1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/mac80211.h> 22 #include "ieee80211_i.h" 23 #include "driver-ops.h" 24 #include "rate.h" 25 #include "sta_info.h" 26 #include "debugfs_sta.h" 27 #include "mesh.h" 28 #include "wme.h" 29 30 /** 31 * DOC: STA information lifetime rules 32 * 33 * STA info structures (&struct sta_info) are managed in a hash table 34 * for faster lookup and a list for iteration. They are managed using 35 * RCU, i.e. access to the list and hash table is protected by RCU. 36 * 37 * Upon allocating a STA info structure with sta_info_alloc(), the caller 38 * owns that structure. It must then insert it into the hash table using 39 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 40 * case (which acquires an rcu read section but must not be called from 41 * within one) will the pointer still be valid after the call. Note that 42 * the caller may not do much with the STA info before inserting it, in 43 * particular, it may not start any mesh peer link management or add 44 * encryption keys. 45 * 46 * When the insertion fails (sta_info_insert()) returns non-zero), the 47 * structure will have been freed by sta_info_insert()! 48 * 49 * Station entries are added by mac80211 when you establish a link with a 50 * peer. This means different things for the different type of interfaces 51 * we support. For a regular station this mean we add the AP sta when we 52 * receive an association response from the AP. For IBSS this occurs when 53 * get to know about a peer on the same IBSS. For WDS we add the sta for 54 * the peer immediately upon device open. When using AP mode we add stations 55 * for each respective station upon request from userspace through nl80211. 56 * 57 * In order to remove a STA info structure, various sta_info_destroy_*() 58 * calls are available. 59 * 60 * There is no concept of ownership on a STA entry, each structure is 61 * owned by the global hash table/list until it is removed. All users of 62 * the structure need to be RCU protected so that the structure won't be 63 * freed before they are done using it. 64 */ 65 66 /* Caller must hold local->sta_mtx */ 67 static int sta_info_hash_del(struct ieee80211_local *local, 68 struct sta_info *sta) 69 { 70 struct sta_info *s; 71 72 s = rcu_dereference_protected(local->sta_hash[STA_HASH(sta->sta.addr)], 73 lockdep_is_held(&local->sta_mtx)); 74 if (!s) 75 return -ENOENT; 76 if (s == sta) { 77 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], 78 s->hnext); 79 return 0; 80 } 81 82 while (rcu_access_pointer(s->hnext) && 83 rcu_access_pointer(s->hnext) != sta) 84 s = rcu_dereference_protected(s->hnext, 85 lockdep_is_held(&local->sta_mtx)); 86 if (rcu_access_pointer(s->hnext)) { 87 rcu_assign_pointer(s->hnext, sta->hnext); 88 return 0; 89 } 90 91 return -ENOENT; 92 } 93 94 static void __cleanup_single_sta(struct sta_info *sta) 95 { 96 int ac, i; 97 struct tid_ampdu_tx *tid_tx; 98 struct ieee80211_sub_if_data *sdata = sta->sdata; 99 struct ieee80211_local *local = sdata->local; 100 struct ps_data *ps; 101 102 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 103 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 104 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 105 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 106 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 107 ps = &sdata->bss->ps; 108 else if (ieee80211_vif_is_mesh(&sdata->vif)) 109 ps = &sdata->u.mesh.ps; 110 else 111 return; 112 113 clear_sta_flag(sta, WLAN_STA_PS_STA); 114 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 115 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 116 117 atomic_dec(&ps->num_sta_ps); 118 sta_info_recalc_tim(sta); 119 } 120 121 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 122 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 123 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 124 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 125 } 126 127 if (ieee80211_vif_is_mesh(&sdata->vif)) 128 mesh_sta_cleanup(sta); 129 130 cancel_work_sync(&sta->drv_deliver_wk); 131 132 /* 133 * Destroy aggregation state here. It would be nice to wait for the 134 * driver to finish aggregation stop and then clean up, but for now 135 * drivers have to handle aggregation stop being requested, followed 136 * directly by station destruction. 137 */ 138 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 139 kfree(sta->ampdu_mlme.tid_start_tx[i]); 140 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 141 if (!tid_tx) 142 continue; 143 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 144 kfree(tid_tx); 145 } 146 } 147 148 static void cleanup_single_sta(struct sta_info *sta) 149 { 150 struct ieee80211_sub_if_data *sdata = sta->sdata; 151 struct ieee80211_local *local = sdata->local; 152 153 __cleanup_single_sta(sta); 154 sta_info_free(local, sta); 155 } 156 157 /* protected by RCU */ 158 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 159 const u8 *addr) 160 { 161 struct ieee80211_local *local = sdata->local; 162 struct sta_info *sta; 163 164 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)], 165 lockdep_is_held(&local->sta_mtx)); 166 while (sta) { 167 if (sta->sdata == sdata && 168 ether_addr_equal(sta->sta.addr, addr)) 169 break; 170 sta = rcu_dereference_check(sta->hnext, 171 lockdep_is_held(&local->sta_mtx)); 172 } 173 return sta; 174 } 175 176 /* 177 * Get sta info either from the specified interface 178 * or from one of its vlans 179 */ 180 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 181 const u8 *addr) 182 { 183 struct ieee80211_local *local = sdata->local; 184 struct sta_info *sta; 185 186 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)], 187 lockdep_is_held(&local->sta_mtx)); 188 while (sta) { 189 if ((sta->sdata == sdata || 190 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) && 191 ether_addr_equal(sta->sta.addr, addr)) 192 break; 193 sta = rcu_dereference_check(sta->hnext, 194 lockdep_is_held(&local->sta_mtx)); 195 } 196 return sta; 197 } 198 199 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 200 int idx) 201 { 202 struct ieee80211_local *local = sdata->local; 203 struct sta_info *sta; 204 int i = 0; 205 206 list_for_each_entry_rcu(sta, &local->sta_list, list) { 207 if (sdata != sta->sdata) 208 continue; 209 if (i < idx) { 210 ++i; 211 continue; 212 } 213 return sta; 214 } 215 216 return NULL; 217 } 218 219 /** 220 * sta_info_free - free STA 221 * 222 * @local: pointer to the global information 223 * @sta: STA info to free 224 * 225 * This function must undo everything done by sta_info_alloc() 226 * that may happen before sta_info_insert(). It may only be 227 * called when sta_info_insert() has not been attempted (and 228 * if that fails, the station is freed anyway.) 