xref: /openbmc/linux/net/mac80211/rx.c (revision fca3aa16)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
26 
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
36 
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
38 {
39 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
40 
41 	u64_stats_update_begin(&tstats->syncp);
42 	tstats->rx_packets++;
43 	tstats->rx_bytes += len;
44 	u64_stats_update_end(&tstats->syncp);
45 }
46 
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 			       enum nl80211_iftype type)
49 {
50 	__le16 fc = hdr->frame_control;
51 
52 	if (ieee80211_is_data(fc)) {
53 		if (len < 24) /* drop incorrect hdr len (data) */
54 			return NULL;
55 
56 		if (ieee80211_has_a4(fc))
57 			return NULL;
58 		if (ieee80211_has_tods(fc))
59 			return hdr->addr1;
60 		if (ieee80211_has_fromds(fc))
61 			return hdr->addr2;
62 
63 		return hdr->addr3;
64 	}
65 
66 	if (ieee80211_is_mgmt(fc)) {
67 		if (len < 24) /* drop incorrect hdr len (mgmt) */
68 			return NULL;
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_ctl(fc)) {
73 		if (ieee80211_is_pspoll(fc))
74 			return hdr->addr1;
75 
76 		if (ieee80211_is_back_req(fc)) {
77 			switch (type) {
78 			case NL80211_IFTYPE_STATION:
79 				return hdr->addr2;
80 			case NL80211_IFTYPE_AP:
81 			case NL80211_IFTYPE_AP_VLAN:
82 				return hdr->addr1;
83 			default:
84 				break; /* fall through to the return */
85 			}
86 		}
87 	}
88 
89 	return NULL;
90 }
91 
92 /*
93  * monitor mode reception
94  *
95  * This function cleans up the SKB, i.e. it removes all the stuff
96  * only useful for monitoring.
97  */
98 static void remove_monitor_info(struct sk_buff *skb,
99 				unsigned int present_fcs_len,
100 				unsigned int rtap_vendor_space)
101 {
102 	if (present_fcs_len)
103 		__pskb_trim(skb, skb->len - present_fcs_len);
104 	__pskb_pull(skb, rtap_vendor_space);
105 }
106 
107 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
108 				     unsigned int rtap_vendor_space)
109 {
110 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
111 	struct ieee80211_hdr *hdr;
112 
113 	hdr = (void *)(skb->data + rtap_vendor_space);
114 
115 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
116 			    RX_FLAG_FAILED_PLCP_CRC |
117 			    RX_FLAG_ONLY_MONITOR))
118 		return true;
119 
120 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
121 		return true;
122 
123 	if (ieee80211_is_ctl(hdr->frame_control) &&
124 	    !ieee80211_is_pspoll(hdr->frame_control) &&
125 	    !ieee80211_is_back_req(hdr->frame_control))
126 		return true;
127 
128 	return false;
129 }
130 
131 static int
132 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
133 			     struct ieee80211_rx_status *status,
134 			     struct sk_buff *skb)
135 {
136 	int len;
137 
138 	/* always present fields */
139 	len = sizeof(struct ieee80211_radiotap_header) + 8;
140 
141 	/* allocate extra bitmaps */
142 	if (status->chains)
143 		len += 4 * hweight8(status->chains);
144 
145 	if (ieee80211_have_rx_timestamp(status)) {
146 		len = ALIGN(len, 8);
147 		len += 8;
148 	}
149 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
150 		len += 1;
151 
152 	/* antenna field, if we don't have per-chain info */
153 	if (!status->chains)
154 		len += 1;
155 
156 	/* padding for RX_FLAGS if necessary */
157 	len = ALIGN(len, 2);
158 
159 	if (status->encoding == RX_ENC_HT) /* HT info */
160 		len += 3;
161 
162 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
163 		len = ALIGN(len, 4);
164 		len += 8;
165 	}
166 
167 	if (status->encoding == RX_ENC_VHT) {
168 		len = ALIGN(len, 2);
169 		len += 12;
170 	}
171 
172 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
173 		len = ALIGN(len, 8);
174 		len += 12;
175 	}
176 
177 	if (status->chains) {
178 		/* antenna and antenna signal fields */
179 		len += 2 * hweight8(status->chains);
180 	}
181 
182 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
183 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
184 
185 		/* vendor presence bitmap */
186 		len += 4;
187 		/* alignment for fixed 6-byte vendor data header */
188 		len = ALIGN(len, 2);
189 		/* vendor data header */
190 		len += 6;
191 		if (WARN_ON(rtap->align == 0))
192 			rtap->align = 1;
193 		len = ALIGN(len, rtap->align);
194 		len += rtap->len + rtap->pad;
195 	}
196 
197 	return len;
198 }
199 
200 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
201 					 struct sk_buff *skb,
202 					 int rtap_vendor_space)
203 {
204 	struct {
205 		struct ieee80211_hdr_3addr hdr;
206 		u8 category;
207 		u8 action_code;
208 	} __packed action;
209 
210 	if (!sdata)
211 		return;
212 
213 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
214 
215 	if (skb->len < rtap_vendor_space + sizeof(action) +
216 		       VHT_MUMIMO_GROUPS_DATA_LEN)
217 		return;
218 
219 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
220 		return;
221 
222 	skb_copy_bits(skb, rtap_vendor_space, &action, sizeof(action));
223 
224 	if (!ieee80211_is_action(action.hdr.frame_control))
225 		return;
226 
227 	if (action.category != WLAN_CATEGORY_VHT)
228 		return;
229 
230 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
231 		return;
232 
233 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
234 		return;
235 
236 	skb = skb_copy(skb, GFP_ATOMIC);
237 	if (!skb)
238 		return;
239 
240 	skb_queue_tail(&sdata->skb_queue, skb);
241 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
242 }
243 
244 /*
245  * ieee80211_add_rx_radiotap_header - add radiotap header
246  *
247  * add a radiotap header containing all the fields which the hardware provided.
248  */
249 static void
250 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
251 				 struct sk_buff *skb,
252 				 struct ieee80211_rate *rate,
253 				 int rtap_len, bool has_fcs)
254 {
255 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
256 	struct ieee80211_radiotap_header *rthdr;
257 	unsigned char *pos;
258 	__le32 *it_present;
259 	u32 it_present_val;
260 	u16 rx_flags = 0;
261 	u16 channel_flags = 0;
262 	int mpdulen, chain;
263 	unsigned long chains = status->chains;
264 	struct ieee80211_vendor_radiotap rtap = {};
265 
266 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
267 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
268 		/* rtap.len and rtap.pad are undone immediately */
269 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
270 	}
271 
272 	mpdulen = skb->len;
273 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
274 		mpdulen += FCS_LEN;
275 
276 	rthdr = skb_push(skb, rtap_len);
277 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
278 	it_present = &rthdr->it_present;
279 
280 	/* radiotap header, set always present flags */
281 	rthdr->it_len = cpu_to_le16(rtap_len);
282 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
283 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
284 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
285 
286 	if (!status->chains)
287 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
288 
289 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
290 		it_present_val |=
291 			BIT(IEEE80211_RADIOTAP_EXT) |
292 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
293 		put_unaligned_le32(it_present_val, it_present);
294 		it_present++;
295 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
296 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
297 	}
298 
299 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
300 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
301 				  BIT(IEEE80211_RADIOTAP_EXT);
302 		put_unaligned_le32(it_present_val, it_present);
303 		it_present++;
304 		it_present_val = rtap.present;
305 	}
306 
307 	put_unaligned_le32(it_present_val, it_present);
308 
309 	pos = (void *)(it_present + 1);
310 
311 	/* the order of the following fields is important */
312 
313 	/* IEEE80211_RADIOTAP_TSFT */
314 	if (ieee80211_have_rx_timestamp(status)) {
315 		/* padding */
316 		while ((pos - (u8 *)rthdr) & 7)
317 			*pos++ = 0;
318 		put_unaligned_le64(
319 			ieee80211_calculate_rx_timestamp(local, status,
320 							 mpdulen, 0),
321 			pos);
322 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
323 		pos += 8;
324 	}
325 
326 	/* IEEE80211_RADIOTAP_FLAGS */
327 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
328 		*pos |= IEEE80211_RADIOTAP_F_FCS;
329 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
330 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
331 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
332 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
333 	pos++;
334 
335 	/* IEEE80211_RADIOTAP_RATE */
336 	if (!rate || status->encoding != RX_ENC_LEGACY) {
337 		/*
338 		 * Without rate information don't add it. If we have,
339 		 * MCS information is a separate field in radiotap,
340 		 * added below. The byte here is needed as padding
341 		 * for the channel though, so initialise it to 0.
342 		 */
343 		*pos = 0;
344 	} else {
345 		int shift = 0;
346 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
347 		if (status->bw == RATE_INFO_BW_10)
348 			shift = 1;
349 		else if (status->bw == RATE_INFO_BW_5)
350 			shift = 2;
351 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
352 	}
353 	pos++;
354 
355 	/* IEEE80211_RADIOTAP_CHANNEL */
356 	put_unaligned_le16(status->freq, pos);
357 	pos += 2;
358 	if (status->bw == RATE_INFO_BW_10)
359 		channel_flags |= IEEE80211_CHAN_HALF;
360 	else if (status->bw == RATE_INFO_BW_5)
361 		channel_flags |= IEEE80211_CHAN_QUARTER;
362 
363 	if (status->band == NL80211_BAND_5GHZ)
364 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
365 	else if (status->encoding != RX_ENC_LEGACY)
366 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
367 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
368 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
369 	else if (rate)
370 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
371 	else
372 		channel_flags |= IEEE80211_CHAN_2GHZ;
373 	put_unaligned_le16(channel_flags, pos);
374 	pos += 2;
375 
376 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
377 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
378 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
379 		*pos = status->signal;
380 		rthdr->it_present |=
381 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
382 		pos++;
383 	}
384 
385 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
386 
387 	if (!status->chains) {
388 		/* IEEE80211_RADIOTAP_ANTENNA */
389 		*pos = status->antenna;
390 		pos++;
391 	}
392 
393 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
394 
395 	/* IEEE80211_RADIOTAP_RX_FLAGS */
396 	/* ensure 2 byte alignment for the 2 byte field as required */
397 	if ((pos - (u8 *)rthdr) & 1)
398 		*pos++ = 0;
399 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
400 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
401 	put_unaligned_le16(rx_flags, pos);
402 	pos += 2;
403 
404 	if (status->encoding == RX_ENC_HT) {
405 		unsigned int stbc;
406 
407 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
408 		*pos++ = local->hw.radiotap_mcs_details;
409 		*pos = 0;
410 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
411 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
412 		if (status->bw == RATE_INFO_BW_40)
413 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
414 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
415 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
416 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
417 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
418 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
419 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
420 		pos++;
421 		*pos++ = status->rate_idx;
422 	}
423 
424 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
425 		u16 flags = 0;
426 
427 		/* ensure 4 byte alignment */
428 		while ((pos - (u8 *)rthdr) & 3)
429 			pos++;
430 		rthdr->it_present |=
431 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
432 		put_unaligned_le32(status->ampdu_reference, pos);
433 		pos += 4;
434 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
435 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
436 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
437 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
438 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
439 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
440 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
441 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
442 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
443 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
444 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
445 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
446 		put_unaligned_le16(flags, pos);
447 		pos += 2;
448 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
449 			*pos++ = status->ampdu_delimiter_crc;
450 		else
451 			*pos++ = 0;
452 		*pos++ = 0;
453 	}
454 
455 	if (status->encoding == RX_ENC_VHT) {
456 		u16 known = local->hw.radiotap_vht_details;
457 
458 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
459 		put_unaligned_le16(known, pos);
460 		pos += 2;
461 		/* flags */
462 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
463 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
464 		/* in VHT, STBC is binary */
465 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
466 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
467 		if (status->enc_flags & RX_ENC_FLAG_BF)
468 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
469 		pos++;
470 		/* bandwidth */
471 		switch (status->bw) {
472 		case RATE_INFO_BW_80:
473 			*pos++ = 4;
474 			break;
475 		case RATE_INFO_BW_160:
476 			*pos++ = 11;
477 			break;
478 		case RATE_INFO_BW_40:
479 			*pos++ = 1;
480 			break;
481 		default:
482 			*pos++ = 0;
483 		}
484 		/* MCS/NSS */
485 		*pos = (status->rate_idx << 4) | status->nss;
486 		pos += 4;
487 		/* coding field */
488 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
489 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
490 		pos++;
491 		/* group ID */
492 		pos++;
493 		/* partial_aid */
494 		pos += 2;
495 	}
496 
497 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
498 		u16 accuracy = 0;
499 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
500 
501 		rthdr->it_present |=
502 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
503 
504 		/* ensure 8 byte alignment */
505 		while ((pos - (u8 *)rthdr) & 7)
506 			pos++;
507 
508 		put_unaligned_le64(status->device_timestamp, pos);
509 		pos += sizeof(u64);
510 
511 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
512 			accuracy = local->hw.radiotap_timestamp.accuracy;
513 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
514 		}
515 		put_unaligned_le16(accuracy, pos);
516 		pos += sizeof(u16);
517 
518 		*pos++ = local->hw.radiotap_timestamp.units_pos;
519 		*pos++ = flags;
520 	}
521 
522 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
523 		*pos++ = status->chain_signal[chain];
524 		*pos++ = chain;
525 	}
526 
527 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
528 		/* ensure 2 byte alignment for the vendor field as required */
529 		if ((pos - (u8 *)rthdr) & 1)
530 			*pos++ = 0;
531 		*pos++ = rtap.oui[0];
532 		*pos++ = rtap.oui[1];
533 		*pos++ = rtap.oui[2];
534 		*pos++ = rtap.subns;
535 		put_unaligned_le16(rtap.len, pos);
536 		pos += 2;
537 		/* align the actual payload as requested */
538 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
539 			*pos++ = 0;
540 		/* data (and possible padding) already follows */
541 	}
542 }
543 
544 static struct sk_buff *
545 ieee80211_make_monitor_skb(struct ieee80211_local *local,
546 			   struct sk_buff **origskb,
547 			   struct ieee80211_rate *rate,
548 			   int rtap_vendor_space, bool use_origskb)
549 {
550 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
551 	int rt_hdrlen, needed_headroom;
552 	struct sk_buff *skb;
553 
554 	/* room for the radiotap header based on driver features */
555 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
556 	needed_headroom = rt_hdrlen - rtap_vendor_space;
557 
558 	if (use_origskb) {
559 		/* only need to expand headroom if necessary */
560 		skb = *origskb;
561 		*origskb = NULL;
562 
563 		/*
564 		 * This shouldn't trigger often because most devices have an
565 		 * RX header they pull before we get here, and that should
566 		 * be big enough for our radiotap information. We should
567 		 * probably export the length to drivers so that we can have
568 		 * them allocate enough headroom to start with.
569 		 */
570 		if (skb_headroom(skb) < needed_headroom &&
571 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
572 			dev_kfree_skb(skb);
573 			return NULL;
574 		}
575 	} else {
576 		/*
577 		 * Need to make a copy and possibly remove radiotap header
578 		 * and FCS from the original.
579 		 */
580 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
581 
582 		if (!skb)
583 			return NULL;
584 	}
585 
586 	/* prepend radiotap information */
587 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
588 
589 	skb_reset_mac_header(skb);
590 	skb->ip_summed = CHECKSUM_UNNECESSARY;
591 	skb->pkt_type = PACKET_OTHERHOST;
592 	skb->protocol = htons(ETH_P_802_2);
593 
594 	return skb;
595 }
596 
597 /*
598  * This function copies a received frame to all monitor interfaces and
599  * returns a cleaned-up SKB that no longer includes the FCS nor the
600  * radiotap header the driver might have added.
601  */
602 static struct sk_buff *
603 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
604 		     struct ieee80211_rate *rate)
605 {
606 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
607 	struct ieee80211_sub_if_data *sdata;
608 	struct sk_buff *monskb = NULL;
609 	int present_fcs_len = 0;
610 	unsigned int rtap_vendor_space = 0;
611 	struct ieee80211_sub_if_data *monitor_sdata =
612 		rcu_dereference(local->monitor_sdata);
613 	bool only_monitor = false;
614 
615 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
616 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
617 
618 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
619 	}
620 
621 	/*
622 	 * First, we may need to make a copy of the skb because
623 	 *  (1) we need to modify it for radiotap (if not present), and
624 	 *  (2) the other RX handlers will modify the skb we got.
