xref: /openbmc/linux/net/mac80211/sta_info.c (revision 2b77dcc5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7  * Copyright (C) 2018-2019 Intel Corporation
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20 
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30 
31 /**
32  * DOC: STA information lifetime rules
33  *
34  * STA info structures (&struct sta_info) are managed in a hash table
35  * for faster lookup and a list for iteration. They are managed using
36  * RCU, i.e. access to the list and hash table is protected by RCU.
37  *
38  * Upon allocating a STA info structure with sta_info_alloc(), the caller
39  * owns that structure. It must then insert it into the hash table using
40  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41  * case (which acquires an rcu read section but must not be called from
42  * within one) will the pointer still be valid after the call. Note that
43  * the caller may not do much with the STA info before inserting it, in
44  * particular, it may not start any mesh peer link management or add
45  * encryption keys.
46  *
47  * When the insertion fails (sta_info_insert()) returns non-zero), the
48  * structure will have been freed by sta_info_insert()!
49  *
50  * Station entries are added by mac80211 when you establish a link with a
51  * peer. This means different things for the different type of interfaces
52  * we support. For a regular station this mean we add the AP sta when we
53  * receive an association response from the AP. For IBSS this occurs when
54  * get to know about a peer on the same IBSS. For WDS we add the sta for
55  * the peer immediately upon device open. When using AP mode we add stations
56  * for each respective station upon request from userspace through nl80211.
57  *
58  * In order to remove a STA info structure, various sta_info_destroy_*()
59  * calls are available.
60  *
61  * There is no concept of ownership on a STA entry, each structure is
62  * owned by the global hash table/list until it is removed. All users of
63  * the structure need to be RCU protected so that the structure won't be
64  * freed before they are done using it.
65  */
66 
67 static const struct rhashtable_params sta_rht_params = {
68 	.nelem_hint = 3, /* start small */
69 	.automatic_shrinking = true,
70 	.head_offset = offsetof(struct sta_info, hash_node),
71 	.key_offset = offsetof(struct sta_info, addr),
72 	.key_len = ETH_ALEN,
73 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
74 };
75 
76 /* Caller must hold local->sta_mtx */
77 static int sta_info_hash_del(struct ieee80211_local *local,
78 			     struct sta_info *sta)
79 {
80 	return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 			       sta_rht_params);
82 }
83 
84 static void __cleanup_single_sta(struct sta_info *sta)
85 {
86 	int ac, i;
87 	struct tid_ampdu_tx *tid_tx;
88 	struct ieee80211_sub_if_data *sdata = sta->sdata;
89 	struct ieee80211_local *local = sdata->local;
90 	struct ps_data *ps;
91 
92 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 			ps = &sdata->bss->ps;
98 		else if (ieee80211_vif_is_mesh(&sdata->vif))
99 			ps = &sdata->u.mesh.ps;
100 		else
101 			return;
102 
103 		clear_sta_flag(sta, WLAN_STA_PS_STA);
104 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
106 
107 		atomic_dec(&ps->num_sta_ps);
108 	}
109 
110 	if (sta->sta.txq[0]) {
111 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 			struct txq_info *txqi;
113 
114 			if (!sta->sta.txq[i])
115 				continue;
116 
117 			txqi = to_txq_info(sta->sta.txq[i]);
118 
119 			ieee80211_txq_purge(local, txqi);
120 		}
121 	}
122 
123 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
127 	}
128 
129 	if (ieee80211_vif_is_mesh(&sdata->vif))
130 		mesh_sta_cleanup(sta);
131 
132 	cancel_work_sync(&sta->drv_deliver_wk);
133 
134 	/*
135 	 * Destroy aggregation state here. It would be nice to wait for the
136 	 * driver to finish aggregation stop and then clean up, but for now
137 	 * drivers have to handle aggregation stop being requested, followed
138 	 * directly by station destruction.
139 	 */
140 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 		if (!tid_tx)
144 			continue;
145 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 		kfree(tid_tx);
147 	}
148 }
149 
150 static void cleanup_single_sta(struct sta_info *sta)
151 {
152 	struct ieee80211_sub_if_data *sdata = sta->sdata;
153 	struct ieee80211_local *local = sdata->local;
154 
155 	__cleanup_single_sta(sta);
156 	sta_info_free(local, sta);
157 }
158 
159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 					 const u8 *addr)
161 {
162 	return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
163 }
164 
165 /* protected by RCU */
166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 			      const u8 *addr)
168 {
169 	struct ieee80211_local *local = sdata->local;
170 	struct rhlist_head *tmp;
171 	struct sta_info *sta;
172 
173 	rcu_read_lock();
174 	for_each_sta_info(local, addr, sta, tmp) {
175 		if (sta->sdata == sdata) {
176 			rcu_read_unlock();
177 			/* this is safe as the caller must already hold
178 			 * another rcu read section or the mutex
179 			 */
180 			return sta;
181 		}
182 	}
183 	rcu_read_unlock();
184 	return NULL;
185 }
186 
187 /*
188  * Get sta info either from the specified interface
189  * or from one of its vlans
190  */
191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 				  const u8 *addr)
193 {
194 	struct ieee80211_local *local = sdata->local;
195 	struct rhlist_head *tmp;
196 	struct sta_info *sta;
197 
198 	rcu_read_lock();
199 	for_each_sta_info(local, addr, sta, tmp) {
200 		if (sta->sdata == sdata ||
201 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 			rcu_read_unlock();
203 			/* this is safe as the caller must already hold
204 			 * another rcu read section or the mutex
205 			 */
206 			return sta;
207 		}
208 	}
209 	rcu_read_unlock();
210 	return NULL;
211 }
212 
213 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
214 				     int idx)
215 {
216 	struct ieee80211_local *local = sdata->local;
217 	struct sta_info *sta;
218 	int i = 0;
219 
220 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
221 		if (sdata != sta->sdata)
222 			continue;
223 		if (i < idx) {
224 			++i;
225 			continue;
226 		}
227 		return sta;
228 	}
229 
230 	return NULL;
231 }
232 
233 /**
234  * sta_info_free - free STA
235  *
236  * @local: pointer to the global information
237  * @sta: STA info to free
238  *
239  * This function must undo everything done by sta_info_alloc()
240  * that may happen before sta_info_insert(). It may only be
241  * called when sta_info_insert() has not been attempted (and
242  * if that fails, the station is freed anyway.)
243  */
244 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
245 {
246 	if (sta->rate_ctrl)
247 		rate_control_free_sta(sta);
248 
249 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
250 
251 	if (sta->sta.txq[0])
252 		kfree(to_txq_info(sta->sta.txq[0]));
253 	kfree(rcu_dereference_raw(sta->sta.rates));
254 #ifdef CONFIG_MAC80211_MESH
255 	kfree(sta->mesh);
256 #endif
257 	free_percpu(sta->pcpu_rx_stats);
258 	kfree(sta);
259 }
260 
261 /* Caller must hold local->sta_mtx */
262 static int sta_info_hash_add(struct ieee80211_local *local,
263 			     struct sta_info *sta)
264 {
265 	return rhltable_insert(&local->sta_hash, &sta->hash_node,
266 			       sta_rht_params);
267 }
268 
269 static void sta_deliver_ps_frames(struct work_struct *wk)
270 {
271 	struct sta_info *sta;
272 
273 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
274 
275 	if (sta->dead)
276 		return;
277 
278 	local_bh_disable();
279 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
280 		ieee80211_sta_ps_deliver_wakeup(sta);
281 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
282 		ieee80211_sta_ps_deliver_poll_response(sta);
283 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
284 		ieee80211_sta_ps_deliver_uapsd(sta);
285 	local_bh_enable();
286 }
287 
288 static int sta_prepare_rate_control(struct ieee80211_local *local,
289 				    struct sta_info *sta, gfp_t gfp)
290 {
291 	if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
292 		return 0;
293 
294 	sta->rate_ctrl = local->rate_ctrl;
295 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
296 						     sta, gfp);
297 	if (!sta->rate_ctrl_priv)
298 		return -ENOMEM;
299 
300 	return 0;
301 }
302 
303 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
304 				const u8 *addr, gfp_t gfp)
305 {
306 	struct ieee80211_local *local = sdata->local;
307 	struct ieee80211_hw *hw = &local->hw;
308 	struct sta_info *sta;
309 	int i;
310 
311 	sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
312 	if (!sta)
313 		return NULL;
314 
315 	if (ieee80211_hw_check(hw, USES_RSS)) {
316 		sta->pcpu_rx_stats =
317 			alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
318 		if (!sta->pcpu_rx_stats)
319 			goto free;
320 	}
321 
322 	spin_lock_init(&sta->lock);
323 	spin_lock_init(&sta->ps_lock);
324 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
325 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
326 	mutex_init(&sta->ampdu_mlme.mtx);
327 #ifdef CONFIG_MAC80211_MESH
328 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
329 		sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
330 		if (!sta->mesh)
331 			goto free;
332 		sta->mesh->plink_sta = sta;
333 		spin_lock_init(&sta->mesh->plink_lock);
334 		if (ieee80211_vif_is_mesh(&sdata->vif) &&
335 		    !sdata->u.mesh.user_mpm)
336 			timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
337 				    0);
338 		sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
339 	}
340 #endif
341 
342 	memcpy(sta->addr, addr, ETH_ALEN);
343 	memcpy(sta->sta.addr, addr, ETH_ALEN);
344 	sta->sta.max_rx_aggregation_subframes =
345 		local->hw.max_rx_aggregation_subframes;
346 
347 	/* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
348 	 * The Tx path starts to use a key as soon as the key slot ptk_idx
349 	 * references to is not NULL. To not use the initial Rx-only key
350 	 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
351 	 * which always will refer to a NULL key.
