1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * Copyright 2013-2014 Intel Mobile Communications GmbH 5 * Copyright (C) 2015 - 2016 Intel Deutschland GmbH 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/etherdevice.h> 15 #include <linux/netdevice.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/skbuff.h> 19 #include <linux/if_arp.h> 20 #include <linux/timer.h> 21 #include <linux/rtnetlink.h> 22 23 #include <net/mac80211.h> 24 #include "ieee80211_i.h" 25 #include "driver-ops.h" 26 #include "rate.h" 27 #include "sta_info.h" 28 #include "debugfs_sta.h" 29 #include "mesh.h" 30 #include "wme.h" 31 32 /** 33 * DOC: STA information lifetime rules 34 * 35 * STA info structures (&struct sta_info) are managed in a hash table 36 * for faster lookup and a list for iteration. They are managed using 37 * RCU, i.e. access to the list and hash table is protected by RCU. 38 * 39 * Upon allocating a STA info structure with sta_info_alloc(), the caller 40 * owns that structure. It must then insert it into the hash table using 41 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 42 * case (which acquires an rcu read section but must not be called from 43 * within one) will the pointer still be valid after the call. Note that 44 * the caller may not do much with the STA info before inserting it, in 45 * particular, it may not start any mesh peer link management or add 46 * encryption keys. 47 * 48 * When the insertion fails (sta_info_insert()) returns non-zero), the 49 * structure will have been freed by sta_info_insert()! 50 * 51 * Station entries are added by mac80211 when you establish a link with a 52 * peer. This means different things for the different type of interfaces 53 * we support. For a regular station this mean we add the AP sta when we 54 * receive an association response from the AP. For IBSS this occurs when 55 * get to know about a peer on the same IBSS. For WDS we add the sta for 56 * the peer immediately upon device open. When using AP mode we add stations 57 * for each respective station upon request from userspace through nl80211. 58 * 59 * In order to remove a STA info structure, various sta_info_destroy_*() 60 * calls are available. 61 * 62 * There is no concept of ownership on a STA entry, each structure is 63 * owned by the global hash table/list until it is removed. All users of 64 * the structure need to be RCU protected so that the structure won't be 65 * freed before they are done using it. 66 */ 67 68 static const struct rhashtable_params sta_rht_params = { 69 .nelem_hint = 3, /* start small */ 70 .automatic_shrinking = true, 71 .head_offset = offsetof(struct sta_info, hash_node), 72 .key_offset = offsetof(struct sta_info, addr), 73 .key_len = ETH_ALEN, 74 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 75 }; 76 77 /* Caller must hold local->sta_mtx */ 78 static int sta_info_hash_del(struct ieee80211_local *local, 79 struct sta_info *sta) 80 { 81 return rhltable_remove(&local->sta_hash, &sta->hash_node, 82 sta_rht_params); 83 } 84 85 static void __cleanup_single_sta(struct sta_info *sta) 86 { 87 int ac, i; 88 struct tid_ampdu_tx *tid_tx; 89 struct ieee80211_sub_if_data *sdata = sta->sdata; 90 struct ieee80211_local *local = sdata->local; 91 struct fq *fq = &local->fq; 92 struct ps_data *ps; 93 94 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 95 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 96 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 97 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 98 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 99 ps = &sdata->bss->ps; 100 else if (ieee80211_vif_is_mesh(&sdata->vif)) 101 ps = &sdata->u.mesh.ps; 102 else 103 return; 104 105 clear_sta_flag(sta, WLAN_STA_PS_STA); 106 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 107 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 108 109 atomic_dec(&ps->num_sta_ps); 110 } 111 112 if (sta->sta.txq[0]) { 113 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 114 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); 115 116 spin_lock_bh(&fq->lock); 117 ieee80211_txq_purge(local, txqi); 118 spin_unlock_bh(&fq->lock); 119 } 120 } 121 122 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 123 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 124 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 126 } 127 128 if (ieee80211_vif_is_mesh(&sdata->vif)) 129 mesh_sta_cleanup(sta); 130 131 cancel_work_sync(&sta->drv_deliver_wk); 132 133 /* 134 * Destroy aggregation state here. It would be nice to wait for the 135 * driver to finish aggregation stop and then clean up, but for now 136 * drivers have to handle aggregation stop being requested, followed 137 * directly by station destruction. 138 */ 139 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 140 kfree(sta->ampdu_mlme.tid_start_tx[i]); 141 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 142 if (!tid_tx) 143 continue; 144 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 145 kfree(tid_tx); 146 } 147 } 148 149 static void cleanup_single_sta(struct sta_info *sta) 150 { 151 struct ieee80211_sub_if_data *sdata = sta->sdata; 152 struct ieee80211_local *local = sdata->local; 153 154 __cleanup_single_sta(sta); 155 sta_info_free(local, sta); 156 } 157 158 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 159 const u8 *addr) 160 { 161 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 162 } 163 164 /* protected by RCU */ 165 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 166 const u8 *addr) 167 { 168 struct ieee80211_local *local = sdata->local; 169 struct rhlist_head *tmp; 170 struct sta_info *sta; 171 172 rcu_read_lock(); 173 for_each_sta_info(local, addr, sta, tmp) { 174 if (sta->sdata == sdata) { 175 rcu_read_unlock(); 176 /* this is safe as the caller must already hold 177 * another rcu read section or the mutex 178 */ 179 return sta; 180 } 181 } 182 rcu_read_unlock(); 183 return NULL; 184 } 185 186 /* 187 * Get sta info either from the specified interface 188 * or from one of its vlans 189 */ 190 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 191 const u8 *addr) 192 { 193 struct ieee80211_local *local = sdata->local; 194 struct rhlist_head *tmp; 195 struct sta_info *sta; 196 197 rcu_read_lock(); 198 for_each_sta_info(local, addr, sta, tmp) { 199 if (sta->sdata == sdata || 200 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 201 rcu_read_unlock(); 202 /* this is safe as the caller must already hold 203 * another rcu read section or the mutex 204 */ 205 return sta; 206 } 207 } 208 rcu_read_unlock(); 209 return NULL; 210 } 211 212 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 213 int idx) 214 { 215 struct ieee80211_local *local = sdata->local; 216 struct sta_info *sta; 217 int i = 0; 218 219 list_for_each_entry_rcu(sta, &local->sta_list, list) { 220 if (sdata != sta->sdata) 221 continue; 222 if (i < idx) { 223 ++i; 224 continue; 225 } 226 return sta; 227 } 228 229 return NULL; 230 } 231 232 /** 233 * sta_info_free - free STA 234 * 235 * @local: pointer to the global information 236 * @sta: STA info to free 237 * 238 * This function must undo everything done by sta_info_alloc() 239 * that may happen before sta_info_insert(). It may only be 240 * called when sta_info_insert() has not been attempted (and 241 * if that fails, the station is freed anyway.) 