625 	 *
626 	 * We don't need to, of course, if we aren't going to return
627 	 * the SKB because it has a bad FCS/PLCP checksum.
628 	 */
629 
630 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
631 		if (unlikely(origskb->len <= FCS_LEN)) {
632 			/* driver bug */
633 			WARN_ON(1);
634 			dev_kfree_skb(origskb);
635 			return NULL;
636 		}
637 		present_fcs_len = FCS_LEN;
638 	}
639 
640 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
641 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
642 		dev_kfree_skb(origskb);
643 		return NULL;
644 	}
645 
646 	only_monitor = should_drop_frame(origskb, present_fcs_len,
647 					 rtap_vendor_space);
648 
649 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
650 		if (only_monitor) {
651 			dev_kfree_skb(origskb);
652 			return NULL;
653 		}
654 
655 		remove_monitor_info(origskb, present_fcs_len,
656 				    rtap_vendor_space);
657 		return origskb;
658 	}
659 
660 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_vendor_space);
661 
662 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
663 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
664 						 &local->mon_list);
665 
666 		if (!monskb)
667 			monskb = ieee80211_make_monitor_skb(local, &origskb,
668 							    rate,
669 							    rtap_vendor_space,
670 							    only_monitor &&
671 							    last_monitor);
672 
673 		if (monskb) {
674 			struct sk_buff *skb;
675 
676 			if (last_monitor) {
677 				skb = monskb;
678 				monskb = NULL;
679 			} else {
680 				skb = skb_clone(monskb, GFP_ATOMIC);
681 			}
682 
683 			if (skb) {
684 				skb->dev = sdata->dev;
685 				ieee80211_rx_stats(skb->dev, skb->len);
686 				netif_receive_skb(skb);
687 			}
688 		}
689 
690 		if (last_monitor)
691 			break;
692 	}
693 
694 	/* this happens if last_monitor was erroneously false */
695 	dev_kfree_skb(monskb);
696 
697 	/* ditto */
698 	if (!origskb)
699 		return NULL;
700 
701 	remove_monitor_info(origskb, present_fcs_len, rtap_vendor_space);
702 	return origskb;
703 }
704 
705 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
706 {
707 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
708 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
709 	int tid, seqno_idx, security_idx;
710 
711 	/* does the frame have a qos control field? */
712 	if (ieee80211_is_data_qos(hdr->frame_control)) {
713 		u8 *qc = ieee80211_get_qos_ctl(hdr);
714 		/* frame has qos control */
715 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
716 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
717 			status->rx_flags |= IEEE80211_RX_AMSDU;
718 
719 		seqno_idx = tid;
720 		security_idx = tid;
721 	} else {
722 		/*
723 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
724 		 *
725 		 *	Sequence numbers for management frames, QoS data
726 		 *	frames with a broadcast/multicast address in the
727 		 *	Address 1 field, and all non-QoS data frames sent
728 		 *	by QoS STAs are assigned using an additional single
729 		 *	modulo-4096 counter, [...]
730 		 *
731 		 * We also use that counter for non-QoS STAs.
732 		 */
733 		seqno_idx = IEEE80211_NUM_TIDS;
734 		security_idx = 0;
735 		if (ieee80211_is_mgmt(hdr->frame_control))
736 			security_idx = IEEE80211_NUM_TIDS;
737 		tid = 0;
738 	}
739 
740 	rx->seqno_idx = seqno_idx;
741 	rx->security_idx = security_idx;
742 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
743 	 * For now, set skb->priority to 0 for other cases. */
744 	rx->skb->priority = (tid > 7) ? 0 : tid;
745 }
746 
747 /**
748  * DOC: Packet alignment
749  *
750  * Drivers always need to pass packets that are aligned to two-byte boundaries
751  * to the stack.
752  *
753  * Additionally, should, if possible, align the payload data in a way that
754  * guarantees that the contained IP header is aligned to a four-byte
755  * boundary. In the case of regular frames, this simply means aligning the
756  * payload to a four-byte boundary (because either the IP header is directly
757  * contained, or IV/RFC1042 headers that have a length divisible by four are
758  * in front of it).  If the payload data is not properly aligned and the
759  * architecture doesn't support efficient unaligned operations, mac80211
760  * will align the data.
761  *
762  * With A-MSDU frames, however, the payload data address must yield two modulo
763  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
764  * push the IP header further back to a multiple of four again. Thankfully, the
765  * specs were sane enough this time around to require padding each A-MSDU
766  * subframe to a length that is a multiple of four.
767  *
768  * Padding like Atheros hardware adds which is between the 802.11 header and
769  * the payload is not supported, the driver is required to move the 802.11
770  * header to be directly in front of the payload in that case.
771  */
772 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
773 {
774 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
775 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
776 #endif
777 }
778 
779 
780 /* rx handlers */
781 
782 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
783 {
784 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
785 
786 	if (is_multicast_ether_addr(hdr->addr1))
787 		return 0;
788 
789 	return ieee80211_is_robust_mgmt_frame(skb);
790 }
791 
792 
793 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
794 {
795 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
796 
797 	if (!is_multicast_ether_addr(hdr->addr1))
798 		return 0;
799 
800 	return ieee80211_is_robust_mgmt_frame(skb);
801 }
802 
803 
804 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
805 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
806 {
807 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
808 	struct ieee80211_mmie *mmie;
809 	struct ieee80211_mmie_16 *mmie16;
810 
811 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
812 		return -1;
813 
814 	if (!ieee80211_is_robust_mgmt_frame(skb))
815 		return -1; /* not a robust management frame */
816 
817 	mmie = (struct ieee80211_mmie *)
818 		(skb->data + skb->len - sizeof(*mmie));
819 	if (mmie->element_id == WLAN_EID_MMIE &&
820 	    mmie->length == sizeof(*mmie) - 2)
821 		return le16_to_cpu(mmie->key_id);
822 
823 	mmie16 = (struct ieee80211_mmie_16 *)
824 		(skb->data + skb->len - sizeof(*mmie16));
825 	if (skb->len >= 24 + sizeof(*mmie16) &&
826 	    mmie16->element_id == WLAN_EID_MMIE &&
827 	    mmie16->length == sizeof(*mmie16) - 2)
828 		return le16_to_cpu(mmie16->key_id);
829 
830 	return -1;
831 }
832 
833 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
834 				  struct sk_buff *skb)
835 {
836 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
837 	__le16 fc;
838 	int hdrlen;
839 	u8 keyid;
840 
841 	fc = hdr->frame_control;
842 	hdrlen = ieee80211_hdrlen(fc);
843 
844 	if (skb->len < hdrlen + cs->hdr_len)
845 		return -EINVAL;
846 
847 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
848 	keyid &= cs->key_idx_mask;
849 	keyid >>= cs->key_idx_shift;
850 
851 	return keyid;
852 }
853 
854 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
855 {
856 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
857 	char *dev_addr = rx->sdata->vif.addr;
858 
859 	if (ieee80211_is_data(hdr->frame_control)) {
860 		if (is_multicast_ether_addr(hdr->addr1)) {
861 			if (ieee80211_has_tods(hdr->frame_control) ||
862 			    !ieee80211_has_fromds(hdr->frame_control))
863 				return RX_DROP_MONITOR;
864 			if (ether_addr_equal(hdr->addr3, dev_addr))
865 				return RX_DROP_MONITOR;
866 		} else {
867 			if (!ieee80211_has_a4(hdr->frame_control))
868 				return RX_DROP_MONITOR;
869 			if (ether_addr_equal(hdr->addr4, dev_addr))
870 				return RX_DROP_MONITOR;
871 		}
872 	}
873 
874 	/* If there is not an established peer link and this is not a peer link
875 	 * establisment frame, beacon or probe, drop the frame.
876 	 */
877 
878 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
879 		struct ieee80211_mgmt *mgmt;
880 
881 		if (!ieee80211_is_mgmt(hdr->frame_control))
882 			return RX_DROP_MONITOR;
883 
884 		if (ieee80211_is_action(hdr->frame_control)) {
885 			u8 category;
886 
887 			/* make sure category field is present */
888 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
889 				return RX_DROP_MONITOR;
890 
891 			mgmt = (struct ieee80211_mgmt *)hdr;
892 			category = mgmt->u.action.category;
893 			if (category != WLAN_CATEGORY_MESH_ACTION &&
894 			    category != WLAN_CATEGORY_SELF_PROTECTED)
895 				return RX_DROP_MONITOR;
896 			return RX_CONTINUE;
897 		}
898 
899 		if (ieee80211_is_probe_req(hdr->frame_control) ||
900 		    ieee80211_is_probe_resp(hdr->frame_control) ||
901 		    ieee80211_is_beacon(hdr->frame_control) ||
902 		    ieee80211_is_auth(hdr->frame_control))
903 			return RX_CONTINUE;
904 
905 		return RX_DROP_MONITOR;
906 	}
907 
908 	return RX_CONTINUE;
909 }
910 
911 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
912 					      int index)
913 {
914 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
915 	struct sk_buff *tail = skb_peek_tail(frames);
916 	struct ieee80211_rx_status *status;
917 
918 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
919 		return true;
920 
921 	if (!tail)
922 		return false;
923 
924 	status = IEEE80211_SKB_RXCB(tail);
925 	if (status->flag & RX_FLAG_AMSDU_MORE)
926 		return false;
927 
928 	return true;
929 }
930 
931 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
932 					    struct tid_ampdu_rx *tid_agg_rx,
933 					    int index,
934 					    struct sk_buff_head *frames)
935 {
936 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
937 	struct sk_buff *skb;
938 	struct ieee80211_rx_status *status;
939 
940 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
941 
942 	if (skb_queue_empty(skb_list))
943 		goto no_frame;
944 
945 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
946 		__skb_queue_purge(skb_list);
947 		goto no_frame;
948 	}
949 
950 	/* release frames from the reorder ring buffer */
951 	tid_agg_rx->stored_mpdu_num--;
952 	while ((skb = __skb_dequeue(skb_list))) {
953 		status = IEEE80211_SKB_RXCB(skb);
954 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
955 		__skb_queue_tail(frames, skb);
956 	}
957 
958 no_frame:
959 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
960 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
961 }
962 
963 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
964 					     struct tid_ampdu_rx *tid_agg_rx,
965 					     u16 head_seq_num,
966 					     struct sk_buff_head *frames)
967 {
968 	int index;
969 
970 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
971 
972 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
973 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
974 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
975 						frames);
976 	}
977 }
978 
979 /*
980  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
981  * the skb was added to the buffer longer than this time ago, the earlier
982  * frames that have not yet been received are assumed to be lost and the skb
983  * can be released for processing. This may also release other skb's from the
984  * reorder buffer if there are no additional gaps between the frames.
985  *
986  * Callers must hold tid_agg_rx->reorder_lock.
987  */
988 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
989 
990 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
991 					  struct tid_ampdu_rx *tid_agg_rx,
992 					  struct sk_buff_head *frames)
993 {
994 	int index, i, j;
995 
996 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
997 
998 	/* release the buffer until next missing frame */
999 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1000 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1001 	    tid_agg_rx->stored_mpdu_num) {
1002 		/*
1003 		 * No buffers ready to be released, but check whether any
1004 		 * frames in the reorder buffer have timed out.
1005 		 */
1006 		int skipped = 1;
1007 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1008 		     j = (j + 1) % tid_agg_rx->buf_size) {
1009 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1010 				skipped++;
1011 				continue;
1012 			}
1013 			if (skipped &&
1014 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1015 					HT_RX_REORDER_BUF_TIMEOUT))
1016 				goto set_release_timer;
1017 
1018 			/* don't leave incomplete A-MSDUs around */
1019 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1020 			     i = (i + 1) % tid_agg_rx->buf_size)
1021 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1022 
1023 			ht_dbg_ratelimited(sdata,
1024 					   "release an RX reorder frame due to timeout on earlier frames\n");
1025 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1026 							frames);
1027 
1028 			/*
1029 			 * Increment the head seq# also for the skipped slots.
1030 			 */
1031 			tid_agg_rx->head_seq_num =
1032 				(tid_agg_rx->head_seq_num +
1033 				 skipped) & IEEE80211_SN_MASK;
1034 			skipped = 0;
1035 		}
1036 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1037 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1038 						frames);
1039 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1040 	}
1041 
1042 	if (tid_agg_rx->stored_mpdu_num) {
1043 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1044 
1045 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1046 		     j = (j + 1) % tid_agg_rx->buf_size) {
1047 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1048 				break;
1049 		}
1050 
1051  set_release_timer:
1052 
1053 		if (!tid_agg_rx->removed)
1054 			mod_timer(&tid_agg_rx->reorder_timer,
1055 				  tid_agg_rx->reorder_time[j] + 1 +
1056 				  HT_RX_REORDER_BUF_TIMEOUT);
1057 	} else {
1058 		del_timer(&tid_agg_rx->reorder_timer);
1059 	}
1060 }
1061 
1062 /*
1063  * As this function belongs to the RX path it must be under
1064  * rcu_read_lock protection. It returns false if the frame
1065  * can be processed immediately, true if it was consumed.
1066  */
1067 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1068 					     struct tid_ampdu_rx *tid_agg_rx,
1069 					     struct sk_buff *skb,
1070 					     struct sk_buff_head *frames)
1071 {
1072 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1073 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1074 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1075 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1076 	u16 head_seq_num, buf_size;
1077 	int index;
1078 	bool ret = true;
1079 
1080 	spin_lock(&tid_agg_rx->reorder_lock);
1081 
1082 	/*
1083 	 * Offloaded BA sessions have no known starting sequence number so pick
1084 	 * one from first Rxed frame for this tid after BA was started.
1085 	 */
1086 	if (unlikely(tid_agg_rx->auto_seq)) {
1087 		tid_agg_rx->auto_seq = false;
1088 		tid_agg_rx->ssn = mpdu_seq_num;
1089 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1090 	}
1091 
1092 	buf_size = tid_agg_rx->buf_size;
1093 	head_seq_num = tid_agg_rx->head_seq_num;
1094 
1095 	/*
1096 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1097 	 * be reordered.
1098 	 */
1099 	if (unlikely(!tid_agg_rx->started)) {
1100 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1101 			ret = false;
1102 			goto out;
1103 		}
1104 		tid_agg_rx->started = true;
1105 	}
1106 
1107 	/* frame with out of date sequence number */
1108 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1109 		dev_kfree_skb(skb);
1110 		goto out;
1111 	}
1112 
1113 	/*
1114 	 * If frame the sequence number exceeds our buffering window
1115 	 * size release some previous frames to make room for this one.
1116 	 */
1117 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1118 		head_seq_num = ieee80211_sn_inc(
1119 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1120 		/* release stored frames up to new head to stack */
1121 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1122 						 head_seq_num, frames);
1123 	}
1124 
1125 	/* Now the new frame is always in the range of the reordering buffer */
1126 
1127 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1128 
1129 	/* check if we already stored this frame */
1130 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1131 		dev_kfree_skb(skb);
1132 		goto out;
1133 	}
1134 
1135 	/*
1136 	 * If the current MPDU is in the right order and nothing else
1137 	 * is stored we can process it directly, no need to buffer it.
1138 	 * If it is first but there's something stored, we may be able
1139 	 * to release frames after this one.
1140 	 */
1141 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1142 	    tid_agg_rx->stored_mpdu_num == 0) {
1143 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1144 			tid_agg_rx->head_seq_num =
1145 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1146 		ret = false;
1147 		goto out;
1148 	}
1149 
1150 	/* put the frame in the reordering buffer */
1151 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1152 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1153 		tid_agg_rx->reorder_time[index] = jiffies;
1154 		tid_agg_rx->stored_mpdu_num++;
1155 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1156 	}
1157 
1158  out:
1159 	spin_unlock(&tid_agg_rx->reorder_lock);
1160 	return ret;
1161 }
1162 
1163 /*
1164  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1165  * true if the MPDU was buffered, false if it should be processed.
