF;
369 			break;
370 		case WLAN_HT_SMPS_CONTROL_STATIC:
371 			sta->known_smps_mode = IEEE80211_SMPS_STATIC;
372 			break;
373 		case WLAN_HT_SMPS_CONTROL_DYNAMIC:
374 			sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
375 			break;
376 		default:
377 			WARN_ON(1);
378 		}
379 	}
380 
381 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
382 
383 	return sta;
384 
385 free_txq:
386 	if (sta->sta.txq[0])
387 		kfree(to_txq_info(sta->sta.txq[0]));
388 free:
389 	kfree(sta);
390 	return NULL;
391 }
392 
393 static int sta_info_insert_check(struct sta_info *sta)
394 {
395 	struct ieee80211_sub_if_data *sdata = sta->sdata;
396 
397 	/*
398 	 * Can't be a WARN_ON because it can be triggered through a race:
399 	 * something inserts a STA (on one CPU) without holding the RTNL
400 	 * and another CPU turns off the net device.
401 	 */
402 	if (unlikely(!ieee80211_sdata_running(sdata)))
403 		return -ENETDOWN;
404 
405 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
406 		    is_multicast_ether_addr(sta->sta.addr)))
407 		return -EINVAL;
408 
409 	return 0;
410 }
411 
412 static int sta_info_insert_drv_state(struct ieee80211_local *local,
413 				     struct ieee80211_sub_if_data *sdata,
414 				     struct sta_info *sta)
415 {
416 	enum ieee80211_sta_state state;
417 	int err = 0;
418 
419 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
420 		err = drv_sta_state(local, sdata, sta, state, state + 1);
421 		if (err)
422 			break;
423 	}
424 
425 	if (!err) {
426 		/*
427 		 * Drivers using legacy sta_add/sta_remove callbacks only
428 		 * get uploaded set to true after sta_add is called.
429 		 */
430 		if (!local->ops->sta_add)
431 			sta->uploaded = true;
432 		return 0;
433 	}
434 
435 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
436 		sdata_info(sdata,
437 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
438 			   sta->sta.addr, state + 1, err);
439 		err = 0;
440 	}
441 
442 	/* unwind on error */
443 	for (; state > IEEE80211_STA_NOTEXIST; state--)
444 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
445 
446 	return err;
447 }
448 
449 /*
450  * should be called with sta_mtx locked
451  * this function replaces the mutex lock
452  * with a RCU lock
453  */
454 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
455 {
456 	struct ieee80211_local *local = sta->local;
457 	struct ieee80211_sub_if_data *sdata = sta->sdata;
458 	struct station_info sinfo;
459 	int err = 0;
460 
461 	lockdep_assert_held(&local->sta_mtx);
462 
463 	/* check if STA exists already */
464 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
465 		err = -EEXIST;
466 		goto out_err;
467 	}
468 
469 	local->num_sta++;
470 	local->sta_generation++;
471 	smp_mb();
472 
473 	/* simplify things and don't accept BA sessions yet */
474 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
475 
476 	/* make the station visible */
477 	sta_info_hash_add(local, sta);
478 
479 	list_add_tail_rcu(&sta->list, &local->sta_list);
480 
481 	/* notify driver */
482 	err = sta_info_insert_drv_state(local, sdata, sta);
483 	if (err)
484 		goto out_remove;
485 
486 	set_sta_flag(sta, WLAN_STA_INSERTED);
487 	/* accept BA sessions now */
488 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
489 
490 	ieee80211_recalc_min_chandef(sdata);
491 	ieee80211_sta_debugfs_add(sta);
492 	rate_control_add_sta_debugfs(sta);
493 
494 	memset(&sinfo, 0, sizeof(sinfo));
495 	sinfo.filled = 0;
496 	sinfo.generation = local->sta_generation;
497 	cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL);
498 
499 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
500 
501 	/* move reference to rcu-protected */
502 	rcu_read_lock();
503 	mutex_unlock(&local->sta_mtx);
504 
505 	if (ieee80211_vif_is_mesh(&sdata->vif))
506 		mesh_accept_plinks_update(sdata);
507 
508 	return 0;
509  out_remove:
510 	sta_info_hash_del(local, sta);
511 	list_del_rcu(&sta->list);
512 	local->num_sta--;
513 	synchronize_net();
514 	__cleanup_single_sta(sta);
515  out_err:
516 	mutex_unlock(&local->sta_mtx);
517 	rcu_read_lock();
518 	return err;
519 }
520 
521 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
522 {
523 	struct ieee80211_local *local = sta->local;
524 	int err;
525 
526 	might_sleep();
527 
528 	err = sta_info_insert_check(sta);
529 	if (err) {
530 		rcu_read_lock();
531 		goto out_free;
532 	}
533 
534 	mutex_lock(&local->sta_mtx);
535 
536 	err = sta_info_insert_finish(sta);
537 	if (err)
538 		goto out_free;
539 
540 	return 0;
541  out_free:
542 	sta_info_free(local, sta);
543 	return err;
544 }
545 
546 int sta_info_insert(struct sta_info *sta)
547 {
548 	int err = sta_info_insert_rcu(sta);
549 
550 	rcu_read_unlock();
551 
552 	return err;
553 }
554 
555 static inline void __bss_tim_set(u8 *tim, u16 id)
556 {
557 	/*
558 	 * This format has been mandated by the IEEE specifications,
559 	 * so this line may not be changed to use the __set_bit() format.
560 	 */
561 	tim[id / 8] |= (1 << (id % 8));
562 }
563 
564 static inline void __bss_tim_clear(u8 *tim, u16 id)
565 {
566 	/*
567 	 * This format has been mandated by the IEEE specifications,
568 	 * so this line may not be changed to use the __clear_bit() format.
569 	 */
570 	tim[id / 8] &= ~(1 << (id % 8));
571 }
572 
573 static inline bool __bss_tim_get(u8 *tim, u16 id)
574 {
575 	/*
576 	 * This format has been mandated by the IEEE specifications,
577 	 * so this line may not be changed to use the test_bit() format.