229 */ 230 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 231 { 232 int i; 233 234 if (sta->rate_ctrl) 235 rate_control_free_sta(sta); 236 237 if (sta->tx_lat) { 238 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 239 kfree(sta->tx_lat[i].bins); 240 kfree(sta->tx_lat); 241 } 242 243 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 244 245 kfree(rcu_dereference_raw(sta->sta.rates)); 246 kfree(sta); 247 } 248 249 /* Caller must hold local->sta_mtx */ 250 static void sta_info_hash_add(struct ieee80211_local *local, 251 struct sta_info *sta) 252 { 253 lockdep_assert_held(&local->sta_mtx); 254 sta->hnext = local->sta_hash[STA_HASH(sta->sta.addr)]; 255 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], sta); 256 } 257 258 static void sta_deliver_ps_frames(struct work_struct *wk) 259 { 260 struct sta_info *sta; 261 262 sta = container_of(wk, struct sta_info, drv_deliver_wk); 263 264 if (sta->dead) 265 return; 266 267 local_bh_disable(); 268 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 269 ieee80211_sta_ps_deliver_wakeup(sta); 270 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 271 ieee80211_sta_ps_deliver_poll_response(sta); 272 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 273 ieee80211_sta_ps_deliver_uapsd(sta); 274 local_bh_enable(); 275 } 276 277 static int sta_prepare_rate_control(struct ieee80211_local *local, 278 struct sta_info *sta, gfp_t gfp) 279 { 280 if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL) 281 return 0; 282 283 sta->rate_ctrl = local->rate_ctrl; 284 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 285 &sta->sta, gfp); 286 if (!sta->rate_ctrl_priv) 287 return -ENOMEM; 288 289 return 0; 290 } 291 292 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 293 const u8 *addr, gfp_t gfp) 294 { 295 struct ieee80211_local *local = sdata->local; 296 struct sta_info *sta; 297 struct timespec uptime; 298 struct ieee80211_tx_latency_bin_ranges *tx_latency; 299 int i; 300 301 sta = kzalloc(sizeof(*sta) + local->hw.sta_data_size, gfp); 302 if (!sta) 303 return NULL; 304 305 rcu_read_lock(); 306 tx_latency = rcu_dereference(local->tx_latency); 307 /* init stations Tx latency statistics && TID bins */ 308 if (tx_latency) { 309 sta->tx_lat = kzalloc(IEEE80211_NUM_TIDS * 310 sizeof(struct ieee80211_tx_latency_stat), 311 GFP_ATOMIC); 312 if (!sta->tx_lat) { 313 rcu_read_unlock(); 314 goto free; 315 } 316 317 if (tx_latency->n_ranges) { 318 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 319 /* size of bins is size of the ranges +1 */ 320 sta->tx_lat[i].bin_count = 321 tx_latency->n_ranges + 1; 322 sta->tx_lat[i].bins = 323 kcalloc(sta->tx_lat[i].bin_count, 324 sizeof(u32), GFP_ATOMIC); 325 if (!sta->tx_lat[i].bins) { 326 rcu_read_unlock(); 327 goto free; 328 } 329 } 330 } 331 } 332 rcu_read_unlock(); 333 334 spin_lock_init(&sta->lock); 335 spin_lock_init(&sta->ps_lock); 336 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 337 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 338 mutex_init(&sta->ampdu_mlme.mtx); 339 #ifdef CONFIG_MAC80211_MESH 340 if (ieee80211_vif_is_mesh(&sdata->vif) && 341 !sdata->u.mesh.user_mpm) 342 init_timer(&sta->plink_timer); 343 sta->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 344 #endif 345 346 memcpy(sta->sta.addr, addr, ETH_ALEN); 347 sta->local = local; 348 sta->sdata = sdata; 349 sta->last_rx = jiffies; 350 351 sta->sta_state = IEEE80211_STA_NONE; 352 353 ktime_get_ts(&uptime); 354 sta->last_connected = uptime.tv_sec; 355 ewma_init(&sta->avg_signal, 1024, 8); 356 for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++) 357 ewma_init(&sta->chain_signal_avg[i], 1024, 8); 358 359 if (sta_prepare_rate_control(local, sta, gfp)) 360 goto free; 361 362 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 363 /* 364 * timer_to_tid must be initialized with identity mapping 365 * to enable session_timer's data differentiation. See 366 * sta_rx_agg_session_timer_expired for usage. 367 */ 368 sta->timer_to_tid[i] = i; 369 } 370 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 371 skb_queue_head_init(&sta->ps_tx_buf[i]); 372 skb_queue_head_init(&sta->tx_filtered[i]); 373 } 374 375 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 376 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 377 378 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 379 if (sdata->vif.type == NL80211_IFTYPE_AP || 380 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 381 struct ieee80211_supported_band *sband = 382 local->hw.wiphy->bands[ieee80211_get_sdata_band(sdata)]; 383 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 384 IEEE80211_HT_CAP_SM_PS_SHIFT; 385 /* 386 * Assume that hostapd advertises our caps in the beacon and 387 * this is the known_smps_mode for a station that just assciated 388 */ 389 switch (smps) { 390 case WLAN_HT_SMPS_CONTROL_DISABLED: 391 sta->known_smps_mode = IEEE80211_SMPS_OFF; 392 break; 393 case WLAN_HT_SMPS_CONTROL_STATIC: 394 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 395 break; 396 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 397 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 398 break; 399 default: 400 WARN_ON(1); 401 } 402 } 403 404 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 405 return sta; 406 407 free: 408 if (sta->tx_lat) { 409 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 410 kfree(sta->tx_lat[i].bins); 411 kfree(sta->tx_lat); 412 } 413 kfree(sta); 414 return NULL; 415 } 416 417 static int sta_info_insert_check(struct sta_info *sta) 418 { 419 struct ieee80211_sub_if_data *sdata = sta->sdata; 420 421 /* 422 * Can't be a WARN_ON because it can be triggered through a race: 423 * something inserts a STA (on one CPU) without holding the RTNL 424 * and another CPU turns off the net device. 425 */ 426 if (unlikely(!ieee80211_sdata_running(sdata))) 427 return -ENETDOWN; 428 429 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 430 is_multicast_ether_addr(sta->sta.addr))) 431 return -EINVAL; 432 433 return 0; 434 } 435 436 static int sta_info_insert_drv_state(struct ieee80211_local *local, 437 struct ieee80211_sub_if_data *sdata, 438 struct sta_info *sta) 439 { 440 enum ieee80211_sta_state state; 441 int err = 0; 442 443 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 444 err = drv_sta_state(local, sdata, sta, state, state + 1); 445 if (err) 446 break; 447 } 448 449 if (!err) { 450 /* 451 * Drivers using legacy sta_add/sta_remove callbacks only 452 * get uploaded set to true after sta_add is called. 