352 	 */
353 	BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
354 	sta->ptk_idx = INVALID_PTK_KEYIDX;
355 
356 	sta->local = local;
357 	sta->sdata = sdata;
358 	sta->rx_stats.last_rx = jiffies;
359 
360 	u64_stats_init(&sta->rx_stats.syncp);
361 
362 	sta->sta_state = IEEE80211_STA_NONE;
363 
364 	/* Mark TID as unreserved */
365 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
366 
367 	sta->last_connected = ktime_get_seconds();
368 	ewma_signal_init(&sta->rx_stats_avg.signal);
369 	ewma_avg_signal_init(&sta->status_stats.avg_ack_signal);
370 	for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
371 		ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
372 
373 	if (local->ops->wake_tx_queue) {
374 		void *txq_data;
375 		int size = sizeof(struct txq_info) +
376 			   ALIGN(hw->txq_data_size, sizeof(void *));
377 
378 		txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
379 		if (!txq_data)
380 			goto free;
381 
382 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
383 			struct txq_info *txq = txq_data + i * size;
384 
385 			/* might not do anything for the bufferable MMPDU TXQ */
386 			ieee80211_txq_init(sdata, sta, txq, i);
387 		}
388 	}
389 
390 	if (sta_prepare_rate_control(local, sta, gfp))
391 		goto free_txq;
392 
393 	sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT;
394 
395 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
396 		skb_queue_head_init(&sta->ps_tx_buf[i]);
397 		skb_queue_head_init(&sta->tx_filtered[i]);
398 		sta->airtime[i].deficit = sta->airtime_weight;
399 	}
400 
401 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
402 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
403 
404 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
405 		u32 mandatory = 0;
406 		int r;
407 
408 		if (!hw->wiphy->bands[i])
409 			continue;
410 
411 		switch (i) {
412 		case NL80211_BAND_2GHZ:
413 			/*
414 			 * We use both here, even if we cannot really know for
415 			 * sure the station will support both, but the only use
416 			 * for this is when we don't know anything yet and send
417 			 * management frames, and then we'll pick the lowest
418 			 * possible rate anyway.
419 			 * If we don't include _G here, we cannot find a rate
420 			 * in P2P, and thus trigger the WARN_ONCE() in rate.c
421 			 */
422 			mandatory = IEEE80211_RATE_MANDATORY_B |
423 				    IEEE80211_RATE_MANDATORY_G;
424 			break;
425 		case NL80211_BAND_5GHZ:
426 			mandatory = IEEE80211_RATE_MANDATORY_A;
427 			break;
428 		case NL80211_BAND_60GHZ:
429 			WARN_ON(1);
430 			mandatory = 0;
431 			break;
432 		}
433 
434 		for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
435 			struct ieee80211_rate *rate;
436 
437 			rate = &hw->wiphy->bands[i]->bitrates[r];
438 
439 			if (!(rate->flags & mandatory))
440 				continue;
441 			sta->sta.supp_rates[i] |= BIT(r);
442 		}
443 	}
444 
445 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
446 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
447 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
448 		struct ieee80211_supported_band *sband;
449 		u8 smps;
450 
451 		sband = ieee80211_get_sband(sdata);
452 		if (!sband)
453 			goto free_txq;
454 
455 		smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
456 			IEEE80211_HT_CAP_SM_PS_SHIFT;
457 		/*
458 		 * Assume that hostapd advertises our caps in the beacon and
459 		 * this is the known_smps_mode for a station that just assciated
460 		 */
461 		switch (smps) {
462 		case WLAN_HT_SMPS_CONTROL_DISABLED:
463 			sta->known_smps_mode = IEEE80211_SMPS_OFF;
464 			break;
465 		case WLAN_HT_SMPS_CONTROL_STATIC:
466 			sta->known_smps_mode = IEEE80211_SMPS_STATIC;
467 			break;
468 		case WLAN_HT_SMPS_CONTROL_DYNAMIC:
469 			sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
470 			break;
471 		default:
472 			WARN_ON(1);
473 		}
474 	}
475 
476 	sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
477 
478 	sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
479 	sta->cparams.target = MS2TIME(20);
480 	sta->cparams.interval = MS2TIME(100);
481 	sta->cparams.ecn = true;
482 
483 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
484 
485 	return sta;
486 
487 free_txq:
488 	if (sta->sta.txq[0])
489 		kfree(to_txq_info(sta->sta.txq[0]));
490 free:
491 	free_percpu(sta->pcpu_rx_stats);
492 #ifdef CONFIG_MAC80211_MESH
493 	kfree(sta->mesh);
494 #endif
495 	kfree(sta);
496 	return NULL;
497 }
498 
499 static int sta_info_insert_check(struct sta_info *sta)
500 {
501 	struct ieee80211_sub_if_data *sdata = sta->sdata;
502 
503 	/*
504 	 * Can't be a WARN_ON because it can be triggered through a race:
505 	 * something inserts a STA (on one CPU) without holding the RTNL
506 	 * and another CPU turns off the net device.
507 	 */
508 	if (unlikely(!ieee80211_sdata_running(sdata)))
509 		return -ENETDOWN;
510 
511 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
512 		    is_multicast_ether_addr(sta->sta.addr)))
513 		return -EINVAL;
514 
515 	/* The RCU read lock is required by rhashtable due to
516 	 * asynchronous resize/rehash.  We also require the mutex
517 	 * for correctness.
518 	 */
519 	rcu_read_lock();
520 	lockdep_assert_held(&sdata->local->sta_mtx);
521 	if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
522 	    ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
523 		rcu_read_unlock();
524 		return -ENOTUNIQ;
525 	}
526 	rcu_read_unlock();
527 
528 	return 0;
529 }
530 
531 static int sta_info_insert_drv_state(struct ieee80211_local *local,
532 				     struct ieee80211_sub_if_data *sdata,
533 				     struct sta_info *sta)
534 {
535 	enum ieee80211_sta_state state;
536 	int err = 0;
537 
538 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
539 		err = drv_sta_state(local, sdata, sta, state, state + 1);
540 		if (err)
541 			break;
542 	}
543 
544 	if (!err) {
545 		/*
546 		 * Drivers using legacy sta_add/sta_remove callbacks only
547 		 * get uploaded set to true after sta_add is called.
