1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 7 * Copyright (C) 2018-2021 Intel Corporation 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/codel.h> 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 static const struct rhashtable_params sta_rht_params = { 68 .nelem_hint = 3, /* start small */ 69 .automatic_shrinking = true, 70 .head_offset = offsetof(struct sta_info, hash_node), 71 .key_offset = offsetof(struct sta_info, addr), 72 .key_len = ETH_ALEN, 73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 74 }; 75 76 /* Caller must hold local->sta_mtx */ 77 static int sta_info_hash_del(struct ieee80211_local *local, 78 struct sta_info *sta) 79 { 80 return rhltable_remove(&local->sta_hash, &sta->hash_node, 81 sta_rht_params); 82 } 83 84 static void __cleanup_single_sta(struct sta_info *sta) 85 { 86 int ac, i; 87 struct tid_ampdu_tx *tid_tx; 88 struct ieee80211_sub_if_data *sdata = sta->sdata; 89 struct ieee80211_local *local = sdata->local; 90 struct ps_data *ps; 91 92 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 97 ps = &sdata->bss->ps; 98 else if (ieee80211_vif_is_mesh(&sdata->vif)) 99 ps = &sdata->u.mesh.ps; 100 else 101 return; 102 103 clear_sta_flag(sta, WLAN_STA_PS_STA); 104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 106 107 atomic_dec(&ps->num_sta_ps); 108 } 109 110 if (sta->sta.txq[0]) { 111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 112 struct txq_info *txqi; 113 114 if (!sta->sta.txq[i]) 115 continue; 116 117 txqi = to_txq_info(sta->sta.txq[i]); 118 119 ieee80211_txq_purge(local, txqi); 120 } 121 } 122 123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 127 } 128 129 if (ieee80211_vif_is_mesh(&sdata->vif)) 130 mesh_sta_cleanup(sta); 131 132 cancel_work_sync(&sta->drv_deliver_wk); 133 134 /* 135 * Destroy aggregation state here. It would be nice to wait for the 136 * driver to finish aggregation stop and then clean up, but for now 137 * drivers have to handle aggregation stop being requested, followed 138 * directly by station destruction. 139 */ 140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 141 kfree(sta->ampdu_mlme.tid_start_tx[i]); 142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 143 if (!tid_tx) 144 continue; 145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 146 kfree(tid_tx); 147 } 148 } 149 150 static void cleanup_single_sta(struct sta_info *sta) 151 { 152 struct ieee80211_sub_if_data *sdata = sta->sdata; 153 struct ieee80211_local *local = sdata->local; 154 155 __cleanup_single_sta(sta); 156 sta_info_free(local, sta); 157 } 158 159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 160 const u8 *addr) 161 { 162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 163 } 164 165 /* protected by RCU */ 166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 167 const u8 *addr) 168 { 169 struct ieee80211_local *local = sdata->local; 170 struct rhlist_head *tmp; 171 struct sta_info *sta; 172 173 rcu_read_lock(); 174 for_each_sta_info(local, addr, sta, tmp) { 175 if (sta->sdata == sdata) { 176 rcu_read_unlock(); 177 /* this is safe as the caller must already hold 178 * another rcu read section or the mutex 179 */ 180 return sta; 181 } 182 } 183 rcu_read_unlock(); 184 return NULL; 185 } 186 187 /* 188 * Get sta info either from the specified interface 189 * or from one of its vlans 190 */ 191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 192 const u8 *addr) 193 { 194 struct ieee80211_local *local = sdata->local; 195 struct rhlist_head *tmp; 196 struct sta_info *sta; 197 198 rcu_read_lock(); 199 for_each_sta_info(local, addr, sta, tmp) { 200 if (sta->sdata == sdata || 201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 202 rcu_read_unlock(); 203 /* this is safe as the caller must already hold 204 * another rcu read section or the mutex 205 */ 206 return sta; 207 } 208 } 209 rcu_read_unlock(); 210 return NULL; 211 } 212 213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, 214 const u8 *sta_addr, const u8 *vif_addr) 215 { 216 struct rhlist_head *tmp; 217 struct sta_info *sta; 218 219 for_each_sta_info(local, sta_addr, sta, tmp) { 220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr)) 221 return sta; 222 } 223 224 return NULL; 225 } 226 227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 228 int idx) 229 { 230 struct ieee80211_local *local = sdata->local; 231 struct sta_info *sta; 232 int i = 0; 233 234 list_for_each_entry_rcu(sta, &local->sta_list, list, 235 lockdep_is_held(&local->sta_mtx)) { 236 if (sdata != sta->sdata) 237 continue; 238 if (i < idx) { 239 ++i; 240 continue; 241 } 242 return sta; 243 } 244 245 return NULL; 246 } 247 248 /** 249 * sta_info_free - free STA 250 * 251 * @local: pointer to the global information 252 * @sta: STA info to free 253 * 254 * This function must undo everything done by sta_info_alloc() 255 * that may happen before sta_info_insert(). It may only be 256 * called when sta_info_insert() has not been attempted (and 257 * if that fails, the station is freed anyway.) 258 */ 259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 260 { 261 /* 262 * If we had used sta_info_pre_move_state() then we might not 263 * have gone through the state transitions down again, so do 264 * it here now (and warn if it's inserted). 265 * 266 * This will clear state such as fast TX/RX that may have been 267 * allocated during state transitions. 268 */ 269 while (sta->sta_state > IEEE80211_STA_NONE) { 270 int ret; 271 272 WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED)); 273 274 ret = sta_info_move_state(sta, sta->sta_state - 1); 275 if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret)) 276 break; 277 } 278 279 if (sta->rate_ctrl) 280 rate_control_free_sta(sta); 281 282 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 283 284 if (sta->sta.txq[0]) 285 kfree(to_txq_info(sta->sta.txq[0])); 286 kfree(rcu_dereference_raw(sta->sta.rates)); 287 #ifdef CONFIG_MAC80211_MESH 288 kfree(sta->mesh); 289 #endif 290 free_percpu(sta->pcpu_rx_stats); 291 kfree(sta); 292 } 293 294 /* Caller must hold local->sta_mtx */ 295 static int sta_info_hash_add(struct ieee80211_local *local, 296 struct sta_info *sta) 297 { 298 return rhltable_insert(&local->sta_hash, &sta->hash_node, 299 sta_rht_params); 300 } 301 302 static void sta_deliver_ps_frames(struct work_struct *wk) 303 { 304 struct sta_info *sta; 305 306 sta = container_of(wk, struct sta_info, drv_deliver_wk); 307 308 if (sta->dead) 309 return; 310 311 local_bh_disable(); 312 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 313 ieee80211_sta_ps_deliver_wakeup(sta); 314 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 315 ieee80211_sta_ps_deliver_poll_response(sta); 316 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 317 ieee80211_sta_ps_deliver_uapsd(sta); 318 local_bh_enable(); 319 } 320 321 static int sta_prepare_rate_control(struct ieee80211_local *local, 322 struct sta_info *sta, gfp_t gfp) 323 { 324 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 325 return 0; 326 327 sta->rate_ctrl = local->rate_ctrl; 328 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 329 sta, gfp); 330 if (!sta->rate_ctrl_priv) 331 return -ENOMEM; 332 333 return 0; 334 } 335 336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 337 const u8 *addr, gfp_t gfp) 338 { 339 struct ieee80211_local *local = sdata->local; 340 struct ieee80211_hw *hw = &local->hw; 341 struct sta_info *sta; 342 int i; 343 344 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 345 if (!sta) 346 return NULL; 347 348 if (ieee80211_hw_check(hw, USES_RSS)) { 349 sta->pcpu_rx_stats = 350 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); 351 if (!sta->pcpu_rx_stats) 352 goto free; 353 } 354 355 spin_lock_init(&sta->lock); 356 spin_lock_init(&sta->ps_lock); 357 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 358 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 359 mutex_init(&sta->ampdu_mlme.mtx); 360 #ifdef CONFIG_MAC80211_MESH 361 if (ieee80211_vif_is_mesh(&sdata->vif)) { 362 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 363 if (!sta->mesh) 364 goto free; 365 sta->mesh->plink_sta = sta; 366 spin_lock_init(&sta->mesh->plink_lock); 367 if (!sdata->u.mesh.user_mpm) 368 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 369 0); 370 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 371 } 372 #endif 373 374 memcpy(sta->addr, addr, ETH_ALEN); 375 memcpy(sta->sta.addr, addr, ETH_ALEN); 376 sta->sta.max_rx_aggregation_subframes = 377 local->hw.max_rx_aggregation_subframes; 378 379 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only. 380 * The Tx path starts to use a key as soon as the key slot ptk_idx 381 * references to is not NULL. To not use the initial Rx-only key 382 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid 383 * which always will refer to a NULL key. 384 */ 385 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX); 386 sta->ptk_idx = INVALID_PTK_KEYIDX; 387 388 sta->local = local; 389 sta->sdata = sdata; 390 sta->rx_stats.last_rx = jiffies; 391 392 u64_stats_init(&sta->rx_stats.syncp); 393 394 ieee80211_init_frag_cache(&sta->frags); 395 396 sta->sta_state = IEEE80211_STA_NONE; 397 398 /* Mark TID as unreserved */ 399 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 400 401 sta->last_connected = ktime_get_seconds(); 402 ewma_signal_init(&sta->rx_stats_avg.signal); 403 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal); 