578 	 */
579 	return tim[id / 8] & (1 << (id % 8));
580 }
581 
582 static unsigned long ieee80211_tids_for_ac(int ac)
583 {
584 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
585 	switch (ac) {
586 	case IEEE80211_AC_VO:
587 		return BIT(6) | BIT(7);
588 	case IEEE80211_AC_VI:
589 		return BIT(4) | BIT(5);
590 	case IEEE80211_AC_BE:
591 		return BIT(0) | BIT(3);
592 	case IEEE80211_AC_BK:
593 		return BIT(1) | BIT(2);
594 	default:
595 		WARN_ON(1);
596 		return 0;
597 	}
598 }
599 
600 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
601 {
602 	struct ieee80211_local *local = sta->local;
603 	struct ps_data *ps;
604 	bool indicate_tim = false;
605 	u8 ignore_for_tim = sta->sta.uapsd_queues;
606 	int ac;
607 	u16 id;
608 
609 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
610 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
611 		if (WARN_ON_ONCE(!sta->sdata->bss))
612 			return;
613 
614 		ps = &sta->sdata->bss->ps;
615 		id = sta->sta.aid;
616 #ifdef CONFIG_MAC80211_MESH
617 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
618 		ps = &sta->sdata->u.mesh.ps;
619 		/* TIM map only for 1 <= PLID <= IEEE80211_MAX_AID */
620 		id = sta->plid % (IEEE80211_MAX_AID + 1);
621 #endif
622 	} else {
623 		return;
624 	}
625 
626 	/* No need to do anything if the driver does all */
627 	if (local->hw.flags & IEEE80211_HW_AP_LINK_PS)
628 		return;
629 
630 	if (sta->dead)
631 		goto done;
632 
633 	/*
634 	 * If all ACs are delivery-enabled then we should build
635 	 * the TIM bit for all ACs anyway; if only some are then
636 	 * we ignore those and build the TIM bit using only the
637 	 * non-enabled ones.
638 	 */
639 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
640 		ignore_for_tim = 0;
641 
642 	if (ignore_pending)
643 		ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
644 
645 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
646 		unsigned long tids;
647 
648 		if (ignore_for_tim & BIT(ac))
649 			continue;
650 
651 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
652 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
653 		if (indicate_tim)
654 			break;
655 
656 		tids = ieee80211_tids_for_ac(ac);
657 
658 		indicate_tim |=
659 			sta->driver_buffered_tids & tids;
660 		indicate_tim |=
661 			sta->txq_buffered_tids & tids;
662 	}
663 
664  done:
665 	spin_lock_bh(&local->tim_lock);
666 
667 	if (indicate_tim == __bss_tim_get(ps->tim, id))
668 		goto out_unlock;
669 
670 	if (indicate_tim)
671 		__bss_tim_set(ps->tim, id);
672 	else
673 		__bss_tim_clear(ps->tim, id);
674 
675 	if (local->ops->set_tim && !WARN_ON(sta->dead)) {
676 		local->tim_in_locked_section = true;
677 		drv_set_tim(local, &sta->sta, indicate_tim);
678 		local->tim_in_locked_section = false;
679 	}
680 
681 out_unlock:
682 	spin_unlock_bh(&local->tim_lock);
683 }
684 
685 void sta_info_recalc_tim(struct sta_info *sta)
686 {
687 	__sta_info_recalc_tim(sta, false);
688 }
689 
690 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
691 {
692 	struct ieee80211_tx_info *info;
693 	int timeout;
694 
695 	if (!skb)
696 		return false;
697 
698 	info = IEEE80211_SKB_CB(skb);
699 
700 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
701 	timeout = (sta->listen_interval *
702 		   sta->sdata->vif.bss_conf.beacon_int *
703 		   32 / 15625) * HZ;
704 	if (timeout < STA_TX_BUFFER_EXPIRE)
705 		timeout = STA_TX_BUFFER_EXPIRE;
706 	return time_after(jiffies, info->control.jiffies + timeout);
707 }
708 
709 
710 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
711 						struct sta_info *sta, int ac)
712 {
713 	unsigned long flags;
714 	struct sk_buff *skb;
715 
716 	/*
717 	 * First check for frames that should expire on the filtered
718 	 * queue. Frames here were rejected by the driver and are on
719 	 * a separate queue to avoid reordering with normal PS-buffered
720 	 * frames. They also aren't accounted for right now in the
721 	 * total_ps_buffered counter.
722 	 */
723 	for (;;) {
724 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
725 		skb = skb_peek(&sta->tx_filtered[ac]);
726 		if (sta_info_buffer_expired(sta, skb))
727 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
728 		else
729 			skb = NULL;
730 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
731 
732 		/*
733 		 * Frames are queued in order, so if this one
734 		 * hasn't expired yet we can stop testing. If
735 		 * we actually reached the end of the queue we
736 		 * also need to stop, of course.
737 		 */
738 		if (!skb)
739 			break;
740 		ieee80211_free_txskb(&local->hw, skb);
741 	}
742 
743 	/*
744 	 * Now also check the normal PS-buffered queue, this will
745 	 * only find something if the filtered queue was emptied
746 	 * since the filtered frames are all before the normal PS
747 	 * buffered frames.
748 	 */
749 	for (;;) {
750 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
751 		skb = skb_peek(&sta->ps_tx_buf[ac]);
752 		if (sta_info_buffer_expired(sta, skb))
753 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
754 		else
755 			skb = NULL;
756 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
757 
758 		/*
759 		 * frames are queued in order, so if this one
760 		 * hasn't expired yet (or we reached the end of
761 		 * the queue) we can stop testing
762 		 */
763 		if (!skb)
764 			break;
765 
766 		local->total_ps_buffered--;
767 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
768 		       sta->sta.addr);
769 		ieee80211_free_txskb(&local->hw, skb);
770 	}
771 
772 	/*
773 	 * Finally, recalculate the TIM bit for this station -- it might
774 	 * now be clear because the station was too slow to retrieve its
775 	 * frames.
776 	 */
777 	sta_info_recalc_tim(sta);
778 
779 	/*
780 	 * Return whether there are any frames still buffered, this is
781 	 * used to check whether the cleanup timer still needs to run,
782 	 * if there are no frames we don't need to rearm the timer.