1166  */
1167 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1168 				       struct sk_buff_head *frames)
1169 {
1170 	struct sk_buff *skb = rx->skb;
1171 	struct ieee80211_local *local = rx->local;
1172 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1173 	struct sta_info *sta = rx->sta;
1174 	struct tid_ampdu_rx *tid_agg_rx;
1175 	u16 sc;
1176 	u8 tid, ack_policy;
1177 
1178 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1179 	    is_multicast_ether_addr(hdr->addr1))
1180 		goto dont_reorder;
1181 
1182 	/*
1183 	 * filter the QoS data rx stream according to
1184 	 * STA/TID and check if this STA/TID is on aggregation
1185 	 */
1186 
1187 	if (!sta)
1188 		goto dont_reorder;
1189 
1190 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1191 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1192 	tid = ieee80211_get_tid(hdr);
1193 
1194 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1195 	if (!tid_agg_rx) {
1196 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1197 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1198 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1199 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1200 					     WLAN_BACK_RECIPIENT,
1201 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1202 		goto dont_reorder;
1203 	}
1204 
1205 	/* qos null data frames are excluded */
1206 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1207 		goto dont_reorder;
1208 
1209 	/* not part of a BA session */
1210 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1211 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1212 		goto dont_reorder;
1213 
1214 	/* new, potentially un-ordered, ampdu frame - process it */
1215 
1216 	/* reset session timer */
1217 	if (tid_agg_rx->timeout)
1218 		tid_agg_rx->last_rx = jiffies;
1219 
1220 	/* if this mpdu is fragmented - terminate rx aggregation session */
1221 	sc = le16_to_cpu(hdr->seq_ctrl);
1222 	if (sc & IEEE80211_SCTL_FRAG) {
1223 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1224 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1225 		return;
1226 	}
1227 
1228 	/*
1229 	 * No locking needed -- we will only ever process one
1230 	 * RX packet at a time, and thus own tid_agg_rx. All
1231 	 * other code manipulating it needs to (and does) make
1232 	 * sure that we cannot get to it any more before doing
1233 	 * anything with it.
1234 	 */
1235 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1236 					     frames))
1237 		return;
1238 
1239  dont_reorder:
1240 	__skb_queue_tail(frames, skb);
1241 }
1242 
1243 static ieee80211_rx_result debug_noinline
1244 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1245 {
1246 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1247 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1248 
1249 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1250 		return RX_CONTINUE;
1251 
1252 	/*
1253 	 * Drop duplicate 802.11 retransmissions
1254 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1255 	 */
1256 
1257 	if (rx->skb->len < 24)
1258 		return RX_CONTINUE;
1259 
1260 	if (ieee80211_is_ctl(hdr->frame_control) ||
1261 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1262 	    is_multicast_ether_addr(hdr->addr1))
1263 		return RX_CONTINUE;
1264 
1265 	if (!rx->sta)
1266 		return RX_CONTINUE;
1267 
1268 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1269 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1270 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1271 		rx->sta->rx_stats.num_duplicates++;
1272 		return RX_DROP_UNUSABLE;
1273 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1274 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1275 	}
1276 
1277 	return RX_CONTINUE;
1278 }
1279 
1280 static ieee80211_rx_result debug_noinline
1281 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1282 {
1283 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1284 
1285 	/* Drop disallowed frame classes based on STA auth/assoc state;
1286 	 * IEEE 802.11, Chap 5.5.
1287 	 *
1288 	 * mac80211 filters only based on association state, i.e. it drops
1289 	 * Class 3 frames from not associated stations. hostapd sends
1290 	 * deauth/disassoc frames when needed. In addition, hostapd is
1291 	 * responsible for filtering on both auth and assoc states.
1292 	 */
1293 
1294 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1295 		return ieee80211_rx_mesh_check(rx);
1296 
1297 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1298 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1299 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1300 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1301 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1302 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1303 		/*
1304 		 * accept port control frames from the AP even when it's not
1305 		 * yet marked ASSOC to prevent a race where we don't set the
1306 		 * assoc bit quickly enough before it sends the first frame
1307 		 */
1308 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1309 		    ieee80211_is_data_present(hdr->frame_control)) {
1310 			unsigned int hdrlen;
1311 			__be16 ethertype;
1312 
1313 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1314 
1315 			if (rx->skb->len < hdrlen + 8)
1316 				return RX_DROP_MONITOR;
1317 
1318 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1319 			if (ethertype == rx->sdata->control_port_protocol)
1320 				return RX_CONTINUE;
1321 		}
1322 
1323 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1324 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1325 					       hdr->addr2,
1326 					       GFP_ATOMIC))
1327 			return RX_DROP_UNUSABLE;
1328 
1329 		return RX_DROP_MONITOR;
1330 	}
1331 
1332 	return RX_CONTINUE;
1333 }
1334 
1335 
1336 static ieee80211_rx_result debug_noinline
1337 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1338 {
1339 	struct ieee80211_local *local;
1340 	struct ieee80211_hdr *hdr;
1341 	struct sk_buff *skb;
1342 
1343 	local = rx->local;
1344 	skb = rx->skb;
1345 	hdr = (struct ieee80211_hdr *) skb->data;
1346 
1347 	if (!local->pspolling)
1348 		return RX_CONTINUE;
1349 
1350 	if (!ieee80211_has_fromds(hdr->frame_control))
1351 		/* this is not from AP */
1352 		return RX_CONTINUE;
1353 
1354 	if (!ieee80211_is_data(hdr->frame_control))
1355 		return RX_CONTINUE;
1356 
1357 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1358 		/* AP has no more frames buffered for us */
1359 		local->pspolling = false;
1360 		return RX_CONTINUE;
1361 	}
1362 
1363 	/* more data bit is set, let's request a new frame from the AP */
1364 	ieee80211_send_pspoll(local, rx->sdata);
1365 
1366 	return RX_CONTINUE;
1367 }
1368 
1369 static void sta_ps_start(struct sta_info *sta)
1370 {
1371 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1372 	struct ieee80211_local *local = sdata->local;
1373 	struct ps_data *ps;
1374 	int tid;
1375 
1376 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1377 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1378 		ps = &sdata->bss->ps;
1379 	else
1380 		return;
1381 
1382 	atomic_inc(&ps->num_sta_ps);
1383 	set_sta_flag(sta, WLAN_STA_PS_STA);
1384 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1385 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1386 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1387 	       sta->sta.addr, sta->sta.aid);
1388 
1389 	ieee80211_clear_fast_xmit(sta);
1390 
1391 	if (!sta->sta.txq[0])
1392 		return;
1393 
1394 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1395 		if (txq_has_queue(sta->sta.txq[tid]))
1396 			set_bit(tid, &sta->txq_buffered_tids);
1397 		else
1398 			clear_bit(tid, &sta->txq_buffered_tids);
1399 	}
1400 }
1401 
1402 static void sta_ps_end(struct sta_info *sta)
1403 {
1404 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1405 	       sta->sta.addr, sta->sta.aid);
1406 
1407 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1408 		/*
1409 		 * Clear the flag only if the other one is still set
1410 		 * so that the TX path won't start TX'ing new frames
1411 		 * directly ... In the case that the driver flag isn't
1412 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1413 		 */
1414 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1415 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1416 		       sta->sta.addr, sta->sta.aid);
1417 		return;
1418 	}
1419 
1420 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1421 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1422 	ieee80211_sta_ps_deliver_wakeup(sta);
1423 }
1424 
1425 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1426 {
1427 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1428 	bool in_ps;
1429 
1430 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1431 
1432 	/* Don't let the same PS state be set twice */
1433 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1434 	if ((start && in_ps) || (!start && !in_ps))
1435 		return -EINVAL;
1436 
1437 	if (start)
1438 		sta_ps_start(sta);
1439 	else
1440 		sta_ps_end(sta);
1441 
1442 	return 0;
1443 }
1444 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1445 
1446 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1447 {
1448 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1449 
1450 	if (test_sta_flag(sta, WLAN_STA_SP))
1451 		return;
1452 
1453 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1454 		ieee80211_sta_ps_deliver_poll_response(sta);
1455 	else
1456 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1457 }
1458 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1459 
1460 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1461 {
1462 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1463 	int ac = ieee80211_ac_from_tid(tid);
1464 
1465 	/*
1466 	 * If this AC is not trigger-enabled do nothing unless the
1467 	 * driver is calling us after it already checked.
1468 	 *
1469 	 * NB: This could/should check a separate bitmap of trigger-
1470 	 * enabled queues, but for now we only implement uAPSD w/o
1471 	 * TSPEC changes to the ACs, so they're always the same.
1472 	 */
1473 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1474 	    tid != IEEE80211_NUM_TIDS)
1475 		return;
1476 
1477 	/* if we are in a service period, do nothing */
1478 	if (test_sta_flag(sta, WLAN_STA_SP))
1479 		return;
1480 
1481 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1482 		ieee80211_sta_ps_deliver_uapsd(sta);
1483 	else
1484 		set_sta_flag(sta, WLAN_STA_UAPSD);
1485 }
1486 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1487 
1488 static ieee80211_rx_result debug_noinline
1489 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1490 {
1491 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1492 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1493 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1494 
1495 	if (!rx->sta)
1496 		return RX_CONTINUE;
1497 
1498 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1499 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1500 		return RX_CONTINUE;
1501 
1502 	/*
1503 	 * The device handles station powersave, so don't do anything about
1504 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1505 	 * it to mac80211 since they're handled.)
1506 	 */
1507 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1508 		return RX_CONTINUE;
1509 
1510 	/*
1511 	 * Don't do anything if the station isn't already asleep. In
1512 	 * the uAPSD case, the station will probably be marked asleep,
1513 	 * in the PS-Poll case the station must be confused ...
1514 	 */
1515 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1516 		return RX_CONTINUE;
1517 
1518 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1519 		ieee80211_sta_pspoll(&rx->sta->sta);
1520 
1521 		/* Free PS Poll skb here instead of returning RX_DROP that would
1522 		 * count as an dropped frame. */
1523 		dev_kfree_skb(rx->skb);
1524 
1525 		return RX_QUEUED;
1526 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1527 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1528 		   ieee80211_has_pm(hdr->frame_control) &&
1529 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1530 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1531 		u8 tid = ieee80211_get_tid(hdr);
1532 
1533 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1534 	}
1535 
1536 	return RX_CONTINUE;
1537 }
1538 
1539 static ieee80211_rx_result debug_noinline
1540 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1541 {
1542 	struct sta_info *sta = rx->sta;
1543 	struct sk_buff *skb = rx->skb;
1544 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1545 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1546 	int i;
1547 
1548 	if (!sta)
1549 		return RX_CONTINUE;
1550 
1551 	/*
1552 	 * Update last_rx only for IBSS packets which are for the current
1553 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1554 	 * current IBSS network alive in cases where other STAs start
1555 	 * using different BSSID. This will also give the station another
1556 	 * chance to restart the authentication/authorization in case
1557 	 * something went wrong the first time.
1558 	 */
1559 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1560 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1561 						NL80211_IFTYPE_ADHOC);
1562 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1563 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1564 			sta->rx_stats.last_rx = jiffies;
1565 			if (ieee80211_is_data(hdr->frame_control) &&
1566 			    !is_multicast_ether_addr(hdr->addr1))
1567 				sta->rx_stats.last_rate =
1568 					sta_stats_encode_rate(status);
1569 		}
1570 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1571 		sta->rx_stats.last_rx = jiffies;
1572 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1573 		/*
1574 		 * Mesh beacons will update last_rx when if they are found to
1575 		 * match the current local configuration when processed.
1576 		 */
1577 		sta->rx_stats.last_rx = jiffies;
1578 		if (ieee80211_is_data(hdr->frame_control))
1579 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1580 	}
1581 
1582 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1583 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1584 
1585 	sta->rx_stats.fragments++;
1586 
1587 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1588 	sta->rx_stats.bytes += rx->skb->len;
1589 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1590 
1591 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1592 		sta->rx_stats.last_signal = status->signal;
1593 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1594 	}
1595 
1596 	if (status->chains) {
1597 		sta->rx_stats.chains = status->chains;
1598 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1599 			int signal = status->chain_signal[i];
1600 
1601 			if (!(status->chains & BIT(i)))
1602 				continue;
1603 
1604 			sta->rx_stats.chain_signal_last[i] = signal;
1605 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1606 					-signal);
1607 		}
1608 	}
1609 
1610 	/*
1611 	 * Change STA power saving mode only at the end of a frame
1612 	 * exchange sequence, and only for a data or management
1613 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1614 	 */
1615 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1616 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1617 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1618 	     ieee80211_is_data(hdr->frame_control)) &&
1619 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1620 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1621 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1622 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1623 			if (!ieee80211_has_pm(hdr->frame_control))
1624 				sta_ps_end(sta);
1625 		} else {
1626 			if (ieee80211_has_pm(hdr->frame_control))
1627 				sta_ps_start(sta);
1628 		}
1629 	}
1630 
1631 	/* mesh power save support */
1632 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1633 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1634 
1635 	/*
1636 	 * Drop (qos-)data::nullfunc frames silently, since they
1637 	 * are used only to control station power saving mode.
1638 	 */
1639 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1640 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1641 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1642 
1643 		/*
1644 		 * If we receive a 4-addr nullfunc frame from a STA
1645 		 * that was not moved to a 4-addr STA vlan yet send
1646 		 * the event to userspace and for older hostapd drop
1647 		 * the frame to the monitor interface.
1648 		 */
1649 		if (ieee80211_has_a4(hdr->frame_control) &&
1650 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1651 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1652 		      !rx->sdata->u.vlan.sta))) {
1653 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1654 				cfg80211_rx_unexpected_4addr_frame(
1655 					rx->sdata->dev, sta->sta.addr,
1656 					GFP_ATOMIC);
1657 			return RX_DROP_MONITOR;
1658 		}
1659 		/*
1660 		 * Update counter and free packet here to avoid
1661 		 * counting this as a dropped packed.
1662 		 */
1663 		sta->rx_stats.packets++;
1664 		dev_kfree_skb(rx->skb);
1665 		return RX_QUEUED;
1666 	}
1667 
1668 	return RX_CONTINUE;
1669 } /* ieee80211_rx_h_sta_process */
1670 
1671 static ieee80211_rx_result debug_noinline
1672 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1673 {
1674 	struct sk_buff *skb = rx->skb;
1675 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1676 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1677 	int keyidx;
1678 	int hdrlen;
1679 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1680 	struct ieee80211_key *sta_ptk = NULL;
1681 	int mmie_keyidx = -1;
1682 	__le16 fc;
1683 	const struct ieee80211_cipher_scheme *cs = NULL;
1684 
1685 	/*
1686 	 * Key selection 101
1687 	 *
1688 	 * There are four types of keys:
1689 	 *  - GTK (group keys)
1690 	 *  - IGTK (group keys for management frames)
1691 	 *  - PTK (pairwise keys)
1692 	 *  - STK (station-to-station pairwise keys)
1693 	 *
1694 	 * When selecting a key, we have to distinguish between multicast
1695 	 * (including broadcast) and unicast frames, the latter can only
1696 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1697 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1698 	 * unicast frames can also use key indices like GTKs. Hence, if we
1699 	 * don't have a PTK/STK we check the key index for a WEP key.
1700 	 *
1701 	 * Note that in a regular BSS, multicast frames are sent by the
1702 	 * AP only, associated stations unicast the frame to the AP first
1703 	 * which then multicasts it on their behalf.
1704 	 *
1705 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1706 	 * with each station, that is something we don't currently handle.
1707 	 * The spec seems to expect that one negotiates the same key with
1708 	 * every station but there's no such requirement; VLANs could be
1709 	 * possible.