404 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 405 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 406 407 if (local->ops->wake_tx_queue) { 408 void *txq_data; 409 int size = sizeof(struct txq_info) + 410 ALIGN(hw->txq_data_size, sizeof(void *)); 411 412 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 413 if (!txq_data) 414 goto free; 415 416 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 417 struct txq_info *txq = txq_data + i * size; 418 419 /* might not do anything for the bufferable MMPDU TXQ */ 420 ieee80211_txq_init(sdata, sta, txq, i); 421 } 422 } 423 424 if (sta_prepare_rate_control(local, sta, gfp)) 425 goto free_txq; 426 427 428 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 429 skb_queue_head_init(&sta->ps_tx_buf[i]); 430 skb_queue_head_init(&sta->tx_filtered[i]); 431 init_airtime_info(&sta->airtime[i], &local->airtime[i]); 432 } 433 434 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 435 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 436 437 for (i = 0; i < NUM_NL80211_BANDS; i++) { 438 u32 mandatory = 0; 439 int r; 440 441 if (!hw->wiphy->bands[i]) 442 continue; 443 444 switch (i) { 445 case NL80211_BAND_2GHZ: 446 case NL80211_BAND_LC: 447 /* 448 * We use both here, even if we cannot really know for 449 * sure the station will support both, but the only use 450 * for this is when we don't know anything yet and send 451 * management frames, and then we'll pick the lowest 452 * possible rate anyway. 453 * If we don't include _G here, we cannot find a rate 454 * in P2P, and thus trigger the WARN_ONCE() in rate.c 455 */ 456 mandatory = IEEE80211_RATE_MANDATORY_B | 457 IEEE80211_RATE_MANDATORY_G; 458 break; 459 case NL80211_BAND_5GHZ: 460 mandatory = IEEE80211_RATE_MANDATORY_A; 461 break; 462 case NL80211_BAND_60GHZ: 463 WARN_ON(1); 464 mandatory = 0; 465 break; 466 } 467 468 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) { 469 struct ieee80211_rate *rate; 470 471 rate = &hw->wiphy->bands[i]->bitrates[r]; 472 473 if (!(rate->flags & mandatory)) 474 continue; 475 sta->sta.supp_rates[i] |= BIT(r); 476 } 477 } 478 479 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 480 if (sdata->vif.type == NL80211_IFTYPE_AP || 481 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 482 struct ieee80211_supported_band *sband; 483 u8 smps; 484 485 sband = ieee80211_get_sband(sdata); 486 if (!sband) 487 goto free_txq; 488 489 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 490 IEEE80211_HT_CAP_SM_PS_SHIFT; 491 /* 492 * Assume that hostapd advertises our caps in the beacon and 493 * this is the known_smps_mode for a station that just assciated 494 */ 495 switch (smps) { 496 case WLAN_HT_SMPS_CONTROL_DISABLED: 497 sta->known_smps_mode = IEEE80211_SMPS_OFF; 498 break; 499 case WLAN_HT_SMPS_CONTROL_STATIC: 500 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 501 break; 502 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 503 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 504 break; 505 default: 506 WARN_ON(1); 507 } 508 } 509 510 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 511 512 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; 513 sta->cparams.target = MS2TIME(20); 514 sta->cparams.interval = MS2TIME(100); 515 sta->cparams.ecn = true; 516 sta->cparams.ce_threshold_selector = 0; 517 sta->cparams.ce_threshold_mask = 0; 518 519 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 520 521 return sta; 522 523 free_txq: 524 if (sta->sta.txq[0]) 525 kfree(to_txq_info(sta->sta.txq[0])); 526 free: 527 free_percpu(sta->pcpu_rx_stats); 528 #ifdef CONFIG_MAC80211_MESH 529 kfree(sta->mesh); 530 #endif 531 kfree(sta); 532 return NULL; 533 } 534 535 static int sta_info_insert_check(struct sta_info *sta) 536 { 537 struct ieee80211_sub_if_data *sdata = sta->sdata; 538 539 /* 540 * Can't be a WARN_ON because it can be triggered through a race: 541 * something inserts a STA (on one CPU) without holding the RTNL 542 * and another CPU turns off the net device. 543 */ 544 if (unlikely(!ieee80211_sdata_running(sdata))) 545 return -ENETDOWN; 546 547 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 548 !is_valid_ether_addr(sta->sta.addr))) 549 return -EINVAL; 550 551 /* The RCU read lock is required by rhashtable due to 552 * asynchronous resize/rehash. We also require the mutex 553 * for correctness. 554 */ 555 rcu_read_lock(); 556 lockdep_assert_held(&sdata->local->sta_mtx); 557 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 558 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 559 rcu_read_unlock(); 560 return -ENOTUNIQ; 561 } 562 rcu_read_unlock(); 563 564 return 0; 565 } 566 567 static int sta_info_insert_drv_state(struct ieee80211_local *local, 568 struct ieee80211_sub_if_data *sdata, 569 struct sta_info *sta) 570 { 571 enum ieee80211_sta_state state; 572 int err = 0; 573 574 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 575 err = drv_sta_state(local, sdata, sta, state, state + 1); 576 if (err) 577 break; 578 } 579 580 if (!err) { 581 /* 582 * Drivers using legacy sta_add/sta_remove callbacks only 583 * get uploaded set to true after sta_add is called. 584 */ 585 if (!local->ops->sta_add) 586 sta->uploaded = true; 587 return 0; 588 } 589 590 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 591 sdata_info(sdata, 592 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 593 sta->sta.addr, state + 1, err); 594 err = 0; 595 } 596 597 /* unwind on error */ 598 for (; state > IEEE80211_STA_NOTEXIST; state--) 599 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 600 601 return err; 602 } 603 604 static void 605 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 606 { 607 struct ieee80211_local *local = sdata->local; 608 bool allow_p2p_go_ps = sdata->vif.p2p; 609 struct sta_info *sta; 610 611 rcu_read_lock(); 612 list_for_each_entry_rcu(sta, &local->sta_list, list) { 613 if (sdata != sta->sdata || 614 !test_sta_flag(sta, WLAN_STA_ASSOC)) 615 continue; 616 if (!sta->sta.support_p2p_ps) { 617 allow_p2p_go_ps = false; 618 break; 619 } 620 } 621 rcu_read_unlock(); 622 623 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 624 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 625 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 626 } 627 } 628 629 /* 630 * should be called with sta_mtx locked 631 * this function replaces the mutex lock 632 * with a RCU lock 633 */ 634 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 635 { 636 struct ieee80211_local *local = sta->local; 637 struct ieee80211_sub_if_data *sdata = sta->sdata; 638 struct station_info *sinfo = NULL; 639 int err = 0; 640 641 lockdep_assert_held(&local->sta_mtx); 642 643 /* check if STA exists already */ 644 if (sta_info_get_bss(sdata, sta->sta.addr)) { 645 err = -EEXIST; 646 goto out_cleanup; 647 } 648 649 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 650 if (!sinfo) { 651 err = -ENOMEM; 652 goto out_cleanup; 653 } 654 655 local->num_sta++; 656 local->sta_generation++; 657 smp_mb(); 658 659 /* simplify things and don't accept BA sessions yet */ 660 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 661 662 /* make the station visible */ 663 err = sta_info_hash_add(local, sta); 664 if (err) 665 goto out_drop_sta; 666 667 list_add_tail_rcu(&sta->list, &local->sta_list); 668 669 /* update channel context before notifying the driver about state 670 * change, this enables driver using the updated channel context right away. 671 */ 672 if (sta->sta_state >= IEEE80211_STA_ASSOC) { 673 ieee80211_recalc_min_chandef(sta->sdata); 674 if (!sta->sta.support_p2p_ps) 675 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 676 } 677 678 /* notify driver */ 679 err = sta_info_insert_drv_state(local, sdata, sta); 680 if (err) 681 goto out_remove; 682 683 set_sta_flag(sta, WLAN_STA_INSERTED); 684 685 /* accept BA sessions now */ 686 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 687 688 ieee80211_sta_debugfs_add(sta); 689 rate_control_add_sta_debugfs(sta); 690 691 sinfo->generation = local->sta_generation; 692 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 693 kfree(sinfo); 694 695 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 696 697 /* move reference to rcu-protected */ 698 rcu_read_lock(); 699 mutex_unlock(&local->sta_mtx); 700 701 if (ieee80211_vif_is_mesh(&sdata->vif)) 702 mesh_accept_plinks_update(sdata); 703 704 return 0; 705 out_remove: 706 sta_info_hash_del(local, sta); 707 list_del_rcu(&sta->list); 708 out_drop_sta: 709 local->num_sta--; 710 synchronize_net(); 711 out_cleanup: 712 cleanup_single_sta(sta); 713 mutex_unlock(&local->sta_mtx); 714 kfree(sinfo); 715 rcu_read_lock(); 716 return err; 717 } 718 719 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 720 { 721 struct ieee80211_local *local = sta->local; 722 int err; 723 724 might_sleep(); 725 726 mutex_lock(&local->sta_mtx); 727 728 err = sta_info_insert_check(sta); 729 if (err) { 730 sta_info_free(local, sta); 731 mutex_unlock(&local->sta_mtx); 732 rcu_read_lock(); 733 return err; 734 } 735 736 return sta_info_insert_finish(sta); 737 } 738 739 int sta_info_insert(struct sta_info *sta) 740 { 741 int err = sta_info_insert_rcu(sta); 742 743 rcu_read_unlock(); 744 745 return err; 746 } 747 748 static inline void __bss_tim_set(u8 *tim, u16 id) 749 { 750 /* 751 * This format has been mandated by the IEEE specifications, 752 * so this line may not be changed to use the __set_bit() format. 