1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2020 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/bitops.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 36 { 37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 38 39 u64_stats_update_begin(&tstats->syncp); 40 tstats->rx_packets++; 41 tstats->rx_bytes += len; 42 u64_stats_update_end(&tstats->syncp); 43 } 44 45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 46 enum nl80211_iftype type) 47 { 48 __le16 fc = hdr->frame_control; 49 50 if (ieee80211_is_data(fc)) { 51 if (len < 24) /* drop incorrect hdr len (data) */ 52 return NULL; 53 54 if (ieee80211_has_a4(fc)) 55 return NULL; 56 if (ieee80211_has_tods(fc)) 57 return hdr->addr1; 58 if (ieee80211_has_fromds(fc)) 59 return hdr->addr2; 60 61 return hdr->addr3; 62 } 63 64 if (ieee80211_is_mgmt(fc)) { 65 if (len < 24) /* drop incorrect hdr len (mgmt) */ 66 return NULL; 67 return hdr->addr3; 68 } 69 70 if (ieee80211_is_ctl(fc)) { 71 if (ieee80211_is_pspoll(fc)) 72 return hdr->addr1; 73 74 if (ieee80211_is_back_req(fc)) { 75 switch (type) { 76 case NL80211_IFTYPE_STATION: 77 return hdr->addr2; 78 case NL80211_IFTYPE_AP: 79 case NL80211_IFTYPE_AP_VLAN: 80 return hdr->addr1; 81 default: 82 break; /* fall through to the return */ 83 } 84 } 85 } 86 87 return NULL; 88 } 89 90 /* 91 * monitor mode reception 92 * 93 * This function cleans up the SKB, i.e. it removes all the stuff 94 * only useful for monitoring. 95 */ 96 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 97 unsigned int present_fcs_len, 98 unsigned int rtap_space) 99 { 100 struct ieee80211_hdr *hdr; 101 unsigned int hdrlen; 102 __le16 fc; 103 104 if (present_fcs_len) 105 __pskb_trim(skb, skb->len - present_fcs_len); 106 __pskb_pull(skb, rtap_space); 107 108 hdr = (void *)skb->data; 109 fc = hdr->frame_control; 110 111 /* 112 * Remove the HT-Control field (if present) on management 113 * frames after we've sent the frame to monitoring. We 114 * (currently) don't need it, and don't properly parse 115 * frames with it present, due to the assumption of a 116 * fixed management header length. 117 */ 118 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 119 return skb; 120 121 hdrlen = ieee80211_hdrlen(fc); 122 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 123 124 if (!pskb_may_pull(skb, hdrlen)) { 125 dev_kfree_skb(skb); 126 return NULL; 127 } 128 129 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 130 hdrlen - IEEE80211_HT_CTL_LEN); 131 __pskb_pull(skb, IEEE80211_HT_CTL_LEN); 132 133 return skb; 134 } 135 136 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 137 unsigned int rtap_space) 138 { 139 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 140 struct ieee80211_hdr *hdr; 141 142 hdr = (void *)(skb->data + rtap_space); 143 144 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 145 RX_FLAG_FAILED_PLCP_CRC | 146 RX_FLAG_ONLY_MONITOR | 147 RX_FLAG_NO_PSDU)) 148 return true; 149 150 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 151 return true; 152 153 if (ieee80211_is_ctl(hdr->frame_control) && 154 !ieee80211_is_pspoll(hdr->frame_control) && 155 !ieee80211_is_back_req(hdr->frame_control)) 156 return true; 157 158 return false; 159 } 160 161 static int 162 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 163 struct ieee80211_rx_status *status, 164 struct sk_buff *skb) 165 { 166 int len; 167 168 /* always present fields */ 169 len = sizeof(struct ieee80211_radiotap_header) + 8; 170 171 /* allocate extra bitmaps */ 172 if (status->chains) 173 len += 4 * hweight8(status->chains); 174 /* vendor presence bitmap */ 175 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 176 len += 4; 177 178 if (ieee80211_have_rx_timestamp(status)) { 179 len = ALIGN(len, 8); 180 len += 8; 181 } 182 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 183 len += 1; 184 185 /* antenna field, if we don't have per-chain info */ 186 if (!status->chains) 187 len += 1; 188 189 /* padding for RX_FLAGS if necessary */ 190 len = ALIGN(len, 2); 191 192 if (status->encoding == RX_ENC_HT) /* HT info */ 193 len += 3; 194 195 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 196 len = ALIGN(len, 4); 197 len += 8; 198 } 199 200 if (status->encoding == RX_ENC_VHT) { 201 len = ALIGN(len, 2); 202 len += 12; 203 } 204 205 if (local->hw.radiotap_timestamp.units_pos >= 0) { 206 len = ALIGN(len, 8); 207 len += 12; 208 } 209 210 if (status->encoding == RX_ENC_HE && 211 status->flag & RX_FLAG_RADIOTAP_HE) { 212 len = ALIGN(len, 2); 213 len += 12; 214 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 215 } 216 217 if (status->encoding == RX_ENC_HE && 218 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 219 len = ALIGN(len, 2); 220 len += 12; 221 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 222 } 223 224 if (status->flag & RX_FLAG_NO_PSDU) 225 len += 1; 226 227 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 228 len = ALIGN(len, 2); 229 len += 4; 230 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 231 } 232 233 if (status->chains) { 234 /* antenna and antenna signal fields */ 235 len += 2 * hweight8(status->chains); 236 } 237 238 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 239 struct ieee80211_vendor_radiotap *rtap; 240 int vendor_data_offset = 0; 241 242 /* 243 * The position to look at depends on the existence (or non- 244 * existence) of other elements, so take that into account... 245 */ 246 if (status->flag & RX_FLAG_RADIOTAP_HE) 247 vendor_data_offset += 248 sizeof(struct ieee80211_radiotap_he); 249 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 250 vendor_data_offset += 251 sizeof(struct ieee80211_radiotap_he_mu); 252 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 253 vendor_data_offset += 254 sizeof(struct ieee80211_radiotap_lsig); 255 256 rtap = (void *)&skb->data[vendor_data_offset]; 257 258 /* alignment for fixed 6-byte vendor data header */ 259 len = ALIGN(len, 2); 260 /* vendor data header */ 261 len += 6; 262 if (WARN_ON(rtap->align == 0)) 263 rtap->align = 1; 264 len = ALIGN(len, rtap->align); 265 len += rtap->len + rtap->pad; 266 } 267 268 return len; 269 } 270 271 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 272 struct sk_buff *skb, 273 int rtap_space) 274 { 275 struct { 276 struct ieee80211_hdr_3addr hdr; 277 u8 category; 278 u8 action_code; 279 } __packed __aligned(2) action; 280 281 if (!sdata) 282 return; 283 284 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 285 286 if (skb->len < rtap_space + sizeof(action) + 287 VHT_MUMIMO_GROUPS_DATA_LEN) 288 return; 289 290 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 291 return; 292 293 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 294 295 if (!ieee80211_is_action(action.hdr.frame_control)) 296 return; 297 298 if (action.category != WLAN_CATEGORY_VHT) 299 return; 300 301 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 302 return; 303 304 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 305 return; 306 307 skb = skb_copy(skb, GFP_ATOMIC); 308 if (!skb) 309 return; 310 311 skb_queue_tail(&sdata->skb_queue, skb); 312 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 313 } 314 315 /* 316 * ieee80211_add_rx_radiotap_header - add radiotap header 317 * 318 * add a radiotap header containing all the fields which the hardware provided. 319 */ 320 static void 321 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 322 struct sk_buff *skb, 323 struct ieee80211_rate *rate, 324 int rtap_len, bool has_fcs) 325 { 326 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 327 struct ieee80211_radiotap_header *rthdr; 328 unsigned char *pos; 329 __le32 *it_present; 330 u32 it_present_val; 331 u16 rx_flags = 0; 332 u16 channel_flags = 0; 333 int mpdulen, chain; 334 unsigned long chains = status->chains; 335 struct ieee80211_vendor_radiotap rtap = {}; 336 struct ieee80211_radiotap_he he = {}; 337 struct ieee80211_radiotap_he_mu he_mu = {}; 338 struct ieee80211_radiotap_lsig lsig = {}; 339 340 if (status->flag & RX_FLAG_RADIOTAP_HE) { 341 he = *(struct ieee80211_radiotap_he *)skb->data; 342 skb_pull(skb, sizeof(he)); 343 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 344 } 345 346 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 347 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 348 skb_pull(skb, sizeof(he_mu)); 349 } 350 351 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 352 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 353 skb_pull(skb, sizeof(lsig)); 354 } 355 356 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 357 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 358 /* rtap.len and rtap.pad are undone immediately */ 359 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 360 } 361 362 mpdulen = skb->len; 363 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 364 mpdulen += FCS_LEN; 365 366 rthdr = skb_push(skb, rtap_len); 367 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 368 it_present = &rthdr->it_present; 369 370 /* radiotap header, set always present flags */ 371 rthdr->it_len = cpu_to_le16(rtap_len); 372 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 373 BIT(IEEE80211_RADIOTAP_CHANNEL) | 374 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 375 376 if (!status->chains) 377 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 378 379 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 380 it_present_val |= 381 BIT(IEEE80211_RADIOTAP_EXT) | 382 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 383 put_unaligned_le32(it_present_val, it_present); 384 it_present++; 385 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 386 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 387 } 388 389 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 390 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 391 BIT(IEEE80211_RADIOTAP_EXT); 392 put_unaligned_le32(it_present_val, it_present); 393 it_present++; 394 it_present_val = rtap.present; 395 } 396 397 put_unaligned_le32(it_present_val, it_present); 398 399 pos = (void *)(it_present + 1); 400 401 /* the order of the following fields is important */ 402 403 /* IEEE80211_RADIOTAP_TSFT */ 404 if (ieee80211_have_rx_timestamp(status)) { 405 /* padding */ 406 while ((pos - (u8 *)rthdr) & 7) 407 *pos++ = 0; 408 put_unaligned_le64( 409 ieee80211_calculate_rx_timestamp(local, status, 410 mpdulen, 0), 411 pos); 412 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 413 pos += 8; 414 } 415 416 /* IEEE80211_RADIOTAP_FLAGS */ 417 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 418 *pos |= IEEE80211_RADIOTAP_F_FCS; 419 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 420 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 421 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 422 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 423 pos++; 424 425 /* IEEE80211_RADIOTAP_RATE */ 426 if (!rate || status->encoding != RX_ENC_LEGACY) { 427 /* 428 * Without rate information don't add it. If we have, 429 * MCS information is a separate field in radiotap, 430 * added below. The byte here is needed as padding 431 * for the channel though, so initialise it to 0. 