1710 	 */
1711 
1712 	/* start without a key */
1713 	rx->key = NULL;
1714 	fc = hdr->frame_control;
1715 
1716 	if (rx->sta) {
1717 		int keyid = rx->sta->ptk_idx;
1718 
1719 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1720 			cs = rx->sta->cipher_scheme;
1721 			keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1722 			if (unlikely(keyid < 0))
1723 				return RX_DROP_UNUSABLE;
1724 		}
1725 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1726 	}
1727 
1728 	if (!ieee80211_has_protected(fc))
1729 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1730 
1731 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1732 		rx->key = sta_ptk;
1733 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1734 		    (status->flag & RX_FLAG_IV_STRIPPED))
1735 			return RX_CONTINUE;
1736 		/* Skip decryption if the frame is not protected. */
1737 		if (!ieee80211_has_protected(fc))
1738 			return RX_CONTINUE;
1739 	} else if (mmie_keyidx >= 0) {
1740 		/* Broadcast/multicast robust management frame / BIP */
1741 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1742 		    (status->flag & RX_FLAG_IV_STRIPPED))
1743 			return RX_CONTINUE;
1744 
1745 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1746 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1747 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1748 		if (rx->sta) {
1749 			if (ieee80211_is_group_privacy_action(skb) &&
1750 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1751 				return RX_DROP_MONITOR;
1752 
1753 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1754 		}
1755 		if (!rx->key)
1756 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1757 	} else if (!ieee80211_has_protected(fc)) {
1758 		/*
1759 		 * The frame was not protected, so skip decryption. However, we
1760 		 * need to set rx->key if there is a key that could have been
1761 		 * used so that the frame may be dropped if encryption would
1762 		 * have been expected.
1763 		 */
1764 		struct ieee80211_key *key = NULL;
1765 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1766 		int i;
1767 
1768 		if (ieee80211_is_mgmt(fc) &&
1769 		    is_multicast_ether_addr(hdr->addr1) &&
1770 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1771 			rx->key = key;
1772 		else {
1773 			if (rx->sta) {
1774 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1775 					key = rcu_dereference(rx->sta->gtk[i]);
1776 					if (key)
1777 						break;
1778 				}
1779 			}
1780 			if (!key) {
1781 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1782 					key = rcu_dereference(sdata->keys[i]);
1783 					if (key)
1784 						break;
1785 				}
1786 			}
1787 			if (key)
1788 				rx->key = key;
1789 		}
1790 		return RX_CONTINUE;
1791 	} else {
1792 		u8 keyid;
1793 
1794 		/*
1795 		 * The device doesn't give us the IV so we won't be
1796 		 * able to look up the key. That's ok though, we
1797 		 * don't need to decrypt the frame, we just won't
1798 		 * be able to keep statistics accurate.
1799 		 * Except for key threshold notifications, should
1800 		 * we somehow allow the driver to tell us which key
1801 		 * the hardware used if this flag is set?
1802 		 */
1803 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1804 		    (status->flag & RX_FLAG_IV_STRIPPED))
1805 			return RX_CONTINUE;
1806 
1807 		hdrlen = ieee80211_hdrlen(fc);
1808 
1809 		if (cs) {
1810 			keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1811 
1812 			if (unlikely(keyidx < 0))
1813 				return RX_DROP_UNUSABLE;
1814 		} else {
1815 			if (rx->skb->len < 8 + hdrlen)
1816 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1817 			/*
1818 			 * no need to call ieee80211_wep_get_keyidx,
1819 			 * it verifies a bunch of things we've done already
1820 			 */
1821 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1822 			keyidx = keyid >> 6;
1823 		}
1824 
1825 		/* check per-station GTK first, if multicast packet */
1826 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1827 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1828 
1829 		/* if not found, try default key */
1830 		if (!rx->key) {
1831 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1832 
1833 			/*
1834 			 * RSNA-protected unicast frames should always be
1835 			 * sent with pairwise or station-to-station keys,
1836 			 * but for WEP we allow using a key index as well.
1837 			 */
1838 			if (rx->key &&
1839 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1840 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1841 			    !is_multicast_ether_addr(hdr->addr1))
1842 				rx->key = NULL;
1843 		}
1844 	}
1845 
1846 	if (rx->key) {
1847 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1848 			return RX_DROP_MONITOR;
1849 
1850 		/* TODO: add threshold stuff again */
1851 	} else {
1852 		return RX_DROP_MONITOR;
1853 	}
1854 
1855 	switch (rx->key->conf.cipher) {
1856 	case WLAN_CIPHER_SUITE_WEP40:
1857 	case WLAN_CIPHER_SUITE_WEP104:
1858 		result = ieee80211_crypto_wep_decrypt(rx);
1859 		break;
1860 	case WLAN_CIPHER_SUITE_TKIP:
1861 		result = ieee80211_crypto_tkip_decrypt(rx);
1862 		break;
1863 	case WLAN_CIPHER_SUITE_CCMP:
1864 		result = ieee80211_crypto_ccmp_decrypt(
1865 			rx, IEEE80211_CCMP_MIC_LEN);
1866 		break;
1867 	case WLAN_CIPHER_SUITE_CCMP_256:
1868 		result = ieee80211_crypto_ccmp_decrypt(
1869 			rx, IEEE80211_CCMP_256_MIC_LEN);
1870 		break;
1871 	case WLAN_CIPHER_SUITE_AES_CMAC:
1872 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1873 		break;
1874 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1875 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1876 		break;
1877 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1878 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1879 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1880 		break;
1881 	case WLAN_CIPHER_SUITE_GCMP:
1882 	case WLAN_CIPHER_SUITE_GCMP_256:
1883 		result = ieee80211_crypto_gcmp_decrypt(rx);
1884 		break;
1885 	default:
1886 		result = ieee80211_crypto_hw_decrypt(rx);
1887 	}
1888 
1889 	/* the hdr variable is invalid after the decrypt handlers */
1890 
1891 	/* either the frame has been decrypted or will be dropped */
1892 	status->flag |= RX_FLAG_DECRYPTED;
1893 
1894 	return result;
1895 }
1896 
1897 static inline struct ieee80211_fragment_entry *
1898 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1899 			 unsigned int frag, unsigned int seq, int rx_queue,
1900 			 struct sk_buff **skb)
1901 {
1902 	struct ieee80211_fragment_entry *entry;
1903 
1904 	entry = &sdata->fragments[sdata->fragment_next++];
1905 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1906 		sdata->fragment_next = 0;
1907 
1908 	if (!skb_queue_empty(&entry->skb_list))
1909 		__skb_queue_purge(&entry->skb_list);
1910 
1911 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1912 	*skb = NULL;
1913 	entry->first_frag_time = jiffies;
1914 	entry->seq = seq;
1915 	entry->rx_queue = rx_queue;
1916 	entry->last_frag = frag;
1917 	entry->check_sequential_pn = false;
1918 	entry->extra_len = 0;
1919 
1920 	return entry;
1921 }
1922 
1923 static inline struct ieee80211_fragment_entry *
1924 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1925 			  unsigned int frag, unsigned int seq,
1926 			  int rx_queue, struct ieee80211_hdr *hdr)
1927 {
1928 	struct ieee80211_fragment_entry *entry;
1929 	int i, idx;
1930 
1931 	idx = sdata->fragment_next;
1932 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1933 		struct ieee80211_hdr *f_hdr;
1934 
1935 		idx--;
1936 		if (idx < 0)
1937 			idx = IEEE80211_FRAGMENT_MAX - 1;
1938 
1939 		entry = &sdata->fragments[idx];
1940 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1941 		    entry->rx_queue != rx_queue ||
1942 		    entry->last_frag + 1 != frag)
1943 			continue;
1944 
1945 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1946 
1947 		/*
1948 		 * Check ftype and addresses are equal, else check next fragment
1949 		 */
1950 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1951 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1952 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1953 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1954 			continue;
1955 
1956 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1957 			__skb_queue_purge(&entry->skb_list);
1958 			continue;
1959 		}
1960 		return entry;
1961 	}
1962 
1963 	return NULL;
1964 }
1965 
1966 static ieee80211_rx_result debug_noinline
1967 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1968 {
1969 	struct ieee80211_hdr *hdr;
1970 	u16 sc;
1971 	__le16 fc;
1972 	unsigned int frag, seq;
1973 	struct ieee80211_fragment_entry *entry;
1974 	struct sk_buff *skb;
1975 
1976 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1977 	fc = hdr->frame_control;
1978 
1979 	if (ieee80211_is_ctl(fc))
1980 		return RX_CONTINUE;
1981 
1982 	sc = le16_to_cpu(hdr->seq_ctrl);
1983 	frag = sc & IEEE80211_SCTL_FRAG;
1984 
1985 	if (is_multicast_ether_addr(hdr->addr1)) {
1986 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1987 		goto out_no_led;
1988 	}
1989 
1990 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1991 		goto out;
1992 
1993 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1994 
1995 	if (skb_linearize(rx->skb))
1996 		return RX_DROP_UNUSABLE;
1997 
1998 	/*
1999 	 *  skb_linearize() might change the skb->data and
2000 	 *  previously cached variables (in this case, hdr) need to
2001 	 *  be refreshed with the new data.
2002 	 */
2003 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2004 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2005 
2006 	if (frag == 0) {
2007 		/* This is the first fragment of a new frame. */
2008 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2009 						 rx->seqno_idx, &(rx->skb));
2010 		if (rx->key &&
2011 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2012 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2013 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2014 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2015 		    ieee80211_has_protected(fc)) {
2016 			int queue = rx->security_idx;
2017 
2018 			/* Store CCMP/GCMP PN so that we can verify that the
2019 			 * next fragment has a sequential PN value.
2020 			 */
2021 			entry->check_sequential_pn = true;
2022 			memcpy(entry->last_pn,
2023 			       rx->key->u.ccmp.rx_pn[queue],
2024 			       IEEE80211_CCMP_PN_LEN);
2025 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2026 					      u.ccmp.rx_pn) !=
2027 				     offsetof(struct ieee80211_key,
2028 					      u.gcmp.rx_pn));
2029 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2030 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2031 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2032 				     IEEE80211_GCMP_PN_LEN);
2033 		}
2034 		return RX_QUEUED;
2035 	}
2036 
2037 	/* This is a fragment for a frame that should already be pending in
2038 	 * fragment cache. Add this fragment to the end of the pending entry.
2039 	 */
2040 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2041 					  rx->seqno_idx, hdr);
2042 	if (!entry) {
2043 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2044 		return RX_DROP_MONITOR;
2045 	}
2046 
2047 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2048 	 *  MPDU PN values are not incrementing in steps of 1."
2049 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2050 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2051 	 */
2052 	if (entry->check_sequential_pn) {
2053 		int i;
2054 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2055 		int queue;
2056 
2057 		if (!rx->key ||
2058 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2059 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2060 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2061 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2062 			return RX_DROP_UNUSABLE;
2063 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2064 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2065 			pn[i]++;
2066 			if (pn[i])
2067 				break;
2068 		}
2069 		queue = rx->security_idx;
2070 		rpn = rx->key->u.ccmp.rx_pn[queue];
2071 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2072 			return RX_DROP_UNUSABLE;
2073 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2074 	}
2075 
2076 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2077 	__skb_queue_tail(&entry->skb_list, rx->skb);
2078 	entry->last_frag = frag;
2079 	entry->extra_len += rx->skb->len;
2080 	if (ieee80211_has_morefrags(fc)) {
2081 		rx->skb = NULL;
2082 		return RX_QUEUED;
2083 	}
2084 
2085 	rx->skb = __skb_dequeue(&entry->skb_list);
2086 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2087 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2088 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2089 					      GFP_ATOMIC))) {
2090 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2091 			__skb_queue_purge(&entry->skb_list);
2092 			return RX_DROP_UNUSABLE;
2093 		}
2094 	}
2095 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2096 		skb_put_data(rx->skb, skb->data, skb->len);
2097 		dev_kfree_skb(skb);
2098 	}
2099 
2100  out:
2101 	ieee80211_led_rx(rx->local);
2102  out_no_led:
2103 	if (rx->sta)
2104 		rx->sta->rx_stats.packets++;
2105 	return RX_CONTINUE;
2106 }
2107 
2108 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2109 {
2110 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2111 		return -EACCES;
2112 
2113 	return 0;
2114 }
2115 
2116 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2117 {
2118 	struct sk_buff *skb = rx->skb;
2119 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2120 
2121 	/*
2122 	 * Pass through unencrypted frames if the hardware has
2123 	 * decrypted them already.
2124 	 */
2125 	if (status->flag & RX_FLAG_DECRYPTED)
2126 		return 0;
2127 
2128 	/* Drop unencrypted frames if key is set. */
2129 	if (unlikely(!ieee80211_has_protected(fc) &&
2130 		     !ieee80211_is_nullfunc(fc) &&
2131 		     ieee80211_is_data(fc) && rx->key))
2132 		return -EACCES;
2133 
2134 	return 0;
2135 }
2136 
2137 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2138 {
2139 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2140 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2141 	__le16 fc = hdr->frame_control;
2142 
2143 	/*
2144 	 * Pass through unencrypted frames if the hardware has
2145 	 * decrypted them already.
2146 	 */
2147 	if (status->flag & RX_FLAG_DECRYPTED)
2148 		return 0;
2149 
2150 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2151 		if (unlikely(!ieee80211_has_protected(fc) &&
2152 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2153 			     rx->key)) {
2154 			if (ieee80211_is_deauth(fc) ||
2155 			    ieee80211_is_disassoc(fc))
2156 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2157 							     rx->skb->data,
2158 							     rx->skb->len);
2159 			return -EACCES;
2160 		}
2161 		/* BIP does not use Protected field, so need to check MMIE */
2162 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2163 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2164 			if (ieee80211_is_deauth(fc) ||
2165 			    ieee80211_is_disassoc(fc))
2166 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2167 							     rx->skb->data,
2168 							     rx->skb->len);
2169 			return -EACCES;
2170 		}
2171 		/*
2172 		 * When using MFP, Action frames are not allowed prior to
2173 		 * having configured keys.
2174 		 */
2175 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2176 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2177 			return -EACCES;
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 static int
2184 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2185 {
2186 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2187 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2188 	bool check_port_control = false;
2189 	struct ethhdr *ehdr;
2190 	int ret;
2191 
2192 	*port_control = false;
2193 	if (ieee80211_has_a4(hdr->frame_control) &&
2194 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2195 		return -1;
2196 
2197 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2198 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2199 
2200 		if (!sdata->u.mgd.use_4addr)
2201 			return -1;
2202 		else
2203 			check_port_control = true;
2204 	}
2205 
2206 	if (is_multicast_ether_addr(hdr->addr1) &&
2207 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2208 		return -1;
2209 
2210 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2211 	if (ret < 0)
2212 		return ret;
2213 
2214 	ehdr = (struct ethhdr *) rx->skb->data;
2215 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2216 		*port_control = true;
2217 	else if (check_port_control)
2218 		return -1;
2219 
2220 	return 0;
2221 }
2222 
2223 /*
2224  * requires that rx->skb is a frame with ethernet header
2225  */
2226 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2227 {
2228 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2229 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2230 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2231 
2232 	/*
2233 	 * Allow EAPOL frames to us/the PAE group address regardless
2234 	 * of whether the frame was encrypted or not.
2235 	 */
2236 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2237 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2238 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2239 		return true;
2240 
2241 	if (ieee80211_802_1x_port_control(rx) ||
2242 	    ieee80211_drop_unencrypted(rx, fc))
2243 		return false;
2244 
2245 	return true;
2246 }
2247 
2248 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2249 						 struct ieee80211_rx_data *rx)
2250 {
2251 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2252 	struct net_device *dev = sdata->dev;
2253 
2254 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2255 		      skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) &&
2256 		     sdata->control_port_over_nl80211)) {
2257 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2258 		bool noencrypt = status->flag & RX_FLAG_DECRYPTED;
2259 		struct ethhdr *ehdr = eth_hdr(skb);
2260 
2261 		cfg80211_rx_control_port(dev, skb->data, skb->len,
2262 					 ehdr->h_source,
2263 					 be16_to_cpu(skb->protocol), noencrypt);
2264 		dev_kfree_skb(skb);
2265 	} else {
2266 		/* deliver to local stack */
2267 		if (rx->napi)
2268 			napi_gro_receive(rx->napi, skb);
2269 		else
2270 			netif_receive_skb(skb);
2271 	}
2272 }
2273 
2274 /*
2275  * requires that rx->skb is a frame with ethernet header
2276  */
2277 static void
2278 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2279 {
2280 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2281 	struct net_device *dev = sdata->dev;
2282 	struct sk_buff *skb, *xmit_skb;
2283 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2284 	struct sta_info *dsta;
2285 
2286 	skb = rx->skb;
2287 	xmit_skb = NULL;
2288 
2289 	ieee80211_rx_stats(dev, skb->len);
2290 
2291 	if (rx->sta) {
2292 		/* The seqno index has the same property as needed
2293 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2294 		 * for non-QoS-data frames. Here we know it's a data
2295 		 * frame, so count MSDUs.