753 */ 754 tim[id / 8] |= (1 << (id % 8)); 755 } 756 757 static inline void __bss_tim_clear(u8 *tim, u16 id) 758 { 759 /* 760 * This format has been mandated by the IEEE specifications, 761 * so this line may not be changed to use the __clear_bit() format. 762 */ 763 tim[id / 8] &= ~(1 << (id % 8)); 764 } 765 766 static inline bool __bss_tim_get(u8 *tim, u16 id) 767 { 768 /* 769 * This format has been mandated by the IEEE specifications, 770 * so this line may not be changed to use the test_bit() format. 771 */ 772 return tim[id / 8] & (1 << (id % 8)); 773 } 774 775 static unsigned long ieee80211_tids_for_ac(int ac) 776 { 777 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 778 switch (ac) { 779 case IEEE80211_AC_VO: 780 return BIT(6) | BIT(7); 781 case IEEE80211_AC_VI: 782 return BIT(4) | BIT(5); 783 case IEEE80211_AC_BE: 784 return BIT(0) | BIT(3); 785 case IEEE80211_AC_BK: 786 return BIT(1) | BIT(2); 787 default: 788 WARN_ON(1); 789 return 0; 790 } 791 } 792 793 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 794 { 795 struct ieee80211_local *local = sta->local; 796 struct ps_data *ps; 797 bool indicate_tim = false; 798 u8 ignore_for_tim = sta->sta.uapsd_queues; 799 int ac; 800 u16 id = sta->sta.aid; 801 802 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 803 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 804 if (WARN_ON_ONCE(!sta->sdata->bss)) 805 return; 806 807 ps = &sta->sdata->bss->ps; 808 #ifdef CONFIG_MAC80211_MESH 809 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 810 ps = &sta->sdata->u.mesh.ps; 811 #endif 812 } else { 813 return; 814 } 815 816 /* No need to do anything if the driver does all */ 817 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 818 return; 819 820 if (sta->dead) 821 goto done; 822 823 /* 824 * If all ACs are delivery-enabled then we should build 825 * the TIM bit for all ACs anyway; if only some are then 826 * we ignore those and build the TIM bit using only the 827 * non-enabled ones. 828 */ 829 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 830 ignore_for_tim = 0; 831 832 if (ignore_pending) 833 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 834 835 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 836 unsigned long tids; 837 838 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 839 continue; 840 841 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 842 !skb_queue_empty(&sta->ps_tx_buf[ac]); 843 if (indicate_tim) 844 break; 845 846 tids = ieee80211_tids_for_ac(ac); 847 848 indicate_tim |= 849 sta->driver_buffered_tids & tids; 850 indicate_tim |= 851 sta->txq_buffered_tids & tids; 852 } 853 854 done: 855 spin_lock_bh(&local->tim_lock); 856 857 if (indicate_tim == __bss_tim_get(ps->tim, id)) 858 goto out_unlock; 859 860 if (indicate_tim) 861 __bss_tim_set(ps->tim, id); 862 else 863 __bss_tim_clear(ps->tim, id); 864 865 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 866 local->tim_in_locked_section = true; 867 drv_set_tim(local, &sta->sta, indicate_tim); 868 local->tim_in_locked_section = false; 869 } 870 871 out_unlock: 872 spin_unlock_bh(&local->tim_lock); 873 } 874 875 void sta_info_recalc_tim(struct sta_info *sta) 876 { 877 __sta_info_recalc_tim(sta, false); 878 } 879 880 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 881 { 882 struct ieee80211_tx_info *info; 883 int timeout; 884 885 if (!skb) 886 return false; 887 888 info = IEEE80211_SKB_CB(skb); 889 890 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 891 timeout = (sta->listen_interval * 892 sta->sdata->vif.bss_conf.beacon_int * 893 32 / 15625) * HZ; 894 if (timeout < STA_TX_BUFFER_EXPIRE) 895 timeout = STA_TX_BUFFER_EXPIRE; 896 return time_after(jiffies, info->control.jiffies + timeout); 897 } 898 899 900 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 901 struct sta_info *sta, int ac) 902 { 903 unsigned long flags; 904 struct sk_buff *skb; 905 906 /* 907 * First check for frames that should expire on the filtered 908 * queue. Frames here were rejected by the driver and are on 909 * a separate queue to avoid reordering with normal PS-buffered 910 * frames. They also aren't accounted for right now in the 911 * total_ps_buffered counter. 912 */ 913 for (;;) { 914 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 915 skb = skb_peek(&sta->tx_filtered[ac]); 916 if (sta_info_buffer_expired(sta, skb)) 917 skb = __skb_dequeue(&sta->tx_filtered[ac]); 918 else 919 skb = NULL; 920 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 921 922 /* 923 * Frames are queued in order, so if this one 924 * hasn't expired yet we can stop testing. If 925 * we actually reached the end of the queue we 926 * also need to stop, of course. 927 */ 928 if (!skb) 929 break; 930 ieee80211_free_txskb(&local->hw, skb); 931 } 932 933 /* 934 * Now also check the normal PS-buffered queue, this will 935 * only find something if the filtered queue was emptied 936 * since the filtered frames are all before the normal PS 937 * buffered frames. 938 */ 939 for (;;) { 940 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 941 skb = skb_peek(&sta->ps_tx_buf[ac]); 942 if (sta_info_buffer_expired(sta, skb)) 943 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 944 else 945 skb = NULL; 946 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 947 948 /* 949 * frames are queued in order, so if this one 950 * hasn't expired yet (or we reached the end of 951 * the queue) we can stop testing 952 */ 953 if (!skb) 954 break; 955 956 local->total_ps_buffered--; 957 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 958 sta->sta.addr); 959 ieee80211_free_txskb(&local->hw, skb); 960 } 961 962 /* 963 * Finally, recalculate the TIM bit for this station -- it might 964 * now be clear because the station was too slow to retrieve its 965 * frames. 966 */ 967 sta_info_recalc_tim(sta); 968 969 /* 970 * Return whether there are any frames still buffered, this is 971 * used to check whether the cleanup timer still needs to run, 972 * if there are no frames we don't need to rearm the timer. 973 */ 974 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 975 skb_queue_empty(&sta->tx_filtered[ac])); 976 } 977 978 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 979 struct sta_info *sta) 980 { 981 bool have_buffered = false; 982 int ac; 983 984 /* This is only necessary for stations on BSS/MBSS interfaces */ 985 if (!sta->sdata->bss && 986 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 987 return false; 988 989 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 990 have_buffered |= 991 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 992 993 return have_buffered; 994 } 995 996 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 997 { 998 struct ieee80211_local *local; 999 struct ieee80211_sub_if_data *sdata; 1000 int ret; 1001 1002 might_sleep(); 1003 1004 if (!sta) 1005 return -ENOENT; 1006 1007 local = sta->local; 1008 sdata = sta->sdata; 1009 1010 lockdep_assert_held(&local->sta_mtx); 1011 1012 /* 1013 * Before removing the station from the driver and 1014 * rate control, it might still start new aggregation 1015 * sessions -- block that to make sure the tear-down 1016 * will be sufficient. 1017 */ 1018 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 1019 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 1020 1021 /* 1022 * Before removing the station from the driver there might be pending 1023 * rx frames on RSS queues sent prior to the disassociation - wait for 1024 * all such frames to be processed. 1025 */ 1026 drv_sync_rx_queues(local, sta); 1027 1028 ret = sta_info_hash_del(local, sta); 1029 if (WARN_ON(ret)) 1030 return ret; 1031 1032 /* 1033 * for TDLS peers, make sure to return to the base channel before 1034 * removal. 1035 */ 1036 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 1037 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 1038 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 1039 } 1040 1041 list_del_rcu(&sta->list); 1042 sta->removed = true; 1043 1044 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 1045 1046 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1047 rcu_access_pointer(sdata->u.vlan.sta) == sta) 1048 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 1049 1050 return 0; 1051 } 1052 1053 static void __sta_info_destroy_part2(struct sta_info *sta) 1054 { 1055 struct ieee80211_local *local = sta->local; 1056 struct ieee80211_sub_if_data *sdata = sta->sdata; 1057 struct station_info *sinfo; 1058 int ret; 1059 1060 /* 1061 * NOTE: This assumes at least synchronize_net() was done 1062 * after _part1 and before _part2! 