432 */ 433 *pos = 0; 434 } else { 435 int shift = 0; 436 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 437 if (status->bw == RATE_INFO_BW_10) 438 shift = 1; 439 else if (status->bw == RATE_INFO_BW_5) 440 shift = 2; 441 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 442 } 443 pos++; 444 445 /* IEEE80211_RADIOTAP_CHANNEL */ 446 /* TODO: frequency offset in KHz */ 447 put_unaligned_le16(status->freq, pos); 448 pos += 2; 449 if (status->bw == RATE_INFO_BW_10) 450 channel_flags |= IEEE80211_CHAN_HALF; 451 else if (status->bw == RATE_INFO_BW_5) 452 channel_flags |= IEEE80211_CHAN_QUARTER; 453 454 if (status->band == NL80211_BAND_5GHZ || 455 status->band == NL80211_BAND_6GHZ) 456 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 457 else if (status->encoding != RX_ENC_LEGACY) 458 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 459 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 460 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 461 else if (rate) 462 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 463 else 464 channel_flags |= IEEE80211_CHAN_2GHZ; 465 put_unaligned_le16(channel_flags, pos); 466 pos += 2; 467 468 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 469 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 470 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 471 *pos = status->signal; 472 rthdr->it_present |= 473 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 474 pos++; 475 } 476 477 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 478 479 if (!status->chains) { 480 /* IEEE80211_RADIOTAP_ANTENNA */ 481 *pos = status->antenna; 482 pos++; 483 } 484 485 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 486 487 /* IEEE80211_RADIOTAP_RX_FLAGS */ 488 /* ensure 2 byte alignment for the 2 byte field as required */ 489 if ((pos - (u8 *)rthdr) & 1) 490 *pos++ = 0; 491 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 492 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 493 put_unaligned_le16(rx_flags, pos); 494 pos += 2; 495 496 if (status->encoding == RX_ENC_HT) { 497 unsigned int stbc; 498 499 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 500 *pos++ = local->hw.radiotap_mcs_details; 501 *pos = 0; 502 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 503 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 504 if (status->bw == RATE_INFO_BW_40) 505 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 506 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 507 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 508 if (status->enc_flags & RX_ENC_FLAG_LDPC) 509 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 510 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 511 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 512 pos++; 513 *pos++ = status->rate_idx; 514 } 515 516 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 517 u16 flags = 0; 518 519 /* ensure 4 byte alignment */ 520 while ((pos - (u8 *)rthdr) & 3) 521 pos++; 522 rthdr->it_present |= 523 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 524 put_unaligned_le32(status->ampdu_reference, pos); 525 pos += 4; 526 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 527 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 528 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 529 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 530 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 531 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 532 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 533 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 534 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 535 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 536 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 537 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 538 put_unaligned_le16(flags, pos); 539 pos += 2; 540 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 541 *pos++ = status->ampdu_delimiter_crc; 542 else 543 *pos++ = 0; 544 *pos++ = 0; 545 } 546 547 if (status->encoding == RX_ENC_VHT) { 548 u16 known = local->hw.radiotap_vht_details; 549 550 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 551 put_unaligned_le16(known, pos); 552 pos += 2; 553 /* flags */ 554 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 555 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 556 /* in VHT, STBC is binary */ 557 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 558 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 559 if (status->enc_flags & RX_ENC_FLAG_BF) 560 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 561 pos++; 562 /* bandwidth */ 563 switch (status->bw) { 564 case RATE_INFO_BW_80: 565 *pos++ = 4; 566 break; 567 case RATE_INFO_BW_160: 568 *pos++ = 11; 569 break; 570 case RATE_INFO_BW_40: 571 *pos++ = 1; 572 break; 573 default: 574 *pos++ = 0; 575 } 576 /* MCS/NSS */ 577 *pos = (status->rate_idx << 4) | status->nss; 578 pos += 4; 579 /* coding field */ 580 if (status->enc_flags & RX_ENC_FLAG_LDPC) 581 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 582 pos++; 583 /* group ID */ 584 pos++; 585 /* partial_aid */ 586 pos += 2; 587 } 588 589 if (local->hw.radiotap_timestamp.units_pos >= 0) { 590 u16 accuracy = 0; 591 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 592 593 rthdr->it_present |= 594 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 595 596 /* ensure 8 byte alignment */ 597 while ((pos - (u8 *)rthdr) & 7) 598 pos++; 599 600 put_unaligned_le64(status->device_timestamp, pos); 601 pos += sizeof(u64); 602 603 if (local->hw.radiotap_timestamp.accuracy >= 0) { 604 accuracy = local->hw.radiotap_timestamp.accuracy; 605 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 606 } 607 put_unaligned_le16(accuracy, pos); 608 pos += sizeof(u16); 609 610 *pos++ = local->hw.radiotap_timestamp.units_pos; 611 *pos++ = flags; 612 } 613 614 if (status->encoding == RX_ENC_HE && 615 status->flag & RX_FLAG_RADIOTAP_HE) { 616 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 617 618 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 619 he.data6 |= HE_PREP(DATA6_NSTS, 620 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 621 status->enc_flags)); 622 he.data3 |= HE_PREP(DATA3_STBC, 1); 623 } else { 624 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 625 } 626 627 #define CHECK_GI(s) \ 628 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 629 (int)NL80211_RATE_INFO_HE_GI_##s) 630 631 CHECK_GI(0_8); 632 CHECK_GI(1_6); 633 CHECK_GI(3_2); 634 635 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 636 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 637 he.data3 |= HE_PREP(DATA3_CODING, 638 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 639 640 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 641 642 switch (status->bw) { 643 case RATE_INFO_BW_20: 644 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 645 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 646 break; 647 case RATE_INFO_BW_40: 648 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 649 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 650 break; 651 case RATE_INFO_BW_80: 652 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 653 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 654 break; 655 case RATE_INFO_BW_160: 656 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 657 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 658 break; 659 case RATE_INFO_BW_HE_RU: 660 #define CHECK_RU_ALLOC(s) \ 661 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 662 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 663 664 CHECK_RU_ALLOC(26); 665 CHECK_RU_ALLOC(52); 666 CHECK_RU_ALLOC(106); 667 CHECK_RU_ALLOC(242); 668 CHECK_RU_ALLOC(484); 669 CHECK_RU_ALLOC(996); 670 CHECK_RU_ALLOC(2x996); 671 672 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 673 status->he_ru + 4); 674 break; 675 default: 676 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 677 } 678 679 /* ensure 2 byte alignment */ 680 while ((pos - (u8 *)rthdr) & 1) 681 pos++; 682 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE); 683 memcpy(pos, &he, sizeof(he)); 684 pos += sizeof(he); 685 } 686 687 if (status->encoding == RX_ENC_HE && 688 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 689 /* ensure 2 byte alignment */ 690 while ((pos - (u8 *)rthdr) & 1) 691 pos++; 692 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU); 693 memcpy(pos, &he_mu, sizeof(he_mu)); 694 pos += sizeof(he_mu); 695 } 696 697 if (status->flag & RX_FLAG_NO_PSDU) { 698 rthdr->it_present |= 699 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU); 700 *pos++ = status->zero_length_psdu_type; 701 } 702 703 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 704 /* ensure 2 byte alignment */ 705 while ((pos - (u8 *)rthdr) & 1) 706 pos++; 707 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG); 708 memcpy(pos, &lsig, sizeof(lsig)); 709 pos += sizeof(lsig); 710 } 711 712 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 713 *pos++ = status->chain_signal[chain]; 714 *pos++ = chain; 715 } 716 717 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 718 /* ensure 2 byte alignment for the vendor field as required */ 719 if ((pos - (u8 *)rthdr) & 1) 720 *pos++ = 0; 721 *pos++ = rtap.oui[0]; 722 *pos++ = rtap.oui[1]; 723 *pos++ = rtap.oui[2]; 724 *pos++ = rtap.subns; 725 put_unaligned_le16(rtap.len, pos); 726 pos += 2; 727 /* align the actual payload as requested */ 728 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 729 *pos++ = 0; 730 /* data (and possible padding) already follows */ 731 } 732 } 733 734 static struct sk_buff * 735 ieee80211_make_monitor_skb(struct ieee80211_local *local, 736 struct sk_buff **origskb, 737 struct ieee80211_rate *rate, 738 int rtap_space, bool use_origskb) 739 { 740 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 741 int rt_hdrlen, needed_headroom; 742 struct sk_buff *skb; 743 744 /* room for the radiotap header based on driver features */ 745 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 746 needed_headroom = rt_hdrlen - rtap_space; 747 748 if (use_origskb) { 749 /* only need to expand headroom if necessary */ 750 skb = *origskb; 751 *origskb = NULL; 752 753 /* 754 * This shouldn't trigger often because most devices have an 755 * RX header they pull before we get here, and that should 756 * be big enough for our radiotap information. We should 757 * probably export the length to drivers so that we can have 758 * them allocate enough headroom to start with. 759 */ 760 if (skb_headroom(skb) < needed_headroom && 761 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 762 dev_kfree_skb(skb); 763 return NULL; 764 } 765 } else { 766 /* 767 * Need to make a copy and possibly remove radiotap header 768 * and FCS from the original. 769 */ 770 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 771 772 if (!skb) 773 return NULL; 774 } 775 776 /* prepend radiotap information */ 777 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 778 779 skb_reset_mac_header(skb); 780 skb->ip_summed = CHECKSUM_UNNECESSARY; 781 skb->pkt_type = PACKET_OTHERHOST; 782 skb->protocol = htons(ETH_P_802_2); 783 784 return skb; 785 } 786 787 /* 788 * This function copies a received frame to all monitor interfaces and 789 * returns a cleaned-up SKB that no longer includes the FCS nor the 790 * radiotap header the driver might have added. 791 */ 792 static struct sk_buff * 793 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 794 struct ieee80211_rate *rate) 795 { 796 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 797 struct ieee80211_sub_if_data *sdata; 798 struct sk_buff *monskb = NULL; 799 int present_fcs_len = 0; 800 unsigned int rtap_space = 0; 801 struct ieee80211_sub_if_data *monitor_sdata = 802 rcu_dereference(local->monitor_sdata); 803 bool only_monitor = false; 804 unsigned int min_head_len; 805 806 if (status->flag & RX_FLAG_RADIOTAP_HE) 807 rtap_space += sizeof(struct ieee80211_radiotap_he); 808 809 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 810 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 811 812 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 813 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 814 815 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 816 struct ieee80211_vendor_radiotap *rtap = 817 (void *)(origskb->data + rtap_space); 818 819 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 820 } 821 822 min_head_len = rtap_space; 823 824 /* 825 * First, we may need to make a copy of the skb because 826 * (1) we need to modify it for radiotap (if not present), and 827 * (2) the other RX handlers will modify the skb we got. 828 * 829 * We don't need to, of course, if we aren't going to return 830 * the SKB because it has a bad FCS/PLCP checksum. 