783 	 */
784 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
785 		 skb_queue_empty(&sta->tx_filtered[ac]));
786 }
787 
788 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
789 					     struct sta_info *sta)
790 {
791 	bool have_buffered = false;
792 	int ac;
793 
794 	/* This is only necessary for stations on BSS/MBSS interfaces */
795 	if (!sta->sdata->bss &&
796 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
797 		return false;
798 
799 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
800 		have_buffered |=
801 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
802 
803 	return have_buffered;
804 }
805 
806 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
807 {
808 	struct ieee80211_local *local;
809 	struct ieee80211_sub_if_data *sdata;
810 	int ret;
811 
812 	might_sleep();
813 
814 	if (!sta)
815 		return -ENOENT;
816 
817 	local = sta->local;
818 	sdata = sta->sdata;
819 
820 	lockdep_assert_held(&local->sta_mtx);
821 
822 	/*
823 	 * Before removing the station from the driver and
824 	 * rate control, it might still start new aggregation
825 	 * sessions -- block that to make sure the tear-down
826 	 * will be sufficient.
827 	 */
828 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
829 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
830 
831 	ret = sta_info_hash_del(local, sta);
832 	if (WARN_ON(ret))
833 		return ret;
834 
835 	/*
836 	 * for TDLS peers, make sure to return to the base channel before
837 	 * removal.
838 	 */
839 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
840 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
841 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
842 	}
843 
844 	list_del_rcu(&sta->list);
845 
846 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
847 
848 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
849 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
850 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
851 
852 	return 0;
853 }
854 
855 static void __sta_info_destroy_part2(struct sta_info *sta)
856 {
857 	struct ieee80211_local *local = sta->local;
858 	struct ieee80211_sub_if_data *sdata = sta->sdata;
859 	struct station_info sinfo = {};
860 	int ret;
861 
862 	/*
863 	 * NOTE: This assumes at least synchronize_net() was done
864 	 *	 after _part1 and before _part2!
865 	 */
866 
867 	might_sleep();
868 	lockdep_assert_held(&local->sta_mtx);
869 
870 	/* now keys can no longer be reached */
871 	ieee80211_free_sta_keys(local, sta);
872 
873 	/* disable TIM bit - last chance to tell driver */
874 	__sta_info_recalc_tim(sta, true);
875 
876 	sta->dead = true;
877 
878 	local->num_sta--;
879 	local->sta_generation++;
880 
881 	while (sta->sta_state > IEEE80211_STA_NONE) {
882 		ret = sta_info_move_state(sta, sta->sta_state - 1);
883 		if (ret) {
884 			WARN_ON_ONCE(1);
885 			break;
886 		}
887 	}
888 
889 	if (sta->uploaded) {
890 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
891 				    IEEE80211_STA_NOTEXIST);
892 		WARN_ON_ONCE(ret != 0);
893 	}
894 
895 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
896 
897 	sta_set_sinfo(sta, &sinfo);
898 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL);
899 
900 	rate_control_remove_sta_debugfs(sta);
901 	ieee80211_sta_debugfs_remove(sta);
902 	ieee80211_recalc_min_chandef(sdata);
903 
904 	cleanup_single_sta(sta);
905 }
906 
907 int __must_check __sta_info_destroy(struct sta_info *sta)
908 {
909 	int err = __sta_info_destroy_part1(sta);
910 
911 	if (err)
912 		return err;
913 
914 	synchronize_net();
915 
916 	__sta_info_destroy_part2(sta);
917 
918 	return 0;
919 }
920 
921 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
922 {
923 	struct sta_info *sta;
924 	int ret;
925 
926 	mutex_lock(&sdata->local->sta_mtx);
927 	sta = sta_info_get(sdata, addr);
928 	ret = __sta_info_destroy(sta);
929 	mutex_unlock(&sdata->local->sta_mtx);
930 
931 	return ret;
932 }
933 
934 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
935 			      const u8 *addr)
936 {
937 	struct sta_info *sta;
938 	int ret;
939 
940 	mutex_lock(&sdata->local->sta_mtx);
941 	sta = sta_info_get_bss(sdata, addr);
942 	ret = __sta_info_destroy(sta);
943 	mutex_unlock(&sdata->local->sta_mtx);
944 
945 	return ret;
946 }
947 
948 static void sta_info_cleanup(unsigned long data)
949 {
950 	struct ieee80211_local *local = (struct ieee80211_local *) data;
951 	struct sta_info *sta;
952 	bool timer_needed = false;
953 
954 	rcu_read_lock();
955 	list_for_each_entry_rcu(sta, &local->sta_list, list)
956 		if (sta_info_cleanup_expire_buffered(local, sta))
957 			timer_needed = true;
958 	rcu_read_unlock();
959 
960 	if (local->quiescing)
961 		return;
962 
963 	if (!timer_needed)
964 		return;
965 
966 	mod_timer(&local->sta_cleanup,
967 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
968 }
969 
970 u32 sta_addr_hash(const void *key, u32 length, u32 seed)
971 {
972 	return jhash(key, ETH_ALEN, seed);
973 }
974 
975 int sta_info_init(struct ieee80211_local *local)
976 {
977 	int err;
978 
979 	err = rhashtable_init(&local->sta_hash, &sta_rht_params);
980 	if (err)
981 		return err;
982 
983 	spin_lock_init(&local->tim_lock);
984 	mutex_init(&local->sta_mtx);
985 	INIT_LIST_HEAD(&local->sta_list);
986 
987 	setup_timer(&local->sta_cleanup, sta_info_cleanup,
988 		    (unsigned long)local);
989 	return 0;
990 }
991 
992 void sta_info_stop(struct ieee80211_local *local)
993 {
994 	del_timer_sync(&local->sta_cleanup);
995 	rhashtable_destroy(&local->sta_hash);
996 }
997 
998 
999 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1000 {
1001 	struct ieee80211_local *local = sdata->local;
1002 	struct sta_info *sta, *tmp;
1003 	LIST_HEAD(free_list);
1004 	int ret = 0;
1005 
1006 	might_sleep();
1007 
1008 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1009 	WARN_ON(vlans && !sdata->bss);
1010 
1011 	mutex_lock(&local->sta_mtx);
1012 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1013 		if (sdata == sta->sdata ||
1014 		    (vlans && sdata->bss == sta->sdata->bss)) {
1015 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1016 				list_add(&sta->free_list, &free_list);
1017 			ret++;
1018 		}
1019 	}
1020 
1021 	if (!list_empty(&free_list)) {
1022 		synchronize_net();
1023 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1024 			__sta_info_destroy_part2(sta);
1025 	}
1026 	mutex_unlock(&local->sta_mtx);
1027 
1028 	return ret;
1029 }
1030 
1031 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1032 			  unsigned long exp_time)
1033 {
1034 	struct ieee80211_local *local = sdata->local;
1035 	struct sta_info *sta, *tmp;
1036 
1037 	mutex_lock(&local->sta_mtx);
1038 
1039 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1040 		if (sdata != sta->sdata)
1041 			continue;
1042 
1043 		if (time_after(jiffies, sta->last_rx + exp_time)) {
1044 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1045 				sta->sta.addr);