1063 */ 1064 1065 might_sleep(); 1066 lockdep_assert_held(&local->sta_mtx); 1067 1068 if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1069 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC); 1070 WARN_ON_ONCE(ret); 1071 } 1072 1073 /* now keys can no longer be reached */ 1074 ieee80211_free_sta_keys(local, sta); 1075 1076 /* disable TIM bit - last chance to tell driver */ 1077 __sta_info_recalc_tim(sta, true); 1078 1079 sta->dead = true; 1080 1081 local->num_sta--; 1082 local->sta_generation++; 1083 1084 while (sta->sta_state > IEEE80211_STA_NONE) { 1085 ret = sta_info_move_state(sta, sta->sta_state - 1); 1086 if (ret) { 1087 WARN_ON_ONCE(1); 1088 break; 1089 } 1090 } 1091 1092 if (sta->uploaded) { 1093 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 1094 IEEE80211_STA_NOTEXIST); 1095 WARN_ON_ONCE(ret != 0); 1096 } 1097 1098 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 1099 1100 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 1101 if (sinfo) 1102 sta_set_sinfo(sta, sinfo, true); 1103 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 1104 kfree(sinfo); 1105 1106 ieee80211_sta_debugfs_remove(sta); 1107 1108 ieee80211_destroy_frag_cache(&sta->frags); 1109 1110 cleanup_single_sta(sta); 1111 } 1112 1113 int __must_check __sta_info_destroy(struct sta_info *sta) 1114 { 1115 int err = __sta_info_destroy_part1(sta); 1116 1117 if (err) 1118 return err; 1119 1120 synchronize_net(); 1121 1122 __sta_info_destroy_part2(sta); 1123 1124 return 0; 1125 } 1126 1127 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1128 { 1129 struct sta_info *sta; 1130 int ret; 1131 1132 mutex_lock(&sdata->local->sta_mtx); 1133 sta = sta_info_get(sdata, addr); 1134 ret = __sta_info_destroy(sta); 1135 mutex_unlock(&sdata->local->sta_mtx); 1136 1137 return ret; 1138 } 1139 1140 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1141 const u8 *addr) 1142 { 1143 struct sta_info *sta; 1144 int ret; 1145 1146 mutex_lock(&sdata->local->sta_mtx); 1147 sta = sta_info_get_bss(sdata, addr); 1148 ret = __sta_info_destroy(sta); 1149 mutex_unlock(&sdata->local->sta_mtx); 1150 1151 return ret; 1152 } 1153 1154 static void sta_info_cleanup(struct timer_list *t) 1155 { 1156 struct ieee80211_local *local = from_timer(local, t, sta_cleanup); 1157 struct sta_info *sta; 1158 bool timer_needed = false; 1159 1160 rcu_read_lock(); 1161 list_for_each_entry_rcu(sta, &local->sta_list, list) 1162 if (sta_info_cleanup_expire_buffered(local, sta)) 1163 timer_needed = true; 1164 rcu_read_unlock(); 1165 1166 if (local->quiescing) 1167 return; 1168 1169 if (!timer_needed) 1170 return; 1171 1172 mod_timer(&local->sta_cleanup, 1173 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1174 } 1175 1176 int sta_info_init(struct ieee80211_local *local) 1177 { 1178 int err; 1179 1180 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1181 if (err) 1182 return err; 1183 1184 spin_lock_init(&local->tim_lock); 1185 mutex_init(&local->sta_mtx); 1186 INIT_LIST_HEAD(&local->sta_list); 1187 1188 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); 1189 return 0; 1190 } 1191 1192 void sta_info_stop(struct ieee80211_local *local) 1193 { 1194 del_timer_sync(&local->sta_cleanup); 1195 rhltable_destroy(&local->sta_hash); 1196 } 1197 1198 1199 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1200 { 1201 struct ieee80211_local *local = sdata->local; 1202 struct sta_info *sta, *tmp; 1203 LIST_HEAD(free_list); 1204 int ret = 0; 1205 1206 might_sleep(); 1207 1208 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1209 WARN_ON(vlans && !sdata->bss); 1210 1211 mutex_lock(&local->sta_mtx); 1212 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1213 if (sdata == sta->sdata || 1214 (vlans && sdata->bss == sta->sdata->bss)) { 1215 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1216 list_add(&sta->free_list, &free_list); 1217 ret++; 1218 } 1219 } 1220 1221 if (!list_empty(&free_list)) { 1222 synchronize_net(); 1223 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1224 __sta_info_destroy_part2(sta); 1225 } 1226 mutex_unlock(&local->sta_mtx); 1227 1228 return ret; 1229 } 1230 1231 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1232 unsigned long exp_time) 1233 { 1234 struct ieee80211_local *local = sdata->local; 1235 struct sta_info *sta, *tmp; 1236 1237 mutex_lock(&local->sta_mtx); 1238 1239 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1240 unsigned long last_active = ieee80211_sta_last_active(sta); 1241 1242 if (sdata != sta->sdata) 1243 continue; 1244 1245 if (time_is_before_jiffies(last_active + exp_time)) { 1246 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1247 sta->sta.addr); 1248 1249 if (ieee80211_vif_is_mesh(&sdata->vif) && 1250 test_sta_flag(sta, WLAN_STA_PS_STA)) 1251 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1252 1253 WARN_ON(__sta_info_destroy(sta)); 1254 } 1255 } 1256 1257 mutex_unlock(&local->sta_mtx); 1258 } 1259 1260 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1261 const u8 *addr, 1262 const u8 *localaddr) 1263 { 1264 struct ieee80211_local *local = hw_to_local(hw); 1265 struct rhlist_head *tmp; 1266 struct sta_info *sta; 1267 1268 /* 1269 * Just return a random station if localaddr is NULL 1270 * ... first in list. 1271 */ 1272 for_each_sta_info(local, addr, sta, tmp) { 1273 if (localaddr && 1274 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1275 continue; 1276 if (!sta->uploaded) 1277 return NULL; 1278 return &sta->sta; 1279 } 1280 1281 return NULL; 1282 } 1283 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1284 1285 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1286 const u8 *addr) 1287 { 1288 struct sta_info *sta; 1289 1290 if (!vif) 1291 return NULL; 1292 1293 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1294 if (!sta) 1295 return NULL; 1296 1297 if (!sta->uploaded) 1298 return NULL; 1299 1300 return &sta->sta; 1301 } 1302 EXPORT_SYMBOL(ieee80211_find_sta); 1303 1304 /* powersave support code */ 1305 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1306 { 1307 struct ieee80211_sub_if_data *sdata = sta->sdata; 1308 struct ieee80211_local *local = sdata->local; 1309 struct sk_buff_head pending; 1310 int filtered = 0, buffered = 0, ac, i; 1311 unsigned long flags; 1312 struct ps_data *ps; 1313 1314 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1315 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1316 u.ap); 1317 1318 if (sdata->vif.type == NL80211_IFTYPE_AP) 1319 ps = &sdata->bss->ps; 1320 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1321 ps = &sdata->u.mesh.ps; 1322 else 1323 return; 1324 1325 clear_sta_flag(sta, WLAN_STA_SP); 1326 1327 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1328 sta->driver_buffered_tids = 0; 1329 sta->txq_buffered_tids = 0; 1330 1331 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1332 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1333 1334 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1335 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) 1336 continue; 1337 1338 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); 1339 } 1340 1341 skb_queue_head_init(&pending); 1342 1343 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1344 spin_lock(&sta->ps_lock); 1345 /* Send all buffered frames to the station */ 1346 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1347 int count = skb_queue_len(&pending), tmp; 1348 1349 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1350 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1351 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1352 tmp = skb_queue_len(&pending); 1353 filtered += tmp - count; 1354 count = tmp; 1355 1356 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1357 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1358 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1359 tmp = skb_queue_len(&pending); 1360 buffered += tmp - count; 1361 } 1362 1363 ieee80211_add_pending_skbs(local, &pending); 1364 1365 /* now we're no longer in the deliver code */ 1366 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1367 1368 /* The station might have polled and then woken up before we responded, 1369 * so clear these flags now to avoid them sticking around. 1370 */ 1371 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1372 clear_sta_flag(sta, WLAN_STA_UAPSD); 1373 spin_unlock(&sta->ps_lock); 1374 1375 atomic_dec(&ps->num_sta_ps); 1376 1377 local->total_ps_buffered -= buffered; 1378 1379 sta_info_recalc_tim(sta); 1380 1381 ps_dbg(sdata, 1382 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1383 sta->sta.addr, sta->sta.aid, filtered, buffered); 1384 1385 ieee80211_check_fast_xmit(sta); 1386 } 1387 1388 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1389 enum ieee80211_frame_release_type reason, 1390 bool call_driver, bool more_data) 1391 { 1392 struct ieee80211_sub_if_data *sdata = sta->sdata; 1393 struct ieee80211_local *local = sdata->local; 1394 struct ieee80211_qos_hdr *nullfunc; 1395 struct sk_buff *skb; 1396 int size = sizeof(*nullfunc); 1397 __le16 fc; 1398 bool qos = sta->sta.wme; 1399 struct ieee80211_tx_info *info; 1400 struct ieee80211_chanctx_conf *chanctx_conf; 1401 1402 if (qos) { 1403 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1404 IEEE80211_STYPE_QOS_NULLFUNC | 1405 IEEE80211_FCTL_FROMDS); 1406 } else { 1407 size -= 2; 1408 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1409 IEEE80211_STYPE_NULLFUNC | 1410 IEEE80211_FCTL_FROMDS); 1411 } 1412 1413 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1414 if (!skb) 1415 return; 1416 1417 skb_reserve(skb, local->hw.extra_tx_headroom); 1418 1419 nullfunc = skb_put(skb, size); 1420 nullfunc->frame_control = fc; 1421 nullfunc->duration_id = 0; 1422 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1423 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1424 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1425 nullfunc->seq_ctrl = 0; 1426 1427 skb->priority = tid; 1428 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1429 if (qos) { 1430 nullfunc->qos_ctrl = cpu_to_le16(tid); 1431 1432 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1433 nullfunc->qos_ctrl |= 1434 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1435 if (more_data) 1436 nullfunc->frame_control |= 1437 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1438 } 1439 } 1440 1441 info = IEEE80211_SKB_CB(skb); 1442 1443 /* 1444 * Tell TX path to send this frame even though the 1445 * STA may still remain is PS mode after this frame 1446 * exchange. Also set EOSP to indicate this packet 1447 * ends the poll/service period. 