242 */ 243 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 244 { 245 if (sta->rate_ctrl) 246 rate_control_free_sta(sta); 247 248 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 249 250 if (sta->sta.txq[0]) 251 kfree(to_txq_info(sta->sta.txq[0])); 252 kfree(rcu_dereference_raw(sta->sta.rates)); 253 #ifdef CONFIG_MAC80211_MESH 254 kfree(sta->mesh); 255 #endif 256 free_percpu(sta->pcpu_rx_stats); 257 kfree(sta); 258 } 259 260 /* Caller must hold local->sta_mtx */ 261 static int sta_info_hash_add(struct ieee80211_local *local, 262 struct sta_info *sta) 263 { 264 return rhltable_insert(&local->sta_hash, &sta->hash_node, 265 sta_rht_params); 266 } 267 268 static void sta_deliver_ps_frames(struct work_struct *wk) 269 { 270 struct sta_info *sta; 271 272 sta = container_of(wk, struct sta_info, drv_deliver_wk); 273 274 if (sta->dead) 275 return; 276 277 local_bh_disable(); 278 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 279 ieee80211_sta_ps_deliver_wakeup(sta); 280 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 281 ieee80211_sta_ps_deliver_poll_response(sta); 282 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 283 ieee80211_sta_ps_deliver_uapsd(sta); 284 local_bh_enable(); 285 } 286 287 static int sta_prepare_rate_control(struct ieee80211_local *local, 288 struct sta_info *sta, gfp_t gfp) 289 { 290 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 291 return 0; 292 293 sta->rate_ctrl = local->rate_ctrl; 294 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 295 sta, gfp); 296 if (!sta->rate_ctrl_priv) 297 return -ENOMEM; 298 299 return 0; 300 } 301 302 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 303 const u8 *addr, gfp_t gfp) 304 { 305 struct ieee80211_local *local = sdata->local; 306 struct ieee80211_hw *hw = &local->hw; 307 struct sta_info *sta; 308 int i; 309 310 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 311 if (!sta) 312 return NULL; 313 314 if (ieee80211_hw_check(hw, USES_RSS)) { 315 sta->pcpu_rx_stats = 316 alloc_percpu(struct ieee80211_sta_rx_stats); 317 if (!sta->pcpu_rx_stats) 318 goto free; 319 } 320 321 spin_lock_init(&sta->lock); 322 spin_lock_init(&sta->ps_lock); 323 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 324 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 325 mutex_init(&sta->ampdu_mlme.mtx); 326 #ifdef CONFIG_MAC80211_MESH 327 if (ieee80211_vif_is_mesh(&sdata->vif)) { 328 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 329 if (!sta->mesh) 330 goto free; 331 spin_lock_init(&sta->mesh->plink_lock); 332 if (ieee80211_vif_is_mesh(&sdata->vif) && 333 !sdata->u.mesh.user_mpm) 334 init_timer(&sta->mesh->plink_timer); 335 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 336 } 337 #endif 338 339 memcpy(sta->addr, addr, ETH_ALEN); 340 memcpy(sta->sta.addr, addr, ETH_ALEN); 341 sta->sta.max_rx_aggregation_subframes = 342 local->hw.max_rx_aggregation_subframes; 343 344 sta->local = local; 345 sta->sdata = sdata; 346 sta->rx_stats.last_rx = jiffies; 347 348 u64_stats_init(&sta->rx_stats.syncp); 349 350 sta->sta_state = IEEE80211_STA_NONE; 351 352 /* Mark TID as unreserved */ 353 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 354 355 sta->last_connected = ktime_get_seconds(); 356 ewma_signal_init(&sta->rx_stats_avg.signal); 357 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 358 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 359 360 if (local->ops->wake_tx_queue) { 361 void *txq_data; 362 int size = sizeof(struct txq_info) + 363 ALIGN(hw->txq_data_size, sizeof(void *)); 364 365 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 366 if (!txq_data) 367 goto free; 368 369 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 370 struct txq_info *txq = txq_data + i * size; 371 372 ieee80211_txq_init(sdata, sta, txq, i); 373 } 374 } 375 376 if (sta_prepare_rate_control(local, sta, gfp)) 377 goto free_txq; 378 379 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 380 /* 381 * timer_to_tid must be initialized with identity mapping 382 * to enable session_timer's data differentiation. See 383 * sta_rx_agg_session_timer_expired for usage. 384 */ 385 sta->timer_to_tid[i] = i; 386 } 387 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 388 skb_queue_head_init(&sta->ps_tx_buf[i]); 389 skb_queue_head_init(&sta->tx_filtered[i]); 390 } 391 392 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 393 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 394 395 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 396 if (sdata->vif.type == NL80211_IFTYPE_AP || 397 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 398 struct ieee80211_supported_band *sband = 399 hw->wiphy->bands[ieee80211_get_sdata_band(sdata)]; 400 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 401 IEEE80211_HT_CAP_SM_PS_SHIFT; 402 /* 403 * Assume that hostapd advertises our caps in the beacon and 404 * this is the known_smps_mode for a station that just assciated 405 */ 406 switch (smps) { 407 case WLAN_HT_SMPS_CONTROL_DISABLED: 408 sta->known_smps_mode = IEEE80211_SMPS_OFF; 409 break; 410 case WLAN_HT_SMPS_CONTROL_STATIC: 411 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 412 break; 413 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 414 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 415 break; 416 default: 417 WARN_ON(1); 418 } 419 } 420 421 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 422 423 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 424 425 return sta; 426 427 free_txq: 428 if (sta->sta.txq[0]) 429 kfree(to_txq_info(sta->sta.txq[0])); 430 free: 431 #ifdef CONFIG_MAC80211_MESH 432 kfree(sta->mesh); 433 #endif 434 kfree(sta); 435 return NULL; 436 } 437 438 static int sta_info_insert_check(struct sta_info *sta) 439 { 440 struct ieee80211_sub_if_data *sdata = sta->sdata; 441 442 /* 443 * Can't be a WARN_ON because it can be triggered through a race: 444 * something inserts a STA (on one CPU) without holding the RTNL 445 * and another CPU turns off the net device. 446 */ 447 if (unlikely(!ieee80211_sdata_running(sdata))) 448 return -ENETDOWN; 449 450 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 451 is_multicast_ether_addr(sta->sta.addr))) 452 return -EINVAL; 453 454 /* The RCU read lock is required by rhashtable due to 455 * asynchronous resize/rehash. We also require the mutex 456 * for correctness. 457 */ 458 rcu_read_lock(); 459 lockdep_assert_held(&sdata->local->sta_mtx); 460 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 461 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 462 rcu_read_unlock(); 463 return -ENOTUNIQ; 464 } 465 rcu_read_unlock(); 466 467 return 0; 468 } 469 470 static int sta_info_insert_drv_state(struct ieee80211_local *local, 471 struct ieee80211_sub_if_data *sdata, 472 struct sta_info *sta) 473 { 474 enum ieee80211_sta_state state; 475 int err = 0; 476 477 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 478 err = drv_sta_state(local, sdata, sta, state, state + 1); 479 if (err) 480 break; 481 } 482 483 if (!err) { 484 /* 485 * Drivers using legacy sta_add/sta_remove callbacks only 486 * get uploaded set to true after sta_add is called. 487 */ 488 if (!local->ops->sta_add) 489 sta->uploaded = true; 490 return 0; 491 } 492 493 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 494 sdata_info(sdata, 495 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 496 sta->sta.addr, state + 1, err); 497 err = 0; 498 } 499 500 /* unwind on error */ 501 for (; state > IEEE80211_STA_NOTEXIST; state--) 502 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 503 504 return err; 505 } 506 507 /* 508 * should be called with sta_mtx locked 509 * this function replaces the mutex lock 510 * with a RCU lock 511 */ 512 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 513 { 514 struct ieee80211_local *local = sta->local; 515 struct ieee80211_sub_if_data *sdata = sta->sdata; 516 struct station_info *sinfo = NULL; 517 int err = 0; 518 519 lockdep_assert_held(&local->sta_mtx); 520 521 /* check if STA exists already */ 522 if (sta_info_get_bss(sdata, sta->sta.addr)) { 523 err = -EEXIST; 524 goto out_err; 525 } 526 527 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 528 if (!sinfo) { 529 err = -ENOMEM; 530 goto out_err; 531 } 532 533 local->num_sta++; 534 local->sta_generation++; 535 smp_mb(); 536 537 /* simplify things and don't accept BA sessions yet */ 538 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 539 540 /* make the station visible */ 541 err = sta_info_hash_add(local, sta); 542 if (err) 543 goto out_drop_sta; 544 545 list_add_tail_rcu(&sta->list, &local->sta_list); 546 547 /* notify driver */ 548 err = sta_info_insert_drv_state(local, sdata, sta); 549 if (err) 550 goto out_remove; 551 552 set_sta_flag(sta, WLAN_STA_INSERTED); 553 /* accept BA sessions now */ 554 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 555 556 ieee80211_sta_debugfs_add(sta); 557 rate_control_add_sta_debugfs(sta); 558 559 sinfo->generation = local->sta_generation; 560 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 561 kfree(sinfo); 562 563 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 564 565 /* move reference to rcu-protected */ 566 rcu_read_lock(); 567 mutex_unlock(&local->sta_mtx); 568 569 if (ieee80211_vif_is_mesh(&sdata->vif)) 570 mesh_accept_plinks_update(sdata); 571 572 return 0; 573 out_remove: 574 sta_info_hash_del(local, sta); 575 list_del_rcu(&sta->list); 576 out_drop_sta: 577 local->num_sta--; 578 synchronize_net(); 579 __cleanup_single_sta(sta); 580 out_err: 581 mutex_unlock(&local->sta_mtx); 582 kfree(sinfo); 583 rcu_read_lock(); 584 return err; 585 } 586 587 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 588 { 589 struct ieee80211_local *local = sta->local; 590 int err; 591 592 might_sleep(); 593 594 mutex_lock(&local->sta_mtx); 595 596 err = sta_info_insert_check(sta); 597 if (err) { 598 mutex_unlock(&local->sta_mtx); 599 rcu_read_lock(); 600 goto out_free; 601 } 602 603 err = sta_info_insert_finish(sta); 604 if (err) 605 goto out_free; 606 607 return 0; 608 out_free: 609 sta_info_free(local, sta); 610 return err; 611 } 612 613 int sta_info_insert(struct sta_info *sta) 614 { 615 int err = sta_info_insert_rcu(sta); 616 617 rcu_read_unlock(); 618 619 return err; 620 } 621 622 static inline void __bss_tim_set(u8 *tim, u16 id) 623 { 624 /* 625 * This format has been mandated by the IEEE specifications, 626 * so this line may not be changed to use the __set_bit() format. 