548 		 */
549 		if (!local->ops->sta_add)
550 			sta->uploaded = true;
551 		return 0;
552 	}
553 
554 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
555 		sdata_info(sdata,
556 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
557 			   sta->sta.addr, state + 1, err);
558 		err = 0;
559 	}
560 
561 	/* unwind on error */
562 	for (; state > IEEE80211_STA_NOTEXIST; state--)
563 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
564 
565 	return err;
566 }
567 
568 static void
569 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
570 {
571 	struct ieee80211_local *local = sdata->local;
572 	bool allow_p2p_go_ps = sdata->vif.p2p;
573 	struct sta_info *sta;
574 
575 	rcu_read_lock();
576 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
577 		if (sdata != sta->sdata ||
578 		    !test_sta_flag(sta, WLAN_STA_ASSOC))
579 			continue;
580 		if (!sta->sta.support_p2p_ps) {
581 			allow_p2p_go_ps = false;
582 			break;
583 		}
584 	}
585 	rcu_read_unlock();
586 
587 	if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
588 		sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
589 		ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
590 	}
591 }
592 
593 /*
594  * should be called with sta_mtx locked
595  * this function replaces the mutex lock
596  * with a RCU lock
597  */
598 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
599 {
600 	struct ieee80211_local *local = sta->local;
601 	struct ieee80211_sub_if_data *sdata = sta->sdata;
602 	struct station_info *sinfo = NULL;
603 	int err = 0;
604 
605 	lockdep_assert_held(&local->sta_mtx);
606 
607 	/* check if STA exists already */
608 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
609 		err = -EEXIST;
610 		goto out_err;
611 	}
612 
613 	sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
614 	if (!sinfo) {
615 		err = -ENOMEM;
616 		goto out_err;
617 	}
618 
619 	local->num_sta++;
620 	local->sta_generation++;
621 	smp_mb();
622 
623 	/* simplify things and don't accept BA sessions yet */
624 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
625 
626 	/* make the station visible */
627 	err = sta_info_hash_add(local, sta);
628 	if (err)
629 		goto out_drop_sta;
630 
631 	list_add_tail_rcu(&sta->list, &local->sta_list);
632 
633 	/* notify driver */
634 	err = sta_info_insert_drv_state(local, sdata, sta);
635 	if (err)
636 		goto out_remove;
637 
638 	set_sta_flag(sta, WLAN_STA_INSERTED);
639 
640 	if (sta->sta_state >= IEEE80211_STA_ASSOC) {
641 		ieee80211_recalc_min_chandef(sta->sdata);
642 		if (!sta->sta.support_p2p_ps)
643 			ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
644 	}
645 
646 	/* accept BA sessions now */
647 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
648 
649 	ieee80211_sta_debugfs_add(sta);
650 	rate_control_add_sta_debugfs(sta);
651 
652 	sinfo->generation = local->sta_generation;
653 	cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
654 	kfree(sinfo);
655 
656 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
657 
658 	/* move reference to rcu-protected */
659 	rcu_read_lock();
660 	mutex_unlock(&local->sta_mtx);
661 
662 	if (ieee80211_vif_is_mesh(&sdata->vif))
663 		mesh_accept_plinks_update(sdata);
664 
665 	return 0;
666  out_remove:
667 	sta_info_hash_del(local, sta);
668 	list_del_rcu(&sta->list);
669  out_drop_sta:
670 	local->num_sta--;
671 	synchronize_net();
672 	__cleanup_single_sta(sta);
673  out_err:
674 	mutex_unlock(&local->sta_mtx);
675 	kfree(sinfo);
676 	rcu_read_lock();
677 	return err;
678 }
679 
680 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
681 {
682 	struct ieee80211_local *local = sta->local;
683 	int err;
684 
685 	might_sleep();
686 
687 	mutex_lock(&local->sta_mtx);
688 
689 	err = sta_info_insert_check(sta);
690 	if (err) {
691 		mutex_unlock(&local->sta_mtx);
692 		rcu_read_lock();
693 		goto out_free;
694 	}
695 
696 	err = sta_info_insert_finish(sta);
697 	if (err)
698 		goto out_free;
699 
700 	return 0;
701  out_free:
702 	sta_info_free(local, sta);
703 	return err;
704 }
705 
706 int sta_info_insert(struct sta_info *sta)
707 {
708 	int err = sta_info_insert_rcu(sta);
709 
710 	rcu_read_unlock();
711 
712 	return err;
713 }
714 
715 static inline void __bss_tim_set(u8 *tim, u16 id)
716 {
717 	/*
718 	 * This format has been mandated by the IEEE specifications,
719 	 * so this line may not be changed to use the __set_bit() format.
720 	 */
721 	tim[id / 8] |= (1 << (id % 8));
722 }
723 
724 static inline void __bss_tim_clear(u8 *tim, u16 id)
725 {
726 	/*
727 	 * This format has been mandated by the IEEE specifications,
728 	 * so this line may not be changed to use the __clear_bit() format.
729 	 */
730 	tim[id / 8] &= ~(1 << (id % 8));
731 }
732 
733 static inline bool __bss_tim_get(u8 *tim, u16 id)
734 {
735 	/*
736 	 * This format has been mandated by the IEEE specifications,
737 	 * so this line may not be changed to use the test_bit() format.
738 	 */
739 	return tim[id / 8] & (1 << (id % 8));
740 }
741 
742 static unsigned long ieee80211_tids_for_ac(int ac)
743 {
744 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
745 	switch (ac) {
746 	case IEEE80211_AC_VO:
747 		return BIT(6) | BIT(7);
748 	case IEEE80211_AC_VI:
749 		return BIT(4) | BIT(5);
750 	case IEEE80211_AC_BE:
751 		return BIT(0) | BIT(3);
752 	case IEEE80211_AC_BK:
753 		return BIT(1) | BIT(2);
754 	default:
755 		WARN_ON(1);
756 		return 0;
757 	}
758 }
759 
760 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
761 {
762 	struct ieee80211_local *local = sta->local;
763 	struct ps_data *ps;
764 	bool indicate_tim = false;
765 	u8 ignore_for_tim = sta->sta.uapsd_queues;
766 	int ac;
767 	u16 id = sta->sta.aid;
768 
769 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
770 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
771 		if (WARN_ON_ONCE(!sta->sdata->bss))
772 			return;
773 
774 		ps = &sta->sdata->bss->ps;
775 #ifdef CONFIG_MAC80211_MESH
776 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
777 		ps = &sta->sdata->u.mesh.ps;
778 #endif
779 	} else {
780 		return;
781 	}
782 
783 	/* No need to do anything if the driver does all */
784 	if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
785 		return;
786 
787 	if (sta->dead)
788 		goto done;
789 
790 	/*
791 	 * If all ACs are delivery-enabled then we should build
792 	 * the TIM bit for all ACs anyway; if only some are then
793 	 * we ignore those and build the TIM bit using only the
794 	 * non-enabled ones.
795 	 */
796 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
797 		ignore_for_tim = 0;
798 
799 	if (ignore_pending)
800 		ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
801 
802 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
803 		unsigned long tids;
804 
805 		if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
806 			continue;
807 
808 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
809 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
810 		if (indicate_tim)
811 			break;
812 
813 		tids = ieee80211_tids_for_ac(ac);
814 
815 		indicate_tim |=
816 			sta->driver_buffered_tids & tids;
817 		indicate_tim |=
818 			sta->txq_buffered_tids & tids;
819 	}
820 
821  done:
822 	spin_lock_bh(&local->tim_lock);
823 
824 	if (indicate_tim == __bss_tim_get(ps->tim, id))
825 		goto out_unlock;
826 
827 	if (indicate_tim)
828 		__bss_tim_set(ps->tim, id);
829 	else
830 		__bss_tim_clear(ps->tim, id);
831 
832 	if (local->ops->set_tim && !WARN_ON(sta->dead)) {
833 		local->tim_in_locked_section = true;
834 		drv_set_tim(local, &sta->sta, indicate_tim);
835 		local->tim_in_locked_section = false;
836 	}
837 
838 out_unlock:
839 	spin_unlock_bh(&local->tim_lock);
840 }
841 
842 void sta_info_recalc_tim(struct sta_info *sta)
843 {
844 	__sta_info_recalc_tim(sta, false);
845 }
846 
847 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
848 {
849 	struct ieee80211_tx_info *info;
850 	int timeout;
851 
852 	if (!skb)
853 		return false;
854 
855 	info = IEEE80211_SKB_CB(skb);
856 
857 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
858 	timeout = (sta->listen_interval *
859 		   sta->sdata->vif.bss_conf.beacon_int *
860 		   32 / 15625) * HZ;
861 	if (timeout < STA_TX_BUFFER_EXPIRE)
862 		timeout = STA_TX_BUFFER_EXPIRE;
863 	return time_after(jiffies, info->control.jiffies + timeout);
864 }
865 
866 
867 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
868 						struct sta_info *sta, int ac)
869 {
870 	unsigned long flags;
871 	struct sk_buff *skb;
872 
873 	/*
874 	 * First check for frames that should expire on the filtered
875 	 * queue. Frames here were rejected by the driver and are on
876 	 * a separate queue to avoid reordering with normal PS-buffered
877 	 * frames. They also aren't accounted for right now in the
878 	 * total_ps_buffered counter.
879 	 */
880 	for (;;) {
881 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
882 		skb = skb_peek(&sta->tx_filtered[ac]);
883 		if (sta_info_buffer_expired(sta, skb))
884 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
885 		else
886 			skb = NULL;
887 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
888 
889 		/*
890 		 * Frames are queued in order, so if this one
891 		 * hasn't expired yet we can stop testing. If
892 		 * we actually reached the end of the queue we
893 		 * also need to stop, of course.
894 		 */
895 		if (!skb)
896 			break;
897 		ieee80211_free_txskb(&local->hw, skb);
898 	}
899 
900 	/*
901 	 * Now also check the normal PS-buffered queue, this will
902 	 * only find something if the filtered queue was emptied
903 	 * since the filtered frames are all before the normal PS
904 	 * buffered frames.
905 	 */
906 	for (;;) {
907 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
908 		skb = skb_peek(&sta->ps_tx_buf[ac]);
909 		if (sta_info_buffer_expired(sta, skb))
910 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
911 		else
912 			skb = NULL;
913 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
914 
915 		/*
916 		 * frames are queued in order, so if this one
917 		 * hasn't expired yet (or we reached the end of
918 		 * the queue) we can stop testing
919 		 */
920 		if (!skb)
921 			break;
922 
923 		local->total_ps_buffered--;
924 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
925 		       sta->sta.addr);
926 		ieee80211_free_txskb(&local->hw, skb);
927 	}
928 
929 	/*
930 	 * Finally, recalculate the TIM bit for this station -- it might
931 	 * now be clear because the station was too slow to retrieve its
932 	 * frames.