2296 		 */
2297 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2298 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2299 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2300 	}
2301 
2302 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2303 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2304 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2305 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2306 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2307 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2308 			/*
2309 			 * send multicast frames both to higher layers in
2310 			 * local net stack and back to the wireless medium
2311 			 */
2312 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2313 			if (!xmit_skb)
2314 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2315 						    dev->name);
2316 		} else if (!is_multicast_ether_addr(ehdr->h_dest)) {
2317 			dsta = sta_info_get(sdata, skb->data);
2318 			if (dsta) {
2319 				/*
2320 				 * The destination station is associated to
2321 				 * this AP (in this VLAN), so send the frame
2322 				 * directly to it and do not pass it to local
2323 				 * net stack.
2324 				 */
2325 				xmit_skb = skb;
2326 				skb = NULL;
2327 			}
2328 		}
2329 	}
2330 
2331 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2332 	if (skb) {
2333 		/* 'align' will only take the values 0 or 2 here since all
2334 		 * frames are required to be aligned to 2-byte boundaries
2335 		 * when being passed to mac80211; the code here works just
2336 		 * as well if that isn't true, but mac80211 assumes it can
2337 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2338 		 */
2339 		int align;
2340 
2341 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2342 		if (align) {
2343 			if (WARN_ON(skb_headroom(skb) < 3)) {
2344 				dev_kfree_skb(skb);
2345 				skb = NULL;
2346 			} else {
2347 				u8 *data = skb->data;
2348 				size_t len = skb_headlen(skb);
2349 				skb->data -= align;
2350 				memmove(skb->data, data, len);
2351 				skb_set_tail_pointer(skb, len);
2352 			}
2353 		}
2354 	}
2355 #endif
2356 
2357 	if (skb) {
2358 		skb->protocol = eth_type_trans(skb, dev);
2359 		memset(skb->cb, 0, sizeof(skb->cb));
2360 
2361 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2362 	}
2363 
2364 	if (xmit_skb) {
2365 		/*
2366 		 * Send to wireless media and increase priority by 256 to
2367 		 * keep the received priority instead of reclassifying
2368 		 * the frame (see cfg80211_classify8021d).
2369 		 */
2370 		xmit_skb->priority += 256;
2371 		xmit_skb->protocol = htons(ETH_P_802_3);
2372 		skb_reset_network_header(xmit_skb);
2373 		skb_reset_mac_header(xmit_skb);
2374 		dev_queue_xmit(xmit_skb);
2375 	}
2376 }
2377 
2378 static ieee80211_rx_result debug_noinline
2379 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2380 {
2381 	struct net_device *dev = rx->sdata->dev;
2382 	struct sk_buff *skb = rx->skb;
2383 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2384 	__le16 fc = hdr->frame_control;
2385 	struct sk_buff_head frame_list;
2386 	struct ethhdr ethhdr;
2387 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2388 
2389 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2390 		check_da = NULL;
2391 		check_sa = NULL;
2392 	} else switch (rx->sdata->vif.type) {
2393 		case NL80211_IFTYPE_AP:
2394 		case NL80211_IFTYPE_AP_VLAN:
2395 			check_da = NULL;
2396 			break;
2397 		case NL80211_IFTYPE_STATION:
2398 			if (!rx->sta ||
2399 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2400 				check_sa = NULL;
2401 			break;
2402 		case NL80211_IFTYPE_MESH_POINT:
2403 			check_sa = NULL;
2404 			break;
2405 		default:
2406 			break;
2407 	}
2408 
2409 	skb->dev = dev;
2410 	__skb_queue_head_init(&frame_list);
2411 
2412 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2413 					  rx->sdata->vif.addr,
2414 					  rx->sdata->vif.type,
2415 					  data_offset))
2416 		return RX_DROP_UNUSABLE;
2417 
2418 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2419 				 rx->sdata->vif.type,
2420 				 rx->local->hw.extra_tx_headroom,
2421 				 check_da, check_sa);
2422 
2423 	while (!skb_queue_empty(&frame_list)) {
2424 		rx->skb = __skb_dequeue(&frame_list);
2425 
2426 		if (!ieee80211_frame_allowed(rx, fc)) {
2427 			dev_kfree_skb(rx->skb);
2428 			continue;
2429 		}
2430 
2431 		ieee80211_deliver_skb(rx);
2432 	}
2433 
2434 	return RX_QUEUED;
2435 }
2436 
2437 static ieee80211_rx_result debug_noinline
2438 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2439 {
2440 	struct sk_buff *skb = rx->skb;
2441 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2442 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2443 	__le16 fc = hdr->frame_control;
2444 
2445 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2446 		return RX_CONTINUE;
2447 
2448 	if (unlikely(!ieee80211_is_data(fc)))
2449 		return RX_CONTINUE;
2450 
2451 	if (unlikely(!ieee80211_is_data_present(fc)))
2452 		return RX_DROP_MONITOR;
2453 
2454 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2455 		switch (rx->sdata->vif.type) {
2456 		case NL80211_IFTYPE_AP_VLAN:
2457 			if (!rx->sdata->u.vlan.sta)
2458 				return RX_DROP_UNUSABLE;
2459 			break;
2460 		case NL80211_IFTYPE_STATION:
2461 			if (!rx->sdata->u.mgd.use_4addr)
2462 				return RX_DROP_UNUSABLE;
2463 			break;
2464 		default:
2465 			return RX_DROP_UNUSABLE;
2466 		}
2467 	}
2468 
2469 	if (is_multicast_ether_addr(hdr->addr1))
2470 		return RX_DROP_UNUSABLE;
2471 
2472 	return __ieee80211_rx_h_amsdu(rx, 0);
2473 }
2474 
2475 #ifdef CONFIG_MAC80211_MESH
2476 static ieee80211_rx_result
2477 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2478 {
2479 	struct ieee80211_hdr *fwd_hdr, *hdr;
2480 	struct ieee80211_tx_info *info;
2481 	struct ieee80211s_hdr *mesh_hdr;
2482 	struct sk_buff *skb = rx->skb, *fwd_skb;
2483 	struct ieee80211_local *local = rx->local;
2484 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2485 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2486 	u16 ac, q, hdrlen;
2487 
2488 	hdr = (struct ieee80211_hdr *) skb->data;
2489 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2490 
2491 	/* make sure fixed part of mesh header is there, also checks skb len */
2492 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2493 		return RX_DROP_MONITOR;
2494 
2495 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2496 
2497 	/* make sure full mesh header is there, also checks skb len */
2498 	if (!pskb_may_pull(rx->skb,
2499 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2500 		return RX_DROP_MONITOR;
2501 
2502 	/* reload pointers */
2503 	hdr = (struct ieee80211_hdr *) skb->data;
2504 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2505 
2506 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2507 		return RX_DROP_MONITOR;
2508 
2509 	/* frame is in RMC, don't forward */
2510 	if (ieee80211_is_data(hdr->frame_control) &&
2511 	    is_multicast_ether_addr(hdr->addr1) &&
2512 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2513 		return RX_DROP_MONITOR;
2514 
2515 	if (!ieee80211_is_data(hdr->frame_control))
2516 		return RX_CONTINUE;
2517 
2518 	if (!mesh_hdr->ttl)
2519 		return RX_DROP_MONITOR;
2520 
2521 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2522 		struct mesh_path *mppath;
2523 		char *proxied_addr;
2524 		char *mpp_addr;
2525 
2526 		if (is_multicast_ether_addr(hdr->addr1)) {
2527 			mpp_addr = hdr->addr3;
2528 			proxied_addr = mesh_hdr->eaddr1;
2529 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2530 			    MESH_FLAGS_AE_A5_A6) {
2531 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2532 			mpp_addr = hdr->addr4;
2533 			proxied_addr = mesh_hdr->eaddr2;
2534 		} else {
2535 			return RX_DROP_MONITOR;
2536 		}
2537 
2538 		rcu_read_lock();
2539 		mppath = mpp_path_lookup(sdata, proxied_addr);
2540 		if (!mppath) {
2541 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2542 		} else {
2543 			spin_lock_bh(&mppath->state_lock);
2544 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2545 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2546 			mppath->exp_time = jiffies;
2547 			spin_unlock_bh(&mppath->state_lock);
2548 		}
2549 		rcu_read_unlock();
2550 	}
2551 
2552 	/* Frame has reached destination.  Don't forward */
2553 	if (!is_multicast_ether_addr(hdr->addr1) &&
2554 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2555 		return RX_CONTINUE;
2556 
2557 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2558 	q = sdata->vif.hw_queue[ac];
2559 	if (ieee80211_queue_stopped(&local->hw, q)) {
2560 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2561 		return RX_DROP_MONITOR;
2562 	}
2563 	skb_set_queue_mapping(skb, q);
2564 
2565 	if (!--mesh_hdr->ttl) {
2566 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2567 		goto out;
2568 	}
2569 
2570 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2571 		goto out;
2572 
2573 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2574 				       sdata->encrypt_headroom, 0, GFP_ATOMIC);
2575 	if (!fwd_skb)
2576 		goto out;
2577 
2578 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2579 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2580 	info = IEEE80211_SKB_CB(fwd_skb);
2581 	memset(info, 0, sizeof(*info));
2582 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2583 	info->control.vif = &rx->sdata->vif;
2584 	info->control.jiffies = jiffies;
2585 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2586 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2587 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2588 		/* update power mode indication when forwarding */
2589 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2590 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2591 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2592 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2593 	} else {
2594 		/* unable to resolve next hop */
2595 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2596 				   fwd_hdr->addr3, 0,
2597 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2598 				   fwd_hdr->addr2);
2599 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2600 		kfree_skb(fwd_skb);
2601 		return RX_DROP_MONITOR;
2602 	}
2603 
2604 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2605 	ieee80211_add_pending_skb(local, fwd_skb);
2606  out:
2607 	if (is_multicast_ether_addr(hdr->addr1))
2608 		return RX_CONTINUE;
2609 	return RX_DROP_MONITOR;
2610 }
2611 #endif
2612 
2613 static ieee80211_rx_result debug_noinline
2614 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2615 {
2616 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2617 	struct ieee80211_local *local = rx->local;
2618 	struct net_device *dev = sdata->dev;
2619 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2620 	__le16 fc = hdr->frame_control;
2621 	bool port_control;
2622 	int err;
2623 
2624 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2625 		return RX_CONTINUE;
2626 
2627 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2628 		return RX_DROP_MONITOR;
2629 
2630 	/*
2631 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2632 	 * also drop the frame to cooked monitor interfaces.
2633 	 */
2634 	if (ieee80211_has_a4(hdr->frame_control) &&
2635 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2636 		if (rx->sta &&
2637 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2638 			cfg80211_rx_unexpected_4addr_frame(
2639 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2640 		return RX_DROP_MONITOR;
2641 	}
2642 
2643 	err = __ieee80211_data_to_8023(rx, &port_control);
2644 	if (unlikely(err))
2645 		return RX_DROP_UNUSABLE;
2646 
2647 	if (!ieee80211_frame_allowed(rx, fc))
2648 		return RX_DROP_MONITOR;
2649 
2650 	/* directly handle TDLS channel switch requests/responses */
2651 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2652 						cpu_to_be16(ETH_P_TDLS))) {
2653 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2654 
2655 		if (pskb_may_pull(rx->skb,
2656 				  offsetof(struct ieee80211_tdls_data, u)) &&
2657 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2658 		    tf->category == WLAN_CATEGORY_TDLS &&
2659 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2660 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2661 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2662 			schedule_work(&local->tdls_chsw_work);
2663 			if (rx->sta)
2664 				rx->sta->rx_stats.packets++;
2665 
2666 			return RX_QUEUED;
2667 		}
2668 	}
2669 
2670 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2671 	    unlikely(port_control) && sdata->bss) {
2672 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2673 				     u.ap);
2674 		dev = sdata->dev;
2675 		rx->sdata = sdata;
2676 	}
2677 
2678 	rx->skb->dev = dev;
2679 
2680 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2681 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2682 	    !is_multicast_ether_addr(
2683 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2684 	    (!local->scanning &&
2685 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2686 		mod_timer(&local->dynamic_ps_timer, jiffies +
2687 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2688 
2689 	ieee80211_deliver_skb(rx);
2690 
2691 	return RX_QUEUED;
2692 }
2693 
2694 static ieee80211_rx_result debug_noinline
2695 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2696 {
2697 	struct sk_buff *skb = rx->skb;
2698 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2699 	struct tid_ampdu_rx *tid_agg_rx;
2700 	u16 start_seq_num;
2701 	u16 tid;
2702 
2703 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2704 		return RX_CONTINUE;
2705 
2706 	if (ieee80211_is_back_req(bar->frame_control)) {
2707 		struct {
2708 			__le16 control, start_seq_num;
2709 		} __packed bar_data;
2710 		struct ieee80211_event event = {
2711 			.type = BAR_RX_EVENT,
2712 		};
2713 
2714 		if (!rx->sta)
2715 			return RX_DROP_MONITOR;
2716 
2717 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2718 				  &bar_data, sizeof(bar_data)))
2719 			return RX_DROP_MONITOR;
2720 
2721 		tid = le16_to_cpu(bar_data.control) >> 12;
2722 
2723 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2724 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2725 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2726 					     WLAN_BACK_RECIPIENT,
2727 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2728 
2729 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2730 		if (!tid_agg_rx)
2731 			return RX_DROP_MONITOR;
2732 
2733 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2734 		event.u.ba.tid = tid;
2735 		event.u.ba.ssn = start_seq_num;
2736 		event.u.ba.sta = &rx->sta->sta;
2737 
2738 		/* reset session timer */
2739 		if (tid_agg_rx->timeout)
2740 			mod_timer(&tid_agg_rx->session_timer,
2741 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2742 
2743 		spin_lock(&tid_agg_rx->reorder_lock);
2744 		/* release stored frames up to start of BAR */
2745 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2746 						 start_seq_num, frames);
2747 		spin_unlock(&tid_agg_rx->reorder_lock);
2748 
2749 		drv_event_callback(rx->local, rx->sdata, &event);
2750 
2751 		kfree_skb(skb);
2752 		return RX_QUEUED;
2753 	}
2754 
2755 	/*
2756 	 * After this point, we only want management frames,
2757 	 * so we can drop all remaining control frames to
2758 	 * cooked monitor interfaces.
2759 	 */
2760 	return RX_DROP_MONITOR;
2761 }
2762 
2763 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2764 					   struct ieee80211_mgmt *mgmt,
2765 					   size_t len)
2766 {
2767 	struct ieee80211_local *local = sdata->local;
2768 	struct sk_buff *skb;
2769 	struct ieee80211_mgmt *resp;
2770 
2771 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2772 		/* Not to own unicast address */
2773 		return;
2774 	}
2775 
2776 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2777 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2778 		/* Not from the current AP or not associated yet. */
2779 		return;
2780 	}
2781 
2782 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2783 		/* Too short SA Query request frame */
2784 		return;
2785 	}
2786 
2787 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2788 	if (skb == NULL)
2789 		return;
2790 
2791 	skb_reserve(skb, local->hw.extra_tx_headroom);
2792 	resp = skb_put_zero(skb, 24);
2793 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2794 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2795 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2796 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2797 					  IEEE80211_STYPE_ACTION);
2798 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2799 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2800 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2801 	memcpy(resp->u.action.u.sa_query.trans_id,
2802 	       mgmt->u.action.u.sa_query.trans_id,
2803 	       WLAN_SA_QUERY_TR_ID_LEN);
2804 
2805 	ieee80211_tx_skb(sdata, skb);
2806 }
2807 
2808 static ieee80211_rx_result debug_noinline
2809 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2810 {
2811 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2812 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2813 
2814 	/*
2815 	 * From here on, look only at management frames.
2816 	 * Data and control frames are already handled,
2817 	 * and unknown (reserved) frames are useless.