627 */ 628 tim[id / 8] |= (1 << (id % 8)); 629 } 630 631 static inline void __bss_tim_clear(u8 *tim, u16 id) 632 { 633 /* 634 * This format has been mandated by the IEEE specifications, 635 * so this line may not be changed to use the __clear_bit() format. 636 */ 637 tim[id / 8] &= ~(1 << (id % 8)); 638 } 639 640 static inline bool __bss_tim_get(u8 *tim, u16 id) 641 { 642 /* 643 * This format has been mandated by the IEEE specifications, 644 * so this line may not be changed to use the test_bit() format. 645 */ 646 return tim[id / 8] & (1 << (id % 8)); 647 } 648 649 static unsigned long ieee80211_tids_for_ac(int ac) 650 { 651 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 652 switch (ac) { 653 case IEEE80211_AC_VO: 654 return BIT(6) | BIT(7); 655 case IEEE80211_AC_VI: 656 return BIT(4) | BIT(5); 657 case IEEE80211_AC_BE: 658 return BIT(0) | BIT(3); 659 case IEEE80211_AC_BK: 660 return BIT(1) | BIT(2); 661 default: 662 WARN_ON(1); 663 return 0; 664 } 665 } 666 667 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 668 { 669 struct ieee80211_local *local = sta->local; 670 struct ps_data *ps; 671 bool indicate_tim = false; 672 u8 ignore_for_tim = sta->sta.uapsd_queues; 673 int ac; 674 u16 id = sta->sta.aid; 675 676 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 677 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 678 if (WARN_ON_ONCE(!sta->sdata->bss)) 679 return; 680 681 ps = &sta->sdata->bss->ps; 682 #ifdef CONFIG_MAC80211_MESH 683 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 684 ps = &sta->sdata->u.mesh.ps; 685 #endif 686 } else { 687 return; 688 } 689 690 /* No need to do anything if the driver does all */ 691 if (ieee80211_hw_check(&local->hw, AP_LINK_PS)) 692 return; 693 694 if (sta->dead) 695 goto done; 696 697 /* 698 * If all ACs are delivery-enabled then we should build 699 * the TIM bit for all ACs anyway; if only some are then 700 * we ignore those and build the TIM bit using only the 701 * non-enabled ones. 702 */ 703 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 704 ignore_for_tim = 0; 705 706 if (ignore_pending) 707 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 708 709 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 710 unsigned long tids; 711 712 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 713 continue; 714 715 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 716 !skb_queue_empty(&sta->ps_tx_buf[ac]); 717 if (indicate_tim) 718 break; 719 720 tids = ieee80211_tids_for_ac(ac); 721 722 indicate_tim |= 723 sta->driver_buffered_tids & tids; 724 indicate_tim |= 725 sta->txq_buffered_tids & tids; 726 } 727 728 done: 729 spin_lock_bh(&local->tim_lock); 730 731 if (indicate_tim == __bss_tim_get(ps->tim, id)) 732 goto out_unlock; 733 734 if (indicate_tim) 735 __bss_tim_set(ps->tim, id); 736 else 737 __bss_tim_clear(ps->tim, id); 738 739 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 740 local->tim_in_locked_section = true; 741 drv_set_tim(local, &sta->sta, indicate_tim); 742 local->tim_in_locked_section = false; 743 } 744 745 out_unlock: 746 spin_unlock_bh(&local->tim_lock); 747 } 748 749 void sta_info_recalc_tim(struct sta_info *sta) 750 { 751 __sta_info_recalc_tim(sta, false); 752 } 753 754 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 755 { 756 struct ieee80211_tx_info *info; 757 int timeout; 758 759 if (!skb) 760 return false; 761 762 info = IEEE80211_SKB_CB(skb); 763 764 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 765 timeout = (sta->listen_interval * 766 sta->sdata->vif.bss_conf.beacon_int * 767 32 / 15625) * HZ; 768 if (timeout < STA_TX_BUFFER_EXPIRE) 769 timeout = STA_TX_BUFFER_EXPIRE; 770 return time_after(jiffies, info->control.jiffies + timeout); 771 } 772 773 774 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 775 struct sta_info *sta, int ac) 776 { 777 unsigned long flags; 778 struct sk_buff *skb; 779 780 /* 781 * First check for frames that should expire on the filtered 782 * queue. Frames here were rejected by the driver and are on 783 * a separate queue to avoid reordering with normal PS-buffered 784 * frames. They also aren't accounted for right now in the 785 * total_ps_buffered counter. 786 */ 787 for (;;) { 788 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 789 skb = skb_peek(&sta->tx_filtered[ac]); 790 if (sta_info_buffer_expired(sta, skb)) 791 skb = __skb_dequeue(&sta->tx_filtered[ac]); 792 else 793 skb = NULL; 794 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 795 796 /* 797 * Frames are queued in order, so if this one 798 * hasn't expired yet we can stop testing. If 799 * we actually reached the end of the queue we 800 * also need to stop, of course. 801 */ 802 if (!skb) 803 break; 804 ieee80211_free_txskb(&local->hw, skb); 805 } 806 807 /* 808 * Now also check the normal PS-buffered queue, this will 809 * only find something if the filtered queue was emptied 810 * since the filtered frames are all before the normal PS 811 * buffered frames. 812 */ 813 for (;;) { 814 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 815 skb = skb_peek(&sta->ps_tx_buf[ac]); 816 if (sta_info_buffer_expired(sta, skb)) 817 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 818 else 819 skb = NULL; 820 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 821 822 /* 823 * frames are queued in order, so if this one 824 * hasn't expired yet (or we reached the end of 825 * the queue) we can stop testing 826 */ 827 if (!skb) 828 break; 829 830 local->total_ps_buffered--; 831 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 832 sta->sta.addr); 833 ieee80211_free_txskb(&local->hw, skb); 834 } 835 836 /* 837 * Finally, recalculate the TIM bit for this station -- it might 838 * now be clear because the station was too slow to retrieve its 839 * frames. 840 */ 841 sta_info_recalc_tim(sta); 842 843 /* 844 * Return whether there are any frames still buffered, this is 845 * used to check whether the cleanup timer still needs to run, 846 * if there are no frames we don't need to rearm the timer. 847 */ 848 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 849 skb_queue_empty(&sta->tx_filtered[ac])); 850 } 851 852 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 853 struct sta_info *sta) 854 { 855 bool have_buffered = false; 856 int ac; 857 858 /* This is only necessary for stations on BSS/MBSS interfaces */ 859 if (!sta->sdata->bss && 860 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 861 return false; 862 863 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 864 have_buffered |= 865 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 866 867 return have_buffered; 868 } 869 870 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 871 { 872 struct ieee80211_local *local; 873 struct ieee80211_sub_if_data *sdata; 874 int ret; 875 876 might_sleep(); 877 878 if (!sta) 879 return -ENOENT; 880 881 local = sta->local; 882 sdata = sta->sdata; 883 884 lockdep_assert_held(&local->sta_mtx); 885 886 /* 887 * Before removing the station from the driver and 888 * rate control, it might still start new aggregation 889 * sessions -- block that to make sure the tear-down 890 * will be sufficient. 891 */ 892 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 893 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 894 895 /* 896 * Before removing the station from the driver there might be pending 897 * rx frames on RSS queues sent prior to the disassociation - wait for 898 * all such frames to be processed. 899 */ 900 drv_sync_rx_queues(local, sta); 901 902 ret = sta_info_hash_del(local, sta); 903 if (WARN_ON(ret)) 904 return ret; 905 906 /* 907 * for TDLS peers, make sure to return to the base channel before 908 * removal. 