831 */ 832 833 if (!(status->flag & RX_FLAG_NO_PSDU)) { 834 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 835 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 836 /* driver bug */ 837 WARN_ON(1); 838 dev_kfree_skb(origskb); 839 return NULL; 840 } 841 present_fcs_len = FCS_LEN; 842 } 843 844 /* also consider the hdr->frame_control */ 845 min_head_len += 2; 846 } 847 848 /* ensure that the expected data elements are in skb head */ 849 if (!pskb_may_pull(origskb, min_head_len)) { 850 dev_kfree_skb(origskb); 851 return NULL; 852 } 853 854 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 855 856 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 857 if (only_monitor) { 858 dev_kfree_skb(origskb); 859 return NULL; 860 } 861 862 return ieee80211_clean_skb(origskb, present_fcs_len, 863 rtap_space); 864 } 865 866 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 867 868 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 869 bool last_monitor = list_is_last(&sdata->u.mntr.list, 870 &local->mon_list); 871 872 if (!monskb) 873 monskb = ieee80211_make_monitor_skb(local, &origskb, 874 rate, rtap_space, 875 only_monitor && 876 last_monitor); 877 878 if (monskb) { 879 struct sk_buff *skb; 880 881 if (last_monitor) { 882 skb = monskb; 883 monskb = NULL; 884 } else { 885 skb = skb_clone(monskb, GFP_ATOMIC); 886 } 887 888 if (skb) { 889 skb->dev = sdata->dev; 890 ieee80211_rx_stats(skb->dev, skb->len); 891 netif_receive_skb(skb); 892 } 893 } 894 895 if (last_monitor) 896 break; 897 } 898 899 /* this happens if last_monitor was erroneously false */ 900 dev_kfree_skb(monskb); 901 902 /* ditto */ 903 if (!origskb) 904 return NULL; 905 906 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 907 } 908 909 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 910 { 911 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 912 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 913 int tid, seqno_idx, security_idx; 914 915 /* does the frame have a qos control field? */ 916 if (ieee80211_is_data_qos(hdr->frame_control)) { 917 u8 *qc = ieee80211_get_qos_ctl(hdr); 918 /* frame has qos control */ 919 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 920 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 921 status->rx_flags |= IEEE80211_RX_AMSDU; 922 923 seqno_idx = tid; 924 security_idx = tid; 925 } else { 926 /* 927 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 928 * 929 * Sequence numbers for management frames, QoS data 930 * frames with a broadcast/multicast address in the 931 * Address 1 field, and all non-QoS data frames sent 932 * by QoS STAs are assigned using an additional single 933 * modulo-4096 counter, [...] 934 * 935 * We also use that counter for non-QoS STAs. 936 */ 937 seqno_idx = IEEE80211_NUM_TIDS; 938 security_idx = 0; 939 if (ieee80211_is_mgmt(hdr->frame_control)) 940 security_idx = IEEE80211_NUM_TIDS; 941 tid = 0; 942 } 943 944 rx->seqno_idx = seqno_idx; 945 rx->security_idx = security_idx; 946 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 947 * For now, set skb->priority to 0 for other cases. */ 948 rx->skb->priority = (tid > 7) ? 0 : tid; 949 } 950 951 /** 952 * DOC: Packet alignment 953 * 954 * Drivers always need to pass packets that are aligned to two-byte boundaries 955 * to the stack. 956 * 957 * Additionally, should, if possible, align the payload data in a way that 958 * guarantees that the contained IP header is aligned to a four-byte 959 * boundary. In the case of regular frames, this simply means aligning the 960 * payload to a four-byte boundary (because either the IP header is directly 961 * contained, or IV/RFC1042 headers that have a length divisible by four are 962 * in front of it). If the payload data is not properly aligned and the 963 * architecture doesn't support efficient unaligned operations, mac80211 964 * will align the data. 965 * 966 * With A-MSDU frames, however, the payload data address must yield two modulo 967 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 968 * push the IP header further back to a multiple of four again. Thankfully, the 969 * specs were sane enough this time around to require padding each A-MSDU 970 * subframe to a length that is a multiple of four. 971 * 972 * Padding like Atheros hardware adds which is between the 802.11 header and 973 * the payload is not supported, the driver is required to move the 802.11 974 * header to be directly in front of the payload in that case. 975 */ 976 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 977 { 978 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 979 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 980 #endif 981 } 982 983 984 /* rx handlers */ 985 986 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 987 { 988 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 989 990 if (is_multicast_ether_addr(hdr->addr1)) 991 return 0; 992 993 return ieee80211_is_robust_mgmt_frame(skb); 994 } 995 996 997 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 998 { 999 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1000 1001 if (!is_multicast_ether_addr(hdr->addr1)) 1002 return 0; 1003 1004 return ieee80211_is_robust_mgmt_frame(skb); 1005 } 1006 1007 1008 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 1009 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 1010 { 1011 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 1012 struct ieee80211_mmie *mmie; 1013 struct ieee80211_mmie_16 *mmie16; 1014 1015 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 1016 return -1; 1017 1018 if (!ieee80211_is_robust_mgmt_frame(skb) && 1019 !ieee80211_is_beacon(hdr->frame_control)) 1020 return -1; /* not a robust management frame */ 1021 1022 mmie = (struct ieee80211_mmie *) 1023 (skb->data + skb->len - sizeof(*mmie)); 1024 if (mmie->element_id == WLAN_EID_MMIE && 1025 mmie->length == sizeof(*mmie) - 2) 1026 return le16_to_cpu(mmie->key_id); 1027 1028 mmie16 = (struct ieee80211_mmie_16 *) 1029 (skb->data + skb->len - sizeof(*mmie16)); 1030 if (skb->len >= 24 + sizeof(*mmie16) && 1031 mmie16->element_id == WLAN_EID_MMIE && 1032 mmie16->length == sizeof(*mmie16) - 2) 1033 return le16_to_cpu(mmie16->key_id); 1034 1035 return -1; 1036 } 1037 1038 static int ieee80211_get_keyid(struct sk_buff *skb, 1039 const struct ieee80211_cipher_scheme *cs) 1040 { 1041 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1042 __le16 fc; 1043 int hdrlen; 1044 int minlen; 1045 u8 key_idx_off; 1046 u8 key_idx_shift; 1047 u8 keyid; 1048 1049 fc = hdr->frame_control; 1050 hdrlen = ieee80211_hdrlen(fc); 1051 1052 if (cs) { 1053 minlen = hdrlen + cs->hdr_len; 1054 key_idx_off = hdrlen + cs->key_idx_off; 1055 key_idx_shift = cs->key_idx_shift; 1056 } else { 1057 /* WEP, TKIP, CCMP and GCMP */ 1058 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1059 key_idx_off = hdrlen + 3; 1060 key_idx_shift = 6; 1061 } 1062 1063 if (unlikely(skb->len < minlen)) 1064 return -EINVAL; 1065 1066 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1067 1068 if (cs) 1069 keyid &= cs->key_idx_mask; 1070 keyid >>= key_idx_shift; 1071 1072 /* cs could use more than the usual two bits for the keyid */ 1073 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1074 return -EINVAL; 1075 1076 return keyid; 1077 } 1078 1079 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1080 { 1081 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1082 char *dev_addr = rx->sdata->vif.addr; 1083 1084 if (ieee80211_is_data(hdr->frame_control)) { 1085 if (is_multicast_ether_addr(hdr->addr1)) { 1086 if (ieee80211_has_tods(hdr->frame_control) || 1087 !ieee80211_has_fromds(hdr->frame_control)) 1088 return RX_DROP_MONITOR; 1089 if (ether_addr_equal(hdr->addr3, dev_addr)) 1090 return RX_DROP_MONITOR; 1091 } else { 1092 if (!ieee80211_has_a4(hdr->frame_control)) 1093 return RX_DROP_MONITOR; 1094 if (ether_addr_equal(hdr->addr4, dev_addr)) 1095 return RX_DROP_MONITOR; 1096 } 1097 } 1098 1099 /* If there is not an established peer link and this is not a peer link 1100 * establisment frame, beacon or probe, drop the frame. 1101 */ 1102 1103 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1104 struct ieee80211_mgmt *mgmt; 1105 1106 if (!ieee80211_is_mgmt(hdr->frame_control)) 1107 return RX_DROP_MONITOR; 1108 1109 if (ieee80211_is_action(hdr->frame_control)) { 1110 u8 category; 1111 1112 /* make sure category field is present */ 1113 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1114 return RX_DROP_MONITOR; 1115 1116 mgmt = (struct ieee80211_mgmt *)hdr; 1117 category = mgmt->u.action.category; 1118 if (category != WLAN_CATEGORY_MESH_ACTION && 1119 category != WLAN_CATEGORY_SELF_PROTECTED) 1120 return RX_DROP_MONITOR; 1121 return RX_CONTINUE; 1122 } 1123 1124 if (ieee80211_is_probe_req(hdr->frame_control) || 1125 ieee80211_is_probe_resp(hdr->frame_control) || 1126 ieee80211_is_beacon(hdr->frame_control) || 1127 ieee80211_is_auth(hdr->frame_control)) 1128 return RX_CONTINUE; 1129 1130 return RX_DROP_MONITOR; 1131 } 1132 1133 return RX_CONTINUE; 1134 } 1135 1136 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1137 int index) 1138 { 1139 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1140 struct sk_buff *tail = skb_peek_tail(frames); 1141 struct ieee80211_rx_status *status; 1142 1143 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1144 return true; 1145 1146 if (!tail) 1147 return false; 1148 1149 status = IEEE80211_SKB_RXCB(tail); 1150 if (status->flag & RX_FLAG_AMSDU_MORE) 1151 return false; 1152 1153 return true; 1154 } 1155 1156 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1157 struct tid_ampdu_rx *tid_agg_rx, 1158 int index, 1159 struct sk_buff_head *frames) 1160 { 1161 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1162 struct sk_buff *skb; 1163 struct ieee80211_rx_status *status; 1164 1165 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1166 1167 if (skb_queue_empty(skb_list)) 1168 goto no_frame; 1169 1170 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1171 __skb_queue_purge(skb_list); 1172 goto no_frame; 1173 } 1174 1175 /* release frames from the reorder ring buffer */ 1176 tid_agg_rx->stored_mpdu_num--; 1177 while ((skb = __skb_dequeue(skb_list))) { 1178 status = IEEE80211_SKB_RXCB(skb); 1179 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1180 __skb_queue_tail(frames, skb); 1181 } 1182 1183 no_frame: 1184 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1185 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1186 } 1187 1188 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1189 struct tid_ampdu_rx *tid_agg_rx, 1190 u16 head_seq_num, 1191 struct sk_buff_head *frames) 1192 { 1193 int index; 1194 1195 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1196 1197 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1198 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1199 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1200 frames); 1201 } 1202 } 1203 1204 /* 1205 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1206 * the skb was added to the buffer longer than this time ago, the earlier 1207 * frames that have not yet been received are assumed to be lost and the skb 1208 * can be released for processing. This may also release other skb's from the 1209 * reorder buffer if there are no additional gaps between the frames. 