933 	 */
934 	sta_info_recalc_tim(sta);
935 
936 	/*
937 	 * Return whether there are any frames still buffered, this is
938 	 * used to check whether the cleanup timer still needs to run,
939 	 * if there are no frames we don't need to rearm the timer.
940 	 */
941 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
942 		 skb_queue_empty(&sta->tx_filtered[ac]));
943 }
944 
945 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
946 					     struct sta_info *sta)
947 {
948 	bool have_buffered = false;
949 	int ac;
950 
951 	/* This is only necessary for stations on BSS/MBSS interfaces */
952 	if (!sta->sdata->bss &&
953 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
954 		return false;
955 
956 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
957 		have_buffered |=
958 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
959 
960 	return have_buffered;
961 }
962 
963 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
964 {
965 	struct ieee80211_local *local;
966 	struct ieee80211_sub_if_data *sdata;
967 	int ret;
968 
969 	might_sleep();
970 
971 	if (!sta)
972 		return -ENOENT;
973 
974 	local = sta->local;
975 	sdata = sta->sdata;
976 
977 	lockdep_assert_held(&local->sta_mtx);
978 
979 	/*
980 	 * Before removing the station from the driver and
981 	 * rate control, it might still start new aggregation
982 	 * sessions -- block that to make sure the tear-down
983 	 * will be sufficient.
984 	 */
985 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
986 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
987 
988 	/*
989 	 * Before removing the station from the driver there might be pending
990 	 * rx frames on RSS queues sent prior to the disassociation - wait for
991 	 * all such frames to be processed.
992 	 */
993 	drv_sync_rx_queues(local, sta);
994 
995 	ret = sta_info_hash_del(local, sta);
996 	if (WARN_ON(ret))
997 		return ret;
998 
999 	/*
1000 	 * for TDLS peers, make sure to return to the base channel before
1001 	 * removal.
1002 	 */
1003 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1004 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1005 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1006 	}
1007 
1008 	list_del_rcu(&sta->list);
1009 	sta->removed = true;
1010 
1011 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1012 
1013 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1014 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
1015 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1016 
1017 	return 0;
1018 }
1019 
1020 static void __sta_info_destroy_part2(struct sta_info *sta)
1021 {
1022 	struct ieee80211_local *local = sta->local;
1023 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1024 	struct station_info *sinfo;
1025 	int ret;
1026 
1027 	/*
1028 	 * NOTE: This assumes at least synchronize_net() was done
1029 	 *	 after _part1 and before _part2!
1030 	 */
1031 
1032 	might_sleep();
1033 	lockdep_assert_held(&local->sta_mtx);
1034 
1035 	/* now keys can no longer be reached */
1036 	ieee80211_free_sta_keys(local, sta);
1037 
1038 	/* disable TIM bit - last chance to tell driver */
1039 	__sta_info_recalc_tim(sta, true);
1040 
1041 	sta->dead = true;
1042 
1043 	local->num_sta--;
1044 	local->sta_generation++;
1045 
1046 	while (sta->sta_state > IEEE80211_STA_NONE) {
1047 		ret = sta_info_move_state(sta, sta->sta_state - 1);
1048 		if (ret) {
1049 			WARN_ON_ONCE(1);
1050 			break;
1051 		}
1052 	}
1053 
1054 	if (sta->uploaded) {
1055 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1056 				    IEEE80211_STA_NOTEXIST);
1057 		WARN_ON_ONCE(ret != 0);
1058 	}
1059 
1060 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1061 
1062 	sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1063 	if (sinfo)
1064 		sta_set_sinfo(sta, sinfo, true);
1065 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1066 	kfree(sinfo);
1067 
1068 	ieee80211_sta_debugfs_remove(sta);
1069 
1070 	cleanup_single_sta(sta);
1071 }
1072 
1073 int __must_check __sta_info_destroy(struct sta_info *sta)
1074 {
1075 	int err = __sta_info_destroy_part1(sta);
1076 
1077 	if (err)
1078 		return err;
1079 
1080 	synchronize_net();
1081 
1082 	__sta_info_destroy_part2(sta);
1083 
1084 	return 0;
1085 }
1086 
1087 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1088 {
1089 	struct sta_info *sta;
1090 	int ret;
1091 
1092 	mutex_lock(&sdata->local->sta_mtx);
1093 	sta = sta_info_get(sdata, addr);
1094 	ret = __sta_info_destroy(sta);
1095 	mutex_unlock(&sdata->local->sta_mtx);
1096 
1097 	return ret;
1098 }
1099 
1100 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1101 			      const u8 *addr)
1102 {
1103 	struct sta_info *sta;
1104 	int ret;
1105 
1106 	mutex_lock(&sdata->local->sta_mtx);
1107 	sta = sta_info_get_bss(sdata, addr);
1108 	ret = __sta_info_destroy(sta);
1109 	mutex_unlock(&sdata->local->sta_mtx);
1110 
1111 	return ret;
1112 }
1113 
1114 static void sta_info_cleanup(struct timer_list *t)
1115 {
1116 	struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1117 	struct sta_info *sta;
1118 	bool timer_needed = false;
1119 
1120 	rcu_read_lock();
1121 	list_for_each_entry_rcu(sta, &local->sta_list, list)
1122 		if (sta_info_cleanup_expire_buffered(local, sta))
1123 			timer_needed = true;
1124 	rcu_read_unlock();
1125 
1126 	if (local->quiescing)
1127 		return;
1128 
1129 	if (!timer_needed)
1130 		return;
1131 
1132 	mod_timer(&local->sta_cleanup,
1133 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1134 }
1135 
1136 int sta_info_init(struct ieee80211_local *local)
1137 {
1138 	int err;
1139 
1140 	err = rhltable_init(&local->sta_hash, &sta_rht_params);
1141 	if (err)
1142 		return err;
1143 
1144 	spin_lock_init(&local->tim_lock);
1145 	mutex_init(&local->sta_mtx);
1146 	INIT_LIST_HEAD(&local->sta_list);
1147 
1148 	timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1149 	return 0;
1150 }
1151 
1152 void sta_info_stop(struct ieee80211_local *local)
1153 {
1154 	del_timer_sync(&local->sta_cleanup);
1155 	rhltable_destroy(&local->sta_hash);
1156 }
1157 
1158 
1159 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1160 {
1161 	struct ieee80211_local *local = sdata->local;
1162 	struct sta_info *sta, *tmp;
1163 	LIST_HEAD(free_list);
1164 	int ret = 0;
1165 
1166 	might_sleep();
1167 
1168 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1169 	WARN_ON(vlans && !sdata->bss);
1170 
1171 	mutex_lock(&local->sta_mtx);
1172 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1173 		if (sdata == sta->sdata ||
1174 		    (vlans && sdata->bss == sta->sdata->bss)) {
1175 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1176 				list_add(&sta->free_list, &free_list);
1177 			ret++;
1178 		}
1179 	}
1180 
1181 	if (!list_empty(&free_list)) {
1182 		synchronize_net();
1183 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1184 			__sta_info_destroy_part2(sta);
1185 	}
1186 	mutex_unlock(&local->sta_mtx);
1187 
1188 	return ret;
1189 }
1190 
1191 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1192 			  unsigned long exp_time)
1193 {
1194 	struct ieee80211_local *local = sdata->local;
1195 	struct sta_info *sta, *tmp;
1196 
1197 	mutex_lock(&local->sta_mtx);
1198 
1199 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1200 		unsigned long last_active = ieee80211_sta_last_active(sta);
1201 
1202 		if (sdata != sta->sdata)
1203 			continue;
1204 
1205 		if (time_is_before_jiffies(last_active + exp_time)) {
1206 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1207 				sta->sta.addr);
1208 
1209 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1210 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1211 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1212 
1213 			WARN_ON(__sta_info_destroy(sta));
1214 		}
1215 	}
1216 
1217 	mutex_unlock(&local->sta_mtx);
1218 }
1219 
1220 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1221 						   const u8 *addr,
1222 						   const u8 *localaddr)
1223 {
1224 	struct ieee80211_local *local = hw_to_local(hw);
1225 	struct rhlist_head *tmp;
1226 	struct sta_info *sta;
1227 
1228 	/*
1229 	 * Just return a random station if localaddr is NULL
1230 	 * ... first in list.