1448 */ 1449 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1450 IEEE80211_TX_STATUS_EOSP | 1451 IEEE80211_TX_CTL_REQ_TX_STATUS; 1452 1453 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1454 1455 if (call_driver) 1456 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1457 reason, false); 1458 1459 skb->dev = sdata->dev; 1460 1461 rcu_read_lock(); 1462 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1463 if (WARN_ON(!chanctx_conf)) { 1464 rcu_read_unlock(); 1465 kfree_skb(skb); 1466 return; 1467 } 1468 1469 info->band = chanctx_conf->def.chan->band; 1470 ieee80211_xmit(sdata, sta, skb); 1471 rcu_read_unlock(); 1472 } 1473 1474 static int find_highest_prio_tid(unsigned long tids) 1475 { 1476 /* lower 3 TIDs aren't ordered perfectly */ 1477 if (tids & 0xF8) 1478 return fls(tids) - 1; 1479 /* TID 0 is BE just like TID 3 */ 1480 if (tids & BIT(0)) 1481 return 0; 1482 return fls(tids) - 1; 1483 } 1484 1485 /* Indicates if the MORE_DATA bit should be set in the last 1486 * frame obtained by ieee80211_sta_ps_get_frames. 1487 * Note that driver_release_tids is relevant only if 1488 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1489 */ 1490 static bool 1491 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1492 enum ieee80211_frame_release_type reason, 1493 unsigned long driver_release_tids) 1494 { 1495 int ac; 1496 1497 /* If the driver has data on more than one TID then 1498 * certainly there's more data if we release just a 1499 * single frame now (from a single TID). This will 1500 * only happen for PS-Poll. 1501 */ 1502 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1503 hweight16(driver_release_tids) > 1) 1504 return true; 1505 1506 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1507 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1508 continue; 1509 1510 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1511 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1512 return true; 1513 } 1514 1515 return false; 1516 } 1517 1518 static void 1519 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1520 enum ieee80211_frame_release_type reason, 1521 struct sk_buff_head *frames, 1522 unsigned long *driver_release_tids) 1523 { 1524 struct ieee80211_sub_if_data *sdata = sta->sdata; 1525 struct ieee80211_local *local = sdata->local; 1526 int ac; 1527 1528 /* Get response frame(s) and more data bit for the last one. */ 1529 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1530 unsigned long tids; 1531 1532 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1533 continue; 1534 1535 tids = ieee80211_tids_for_ac(ac); 1536 1537 /* if we already have frames from software, then we can't also 1538 * release from hardware queues 1539 */ 1540 if (skb_queue_empty(frames)) { 1541 *driver_release_tids |= 1542 sta->driver_buffered_tids & tids; 1543 *driver_release_tids |= sta->txq_buffered_tids & tids; 1544 } 1545 1546 if (!*driver_release_tids) { 1547 struct sk_buff *skb; 1548 1549 while (n_frames > 0) { 1550 skb = skb_dequeue(&sta->tx_filtered[ac]); 1551 if (!skb) { 1552 skb = skb_dequeue( 1553 &sta->ps_tx_buf[ac]); 1554 if (skb) 1555 local->total_ps_buffered--; 1556 } 1557 if (!skb) 1558 break; 1559 n_frames--; 1560 __skb_queue_tail(frames, skb); 1561 } 1562 } 1563 1564 /* If we have more frames buffered on this AC, then abort the 1565 * loop since we can't send more data from other ACs before 1566 * the buffered frames from this. 1567 */ 1568 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1569 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1570 break; 1571 } 1572 } 1573 1574 static void 1575 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1576 int n_frames, u8 ignored_acs, 1577 enum ieee80211_frame_release_type reason) 1578 { 1579 struct ieee80211_sub_if_data *sdata = sta->sdata; 1580 struct ieee80211_local *local = sdata->local; 1581 unsigned long driver_release_tids = 0; 1582 struct sk_buff_head frames; 1583 bool more_data; 1584 1585 /* Service or PS-Poll period starts */ 1586 set_sta_flag(sta, WLAN_STA_SP); 1587 1588 __skb_queue_head_init(&frames); 1589 1590 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1591 &frames, &driver_release_tids); 1592 1593 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1594 1595 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1596 driver_release_tids = 1597 BIT(find_highest_prio_tid(driver_release_tids)); 1598 1599 if (skb_queue_empty(&frames) && !driver_release_tids) { 1600 int tid, ac; 1601 1602 /* 1603 * For PS-Poll, this can only happen due to a race condition 1604 * when we set the TIM bit and the station notices it, but 1605 * before it can poll for the frame we expire it. 1606 * 1607 * For uAPSD, this is said in the standard (11.2.1.5 h): 1608 * At each unscheduled SP for a non-AP STA, the AP shall 1609 * attempt to transmit at least one MSDU or MMPDU, but no 1610 * more than the value specified in the Max SP Length field 1611 * in the QoS Capability element from delivery-enabled ACs, 1612 * that are destined for the non-AP STA. 1613 * 1614 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1615 */ 1616 1617 /* This will evaluate to 1, 3, 5 or 7. */ 1618 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1619 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1620 break; 1621 tid = 7 - 2 * ac; 1622 1623 ieee80211_send_null_response(sta, tid, reason, true, false); 1624 } else if (!driver_release_tids) { 1625 struct sk_buff_head pending; 1626 struct sk_buff *skb; 1627 int num = 0; 1628 u16 tids = 0; 1629 bool need_null = false; 1630 1631 skb_queue_head_init(&pending); 1632 1633 while ((skb = __skb_dequeue(&frames))) { 1634 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1635 struct ieee80211_hdr *hdr = (void *) skb->data; 1636 u8 *qoshdr = NULL; 1637 1638 num++; 1639 1640 /* 1641 * Tell TX path to send this frame even though the 1642 * STA may still remain is PS mode after this frame 1643 * exchange. 1644 */ 1645 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1646 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1647 1648 /* 1649 * Use MoreData flag to indicate whether there are 1650 * more buffered frames for this STA 1651 */ 1652 if (more_data || !skb_queue_empty(&frames)) 1653 hdr->frame_control |= 1654 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1655 else 1656 hdr->frame_control &= 1657 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1658 1659 if (ieee80211_is_data_qos(hdr->frame_control) || 1660 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1661 qoshdr = ieee80211_get_qos_ctl(hdr); 1662 1663 tids |= BIT(skb->priority); 1664 1665 __skb_queue_tail(&pending, skb); 1666 1667 /* end service period after last frame or add one */ 1668 if (!skb_queue_empty(&frames)) 1669 continue; 1670 1671 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1672 /* for PS-Poll, there's only one frame */ 1673 info->flags |= IEEE80211_TX_STATUS_EOSP | 1674 IEEE80211_TX_CTL_REQ_TX_STATUS; 1675 break; 1676 } 1677 1678 /* For uAPSD, things are a bit more complicated. If the 1679 * last frame has a QoS header (i.e. is a QoS-data or 1680 * QoS-nulldata frame) then just set the EOSP bit there 1681 * and be done. 1682 * If the frame doesn't have a QoS header (which means 1683 * it should be a bufferable MMPDU) then we can't set 1684 * the EOSP bit in the QoS header; add a QoS-nulldata 1685 * frame to the list to send it after the MMPDU. 1686 * 1687 * Note that this code is only in the mac80211-release 1688 * code path, we assume that the driver will not buffer 1689 * anything but QoS-data frames, or if it does, will 1690 * create the QoS-nulldata frame by itself if needed. 1691 * 1692 * Cf. 802.11-2012 10.2.1.10 (c). 1693 */ 1694 if (qoshdr) { 1695 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1696 1697 info->flags |= IEEE80211_TX_STATUS_EOSP | 1698 IEEE80211_TX_CTL_REQ_TX_STATUS; 1699 } else { 1700 /* The standard isn't completely clear on this 1701 * as it says the more-data bit should be set 1702 * if there are more BUs. The QoS-Null frame 1703 * we're about to send isn't buffered yet, we 1704 * only create it below, but let's pretend it 1705 * was buffered just in case some clients only 1706 * expect more-data=0 when eosp=1. 1707 */ 1708 hdr->frame_control |= 1709 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1710 need_null = true; 1711 num++; 1712 } 1713 break; 1714 } 1715 1716 drv_allow_buffered_frames(local, sta, tids, num, 1717 reason, more_data); 1718 1719 ieee80211_add_pending_skbs(local, &pending); 1720 1721 if (need_null) 1722 ieee80211_send_null_response( 1723 sta, find_highest_prio_tid(tids), 1724 reason, false, false); 1725 1726 sta_info_recalc_tim(sta); 1727 } else { 1728 int tid; 1729 1730 /* 1731 * We need to release a frame that is buffered somewhere in the 1732 * driver ... it'll have to handle that. 1733 * Note that the driver also has to check the number of frames 1734 * on the TIDs we're releasing from - if there are more than 1735 * n_frames it has to set the more-data bit (if we didn't ask 1736 * it to set it anyway due to other buffered frames); if there 1737 * are fewer than n_frames it has to make sure to adjust that 1738 * to allow the service period to end properly. 