1210 * 1211 * Callers must hold tid_agg_rx->reorder_lock. 1212 */ 1213 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1214 1215 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1216 struct tid_ampdu_rx *tid_agg_rx, 1217 struct sk_buff_head *frames) 1218 { 1219 int index, i, j; 1220 1221 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1222 1223 /* release the buffer until next missing frame */ 1224 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1225 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1226 tid_agg_rx->stored_mpdu_num) { 1227 /* 1228 * No buffers ready to be released, but check whether any 1229 * frames in the reorder buffer have timed out. 1230 */ 1231 int skipped = 1; 1232 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1233 j = (j + 1) % tid_agg_rx->buf_size) { 1234 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1235 skipped++; 1236 continue; 1237 } 1238 if (skipped && 1239 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1240 HT_RX_REORDER_BUF_TIMEOUT)) 1241 goto set_release_timer; 1242 1243 /* don't leave incomplete A-MSDUs around */ 1244 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1245 i = (i + 1) % tid_agg_rx->buf_size) 1246 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1247 1248 ht_dbg_ratelimited(sdata, 1249 "release an RX reorder frame due to timeout on earlier frames\n"); 1250 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1251 frames); 1252 1253 /* 1254 * Increment the head seq# also for the skipped slots. 1255 */ 1256 tid_agg_rx->head_seq_num = 1257 (tid_agg_rx->head_seq_num + 1258 skipped) & IEEE80211_SN_MASK; 1259 skipped = 0; 1260 } 1261 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1262 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1263 frames); 1264 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1265 } 1266 1267 if (tid_agg_rx->stored_mpdu_num) { 1268 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1269 1270 for (; j != (index - 1) % tid_agg_rx->buf_size; 1271 j = (j + 1) % tid_agg_rx->buf_size) { 1272 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1273 break; 1274 } 1275 1276 set_release_timer: 1277 1278 if (!tid_agg_rx->removed) 1279 mod_timer(&tid_agg_rx->reorder_timer, 1280 tid_agg_rx->reorder_time[j] + 1 + 1281 HT_RX_REORDER_BUF_TIMEOUT); 1282 } else { 1283 del_timer(&tid_agg_rx->reorder_timer); 1284 } 1285 } 1286 1287 /* 1288 * As this function belongs to the RX path it must be under 1289 * rcu_read_lock protection. It returns false if the frame 1290 * can be processed immediately, true if it was consumed. 1291 */ 1292 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1293 struct tid_ampdu_rx *tid_agg_rx, 1294 struct sk_buff *skb, 1295 struct sk_buff_head *frames) 1296 { 1297 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1298 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1299 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1300 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1301 u16 head_seq_num, buf_size; 1302 int index; 1303 bool ret = true; 1304 1305 spin_lock(&tid_agg_rx->reorder_lock); 1306 1307 /* 1308 * Offloaded BA sessions have no known starting sequence number so pick 1309 * one from first Rxed frame for this tid after BA was started. 1310 */ 1311 if (unlikely(tid_agg_rx->auto_seq)) { 1312 tid_agg_rx->auto_seq = false; 1313 tid_agg_rx->ssn = mpdu_seq_num; 1314 tid_agg_rx->head_seq_num = mpdu_seq_num; 1315 } 1316 1317 buf_size = tid_agg_rx->buf_size; 1318 head_seq_num = tid_agg_rx->head_seq_num; 1319 1320 /* 1321 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1322 * be reordered. 1323 */ 1324 if (unlikely(!tid_agg_rx->started)) { 1325 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1326 ret = false; 1327 goto out; 1328 } 1329 tid_agg_rx->started = true; 1330 } 1331 1332 /* frame with out of date sequence number */ 1333 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1334 dev_kfree_skb(skb); 1335 goto out; 1336 } 1337 1338 /* 1339 * If frame the sequence number exceeds our buffering window 1340 * size release some previous frames to make room for this one. 1341 */ 1342 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1343 head_seq_num = ieee80211_sn_inc( 1344 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1345 /* release stored frames up to new head to stack */ 1346 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1347 head_seq_num, frames); 1348 } 1349 1350 /* Now the new frame is always in the range of the reordering buffer */ 1351 1352 index = mpdu_seq_num % tid_agg_rx->buf_size; 1353 1354 /* check if we already stored this frame */ 1355 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1356 dev_kfree_skb(skb); 1357 goto out; 1358 } 1359 1360 /* 1361 * If the current MPDU is in the right order and nothing else 1362 * is stored we can process it directly, no need to buffer it. 1363 * If it is first but there's something stored, we may be able 1364 * to release frames after this one. 1365 */ 1366 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1367 tid_agg_rx->stored_mpdu_num == 0) { 1368 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1369 tid_agg_rx->head_seq_num = 1370 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1371 ret = false; 1372 goto out; 1373 } 1374 1375 /* put the frame in the reordering buffer */ 1376 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1377 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1378 tid_agg_rx->reorder_time[index] = jiffies; 1379 tid_agg_rx->stored_mpdu_num++; 1380 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1381 } 1382 1383 out: 1384 spin_unlock(&tid_agg_rx->reorder_lock); 1385 return ret; 1386 } 1387 1388 /* 1389 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1390 * true if the MPDU was buffered, false if it should be processed. 1391 */ 1392 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1393 struct sk_buff_head *frames) 1394 { 1395 struct sk_buff *skb = rx->skb; 1396 struct ieee80211_local *local = rx->local; 1397 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1398 struct sta_info *sta = rx->sta; 1399 struct tid_ampdu_rx *tid_agg_rx; 1400 u16 sc; 1401 u8 tid, ack_policy; 1402 1403 if (!ieee80211_is_data_qos(hdr->frame_control) || 1404 is_multicast_ether_addr(hdr->addr1)) 1405 goto dont_reorder; 1406 1407 /* 1408 * filter the QoS data rx stream according to 1409 * STA/TID and check if this STA/TID is on aggregation 1410 */ 1411 1412 if (!sta) 1413 goto dont_reorder; 1414 1415 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1416 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1417 tid = ieee80211_get_tid(hdr); 1418 1419 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1420 if (!tid_agg_rx) { 1421 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1422 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1423 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1424 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1425 WLAN_BACK_RECIPIENT, 1426 WLAN_REASON_QSTA_REQUIRE_SETUP); 1427 goto dont_reorder; 1428 } 1429 1430 /* qos null data frames are excluded */ 1431 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1432 goto dont_reorder; 1433 1434 /* not part of a BA session */ 1435 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1436 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1437 goto dont_reorder; 1438 1439 /* new, potentially un-ordered, ampdu frame - process it */ 1440 1441 /* reset session timer */ 1442 if (tid_agg_rx->timeout) 1443 tid_agg_rx->last_rx = jiffies; 1444 1445 /* if this mpdu is fragmented - terminate rx aggregation session */ 1446 sc = le16_to_cpu(hdr->seq_ctrl); 1447 if (sc & IEEE80211_SCTL_FRAG) { 1448 skb_queue_tail(&rx->sdata->skb_queue, skb); 1449 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1450 return; 1451 } 1452 1453 /* 1454 * No locking needed -- we will only ever process one 1455 * RX packet at a time, and thus own tid_agg_rx. All 1456 * other code manipulating it needs to (and does) make 1457 * sure that we cannot get to it any more before doing 1458 * anything with it. 1459 */ 1460 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1461 frames)) 1462 return; 1463 1464 dont_reorder: 1465 __skb_queue_tail(frames, skb); 1466 } 1467 1468 static ieee80211_rx_result debug_noinline 1469 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1470 { 1471 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1472 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1473 1474 if (status->flag & RX_FLAG_DUP_VALIDATED) 1475 return RX_CONTINUE; 1476 1477 /* 1478 * Drop duplicate 802.11 retransmissions 1479 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1480 */ 1481 1482 if (rx->skb->len < 24) 1483 return RX_CONTINUE; 1484 1485 if (ieee80211_is_ctl(hdr->frame_control) || 1486 ieee80211_is_any_nullfunc(hdr->frame_control) || 1487 is_multicast_ether_addr(hdr->addr1)) 1488 return RX_CONTINUE; 1489 1490 if (!rx->sta) 1491 return RX_CONTINUE; 1492 1493 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1494 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1495 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1496 rx->sta->rx_stats.num_duplicates++; 1497 return RX_DROP_UNUSABLE; 1498 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1499 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1500 } 1501 1502 return RX_CONTINUE; 1503 } 1504 1505 static ieee80211_rx_result debug_noinline 1506 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1507 { 1508 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1509 1510 /* Drop disallowed frame classes based on STA auth/assoc state; 1511 * IEEE 802.11, Chap 5.5. 1512 * 1513 * mac80211 filters only based on association state, i.e. it drops 1514 * Class 3 frames from not associated stations. hostapd sends 1515 * deauth/disassoc frames when needed. In addition, hostapd is 1516 * responsible for filtering on both auth and assoc states. 1517 */ 1518 1519 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1520 return ieee80211_rx_mesh_check(rx); 1521 1522 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1523 ieee80211_is_pspoll(hdr->frame_control)) && 1524 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1525 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1526 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1527 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1528 /* 1529 * accept port control frames from the AP even when it's not 1530 * yet marked ASSOC to prevent a race where we don't set the 1531 * assoc bit quickly enough before it sends the first frame 1532 */ 1533 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1534 ieee80211_is_data_present(hdr->frame_control)) { 1535 unsigned int hdrlen; 1536 __be16 ethertype; 1537 1538 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1539 1540 if (rx->skb->len < hdrlen + 8) 1541 return RX_DROP_MONITOR; 1542 1543 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1544 if (ethertype == rx->sdata->control_port_protocol) 1545 return RX_CONTINUE; 1546 } 1547 1548 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1549 cfg80211_rx_spurious_frame(rx->sdata->dev, 1550 hdr->addr2, 1551 GFP_ATOMIC)) 1552 return RX_DROP_UNUSABLE; 1553 1554 return RX_DROP_MONITOR; 1555 } 1556 1557 return RX_CONTINUE; 1558 } 1559 1560 1561 static ieee80211_rx_result debug_noinline 1562 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1563 { 1564 struct ieee80211_local *local; 1565 struct ieee80211_hdr *hdr; 1566 struct sk_buff *skb; 1567 1568 local = rx->local; 1569 skb = rx->skb; 1570 hdr = (struct ieee80211_hdr *) skb->data; 1571 1572 if (!local->pspolling) 1573 return RX_CONTINUE; 1574 1575 if (!ieee80211_has_fromds(hdr->frame_control)) 1576 /* this is not from AP */ 1577 return RX_CONTINUE; 1578 1579 if (!ieee80211_is_data(hdr->frame_control)) 1580 return RX_CONTINUE; 1581 1582 if (!ieee80211_has_moredata(hdr->frame_control)) { 1583 /* AP has no more frames buffered for us */ 1584 local->pspolling = false; 1585 return RX_CONTINUE; 1586 } 1587 1588 /* more data bit is set, let's request a new frame from the AP */ 1589 ieee80211_send_pspoll(local, rx->sdata); 1590 1591 return RX_CONTINUE; 1592 } 1593 1594 static void sta_ps_start(struct sta_info *sta) 1595 { 1596 struct ieee80211_sub_if_data *sdata = sta->sdata; 1597 struct ieee80211_local *local = sdata->local; 1598 struct ps_data *ps; 1599 int tid; 1600 1601 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1602 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1603 ps = &sdata->bss->ps; 1604 else 1605 return; 1606 