1231 	 */
1232 	for_each_sta_info(local, addr, sta, tmp) {
1233 		if (localaddr &&
1234 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1235 			continue;
1236 		if (!sta->uploaded)
1237 			return NULL;
1238 		return &sta->sta;
1239 	}
1240 
1241 	return NULL;
1242 }
1243 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1244 
1245 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1246 					 const u8 *addr)
1247 {
1248 	struct sta_info *sta;
1249 
1250 	if (!vif)
1251 		return NULL;
1252 
1253 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1254 	if (!sta)
1255 		return NULL;
1256 
1257 	if (!sta->uploaded)
1258 		return NULL;
1259 
1260 	return &sta->sta;
1261 }
1262 EXPORT_SYMBOL(ieee80211_find_sta);
1263 
1264 /* powersave support code */
1265 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1266 {
1267 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1268 	struct ieee80211_local *local = sdata->local;
1269 	struct sk_buff_head pending;
1270 	int filtered = 0, buffered = 0, ac, i;
1271 	unsigned long flags;
1272 	struct ps_data *ps;
1273 
1274 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1275 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1276 				     u.ap);
1277 
1278 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1279 		ps = &sdata->bss->ps;
1280 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1281 		ps = &sdata->u.mesh.ps;
1282 	else
1283 		return;
1284 
1285 	clear_sta_flag(sta, WLAN_STA_SP);
1286 
1287 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1288 	sta->driver_buffered_tids = 0;
1289 	sta->txq_buffered_tids = 0;
1290 
1291 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1292 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1293 
1294 	for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1295 		if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1296 			continue;
1297 
1298 		schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1299 	}
1300 
1301 	skb_queue_head_init(&pending);
1302 
1303 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1304 	spin_lock(&sta->ps_lock);
1305 	/* Send all buffered frames to the station */
1306 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1307 		int count = skb_queue_len(&pending), tmp;
1308 
1309 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1310 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1311 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1312 		tmp = skb_queue_len(&pending);
1313 		filtered += tmp - count;
1314 		count = tmp;
1315 
1316 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1317 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1318 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1319 		tmp = skb_queue_len(&pending);
1320 		buffered += tmp - count;
1321 	}
1322 
1323 	ieee80211_add_pending_skbs(local, &pending);
1324 
1325 	/* now we're no longer in the deliver code */
1326 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1327 
1328 	/* The station might have polled and then woken up before we responded,
1329 	 * so clear these flags now to avoid them sticking around.
1330 	 */
1331 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1332 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1333 	spin_unlock(&sta->ps_lock);
1334 
1335 	atomic_dec(&ps->num_sta_ps);
1336 
1337 	/* This station just woke up and isn't aware of our SMPS state */
1338 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1339 	    !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1340 					   sdata->smps_mode) &&
1341 	    sta->known_smps_mode != sdata->bss->req_smps &&
1342 	    sta_info_tx_streams(sta) != 1) {
1343 		ht_dbg(sdata,
1344 		       "%pM just woke up and MIMO capable - update SMPS\n",
1345 		       sta->sta.addr);
1346 		ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1347 					   sta->sta.addr,
1348 					   sdata->vif.bss_conf.bssid);
1349 	}
1350 
1351 	local->total_ps_buffered -= buffered;
1352 
1353 	sta_info_recalc_tim(sta);
1354 
1355 	ps_dbg(sdata,
1356 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1357 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1358 
1359 	ieee80211_check_fast_xmit(sta);
1360 }
1361 
1362 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1363 					 enum ieee80211_frame_release_type reason,
1364 					 bool call_driver, bool more_data)
1365 {
1366 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1367 	struct ieee80211_local *local = sdata->local;
1368 	struct ieee80211_qos_hdr *nullfunc;
1369 	struct sk_buff *skb;
1370 	int size = sizeof(*nullfunc);
1371 	__le16 fc;
1372 	bool qos = sta->sta.wme;
1373 	struct ieee80211_tx_info *info;
1374 	struct ieee80211_chanctx_conf *chanctx_conf;
1375 
1376 	/* Don't send NDPs when STA is connected HE */
1377 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1378 	    !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE))
1379 		return;
1380 
1381 	if (qos) {
1382 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1383 				 IEEE80211_STYPE_QOS_NULLFUNC |
1384 				 IEEE80211_FCTL_FROMDS);
1385 	} else {
1386 		size -= 2;
1387 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1388 				 IEEE80211_STYPE_NULLFUNC |
1389 				 IEEE80211_FCTL_FROMDS);
1390 	}
1391 
1392 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1393 	if (!skb)
1394 		return;
1395 
1396 	skb_reserve(skb, local->hw.extra_tx_headroom);
1397 
1398 	nullfunc = skb_put(skb, size);
1399 	nullfunc->frame_control = fc;
1400 	nullfunc->duration_id = 0;
1401 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1402 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1403 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1404 	nullfunc->seq_ctrl = 0;
1405 
1406 	skb->priority = tid;
1407 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1408 	if (qos) {
1409 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1410 
1411 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1412 			nullfunc->qos_ctrl |=
1413 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1414 			if (more_data)
1415 				nullfunc->frame_control |=
1416 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1417 		}
1418 	}
1419 
1420 	info = IEEE80211_SKB_CB(skb);
1421 
1422 	/*
1423 	 * Tell TX path to send this frame even though the
1424 	 * STA may still remain is PS mode after this frame
1425 	 * exchange. Also set EOSP to indicate this packet
1426 	 * ends the poll/service period.
1427 	 */
1428 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1429 		       IEEE80211_TX_STATUS_EOSP |
1430 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1431 
1432 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1433 
1434 	if (call_driver)
1435 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1436 					  reason, false);
1437 
1438 	skb->dev = sdata->dev;
1439 
1440 	rcu_read_lock();
1441 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1442 	if (WARN_ON(!chanctx_conf)) {
1443 		rcu_read_unlock();
1444 		kfree_skb(skb);
1445 		return;
1446 	}
1447 
1448 	info->band = chanctx_conf->def.chan->band;
1449 	ieee80211_xmit(sdata, sta, skb, 0);
1450 	rcu_read_unlock();
1451 }
1452 
1453 static int find_highest_prio_tid(unsigned long tids)
1454 {
1455 	/* lower 3 TIDs aren't ordered perfectly */
1456 	if (tids & 0xF8)
1457 		return fls(tids) - 1;
1458 	/* TID 0 is BE just like TID 3 */
1459 	if (tids & BIT(0))
1460 		return 0;
1461 	return fls(tids) - 1;
1462 }
1463 
1464 /* Indicates if the MORE_DATA bit should be set in the last
1465  * frame obtained by ieee80211_sta_ps_get_frames.
1466  * Note that driver_release_tids is relevant only if
1467  * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1468  */
1469 static bool
1470 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1471 			   enum ieee80211_frame_release_type reason,
1472 			   unsigned long driver_release_tids)
1473 {
1474 	int ac;
1475 
1476 	/* If the driver has data on more than one TID then
1477 	 * certainly there's more data if we release just a
1478 	 * single frame now (from a single TID). This will
1479 	 * only happen for PS-Poll.
1480 	 */
1481 	if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1482 	    hweight16(driver_release_tids) > 1)
1483 		return true;
1484 
1485 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1486 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1487 			continue;
1488 
1489 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1490 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1491 			return true;
1492 	}
1493 
1494 	return false;
1495 }
1496 
1497 static void
1498 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1499 			    enum ieee80211_frame_release_type reason,
1500 			    struct sk_buff_head *frames,
1501 			    unsigned long *driver_release_tids)
1502 {
1503 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1504 	struct ieee80211_local *local = sdata->local;
1505 	int ac;
1506 
1507 	/* Get response frame(s) and more data bit for the last one. */
1508 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1509 		unsigned long tids;
1510 
1511 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1512 			continue;
1513 
1514 		tids = ieee80211_tids_for_ac(ac);
1515 
1516 		/* if we already have frames from software, then we can't also
1517 		 * release from hardware queues
1518 		 */
1519 		if (skb_queue_empty(frames)) {
1520 			*driver_release_tids |=
1521 				sta->driver_buffered_tids & tids;
1522 			*driver_release_tids |= sta->txq_buffered_tids & tids;
1523 		}
1524 
1525 		if (!*driver_release_tids) {
1526 			struct sk_buff *skb;
1527 
1528 			while (n_frames > 0) {
1529 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1530 				if (!skb) {
1531 					skb = skb_dequeue(
1532 						&sta->ps_tx_buf[ac]);
1533 					if (skb)
1534 						local->total_ps_buffered--;
1535 				}
1536 				if (!skb)
1537 					break;
1538 				n_frames--;
1539 				__skb_queue_tail(frames, skb);
1540 			}
1541 		}
1542 
1543 		/* If we have more frames buffered on this AC, then abort the
1544 		 * loop since we can't send more data from other ACs before
1545 		 * the buffered frames from this.
1546 		 */
1547 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1548 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1549 			break;
1550 	}
1551 }
1552 
1553 static void
1554 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1555 				  int n_frames, u8 ignored_acs,
1556 				  enum ieee80211_frame_release_type reason)
1557 {
1558 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1559 	struct ieee80211_local *local = sdata->local;
1560 	unsigned long driver_release_tids = 0;
1561 	struct sk_buff_head frames;
1562 	bool more_data;
1563 
1564 	/* Service or PS-Poll period starts */
1565 	set_sta_flag(sta, WLAN_STA_SP);
1566 
1567 	__skb_queue_head_init(&frames);
1568 
1569 	ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1570 				    &frames, &driver_release_tids);
1571 
1572 	more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1573 
1574 	if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1575 		driver_release_tids =
1576 			BIT(find_highest_prio_tid(driver_release_tids));
1577 
1578 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1579 		int tid, ac;
1580 
1581 		/*
1582 		 * For PS-Poll, this can only happen due to a race condition
1583 		 * when we set the TIM bit and the station notices it, but
1584 		 * before it can poll for the frame we expire it.