2818 	 */
2819 	if (rx->skb->len < 24)
2820 		return RX_DROP_MONITOR;
2821 
2822 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2823 		return RX_DROP_MONITOR;
2824 
2825 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2826 	    ieee80211_is_beacon(mgmt->frame_control) &&
2827 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2828 		int sig = 0;
2829 
2830 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
2831 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
2832 			sig = status->signal;
2833 
2834 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2835 					    rx->skb->data, rx->skb->len,
2836 					    status->freq, sig);
2837 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2838 	}
2839 
2840 	if (ieee80211_drop_unencrypted_mgmt(rx))
2841 		return RX_DROP_UNUSABLE;
2842 
2843 	return RX_CONTINUE;
2844 }
2845 
2846 static ieee80211_rx_result debug_noinline
2847 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2848 {
2849 	struct ieee80211_local *local = rx->local;
2850 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2851 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2852 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2853 	int len = rx->skb->len;
2854 
2855 	if (!ieee80211_is_action(mgmt->frame_control))
2856 		return RX_CONTINUE;
2857 
2858 	/* drop too small frames */
2859 	if (len < IEEE80211_MIN_ACTION_SIZE)
2860 		return RX_DROP_UNUSABLE;
2861 
2862 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2863 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2864 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2865 		return RX_DROP_UNUSABLE;
2866 
2867 	switch (mgmt->u.action.category) {
2868 	case WLAN_CATEGORY_HT:
2869 		/* reject HT action frames from stations not supporting HT */
2870 		if (!rx->sta->sta.ht_cap.ht_supported)
2871 			goto invalid;
2872 
2873 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2874 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2875 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2876 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2877 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2878 			break;
2879 
2880 		/* verify action & smps_control/chanwidth are present */
2881 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2882 			goto invalid;
2883 
2884 		switch (mgmt->u.action.u.ht_smps.action) {
2885 		case WLAN_HT_ACTION_SMPS: {
2886 			struct ieee80211_supported_band *sband;
2887 			enum ieee80211_smps_mode smps_mode;
2888 			struct sta_opmode_info sta_opmode = {};
2889 
2890 			/* convert to HT capability */
2891 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2892 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2893 				smps_mode = IEEE80211_SMPS_OFF;
2894 				break;
2895 			case WLAN_HT_SMPS_CONTROL_STATIC:
2896 				smps_mode = IEEE80211_SMPS_STATIC;
2897 				break;
2898 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2899 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2900 				break;
2901 			default:
2902 				goto invalid;
2903 			}
2904 
2905 			/* if no change do nothing */
2906 			if (rx->sta->sta.smps_mode == smps_mode)
2907 				goto handled;
2908 			rx->sta->sta.smps_mode = smps_mode;
2909 			sta_opmode.smps_mode =
2910 				ieee80211_smps_mode_to_smps_mode(smps_mode);
2911 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
2912 
2913 			sband = rx->local->hw.wiphy->bands[status->band];
2914 
2915 			rate_control_rate_update(local, sband, rx->sta,
2916 						 IEEE80211_RC_SMPS_CHANGED);
2917 			cfg80211_sta_opmode_change_notify(sdata->dev,
2918 							  rx->sta->addr,
2919 							  &sta_opmode,
2920 							  GFP_KERNEL);
2921 			goto handled;
2922 		}
2923 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2924 			struct ieee80211_supported_band *sband;
2925 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2926 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2927 			struct sta_opmode_info sta_opmode = {};
2928 
2929 			/* If it doesn't support 40 MHz it can't change ... */
2930 			if (!(rx->sta->sta.ht_cap.cap &
2931 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2932 				goto handled;
2933 
2934 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2935 				max_bw = IEEE80211_STA_RX_BW_20;
2936 			else
2937 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2938 
2939 			/* set cur_max_bandwidth and recalc sta bw */
2940 			rx->sta->cur_max_bandwidth = max_bw;
2941 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2942 
2943 			if (rx->sta->sta.bandwidth == new_bw)
2944 				goto handled;
2945 
2946 			rx->sta->sta.bandwidth = new_bw;
2947 			sband = rx->local->hw.wiphy->bands[status->band];
2948 			sta_opmode.bw =
2949 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
2950 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
2951 
2952 			rate_control_rate_update(local, sband, rx->sta,
2953 						 IEEE80211_RC_BW_CHANGED);
2954 			cfg80211_sta_opmode_change_notify(sdata->dev,
2955 							  rx->sta->addr,
2956 							  &sta_opmode,
2957 							  GFP_KERNEL);
2958 			goto handled;
2959 		}
2960 		default:
2961 			goto invalid;
2962 		}
2963 
2964 		break;
2965 	case WLAN_CATEGORY_PUBLIC:
2966 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2967 			goto invalid;
2968 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2969 			break;
2970 		if (!rx->sta)
2971 			break;
2972 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2973 			break;
2974 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2975 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2976 			break;
2977 		if (len < offsetof(struct ieee80211_mgmt,
2978 				   u.action.u.ext_chan_switch.variable))
2979 			goto invalid;
2980 		goto queue;
2981 	case WLAN_CATEGORY_VHT:
2982 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2983 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2984 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2985 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2986 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2987 			break;
2988 
2989 		/* verify action code is present */
2990 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2991 			goto invalid;
2992 
2993 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2994 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2995 			/* verify opmode is present */
2996 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2997 				goto invalid;
2998 			goto queue;
2999 		}
3000 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3001 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3002 				goto invalid;
3003 			goto queue;
3004 		}
3005 		default:
3006 			break;
3007 		}
3008 		break;
3009 	case WLAN_CATEGORY_BACK:
3010 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3011 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3012 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3013 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3014 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3015 			break;
3016 
3017 		/* verify action_code is present */
3018 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3019 			break;
3020 
3021 		switch (mgmt->u.action.u.addba_req.action_code) {
3022 		case WLAN_ACTION_ADDBA_REQ:
3023 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3024 				   sizeof(mgmt->u.action.u.addba_req)))
3025 				goto invalid;
3026 			break;
3027 		case WLAN_ACTION_ADDBA_RESP:
3028 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3029 				   sizeof(mgmt->u.action.u.addba_resp)))
3030 				goto invalid;
3031 			break;
3032 		case WLAN_ACTION_DELBA:
3033 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3034 				   sizeof(mgmt->u.action.u.delba)))
3035 				goto invalid;
3036 			break;
3037 		default:
3038 			goto invalid;
3039 		}
3040 
3041 		goto queue;
3042 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3043 		/* verify action_code is present */
3044 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3045 			break;
3046 
3047 		switch (mgmt->u.action.u.measurement.action_code) {
3048 		case WLAN_ACTION_SPCT_MSR_REQ:
3049 			if (status->band != NL80211_BAND_5GHZ)
3050 				break;
3051 
3052 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3053 				   sizeof(mgmt->u.action.u.measurement)))
3054 				break;
3055 
3056 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3057 				break;
3058 
3059 			ieee80211_process_measurement_req(sdata, mgmt, len);
3060 			goto handled;
3061 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3062 			u8 *bssid;
3063 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3064 				   sizeof(mgmt->u.action.u.chan_switch)))
3065 				break;
3066 
3067 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3068 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3069 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3070 				break;
3071 
3072 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3073 				bssid = sdata->u.mgd.bssid;
3074 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3075 				bssid = sdata->u.ibss.bssid;
3076 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3077 				bssid = mgmt->sa;
3078 			else
3079 				break;
3080 
3081 			if (!ether_addr_equal(mgmt->bssid, bssid))
3082 				break;
3083 
3084 			goto queue;
3085 			}
3086 		}
3087 		break;
3088 	case WLAN_CATEGORY_SA_QUERY:
3089 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3090 			   sizeof(mgmt->u.action.u.sa_query)))
3091 			break;
3092 
3093 		switch (mgmt->u.action.u.sa_query.action) {
3094 		case WLAN_ACTION_SA_QUERY_REQUEST:
3095 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3096 				break;
3097 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3098 			goto handled;
3099 		}
3100 		break;
3101 	case WLAN_CATEGORY_SELF_PROTECTED:
3102 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3103 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3104 			break;
3105 
3106 		switch (mgmt->u.action.u.self_prot.action_code) {
3107 		case WLAN_SP_MESH_PEERING_OPEN:
3108 		case WLAN_SP_MESH_PEERING_CLOSE:
3109 		case WLAN_SP_MESH_PEERING_CONFIRM:
3110 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3111 				goto invalid;
3112 			if (sdata->u.mesh.user_mpm)
3113 				/* userspace handles this frame */
3114 				break;
3115 			goto queue;
3116 		case WLAN_SP_MGK_INFORM:
3117 		case WLAN_SP_MGK_ACK:
3118 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3119 				goto invalid;
3120 			break;
3121 		}
3122 		break;
3123 	case WLAN_CATEGORY_MESH_ACTION:
3124 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3125 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3126 			break;
3127 
3128 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3129 			break;
3130 		if (mesh_action_is_path_sel(mgmt) &&
3131 		    !mesh_path_sel_is_hwmp(sdata))
3132 			break;
3133 		goto queue;
3134 	}
3135 
3136 	return RX_CONTINUE;
3137 
3138  invalid:
3139 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3140 	/* will return in the next handlers */
3141 	return RX_CONTINUE;
3142 
3143  handled:
3144 	if (rx->sta)
3145 		rx->sta->rx_stats.packets++;
3146 	dev_kfree_skb(rx->skb);
3147 	return RX_QUEUED;
3148 
3149  queue:
3150 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3151 	ieee80211_queue_work(&local->hw, &sdata->work);
3152 	if (rx->sta)
3153 		rx->sta->rx_stats.packets++;
3154 	return RX_QUEUED;
3155 }
3156 
3157 static ieee80211_rx_result debug_noinline
3158 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3159 {
3160 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3161 	int sig = 0;
3162 
3163 	/* skip known-bad action frames and return them in the next handler */
3164 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3165 		return RX_CONTINUE;
3166 
3167 	/*
3168 	 * Getting here means the kernel doesn't know how to handle
3169 	 * it, but maybe userspace does ... include returned frames
3170 	 * so userspace can register for those to know whether ones
3171 	 * it transmitted were processed or returned.
3172 	 */
3173 
3174 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3175 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3176 		sig = status->signal;
3177 
3178 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3179 			     rx->skb->data, rx->skb->len, 0)) {
3180 		if (rx->sta)
3181 			rx->sta->rx_stats.packets++;
3182 		dev_kfree_skb(rx->skb);
3183 		return RX_QUEUED;
3184 	}
3185 
3186 	return RX_CONTINUE;
3187 }
3188 
3189 static ieee80211_rx_result debug_noinline
3190 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3191 {
3192 	struct ieee80211_local *local = rx->local;
3193 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3194 	struct sk_buff *nskb;
3195 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3196 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3197 
3198 	if (!ieee80211_is_action(mgmt->frame_control))
3199 		return RX_CONTINUE;
3200 
3201 	/*
3202 	 * For AP mode, hostapd is responsible for handling any action
3203 	 * frames that we didn't handle, including returning unknown
3204 	 * ones. For all other modes we will return them to the sender,
3205 	 * setting the 0x80 bit in the action category, as required by
3206 	 * 802.11-2012 9.24.4.
3207 	 * Newer versions of hostapd shall also use the management frame
3208 	 * registration mechanisms, but older ones still use cooked
3209 	 * monitor interfaces so push all frames there.
3210 	 */
3211 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3212 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3213 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3214 		return RX_DROP_MONITOR;
3215 
3216 	if (is_multicast_ether_addr(mgmt->da))
3217 		return RX_DROP_MONITOR;
3218 
3219 	/* do not return rejected action frames */
3220 	if (mgmt->u.action.category & 0x80)
3221 		return RX_DROP_UNUSABLE;
3222 
3223 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3224 			       GFP_ATOMIC);
3225 	if (nskb) {
3226 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3227 
3228 		nmgmt->u.action.category |= 0x80;
3229 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3230 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3231 
3232 		memset(nskb->cb, 0, sizeof(nskb->cb));
3233 
3234 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3235 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3236 
3237 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3238 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3239 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3240 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3241 				info->hw_queue =
3242 					local->hw.offchannel_tx_hw_queue;
3243 		}
3244 
3245 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3246 					    status->band);
3247 	}
3248 	dev_kfree_skb(rx->skb);
3249 	return RX_QUEUED;
3250 }
3251 
3252 static ieee80211_rx_result debug_noinline
3253 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3254 {
3255 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3256 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3257 	__le16 stype;
3258 
3259 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3260 
3261 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3262 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3263 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3264 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3265 		return RX_DROP_MONITOR;
3266 
3267 	switch (stype) {
3268 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3269 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3270 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3271 		/* process for all: mesh, mlme, ibss */
3272 		break;
3273 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3274 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3275 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3276 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3277 		if (is_multicast_ether_addr(mgmt->da) &&
3278 		    !is_broadcast_ether_addr(mgmt->da))
3279 			return RX_DROP_MONITOR;
3280 
3281 		/* process only for station */
3282 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3283 			return RX_DROP_MONITOR;
3284 		break;
3285 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3286 		/* process only for ibss and mesh */
3287 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3288 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3289 			return RX_DROP_MONITOR;
3290 		break;
3291 	default:
3292 		return RX_DROP_MONITOR;
3293 	}
3294 
3295 	/* queue up frame and kick off work to process it */
3296 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3297 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3298 	if (rx->sta)
3299 		rx->sta->rx_stats.packets++;
3300 
3301 	return RX_QUEUED;
3302 }
3303 
3304 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3305 					struct ieee80211_rate *rate)
3306 {
3307 	struct ieee80211_sub_if_data *sdata;
3308 	struct ieee80211_local *local = rx->local;
3309 	struct sk_buff *skb = rx->skb, *skb2;
3310 	struct net_device *prev_dev = NULL;
3311 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3312 	int needed_headroom;
3313 
3314 	/*
3315 	 * If cooked monitor has been processed already, then
3316 	 * don't do it again. If not, set the flag.
3317 	 */
3318 	if (rx->flags & IEEE80211_RX_CMNTR)
3319 		goto out_free_skb;
3320 	rx->flags |= IEEE80211_RX_CMNTR;
3321 
3322 	/* If there are no cooked monitor interfaces, just free the SKB */
3323 	if (!local->cooked_mntrs)
3324 		goto out_free_skb;
3325 
3326 	/* vendor data is long removed here */
3327 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3328 	/* room for the radiotap header based on driver features */
3329 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3330 
3331 	if (skb_headroom(skb) < needed_headroom &&
3332 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3333 		goto out_free_skb;
3334 
3335 	/* prepend radiotap information */
3336 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3337 					 false);
3338 
3339 	skb_reset_mac_header(skb);
3340 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3341 	skb->pkt_type = PACKET_OTHERHOST;
3342 	skb->protocol = htons(ETH_P_802_2);
3343 
3344 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3345 		if (!ieee80211_sdata_running(sdata))
3346 			continue;
3347 
3348 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3349 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3350 			continue;
3351 
3352 		if (prev_dev) {
3353 			skb2 = skb_clone(skb, GFP_ATOMIC);
3354 			if (skb2) {
3355 				skb2->dev = prev_dev;
3356 				netif_receive_skb(skb2);
3357 			}
3358 		}
3359 
3360 		prev_dev = sdata->dev;
3361 		ieee80211_rx_stats(sdata->dev, skb->len);
3362 	}
3363 
3364 	if (prev_dev) {
3365 		skb->dev = prev_dev;
3366 		netif_receive_skb(skb);
3367 		return;
3368 	}
3369 
3370  out_free_skb:
3371 	dev_kfree_skb(skb);
3372 }
3373 
3374 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3375 					 ieee80211_rx_result res)
3376 {
3377 	switch (res) {
3378 	case RX_DROP_MONITOR:
3379 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3380 		if (rx->sta)
3381 			rx->sta->rx_stats.dropped++;
3382 		/* fall through */
3383 	case RX_CONTINUE: {
3384 		struct ieee80211_rate *rate = NULL;
3385 		struct ieee80211_supported_band *sband;
3386 		struct ieee80211_rx_status *status;
3387 
3388 		status = IEEE80211_SKB_RXCB((rx->skb));
3389 
3390 		sband = rx->local->hw.wiphy->bands[status->band];
3391 		if (!(status->encoding == RX_ENC_HT) &&
3392 		    !(status->encoding == RX_ENC_VHT))
3393 			rate = &sband->bitrates[status->rate_idx];
3394 
3395 		ieee80211_rx_cooked_monitor(rx, rate);
3396 		break;
3397 		}
3398 	case RX_DROP_UNUSABLE:
3399 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3400 		if (rx->sta)
3401 			rx->sta->rx_stats.dropped++;
3402 		dev_kfree_skb(rx->skb);
3403 		break;
3404 	case RX_QUEUED:
3405 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3406 		break;
3407 	}
3408 }
3409 
3410 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3411 				  struct sk_buff_head *frames)
3412 {
3413 	ieee80211_rx_result res = RX_DROP_MONITOR;
3414 	struct sk_buff *skb;
3415 
3416 #define CALL_RXH(rxh)			\
3417 	do {				\
3418 		res = rxh(rx);		\
3419 		if (res != RX_CONTINUE)	\
3420 			goto rxh_next;  \
3421 	} while (0)
3422 
3423 	/* Lock here to avoid hitting all of the data used in the RX
3424 	 * path (e.g. key data, station data, ...) concurrently when
3425 	 * a frame is released from the reorder buffer due to timeout
3426 	 * from the timer, potentially concurrently with RX from the
3427 	 * driver.