453 */ 454 if (!local->ops->sta_add) 455 sta->uploaded = true; 456 return 0; 457 } 458 459 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 460 sdata_info(sdata, 461 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 462 sta->sta.addr, state + 1, err); 463 err = 0; 464 } 465 466 /* unwind on error */ 467 for (; state > IEEE80211_STA_NOTEXIST; state--) 468 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 469 470 return err; 471 } 472 473 /* 474 * should be called with sta_mtx locked 475 * this function replaces the mutex lock 476 * with a RCU lock 477 */ 478 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 479 { 480 struct ieee80211_local *local = sta->local; 481 struct ieee80211_sub_if_data *sdata = sta->sdata; 482 struct station_info sinfo; 483 int err = 0; 484 485 lockdep_assert_held(&local->sta_mtx); 486 487 /* check if STA exists already */ 488 if (sta_info_get_bss(sdata, sta->sta.addr)) { 489 err = -EEXIST; 490 goto out_err; 491 } 492 493 local->num_sta++; 494 local->sta_generation++; 495 smp_mb(); 496 497 /* simplify things and don't accept BA sessions yet */ 498 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 499 500 /* make the station visible */ 501 sta_info_hash_add(local, sta); 502 503 list_add_rcu(&sta->list, &local->sta_list); 504 505 /* notify driver */ 506 err = sta_info_insert_drv_state(local, sdata, sta); 507 if (err) 508 goto out_remove; 509 510 set_sta_flag(sta, WLAN_STA_INSERTED); 511 /* accept BA sessions now */ 512 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 513 514 ieee80211_recalc_min_chandef(sdata); 515 ieee80211_sta_debugfs_add(sta); 516 rate_control_add_sta_debugfs(sta); 517 518 memset(&sinfo, 0, sizeof(sinfo)); 519 sinfo.filled = 0; 520 sinfo.generation = local->sta_generation; 521 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 522 523 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 524 525 /* move reference to rcu-protected */ 526 rcu_read_lock(); 527 mutex_unlock(&local->sta_mtx); 528 529 if (ieee80211_vif_is_mesh(&sdata->vif)) 530 mesh_accept_plinks_update(sdata); 531 532 return 0; 533 out_remove: 534 sta_info_hash_del(local, sta); 535 list_del_rcu(&sta->list); 536 local->num_sta--; 537 synchronize_net(); 538 __cleanup_single_sta(sta); 539 out_err: 540 mutex_unlock(&local->sta_mtx); 541 rcu_read_lock(); 542 return err; 543 } 544 545 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 546 { 547 struct ieee80211_local *local = sta->local; 548 int err; 549 550 might_sleep(); 551 552 err = sta_info_insert_check(sta); 553 if (err) { 554 rcu_read_lock(); 555 goto out_free; 556 } 557 558 mutex_lock(&local->sta_mtx); 559 560 err = sta_info_insert_finish(sta); 561 if (err) 562 goto out_free; 563 564 return 0; 565 out_free: 566 sta_info_free(local, sta); 567 return err; 568 } 569 570 int sta_info_insert(struct sta_info *sta) 571 { 572 int err = sta_info_insert_rcu(sta); 573 574 rcu_read_unlock(); 575 576 return err; 577 } 578 579 static inline void __bss_tim_set(u8 *tim, u16 id) 580 { 581 /* 582 * This format has been mandated by the IEEE specifications, 583 * so this line may not be changed to use the __set_bit() format. 584 */ 585 tim[id / 8] |= (1 << (id % 8)); 586 } 587 588 static inline void __bss_tim_clear(u8 *tim, u16 id) 589 { 590 /* 591 * This format has been mandated by the IEEE specifications, 592 * so this line may not be changed to use the __clear_bit() format. 593 */ 594 tim[id / 8] &= ~(1 << (id % 8)); 595 } 596 597 static inline bool __bss_tim_get(u8 *tim, u16 id) 598 { 599 /* 600 * This format has been mandated by the IEEE specifications, 601 * so this line may not be changed to use the test_bit() format. 602 */ 603 return tim[id / 8] & (1 << (id % 8)); 604 } 605 606 static unsigned long ieee80211_tids_for_ac(int ac) 607 { 608 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 609 switch (ac) { 610 case IEEE80211_AC_VO: 611 return BIT(6) | BIT(7); 612 case IEEE80211_AC_VI: 613 return BIT(4) | BIT(5); 614 case IEEE80211_AC_BE: 615 return BIT(0) | BIT(3); 616 case IEEE80211_AC_BK: 617 return BIT(1) | BIT(2); 618 default: 619 WARN_ON(1); 620 return 0; 621 } 622 } 623 624 void sta_info_recalc_tim(struct sta_info *sta) 625 { 626 struct ieee80211_local *local = sta->local; 627 struct ps_data *ps; 628 bool indicate_tim = false; 629 u8 ignore_for_tim = sta->sta.uapsd_queues; 630 int ac; 631 u16 id; 632 633 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 634 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 635 if (WARN_ON_ONCE(!sta->sdata->bss)) 636 return; 637 638 ps = &sta->sdata->bss->ps; 639 id = sta->sta.aid; 640 #ifdef CONFIG_MAC80211_MESH 641 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 642 ps = &sta->sdata->u.mesh.ps; 643 /* TIM map only for 1 <= PLID <= IEEE80211_MAX_AID */ 644 id = sta->plid % (IEEE80211_MAX_AID + 1); 645 #endif 646 } else { 647 return; 648 } 649 650 /* No need to do anything if the driver does all */ 651 if (local->hw.flags & IEEE80211_HW_AP_LINK_PS) 652 return; 653 654 if (sta->dead) 655 goto done; 656 657 /* 658 * If all ACs are delivery-enabled then we should build 659 * the TIM bit for all ACs anyway; if only some are then 660 * we ignore those and build the TIM bit using only the 661 * non-enabled ones. 662 */ 663 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 664 ignore_for_tim = 0; 665 666 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 667 unsigned long tids; 668 669 if (ignore_for_tim & BIT(ac)) 670 continue; 671 672 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 673 !skb_queue_empty(&sta->ps_tx_buf[ac]); 674 if (indicate_tim) 675 break; 676 677 tids = ieee80211_tids_for_ac(ac); 678 679 indicate_tim |= 680 sta->driver_buffered_tids & tids; 681 } 682 683 done: 684 spin_lock_bh(&local->tim_lock); 685 686 if (indicate_tim == __bss_tim_get(ps->tim, id)) 687 goto out_unlock; 688 689 if (indicate_tim) 690 __bss_tim_set(ps->tim, id); 691 else 692 __bss_tim_clear(ps->tim, id); 693 694 if (local->ops->set_tim) { 695 local->tim_in_locked_section = true; 696 drv_set_tim(local, &sta->sta, indicate_tim); 697 local->tim_in_locked_section = false; 698 } 699 700 out_unlock: 701 spin_unlock_bh(&local->tim_lock); 702 } 703 704 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 705 { 706 struct ieee80211_tx_info *info; 707 int timeout; 708 709 if (!skb) 710 return false; 711 712 info = IEEE80211_SKB_CB(skb); 713 714 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 715 timeout = (sta->listen_interval * 716 sta->sdata->vif.bss_conf.beacon_int * 717 32 / 15625) * HZ; 718 if (timeout < STA_TX_BUFFER_EXPIRE) 719 timeout = STA_TX_BUFFER_EXPIRE; 720 return time_after(jiffies, info->control.jiffies + timeout); 721 } 722 723 724 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 725 struct sta_info *sta, int ac) 726 { 727 unsigned long flags; 728 struct sk_buff *skb; 729 730 /* 731 * First check for frames that should expire on the filtered 732 * queue. Frames here were rejected by the driver and are on 733 * a separate queue to avoid reordering with normal PS-buffered 734 * frames. They also aren't accounted for right now in the 735 * total_ps_buffered counter. 