1046 
1047 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1048 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1049 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1050 
1051 			WARN_ON(__sta_info_destroy(sta));
1052 		}
1053 	}
1054 
1055 	mutex_unlock(&local->sta_mtx);
1056 }
1057 
1058 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1059 						   const u8 *addr,
1060 						   const u8 *localaddr)
1061 {
1062 	struct ieee80211_local *local = hw_to_local(hw);
1063 	struct sta_info *sta;
1064 	struct rhash_head *tmp;
1065 	const struct bucket_table *tbl;
1066 
1067 	tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
1068 
1069 	/*
1070 	 * Just return a random station if localaddr is NULL
1071 	 * ... first in list.
1072 	 */
1073 	for_each_sta_info(local, tbl, addr, sta, tmp) {
1074 		if (localaddr &&
1075 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1076 			continue;
1077 		if (!sta->uploaded)
1078 			return NULL;
1079 		return &sta->sta;
1080 	}
1081 
1082 	return NULL;
1083 }
1084 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1085 
1086 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1087 					 const u8 *addr)
1088 {
1089 	struct sta_info *sta;
1090 
1091 	if (!vif)
1092 		return NULL;
1093 
1094 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1095 	if (!sta)
1096 		return NULL;
1097 
1098 	if (!sta->uploaded)
1099 		return NULL;
1100 
1101 	return &sta->sta;
1102 }
1103 EXPORT_SYMBOL(ieee80211_find_sta);
1104 
1105 /* powersave support code */
1106 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1107 {
1108 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1109 	struct ieee80211_local *local = sdata->local;
1110 	struct sk_buff_head pending;
1111 	int filtered = 0, buffered = 0, ac, i;
1112 	unsigned long flags;
1113 	struct ps_data *ps;
1114 
1115 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1116 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1117 				     u.ap);
1118 
1119 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1120 		ps = &sdata->bss->ps;
1121 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1122 		ps = &sdata->u.mesh.ps;
1123 	else
1124 		return;
1125 
1126 	clear_sta_flag(sta, WLAN_STA_SP);
1127 
1128 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1129 	sta->driver_buffered_tids = 0;
1130 	sta->txq_buffered_tids = 0;
1131 
1132 	if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1133 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1134 
1135 	if (sta->sta.txq[0]) {
1136 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1137 			struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
1138 
1139 			if (!skb_queue_len(&txqi->queue))
1140 				continue;
1141 
1142 			drv_wake_tx_queue(local, txqi);
1143 		}
1144 	}
1145 
1146 	skb_queue_head_init(&pending);
1147 
1148 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1149 	spin_lock(&sta->ps_lock);
1150 	/* Send all buffered frames to the station */
1151 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1152 		int count = skb_queue_len(&pending), tmp;
1153 
1154 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1155 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1156 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1157 		tmp = skb_queue_len(&pending);
1158 		filtered += tmp - count;
1159 		count = tmp;
1160 
1161 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1162 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1163 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1164 		tmp = skb_queue_len(&pending);
1165 		buffered += tmp - count;
1166 	}
1167 
1168 	ieee80211_add_pending_skbs(local, &pending);
1169 
1170 	/* now we're no longer in the deliver code */
1171 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1172 
1173 	/* The station might have polled and then woken up before we responded,
1174 	 * so clear these flags now to avoid them sticking around.
1175 	 */
1176 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1177 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1178 	spin_unlock(&sta->ps_lock);
1179 
1180 	atomic_dec(&ps->num_sta_ps);
1181 
1182 	/* This station just woke up and isn't aware of our SMPS state */
1183 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1184 	    !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1185 					   sdata->smps_mode) &&
1186 	    sta->known_smps_mode != sdata->bss->req_smps &&
1187 	    sta_info_tx_streams(sta) != 1) {
1188 		ht_dbg(sdata,
1189 		       "%pM just woke up and MIMO capable - update SMPS\n",
1190 		       sta->sta.addr);
1191 		ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1192 					   sta->sta.addr,
1193 					   sdata->vif.bss_conf.bssid);
1194 	}
1195 
1196 	local->total_ps_buffered -= buffered;
1197 
1198 	sta_info_recalc_tim(sta);
1199 
1200 	ps_dbg(sdata,
1201 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n",
1202 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1203 }
1204 
1205 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata,
1206 					 struct sta_info *sta, int tid,
1207 					 enum ieee80211_frame_release_type reason,
1208 					 bool call_driver)
1209 {
1210 	struct ieee80211_local *local = sdata->local;
1211 	struct ieee80211_qos_hdr *nullfunc;
1212 	struct sk_buff *skb;
1213 	int size = sizeof(*nullfunc);
1214 	__le16 fc;
1215 	bool qos = sta->sta.wme;
1216 	struct ieee80211_tx_info *info;
1217 	struct ieee80211_chanctx_conf *chanctx_conf;
1218 
1219 	if (qos) {
1220 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1221 				 IEEE80211_STYPE_QOS_NULLFUNC |
1222 				 IEEE80211_FCTL_FROMDS);
1223 	} else {
1224 		size -= 2;
1225 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1226 				 IEEE80211_STYPE_NULLFUNC |
1227 				 IEEE80211_FCTL_FROMDS);
1228 	}
1229 
1230 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1231 	if (!skb)
1232 		return;
1233 
1234 	skb_reserve(skb, local->hw.extra_tx_headroom);
1235 
1236 	nullfunc = (void *) skb_put(skb, size);
1237 	nullfunc->frame_control = fc;
1238 	nullfunc->duration_id = 0;
1239 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1240 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1241 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1242 	nullfunc->seq_ctrl = 0;
1243 
1244 	skb->priority = tid;
1245 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1246 	if (qos) {
1247 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1248 
1249 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD)
1250 			nullfunc->qos_ctrl |=
1251 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1252 	}
1253 
1254 	info = IEEE80211_SKB_CB(skb);
1255 
1256 	/*
1257 	 * Tell TX path to send this frame even though the
1258 	 * STA may still remain is PS mode after this frame
1259 	 * exchange. Also set EOSP to indicate this packet
1260 	 * ends the poll/service period.