1607 atomic_inc(&ps->num_sta_ps); 1608 set_sta_flag(sta, WLAN_STA_PS_STA); 1609 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1610 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1611 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1612 sta->sta.addr, sta->sta.aid); 1613 1614 ieee80211_clear_fast_xmit(sta); 1615 1616 if (!sta->sta.txq[0]) 1617 return; 1618 1619 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1620 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1621 struct txq_info *txqi = to_txq_info(txq); 1622 1623 spin_lock(&local->active_txq_lock[txq->ac]); 1624 if (!list_empty(&txqi->schedule_order)) 1625 list_del_init(&txqi->schedule_order); 1626 spin_unlock(&local->active_txq_lock[txq->ac]); 1627 1628 if (txq_has_queue(txq)) 1629 set_bit(tid, &sta->txq_buffered_tids); 1630 else 1631 clear_bit(tid, &sta->txq_buffered_tids); 1632 } 1633 } 1634 1635 static void sta_ps_end(struct sta_info *sta) 1636 { 1637 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1638 sta->sta.addr, sta->sta.aid); 1639 1640 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1641 /* 1642 * Clear the flag only if the other one is still set 1643 * so that the TX path won't start TX'ing new frames 1644 * directly ... In the case that the driver flag isn't 1645 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1646 */ 1647 clear_sta_flag(sta, WLAN_STA_PS_STA); 1648 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1649 sta->sta.addr, sta->sta.aid); 1650 return; 1651 } 1652 1653 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1654 clear_sta_flag(sta, WLAN_STA_PS_STA); 1655 ieee80211_sta_ps_deliver_wakeup(sta); 1656 } 1657 1658 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1659 { 1660 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1661 bool in_ps; 1662 1663 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1664 1665 /* Don't let the same PS state be set twice */ 1666 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1667 if ((start && in_ps) || (!start && !in_ps)) 1668 return -EINVAL; 1669 1670 if (start) 1671 sta_ps_start(sta); 1672 else 1673 sta_ps_end(sta); 1674 1675 return 0; 1676 } 1677 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1678 1679 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1680 { 1681 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1682 1683 if (test_sta_flag(sta, WLAN_STA_SP)) 1684 return; 1685 1686 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1687 ieee80211_sta_ps_deliver_poll_response(sta); 1688 else 1689 set_sta_flag(sta, WLAN_STA_PSPOLL); 1690 } 1691 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1692 1693 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1694 { 1695 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1696 int ac = ieee80211_ac_from_tid(tid); 1697 1698 /* 1699 * If this AC is not trigger-enabled do nothing unless the 1700 * driver is calling us after it already checked. 1701 * 1702 * NB: This could/should check a separate bitmap of trigger- 1703 * enabled queues, but for now we only implement uAPSD w/o 1704 * TSPEC changes to the ACs, so they're always the same. 1705 */ 1706 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1707 tid != IEEE80211_NUM_TIDS) 1708 return; 1709 1710 /* if we are in a service period, do nothing */ 1711 if (test_sta_flag(sta, WLAN_STA_SP)) 1712 return; 1713 1714 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1715 ieee80211_sta_ps_deliver_uapsd(sta); 1716 else 1717 set_sta_flag(sta, WLAN_STA_UAPSD); 1718 } 1719 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1720 1721 static ieee80211_rx_result debug_noinline 1722 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1723 { 1724 struct ieee80211_sub_if_data *sdata = rx->sdata; 1725 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1726 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1727 1728 if (!rx->sta) 1729 return RX_CONTINUE; 1730 1731 if (sdata->vif.type != NL80211_IFTYPE_AP && 1732 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1733 return RX_CONTINUE; 1734 1735 /* 1736 * The device handles station powersave, so don't do anything about 1737 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1738 * it to mac80211 since they're handled.) 1739 */ 1740 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1741 return RX_CONTINUE; 1742 1743 /* 1744 * Don't do anything if the station isn't already asleep. In 1745 * the uAPSD case, the station will probably be marked asleep, 1746 * in the PS-Poll case the station must be confused ... 1747 */ 1748 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1749 return RX_CONTINUE; 1750 1751 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1752 ieee80211_sta_pspoll(&rx->sta->sta); 1753 1754 /* Free PS Poll skb here instead of returning RX_DROP that would 1755 * count as an dropped frame. */ 1756 dev_kfree_skb(rx->skb); 1757 1758 return RX_QUEUED; 1759 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1760 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1761 ieee80211_has_pm(hdr->frame_control) && 1762 (ieee80211_is_data_qos(hdr->frame_control) || 1763 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1764 u8 tid = ieee80211_get_tid(hdr); 1765 1766 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1767 } 1768 1769 return RX_CONTINUE; 1770 } 1771 1772 static ieee80211_rx_result debug_noinline 1773 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1774 { 1775 struct sta_info *sta = rx->sta; 1776 struct sk_buff *skb = rx->skb; 1777 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1778 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1779 int i; 1780 1781 if (!sta) 1782 return RX_CONTINUE; 1783 1784 /* 1785 * Update last_rx only for IBSS packets which are for the current 1786 * BSSID and for station already AUTHORIZED to avoid keeping the 1787 * current IBSS network alive in cases where other STAs start 1788 * using different BSSID. This will also give the station another 1789 * chance to restart the authentication/authorization in case 1790 * something went wrong the first time. 1791 */ 1792 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1793 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1794 NL80211_IFTYPE_ADHOC); 1795 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1796 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1797 sta->rx_stats.last_rx = jiffies; 1798 if (ieee80211_is_data(hdr->frame_control) && 1799 !is_multicast_ether_addr(hdr->addr1)) 1800 sta->rx_stats.last_rate = 1801 sta_stats_encode_rate(status); 1802 } 1803 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1804 sta->rx_stats.last_rx = jiffies; 1805 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1806 /* 1807 * Mesh beacons will update last_rx when if they are found to 1808 * match the current local configuration when processed. 1809 */ 1810 sta->rx_stats.last_rx = jiffies; 1811 if (ieee80211_is_data(hdr->frame_control)) 1812 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1813 } 1814 1815 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1816 ieee80211_sta_rx_notify(rx->sdata, hdr); 1817 1818 sta->rx_stats.fragments++; 1819 1820 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1821 sta->rx_stats.bytes += rx->skb->len; 1822 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1823 1824 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1825 sta->rx_stats.last_signal = status->signal; 1826 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1827 } 1828 1829 if (status->chains) { 1830 sta->rx_stats.chains = status->chains; 1831 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1832 int signal = status->chain_signal[i]; 1833 1834 if (!(status->chains & BIT(i))) 1835 continue; 1836 1837 sta->rx_stats.chain_signal_last[i] = signal; 1838 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1839 -signal); 1840 } 1841 } 1842 1843 /* 1844 * Change STA power saving mode only at the end of a frame 1845 * exchange sequence, and only for a data or management 1846 * frame as specified in IEEE 802.11-2016 11.2.3.2 1847 */ 1848 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1849 !ieee80211_has_morefrags(hdr->frame_control) && 1850 !is_multicast_ether_addr(hdr->addr1) && 1851 (ieee80211_is_mgmt(hdr->frame_control) || 1852 ieee80211_is_data(hdr->frame_control)) && 1853 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1854 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1855 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1856 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1857 if (!ieee80211_has_pm(hdr->frame_control)) 1858 sta_ps_end(sta); 1859 } else { 1860 if (ieee80211_has_pm(hdr->frame_control)) 1861 sta_ps_start(sta); 1862 } 1863 } 1864 1865 /* mesh power save support */ 1866 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1867 ieee80211_mps_rx_h_sta_process(sta, hdr); 1868 1869 /* 1870 * Drop (qos-)data::nullfunc frames silently, since they 1871 * are used only to control station power saving mode. 1872 */ 1873 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1874 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1875 1876 /* 1877 * If we receive a 4-addr nullfunc frame from a STA 1878 * that was not moved to a 4-addr STA vlan yet send 1879 * the event to userspace and for older hostapd drop 1880 * the frame to the monitor interface. 1881 */ 1882 if (ieee80211_has_a4(hdr->frame_control) && 1883 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1884 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1885 !rx->sdata->u.vlan.sta))) { 1886 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1887 cfg80211_rx_unexpected_4addr_frame( 1888 rx->sdata->dev, sta->sta.addr, 1889 GFP_ATOMIC); 1890 return RX_DROP_MONITOR; 1891 } 1892 /* 1893 * Update counter and free packet here to avoid 1894 * counting this as a dropped packed. 1895 */ 1896 sta->rx_stats.packets++; 1897 dev_kfree_skb(rx->skb); 1898 return RX_QUEUED; 1899 } 1900 1901 return RX_CONTINUE; 1902 } /* ieee80211_rx_h_sta_process */ 1903 1904 static struct ieee80211_key * 1905 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1906 { 1907 struct ieee80211_key *key = NULL; 1908 struct ieee80211_sub_if_data *sdata = rx->sdata; 1909 int idx2; 1910 1911 /* Make sure key gets set if either BIGTK key index is set so that 1912 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1913 * Beacon frames and Beacon frames that claim to use another BIGTK key 1914 * index (i.e., a key that we do not have). 1915 */ 1916 1917 if (idx < 0) { 1918 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1919 idx2 = idx + 1; 1920 } else { 1921 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1922 idx2 = idx + 1; 1923 else 1924 idx2 = idx - 1; 1925 } 1926 1927 if (rx->sta) 1928 key = rcu_dereference(rx->sta->gtk[idx]); 1929 if (!key) 1930 key = rcu_dereference(sdata->keys[idx]); 1931 if (!key && rx->sta) 1932 key = rcu_dereference(rx->sta->gtk[idx2]); 1933 if (!key) 1934 key = rcu_dereference(sdata->keys[idx2]); 1935 1936 return key; 1937 } 1938 1939 static ieee80211_rx_result debug_noinline 1940 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1941 { 1942 struct sk_buff *skb = rx->skb; 1943 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1944 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1945 int keyidx; 1946 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1947 struct ieee80211_key *sta_ptk = NULL; 1948 struct ieee80211_key *ptk_idx = NULL; 1949 int mmie_keyidx = -1; 1950 __le16 fc; 1951 const struct ieee80211_cipher_scheme *cs = NULL; 1952 1953 /* 1954 * Key selection 101 1955 * 1956 * There are five types of keys: 1957 * - GTK (group keys) 1958 * - IGTK (group keys for management frames) 1959 * - BIGTK (group keys for Beacon frames) 1960 * - PTK (pairwise keys) 1961 * - STK (station-to-station pairwise keys) 1962 * 1963 * When selecting a key, we have to distinguish between multicast 1964 * (including broadcast) and unicast frames, the latter can only 1965 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1966 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1967 * then unicast frames can also use key indices like GTKs. Hence, if we 1968 * don't have a PTK/STK we check the key index for a WEP key. 1969 * 1970 * Note that in a regular BSS, multicast frames are sent by the 1971 * AP only, associated stations unicast the frame to the AP first 1972 * which then multicasts it on their behalf. 