1739 */ 1740 drv_release_buffered_frames(local, sta, driver_release_tids, 1741 n_frames, reason, more_data); 1742 1743 /* 1744 * Note that we don't recalculate the TIM bit here as it would 1745 * most likely have no effect at all unless the driver told us 1746 * that the TID(s) became empty before returning here from the 1747 * release function. 1748 * Either way, however, when the driver tells us that the TID(s) 1749 * became empty or we find that a txq became empty, we'll do the 1750 * TIM recalculation. 1751 */ 1752 1753 if (!sta->sta.txq[0]) 1754 return; 1755 1756 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1757 if (!sta->sta.txq[tid] || 1758 !(driver_release_tids & BIT(tid)) || 1759 txq_has_queue(sta->sta.txq[tid])) 1760 continue; 1761 1762 sta_info_recalc_tim(sta); 1763 break; 1764 } 1765 } 1766 } 1767 1768 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1769 { 1770 u8 ignore_for_response = sta->sta.uapsd_queues; 1771 1772 /* 1773 * If all ACs are delivery-enabled then we should reply 1774 * from any of them, if only some are enabled we reply 1775 * only from the non-enabled ones. 1776 */ 1777 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1778 ignore_for_response = 0; 1779 1780 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1781 IEEE80211_FRAME_RELEASE_PSPOLL); 1782 } 1783 1784 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1785 { 1786 int n_frames = sta->sta.max_sp; 1787 u8 delivery_enabled = sta->sta.uapsd_queues; 1788 1789 /* 1790 * If we ever grow support for TSPEC this might happen if 1791 * the TSPEC update from hostapd comes in between a trigger 1792 * frame setting WLAN_STA_UAPSD in the RX path and this 1793 * actually getting called. 1794 */ 1795 if (!delivery_enabled) 1796 return; 1797 1798 switch (sta->sta.max_sp) { 1799 case 1: 1800 n_frames = 2; 1801 break; 1802 case 2: 1803 n_frames = 4; 1804 break; 1805 case 3: 1806 n_frames = 6; 1807 break; 1808 case 0: 1809 /* XXX: what is a good value? */ 1810 n_frames = 128; 1811 break; 1812 } 1813 1814 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1815 IEEE80211_FRAME_RELEASE_UAPSD); 1816 } 1817 1818 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1819 struct ieee80211_sta *pubsta, bool block) 1820 { 1821 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1822 1823 trace_api_sta_block_awake(sta->local, pubsta, block); 1824 1825 if (block) { 1826 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1827 ieee80211_clear_fast_xmit(sta); 1828 return; 1829 } 1830 1831 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1832 return; 1833 1834 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1835 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1836 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1837 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1838 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1839 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1840 /* must be asleep in this case */ 1841 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1842 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1843 } else { 1844 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1845 ieee80211_check_fast_xmit(sta); 1846 } 1847 } 1848 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1849 1850 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1851 { 1852 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1853 struct ieee80211_local *local = sta->local; 1854 1855 trace_api_eosp(local, pubsta); 1856 1857 clear_sta_flag(sta, WLAN_STA_SP); 1858 } 1859 EXPORT_SYMBOL(ieee80211_sta_eosp); 1860 1861 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1862 { 1863 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1864 enum ieee80211_frame_release_type reason; 1865 bool more_data; 1866 1867 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1868 1869 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1870 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1871 reason, 0); 1872 1873 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1874 } 1875 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1876 1877 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1878 u8 tid, bool buffered) 1879 { 1880 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1881 1882 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1883 return; 1884 1885 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1886 1887 if (buffered) 1888 set_bit(tid, &sta->driver_buffered_tids); 1889 else 1890 clear_bit(tid, &sta->driver_buffered_tids); 1891 1892 sta_info_recalc_tim(sta); 1893 } 1894 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1895 1896 void ieee80211_register_airtime(struct ieee80211_txq *txq, 1897 u32 tx_airtime, u32 rx_airtime) 1898 { 1899 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 1900 struct ieee80211_local *local = sdata->local; 1901 u64 weight_sum, weight_sum_reciprocal; 1902 struct airtime_sched_info *air_sched; 1903 struct airtime_info *air_info; 1904 u32 airtime = 0; 1905 1906 air_sched = &local->airtime[txq->ac]; 1907 air_info = to_airtime_info(txq); 1908 1909 if (local->airtime_flags & AIRTIME_USE_TX) 1910 airtime += tx_airtime; 1911 if (local->airtime_flags & AIRTIME_USE_RX) 1912 airtime += rx_airtime; 1913 1914 /* Weights scale so the unit weight is 256 */ 1915 airtime <<= 8; 1916 1917 spin_lock_bh(&air_sched->lock); 1918 1919 air_info->tx_airtime += tx_airtime; 1920 air_info->rx_airtime += rx_airtime; 1921 1922 if (air_sched->weight_sum) { 1923 weight_sum = air_sched->weight_sum; 1924 weight_sum_reciprocal = air_sched->weight_sum_reciprocal; 1925 } else { 1926 weight_sum = air_info->weight; 1927 weight_sum_reciprocal = air_info->weight_reciprocal; 1928 } 1929 1930 /* Round the calculation of global vt */ 1931 air_sched->v_t += (u64)((airtime + (weight_sum >> 1)) * 1932 weight_sum_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_64; 1933 air_info->v_t += (u32)((airtime + (air_info->weight >> 1)) * 1934 air_info->weight_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_32; 1935 ieee80211_resort_txq(&local->hw, txq); 1936 1937 spin_unlock_bh(&air_sched->lock); 1938 } 1939 1940 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, 1941 u32 tx_airtime, u32 rx_airtime) 1942 { 1943 struct ieee80211_txq *txq = pubsta->txq[tid]; 1944 1945 if (!txq) 1946 return; 1947 1948 ieee80211_register_airtime(txq, tx_airtime, rx_airtime); 1949 } 1950 EXPORT_SYMBOL(ieee80211_sta_register_airtime); 1951 1952 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, 1953 struct sta_info *sta, u8 ac, 1954 u16 tx_airtime, bool tx_completed) 1955 { 1956 int tx_pending; 1957 1958 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) 1959 return; 1960 1961 if (!tx_completed) { 1962 if (sta) 1963 atomic_add(tx_airtime, 1964 &sta->airtime[ac].aql_tx_pending); 1965 1966 atomic_add(tx_airtime, &local->aql_total_pending_airtime); 1967 return; 1968 } 1969 1970 if (sta) { 1971 tx_pending = atomic_sub_return(tx_airtime, 1972 &sta->airtime[ac].aql_tx_pending); 1973 if (tx_pending < 0) 1974 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending, 1975 tx_pending, 0); 1976 } 1977 1978 tx_pending = atomic_sub_return(tx_airtime, 1979 &local->aql_total_pending_airtime); 1980 if (WARN_ONCE(tx_pending < 0, 1981 "Device %s AC %d pending airtime underflow: %u, %u", 1982 wiphy_name(local->hw.wiphy), ac, tx_pending, 1983 tx_airtime)) 1984 atomic_cmpxchg(&local->aql_total_pending_airtime, 1985 tx_pending, 0); 1986 } 1987 1988 int sta_info_move_state(struct sta_info *sta, 1989 enum ieee80211_sta_state new_state) 1990 { 1991 might_sleep(); 1992 1993 if (sta->sta_state == new_state) 1994 return 0; 1995 1996 /* check allowed transitions first */ 1997 1998 switch (new_state) { 1999 case IEEE80211_STA_NONE: 2000 if (sta->sta_state != IEEE80211_STA_AUTH) 2001 return -EINVAL; 2002 break; 2003 case IEEE80211_STA_AUTH: 2004 if (sta->sta_state != IEEE80211_STA_NONE && 2005 sta->sta_state != IEEE80211_STA_ASSOC) 2006 return -EINVAL; 2007 break; 2008 case IEEE80211_STA_ASSOC: 2009 if (sta->sta_state != IEEE80211_STA_AUTH && 2010 sta->sta_state != IEEE80211_STA_AUTHORIZED) 2011 return -EINVAL; 2012 break; 2013 case IEEE80211_STA_AUTHORIZED: 2014 if (sta->sta_state != IEEE80211_STA_ASSOC) 2015 return -EINVAL; 2016 break; 2017 default: 2018 WARN(1, "invalid state %d", new_state); 2019 return -EINVAL; 2020 } 2021 2022 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 2023 sta->sta.addr, new_state); 2024 2025 /* 2026 * notify the driver before the actual changes so it can 2027 * fail the transition 2028 */ 2029 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 2030 int err = drv_sta_state(sta->local, sta->sdata, sta, 2031 sta->sta_state, new_state); 2032 if (err) 2033 return err; 2034 } 2035 2036 /* reflect the change in all state variables */ 2037 2038 switch (new_state) { 2039 case IEEE80211_STA_NONE: 2040 if (sta->sta_state == IEEE80211_STA_AUTH) 2041 clear_bit(WLAN_STA_AUTH, &sta->_flags); 2042 break; 2043 case IEEE80211_STA_AUTH: 2044 if (sta->sta_state == IEEE80211_STA_NONE) { 2045 set_bit(WLAN_STA_AUTH, &sta->_flags); 2046 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 2047 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 