1261 	 */
1262 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1263 		       IEEE80211_TX_STATUS_EOSP |
1264 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1265 
1266 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1267 
1268 	if (call_driver)
1269 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1270 					  reason, false);
1271 
1272 	skb->dev = sdata->dev;
1273 
1274 	rcu_read_lock();
1275 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1276 	if (WARN_ON(!chanctx_conf)) {
1277 		rcu_read_unlock();
1278 		kfree_skb(skb);
1279 		return;
1280 	}
1281 
1282 	info->band = chanctx_conf->def.chan->band;
1283 	ieee80211_xmit(sdata, sta, skb);
1284 	rcu_read_unlock();
1285 }
1286 
1287 static int find_highest_prio_tid(unsigned long tids)
1288 {
1289 	/* lower 3 TIDs aren't ordered perfectly */
1290 	if (tids & 0xF8)
1291 		return fls(tids) - 1;
1292 	/* TID 0 is BE just like TID 3 */
1293 	if (tids & BIT(0))
1294 		return 0;
1295 	return fls(tids) - 1;
1296 }
1297 
1298 static void
1299 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1300 				  int n_frames, u8 ignored_acs,
1301 				  enum ieee80211_frame_release_type reason)
1302 {
1303 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1304 	struct ieee80211_local *local = sdata->local;
1305 	bool more_data = false;
1306 	int ac;
1307 	unsigned long driver_release_tids = 0;
1308 	struct sk_buff_head frames;
1309 
1310 	/* Service or PS-Poll period starts */
1311 	set_sta_flag(sta, WLAN_STA_SP);
1312 
1313 	__skb_queue_head_init(&frames);
1314 
1315 	/* Get response frame(s) and more data bit for the last one. */
1316 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1317 		unsigned long tids;
1318 
1319 		if (ignored_acs & BIT(ac))
1320 			continue;
1321 
1322 		tids = ieee80211_tids_for_ac(ac);
1323 
1324 		/* if we already have frames from software, then we can't also
1325 		 * release from hardware queues
1326 		 */
1327 		if (skb_queue_empty(&frames)) {
1328 			driver_release_tids |= sta->driver_buffered_tids & tids;
1329 			driver_release_tids |= sta->txq_buffered_tids & tids;
1330 		}
1331 
1332 		if (driver_release_tids) {
1333 			/* If the driver has data on more than one TID then
1334 			 * certainly there's more data if we release just a
1335 			 * single frame now (from a single TID). This will
1336 			 * only happen for PS-Poll.
1337 			 */
1338 			if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1339 			    hweight16(driver_release_tids) > 1) {
1340 				more_data = true;
1341 				driver_release_tids =
1342 					BIT(find_highest_prio_tid(
1343 						driver_release_tids));
1344 				break;
1345 			}
1346 		} else {
1347 			struct sk_buff *skb;
1348 
1349 			while (n_frames > 0) {
1350 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1351 				if (!skb) {
1352 					skb = skb_dequeue(
1353 						&sta->ps_tx_buf[ac]);
1354 					if (skb)
1355 						local->total_ps_buffered--;
1356 				}
1357 				if (!skb)
1358 					break;
1359 				n_frames--;
1360 				__skb_queue_tail(&frames, skb);
1361 			}
1362 		}
1363 
1364 		/* If we have more frames buffered on this AC, then set the
1365 		 * more-data bit and abort the loop since we can't send more
1366 		 * data from other ACs before the buffered frames from this.
1367 		 */
1368 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1369 		    !skb_queue_empty(&sta->ps_tx_buf[ac])) {
1370 			more_data = true;
1371 			break;
1372 		}
1373 	}
1374 
1375 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1376 		int tid;
1377 
1378 		/*
1379 		 * For PS-Poll, this can only happen due to a race condition
1380 		 * when we set the TIM bit and the station notices it, but
1381 		 * before it can poll for the frame we expire it.
1382 		 *
1383 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1384 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1385 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1386 		 *	more than the value specified in the Max SP Length field
1387 		 *	in the QoS Capability element from delivery-enabled ACs,
1388 		 *	that are destined for the non-AP STA.
1389 		 *
1390 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1391 		 */
1392 
1393 		/* This will evaluate to 1, 3, 5 or 7. */
1394 		tid = 7 - ((ffs(~ignored_acs) - 1) << 1);
1395 
1396 		ieee80211_send_null_response(sdata, sta, tid, reason, true);
1397 	} else if (!driver_release_tids) {
1398 		struct sk_buff_head pending;
1399 		struct sk_buff *skb;
1400 		int num = 0;
1401 		u16 tids = 0;
1402 		bool need_null = false;
1403 
1404 		skb_queue_head_init(&pending);
1405 
1406 		while ((skb = __skb_dequeue(&frames))) {
1407 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1408 			struct ieee80211_hdr *hdr = (void *) skb->data;
1409 			u8 *qoshdr = NULL;
1410 
1411 			num++;
1412 
1413 			/*
1414 			 * Tell TX path to send this frame even though the
1415 			 * STA may still remain is PS mode after this frame
1416 			 * exchange.