3428 	 */
3429 	spin_lock_bh(&rx->local->rx_path_lock);
3430 
3431 	while ((skb = __skb_dequeue(frames))) {
3432 		/*
3433 		 * all the other fields are valid across frames
3434 		 * that belong to an aMPDU since they are on the
3435 		 * same TID from the same station
3436 		 */
3437 		rx->skb = skb;
3438 
3439 		CALL_RXH(ieee80211_rx_h_check_more_data);
3440 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3441 		CALL_RXH(ieee80211_rx_h_sta_process);
3442 		CALL_RXH(ieee80211_rx_h_decrypt);
3443 		CALL_RXH(ieee80211_rx_h_defragment);
3444 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3445 		/* must be after MMIC verify so header is counted in MPDU mic */
3446 #ifdef CONFIG_MAC80211_MESH
3447 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3448 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3449 #endif
3450 		CALL_RXH(ieee80211_rx_h_amsdu);
3451 		CALL_RXH(ieee80211_rx_h_data);
3452 
3453 		/* special treatment -- needs the queue */
3454 		res = ieee80211_rx_h_ctrl(rx, frames);
3455 		if (res != RX_CONTINUE)
3456 			goto rxh_next;
3457 
3458 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3459 		CALL_RXH(ieee80211_rx_h_action);
3460 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3461 		CALL_RXH(ieee80211_rx_h_action_return);
3462 		CALL_RXH(ieee80211_rx_h_mgmt);
3463 
3464  rxh_next:
3465 		ieee80211_rx_handlers_result(rx, res);
3466 
3467 #undef CALL_RXH
3468 	}
3469 
3470 	spin_unlock_bh(&rx->local->rx_path_lock);
3471 }
3472 
3473 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3474 {
3475 	struct sk_buff_head reorder_release;
3476 	ieee80211_rx_result res = RX_DROP_MONITOR;
3477 
3478 	__skb_queue_head_init(&reorder_release);
3479 
3480 #define CALL_RXH(rxh)			\
3481 	do {				\
3482 		res = rxh(rx);		\
3483 		if (res != RX_CONTINUE)	\
3484 			goto rxh_next;  \
3485 	} while (0)
3486 
3487 	CALL_RXH(ieee80211_rx_h_check_dup);
3488 	CALL_RXH(ieee80211_rx_h_check);
3489 
3490 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3491 
3492 	ieee80211_rx_handlers(rx, &reorder_release);
3493 	return;
3494 
3495  rxh_next:
3496 	ieee80211_rx_handlers_result(rx, res);
3497 
3498 #undef CALL_RXH
3499 }
3500 
3501 /*
3502  * This function makes calls into the RX path, therefore
3503  * it has to be invoked under RCU read lock.
3504  */
3505 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3506 {
3507 	struct sk_buff_head frames;
3508 	struct ieee80211_rx_data rx = {
3509 		.sta = sta,
3510 		.sdata = sta->sdata,
3511 		.local = sta->local,
3512 		/* This is OK -- must be QoS data frame */
3513 		.security_idx = tid,
3514 		.seqno_idx = tid,
3515 		.napi = NULL, /* must be NULL to not have races */
3516 	};
3517 	struct tid_ampdu_rx *tid_agg_rx;
3518 
3519 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3520 	if (!tid_agg_rx)
3521 		return;
3522 
3523 	__skb_queue_head_init(&frames);
3524 
3525 	spin_lock(&tid_agg_rx->reorder_lock);
3526 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3527 	spin_unlock(&tid_agg_rx->reorder_lock);
3528 
3529 	if (!skb_queue_empty(&frames)) {
3530 		struct ieee80211_event event = {
3531 			.type = BA_FRAME_TIMEOUT,
3532 			.u.ba.tid = tid,
3533 			.u.ba.sta = &sta->sta,
3534 		};
3535 		drv_event_callback(rx.local, rx.sdata, &event);
3536 	}
3537 
3538 	ieee80211_rx_handlers(&rx, &frames);
3539 }
3540 
3541 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3542 					  u16 ssn, u64 filtered,
3543 					  u16 received_mpdus)
3544 {
3545 	struct sta_info *sta;
3546 	struct tid_ampdu_rx *tid_agg_rx;
3547 	struct sk_buff_head frames;
3548 	struct ieee80211_rx_data rx = {
3549 		/* This is OK -- must be QoS data frame */
3550 		.security_idx = tid,
3551 		.seqno_idx = tid,
3552 	};
3553 	int i, diff;
3554 
3555 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3556 		return;
3557 
3558 	__skb_queue_head_init(&frames);
3559 
3560 	sta = container_of(pubsta, struct sta_info, sta);
3561 
3562 	rx.sta = sta;
3563 	rx.sdata = sta->sdata;
3564 	rx.local = sta->local;
3565 
3566 	rcu_read_lock();
3567 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3568 	if (!tid_agg_rx)
3569 		goto out;
3570 
3571 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3572 
3573 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3574 		int release;
3575 
3576 		/* release all frames in the reorder buffer */
3577 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3578 			   IEEE80211_SN_MODULO;
3579 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3580 						 release, &frames);
3581 		/* update ssn to match received ssn */
3582 		tid_agg_rx->head_seq_num = ssn;
3583 	} else {
3584 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3585 						 &frames);
3586 	}
3587 
3588 	/* handle the case that received ssn is behind the mac ssn.
3589 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3590 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3591 	if (diff >= tid_agg_rx->buf_size) {
3592 		tid_agg_rx->reorder_buf_filtered = 0;
3593 		goto release;
3594 	}
3595 	filtered = filtered >> diff;
3596 	ssn += diff;
3597 
3598 	/* update bitmap */
3599 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3600 		int index = (ssn + i) % tid_agg_rx->buf_size;
3601 
3602 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3603 		if (filtered & BIT_ULL(i))
3604 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3605 	}
3606 
3607 	/* now process also frames that the filter marking released */
3608 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3609 
3610 release:
3611 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3612 
3613 	ieee80211_rx_handlers(&rx, &frames);
3614 
3615  out:
3616 	rcu_read_unlock();
3617 }
3618 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3619 
3620 /* main receive path */
3621 
3622 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3623 {
3624 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3625 	struct sk_buff *skb = rx->skb;
3626 	struct ieee80211_hdr *hdr = (void *)skb->data;
3627 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3628 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3629 	bool multicast = is_multicast_ether_addr(hdr->addr1);
3630 
3631 	switch (sdata->vif.type) {
3632 	case NL80211_IFTYPE_STATION:
3633 		if (!bssid && !sdata->u.mgd.use_4addr)
3634 			return false;
3635 		if (multicast)
3636 			return true;
3637 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3638 	case NL80211_IFTYPE_ADHOC:
3639 		if (!bssid)
3640 			return false;
3641 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3642 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3643 			return false;
3644 		if (ieee80211_is_beacon(hdr->frame_control))
3645 			return true;
3646 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3647 			return false;
3648 		if (!multicast &&
3649 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3650 			return false;
3651 		if (!rx->sta) {
3652 			int rate_idx;
3653 			if (status->encoding != RX_ENC_LEGACY)
3654 				rate_idx = 0; /* TODO: HT/VHT rates */
3655 			else
3656 				rate_idx = status->rate_idx;
3657 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3658 						 BIT(rate_idx));
3659 		}
3660 		return true;
3661 	case NL80211_IFTYPE_OCB:
3662 		if (!bssid)
3663 			return false;
3664 		if (!ieee80211_is_data_present(hdr->frame_control))
3665 			return false;
3666 		if (!is_broadcast_ether_addr(bssid))
3667 			return false;
3668 		if (!multicast &&
3669 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3670 			return false;
3671 		if (!rx->sta) {
3672 			int rate_idx;
3673 			if (status->encoding != RX_ENC_LEGACY)
3674 				rate_idx = 0; /* TODO: HT rates */
3675 			else
3676 				rate_idx = status->rate_idx;
3677 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3678 						BIT(rate_idx));
3679 		}
3680 		return true;
3681 	case NL80211_IFTYPE_MESH_POINT:
3682 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3683 			return false;
3684 		if (multicast)
3685 			return true;
3686 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3687 	case NL80211_IFTYPE_AP_VLAN:
3688 	case NL80211_IFTYPE_AP:
3689 		if (!bssid)
3690 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3691 
3692 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3693 			/*
3694 			 * Accept public action frames even when the
3695 			 * BSSID doesn't match, this is used for P2P
3696 			 * and location updates. Note that mac80211
3697 			 * itself never looks at these frames.
3698 			 */
3699 			if (!multicast &&
3700 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3701 				return false;
3702 			if (ieee80211_is_public_action(hdr, skb->len))
3703 				return true;
3704 			return ieee80211_is_beacon(hdr->frame_control);
3705 		}
3706 
3707 		if (!ieee80211_has_tods(hdr->frame_control)) {
3708 			/* ignore data frames to TDLS-peers */
3709 			if (ieee80211_is_data(hdr->frame_control))
3710 				return false;
3711 			/* ignore action frames to TDLS-peers */
3712 			if (ieee80211_is_action(hdr->frame_control) &&
3713 			    !is_broadcast_ether_addr(bssid) &&
3714 			    !ether_addr_equal(bssid, hdr->addr1))
3715 				return false;
3716 		}
3717 
3718 		/*
3719 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3720 		 * the BSSID - we've checked that already but may have accepted
3721 		 * the wildcard (ff:ff:ff:ff:ff:ff).
3722 		 *
3723 		 * It also says:
3724 		 *	The BSSID of the Data frame is determined as follows:
3725 		 *	a) If the STA is contained within an AP or is associated
3726 		 *	   with an AP, the BSSID is the address currently in use
3727 		 *	   by the STA contained in the AP.
3728 		 *
3729 		 * So we should not accept data frames with an address that's
3730 		 * multicast.
3731 		 *
3732 		 * Accepting it also opens a security problem because stations
3733 		 * could encrypt it with the GTK and inject traffic that way.
3734 		 */
3735 		if (ieee80211_is_data(hdr->frame_control) && multicast)
3736 			return false;
3737 
3738 		return true;
3739 	case NL80211_IFTYPE_WDS:
3740 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3741 			return false;
3742 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3743 	case NL80211_IFTYPE_P2P_DEVICE:
3744 		return ieee80211_is_public_action(hdr, skb->len) ||
3745 		       ieee80211_is_probe_req(hdr->frame_control) ||
3746 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3747 		       ieee80211_is_beacon(hdr->frame_control);
3748 	case NL80211_IFTYPE_NAN:
3749 		/* Currently no frames on NAN interface are allowed */
3750 		return false;
3751 	default:
3752 		break;
3753 	}
3754 
3755 	WARN_ON_ONCE(1);
3756 	return false;
3757 }
3758 
3759 void ieee80211_check_fast_rx(struct sta_info *sta)
3760 {
3761 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3762 	struct ieee80211_local *local = sdata->local;
3763 	struct ieee80211_key *key;
3764 	struct ieee80211_fast_rx fastrx = {
3765 		.dev = sdata->dev,
3766 		.vif_type = sdata->vif.type,
3767 		.control_port_protocol = sdata->control_port_protocol,
3768 	}, *old, *new = NULL;
3769 	bool assign = false;
3770 
3771 	/* use sparse to check that we don't return without updating */
3772 	__acquire(check_fast_rx);
3773 
3774 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3775 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3776 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3777 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3778 
3779 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3780 
3781 	/* fast-rx doesn't do reordering */
3782 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3783 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3784 		goto clear;
3785 
3786 	switch (sdata->vif.type) {
3787 	case NL80211_IFTYPE_STATION:
3788 		if (sta->sta.tdls) {
3789 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3790 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3791 			fastrx.expected_ds_bits = 0;
3792 		} else {
3793 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3794 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3795 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3796 			fastrx.expected_ds_bits =
3797 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3798 		}
3799 
3800 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
3801 			fastrx.expected_ds_bits |=
3802 				cpu_to_le16(IEEE80211_FCTL_TODS);
3803 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3804 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
3805 		}
3806 
3807 		if (!sdata->u.mgd.powersave)
3808 			break;
3809 
3810 		/* software powersave is a huge mess, avoid all of it */
3811 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3812 			goto clear;
3813 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3814 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3815 			goto clear;
3816 		break;
3817 	case NL80211_IFTYPE_AP_VLAN:
3818 	case NL80211_IFTYPE_AP:
3819 		/* parallel-rx requires this, at least with calls to
3820 		 * ieee80211_sta_ps_transition()
3821 		 */
3822 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3823 			goto clear;
3824 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3825 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3826 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3827 
3828 		fastrx.internal_forward =
3829 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3830 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3831 			 !sdata->u.vlan.sta);
3832 
3833 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3834 		    sdata->u.vlan.sta) {
3835 			fastrx.expected_ds_bits |=
3836 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3837 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
3838 			fastrx.internal_forward = 0;
3839 		}
3840 
3841 		break;
3842 	default:
3843 		goto clear;
3844 	}
3845 
3846 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3847 		goto clear;
3848 
3849 	rcu_read_lock();
3850 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3851 	if (key) {
3852 		switch (key->conf.cipher) {
3853 		case WLAN_CIPHER_SUITE_TKIP:
3854 			/* we don't want to deal with MMIC in fast-rx */
3855 			goto clear_rcu;
3856 		case WLAN_CIPHER_SUITE_CCMP:
3857 		case WLAN_CIPHER_SUITE_CCMP_256:
3858 		case WLAN_CIPHER_SUITE_GCMP:
3859 		case WLAN_CIPHER_SUITE_GCMP_256:
3860 			break;
3861 		default:
3862 			/* we also don't want to deal with WEP or cipher scheme
3863 			 * since those require looking up the key idx in the
3864 			 * frame, rather than assuming the PTK is used
3865 			 * (we need to revisit this once we implement the real
3866 			 * PTK index, which is now valid in the spec, but we
3867 			 * haven't implemented that part yet)
3868 			 */
3869 			goto clear_rcu;
3870 		}
3871 
3872 		fastrx.key = true;
3873 		fastrx.icv_len = key->conf.icv_len;
3874 	}
3875 
3876 	assign = true;
3877  clear_rcu:
3878 	rcu_read_unlock();
3879  clear:
3880 	__release(check_fast_rx);
3881 
3882 	if (assign)
3883 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3884 
3885 	spin_lock_bh(&sta->lock);
3886 	old = rcu_dereference_protected(sta->fast_rx, true);
3887 	rcu_assign_pointer(sta->fast_rx, new);
3888 	spin_unlock_bh(&sta->lock);
3889 
3890 	if (old)
3891 		kfree_rcu(old, rcu_head);
3892 }
3893 
3894 void ieee80211_clear_fast_rx(struct sta_info *sta)
3895 {
3896 	struct ieee80211_fast_rx *old;
3897 
3898 	spin_lock_bh(&sta->lock);
3899 	old = rcu_dereference_protected(sta->fast_rx, true);
3900 	RCU_INIT_POINTER(sta->fast_rx, NULL);
3901 	spin_unlock_bh(&sta->lock);
3902 
3903 	if (old)
3904 		kfree_rcu(old, rcu_head);
3905 }
3906 
3907 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3908 {
3909 	struct ieee80211_local *local = sdata->local;
3910 	struct sta_info *sta;
3911 
3912 	lockdep_assert_held(&local->sta_mtx);
3913 
3914 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
3915 		if (sdata != sta->sdata &&
3916 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3917 			continue;
3918 		ieee80211_check_fast_rx(sta);
3919 	}
3920 }
3921 
3922 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3923 {
3924 	struct ieee80211_local *local = sdata->local;
3925 
3926 	mutex_lock(&local->sta_mtx);
3927 	__ieee80211_check_fast_rx_iface(sdata);
3928 	mutex_unlock(&local->sta_mtx);
3929 }
3930 
3931 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3932 				     struct ieee80211_fast_rx *fast_rx)
3933 {
3934 	struct sk_buff *skb = rx->skb;
3935 	struct ieee80211_hdr *hdr = (void *)skb->data;
3936 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3937 	struct sta_info *sta = rx->sta;
3938 	int orig_len = skb->len;
3939 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
3940 	int snap_offs = hdrlen;
3941 	struct {
3942 		u8 snap[sizeof(rfc1042_header)];
3943 		__be16 proto;
3944 	} *payload __aligned(2);
3945 	struct {
3946 		u8 da[ETH_ALEN];
3947 		u8 sa[ETH_ALEN];
3948 	} addrs __aligned(2);
3949 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3950 
3951 	if (fast_rx->uses_rss)
3952 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
3953 
3954 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3955 	 * to a common data structure; drivers can implement that per queue
3956 	 * but we don't have that information in mac80211
3957 	 */
3958 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3959 		return false;
3960 
3961 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3962 
3963 	/* If using encryption, we also need to have:
3964 	 *  - PN_VALIDATED: similar, but the implementation is tricky
3965 	 *  - DECRYPTED: necessary for PN_VALIDATED
3966 	 */
3967 	if (fast_rx->key &&
3968 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3969 		return false;
3970 
3971 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3972 		return false;
3973 
3974 	if (unlikely(ieee80211_is_frag(hdr)))
3975 		return false;
3976 
3977 	/* Since our interface address cannot be multicast, this
3978 	 * implicitly also rejects multicast frames without the
3979 	 * explicit check.