736 */ 737 for (;;) { 738 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 739 skb = skb_peek(&sta->tx_filtered[ac]); 740 if (sta_info_buffer_expired(sta, skb)) 741 skb = __skb_dequeue(&sta->tx_filtered[ac]); 742 else 743 skb = NULL; 744 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 745 746 /* 747 * Frames are queued in order, so if this one 748 * hasn't expired yet we can stop testing. If 749 * we actually reached the end of the queue we 750 * also need to stop, of course. 751 */ 752 if (!skb) 753 break; 754 ieee80211_free_txskb(&local->hw, skb); 755 } 756 757 /* 758 * Now also check the normal PS-buffered queue, this will 759 * only find something if the filtered queue was emptied 760 * since the filtered frames are all before the normal PS 761 * buffered frames. 762 */ 763 for (;;) { 764 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 765 skb = skb_peek(&sta->ps_tx_buf[ac]); 766 if (sta_info_buffer_expired(sta, skb)) 767 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 768 else 769 skb = NULL; 770 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 771 772 /* 773 * frames are queued in order, so if this one 774 * hasn't expired yet (or we reached the end of 775 * the queue) we can stop testing 776 */ 777 if (!skb) 778 break; 779 780 local->total_ps_buffered--; 781 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 782 sta->sta.addr); 783 ieee80211_free_txskb(&local->hw, skb); 784 } 785 786 /* 787 * Finally, recalculate the TIM bit for this station -- it might 788 * now be clear because the station was too slow to retrieve its 789 * frames. 790 */ 791 sta_info_recalc_tim(sta); 792 793 /* 794 * Return whether there are any frames still buffered, this is 795 * used to check whether the cleanup timer still needs to run, 796 * if there are no frames we don't need to rearm the timer. 797 */ 798 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 799 skb_queue_empty(&sta->tx_filtered[ac])); 800 } 801 802 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 803 struct sta_info *sta) 804 { 805 bool have_buffered = false; 806 int ac; 807 808 /* This is only necessary for stations on BSS/MBSS interfaces */ 809 if (!sta->sdata->bss && 810 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 811 return false; 812 813 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 814 have_buffered |= 815 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 816 817 return have_buffered; 818 } 819 820 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 821 { 822 struct ieee80211_local *local; 823 struct ieee80211_sub_if_data *sdata; 824 int ret; 825 826 might_sleep(); 827 828 if (!sta) 829 return -ENOENT; 830 831 local = sta->local; 832 sdata = sta->sdata; 833 834 lockdep_assert_held(&local->sta_mtx); 835 836 /* 837 * Before removing the station from the driver and 838 * rate control, it might still start new aggregation 839 * sessions -- block that to make sure the tear-down 840 * will be sufficient. 841 */ 842 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 843 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 844 845 ret = sta_info_hash_del(local, sta); 846 if (WARN_ON(ret)) 847 return ret; 848 849 list_del_rcu(&sta->list); 850 851 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 852 853 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 854 rcu_access_pointer(sdata->u.vlan.sta) == sta) 855 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 856 857 return 0; 858 } 859 860 static void __sta_info_destroy_part2(struct sta_info *sta) 861 { 862 struct ieee80211_local *local = sta->local; 863 struct ieee80211_sub_if_data *sdata = sta->sdata; 864 int ret; 865 866 /* 867 * NOTE: This assumes at least synchronize_net() was done 868 * after _part1 and before _part2! 869 */ 870 871 might_sleep(); 872 lockdep_assert_held(&local->sta_mtx); 873 874 /* now keys can no longer be reached */ 875 ieee80211_free_sta_keys(local, sta); 876 877 sta->dead = true; 878 879 local->num_sta--; 880 local->sta_generation++; 881 882 while (sta->sta_state > IEEE80211_STA_NONE) { 883 ret = sta_info_move_state(sta, sta->sta_state - 1); 884 if (ret) { 885 WARN_ON_ONCE(1); 886 break; 887 } 888 } 889 890 if (sta->uploaded) { 891 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 892 IEEE80211_STA_NOTEXIST); 893 WARN_ON_ONCE(ret != 0); 894 } 895 896 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 897 898 cfg80211_del_sta(sdata->dev, sta->sta.addr, GFP_KERNEL); 899 900 rate_control_remove_sta_debugfs(sta); 901 ieee80211_sta_debugfs_remove(sta); 902 ieee80211_recalc_min_chandef(sdata); 903 904 cleanup_single_sta(sta); 905 } 906 907 int __must_check __sta_info_destroy(struct sta_info *sta) 908 { 909 int err = __sta_info_destroy_part1(sta); 910 911 if (err) 912 return err; 913 914 synchronize_net(); 915 916 __sta_info_destroy_part2(sta); 917 918 return 0; 919 } 920 921 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 922 { 923 struct sta_info *sta; 924 int ret; 925 926 mutex_lock(&sdata->local->sta_mtx); 927 sta = sta_info_get(sdata, addr); 928 ret = __sta_info_destroy(sta); 929 mutex_unlock(&sdata->local->sta_mtx); 930 931 return ret; 932 } 933 934 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 935 const u8 *addr) 936 { 937 struct sta_info *sta; 938 int ret; 939 940 mutex_lock(&sdata->local->sta_mtx); 941 sta = sta_info_get_bss(sdata, addr); 942 ret = __sta_info_destroy(sta); 943 mutex_unlock(&sdata->local->sta_mtx); 944 945 return ret; 946 } 947 948 static void sta_info_cleanup(unsigned long data) 949 { 950 struct ieee80211_local *local = (struct ieee80211_local *) data; 951 struct sta_info *sta; 952 bool timer_needed = false; 953 954 rcu_read_lock(); 955 list_for_each_entry_rcu(sta, &local->sta_list, list) 956 if (sta_info_cleanup_expire_buffered(local, sta)) 957 timer_needed = true; 958 rcu_read_unlock(); 959 960 if (local->quiescing) 961 return; 962 963 if (!timer_needed) 964 return; 965 966 mod_timer(&local->sta_cleanup, 967 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 968 } 969 970 void sta_info_init(struct ieee80211_local *local) 971 { 972 spin_lock_init(&local->tim_lock); 973 mutex_init(&local->sta_mtx); 974 INIT_LIST_HEAD(&local->sta_list); 975 976 setup_timer(&local->sta_cleanup, sta_info_cleanup, 977 (unsigned long)local); 978 } 979 980 void sta_info_stop(struct ieee80211_local *local) 981 { 982 del_timer_sync(&local->sta_cleanup); 983 } 984 985 986 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 987 { 988 struct ieee80211_local *local = sdata->local; 989 struct sta_info *sta, *tmp; 990 LIST_HEAD(free_list); 991 int ret = 0; 992 993 might_sleep(); 994 995 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 996 WARN_ON(vlans && !sdata->bss); 