1585 		 *
1586 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1587 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1588 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1589 		 *	more than the value specified in the Max SP Length field
1590 		 *	in the QoS Capability element from delivery-enabled ACs,
1591 		 *	that are destined for the non-AP STA.
1592 		 *
1593 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1594 		 */
1595 
1596 		/* This will evaluate to 1, 3, 5 or 7. */
1597 		for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1598 			if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1599 				break;
1600 		tid = 7 - 2 * ac;
1601 
1602 		ieee80211_send_null_response(sta, tid, reason, true, false);
1603 	} else if (!driver_release_tids) {
1604 		struct sk_buff_head pending;
1605 		struct sk_buff *skb;
1606 		int num = 0;
1607 		u16 tids = 0;
1608 		bool need_null = false;
1609 
1610 		skb_queue_head_init(&pending);
1611 
1612 		while ((skb = __skb_dequeue(&frames))) {
1613 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1614 			struct ieee80211_hdr *hdr = (void *) skb->data;
1615 			u8 *qoshdr = NULL;
1616 
1617 			num++;
1618 
1619 			/*
1620 			 * Tell TX path to send this frame even though the
1621 			 * STA may still remain is PS mode after this frame
1622 			 * exchange.
1623 			 */
1624 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1625 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1626 
1627 			/*
1628 			 * Use MoreData flag to indicate whether there are
1629 			 * more buffered frames for this STA
1630 			 */
1631 			if (more_data || !skb_queue_empty(&frames))
1632 				hdr->frame_control |=
1633 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1634 			else
1635 				hdr->frame_control &=
1636 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1637 
1638 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1639 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1640 				qoshdr = ieee80211_get_qos_ctl(hdr);
1641 
1642 			tids |= BIT(skb->priority);
1643 
1644 			__skb_queue_tail(&pending, skb);
1645 
1646 			/* end service period after last frame or add one */
1647 			if (!skb_queue_empty(&frames))
1648 				continue;
1649 
1650 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1651 				/* for PS-Poll, there's only one frame */
1652 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1653 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1654 				break;
1655 			}
1656 
1657 			/* For uAPSD, things are a bit more complicated. If the
1658 			 * last frame has a QoS header (i.e. is a QoS-data or
1659 			 * QoS-nulldata frame) then just set the EOSP bit there
1660 			 * and be done.
1661 			 * If the frame doesn't have a QoS header (which means
1662 			 * it should be a bufferable MMPDU) then we can't set
1663 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1664 			 * frame to the list to send it after the MMPDU.
1665 			 *
1666 			 * Note that this code is only in the mac80211-release
1667 			 * code path, we assume that the driver will not buffer
1668 			 * anything but QoS-data frames, or if it does, will
1669 			 * create the QoS-nulldata frame by itself if needed.
1670 			 *
1671 			 * Cf. 802.11-2012 10.2.1.10 (c).
1672 			 */
1673 			if (qoshdr) {
1674 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1675 
1676 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1677 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1678 			} else {
1679 				/* The standard isn't completely clear on this
1680 				 * as it says the more-data bit should be set
1681 				 * if there are more BUs. The QoS-Null frame
1682 				 * we're about to send isn't buffered yet, we
1683 				 * only create it below, but let's pretend it
1684 				 * was buffered just in case some clients only
1685 				 * expect more-data=0 when eosp=1.
1686 				 */
1687 				hdr->frame_control |=
1688 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1689 				need_null = true;
1690 				num++;
1691 			}
1692 			break;
1693 		}
1694 
1695 		drv_allow_buffered_frames(local, sta, tids, num,
1696 					  reason, more_data);
1697 
1698 		ieee80211_add_pending_skbs(local, &pending);
1699 
1700 		if (need_null)
1701 			ieee80211_send_null_response(
1702 				sta, find_highest_prio_tid(tids),
1703 				reason, false, false);
1704 
1705 		sta_info_recalc_tim(sta);
1706 	} else {
1707 		int tid;
1708 
1709 		/*
1710 		 * We need to release a frame that is buffered somewhere in the
1711 		 * driver ... it'll have to handle that.
1712 		 * Note that the driver also has to check the number of frames
1713 		 * on the TIDs we're releasing from - if there are more than
1714 		 * n_frames it has to set the more-data bit (if we didn't ask
1715 		 * it to set it anyway due to other buffered frames); if there
1716 		 * are fewer than n_frames it has to make sure to adjust that
1717 		 * to allow the service period to end properly.
1718 		 */
1719 		drv_release_buffered_frames(local, sta, driver_release_tids,
1720 					    n_frames, reason, more_data);
1721 
1722 		/*
1723 		 * Note that we don't recalculate the TIM bit here as it would
1724 		 * most likely have no effect at all unless the driver told us
1725 		 * that the TID(s) became empty before returning here from the
1726 		 * release function.
1727 		 * Either way, however, when the driver tells us that the TID(s)
1728 		 * became empty or we find that a txq became empty, we'll do the
1729 		 * TIM recalculation.
1730 		 */
1731 
1732 		if (!sta->sta.txq[0])
1733 			return;
1734 
1735 		for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1736 			if (!sta->sta.txq[tid] ||
1737 			    !(driver_release_tids & BIT(tid)) ||
1738 			    txq_has_queue(sta->sta.txq[tid]))
1739 				continue;
1740 
1741 			sta_info_recalc_tim(sta);
1742 			break;
1743 		}
1744 	}
1745 }
1746 
1747 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1748 {
1749 	u8 ignore_for_response = sta->sta.uapsd_queues;
1750 
1751 	/*
1752 	 * If all ACs are delivery-enabled then we should reply
1753 	 * from any of them, if only some are enabled we reply
1754 	 * only from the non-enabled ones.
1755 	 */
1756 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1757 		ignore_for_response = 0;
1758 
1759 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1760 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1761 }
1762 
1763 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1764 {
1765 	int n_frames = sta->sta.max_sp;
1766 	u8 delivery_enabled = sta->sta.uapsd_queues;
1767 
1768 	/*
1769 	 * If we ever grow support for TSPEC this might happen if
1770 	 * the TSPEC update from hostapd comes in between a trigger
1771 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1772 	 * actually getting called.