1973 * 1974 * There is also a slight problem in IBSS mode: GTKs are negotiated 1975 * with each station, that is something we don't currently handle. 1976 * The spec seems to expect that one negotiates the same key with 1977 * every station but there's no such requirement; VLANs could be 1978 * possible. 1979 */ 1980 1981 /* start without a key */ 1982 rx->key = NULL; 1983 fc = hdr->frame_control; 1984 1985 if (rx->sta) { 1986 int keyid = rx->sta->ptk_idx; 1987 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1988 1989 if (ieee80211_has_protected(fc)) { 1990 cs = rx->sta->cipher_scheme; 1991 keyid = ieee80211_get_keyid(rx->skb, cs); 1992 1993 if (unlikely(keyid < 0)) 1994 return RX_DROP_UNUSABLE; 1995 1996 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1997 } 1998 } 1999 2000 if (!ieee80211_has_protected(fc)) 2001 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 2002 2003 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 2004 rx->key = ptk_idx ? ptk_idx : sta_ptk; 2005 if ((status->flag & RX_FLAG_DECRYPTED) && 2006 (status->flag & RX_FLAG_IV_STRIPPED)) 2007 return RX_CONTINUE; 2008 /* Skip decryption if the frame is not protected. */ 2009 if (!ieee80211_has_protected(fc)) 2010 return RX_CONTINUE; 2011 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 2012 /* Broadcast/multicast robust management frame / BIP */ 2013 if ((status->flag & RX_FLAG_DECRYPTED) && 2014 (status->flag & RX_FLAG_IV_STRIPPED)) 2015 return RX_CONTINUE; 2016 2017 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 2018 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 2019 NUM_DEFAULT_BEACON_KEYS) { 2020 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2021 skb->data, 2022 skb->len); 2023 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2024 } 2025 2026 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 2027 if (!rx->key) 2028 return RX_CONTINUE; /* Beacon protection not in use */ 2029 } else if (mmie_keyidx >= 0) { 2030 /* Broadcast/multicast robust management frame / BIP */ 2031 if ((status->flag & RX_FLAG_DECRYPTED) && 2032 (status->flag & RX_FLAG_IV_STRIPPED)) 2033 return RX_CONTINUE; 2034 2035 if (mmie_keyidx < NUM_DEFAULT_KEYS || 2036 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 2037 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2038 if (rx->sta) { 2039 if (ieee80211_is_group_privacy_action(skb) && 2040 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2041 return RX_DROP_MONITOR; 2042 2043 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 2044 } 2045 if (!rx->key) 2046 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 2047 } else if (!ieee80211_has_protected(fc)) { 2048 /* 2049 * The frame was not protected, so skip decryption. However, we 2050 * need to set rx->key if there is a key that could have been 2051 * used so that the frame may be dropped if encryption would 2052 * have been expected. 2053 */ 2054 struct ieee80211_key *key = NULL; 2055 struct ieee80211_sub_if_data *sdata = rx->sdata; 2056 int i; 2057 2058 if (ieee80211_is_beacon(fc)) { 2059 key = ieee80211_rx_get_bigtk(rx, -1); 2060 } else if (ieee80211_is_mgmt(fc) && 2061 is_multicast_ether_addr(hdr->addr1)) { 2062 key = rcu_dereference(rx->sdata->default_mgmt_key); 2063 } else { 2064 if (rx->sta) { 2065 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2066 key = rcu_dereference(rx->sta->gtk[i]); 2067 if (key) 2068 break; 2069 } 2070 } 2071 if (!key) { 2072 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2073 key = rcu_dereference(sdata->keys[i]); 2074 if (key) 2075 break; 2076 } 2077 } 2078 } 2079 if (key) 2080 rx->key = key; 2081 return RX_CONTINUE; 2082 } else { 2083 /* 2084 * The device doesn't give us the IV so we won't be 2085 * able to look up the key. That's ok though, we 2086 * don't need to decrypt the frame, we just won't 2087 * be able to keep statistics accurate. 2088 * Except for key threshold notifications, should 2089 * we somehow allow the driver to tell us which key 2090 * the hardware used if this flag is set? 2091 */ 2092 if ((status->flag & RX_FLAG_DECRYPTED) && 2093 (status->flag & RX_FLAG_IV_STRIPPED)) 2094 return RX_CONTINUE; 2095 2096 keyidx = ieee80211_get_keyid(rx->skb, cs); 2097 2098 if (unlikely(keyidx < 0)) 2099 return RX_DROP_UNUSABLE; 2100 2101 /* check per-station GTK first, if multicast packet */ 2102 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2103 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 2104 2105 /* if not found, try default key */ 2106 if (!rx->key) { 2107 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2108 2109 /* 2110 * RSNA-protected unicast frames should always be 2111 * sent with pairwise or station-to-station keys, 2112 * but for WEP we allow using a key index as well. 2113 */ 2114 if (rx->key && 2115 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2116 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2117 !is_multicast_ether_addr(hdr->addr1)) 2118 rx->key = NULL; 2119 } 2120 } 2121 2122 if (rx->key) { 2123 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2124 return RX_DROP_MONITOR; 2125 2126 /* TODO: add threshold stuff again */ 2127 } else { 2128 return RX_DROP_MONITOR; 2129 } 2130 2131 switch (rx->key->conf.cipher) { 2132 case WLAN_CIPHER_SUITE_WEP40: 2133 case WLAN_CIPHER_SUITE_WEP104: 2134 result = ieee80211_crypto_wep_decrypt(rx); 2135 break; 2136 case WLAN_CIPHER_SUITE_TKIP: 2137 result = ieee80211_crypto_tkip_decrypt(rx); 2138 break; 2139 case WLAN_CIPHER_SUITE_CCMP: 2140 result = ieee80211_crypto_ccmp_decrypt( 2141 rx, IEEE80211_CCMP_MIC_LEN); 2142 break; 2143 case WLAN_CIPHER_SUITE_CCMP_256: 2144 result = ieee80211_crypto_ccmp_decrypt( 2145 rx, IEEE80211_CCMP_256_MIC_LEN); 2146 break; 2147 case WLAN_CIPHER_SUITE_AES_CMAC: 2148 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2149 break; 2150 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2151 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2152 break; 2153 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2154 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2155 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2156 break; 2157 case WLAN_CIPHER_SUITE_GCMP: 2158 case WLAN_CIPHER_SUITE_GCMP_256: 2159 result = ieee80211_crypto_gcmp_decrypt(rx); 2160 break; 2161 default: 2162 result = ieee80211_crypto_hw_decrypt(rx); 2163 } 2164 2165 /* the hdr variable is invalid after the decrypt handlers */ 2166 2167 /* either the frame has been decrypted or will be dropped */ 2168 status->flag |= RX_FLAG_DECRYPTED; 2169 2170 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) 2171 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2172 skb->data, skb->len); 2173 2174 return result; 2175 } 2176 2177 static inline struct ieee80211_fragment_entry * 2178 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 2179 unsigned int frag, unsigned int seq, int rx_queue, 2180 struct sk_buff **skb) 2181 { 2182 struct ieee80211_fragment_entry *entry; 2183 2184 entry = &sdata->fragments[sdata->fragment_next++]; 2185 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 2186 sdata->fragment_next = 0; 2187 2188 if (!skb_queue_empty(&entry->skb_list)) 2189 __skb_queue_purge(&entry->skb_list); 2190 2191 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2192 *skb = NULL; 2193 entry->first_frag_time = jiffies; 2194 entry->seq = seq; 2195 entry->rx_queue = rx_queue; 2196 entry->last_frag = frag; 2197 entry->check_sequential_pn = false; 2198 entry->extra_len = 0; 2199 2200 return entry; 2201 } 2202 2203 static inline struct ieee80211_fragment_entry * 2204 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 2205 unsigned int frag, unsigned int seq, 2206 int rx_queue, struct ieee80211_hdr *hdr) 2207 { 2208 struct ieee80211_fragment_entry *entry; 2209 int i, idx; 2210 2211 idx = sdata->fragment_next; 2212 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2213 struct ieee80211_hdr *f_hdr; 2214 struct sk_buff *f_skb; 2215 2216 idx--; 2217 if (idx < 0) 2218 idx = IEEE80211_FRAGMENT_MAX - 1; 2219 2220 entry = &sdata->fragments[idx]; 2221 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2222 entry->rx_queue != rx_queue || 2223 entry->last_frag + 1 != frag) 2224 continue; 2225 2226 f_skb = __skb_peek(&entry->skb_list); 2227 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2228 2229 /* 2230 * Check ftype and addresses are equal, else check next fragment 2231 */ 2232 if (((hdr->frame_control ^ f_hdr->frame_control) & 2233 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2234 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2235 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2236 continue; 2237 2238 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2239 __skb_queue_purge(&entry->skb_list); 2240 continue; 2241 } 2242 return entry; 2243 } 2244 2245 return NULL; 2246 } 2247 2248 static ieee80211_rx_result debug_noinline 2249 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2250 { 2251 struct ieee80211_hdr *hdr; 2252 u16 sc; 2253 __le16 fc; 2254 unsigned int frag, seq; 2255 struct ieee80211_fragment_entry *entry; 2256 struct sk_buff *skb; 2257 2258 hdr = (struct ieee80211_hdr *)rx->skb->data; 2259 fc = hdr->frame_control; 2260 2261 if (ieee80211_is_ctl(fc)) 2262 return RX_CONTINUE; 2263 2264 sc = le16_to_cpu(hdr->seq_ctrl); 2265 frag = sc & IEEE80211_SCTL_FRAG; 2266 2267 if (is_multicast_ether_addr(hdr->addr1)) { 2268 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 2269 goto out_no_led; 2270 } 2271 2272 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2273 goto out; 2274 2275 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2276 2277 if (skb_linearize(rx->skb)) 2278 return RX_DROP_UNUSABLE; 2279 2280 /* 2281 * skb_linearize() might change the skb->data and 2282 * previously cached variables (in this case, hdr) need to 2283 * be refreshed with the new data. 2284 */ 2285 hdr = (struct ieee80211_hdr *)rx->skb->data; 2286 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2287 2288 if (frag == 0) { 2289 /* This is the first fragment of a new frame. */ 2290 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2291 rx->seqno_idx, &(rx->skb)); 2292 if (rx->key && 2293 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2294 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2295 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2296 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2297 ieee80211_has_protected(fc)) { 2298 int queue = rx->security_idx; 2299 2300 /* Store CCMP/GCMP PN so that we can verify that the 2301 * next fragment has a sequential PN value. 2302 */ 2303 entry->check_sequential_pn = true; 2304 memcpy(entry->last_pn, 2305 rx->key->u.ccmp.rx_pn[queue], 2306 IEEE80211_CCMP_PN_LEN); 2307 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2308 u.ccmp.rx_pn) != 2309 offsetof(struct ieee80211_key, 2310 u.gcmp.rx_pn)); 2311 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2312 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2313 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2314 IEEE80211_GCMP_PN_LEN); 2315 } 2316 return RX_QUEUED; 2317 } 2318 2319 /* This is a fragment for a frame that should already be pending in 2320 * fragment cache. Add this fragment to the end of the pending entry. 2321 */ 2322 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2323 rx->seqno_idx, hdr); 2324 if (!entry) { 2325 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2326 return RX_DROP_MONITOR; 2327 } 2328 2329 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2330 * MPDU PN values are not incrementing in steps of 1." 