909 */ 910 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 911 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 912 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 913 } 914 915 list_del_rcu(&sta->list); 916 sta->removed = true; 917 918 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 919 920 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 921 rcu_access_pointer(sdata->u.vlan.sta) == sta) 922 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 923 924 return 0; 925 } 926 927 static void __sta_info_destroy_part2(struct sta_info *sta) 928 { 929 struct ieee80211_local *local = sta->local; 930 struct ieee80211_sub_if_data *sdata = sta->sdata; 931 struct station_info *sinfo; 932 int ret; 933 934 /* 935 * NOTE: This assumes at least synchronize_net() was done 936 * after _part1 and before _part2! 937 */ 938 939 might_sleep(); 940 lockdep_assert_held(&local->sta_mtx); 941 942 /* now keys can no longer be reached */ 943 ieee80211_free_sta_keys(local, sta); 944 945 /* disable TIM bit - last chance to tell driver */ 946 __sta_info_recalc_tim(sta, true); 947 948 sta->dead = true; 949 950 local->num_sta--; 951 local->sta_generation++; 952 953 while (sta->sta_state > IEEE80211_STA_NONE) { 954 ret = sta_info_move_state(sta, sta->sta_state - 1); 955 if (ret) { 956 WARN_ON_ONCE(1); 957 break; 958 } 959 } 960 961 if (sta->uploaded) { 962 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 963 IEEE80211_STA_NOTEXIST); 964 WARN_ON_ONCE(ret != 0); 965 } 966 967 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 968 969 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 970 if (sinfo) 971 sta_set_sinfo(sta, sinfo); 972 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 973 kfree(sinfo); 974 975 rate_control_remove_sta_debugfs(sta); 976 ieee80211_sta_debugfs_remove(sta); 977 978 cleanup_single_sta(sta); 979 } 980 981 int __must_check __sta_info_destroy(struct sta_info *sta) 982 { 983 int err = __sta_info_destroy_part1(sta); 984 985 if (err) 986 return err; 987 988 synchronize_net(); 989 990 __sta_info_destroy_part2(sta); 991 992 return 0; 993 } 994 995 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 996 { 997 struct sta_info *sta; 998 int ret; 999 1000 mutex_lock(&sdata->local->sta_mtx); 1001 sta = sta_info_get(sdata, addr); 1002 ret = __sta_info_destroy(sta); 1003 mutex_unlock(&sdata->local->sta_mtx); 1004 1005 return ret; 1006 } 1007 1008 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1009 const u8 *addr) 1010 { 1011 struct sta_info *sta; 1012 int ret; 1013 1014 mutex_lock(&sdata->local->sta_mtx); 1015 sta = sta_info_get_bss(sdata, addr); 1016 ret = __sta_info_destroy(sta); 1017 mutex_unlock(&sdata->local->sta_mtx); 1018 1019 return ret; 1020 } 1021 1022 static void sta_info_cleanup(unsigned long data) 1023 { 1024 struct ieee80211_local *local = (struct ieee80211_local *) data; 1025 struct sta_info *sta; 1026 bool timer_needed = false; 1027 1028 rcu_read_lock(); 1029 list_for_each_entry_rcu(sta, &local->sta_list, list) 1030 if (sta_info_cleanup_expire_buffered(local, sta)) 1031 timer_needed = true; 1032 rcu_read_unlock(); 1033 1034 if (local->quiescing) 1035 return; 1036 1037 if (!timer_needed) 1038 return; 1039 1040 mod_timer(&local->sta_cleanup, 1041 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1042 } 1043 1044 int sta_info_init(struct ieee80211_local *local) 1045 { 1046 int err; 1047 1048 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1049 if (err) 1050 return err; 1051 1052 spin_lock_init(&local->tim_lock); 1053 mutex_init(&local->sta_mtx); 1054 INIT_LIST_HEAD(&local->sta_list); 1055 1056 setup_timer(&local->sta_cleanup, sta_info_cleanup, 1057 (unsigned long)local); 1058 return 0; 1059 } 1060 1061 void sta_info_stop(struct ieee80211_local *local) 1062 { 1063 del_timer_sync(&local->sta_cleanup); 1064 rhltable_destroy(&local->sta_hash); 1065 } 1066 1067 1068 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1069 { 1070 struct ieee80211_local *local = sdata->local; 1071 struct sta_info *sta, *tmp; 1072 LIST_HEAD(free_list); 1073 int ret = 0; 1074 1075 might_sleep(); 1076 1077 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1078 WARN_ON(vlans && !sdata->bss); 1079 1080 mutex_lock(&local->sta_mtx); 1081 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1082 if (sdata == sta->sdata || 1083 (vlans && sdata->bss == sta->sdata->bss)) { 1084 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1085 list_add(&sta->free_list, &free_list); 1086 ret++; 1087 } 1088 } 1089 1090 if (!list_empty(&free_list)) { 1091 synchronize_net(); 1092 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1093 __sta_info_destroy_part2(sta); 1094 } 1095 mutex_unlock(&local->sta_mtx); 1096 1097 return ret; 1098 } 1099 1100 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1101 unsigned long exp_time) 1102 { 1103 struct ieee80211_local *local = sdata->local; 1104 struct sta_info *sta, *tmp; 1105 1106 mutex_lock(&local->sta_mtx); 1107 1108 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1109 unsigned long last_active = ieee80211_sta_last_active(sta); 1110 1111 if (sdata != sta->sdata) 1112 continue; 1113 1114 if (time_is_before_jiffies(last_active + exp_time)) { 1115 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1116 sta->sta.addr); 1117 1118 if (ieee80211_vif_is_mesh(&sdata->vif) && 1119 test_sta_flag(sta, WLAN_STA_PS_STA)) 1120 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1121 1122 WARN_ON(__sta_info_destroy(sta)); 1123 } 1124 } 1125 1126 mutex_unlock(&local->sta_mtx); 1127 } 1128 1129 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1130 const u8 *addr, 1131 const u8 *localaddr) 1132 { 1133 struct ieee80211_local *local = hw_to_local(hw); 1134 struct rhlist_head *tmp; 1135 struct sta_info *sta; 1136 1137 /* 1138 * Just return a random station if localaddr is NULL 1139 * ... first in list. 1140 */ 1141 for_each_sta_info(local, addr, sta, tmp) { 1142 if (localaddr && 1143 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1144 continue; 1145 if (!sta->uploaded) 1146 return NULL; 1147 return &sta->sta; 1148 } 1149 1150 return NULL; 1151 } 1152 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1153 1154 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1155 const u8 *addr) 1156 { 1157 struct sta_info *sta; 1158 1159 if (!vif) 1160 return NULL; 1161 1162 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1163 if (!sta) 1164 return NULL; 1165 1166 if (!sta->uploaded) 1167 return NULL; 1168 1169 return &sta->sta; 1170 } 1171 EXPORT_SYMBOL(ieee80211_find_sta); 1172 1173 /* powersave support code */ 1174 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1175 { 1176 struct ieee80211_sub_if_data *sdata = sta->sdata; 1177 struct ieee80211_local *local = sdata->local; 1178 struct sk_buff_head pending; 1179 int filtered = 0, buffered = 0, ac, i; 1180 unsigned long flags; 1181 struct ps_data *ps; 1182 1183 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1184 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1185 u.ap); 1186 1187 if (sdata->vif.type == NL80211_IFTYPE_AP) 1188 ps = &sdata->bss->ps; 1189 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1190 ps = &sdata->u.mesh.ps; 1191 else 1192 return; 1193 1194 clear_sta_flag(sta, WLAN_STA_SP); 1195 1196 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1197 sta->driver_buffered_tids = 0; 1198 sta->txq_buffered_tids = 0; 1199 1200 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1201 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1202 1203 if (sta->sta.txq[0]) { 1204 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1205 if (!txq_has_queue(sta->sta.txq[i])) 1206 continue; 1207 1208 drv_wake_tx_queue(local, to_txq_info(sta->sta.txq[i])); 1209 } 1210 } 1211 1212 skb_queue_head_init(&pending); 1213 1214 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1215 spin_lock(&sta->ps_lock); 1216 /* Send all buffered frames to the station */ 1217 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1218 int count = skb_queue_len(&pending), tmp; 1219 1220 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1221 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1222 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1223 tmp = skb_queue_len(&pending); 1224 filtered += tmp - count; 1225 count = tmp; 1226 1227 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1228 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1229 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1230 tmp = skb_queue_len(&pending); 1231 buffered += tmp - count; 1232 } 1233 1234 ieee80211_add_pending_skbs(local, &pending); 1235 1236 /* now we're no longer in the deliver code */ 1237 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1238 1239 /* The station might have polled and then woken up before we responded, 1240 * so clear these flags now to avoid them sticking around. 