1417 			 */
1418 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1419 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1420 
1421 			/*
1422 			 * Use MoreData flag to indicate whether there are
1423 			 * more buffered frames for this STA
1424 			 */
1425 			if (more_data || !skb_queue_empty(&frames))
1426 				hdr->frame_control |=
1427 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1428 			else
1429 				hdr->frame_control &=
1430 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1431 
1432 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1433 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1434 				qoshdr = ieee80211_get_qos_ctl(hdr);
1435 
1436 			tids |= BIT(skb->priority);
1437 
1438 			__skb_queue_tail(&pending, skb);
1439 
1440 			/* end service period after last frame or add one */
1441 			if (!skb_queue_empty(&frames))
1442 				continue;
1443 
1444 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1445 				/* for PS-Poll, there's only one frame */
1446 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1447 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1448 				break;
1449 			}
1450 
1451 			/* For uAPSD, things are a bit more complicated. If the
1452 			 * last frame has a QoS header (i.e. is a QoS-data or
1453 			 * QoS-nulldata frame) then just set the EOSP bit there
1454 			 * and be done.
1455 			 * If the frame doesn't have a QoS header (which means
1456 			 * it should be a bufferable MMPDU) then we can't set
1457 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1458 			 * frame to the list to send it after the MMPDU.
1459 			 *
1460 			 * Note that this code is only in the mac80211-release
1461 			 * code path, we assume that the driver will not buffer
1462 			 * anything but QoS-data frames, or if it does, will
1463 			 * create the QoS-nulldata frame by itself if needed.
1464 			 *
1465 			 * Cf. 802.11-2012 10.2.1.10 (c).
1466 			 */
1467 			if (qoshdr) {
1468 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1469 
1470 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1471 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1472 			} else {
1473 				/* The standard isn't completely clear on this
1474 				 * as it says the more-data bit should be set
1475 				 * if there are more BUs. The QoS-Null frame
1476 				 * we're about to send isn't buffered yet, we
1477 				 * only create it below, but let's pretend it
1478 				 * was buffered just in case some clients only
1479 				 * expect more-data=0 when eosp=1.
1480 				 */
1481 				hdr->frame_control |=
1482 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1483 				need_null = true;
1484 				num++;
1485 			}
1486 			break;
1487 		}
1488 
1489 		drv_allow_buffered_frames(local, sta, tids, num,
1490 					  reason, more_data);
1491 
1492 		ieee80211_add_pending_skbs(local, &pending);
1493 
1494 		if (need_null)
1495 			ieee80211_send_null_response(
1496 				sdata, sta, find_highest_prio_tid(tids),
1497 				reason, false);
1498 
1499 		sta_info_recalc_tim(sta);
1500 	} else {
1501 		unsigned long tids = sta->txq_buffered_tids & driver_release_tids;
1502 		int tid;
1503 
1504 		/*
1505 		 * We need to release a frame that is buffered somewhere in the
1506 		 * driver ... it'll have to handle that.
1507 		 * Note that the driver also has to check the number of frames
1508 		 * on the TIDs we're releasing from - if there are more than
1509 		 * n_frames it has to set the more-data bit (if we didn't ask
1510 		 * it to set it anyway due to other buffered frames); if there
1511 		 * are fewer than n_frames it has to make sure to adjust that
1512 		 * to allow the service period to end properly.
1513 		 */
1514 		drv_release_buffered_frames(local, sta, driver_release_tids,
1515 					    n_frames, reason, more_data);
1516 
1517 		/*
1518 		 * Note that we don't recalculate the TIM bit here as it would
1519 		 * most likely have no effect at all unless the driver told us
1520 		 * that the TID(s) became empty before returning here from the
1521 		 * release function.
1522 		 * Either way, however, when the driver tells us that the TID(s)
1523 		 * became empty or we find that a txq became empty, we'll do the
1524 		 * TIM recalculation.
1525 		 */
1526 
1527 		if (!sta->sta.txq[0])
1528 			return;
1529 
1530 		for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1531 			struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1532 
1533 			if (!(tids & BIT(tid)) || skb_queue_len(&txqi->queue))
1534 				continue;
1535 
1536 			sta_info_recalc_tim(sta);
1537 			break;
1538 		}
1539 	}
1540 }
1541 
1542 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1543 {
1544 	u8 ignore_for_response = sta->sta.uapsd_queues;
1545 
1546 	/*
1547 	 * If all ACs are delivery-enabled then we should reply
1548 	 * from any of them, if only some are enabled we reply
1549 	 * only from the non-enabled ones.
1550 	 */
1551 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1552 		ignore_for_response = 0;
1553 
1554 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1555 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1556 }
1557 
1558 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1559 {
1560 	int n_frames = sta->sta.max_sp;
1561 	u8 delivery_enabled = sta->sta.uapsd_queues;
1562 
1563 	/*
1564 	 * If we ever grow support for TSPEC this might happen if
1565 	 * the TSPEC update from hostapd comes in between a trigger
1566 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1567 	 * actually getting called.