2331 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2332 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2333 */ 2334 if (entry->check_sequential_pn) { 2335 int i; 2336 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2337 int queue; 2338 2339 if (!rx->key || 2340 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2341 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2342 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2343 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2344 return RX_DROP_UNUSABLE; 2345 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2346 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2347 pn[i]++; 2348 if (pn[i]) 2349 break; 2350 } 2351 queue = rx->security_idx; 2352 rpn = rx->key->u.ccmp.rx_pn[queue]; 2353 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2354 return RX_DROP_UNUSABLE; 2355 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2356 } 2357 2358 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2359 __skb_queue_tail(&entry->skb_list, rx->skb); 2360 entry->last_frag = frag; 2361 entry->extra_len += rx->skb->len; 2362 if (ieee80211_has_morefrags(fc)) { 2363 rx->skb = NULL; 2364 return RX_QUEUED; 2365 } 2366 2367 rx->skb = __skb_dequeue(&entry->skb_list); 2368 if (skb_tailroom(rx->skb) < entry->extra_len) { 2369 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2370 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2371 GFP_ATOMIC))) { 2372 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2373 __skb_queue_purge(&entry->skb_list); 2374 return RX_DROP_UNUSABLE; 2375 } 2376 } 2377 while ((skb = __skb_dequeue(&entry->skb_list))) { 2378 skb_put_data(rx->skb, skb->data, skb->len); 2379 dev_kfree_skb(skb); 2380 } 2381 2382 out: 2383 ieee80211_led_rx(rx->local); 2384 out_no_led: 2385 if (rx->sta) 2386 rx->sta->rx_stats.packets++; 2387 return RX_CONTINUE; 2388 } 2389 2390 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2391 { 2392 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2393 return -EACCES; 2394 2395 return 0; 2396 } 2397 2398 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2399 { 2400 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 2401 struct sk_buff *skb = rx->skb; 2402 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2403 2404 /* 2405 * Pass through unencrypted frames if the hardware has 2406 * decrypted them already. 2407 */ 2408 if (status->flag & RX_FLAG_DECRYPTED) 2409 return 0; 2410 2411 /* check mesh EAPOL frames first */ 2412 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && 2413 ieee80211_is_data(fc))) { 2414 struct ieee80211s_hdr *mesh_hdr; 2415 u16 hdr_len = ieee80211_hdrlen(fc); 2416 u16 ethertype_offset; 2417 __be16 ethertype; 2418 2419 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) 2420 goto drop_check; 2421 2422 /* make sure fixed part of mesh header is there, also checks skb len */ 2423 if (!pskb_may_pull(rx->skb, hdr_len + 6)) 2424 goto drop_check; 2425 2426 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); 2427 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + 2428 sizeof(rfc1042_header); 2429 2430 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && 2431 ethertype == rx->sdata->control_port_protocol) 2432 return 0; 2433 } 2434 2435 drop_check: 2436 /* Drop unencrypted frames if key is set. */ 2437 if (unlikely(!ieee80211_has_protected(fc) && 2438 !ieee80211_is_any_nullfunc(fc) && 2439 ieee80211_is_data(fc) && rx->key)) 2440 return -EACCES; 2441 2442 return 0; 2443 } 2444 2445 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2446 { 2447 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2448 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2449 __le16 fc = hdr->frame_control; 2450 2451 /* 2452 * Pass through unencrypted frames if the hardware has 2453 * decrypted them already. 2454 */ 2455 if (status->flag & RX_FLAG_DECRYPTED) 2456 return 0; 2457 2458 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2459 if (unlikely(!ieee80211_has_protected(fc) && 2460 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2461 rx->key)) { 2462 if (ieee80211_is_deauth(fc) || 2463 ieee80211_is_disassoc(fc)) 2464 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2465 rx->skb->data, 2466 rx->skb->len); 2467 return -EACCES; 2468 } 2469 /* BIP does not use Protected field, so need to check MMIE */ 2470 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2471 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2472 if (ieee80211_is_deauth(fc) || 2473 ieee80211_is_disassoc(fc)) 2474 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2475 rx->skb->data, 2476 rx->skb->len); 2477 return -EACCES; 2478 } 2479 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2480 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2481 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2482 rx->skb->data, 2483 rx->skb->len); 2484 return -EACCES; 2485 } 2486 /* 2487 * When using MFP, Action frames are not allowed prior to 2488 * having configured keys. 2489 */ 2490 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2491 ieee80211_is_robust_mgmt_frame(rx->skb))) 2492 return -EACCES; 2493 } 2494 2495 return 0; 2496 } 2497 2498 static int 2499 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2500 { 2501 struct ieee80211_sub_if_data *sdata = rx->sdata; 2502 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2503 bool check_port_control = false; 2504 struct ethhdr *ehdr; 2505 int ret; 2506 2507 *port_control = false; 2508 if (ieee80211_has_a4(hdr->frame_control) && 2509 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2510 return -1; 2511 2512 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2513 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2514 2515 if (!sdata->u.mgd.use_4addr) 2516 return -1; 2517 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2518 check_port_control = true; 2519 } 2520 2521 if (is_multicast_ether_addr(hdr->addr1) && 2522 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2523 return -1; 2524 2525 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2526 if (ret < 0) 2527 return ret; 2528 2529 ehdr = (struct ethhdr *) rx->skb->data; 2530 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2531 *port_control = true; 2532 else if (check_port_control) 2533 return -1; 2534 2535 return 0; 2536 } 2537 2538 /* 2539 * requires that rx->skb is a frame with ethernet header 2540 */ 2541 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2542 { 2543 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2544 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2545 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2546 2547 /* 2548 * Allow EAPOL frames to us/the PAE group address regardless 2549 * of whether the frame was encrypted or not. 2550 */ 2551 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2552 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2553 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2554 return true; 2555 2556 if (ieee80211_802_1x_port_control(rx) || 2557 ieee80211_drop_unencrypted(rx, fc)) 2558 return false; 2559 2560 return true; 2561 } 2562 2563 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2564 struct ieee80211_rx_data *rx) 2565 { 2566 struct ieee80211_sub_if_data *sdata = rx->sdata; 2567 struct net_device *dev = sdata->dev; 2568 2569 if (unlikely((skb->protocol == sdata->control_port_protocol || 2570 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2571 !sdata->control_port_no_preauth)) && 2572 sdata->control_port_over_nl80211)) { 2573 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2574 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2575 2576 cfg80211_rx_control_port(dev, skb, noencrypt); 2577 dev_kfree_skb(skb); 2578 } else { 2579 memset(skb->cb, 0, sizeof(skb->cb)); 2580 2581 /* deliver to local stack */ 2582 if (rx->list) 2583 list_add_tail(&skb->list, rx->list); 2584 else 2585 netif_receive_skb(skb); 2586 } 2587 } 2588 2589 /* 2590 * requires that rx->skb is a frame with ethernet header 2591 */ 2592 static void 2593 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2594 { 2595 struct ieee80211_sub_if_data *sdata = rx->sdata; 2596 struct net_device *dev = sdata->dev; 2597 struct sk_buff *skb, *xmit_skb; 2598 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2599 struct sta_info *dsta; 2600 2601 skb = rx->skb; 2602 xmit_skb = NULL; 2603 2604 ieee80211_rx_stats(dev, skb->len); 2605 2606 if (rx->sta) { 2607 /* The seqno index has the same property as needed 2608 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2609 * for non-QoS-data frames. Here we know it's a data 2610 * frame, so count MSDUs. 2611 */ 2612 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2613 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2614 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2615 } 2616 2617 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2618 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2619 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2620 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2621 if (is_multicast_ether_addr(ehdr->h_dest) && 2622 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2623 /* 2624 * send multicast frames both to higher layers in 2625 * local net stack and back to the wireless medium 2626 */ 2627 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2628 if (!xmit_skb) 2629 net_info_ratelimited("%s: failed to clone multicast frame\n", 2630 dev->name); 2631 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2632 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2633 dsta = sta_info_get(sdata, ehdr->h_dest); 2634 if (dsta) { 2635 /* 2636 * The destination station is associated to 2637 * this AP (in this VLAN), so send the frame 2638 * directly to it and do not pass it to local 2639 * net stack. 2640 */ 2641 xmit_skb = skb; 2642 skb = NULL; 2643 } 2644 } 2645 } 2646 2647 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2648 if (skb) { 2649 /* 'align' will only take the values 0 or 2 here since all 2650 * frames are required to be aligned to 2-byte boundaries 2651 * when being passed to mac80211; the code here works just 2652 * as well if that isn't true, but mac80211 assumes it can 2653 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2654 */ 2655 int align; 2656 2657 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2658 if (align) { 2659 if (WARN_ON(skb_headroom(skb) < 3)) { 2660 dev_kfree_skb(skb); 2661 skb = NULL; 2662 } else { 2663 u8 *data = skb->data; 2664 size_t len = skb_headlen(skb); 2665 skb->data -= align; 2666 memmove(skb->data, data, len); 2667 skb_set_tail_pointer(skb, len); 2668 } 2669 } 2670 } 2671 #endif 2672 2673 if (skb) { 2674 skb->protocol = eth_type_trans(skb, dev); 2675 ieee80211_deliver_skb_to_local_stack(skb, rx); 2676 } 2677 2678 if (xmit_skb) { 2679 /* 2680 * Send to wireless media and increase priority by 256 to 2681 * keep the received priority instead of reclassifying 2682 * the frame (see cfg80211_classify8021d). 