997 998 mutex_lock(&local->sta_mtx); 999 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1000 if (sdata == sta->sdata || 1001 (vlans && sdata->bss == sta->sdata->bss)) { 1002 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1003 list_add(&sta->free_list, &free_list); 1004 ret++; 1005 } 1006 } 1007 1008 if (!list_empty(&free_list)) { 1009 synchronize_net(); 1010 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1011 __sta_info_destroy_part2(sta); 1012 } 1013 mutex_unlock(&local->sta_mtx); 1014 1015 return ret; 1016 } 1017 1018 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1019 unsigned long exp_time) 1020 { 1021 struct ieee80211_local *local = sdata->local; 1022 struct sta_info *sta, *tmp; 1023 1024 mutex_lock(&local->sta_mtx); 1025 1026 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1027 if (sdata != sta->sdata) 1028 continue; 1029 1030 if (time_after(jiffies, sta->last_rx + exp_time)) { 1031 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1032 sta->sta.addr); 1033 1034 if (ieee80211_vif_is_mesh(&sdata->vif) && 1035 test_sta_flag(sta, WLAN_STA_PS_STA)) 1036 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1037 1038 WARN_ON(__sta_info_destroy(sta)); 1039 } 1040 } 1041 1042 mutex_unlock(&local->sta_mtx); 1043 } 1044 1045 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1046 const u8 *addr, 1047 const u8 *localaddr) 1048 { 1049 struct sta_info *sta, *nxt; 1050 1051 /* 1052 * Just return a random station if localaddr is NULL 1053 * ... first in list. 1054 */ 1055 for_each_sta_info(hw_to_local(hw), addr, sta, nxt) { 1056 if (localaddr && 1057 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1058 continue; 1059 if (!sta->uploaded) 1060 return NULL; 1061 return &sta->sta; 1062 } 1063 1064 return NULL; 1065 } 1066 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1067 1068 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1069 const u8 *addr) 1070 { 1071 struct sta_info *sta; 1072 1073 if (!vif) 1074 return NULL; 1075 1076 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1077 if (!sta) 1078 return NULL; 1079 1080 if (!sta->uploaded) 1081 return NULL; 1082 1083 return &sta->sta; 1084 } 1085 EXPORT_SYMBOL(ieee80211_find_sta); 1086 1087 /* powersave support code */ 1088 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1089 { 1090 struct ieee80211_sub_if_data *sdata = sta->sdata; 1091 struct ieee80211_local *local = sdata->local; 1092 struct sk_buff_head pending; 1093 int filtered = 0, buffered = 0, ac; 1094 unsigned long flags; 1095 struct ps_data *ps; 1096 1097 if (sdata->vif.type == NL80211_IFTYPE_AP || 1098 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1099 ps = &sdata->bss->ps; 1100 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1101 ps = &sdata->u.mesh.ps; 1102 else 1103 return; 1104 1105 clear_sta_flag(sta, WLAN_STA_SP); 1106 1107 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1108 sta->driver_buffered_tids = 0; 1109 1110 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1111 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1112 1113 skb_queue_head_init(&pending); 1114 1115 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1116 spin_lock(&sta->ps_lock); 1117 /* Send all buffered frames to the station */ 1118 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1119 int count = skb_queue_len(&pending), tmp; 1120 1121 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1122 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1123 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1124 tmp = skb_queue_len(&pending); 1125 filtered += tmp - count; 1126 count = tmp; 1127 1128 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1129 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1130 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1131 tmp = skb_queue_len(&pending); 1132 buffered += tmp - count; 1133 } 1134 1135 ieee80211_add_pending_skbs(local, &pending); 1136 1137 /* now we're no longer in the deliver code */ 1138 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1139 1140 /* The station might have polled and then woken up before we responded, 1141 * so clear these flags now to avoid them sticking around. 1142 */ 1143 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1144 clear_sta_flag(sta, WLAN_STA_UAPSD); 1145 spin_unlock(&sta->ps_lock); 1146 1147 atomic_dec(&ps->num_sta_ps); 1148 1149 /* This station just woke up and isn't aware of our SMPS state */ 1150 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1151 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1152 sdata->smps_mode) && 1153 sta->known_smps_mode != sdata->bss->req_smps && 1154 sta_info_tx_streams(sta) != 1) { 1155 ht_dbg(sdata, 1156 "%pM just woke up and MIMO capable - update SMPS\n", 1157 sta->sta.addr); 1158 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1159 sta->sta.addr, 1160 sdata->vif.bss_conf.bssid); 1161 } 1162 1163 local->total_ps_buffered -= buffered; 1164 1165 sta_info_recalc_tim(sta); 1166 1167 ps_dbg(sdata, 1168 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n", 1169 sta->sta.addr, sta->sta.aid, filtered, buffered); 1170 } 1171 1172 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata, 1173 struct sta_info *sta, int tid, 1174 enum ieee80211_frame_release_type reason, 1175 bool call_driver) 1176 { 1177 struct ieee80211_local *local = sdata->local; 1178 struct ieee80211_qos_hdr *nullfunc; 1179 struct sk_buff *skb; 1180 int size = sizeof(*nullfunc); 1181 __le16 fc; 1182 bool qos = test_sta_flag(sta, WLAN_STA_WME); 1183 struct ieee80211_tx_info *info; 1184 struct ieee80211_chanctx_conf *chanctx_conf; 1185 1186 if (qos) { 1187 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1188 IEEE80211_STYPE_QOS_NULLFUNC | 1189 IEEE80211_FCTL_FROMDS); 1190 } else { 1191 size -= 2; 1192 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1193 IEEE80211_STYPE_NULLFUNC | 1194 IEEE80211_FCTL_FROMDS); 1195 } 1196 1197 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1198 if (!skb) 1199 return; 1200 1201 skb_reserve(skb, local->hw.extra_tx_headroom); 1202 1203 nullfunc = (void *) skb_put(skb, size); 1204 nullfunc->frame_control = fc; 1205 nullfunc->duration_id = 0; 1206 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1207 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1208 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1209 nullfunc->seq_ctrl = 0; 1210 1211 skb->priority = tid; 1212 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1213 if (qos) { 1214 nullfunc->qos_ctrl = cpu_to_le16(tid); 1215 1216 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) 1217 nullfunc->qos_ctrl |= 1218 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1219 } 1220 1221 info = IEEE80211_SKB_CB(skb); 1222 1223 /* 1224 * Tell TX path to send this frame even though the 1225 * STA may still remain is PS mode after this frame 1226 * exchange. Also set EOSP to indicate this packet 1227 * ends the poll/service period. 