2048 ieee80211_recalc_min_chandef(sta->sdata); 2049 if (!sta->sta.support_p2p_ps) 2050 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2051 } 2052 break; 2053 case IEEE80211_STA_ASSOC: 2054 if (sta->sta_state == IEEE80211_STA_AUTH) { 2055 set_bit(WLAN_STA_ASSOC, &sta->_flags); 2056 sta->assoc_at = ktime_get_boottime_ns(); 2057 ieee80211_recalc_min_chandef(sta->sdata); 2058 if (!sta->sta.support_p2p_ps) 2059 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2060 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 2061 ieee80211_vif_dec_num_mcast(sta->sdata); 2062 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2063 ieee80211_clear_fast_xmit(sta); 2064 ieee80211_clear_fast_rx(sta); 2065 } 2066 break; 2067 case IEEE80211_STA_AUTHORIZED: 2068 if (sta->sta_state == IEEE80211_STA_ASSOC) { 2069 ieee80211_vif_inc_num_mcast(sta->sdata); 2070 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2071 ieee80211_check_fast_xmit(sta); 2072 ieee80211_check_fast_rx(sta); 2073 } 2074 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 2075 sta->sdata->vif.type == NL80211_IFTYPE_AP) 2076 cfg80211_send_layer2_update(sta->sdata->dev, 2077 sta->sta.addr); 2078 break; 2079 default: 2080 break; 2081 } 2082 2083 sta->sta_state = new_state; 2084 2085 return 0; 2086 } 2087 2088 u8 sta_info_tx_streams(struct sta_info *sta) 2089 { 2090 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 2091 u8 rx_streams; 2092 2093 if (!sta->sta.ht_cap.ht_supported) 2094 return 1; 2095 2096 if (sta->sta.vht_cap.vht_supported) { 2097 int i; 2098 u16 tx_mcs_map = 2099 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 2100 2101 for (i = 7; i >= 0; i--) 2102 if ((tx_mcs_map & (0x3 << (i * 2))) != 2103 IEEE80211_VHT_MCS_NOT_SUPPORTED) 2104 return i + 1; 2105 } 2106 2107 if (ht_cap->mcs.rx_mask[3]) 2108 rx_streams = 4; 2109 else if (ht_cap->mcs.rx_mask[2]) 2110 rx_streams = 3; 2111 else if (ht_cap->mcs.rx_mask[1]) 2112 rx_streams = 2; 2113 else 2114 rx_streams = 1; 2115 2116 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 2117 return rx_streams; 2118 2119 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 2120 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 2121 } 2122 2123 static struct ieee80211_sta_rx_stats * 2124 sta_get_last_rx_stats(struct sta_info *sta) 2125 { 2126 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 2127 int cpu; 2128 2129 if (!sta->pcpu_rx_stats) 2130 return stats; 2131 2132 for_each_possible_cpu(cpu) { 2133 struct ieee80211_sta_rx_stats *cpustats; 2134 2135 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2136 2137 if (time_after(cpustats->last_rx, stats->last_rx)) 2138 stats = cpustats; 2139 } 2140 2141 return stats; 2142 } 2143 2144 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, 2145 struct rate_info *rinfo) 2146 { 2147 rinfo->bw = STA_STATS_GET(BW, rate); 2148 2149 switch (STA_STATS_GET(TYPE, rate)) { 2150 case STA_STATS_RATE_TYPE_VHT: 2151 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 2152 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 2153 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 2154 if (STA_STATS_GET(SGI, rate)) 2155 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2156 break; 2157 case STA_STATS_RATE_TYPE_HT: 2158 rinfo->flags = RATE_INFO_FLAGS_MCS; 2159 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 2160 if (STA_STATS_GET(SGI, rate)) 2161 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2162 break; 2163 case STA_STATS_RATE_TYPE_LEGACY: { 2164 struct ieee80211_supported_band *sband; 2165 u16 brate; 2166 unsigned int shift; 2167 int band = STA_STATS_GET(LEGACY_BAND, rate); 2168 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 2169 2170 sband = local->hw.wiphy->bands[band]; 2171 2172 if (WARN_ON_ONCE(!sband->bitrates)) 2173 break; 2174 2175 brate = sband->bitrates[rate_idx].bitrate; 2176 if (rinfo->bw == RATE_INFO_BW_5) 2177 shift = 2; 2178 else if (rinfo->bw == RATE_INFO_BW_10) 2179 shift = 1; 2180 else 2181 shift = 0; 2182 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 2183 break; 2184 } 2185 case STA_STATS_RATE_TYPE_HE: 2186 rinfo->flags = RATE_INFO_FLAGS_HE_MCS; 2187 rinfo->mcs = STA_STATS_GET(HE_MCS, rate); 2188 rinfo->nss = STA_STATS_GET(HE_NSS, rate); 2189 rinfo->he_gi = STA_STATS_GET(HE_GI, rate); 2190 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); 2191 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); 2192 break; 2193 } 2194 } 2195 2196 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2197 { 2198 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2199 2200 if (rate == STA_STATS_RATE_INVALID) 2201 return -EINVAL; 2202 2203 sta_stats_decode_rate(sta->local, rate, rinfo); 2204 return 0; 2205 } 2206 2207 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats, 2208 int tid) 2209 { 2210 unsigned int start; 2211 u64 value; 2212 2213 do { 2214 start = u64_stats_fetch_begin(&rxstats->syncp); 2215 value = rxstats->msdu[tid]; 2216 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2217 2218 return value; 2219 } 2220 2221 static void sta_set_tidstats(struct sta_info *sta, 2222 struct cfg80211_tid_stats *tidstats, 2223 int tid) 2224 { 2225 struct ieee80211_local *local = sta->local; 2226 int cpu; 2227 2228 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2229 tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->rx_stats, tid); 2230 2231 if (sta->pcpu_rx_stats) { 2232 for_each_possible_cpu(cpu) { 2233 struct ieee80211_sta_rx_stats *cpurxs; 2234 2235 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2236 tidstats->rx_msdu += 2237 sta_get_tidstats_msdu(cpurxs, tid); 2238 } 2239 } 2240 2241 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2242 } 2243 2244 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2245 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2246 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2247 } 2248 2249 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2250 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2251 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2252 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2253 } 2254 2255 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2256 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2257 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2258 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2259 } 2260 2261 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) { 2262 spin_lock_bh(&local->fq.lock); 2263 rcu_read_lock(); 2264 2265 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); 2266 ieee80211_fill_txq_stats(&tidstats->txq_stats, 2267 to_txq_info(sta->sta.txq[tid])); 2268 2269 rcu_read_unlock(); 2270 spin_unlock_bh(&local->fq.lock); 2271 } 2272 } 2273 2274 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2275 { 2276 unsigned int start; 2277 u64 value; 2278 2279 do { 2280 start = u64_stats_fetch_begin(&rxstats->syncp); 2281 value = rxstats->bytes; 2282 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2283 2284 return value; 2285 } 2286 2287 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, 2288 bool tidstats) 2289 { 2290 struct ieee80211_sub_if_data *sdata = sta->sdata; 2291 struct ieee80211_local *local = sdata->local; 2292 u32 thr = 0; 2293 int i, ac, cpu; 2294 struct ieee80211_sta_rx_stats *last_rxstats; 2295 2296 last_rxstats = sta_get_last_rx_stats(sta); 2297 2298 sinfo->generation = sdata->local->sta_generation; 2299 2300 /* do before driver, so beacon filtering drivers have a 2301 * chance to e.g. just add the number of filtered beacons 2302 * (or just modify the value entirely, of course) 2303 */ 2304 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2305 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2306 2307 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2308 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | 2309 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | 2310 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | 2311 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | 2312 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) | 2313 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); 2314 2315 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2316 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2317 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); 2318 } 2319 2320 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2321 sinfo->assoc_at = sta->assoc_at; 2322 sinfo->inactive_time = 2323 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2324 2325 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | 2326 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { 2327 sinfo->tx_bytes = 0; 2328 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2329 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2330 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); 2331 } 2332 2333 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { 2334 sinfo->tx_packets = 0; 2335 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2336 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2337 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); 2338 } 2339 2340 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | 2341 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { 2342 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2343 2344 if (sta->pcpu_rx_stats) { 2345 for_each_possible_cpu(cpu) { 2346 struct