1241 */ 1242 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1243 clear_sta_flag(sta, WLAN_STA_UAPSD); 1244 spin_unlock(&sta->ps_lock); 1245 1246 atomic_dec(&ps->num_sta_ps); 1247 1248 /* This station just woke up and isn't aware of our SMPS state */ 1249 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1250 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1251 sdata->smps_mode) && 1252 sta->known_smps_mode != sdata->bss->req_smps && 1253 sta_info_tx_streams(sta) != 1) { 1254 ht_dbg(sdata, 1255 "%pM just woke up and MIMO capable - update SMPS\n", 1256 sta->sta.addr); 1257 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1258 sta->sta.addr, 1259 sdata->vif.bss_conf.bssid); 1260 } 1261 1262 local->total_ps_buffered -= buffered; 1263 1264 sta_info_recalc_tim(sta); 1265 1266 ps_dbg(sdata, 1267 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n", 1268 sta->sta.addr, sta->sta.aid, filtered, buffered); 1269 1270 ieee80211_check_fast_xmit(sta); 1271 } 1272 1273 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1274 enum ieee80211_frame_release_type reason, 1275 bool call_driver, bool more_data) 1276 { 1277 struct ieee80211_sub_if_data *sdata = sta->sdata; 1278 struct ieee80211_local *local = sdata->local; 1279 struct ieee80211_qos_hdr *nullfunc; 1280 struct sk_buff *skb; 1281 int size = sizeof(*nullfunc); 1282 __le16 fc; 1283 bool qos = sta->sta.wme; 1284 struct ieee80211_tx_info *info; 1285 struct ieee80211_chanctx_conf *chanctx_conf; 1286 1287 if (qos) { 1288 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1289 IEEE80211_STYPE_QOS_NULLFUNC | 1290 IEEE80211_FCTL_FROMDS); 1291 } else { 1292 size -= 2; 1293 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1294 IEEE80211_STYPE_NULLFUNC | 1295 IEEE80211_FCTL_FROMDS); 1296 } 1297 1298 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1299 if (!skb) 1300 return; 1301 1302 skb_reserve(skb, local->hw.extra_tx_headroom); 1303 1304 nullfunc = (void *) skb_put(skb, size); 1305 nullfunc->frame_control = fc; 1306 nullfunc->duration_id = 0; 1307 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1308 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1309 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1310 nullfunc->seq_ctrl = 0; 1311 1312 skb->priority = tid; 1313 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1314 if (qos) { 1315 nullfunc->qos_ctrl = cpu_to_le16(tid); 1316 1317 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1318 nullfunc->qos_ctrl |= 1319 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1320 if (more_data) 1321 nullfunc->frame_control |= 1322 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1323 } 1324 } 1325 1326 info = IEEE80211_SKB_CB(skb); 1327 1328 /* 1329 * Tell TX path to send this frame even though the 1330 * STA may still remain is PS mode after this frame 1331 * exchange. Also set EOSP to indicate this packet 1332 * ends the poll/service period. 1333 */ 1334 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1335 IEEE80211_TX_STATUS_EOSP | 1336 IEEE80211_TX_CTL_REQ_TX_STATUS; 1337 1338 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1339 1340 if (call_driver) 1341 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1342 reason, false); 1343 1344 skb->dev = sdata->dev; 1345 1346 rcu_read_lock(); 1347 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1348 if (WARN_ON(!chanctx_conf)) { 1349 rcu_read_unlock(); 1350 kfree_skb(skb); 1351 return; 1352 } 1353 1354 info->band = chanctx_conf->def.chan->band; 1355 ieee80211_xmit(sdata, sta, skb); 1356 rcu_read_unlock(); 1357 } 1358 1359 static int find_highest_prio_tid(unsigned long tids) 1360 { 1361 /* lower 3 TIDs aren't ordered perfectly */ 1362 if (tids & 0xF8) 1363 return fls(tids) - 1; 1364 /* TID 0 is BE just like TID 3 */ 1365 if (tids & BIT(0)) 1366 return 0; 1367 return fls(tids) - 1; 1368 } 1369 1370 /* Indicates if the MORE_DATA bit should be set in the last 1371 * frame obtained by ieee80211_sta_ps_get_frames. 1372 * Note that driver_release_tids is relevant only if 1373 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1374 */ 1375 static bool 1376 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1377 enum ieee80211_frame_release_type reason, 1378 unsigned long driver_release_tids) 1379 { 1380 int ac; 1381 1382 /* If the driver has data on more than one TID then 1383 * certainly there's more data if we release just a 1384 * single frame now (from a single TID). This will 1385 * only happen for PS-Poll. 1386 */ 1387 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1388 hweight16(driver_release_tids) > 1) 1389 return true; 1390 1391 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1392 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1393 continue; 1394 1395 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1396 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1397 return true; 1398 } 1399 1400 return false; 1401 } 1402 1403 static void 1404 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1405 enum ieee80211_frame_release_type reason, 1406 struct sk_buff_head *frames, 1407 unsigned long *driver_release_tids) 1408 { 1409 struct ieee80211_sub_if_data *sdata = sta->sdata; 1410 struct ieee80211_local *local = sdata->local; 1411 int ac; 1412 1413 /* Get response frame(s) and more data bit for the last one. */ 1414 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1415 unsigned long tids; 1416 1417 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1418 continue; 1419 1420 tids = ieee80211_tids_for_ac(ac); 1421 1422 /* if we already have frames from software, then we can't also 1423 * release from hardware queues 1424 */ 1425 if (skb_queue_empty(frames)) { 1426 *driver_release_tids |= 1427 sta->driver_buffered_tids & tids; 1428 *driver_release_tids |= sta->txq_buffered_tids & tids; 1429 } 1430 1431 if (!*driver_release_tids) { 1432 struct sk_buff *skb; 1433 1434 while (n_frames > 0) { 1435 skb = skb_dequeue(&sta->tx_filtered[ac]); 1436 if (!skb) { 1437 skb = skb_dequeue( 1438 &sta->ps_tx_buf[ac]); 1439 if (skb) 1440 local->total_ps_buffered--; 1441 } 1442 if (!skb) 1443 break; 1444 n_frames--; 1445 __skb_queue_tail(frames, skb); 1446 } 1447 } 1448 1449 /* If we have more frames buffered on this AC, then abort the 1450 * loop since we can't send more data from other ACs before 1451 * the buffered frames from this. 1452 */ 1453 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1454 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1455 break; 1456 } 1457 } 1458 1459 static void 1460 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1461 int n_frames, u8 ignored_acs, 1462 enum ieee80211_frame_release_type reason) 1463 { 1464 struct ieee80211_sub_if_data *sdata = sta->sdata; 1465 struct ieee80211_local *local = sdata->local; 1466 unsigned long driver_release_tids = 0; 1467 struct sk_buff_head frames; 1468 bool more_data; 1469 1470 /* Service or PS-Poll period starts */ 1471 set_sta_flag(sta, WLAN_STA_SP); 1472 1473 __skb_queue_head_init(&frames); 1474 1475 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1476 &frames, &driver_release_tids); 1477 1478 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1479 1480 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1481 driver_release_tids = 1482 BIT(find_highest_prio_tid(driver_release_tids)); 1483 1484 if (skb_queue_empty(&frames) && !driver_release_tids) { 1485 int tid, ac; 1486 1487 /* 1488 * For PS-Poll, this can only happen due to a race condition 1489 * when we set the TIM bit and the station notices it, but 1490 * before it can poll for the frame we expire it. 1491 * 1492 * For uAPSD, this is said in the standard (11.2.1.5 h): 1493 * At each unscheduled SP for a non-AP STA, the AP shall 1494 * attempt to transmit at least one MSDU or MMPDU, but no 1495 * more than the value specified in the Max SP Length field 1496 * in the QoS Capability element from delivery-enabled ACs, 1497 * that are destined for the non-AP STA. 1498 * 1499 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1500 */ 1501 1502 /* This will evaluate to 1, 3, 5 or 7. */ 1503 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1504 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1505 break; 1506 tid = 7 - 2 * ac; 1507 1508 ieee80211_send_null_response(sta, tid, reason, true, false); 1509 } else if (!driver_release_tids) { 1510 struct sk_buff_head pending; 1511 struct sk_buff *skb; 1512 int num = 0; 1513 u16 tids = 0; 1514 bool need_null = false; 1515 1516 skb_queue_head_init(&pending); 1517 1518 while ((skb = __skb_dequeue(&frames))) { 1519 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1520 struct ieee80211_hdr *hdr = (void *) skb->data; 1521 u8 *qoshdr = NULL; 1522 1523 num++; 1524 1525 /* 1526 * Tell TX path to send this frame even though the 1527 * STA may still remain is PS mode after this frame 1528 * exchange. 