1228 */ 1229 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1230 IEEE80211_TX_CTL_PS_RESPONSE | 1231 IEEE80211_TX_STATUS_EOSP | 1232 IEEE80211_TX_CTL_REQ_TX_STATUS; 1233 1234 if (call_driver) 1235 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1236 reason, false); 1237 1238 skb->dev = sdata->dev; 1239 1240 rcu_read_lock(); 1241 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1242 if (WARN_ON(!chanctx_conf)) { 1243 rcu_read_unlock(); 1244 kfree_skb(skb); 1245 return; 1246 } 1247 1248 ieee80211_xmit(sdata, skb, chanctx_conf->def.chan->band); 1249 rcu_read_unlock(); 1250 } 1251 1252 static int find_highest_prio_tid(unsigned long tids) 1253 { 1254 /* lower 3 TIDs aren't ordered perfectly */ 1255 if (tids & 0xF8) 1256 return fls(tids) - 1; 1257 /* TID 0 is BE just like TID 3 */ 1258 if (tids & BIT(0)) 1259 return 0; 1260 return fls(tids) - 1; 1261 } 1262 1263 static void 1264 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1265 int n_frames, u8 ignored_acs, 1266 enum ieee80211_frame_release_type reason) 1267 { 1268 struct ieee80211_sub_if_data *sdata = sta->sdata; 1269 struct ieee80211_local *local = sdata->local; 1270 bool more_data = false; 1271 int ac; 1272 unsigned long driver_release_tids = 0; 1273 struct sk_buff_head frames; 1274 1275 /* Service or PS-Poll period starts */ 1276 set_sta_flag(sta, WLAN_STA_SP); 1277 1278 __skb_queue_head_init(&frames); 1279 1280 /* Get response frame(s) and more data bit for the last one. */ 1281 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1282 unsigned long tids; 1283 1284 if (ignored_acs & BIT(ac)) 1285 continue; 1286 1287 tids = ieee80211_tids_for_ac(ac); 1288 1289 /* if we already have frames from software, then we can't also 1290 * release from hardware queues 1291 */ 1292 if (skb_queue_empty(&frames)) 1293 driver_release_tids |= sta->driver_buffered_tids & tids; 1294 1295 if (driver_release_tids) { 1296 /* If the driver has data on more than one TID then 1297 * certainly there's more data if we release just a 1298 * single frame now (from a single TID). This will 1299 * only happen for PS-Poll. 1300 */ 1301 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1302 hweight16(driver_release_tids) > 1) { 1303 more_data = true; 1304 driver_release_tids = 1305 BIT(find_highest_prio_tid( 1306 driver_release_tids)); 1307 break; 1308 } 1309 } else { 1310 struct sk_buff *skb; 1311 1312 while (n_frames > 0) { 1313 skb = skb_dequeue(&sta->tx_filtered[ac]); 1314 if (!skb) { 1315 skb = skb_dequeue( 1316 &sta->ps_tx_buf[ac]); 1317 if (skb) 1318 local->total_ps_buffered--; 1319 } 1320 if (!skb) 1321 break; 1322 n_frames--; 1323 __skb_queue_tail(&frames, skb); 1324 } 1325 } 1326 1327 /* If we have more frames buffered on this AC, then set the 1328 * more-data bit and abort the loop since we can't send more 1329 * data from other ACs before the buffered frames from this. 1330 */ 1331 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1332 !skb_queue_empty(&sta->ps_tx_buf[ac])) { 1333 more_data = true; 1334 break; 1335 } 1336 } 1337 1338 if (skb_queue_empty(&frames) && !driver_release_tids) { 1339 int tid; 1340 1341 /* 1342 * For PS-Poll, this can only happen due to a race condition 1343 * when we set the TIM bit and the station notices it, but 1344 * before it can poll for the frame we expire it. 1345 * 1346 * For uAPSD, this is said in the standard (11.2.1.5 h): 1347 * At each unscheduled SP for a non-AP STA, the AP shall 1348 * attempt to transmit at least one MSDU or MMPDU, but no 1349 * more than the value specified in the Max SP Length field 1350 * in the QoS Capability element from delivery-enabled ACs, 1351 * that are destined for the non-AP STA. 1352 * 1353 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1354 */ 1355 1356 /* This will evaluate to 1, 3, 5 or 7. */ 1357 tid = 7 - ((ffs(~ignored_acs) - 1) << 1); 1358 1359 ieee80211_send_null_response(sdata, sta, tid, reason, true); 1360 } else if (!driver_release_tids) { 1361 struct sk_buff_head pending; 1362 struct sk_buff *skb; 1363 int num = 0; 1364 u16 tids = 0; 1365 bool need_null = false; 1366 1367 skb_queue_head_init(&pending); 1368 1369 while ((skb = __skb_dequeue(&frames))) { 1370 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1371 struct ieee80211_hdr *hdr = (void *) skb->data; 1372 u8 *qoshdr = NULL; 1373 1374 num++; 1375 1376 /* 1377 * Tell TX path to send this frame even though the 1378 * STA may still remain is PS mode after this frame 1379 * exchange. 1380 */ 1381 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1382 IEEE80211_TX_CTL_PS_RESPONSE; 1383 1384 /* 1385 * Use MoreData flag to indicate whether there are 1386 * more buffered frames for this STA 1387 */ 1388 if (more_data || !skb_queue_empty(&frames)) 1389 hdr->frame_control |= 1390 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1391 else 1392 hdr->frame_control &= 1393 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1394 1395 if (ieee80211_is_data_qos(hdr->frame_control) || 1396 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1397 qoshdr = ieee80211_get_qos_ctl(hdr); 1398 1399 tids |= BIT(skb->priority); 1400 1401 __skb_queue_tail(&pending, skb); 1402 1403 /* end service period after last frame or add one */ 1404 if (!skb_queue_empty(&frames)) 1405 continue; 1406 1407 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1408 /* for PS-Poll, there's only one frame */ 1409 info->flags |= IEEE80211_TX_STATUS_EOSP | 1410 IEEE80211_TX_CTL_REQ_TX_STATUS; 1411 break; 1412 } 1413 1414 /* For uAPSD, things are a bit more complicated. If the 1415 * last frame has a QoS header (i.e. is a QoS-data or 1416 * QoS-nulldata frame) then just set the EOSP bit there 1417 * and be done. 1418 * If the frame doesn't have a QoS header (which means 1419 * it should be a bufferable MMPDU) then we can't set 1420 * the EOSP bit in the QoS header; add a QoS-nulldata 1421 * frame to the list to send it after the MMPDU. 1422 * 1423 * Note that this code is only in the mac80211-release 1424 * code path, we assume that the driver will not buffer 1425 * anything but QoS-data frames, or if it does, will 1426 * create the QoS-nulldata frame by itself if needed. 1427 * 1428 * Cf. 802.11-2012 10.2.1.10 (c). 1429 */ 1430 if (qoshdr) { 1431 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1432 1433 info->flags |= IEEE80211_TX_STATUS_EOSP | 1434 IEEE80211_TX_CTL_REQ_TX_STATUS; 1435 } else { 1436 /* The standard isn't completely clear on this 1437 * as it says the more-data bit should be set 1438 * if there are more BUs. The QoS-Null frame 1439 * we're about to send isn't buffered yet, we 1440 * only create it below, but let's pretend it 1441 * was buffered just in case some clients only 1442 * expect more-data=0 when eosp=1. 