1773 	 */
1774 	if (!delivery_enabled)
1775 		return;
1776 
1777 	switch (sta->sta.max_sp) {
1778 	case 1:
1779 		n_frames = 2;
1780 		break;
1781 	case 2:
1782 		n_frames = 4;
1783 		break;
1784 	case 3:
1785 		n_frames = 6;
1786 		break;
1787 	case 0:
1788 		/* XXX: what is a good value? */
1789 		n_frames = 128;
1790 		break;
1791 	}
1792 
1793 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1794 					  IEEE80211_FRAME_RELEASE_UAPSD);
1795 }
1796 
1797 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1798 			       struct ieee80211_sta *pubsta, bool block)
1799 {
1800 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1801 
1802 	trace_api_sta_block_awake(sta->local, pubsta, block);
1803 
1804 	if (block) {
1805 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1806 		ieee80211_clear_fast_xmit(sta);
1807 		return;
1808 	}
1809 
1810 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1811 		return;
1812 
1813 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1814 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1815 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1816 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1817 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1818 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
1819 		/* must be asleep in this case */
1820 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1821 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1822 	} else {
1823 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1824 		ieee80211_check_fast_xmit(sta);
1825 	}
1826 }
1827 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1828 
1829 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1830 {
1831 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1832 	struct ieee80211_local *local = sta->local;
1833 
1834 	trace_api_eosp(local, pubsta);
1835 
1836 	clear_sta_flag(sta, WLAN_STA_SP);
1837 }
1838 EXPORT_SYMBOL(ieee80211_sta_eosp);
1839 
1840 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1841 {
1842 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1843 	enum ieee80211_frame_release_type reason;
1844 	bool more_data;
1845 
1846 	trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1847 
1848 	reason = IEEE80211_FRAME_RELEASE_UAPSD;
1849 	more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1850 					       reason, 0);
1851 
1852 	ieee80211_send_null_response(sta, tid, reason, false, more_data);
1853 }
1854 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1855 
1856 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1857 				u8 tid, bool buffered)
1858 {
1859 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1860 
1861 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1862 		return;
1863 
1864 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1865 
1866 	if (buffered)
1867 		set_bit(tid, &sta->driver_buffered_tids);
1868 	else
1869 		clear_bit(tid, &sta->driver_buffered_tids);
1870 
1871 	sta_info_recalc_tim(sta);
1872 }
1873 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1874 
1875 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1876 				    u32 tx_airtime, u32 rx_airtime)
1877 {
1878 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1879 	struct ieee80211_local *local = sta->sdata->local;
1880 	u8 ac = ieee80211_ac_from_tid(tid);
1881 	u32 airtime = 0;
1882 
1883 	if (sta->local->airtime_flags & AIRTIME_USE_TX)
1884 		airtime += tx_airtime;
1885 	if (sta->local->airtime_flags & AIRTIME_USE_RX)
1886 		airtime += rx_airtime;
1887 
1888 	spin_lock_bh(&local->active_txq_lock[ac]);
1889 	sta->airtime[ac].tx_airtime += tx_airtime;
1890 	sta->airtime[ac].rx_airtime += rx_airtime;
1891 	sta->airtime[ac].deficit -= airtime;
1892 	spin_unlock_bh(&local->active_txq_lock[ac]);
1893 }
1894 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1895 
1896 int sta_info_move_state(struct sta_info *sta,
1897 			enum ieee80211_sta_state new_state)
1898 {
1899 	might_sleep();
1900 
1901 	if (sta->sta_state == new_state)
1902 		return 0;
1903 
1904 	/* check allowed transitions first */
1905 
1906 	switch (new_state) {
1907 	case IEEE80211_STA_NONE:
1908 		if (sta->sta_state != IEEE80211_STA_AUTH)
1909 			return -EINVAL;
1910 		break;
1911 	case IEEE80211_STA_AUTH:
1912 		if (sta->sta_state != IEEE80211_STA_NONE &&
1913 		    sta->sta_state != IEEE80211_STA_ASSOC)
1914 			return -EINVAL;
1915 		break;
1916 	case IEEE80211_STA_ASSOC:
1917 		if (sta->sta_state != IEEE80211_STA_AUTH &&
1918 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
1919 			return -EINVAL;
1920 		break;
1921 	case IEEE80211_STA_AUTHORIZED:
1922 		if (sta->sta_state != IEEE80211_STA_ASSOC)
1923 			return -EINVAL;
1924 		break;
1925 	default:
1926 		WARN(1, "invalid state %d", new_state);
1927 		return -EINVAL;
1928 	}
1929 
1930 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1931 		sta->sta.addr, new_state);
1932 
1933 	/*
1934 	 * notify the driver before the actual changes so it can
1935 	 * fail the transition
1936 	 */
1937 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1938 		int err = drv_sta_state(sta->local, sta->sdata, sta,
1939 					sta->sta_state, new_state);
1940 		if (err)
1941 			return err;
1942 	}
1943 
1944 	/* reflect the change in all state variables */
1945 
1946 	switch (new_state) {
1947 	case IEEE80211_STA_NONE:
1948 		if (sta->sta_state == IEEE80211_STA_AUTH)
1949 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
1950 		break;
1951 	case IEEE80211_STA_AUTH:
1952 		if (sta->sta_state == IEEE80211_STA_NONE) {
1953 			set_bit(WLAN_STA_AUTH, &sta->_flags);
1954 		} else if (sta->sta_state == IEEE80211_STA_ASSOC) {
1955 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1956 			ieee80211_recalc_min_chandef(sta->sdata);
1957 			if (!sta->sta.support_p2p_ps)
1958 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1959 		}
1960 		break;
1961 	case IEEE80211_STA_ASSOC:
1962 		if (sta->sta_state == IEEE80211_STA_AUTH) {
1963 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
1964 			sta->assoc_at = ktime_get_boottime_ns();
1965 			ieee80211_recalc_min_chandef(sta->sdata);
1966 			if (!sta->sta.support_p2p_ps)
1967 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1968 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1969 			ieee80211_vif_dec_num_mcast(sta->sdata);
1970 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1971 			ieee80211_clear_fast_xmit(sta);
1972 			ieee80211_clear_fast_rx(sta);
1973 		}
1974 		break;
1975 	case IEEE80211_STA_AUTHORIZED:
1976 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
1977 			ieee80211_vif_inc_num_mcast(sta->sdata);
1978 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1979 			ieee80211_check_fast_xmit(sta);
1980 			ieee80211_check_fast_rx(sta);
1981 		}
1982 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
1983 		    sta->sdata->vif.type == NL80211_IFTYPE_AP)
1984 			cfg80211_send_layer2_update(sta->sdata->dev,
1985 						    sta->sta.addr);
1986 		break;
1987 	default:
1988 		break;
1989 	}
1990 
1991 	sta->sta_state = new_state;
1992 
1993 	return 0;
1994 }
1995 
1996 u8 sta_info_tx_streams(struct sta_info *sta)
1997 {
1998 	struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1999 	u8 rx_streams;
2000 
2001 	if (!sta->sta.ht_cap.ht_supported)
2002 		return 1;
2003 
2004 	if (sta->sta.vht_cap.vht_supported) {
2005 		int i;
2006 		u16 tx_mcs_map =
2007 			le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
2008 
2009 		for (i = 7; i >= 0; i--)
2010 			if ((tx_mcs_map & (0x3 << (i * 2))) !=
2011 			    IEEE80211_VHT_MCS_NOT_SUPPORTED)
2012 				return i + 1;
2013 	}
2014 
2015 	if (ht_cap->mcs.rx_mask[3])
2016 		rx_streams = 4;
2017 	else if (ht_cap->mcs.rx_mask[2])
2018 		rx_streams = 3;
2019 	else if (ht_cap->mcs.rx_mask[1])
2020 		rx_streams = 2;
2021 	else
2022 		rx_streams = 1;
2023 
2024 	if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2025 		return rx_streams;
2026 
2027 	return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2028 			>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2029 }
2030 
2031 static struct ieee80211_sta_rx_stats *
2032 sta_get_last_rx_stats(struct sta_info *sta)
2033 {
2034 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
2035 	struct ieee80211_local *local = sta->local;
2036 	int cpu;
2037 
2038 	if (!ieee80211_hw_check(&local->hw, USES_RSS))
2039 		return stats;
2040 
2041 	for_each_possible_cpu(cpu) {
2042 		struct ieee80211_sta_rx_stats *cpustats;
2043 
2044 		cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2045 
2046 		if (time_after(cpustats->last_rx, stats->last_rx))
2047 			stats = cpustats;
2048 	}
2049 
2050 	return stats;
2051 }
2052 
2053 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2054 				  struct rate_info *rinfo)
2055 {
2056 	rinfo->bw = STA_STATS_GET(BW, rate);
2057 
2058 	switch (STA_STATS_GET(TYPE, rate)) {
2059 	case STA_STATS_RATE_TYPE_VHT:
2060 		rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2061 		rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2062 		rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2063 		if (STA_STATS_GET(SGI, rate))
2064 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2065 		break;
2066 	case STA_STATS_RATE_TYPE_HT:
2067 		rinfo->flags = RATE_INFO_FLAGS_MCS;
2068 		rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2069 		if (STA_STATS_GET(SGI, rate))
2070 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2071 		break;
2072 	case STA_STATS_RATE_TYPE_LEGACY: {
2073 		struct ieee80211_supported_band *sband;
2074 		u16 brate;
2075 		unsigned int shift;
2076 		int band = STA_STATS_GET(LEGACY_BAND, rate);
2077 		int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2078 
2079 		sband = local->hw.wiphy->bands[band];
2080 		brate = sband->bitrates[rate_idx].bitrate;
2081 		if (rinfo->bw == RATE_INFO_BW_5)
2082 			shift = 2;
2083 		else if (rinfo->bw == RATE_INFO_BW_10)
2084 			shift = 1;
2085 		else
2086 			shift = 0;
2087 		rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2088 		break;
2089 		}
2090 	case STA_STATS_RATE_TYPE_HE:
2091 		rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2092 		rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2093 		rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2094 		rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2095 		rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2096 		rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2097 		break;
2098 	}
2099 }
2100 
2101 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2102 {
2103 	u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2104 
2105 	if (rate == STA_STATS_RATE_INVALID)
2106 		return -EINVAL;
2107 
2108 	sta_stats_decode_rate(sta->local, rate, rinfo);
2109 	return 0;
2110 }
2111 
2112 static void sta_set_tidstats(struct sta_info *sta,
2113 			     struct cfg80211_tid_stats *tidstats,
2114 			     int tid)
2115 {
2116 	struct ieee80211_local *local = sta->local;
2117 
2118 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2119 		unsigned int start;
2120 
2121 		do {
2122 			start = u64_stats_fetch_begin(&sta->rx_stats.syncp);
2123 			tidstats->rx_msdu = sta->rx_stats.msdu[tid];
2124 		} while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start));
2125 
2126 		tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2127 	}
2128 
2129 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2130 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2131 		tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2132 	}
2133 
2134 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2135 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2136 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2137 		tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2138 	}
2139 
2140 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2141 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2142 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2143 		tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2144 	}
2145 
2146 	if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2147 		spin_lock_bh(&local->fq.lock);
2148 		rcu_read_lock();
2149 
2150 		tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2151 		ieee80211_fill_txq_stats(&tidstats->txq_stats,
2152 					 to_txq_info(sta->sta.txq[tid]));
2153 
2154 		rcu_read_unlock();
2155 		spin_unlock_bh(&local->fq.lock);