1529 */ 1530 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1531 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1532 1533 /* 1534 * Use MoreData flag to indicate whether there are 1535 * more buffered frames for this STA 1536 */ 1537 if (more_data || !skb_queue_empty(&frames)) 1538 hdr->frame_control |= 1539 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1540 else 1541 hdr->frame_control &= 1542 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1543 1544 if (ieee80211_is_data_qos(hdr->frame_control) || 1545 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1546 qoshdr = ieee80211_get_qos_ctl(hdr); 1547 1548 tids |= BIT(skb->priority); 1549 1550 __skb_queue_tail(&pending, skb); 1551 1552 /* end service period after last frame or add one */ 1553 if (!skb_queue_empty(&frames)) 1554 continue; 1555 1556 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1557 /* for PS-Poll, there's only one frame */ 1558 info->flags |= IEEE80211_TX_STATUS_EOSP | 1559 IEEE80211_TX_CTL_REQ_TX_STATUS; 1560 break; 1561 } 1562 1563 /* For uAPSD, things are a bit more complicated. If the 1564 * last frame has a QoS header (i.e. is a QoS-data or 1565 * QoS-nulldata frame) then just set the EOSP bit there 1566 * and be done. 1567 * If the frame doesn't have a QoS header (which means 1568 * it should be a bufferable MMPDU) then we can't set 1569 * the EOSP bit in the QoS header; add a QoS-nulldata 1570 * frame to the list to send it after the MMPDU. 1571 * 1572 * Note that this code is only in the mac80211-release 1573 * code path, we assume that the driver will not buffer 1574 * anything but QoS-data frames, or if it does, will 1575 * create the QoS-nulldata frame by itself if needed. 1576 * 1577 * Cf. 802.11-2012 10.2.1.10 (c). 1578 */ 1579 if (qoshdr) { 1580 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1581 1582 info->flags |= IEEE80211_TX_STATUS_EOSP | 1583 IEEE80211_TX_CTL_REQ_TX_STATUS; 1584 } else { 1585 /* The standard isn't completely clear on this 1586 * as it says the more-data bit should be set 1587 * if there are more BUs. The QoS-Null frame 1588 * we're about to send isn't buffered yet, we 1589 * only create it below, but let's pretend it 1590 * was buffered just in case some clients only 1591 * expect more-data=0 when eosp=1. 1592 */ 1593 hdr->frame_control |= 1594 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1595 need_null = true; 1596 num++; 1597 } 1598 break; 1599 } 1600 1601 drv_allow_buffered_frames(local, sta, tids, num, 1602 reason, more_data); 1603 1604 ieee80211_add_pending_skbs(local, &pending); 1605 1606 if (need_null) 1607 ieee80211_send_null_response( 1608 sta, find_highest_prio_tid(tids), 1609 reason, false, false); 1610 1611 sta_info_recalc_tim(sta); 1612 } else { 1613 int tid; 1614 1615 /* 1616 * We need to release a frame that is buffered somewhere in the 1617 * driver ... it'll have to handle that. 1618 * Note that the driver also has to check the number of frames 1619 * on the TIDs we're releasing from - if there are more than 1620 * n_frames it has to set the more-data bit (if we didn't ask 1621 * it to set it anyway due to other buffered frames); if there 1622 * are fewer than n_frames it has to make sure to adjust that 1623 * to allow the service period to end properly. 1624 */ 1625 drv_release_buffered_frames(local, sta, driver_release_tids, 1626 n_frames, reason, more_data); 1627 1628 /* 1629 * Note that we don't recalculate the TIM bit here as it would 1630 * most likely have no effect at all unless the driver told us 1631 * that the TID(s) became empty before returning here from the 1632 * release function. 1633 * Either way, however, when the driver tells us that the TID(s) 1634 * became empty or we find that a txq became empty, we'll do the 1635 * TIM recalculation. 1636 */ 1637 1638 if (!sta->sta.txq[0]) 1639 return; 1640 1641 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1642 if (!(driver_release_tids & BIT(tid)) || 1643 txq_has_queue(sta->sta.txq[tid])) 1644 continue; 1645 1646 sta_info_recalc_tim(sta); 1647 break; 1648 } 1649 } 1650 } 1651 1652 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1653 { 1654 u8 ignore_for_response = sta->sta.uapsd_queues; 1655 1656 /* 1657 * If all ACs are delivery-enabled then we should reply 1658 * from any of them, if only some are enabled we reply 1659 * only from the non-enabled ones. 1660 */ 1661 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1662 ignore_for_response = 0; 1663 1664 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1665 IEEE80211_FRAME_RELEASE_PSPOLL); 1666 } 1667 1668 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1669 { 1670 int n_frames = sta->sta.max_sp; 1671 u8 delivery_enabled = sta->sta.uapsd_queues; 1672 1673 /* 1674 * If we ever grow support for TSPEC this might happen if 1675 * the TSPEC update from hostapd comes in between a trigger 1676 * frame setting WLAN_STA_UAPSD in the RX path and this 1677 * actually getting called. 1678 */ 1679 if (!delivery_enabled) 1680 return; 1681 1682 switch (sta->sta.max_sp) { 1683 case 1: 1684 n_frames = 2; 1685 break; 1686 case 2: 1687 n_frames = 4; 1688 break; 1689 case 3: 1690 n_frames = 6; 1691 break; 1692 case 0: 1693 /* XXX: what is a good value? */ 1694 n_frames = 128; 1695 break; 1696 } 1697 1698 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1699 IEEE80211_FRAME_RELEASE_UAPSD); 1700 } 1701 1702 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1703 struct ieee80211_sta *pubsta, bool block) 1704 { 1705 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1706 1707 trace_api_sta_block_awake(sta->local, pubsta, block); 1708 1709 if (block) { 1710 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1711 ieee80211_clear_fast_xmit(sta); 1712 return; 1713 } 1714 1715 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1716 return; 1717 1718 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1719 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1720 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1721 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1722 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1723 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1724 /* must be asleep in this case */ 1725 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1726 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1727 } else { 1728 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1729 ieee80211_check_fast_xmit(sta); 1730 } 1731 } 1732 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1733 1734 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1735 { 1736 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1737 struct ieee80211_local *local = sta->local; 1738 1739 trace_api_eosp(local, pubsta); 1740 1741 clear_sta_flag(sta, WLAN_STA_SP); 1742 } 1743 EXPORT_SYMBOL(ieee80211_sta_eosp); 1744 1745 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1746 { 1747 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1748 enum ieee80211_frame_release_type reason; 1749 bool more_data; 1750 1751 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1752 1753 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1754 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1755 reason, 0); 1756 1757 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1758 } 1759 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1760 1761 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1762 u8 tid, bool buffered) 1763 { 1764 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1765 1766 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1767 return; 1768 1769 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1770 1771 if (buffered) 1772 set_bit(tid, &sta->driver_buffered_tids); 1773 else 1774 clear_bit(tid, &sta->driver_buffered_tids); 1775 1776 sta_info_recalc_tim(sta); 1777 } 1778 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1779 1780 static void 1781 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 1782 { 1783 struct