1568 	 */
1569 	if (!delivery_enabled)
1570 		return;
1571 
1572 	switch (sta->sta.max_sp) {
1573 	case 1:
1574 		n_frames = 2;
1575 		break;
1576 	case 2:
1577 		n_frames = 4;
1578 		break;
1579 	case 3:
1580 		n_frames = 6;
1581 		break;
1582 	case 0:
1583 		/* XXX: what is a good value? */
1584 		n_frames = 128;
1585 		break;
1586 	}
1587 
1588 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1589 					  IEEE80211_FRAME_RELEASE_UAPSD);
1590 }
1591 
1592 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1593 			       struct ieee80211_sta *pubsta, bool block)
1594 {
1595 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1596 
1597 	trace_api_sta_block_awake(sta->local, pubsta, block);
1598 
1599 	if (block) {
1600 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1601 		return;
1602 	}
1603 
1604 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1605 		return;
1606 
1607 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1608 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1609 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1610 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1611 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1612 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
1613 		/* must be asleep in this case */
1614 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1615 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1616 	} else {
1617 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1618 	}
1619 }
1620 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1621 
1622 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1623 {
1624 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1625 	struct ieee80211_local *local = sta->local;
1626 
1627 	trace_api_eosp(local, pubsta);
1628 
1629 	clear_sta_flag(sta, WLAN_STA_SP);
1630 }
1631 EXPORT_SYMBOL(ieee80211_sta_eosp);
1632 
1633 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1634 				u8 tid, bool buffered)
1635 {
1636 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1637 
1638 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1639 		return;
1640 
1641 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1642 
1643 	if (buffered)
1644 		set_bit(tid, &sta->driver_buffered_tids);
1645 	else
1646 		clear_bit(tid, &sta->driver_buffered_tids);
1647 
1648 	sta_info_recalc_tim(sta);
1649 }
1650 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1651 
1652 int sta_info_move_state(struct sta_info *sta,
1653 			enum ieee80211_sta_state new_state)
1654 {
1655 	might_sleep();
1656 
1657 	if (sta->sta_state == new_state)
1658 		return 0;
1659 
1660 	/* check allowed transitions first */
1661 
1662 	switch (new_state) {
1663 	case IEEE80211_STA_NONE:
1664 		if (sta->sta_state != IEEE80211_STA_AUTH)
1665 			return -EINVAL;
1666 		break;
1667 	case IEEE80211_STA_AUTH:
1668 		if (sta->sta_state != IEEE80211_STA_NONE &&
1669 		    sta->sta_state != IEEE80211_STA_ASSOC)
1670 			return -EINVAL;
1671 		break;
1672 	case IEEE80211_STA_ASSOC:
1673 		if (sta->sta_state != IEEE80211_STA_AUTH &&
1674 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
1675 			return -EINVAL;
1676 		break;
1677 	case IEEE80211_STA_AUTHORIZED:
1678 		if (sta->sta_state != IEEE80211_STA_ASSOC)
1679 			return -EINVAL;
1680 		break;
1681 	default:
1682 		WARN(1, "invalid state %d", new_state);
1683 		return -EINVAL;
1684 	}
1685 
1686 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1687 		sta->sta.addr, new_state);
1688 
1689 	/*
1690 	 * notify the driver before the actual changes so it can
1691 	 * fail the transition
1692 	 */
1693 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1694 		int err = drv_sta_state(sta->local, sta->sdata, sta,
1695 					sta->sta_state, new_state);
1696 		if (err)
1697 			return err;
1698 	}
1699 
1700 	/* reflect the change in all state variables */
1701 
1702 	switch (new_state) {
1703 	case IEEE80211_STA_NONE:
1704 		if (sta->sta_state == IEEE80211_STA_AUTH)
1705 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
1706 		break;
1707 	case IEEE80211_STA_AUTH:
1708 		if (sta->sta_state == IEEE80211_STA_NONE)
1709 			set_bit(WLAN_STA_AUTH, &sta->_flags);
1710 		else if (sta->sta_state == IEEE80211_STA_ASSOC)
1711 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1712 		break;
1713 	case IEEE80211_STA_ASSOC:
1714 		if (sta->sta_state == IEEE80211_STA_AUTH) {
1715 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
1716 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1717 			if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1718 			    (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1719 			     !sta->sdata->u.vlan.sta))
1720 				atomic_dec(&sta->sdata->bss->num_mcast_sta);
1721 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1722 		}
1723 		break;
1724 	case IEEE80211_STA_AUTHORIZED:
1725 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
1726 			if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1727 			    (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1728 			     !sta->sdata->u.vlan.sta))
1729 				atomic_inc(&sta->sdata->bss->num_mcast_sta);
1730 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1731 		}
1732 		break;
1733 	default:
1734 		break;
1735 	}
1736 
1737 	sta->sta_state = new_state;
1738 
1739 	return 0;
1740 }
1741 
1742 u8 sta_info_tx_streams(struct sta_info *sta)
1743 {
1744 	struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1745 	u8 rx_streams;
1746 
1747 	if (!sta->sta.ht_cap.ht_supported)
1748 		return 1;
1749 
1750 	if (sta->sta.vht_cap.vht_supported) {
1751 		int i;
1752 		u16 tx_mcs_map =
1753 			le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1754 
1755 		for (i = 7; i >= 0; i--)
1756 			if ((tx_mcs_map & (0x3 << (i * 2))) !=
1757 			    IEEE80211_VHT_MCS_NOT_SUPPORTED)
1758 				return i + 1;
1759 	}
1760 
1761 	if (ht_cap->mcs.rx_mask[3])
1762 		rx_streams = 4;
1763 	else if (ht_cap->mcs.rx_mask[2])
1764 		rx_streams = 3;
1765 	else if (ht_cap->mcs.rx_mask[1])
1766 		rx_streams = 2;
1767 	else
1768 		rx_streams = 1;
1769 
1770 	if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1771 		return rx_streams;
1772 
1773 	return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1774 			>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
1775 }
1776 
1777 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
1778 {
1779 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1780 	struct ieee80211_local *local = sdata->local;
1781 	struct rate_control_ref *ref = NULL;
1782 	struct timespec uptime;
1783 	u32 thr = 0;
1784 	int i, ac;
1785 
1786 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
1787 		ref = local->rate_ctrl;
1788 
1789 	sinfo->generation = sdata->local->sta_generation;
1790 
1791 	/* do before driver, so beacon filtering drivers have a
1792 	 * chance to e.g. just add the number of filtered beacons
1793 	 * (or just modify the value entirely, of course)
1794 	 */
1795 	if (sdata->vif.type == NL80211_IFTYPE_STATION)
1796 		sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
1797 
1798 	drv_sta_statistics(local, sdata, &sta->sta, sinfo);
1799 
1800 	sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) |
1801 			 BIT(NL80211_STA_INFO_STA_FLAGS) |
1802 			 BIT(NL80211_STA_INFO_BSS_PARAM) |
1803 			 BIT(NL80211_STA_INFO_CONNECTED_TIME) |
1804 			 BIT(NL80211_STA_INFO_RX_DROP_MISC) |
1805 			 BIT(NL80211_STA_INFO_BEACON_LOSS);
1806 
1807 	ktime_get_ts(&uptime);
1808 	sinfo->connected_time = uptime.tv_sec - sta->last_connected;