3980 	 *
3981 	 * We shouldn't get any *data* frames not addressed to us
3982 	 * (AP mode will accept multicast *management* frames), but
3983 	 * punting here will make it go through the full checks in
3984 	 * ieee80211_accept_frame().
3985 	 */
3986 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3987 		return false;
3988 
3989 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3990 					      IEEE80211_FCTL_TODS)) !=
3991 	    fast_rx->expected_ds_bits)
3992 		return false;
3993 
3994 	/* assign the key to drop unencrypted frames (later)
3995 	 * and strip the IV/MIC if necessary
3996 	 */
3997 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3998 		/* GCMP header length is the same */
3999 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4000 	}
4001 
4002 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4003 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4004 			goto drop;
4005 
4006 		payload = (void *)(skb->data + snap_offs);
4007 
4008 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4009 			return false;
4010 
4011 		/* Don't handle these here since they require special code.
4012 		 * Accept AARP and IPX even though they should come with a
4013 		 * bridge-tunnel header - but if we get them this way then
4014 		 * there's little point in discarding them.
4015 		 */
4016 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4017 			     payload->proto == fast_rx->control_port_protocol))
4018 			return false;
4019 	}
4020 
4021 	/* after this point, don't punt to the slowpath! */
4022 
4023 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4024 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4025 		goto drop;
4026 
4027 	if (unlikely(fast_rx->sta_notify)) {
4028 		ieee80211_sta_rx_notify(rx->sdata, hdr);
4029 		fast_rx->sta_notify = false;
4030 	}
4031 
4032 	/* statistics part of ieee80211_rx_h_sta_process() */
4033 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4034 		stats->last_signal = status->signal;
4035 		if (!fast_rx->uses_rss)
4036 			ewma_signal_add(&sta->rx_stats_avg.signal,
4037 					-status->signal);
4038 	}
4039 
4040 	if (status->chains) {
4041 		int i;
4042 
4043 		stats->chains = status->chains;
4044 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4045 			int signal = status->chain_signal[i];
4046 
4047 			if (!(status->chains & BIT(i)))
4048 				continue;
4049 
4050 			stats->chain_signal_last[i] = signal;
4051 			if (!fast_rx->uses_rss)
4052 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4053 						-signal);
4054 		}
4055 	}
4056 	/* end of statistics */
4057 
4058 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4059 		goto drop;
4060 
4061 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4062 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4063 		    RX_QUEUED)
4064 			goto drop;
4065 
4066 		return true;
4067 	}
4068 
4069 	stats->last_rx = jiffies;
4070 	stats->last_rate = sta_stats_encode_rate(status);
4071 
4072 	stats->fragments++;
4073 	stats->packets++;
4074 
4075 	/* do the header conversion - first grab the addresses */
4076 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4077 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4078 	/* remove the SNAP but leave the ethertype */
4079 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4080 	/* push the addresses in front */
4081 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4082 
4083 	skb->dev = fast_rx->dev;
4084 
4085 	ieee80211_rx_stats(fast_rx->dev, skb->len);
4086 
4087 	/* The seqno index has the same property as needed
4088 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4089 	 * for non-QoS-data frames. Here we know it's a data
4090 	 * frame, so count MSDUs.
4091 	 */
4092 	u64_stats_update_begin(&stats->syncp);
4093 	stats->msdu[rx->seqno_idx]++;
4094 	stats->bytes += orig_len;
4095 	u64_stats_update_end(&stats->syncp);
4096 
4097 	if (fast_rx->internal_forward) {
4098 		struct sk_buff *xmit_skb = NULL;
4099 		bool multicast = is_multicast_ether_addr(skb->data);
4100 
4101 		if (multicast) {
4102 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4103 		} else if (sta_info_get(rx->sdata, skb->data)) {
4104 			xmit_skb = skb;
4105 			skb = NULL;
4106 		}
4107 
4108 		if (xmit_skb) {
4109 			/*
4110 			 * Send to wireless media and increase priority by 256
4111 			 * to keep the received priority instead of
4112 			 * reclassifying the frame (see cfg80211_classify8021d).
4113 			 */
4114 			xmit_skb->priority += 256;
4115 			xmit_skb->protocol = htons(ETH_P_802_3);
4116 			skb_reset_network_header(xmit_skb);
4117 			skb_reset_mac_header(xmit_skb);
4118 			dev_queue_xmit(xmit_skb);
4119 		}
4120 
4121 		if (!skb)
4122 			return true;
4123 	}
4124 
4125 	/* deliver to local stack */
4126 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4127 	memset(skb->cb, 0, sizeof(skb->cb));
4128 	if (rx->napi)
4129 		napi_gro_receive(rx->napi, skb);
4130 	else
4131 		netif_receive_skb(skb);
4132 
4133 	return true;
4134  drop:
4135 	dev_kfree_skb(skb);
4136 	stats->dropped++;
4137 	return true;
4138 }
4139 
4140 /*
4141  * This function returns whether or not the SKB
4142  * was destined for RX processing or not, which,
4143  * if consume is true, is equivalent to whether
4144  * or not the skb was consumed.
4145  */
4146 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4147 					    struct sk_buff *skb, bool consume)
4148 {
4149 	struct ieee80211_local *local = rx->local;
4150 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4151 
4152 	rx->skb = skb;
4153 
4154 	/* See if we can do fast-rx; if we have to copy we already lost,
4155 	 * so punt in that case. We should never have to deliver a data
4156 	 * frame to multiple interfaces anyway.
4157 	 *
4158 	 * We skip the ieee80211_accept_frame() call and do the necessary
4159 	 * checking inside ieee80211_invoke_fast_rx().
4160 	 */
4161 	if (consume && rx->sta) {
4162 		struct ieee80211_fast_rx *fast_rx;
4163 
4164 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4165 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4166 			return true;
4167 	}
4168 
4169 	if (!ieee80211_accept_frame(rx))
4170 		return false;
4171 
4172 	if (!consume) {
4173 		skb = skb_copy(skb, GFP_ATOMIC);
4174 		if (!skb) {
4175 			if (net_ratelimit())
4176 				wiphy_debug(local->hw.wiphy,
4177 					"failed to copy skb for %s\n",
4178 					sdata->name);
4179 			return true;
4180 		}
4181 
4182 		rx->skb = skb;
4183 	}
4184 
4185 	ieee80211_invoke_rx_handlers(rx);
4186 	return true;
4187 }
4188 
4189 /*
4190  * This is the actual Rx frames handler. as it belongs to Rx path it must
4191  * be called with rcu_read_lock protection.
4192  */
4193 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4194 					 struct ieee80211_sta *pubsta,
4195 					 struct sk_buff *skb,
4196 					 struct napi_struct *napi)
4197 {
4198 	struct ieee80211_local *local = hw_to_local(hw);
4199 	struct ieee80211_sub_if_data *sdata;
4200 	struct ieee80211_hdr *hdr;
4201 	__le16 fc;
4202 	struct ieee80211_rx_data rx;
4203 	struct ieee80211_sub_if_data *prev;
4204 	struct rhlist_head *tmp;
4205 	int err = 0;
4206 
4207 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4208 	memset(&rx, 0, sizeof(rx));
4209 	rx.skb = skb;
4210 	rx.local = local;
4211 	rx.napi = napi;
4212 
4213 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4214 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4215 
4216 	if (ieee80211_is_mgmt(fc)) {
4217 		/* drop frame if too short for header */
4218 		if (skb->len < ieee80211_hdrlen(fc))
4219 			err = -ENOBUFS;
4220 		else
4221 			err = skb_linearize(skb);
4222 	} else {
4223 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4224 	}
4225 
4226 	if (err) {
4227 		dev_kfree_skb(skb);
4228 		return;
4229 	}
4230 
4231 	hdr = (struct ieee80211_hdr *)skb->data;
4232 	ieee80211_parse_qos(&rx);
4233 	ieee80211_verify_alignment(&rx);
4234 
4235 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4236 		     ieee80211_is_beacon(hdr->frame_control)))
4237 		ieee80211_scan_rx(local, skb);
4238 
4239 	if (ieee80211_is_data(fc)) {
4240 		struct sta_info *sta, *prev_sta;
4241 
4242 		if (pubsta) {
4243 			rx.sta = container_of(pubsta, struct sta_info, sta);
4244 			rx.sdata = rx.sta->sdata;
4245 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4246 				return;
4247 			goto out;
4248 		}
4249 
4250 		prev_sta = NULL;
4251 
4252 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4253 			if (!prev_sta) {
4254 				prev_sta = sta;
4255 				continue;
4256 			}
4257 
4258 			rx.sta = prev_sta;
4259 			rx.sdata = prev_sta->sdata;
4260 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4261 
4262 			prev_sta = sta;
4263 		}
4264 
4265 		if (prev_sta) {
4266 			rx.sta = prev_sta;
4267 			rx.sdata = prev_sta->sdata;
4268 
4269 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4270 				return;
4271 			goto out;
4272 		}
4273 	}
4274 
4275 	prev = NULL;
4276 
4277 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4278 		if (!ieee80211_sdata_running(sdata))
4279 			continue;
4280 
4281 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4282 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4283 			continue;
4284 
4285 		/*
4286 		 * frame is destined for this interface, but if it's
4287 		 * not also for the previous one we handle that after
4288 		 * the loop to avoid copying the SKB once too much
4289 		 */
4290 
4291 		if (!prev) {
4292 			prev = sdata;
4293 			continue;
4294 		}
4295 
4296 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4297 		rx.sdata = prev;
4298 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4299 
4300 		prev = sdata;
4301 	}
4302 
4303 	if (prev) {
4304 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4305 		rx.sdata = prev;
4306 
4307 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4308 			return;
4309 	}
4310 
4311  out:
4312 	dev_kfree_skb(skb);
4313 }
4314 
4315 /*
4316  * This is the receive path handler. It is called by a low level driver when an
4317  * 802.11 MPDU is received from the hardware.
4318  */
4319 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4320 		       struct sk_buff *skb, struct napi_struct *napi)
4321 {
4322 	struct ieee80211_local *local = hw_to_local(hw);
4323 	struct ieee80211_rate *rate = NULL;
4324 	struct ieee80211_supported_band *sband;
4325 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4326 
4327 	WARN_ON_ONCE(softirq_count() == 0);
4328 
4329 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4330 		goto drop;
4331 
4332 	sband = local->hw.wiphy->bands[status->band];
4333 	if (WARN_ON(!sband))
4334 		goto drop;
4335 
4336 	/*
4337 	 * If we're suspending, it is possible although not too likely
4338 	 * that we'd be receiving frames after having already partially
4339 	 * quiesced the stack. We can't process such frames then since
4340 	 * that might, for example, cause stations to be added or other
4341 	 * driver callbacks be invoked.
4342 	 */
4343 	if (unlikely(local->quiescing || local->suspended))
4344 		goto drop;
4345 
4346 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4347 	if (unlikely(local->in_reconfig))
4348 		goto drop;
4349 
4350 	/*
4351 	 * The same happens when we're not even started,
4352 	 * but that's worth a warning.
4353 	 */
4354 	if (WARN_ON(!local->started))
4355 		goto drop;
4356 
4357 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4358 		/*
4359 		 * Validate the rate, unless a PLCP error means that
4360 		 * we probably can't have a valid rate here anyway.
4361 		 */
4362 
4363 		switch (status->encoding) {
4364 		case RX_ENC_HT:
4365 			/*
4366 			 * rate_idx is MCS index, which can be [0-76]
4367 			 * as documented on:
4368 			 *
4369 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4370 			 *
4371 			 * Anything else would be some sort of driver or
4372 			 * hardware error. The driver should catch hardware
4373 			 * errors.
4374 			 */
4375 			if (WARN(status->rate_idx > 76,
4376 				 "Rate marked as an HT rate but passed "
4377 				 "status->rate_idx is not "
4378 				 "an MCS index [0-76]: %d (0x%02x)\n",
4379 				 status->rate_idx,
4380 				 status->rate_idx))
4381 				goto drop;
4382 			break;
4383 		case RX_ENC_VHT:
4384 			if (WARN_ONCE(status->rate_idx > 9 ||
4385 				      !status->nss ||
4386 				      status->nss > 8,
4387 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4388 				      status->rate_idx, status->nss))
4389 				goto drop;
4390 			break;
4391 		default:
4392 			WARN_ON_ONCE(1);
4393 			/* fall through */
4394 		case RX_ENC_LEGACY:
4395 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4396 				goto drop;
4397 			rate = &sband->bitrates[status->rate_idx];
4398 		}
4399 	}
4400 
4401 	status->rx_flags = 0;
4402 
4403 	/*
4404 	 * key references and virtual interfaces are protected using RCU
4405 	 * and this requires that we are in a read-side RCU section during
4406 	 * receive processing
4407 	 */
4408 	rcu_read_lock();
4409 
4410 	/*
4411 	 * Frames with failed FCS/PLCP checksum are not returned,
4412 	 * all other frames are returned without radiotap header
4413 	 * if it was previously present.
4414 	 * Also, frames with less than 16 bytes are dropped.
4415 	 */
4416 	skb = ieee80211_rx_monitor(local, skb, rate);
4417 	if (!skb) {
4418 		rcu_read_unlock();
4419 		return;
4420 	}
4421 
4422 	ieee80211_tpt_led_trig_rx(local,
4423 			((struct ieee80211_hdr *)skb->data)->frame_control,
4424 			skb->len);
4425 
4426 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4427 
4428 	rcu_read_unlock();
4429 
4430 	return;
4431  drop:
4432 	kfree_skb(skb);
4433 }
4434 EXPORT_SYMBOL(ieee80211_rx_napi);
4435 
4436 /* This is a version of the rx handler that can be called from hard irq
4437  * context. Post the skb on the queue and schedule the tasklet */
4438 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4439 {
4440 	struct ieee80211_local *local = hw_to_local(hw);
4441 
4442 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4443 
4444 	skb->pkt_type = IEEE80211_RX_MSG;
4445 	skb_queue_tail(&local->skb_queue, skb);
4446 	tasklet_schedule(&local->tasklet);
4447 }
4448 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4449