ieee80211_local *local = sdata->local; 1784 bool allow_p2p_go_ps = sdata->vif.p2p; 1785 struct sta_info *sta; 1786 1787 rcu_read_lock(); 1788 list_for_each_entry_rcu(sta, &local->sta_list, list) { 1789 if (sdata != sta->sdata || 1790 !test_sta_flag(sta, WLAN_STA_ASSOC)) 1791 continue; 1792 if (!sta->sta.support_p2p_ps) { 1793 allow_p2p_go_ps = false; 1794 break; 1795 } 1796 } 1797 rcu_read_unlock(); 1798 1799 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 1800 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 1801 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 1802 } 1803 } 1804 1805 int sta_info_move_state(struct sta_info *sta, 1806 enum ieee80211_sta_state new_state) 1807 { 1808 might_sleep(); 1809 1810 if (sta->sta_state == new_state) 1811 return 0; 1812 1813 /* check allowed transitions first */ 1814 1815 switch (new_state) { 1816 case IEEE80211_STA_NONE: 1817 if (sta->sta_state != IEEE80211_STA_AUTH) 1818 return -EINVAL; 1819 break; 1820 case IEEE80211_STA_AUTH: 1821 if (sta->sta_state != IEEE80211_STA_NONE && 1822 sta->sta_state != IEEE80211_STA_ASSOC) 1823 return -EINVAL; 1824 break; 1825 case IEEE80211_STA_ASSOC: 1826 if (sta->sta_state != IEEE80211_STA_AUTH && 1827 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1828 return -EINVAL; 1829 break; 1830 case IEEE80211_STA_AUTHORIZED: 1831 if (sta->sta_state != IEEE80211_STA_ASSOC) 1832 return -EINVAL; 1833 break; 1834 default: 1835 WARN(1, "invalid state %d", new_state); 1836 return -EINVAL; 1837 } 1838 1839 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1840 sta->sta.addr, new_state); 1841 1842 /* 1843 * notify the driver before the actual changes so it can 1844 * fail the transition 1845 */ 1846 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1847 int err = drv_sta_state(sta->local, sta->sdata, sta, 1848 sta->sta_state, new_state); 1849 if (err) 1850 return err; 1851 } 1852 1853 /* reflect the change in all state variables */ 1854 1855 switch (new_state) { 1856 case IEEE80211_STA_NONE: 1857 if (sta->sta_state == IEEE80211_STA_AUTH) 1858 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1859 break; 1860 case IEEE80211_STA_AUTH: 1861 if (sta->sta_state == IEEE80211_STA_NONE) { 1862 set_bit(WLAN_STA_AUTH, &sta->_flags); 1863 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 1864 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1865 ieee80211_recalc_min_chandef(sta->sdata); 1866 if (!sta->sta.support_p2p_ps) 1867 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 1868 } 1869 break; 1870 case IEEE80211_STA_ASSOC: 1871 if (sta->sta_state == IEEE80211_STA_AUTH) { 1872 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1873 ieee80211_recalc_min_chandef(sta->sdata); 1874 if (!sta->sta.support_p2p_ps) 1875 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 1876 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1877 ieee80211_vif_dec_num_mcast(sta->sdata); 1878 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1879 ieee80211_clear_fast_xmit(sta); 1880 ieee80211_clear_fast_rx(sta); 1881 } 1882 break; 1883 case IEEE80211_STA_AUTHORIZED: 1884 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1885 ieee80211_vif_inc_num_mcast(sta->sdata); 1886 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1887 ieee80211_check_fast_xmit(sta); 1888 ieee80211_check_fast_rx(sta); 1889 } 1890 break; 1891 default: 1892 break; 1893 } 1894 1895 sta->sta_state = new_state; 1896 1897 return 0; 1898 } 1899 1900 u8 sta_info_tx_streams(struct sta_info *sta) 1901 { 1902 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1903 u8 rx_streams; 1904 1905 if (!sta->sta.ht_cap.ht_supported) 1906 return 1; 1907 1908 if (sta->sta.vht_cap.vht_supported) { 1909 int i; 1910 u16 tx_mcs_map = 1911 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1912 1913 for (i = 7; i >= 0; i--) 1914 if ((tx_mcs_map & (0x3 << (i * 2))) != 1915 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1916 return i + 1; 1917 } 1918 1919 if (ht_cap->mcs.rx_mask[3]) 1920 rx_streams = 4; 1921 else if (ht_cap->mcs.rx_mask[2]) 1922 rx_streams = 3; 1923 else if (ht_cap->mcs.rx_mask[1]) 1924 rx_streams = 2; 1925 else 1926 rx_streams = 1; 1927 1928 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1929 return rx_streams; 1930 1931 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1932 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1933 } 1934 1935 static struct ieee80211_sta_rx_stats * 1936 sta_get_last_rx_stats(struct sta_info *sta) 1937 { 1938 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 1939 struct ieee80211_local *local = sta->local; 1940 int cpu; 1941 1942 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 1943 return stats; 1944 1945 for_each_possible_cpu(cpu) { 1946 struct ieee80211_sta_rx_stats *cpustats; 1947 1948 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 1949 1950 if (time_after(cpustats->last_rx, stats->last_rx)) 1951 stats = cpustats; 1952 } 1953 1954 return stats; 1955 } 1956 1957 static void sta_stats_decode_rate(struct ieee80211_local *local, u16 rate, 1958 struct rate_info *rinfo) 1959 { 1960 rinfo->bw = (rate & STA_STATS_RATE_BW_MASK) >> 1961 STA_STATS_RATE_BW_SHIFT; 1962 1963 if (rate & STA_STATS_RATE_VHT) { 1964 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 1965 rinfo->mcs = rate & 0xf; 1966 rinfo->nss = (rate & 0xf0) >> 4; 1967 } else if (rate & STA_STATS_RATE_HT) { 1968 rinfo->flags = RATE_INFO_FLAGS_MCS; 1969 rinfo->mcs = rate & 0xff; 1970 } else if (rate & STA_STATS_RATE_LEGACY) { 1971 struct ieee80211_supported_band *sband; 1972 u16 brate; 1973 unsigned int shift; 1974 1975 rinfo->flags = 0; 1976 sband = local->hw.wiphy->bands[(rate >> 4) & 0xf]; 1977 brate = sband->bitrates[rate & 0xf].bitrate; 1978 if (rinfo->bw == RATE_INFO_BW_5) 1979 shift = 2; 1980 else if (rinfo->bw == RATE_INFO_BW_10) 1981 shift = 1; 1982 else 1983 shift = 0; 1984 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 1985 } 1986 1987 if (rate & STA_STATS_RATE_SGI) 1988 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 1989 } 1990 1991 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 1992 { 1993 u16 rate = ACCESS_ONCE(sta_get_last_rx_stats(sta)->last_rate); 1994 1995 if (rate == STA_STATS_RATE_INVALID) 1996 return -EINVAL; 1997 1998 sta_stats_decode_rate(sta->local, rate, rinfo); 1999 return 0; 2000 } 2001 2002 static void sta_set_tidstats(struct sta_info *sta, 2003 struct cfg80211_tid_stats *tidstats, 2004 int tid) 2005 { 2006 struct ieee80211_local *local = sta->local; 2007 2008 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2009 unsigned int start; 2010 2011 do { 2012 start = u64_stats_fetch_begin(&sta->rx_stats.syncp); 2013 tidstats->rx_msdu = sta->rx_stats.msdu[tid]; 2014 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start)); 2015 2016 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2017 } 2018 2019 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2020 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2021 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2022 } 2023 2024 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2025 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2026 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2027 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2028 } 2029 2030 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2031 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2032 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2033 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2034 } 2035 } 2036 2037 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2038 { 2039 unsigned int start; 2040 u64 value; 2041 2042 do { 2043 start = u64_stats_fetch_begin(&rxstats->syncp); 2044 value = rxstats->bytes; 2045 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2046 2047 return value; 2048 } 2049 2050 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo) 2051 { 2052 struct ieee80211_sub_if_data *sdata = sta->sdata; 2053 struct ieee80211_local *local = sdata->local; 2054 u32 thr = 0; 2055 int i, ac, cpu; 2056 struct ieee80211_sta_rx_stats *last_rxstats; 2057 2058 last_rxstats = sta_get_last_rx_stats(sta); 2059 2060 sinfo->generation = sdata->local->sta_generation; 2061 2062 /* do before driver, so beacon filtering drivers have a 2063 * chance to e.g. just add the number of filtered beacons 2064 * (or just modify the value entirely, of course) 2065 */ 2066 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2067 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2068 2069 