1809 	sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx);
1810 
1811 	if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) |
1812 			       BIT(NL80211_STA_INFO_TX_BYTES)))) {
1813 		sinfo->tx_bytes = 0;
1814 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
1815 			sinfo->tx_bytes += sta->tx_bytes[ac];
1816 		sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64);
1817 	}
1818 
1819 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) {
1820 		sinfo->tx_packets = 0;
1821 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
1822 			sinfo->tx_packets += sta->tx_packets[ac];
1823 		sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS);
1824 	}
1825 
1826 	if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) |
1827 			       BIT(NL80211_STA_INFO_RX_BYTES)))) {
1828 		sinfo->rx_bytes = sta->rx_bytes;
1829 		sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64);
1830 	}
1831 
1832 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) {
1833 		sinfo->rx_packets = sta->rx_packets;
1834 		sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS);
1835 	}
1836 
1837 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) {
1838 		sinfo->tx_retries = sta->tx_retry_count;
1839 		sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES);
1840 	}
1841 
1842 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) {
1843 		sinfo->tx_failed = sta->tx_retry_failed;
1844 		sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED);
1845 	}
1846 
1847 	sinfo->rx_dropped_misc = sta->rx_dropped;
1848 	sinfo->beacon_loss_count = sta->beacon_loss_count;
1849 
1850 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1851 	    !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
1852 		sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) |
1853 				 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
1854 		sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
1855 	}
1856 
1857 	if ((sta->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) ||
1858 	    (sta->local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)) {
1859 		if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) {
1860 			sinfo->signal = (s8)sta->last_signal;
1861 			sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL);
1862 		}
1863 
1864 		if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) {
1865 			sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal);
1866 			sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG);
1867 		}
1868 	}
1869 
1870 	if (sta->chains &&
1871 	    !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) |
1872 			       BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
1873 		sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL) |
1874 				 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
1875 
1876 		sinfo->chains = sta->chains;
1877 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
1878 			sinfo->chain_signal[i] = sta->chain_signal_last[i];
1879 			sinfo->chain_signal_avg[i] =
1880 				(s8) -ewma_read(&sta->chain_signal_avg[i]);
1881 		}
1882 	}
1883 
1884 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) {
1885 		sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate);
1886 		sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE);
1887 	}
1888 
1889 	if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) {
1890 		sta_set_rate_info_rx(sta, &sinfo->rxrate);
1891 		sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE);
1892 	}
1893 
1894 	sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS);
1895 	for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) {
1896 		struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i];
1897 
1898 		if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
1899 			tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
1900 			tidstats->rx_msdu = sta->rx_msdu[i];
1901 		}
1902 
1903 		if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
1904 			tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
1905 			tidstats->tx_msdu = sta->tx_msdu[i];
1906 		}
1907 
1908 		if (!(tidstats->filled &
1909 				BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
1910 		    local->hw.flags & IEEE80211_HW_REPORTS_TX_ACK_STATUS) {
1911 			tidstats->filled |=
1912 				BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
1913 			tidstats->tx_msdu_retries = sta->tx_msdu_retries[i];
1914 		}
1915 
1916 		if (!(tidstats->filled &
1917 				BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
1918 		    local->hw.flags & IEEE80211_HW_REPORTS_TX_ACK_STATUS) {
1919 			tidstats->filled |=
1920 				BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
1921 			tidstats->tx_msdu_failed = sta->tx_msdu_failed[i];
1922 		}
1923 	}
1924 
1925 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
1926 #ifdef CONFIG_MAC80211_MESH
1927 		sinfo->filled |= BIT(NL80211_STA_INFO_LLID) |
1928 				 BIT(NL80211_STA_INFO_PLID) |
1929 				 BIT(NL80211_STA_INFO_PLINK_STATE) |
1930 				 BIT(NL80211_STA_INFO_LOCAL_PM) |
1931 				 BIT(NL80211_STA_INFO_PEER_PM) |
1932 				 BIT(NL80211_STA_INFO_NONPEER_PM);
1933 
1934 		sinfo->llid = sta->llid;
1935 		sinfo->plid = sta->plid;
1936 		sinfo->plink_state = sta->plink_state;
1937 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
1938 			sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET);
1939 			sinfo->t_offset = sta->t_offset;
1940 		}
1941 		sinfo->local_pm = sta->local_pm;
1942 		sinfo->peer_pm = sta->peer_pm;
1943 		sinfo->nonpeer_pm = sta->nonpeer_pm;
1944 #endif
1945 	}
1946 
1947 	sinfo->bss_param.flags = 0;
1948 	if (sdata->vif.bss_conf.use_cts_prot)
1949 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
1950 	if (sdata->vif.bss_conf.use_short_preamble)
1951 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
1952 	if (sdata->vif.bss_conf.use_short_slot)
1953 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
1954 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
1955 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
1956 
1957 	sinfo->sta_flags.set = 0;
1958 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
1959 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
1960 				BIT(NL80211_STA_FLAG_WME) |
1961 				BIT(NL80211_STA_FLAG_MFP) |
1962 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
1963 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
1964 				BIT(NL80211_STA_FLAG_TDLS_PEER);
1965 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
1966 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
1967 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
1968 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
1969 	if (sta->sta.wme)
1970 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
1971 	if (test_sta_flag(sta, WLAN_STA_MFP))
1972 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
1973 	if (test_sta_flag(sta, WLAN_STA_AUTH))
1974 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
1975 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
1976 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
1977 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
1978 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
1979 
1980 	/* check if the driver has a SW RC implementation */
1981 	if (ref && ref->ops->get_expected_throughput)
1982 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
1983 	else
1984 		thr = drv_get_expected_throughput(local, &sta->sta);
1985 
1986 	if (thr != 0) {
1987 		sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
1988 		sinfo->expected_throughput = thr;
1989 	}
1990 }
1991