1443 */ 1444 hdr->frame_control |= 1445 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1446 need_null = true; 1447 num++; 1448 } 1449 break; 1450 } 1451 1452 drv_allow_buffered_frames(local, sta, tids, num, 1453 reason, more_data); 1454 1455 ieee80211_add_pending_skbs(local, &pending); 1456 1457 if (need_null) 1458 ieee80211_send_null_response( 1459 sdata, sta, find_highest_prio_tid(tids), 1460 reason, false); 1461 1462 sta_info_recalc_tim(sta); 1463 } else { 1464 /* 1465 * We need to release a frame that is buffered somewhere in the 1466 * driver ... it'll have to handle that. 1467 * Note that the driver also has to check the number of frames 1468 * on the TIDs we're releasing from - if there are more than 1469 * n_frames it has to set the more-data bit (if we didn't ask 1470 * it to set it anyway due to other buffered frames); if there 1471 * are fewer than n_frames it has to make sure to adjust that 1472 * to allow the service period to end properly. 1473 */ 1474 drv_release_buffered_frames(local, sta, driver_release_tids, 1475 n_frames, reason, more_data); 1476 1477 /* 1478 * Note that we don't recalculate the TIM bit here as it would 1479 * most likely have no effect at all unless the driver told us 1480 * that the TID(s) became empty before returning here from the 1481 * release function. 1482 * Either way, however, when the driver tells us that the TID(s) 1483 * became empty we'll do the TIM recalculation. 1484 */ 1485 } 1486 } 1487 1488 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1489 { 1490 u8 ignore_for_response = sta->sta.uapsd_queues; 1491 1492 /* 1493 * If all ACs are delivery-enabled then we should reply 1494 * from any of them, if only some are enabled we reply 1495 * only from the non-enabled ones. 1496 */ 1497 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1498 ignore_for_response = 0; 1499 1500 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1501 IEEE80211_FRAME_RELEASE_PSPOLL); 1502 } 1503 1504 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1505 { 1506 int n_frames = sta->sta.max_sp; 1507 u8 delivery_enabled = sta->sta.uapsd_queues; 1508 1509 /* 1510 * If we ever grow support for TSPEC this might happen if 1511 * the TSPEC update from hostapd comes in between a trigger 1512 * frame setting WLAN_STA_UAPSD in the RX path and this 1513 * actually getting called. 1514 */ 1515 if (!delivery_enabled) 1516 return; 1517 1518 switch (sta->sta.max_sp) { 1519 case 1: 1520 n_frames = 2; 1521 break; 1522 case 2: 1523 n_frames = 4; 1524 break; 1525 case 3: 1526 n_frames = 6; 1527 break; 1528 case 0: 1529 /* XXX: what is a good value? */ 1530 n_frames = 8; 1531 break; 1532 } 1533 1534 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1535 IEEE80211_FRAME_RELEASE_UAPSD); 1536 } 1537 1538 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1539 struct ieee80211_sta *pubsta, bool block) 1540 { 1541 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1542 1543 trace_api_sta_block_awake(sta->local, pubsta, block); 1544 1545 if (block) { 1546 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1547 return; 1548 } 1549 1550 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1551 return; 1552 1553 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1554 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1555 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1556 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1557 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1558 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1559 /* must be asleep in this case */ 1560 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1561 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1562 } else { 1563 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1564 } 1565 } 1566 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1567 1568 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1569 { 1570 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1571 struct ieee80211_local *local = sta->local; 1572 1573 trace_api_eosp(local, pubsta); 1574 1575 clear_sta_flag(sta, WLAN_STA_SP); 1576 } 1577 EXPORT_SYMBOL(ieee80211_sta_eosp); 1578 1579 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1580 u8 tid, bool buffered) 1581 { 1582 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1583 1584 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1585 return; 1586 1587 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1588 1589 if (buffered) 1590 set_bit(tid, &sta->driver_buffered_tids); 1591 else 1592 clear_bit(tid, &sta->driver_buffered_tids); 1593 1594 sta_info_recalc_tim(sta); 1595 } 1596 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1597 1598 int sta_info_move_state(struct sta_info *sta, 1599 enum ieee80211_sta_state new_state) 1600 { 1601 might_sleep(); 1602 1603 if (sta->sta_state == new_state) 1604 return 0; 1605 1606 /* check allowed transitions first */ 1607 1608 switch (new_state) { 1609 case IEEE80211_STA_NONE: 1610 if (sta->sta_state != IEEE80211_STA_AUTH) 1611 return -EINVAL; 1612 break; 1613 case IEEE80211_STA_AUTH: 1614 if (sta->sta_state != IEEE80211_STA_NONE && 1615 sta->sta_state != IEEE80211_STA_ASSOC) 1616 return -EINVAL; 1617 break; 1618 case IEEE80211_STA_ASSOC: 1619 if (sta->sta_state != IEEE80211_STA_AUTH && 1620 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1621 return -EINVAL; 1622 break; 1623 case IEEE80211_STA_AUTHORIZED: 1624 if (sta->sta_state != IEEE80211_STA_ASSOC) 1625 return -EINVAL; 1626 break; 1627 default: 1628 WARN(1, "invalid state %d", new_state); 1629 return -EINVAL; 1630 } 1631 1632 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1633 sta->sta.addr, new_state); 1634 1635 /* 1636 * notify the driver before the actual changes so it can 1637 * fail the transition 1638 */ 1639 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1640 int err = drv_sta_state(sta->local, sta->sdata, sta, 1641 sta->sta_state, new_state); 1642 if (err) 1643 return err; 1644 } 1645 1646 /* reflect the change in all state variables */ 1647 1648 switch (new_state) { 1649 case IEEE80211_STA_NONE: 1650 if (sta->sta_state == IEEE80211_STA_AUTH) 1651 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1652 break; 1653 case IEEE80211_STA_AUTH: 1654 if (sta->sta_state == IEEE80211_STA_NONE) 1655 set_bit(WLAN_STA_AUTH, &sta->_flags); 1656 else if (sta->sta_state == IEEE80211_STA_ASSOC) 1657 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1658 break; 1659 case IEEE80211_STA_ASSOC: 1660 if (sta->sta_state == IEEE80211_STA_AUTH) { 1661 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1662 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1663 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1664 