ieee80211_sta_rx_stats *cpurxs; 2347 2348 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2349 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2350 } 2351 } 2352 2353 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); 2354 } 2355 2356 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { 2357 sinfo->rx_packets = sta->rx_stats.packets; 2358 if (sta->pcpu_rx_stats) { 2359 for_each_possible_cpu(cpu) { 2360 struct ieee80211_sta_rx_stats *cpurxs; 2361 2362 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2363 sinfo->rx_packets += cpurxs->packets; 2364 } 2365 } 2366 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 2367 } 2368 2369 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { 2370 sinfo->tx_retries = sta->status_stats.retry_count; 2371 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); 2372 } 2373 2374 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { 2375 sinfo->tx_failed = sta->status_stats.retry_failed; 2376 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); 2377 } 2378 2379 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { 2380 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2381 sinfo->rx_duration += sta->airtime[ac].rx_airtime; 2382 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 2383 } 2384 2385 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { 2386 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2387 sinfo->tx_duration += sta->airtime[ac].tx_airtime; 2388 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 2389 } 2390 2391 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { 2392 sinfo->airtime_weight = sta->airtime[0].weight; 2393 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); 2394 } 2395 2396 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2397 if (sta->pcpu_rx_stats) { 2398 for_each_possible_cpu(cpu) { 2399 struct ieee80211_sta_rx_stats *cpurxs; 2400 2401 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2402 sinfo->rx_dropped_misc += cpurxs->dropped; 2403 } 2404 } 2405 2406 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2407 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2408 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | 2409 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2410 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2411 } 2412 2413 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2414 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2415 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { 2416 sinfo->signal = (s8)last_rxstats->last_signal; 2417 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 2418 } 2419 2420 if (!sta->pcpu_rx_stats && 2421 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { 2422 sinfo->signal_avg = 2423 -ewma_signal_read(&sta->rx_stats_avg.signal); 2424 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 2425 } 2426 } 2427 2428 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2429 * the sta->rx_stats struct, so the check here is fine with and without 2430 * pcpu statistics 2431 */ 2432 if (last_rxstats->chains && 2433 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | 2434 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2435 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 2436 if (!sta->pcpu_rx_stats) 2437 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2438 2439 sinfo->chains = last_rxstats->chains; 2440 2441 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2442 sinfo->chain_signal[i] = 2443 last_rxstats->chain_signal_last[i]; 2444 sinfo->chain_signal_avg[i] = 2445 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2446 } 2447 } 2448 2449 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) { 2450 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2451 &sinfo->txrate); 2452 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 2453 } 2454 2455 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) { 2456 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2457 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); 2458 } 2459 2460 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { 2461 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 2462 sta_set_tidstats(sta, &sinfo->pertid[i], i); 2463 } 2464 2465 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2466 #ifdef CONFIG_MAC80211_MESH 2467 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | 2468 BIT_ULL(NL80211_STA_INFO_PLID) | 2469 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | 2470 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | 2471 BIT_ULL(NL80211_STA_INFO_PEER_PM) | 2472 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | 2473 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) | 2474 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS); 2475 2476 sinfo->llid = sta->mesh->llid; 2477 sinfo->plid = sta->mesh->plid; 2478 sinfo->plink_state = sta->mesh->plink_state; 2479 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2480 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); 2481 sinfo->t_offset = sta->mesh->t_offset; 2482 } 2483 sinfo->local_pm = sta->mesh->local_pm; 2484 sinfo->peer_pm = sta->mesh->peer_pm; 2485 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2486 sinfo->connected_to_gate = sta->mesh->connected_to_gate; 2487 sinfo->connected_to_as = sta->mesh->connected_to_as; 2488 #endif 2489 } 2490 2491 sinfo->bss_param.flags = 0; 2492 if (sdata->vif.bss_conf.use_cts_prot) 2493 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2494 if (sdata->vif.bss_conf.use_short_preamble) 2495 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2496 if (sdata->vif.bss_conf.use_short_slot) 2497 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2498 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2499 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2500 2501 sinfo->sta_flags.set = 0; 2502 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2503 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2504 BIT(NL80211_STA_FLAG_WME) | 2505 BIT(NL80211_STA_FLAG_MFP) | 2506 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2507 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2508 BIT(NL80211_STA_FLAG_TDLS_PEER); 2509 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2510 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2511 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2512 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2513 if (sta->sta.wme) 2514 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2515 if (test_sta_flag(sta, WLAN_STA_MFP)) 2516 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2517 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2518 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2519 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2520 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2521 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2522 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2523 2524 thr = sta_get_expected_throughput(sta); 2525 2526 if (thr != 0) { 2527 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2528 sinfo->expected_throughput = thr; 2529 } 2530 2531 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && 2532 sta->status_stats.ack_signal_filled) { 2533 sinfo->ack_signal = sta->status_stats.last_ack_signal; 2534 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); 2535 } 2536 2537 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && 2538 sta->status_stats.ack_signal_filled) { 2539 sinfo->avg_ack_signal = 2540 -(s8)ewma_avg_signal_read( 2541 &sta->status_stats.avg_ack_signal); 2542 sinfo->filled |= 2543 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); 2544 } 2545 2546 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2547 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC); 2548 sinfo->airtime_link_metric = 2549 airtime_link_metric_get(local, sta); 2550 } 2551 } 2552 2553 u32 sta_get_expected_throughput(struct sta_info *sta) 2554 { 2555 struct ieee80211_sub_if_data *sdata = sta->sdata; 2556 struct ieee80211_local *local = sdata->local; 2557 struct rate_control_ref *ref = NULL; 2558 u32 thr = 0; 2559 2560 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2561 ref = local->rate_ctrl; 2562 2563 /* check if the driver has a SW RC implementation */ 2564 if (ref && ref->ops->get_expected_throughput) 2565 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2566 else 2567 thr = drv_get_expected_throughput(local, sta); 2568 2569 return thr; 2570 } 2571 2572 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2573 { 2574 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2575 2576 if (!sta->status_stats.last_ack || 2577 time_after(stats->last_rx, sta->status_stats.last_ack)) 2578 return stats->last_rx; 2579 return sta->status_stats.last_ack; 2580 } 2581 2582 static void sta_update_codel_params(struct sta_info *sta, u32 thr) 2583 { 2584 if (!sta->sdata->local->ops->wake_tx_queue) 2585 return; 2586 2587 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { 2588 sta->cparams.target = MS2TIME(50); 2589 sta->cparams.interval = MS2TIME(300); 2590 sta->cparams.ecn = false; 2591 } else { 2592 sta->cparams.target = MS2TIME(20); 2593 sta->cparams.interval = MS2TIME(100); 2594 sta->cparams.ecn = true; 2595 } 2596 } 2597 2598 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, 2599 u32 thr) 2600 { 2601 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2602 2603 sta_update_codel_params(sta, thr); 2604 } 2605