2156 	}
2157 }
2158 
2159 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2160 {
2161 	unsigned int start;
2162 	u64 value;
2163 
2164 	do {
2165 		start = u64_stats_fetch_begin(&rxstats->syncp);
2166 		value = rxstats->bytes;
2167 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2168 
2169 	return value;
2170 }
2171 
2172 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2173 		   bool tidstats)
2174 {
2175 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2176 	struct ieee80211_local *local = sdata->local;
2177 	u32 thr = 0;
2178 	int i, ac, cpu;
2179 	struct ieee80211_sta_rx_stats *last_rxstats;
2180 
2181 	last_rxstats = sta_get_last_rx_stats(sta);
2182 
2183 	sinfo->generation = sdata->local->sta_generation;
2184 
2185 	/* do before driver, so beacon filtering drivers have a
2186 	 * chance to e.g. just add the number of filtered beacons
2187 	 * (or just modify the value entirely, of course)
2188 	 */
2189 	if (sdata->vif.type == NL80211_IFTYPE_STATION)
2190 		sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2191 
2192 	drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2193 
2194 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2195 			 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2196 			 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2197 			 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2198 			 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2199 			 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2200 
2201 	if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2202 		sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2203 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2204 	}
2205 
2206 	sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2207 	sinfo->assoc_at = sta->assoc_at;
2208 	sinfo->inactive_time =
2209 		jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2210 
2211 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2212 			       BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2213 		sinfo->tx_bytes = 0;
2214 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2215 			sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2216 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2217 	}
2218 
2219 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2220 		sinfo->tx_packets = 0;
2221 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2222 			sinfo->tx_packets += sta->tx_stats.packets[ac];
2223 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2224 	}
2225 
2226 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2227 			       BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2228 		sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2229 
2230 		if (sta->pcpu_rx_stats) {
2231 			for_each_possible_cpu(cpu) {
2232 				struct ieee80211_sta_rx_stats *cpurxs;
2233 
2234 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2235 				sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2236 			}
2237 		}
2238 
2239 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2240 	}
2241 
2242 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2243 		sinfo->rx_packets = sta->rx_stats.packets;
2244 		if (sta->pcpu_rx_stats) {
2245 			for_each_possible_cpu(cpu) {
2246 				struct ieee80211_sta_rx_stats *cpurxs;
2247 
2248 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2249 				sinfo->rx_packets += cpurxs->packets;
2250 			}
2251 		}
2252 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2253 	}
2254 
2255 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2256 		sinfo->tx_retries = sta->status_stats.retry_count;
2257 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2258 	}
2259 
2260 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2261 		sinfo->tx_failed = sta->status_stats.retry_failed;
2262 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2263 	}
2264 
2265 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2266 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2267 			sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2268 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2269 	}
2270 
2271 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2272 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2273 			sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2274 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2275 	}
2276 
2277 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2278 		sinfo->airtime_weight = sta->airtime_weight;
2279 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2280 	}
2281 
2282 	sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2283 	if (sta->pcpu_rx_stats) {
2284 		for_each_possible_cpu(cpu) {
2285 			struct ieee80211_sta_rx_stats *cpurxs;
2286 
2287 			cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2288 			sinfo->rx_dropped_misc += cpurxs->dropped;
2289 		}
2290 	}
2291 
2292 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2293 	    !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2294 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2295 				 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2296 		sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2297 	}
2298 
2299 	if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2300 	    ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2301 		if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2302 			sinfo->signal = (s8)last_rxstats->last_signal;
2303 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2304 		}
2305 
2306 		if (!sta->pcpu_rx_stats &&
2307 		    !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2308 			sinfo->signal_avg =
2309 				-ewma_signal_read(&sta->rx_stats_avg.signal);
2310 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2311 		}
2312 	}
2313 
2314 	/* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2315 	 * the sta->rx_stats struct, so the check here is fine with and without
2316 	 * pcpu statistics
2317 	 */
2318 	if (last_rxstats->chains &&
2319 	    !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2320 			       BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2321 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2322 		if (!sta->pcpu_rx_stats)
2323 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2324 
2325 		sinfo->chains = last_rxstats->chains;
2326 
2327 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2328 			sinfo->chain_signal[i] =
2329 				last_rxstats->chain_signal_last[i];
2330 			sinfo->chain_signal_avg[i] =
2331 				-ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2332 		}
2333 	}
2334 
2335 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2336 		sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2337 				     &sinfo->txrate);
2338 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2339 	}
2340 
2341 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2342 		if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2343 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2344 	}
2345 
2346 	if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2347 		for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2348 			sta_set_tidstats(sta, &sinfo->pertid[i], i);
2349 	}
2350 
2351 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2352 #ifdef CONFIG_MAC80211_MESH
2353 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2354 				 BIT_ULL(NL80211_STA_INFO_PLID) |
2355 				 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2356 				 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2357 				 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2358 				 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2359 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE);
2360 
2361 		sinfo->llid = sta->mesh->llid;
2362 		sinfo->plid = sta->mesh->plid;
2363 		sinfo->plink_state = sta->mesh->plink_state;
2364 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2365 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2366 			sinfo->t_offset = sta->mesh->t_offset;
2367 		}
2368 		sinfo->local_pm = sta->mesh->local_pm;
2369 		sinfo->peer_pm = sta->mesh->peer_pm;
2370 		sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2371 		sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2372 #endif
2373 	}
2374 
2375 	sinfo->bss_param.flags = 0;
2376 	if (sdata->vif.bss_conf.use_cts_prot)
2377 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2378 	if (sdata->vif.bss_conf.use_short_preamble)
2379 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2380 	if (sdata->vif.bss_conf.use_short_slot)
2381 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2382 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2383 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2384 
2385 	sinfo->sta_flags.set = 0;
2386 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2387 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2388 				BIT(NL80211_STA_FLAG_WME) |
2389 				BIT(NL80211_STA_FLAG_MFP) |
2390 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2391 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
2392 				BIT(NL80211_STA_FLAG_TDLS_PEER);
2393 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2394 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2395 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2396 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2397 	if (sta->sta.wme)
2398 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2399 	if (test_sta_flag(sta, WLAN_STA_MFP))
2400 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2401 	if (test_sta_flag(sta, WLAN_STA_AUTH))
2402 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2403 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
2404 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2405 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2406 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2407 
2408 	thr = sta_get_expected_throughput(sta);
2409 
2410 	if (thr != 0) {
2411 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2412 		sinfo->expected_throughput = thr;
2413 	}
2414 
2415 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2416 	    sta->status_stats.ack_signal_filled) {
2417 		sinfo->ack_signal = sta->status_stats.last_ack_signal;
2418 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2419 	}
2420 
2421 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2422 	    sta->status_stats.ack_signal_filled) {
2423 		sinfo->avg_ack_signal =
2424 			-(s8)ewma_avg_signal_read(
2425 				&sta->status_stats.avg_ack_signal);
2426 		sinfo->filled |=
2427 			BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2428 	}
2429 
2430 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2431 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2432 		sinfo->airtime_link_metric =
2433 			airtime_link_metric_get(local, sta);
2434 	}
2435 }
2436 
2437 u32 sta_get_expected_throughput(struct sta_info *sta)
2438 {
2439 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2440 	struct ieee80211_local *local = sdata->local;
2441 	struct rate_control_ref *ref = NULL;
2442 	u32 thr = 0;
2443 
2444 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2445 		ref = local->rate_ctrl;
2446 
2447 	/* check if the driver has a SW RC implementation */
2448 	if (ref && ref->ops->get_expected_throughput)
2449 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2450 	else
2451 		thr = drv_get_expected_throughput(local, sta);
2452 
2453 	return thr;
2454 }
2455 
2456 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2457 {
2458 	struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2459 
2460 	if (time_after(stats->last_rx, sta->status_stats.last_ack))
2461 		return stats->last_rx;
2462 	return sta->status_stats.last_ack;
2463 }
2464 
2465 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2466 {
2467 	if (!sta->sdata->local->ops->wake_tx_queue)
2468 		return;
2469 
2470 	if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2471 		sta->cparams.target = MS2TIME(50);
2472 		sta->cparams.interval = MS2TIME(300);
2473 		sta->cparams.ecn = false;
2474 	} else {
2475 		sta->cparams.target = MS2TIME(20);
2476 		sta->cparams.interval = MS2TIME(100);
2477 		sta->cparams.ecn = true;
2478 	}
2479 }
2480 
2481 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2482 					   u32 thr)
2483 {
2484 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2485 
2486 	sta_update_codel_params(sta, thr);
2487 }
2488