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2070 2071 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) | 2072 BIT(NL80211_STA_INFO_STA_FLAGS) | 2073 BIT(NL80211_STA_INFO_BSS_PARAM) | 2074 BIT(NL80211_STA_INFO_CONNECTED_TIME) | 2075 BIT(NL80211_STA_INFO_RX_DROP_MISC); 2076 2077 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2078 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2079 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS); 2080 } 2081 2082 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2083 sinfo->inactive_time = 2084 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2085 2086 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) | 2087 BIT(NL80211_STA_INFO_TX_BYTES)))) { 2088 sinfo->tx_bytes = 0; 2089 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2090 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2091 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64); 2092 } 2093 2094 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) { 2095 sinfo->tx_packets = 0; 2096 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2097 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2098 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS); 2099 } 2100 2101 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) | 2102 BIT(NL80211_STA_INFO_RX_BYTES)))) { 2103 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2104 2105 if (sta->pcpu_rx_stats) { 2106 for_each_possible_cpu(cpu) { 2107 struct ieee80211_sta_rx_stats *cpurxs; 2108 2109 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2110 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2111 } 2112 } 2113 2114 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64); 2115 } 2116 2117 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) { 2118 sinfo->rx_packets = sta->rx_stats.packets; 2119 if (sta->pcpu_rx_stats) { 2120 for_each_possible_cpu(cpu) { 2121 struct ieee80211_sta_rx_stats *cpurxs; 2122 2123 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2124 sinfo->rx_packets += cpurxs->packets; 2125 } 2126 } 2127 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS); 2128 } 2129 2130 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) { 2131 sinfo->tx_retries = sta->status_stats.retry_count; 2132 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES); 2133 } 2134 2135 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) { 2136 sinfo->tx_failed = sta->status_stats.retry_failed; 2137 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED); 2138 } 2139 2140 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2141 if (sta->pcpu_rx_stats) { 2142 for_each_possible_cpu(cpu) { 2143 struct ieee80211_sta_rx_stats *cpurxs; 2144 2145 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2146 sinfo->rx_packets += cpurxs->dropped; 2147 } 2148 } 2149 2150 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2151 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2152 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) | 2153 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2154 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2155 } 2156 2157 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2158 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2159 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) { 2160 sinfo->signal = (s8)last_rxstats->last_signal; 2161 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL); 2162 } 2163 2164 if (!sta->pcpu_rx_stats && 2165 !(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) { 2166 sinfo->signal_avg = 2167 -ewma_signal_read(&sta->rx_stats_avg.signal); 2168 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG); 2169 } 2170 } 2171 2172 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2173 * the sta->rx_stats struct, so the check here is fine with and without 2174 * pcpu statistics 2175 */ 2176 if (last_rxstats->chains && 2177 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) | 2178 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2179 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL); 2180 if (!sta->pcpu_rx_stats) 2181 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2182 2183 sinfo->chains = last_rxstats->chains; 2184 2185 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2186 sinfo->chain_signal[i] = 2187 last_rxstats->chain_signal_last[i]; 2188 sinfo->chain_signal_avg[i] = 2189 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2190 } 2191 } 2192 2193 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) { 2194 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2195 &sinfo->txrate); 2196 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE); 2197 } 2198 2199 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) { 2200 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2201 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE); 2202 } 2203 2204 sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS); 2205 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) { 2206 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i]; 2207 2208 sta_set_tidstats(sta, tidstats, i); 2209 } 2210 2211 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2212 #ifdef CONFIG_MAC80211_MESH 2213 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) | 2214 BIT(NL80211_STA_INFO_PLID) | 2215 BIT(NL80211_STA_INFO_PLINK_STATE) | 2216 BIT(NL80211_STA_INFO_LOCAL_PM) | 2217 BIT(NL80211_STA_INFO_PEER_PM) | 2218 BIT(NL80211_STA_INFO_NONPEER_PM); 2219 2220 sinfo->llid = sta->mesh->llid; 2221 sinfo->plid = sta->mesh->plid; 2222 sinfo->plink_state = sta->mesh->plink_state; 2223 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2224 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET); 2225 sinfo->t_offset = sta->mesh->t_offset; 2226 } 2227 sinfo->local_pm = sta->mesh->local_pm; 2228 sinfo->peer_pm = sta->mesh->peer_pm; 2229 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2230 #endif 2231 } 2232 2233 sinfo->bss_param.flags = 0; 2234 if (sdata->vif.bss_conf.use_cts_prot) 2235 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2236 if (sdata->vif.bss_conf.use_short_preamble) 2237 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2238 if (sdata->vif.bss_conf.use_short_slot) 2239 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2240 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2241 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2242 2243 sinfo->sta_flags.set = 0; 2244 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2245 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2246 BIT(NL80211_STA_FLAG_WME) | 2247 BIT(NL80211_STA_FLAG_MFP) | 2248 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2249 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2250 BIT(NL80211_STA_FLAG_TDLS_PEER); 2251 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2252 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2253 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2254 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2255 if (sta->sta.wme) 2256 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2257 if (test_sta_flag(sta, WLAN_STA_MFP)) 2258 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2259 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2260 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2261 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2262 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2263 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2264 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2265 2266 thr = sta_get_expected_throughput(sta); 2267 2268 if (thr != 0) { 2269 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2270 sinfo->expected_throughput = thr; 2271 } 2272 } 2273 2274 u32 sta_get_expected_throughput(struct sta_info *sta) 2275 { 2276 struct ieee80211_sub_if_data *sdata = sta->sdata; 2277 struct ieee80211_local *local = sdata->local; 2278 struct rate_control_ref *ref = NULL; 2279 u32 thr = 0; 2280 2281 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2282 ref = local->rate_ctrl; 2283 2284 /* check if the driver has a SW RC implementation */ 2285 if (ref && ref->ops->get_expected_throughput) 2286 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2287 else 2288 thr = drv_get_expected_throughput(local, sta); 2289 2290 return thr; 2291 } 2292 2293 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2294 { 2295 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2296 2297 if (time_after(stats->last_rx, sta->status_stats.last_ack)) 2298 return stats->last_rx; 2299 return sta->status_stats.last_ack; 2300 } 2301