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1665 !sta->sdata->u.vlan.sta)) 1666 atomic_dec(&sta->sdata->bss->num_mcast_sta); 1667 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1668 } 1669 break; 1670 case IEEE80211_STA_AUTHORIZED: 1671 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1672 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1673 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1674 !sta->sdata->u.vlan.sta)) 1675 atomic_inc(&sta->sdata->bss->num_mcast_sta); 1676 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1677 } 1678 break; 1679 default: 1680 break; 1681 } 1682 1683 sta->sta_state = new_state; 1684 1685 return 0; 1686 } 1687 1688 u8 sta_info_tx_streams(struct sta_info *sta) 1689 { 1690 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1691 u8 rx_streams; 1692 1693 if (!sta->sta.ht_cap.ht_supported) 1694 return 1; 1695 1696 if (sta->sta.vht_cap.vht_supported) { 1697 int i; 1698 u16 tx_mcs_map = 1699 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1700 1701 for (i = 7; i >= 0; i--) 1702 if ((tx_mcs_map & (0x3 << (i * 2))) != 1703 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1704 return i + 1; 1705 } 1706 1707 if (ht_cap->mcs.rx_mask[3]) 1708 rx_streams = 4; 1709 else if (ht_cap->mcs.rx_mask[2]) 1710 rx_streams = 3; 1711 else if (ht_cap->mcs.rx_mask[1]) 1712 rx_streams = 2; 1713 else 1714 rx_streams = 1; 1715 1716 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1717 return rx_streams; 1718 1719 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1720 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1721 } 1722 1723 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo) 1724 { 1725 struct ieee80211_sub_if_data *sdata = sta->sdata; 1726 struct ieee80211_local *local = sdata->local; 1727 struct rate_control_ref *ref = NULL; 1728 struct timespec uptime; 1729 u64 packets = 0; 1730 u32 thr = 0; 1731 int i, ac; 1732 1733 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 1734 ref = local->rate_ctrl; 1735 1736 sinfo->generation = sdata->local->sta_generation; 1737 1738 sinfo->filled = STATION_INFO_INACTIVE_TIME | 1739 STATION_INFO_RX_BYTES64 | 1740 STATION_INFO_TX_BYTES64 | 1741 STATION_INFO_RX_PACKETS | 1742 STATION_INFO_TX_PACKETS | 1743 STATION_INFO_TX_RETRIES | 1744 STATION_INFO_TX_FAILED | 1745 STATION_INFO_TX_BITRATE | 1746 STATION_INFO_RX_BITRATE | 1747 STATION_INFO_RX_DROP_MISC | 1748 STATION_INFO_BSS_PARAM | 1749 STATION_INFO_CONNECTED_TIME | 1750 STATION_INFO_STA_FLAGS | 1751 STATION_INFO_BEACON_LOSS_COUNT; 1752 1753 ktime_get_ts(&uptime); 1754 sinfo->connected_time = uptime.tv_sec - sta->last_connected; 1755 1756 sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx); 1757 sinfo->tx_bytes = 0; 1758 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1759 sinfo->tx_bytes += sta->tx_bytes[ac]; 1760 packets += sta->tx_packets[ac]; 1761 } 1762 sinfo->tx_packets = packets; 1763 sinfo->rx_bytes = sta->rx_bytes; 1764 sinfo->rx_packets = sta->rx_packets; 1765 sinfo->tx_retries = sta->tx_retry_count; 1766 sinfo->tx_failed = sta->tx_retry_failed; 1767 sinfo->rx_dropped_misc = sta->rx_dropped; 1768 sinfo->beacon_loss_count = sta->beacon_loss_count; 1769 1770 if ((sta->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) || 1771 (sta->local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)) { 1772 sinfo->filled |= STATION_INFO_SIGNAL | STATION_INFO_SIGNAL_AVG; 1773 if (!local->ops->get_rssi || 1774 drv_get_rssi(local, sdata, &sta->sta, &sinfo->signal)) 1775 sinfo->signal = (s8)sta->last_signal; 1776 sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal); 1777 } 1778 if (sta->chains) { 1779 sinfo->filled |= STATION_INFO_CHAIN_SIGNAL | 1780 STATION_INFO_CHAIN_SIGNAL_AVG; 1781 1782 sinfo->chains = sta->chains; 1783 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 1784 sinfo->chain_signal[i] = sta->chain_signal_last[i]; 1785 sinfo->chain_signal_avg[i] = 1786 (s8) -ewma_read(&sta->chain_signal_avg[i]); 1787 } 1788 } 1789 1790 sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate); 1791 sta_set_rate_info_rx(sta, &sinfo->rxrate); 1792 1793 if (ieee80211_vif_is_mesh(&sdata->vif)) { 1794 #ifdef CONFIG_MAC80211_MESH 1795 sinfo->filled |= STATION_INFO_LLID | 1796 STATION_INFO_PLID | 1797 STATION_INFO_PLINK_STATE | 1798 STATION_INFO_LOCAL_PM | 1799 STATION_INFO_PEER_PM | 1800 STATION_INFO_NONPEER_PM; 1801 1802 sinfo->llid = sta->llid; 1803 sinfo->plid = sta->plid; 1804 sinfo->plink_state = sta->plink_state; 1805 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 1806 sinfo->filled |= STATION_INFO_T_OFFSET; 1807 sinfo->t_offset = sta->t_offset; 1808 } 1809 sinfo->local_pm = sta->local_pm; 1810 sinfo->peer_pm = sta->peer_pm; 1811 sinfo->nonpeer_pm = sta->nonpeer_pm; 1812 #endif 1813 } 1814 1815 sinfo->bss_param.flags = 0; 1816 if (sdata->vif.bss_conf.use_cts_prot) 1817 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 1818 if (sdata->vif.bss_conf.use_short_preamble) 1819 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 1820 if (sdata->vif.bss_conf.use_short_slot) 1821 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 1822 sinfo->bss_param.dtim_period = sdata->local->hw.conf.ps_dtim_period; 1823 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 1824 1825 sinfo->sta_flags.set = 0; 1826 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 1827 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 1828 BIT(NL80211_STA_FLAG_WME) | 1829 BIT(NL80211_STA_FLAG_MFP) | 1830 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 1831 BIT(NL80211_STA_FLAG_ASSOCIATED) | 1832 BIT(NL80211_STA_FLAG_TDLS_PEER); 1833 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 1834 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 1835 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 1836 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 1837 if (test_sta_flag(sta, WLAN_STA_WME)) 1838 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 1839 if (test_sta_flag(sta, WLAN_STA_MFP)) 1840 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 1841 if (test_sta_flag(sta, WLAN_STA_AUTH)) 1842 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 1843 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 1844 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 1845 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 1846 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 1847 1848 /* check if the driver has a SW RC implementation */ 1849 if (ref && ref->ops->get_expected_throughput) 1850 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 1851 else 1852 thr = drv_get_expected_throughput(local, &sta->sta); 1853 1854 if (thr != 0) { 1855 sinfo->filled |= STATION_INFO_EXPECTED_THROUGHPUT; 1856 sinfo->expected_throughput = thr; 1857 } 1858 } 1859