2683 */ 2684 xmit_skb->priority += 256; 2685 xmit_skb->protocol = htons(ETH_P_802_3); 2686 skb_reset_network_header(xmit_skb); 2687 skb_reset_mac_header(xmit_skb); 2688 dev_queue_xmit(xmit_skb); 2689 } 2690 } 2691 2692 static ieee80211_rx_result debug_noinline 2693 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2694 { 2695 struct net_device *dev = rx->sdata->dev; 2696 struct sk_buff *skb = rx->skb; 2697 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2698 __le16 fc = hdr->frame_control; 2699 struct sk_buff_head frame_list; 2700 struct ethhdr ethhdr; 2701 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2702 2703 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2704 check_da = NULL; 2705 check_sa = NULL; 2706 } else switch (rx->sdata->vif.type) { 2707 case NL80211_IFTYPE_AP: 2708 case NL80211_IFTYPE_AP_VLAN: 2709 check_da = NULL; 2710 break; 2711 case NL80211_IFTYPE_STATION: 2712 if (!rx->sta || 2713 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2714 check_sa = NULL; 2715 break; 2716 case NL80211_IFTYPE_MESH_POINT: 2717 check_sa = NULL; 2718 break; 2719 default: 2720 break; 2721 } 2722 2723 skb->dev = dev; 2724 __skb_queue_head_init(&frame_list); 2725 2726 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2727 rx->sdata->vif.addr, 2728 rx->sdata->vif.type, 2729 data_offset)) 2730 return RX_DROP_UNUSABLE; 2731 2732 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2733 rx->sdata->vif.type, 2734 rx->local->hw.extra_tx_headroom, 2735 check_da, check_sa); 2736 2737 while (!skb_queue_empty(&frame_list)) { 2738 rx->skb = __skb_dequeue(&frame_list); 2739 2740 if (!ieee80211_frame_allowed(rx, fc)) { 2741 dev_kfree_skb(rx->skb); 2742 continue; 2743 } 2744 2745 ieee80211_deliver_skb(rx); 2746 } 2747 2748 return RX_QUEUED; 2749 } 2750 2751 static ieee80211_rx_result debug_noinline 2752 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2753 { 2754 struct sk_buff *skb = rx->skb; 2755 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2756 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2757 __le16 fc = hdr->frame_control; 2758 2759 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2760 return RX_CONTINUE; 2761 2762 if (unlikely(!ieee80211_is_data(fc))) 2763 return RX_CONTINUE; 2764 2765 if (unlikely(!ieee80211_is_data_present(fc))) 2766 return RX_DROP_MONITOR; 2767 2768 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2769 switch (rx->sdata->vif.type) { 2770 case NL80211_IFTYPE_AP_VLAN: 2771 if (!rx->sdata->u.vlan.sta) 2772 return RX_DROP_UNUSABLE; 2773 break; 2774 case NL80211_IFTYPE_STATION: 2775 if (!rx->sdata->u.mgd.use_4addr) 2776 return RX_DROP_UNUSABLE; 2777 break; 2778 default: 2779 return RX_DROP_UNUSABLE; 2780 } 2781 } 2782 2783 if (is_multicast_ether_addr(hdr->addr1)) 2784 return RX_DROP_UNUSABLE; 2785 2786 return __ieee80211_rx_h_amsdu(rx, 0); 2787 } 2788 2789 #ifdef CONFIG_MAC80211_MESH 2790 static ieee80211_rx_result 2791 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2792 { 2793 struct ieee80211_hdr *fwd_hdr, *hdr; 2794 struct ieee80211_tx_info *info; 2795 struct ieee80211s_hdr *mesh_hdr; 2796 struct sk_buff *skb = rx->skb, *fwd_skb; 2797 struct ieee80211_local *local = rx->local; 2798 struct ieee80211_sub_if_data *sdata = rx->sdata; 2799 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2800 u16 ac, q, hdrlen; 2801 int tailroom = 0; 2802 2803 hdr = (struct ieee80211_hdr *) skb->data; 2804 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2805 2806 /* make sure fixed part of mesh header is there, also checks skb len */ 2807 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2808 return RX_DROP_MONITOR; 2809 2810 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2811 2812 /* make sure full mesh header is there, also checks skb len */ 2813 if (!pskb_may_pull(rx->skb, 2814 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2815 return RX_DROP_MONITOR; 2816 2817 /* reload pointers */ 2818 hdr = (struct ieee80211_hdr *) skb->data; 2819 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2820 2821 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2822 return RX_DROP_MONITOR; 2823 2824 /* frame is in RMC, don't forward */ 2825 if (ieee80211_is_data(hdr->frame_control) && 2826 is_multicast_ether_addr(hdr->addr1) && 2827 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2828 return RX_DROP_MONITOR; 2829 2830 if (!ieee80211_is_data(hdr->frame_control)) 2831 return RX_CONTINUE; 2832 2833 if (!mesh_hdr->ttl) 2834 return RX_DROP_MONITOR; 2835 2836 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2837 struct mesh_path *mppath; 2838 char *proxied_addr; 2839 char *mpp_addr; 2840 2841 if (is_multicast_ether_addr(hdr->addr1)) { 2842 mpp_addr = hdr->addr3; 2843 proxied_addr = mesh_hdr->eaddr1; 2844 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2845 MESH_FLAGS_AE_A5_A6) { 2846 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2847 mpp_addr = hdr->addr4; 2848 proxied_addr = mesh_hdr->eaddr2; 2849 } else { 2850 return RX_DROP_MONITOR; 2851 } 2852 2853 rcu_read_lock(); 2854 mppath = mpp_path_lookup(sdata, proxied_addr); 2855 if (!mppath) { 2856 mpp_path_add(sdata, proxied_addr, mpp_addr); 2857 } else { 2858 spin_lock_bh(&mppath->state_lock); 2859 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2860 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2861 mppath->exp_time = jiffies; 2862 spin_unlock_bh(&mppath->state_lock); 2863 } 2864 rcu_read_unlock(); 2865 } 2866 2867 /* Frame has reached destination. Don't forward */ 2868 if (!is_multicast_ether_addr(hdr->addr1) && 2869 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2870 return RX_CONTINUE; 2871 2872 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2873 q = sdata->vif.hw_queue[ac]; 2874 if (ieee80211_queue_stopped(&local->hw, q)) { 2875 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2876 return RX_DROP_MONITOR; 2877 } 2878 skb_set_queue_mapping(skb, q); 2879 2880 if (!--mesh_hdr->ttl) { 2881 if (!is_multicast_ether_addr(hdr->addr1)) 2882 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2883 dropped_frames_ttl); 2884 goto out; 2885 } 2886 2887 if (!ifmsh->mshcfg.dot11MeshForwarding) 2888 goto out; 2889 2890 if (sdata->crypto_tx_tailroom_needed_cnt) 2891 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2892 2893 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2894 sdata->encrypt_headroom, 2895 tailroom, GFP_ATOMIC); 2896 if (!fwd_skb) 2897 goto out; 2898 2899 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2900 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2901 info = IEEE80211_SKB_CB(fwd_skb); 2902 memset(info, 0, sizeof(*info)); 2903 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2904 info->control.vif = &rx->sdata->vif; 2905 info->control.jiffies = jiffies; 2906 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2907 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2908 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2909 /* update power mode indication when forwarding */ 2910 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2911 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2912 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2913 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2914 } else { 2915 /* unable to resolve next hop */ 2916 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2917 fwd_hdr->addr3, 0, 2918 WLAN_REASON_MESH_PATH_NOFORWARD, 2919 fwd_hdr->addr2); 2920 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2921 kfree_skb(fwd_skb); 2922 return RX_DROP_MONITOR; 2923 } 2924 2925 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2926 ieee80211_add_pending_skb(local, fwd_skb); 2927 out: 2928 if (is_multicast_ether_addr(hdr->addr1)) 2929 return RX_CONTINUE; 2930 return RX_DROP_MONITOR; 2931 } 2932 #endif 2933 2934 static ieee80211_rx_result debug_noinline 2935 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2936 { 2937 struct ieee80211_sub_if_data *sdata = rx->sdata; 2938 struct ieee80211_local *local = rx->local; 2939 struct net_device *dev = sdata->dev; 2940 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2941 __le16 fc = hdr->frame_control; 2942 bool port_control; 2943 int err; 2944 2945 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2946 return RX_CONTINUE; 2947 2948 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2949 return RX_DROP_MONITOR; 2950 2951 /* 2952 * Send unexpected-4addr-frame event to hostapd. For older versions, 2953 * also drop the frame to cooked monitor interfaces. 2954 */ 2955 if (ieee80211_has_a4(hdr->frame_control) && 2956 sdata->vif.type == NL80211_IFTYPE_AP) { 2957 if (rx->sta && 2958 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2959 cfg80211_rx_unexpected_4addr_frame( 2960 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2961 return RX_DROP_MONITOR; 2962 } 2963 2964 err = __ieee80211_data_to_8023(rx, &port_control); 2965 if (unlikely(err)) 2966 return RX_DROP_UNUSABLE; 2967 2968 if (!ieee80211_frame_allowed(rx, fc)) 2969 return RX_DROP_MONITOR; 2970 2971 /* directly handle TDLS channel switch requests/responses */ 2972 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2973 cpu_to_be16(ETH_P_TDLS))) { 2974 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2975 2976 if (pskb_may_pull(rx->skb, 2977 offsetof(struct ieee80211_tdls_data, u)) && 2978 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2979 tf->category == WLAN_CATEGORY_TDLS && 2980 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2981 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2982 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2983 schedule_work(&local->tdls_chsw_work); 2984 if (rx->sta) 2985 rx->sta->rx_stats.packets++; 2986 2987 return RX_QUEUED; 2988 } 2989 } 2990 2991 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2992 unlikely(port_control) && sdata->bss) { 2993 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2994 u.ap); 2995 dev = sdata->dev; 2996 rx->sdata = sdata; 2997 } 2998 2999 rx->skb->dev = dev; 3000 3001 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3002 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3003 !is_multicast_ether_addr( 3004 ((struct ethhdr *)rx->skb->data)->h_dest) && 3005 (!local->scanning && 3006 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3007 mod_timer(&local->dynamic_ps_timer, jiffies + 3008 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3009 3010 ieee80211_deliver_skb(rx); 3011 3012 return RX_QUEUED; 3013 } 3014 3015 static ieee80211_rx_result debug_noinline 3016 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3017 { 3018 struct sk_buff *skb = rx->skb; 3019 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3020 struct tid_ampdu_rx *tid_agg_rx; 3021 u16 start_seq_num; 3022 u16 tid; 3023 3024 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3025 return RX_CONTINUE; 3026 3027 if (ieee80211_is_back_req(bar->frame_control)) { 3028 struct { 3029 __le16 control, start_seq_num; 3030 } __packed bar_data; 3031 struct ieee80211_event event = { 3032 .type = BAR_RX_EVENT, 3033 }; 3034 3035 if (!rx->sta) 3036 return RX_DROP_MONITOR; 3037 3038 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3039 &bar_data, sizeof(bar_data))) 3040 return RX_DROP_MONITOR; 3041 3042 tid = le16_to_cpu(bar_data.control) >> 12; 3043 3044 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3045 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3046 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3047 WLAN_BACK_RECIPIENT, 3048 WLAN_REASON_QSTA_REQUIRE_SETUP); 3049 3050 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3051 if (!tid_agg_rx) 3052 return RX_DROP_MONITOR; 3053 3054 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3055 event.u.ba.tid = tid; 3056 event.u.ba.ssn = start_seq_num; 3057 event.u.ba.sta = &rx->sta->sta; 3058 3059 /* reset session timer */ 3060 if (tid_agg_rx->timeout) 3061 mod_timer(&tid_agg_rx->session_timer, 3062 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3063 3064 spin_lock(&tid_agg_rx->reorder_lock); 3065 /* release stored frames up to start of BAR */ 3066 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3067 start_seq_num, frames); 3068 spin_unlock(&tid_agg_rx->reorder_lock); 3069 3070 drv_event_callback(rx->local, rx->sdata, &event); 3071 3072 kfree_skb(skb); 3073 return RX_QUEUED; 3074 } 3075 3076 /* 3077 * After this point, we only want management frames, 3078 * so we can drop all remaining control frames to 3079 * cooked monitor interfaces. 3080 */ 3081 return RX_DROP_MONITOR; 3082 } 3083 3084 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3085 struct ieee80211_mgmt *mgmt, 3086 size_t len) 3087 { 3088 struct ieee80211_local *local = sdata->local; 3089 struct sk_buff *skb; 3090 struct ieee80211_mgmt *resp; 3091 3092 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3093 /* Not to own unicast address */ 3094 return; 3095 } 3096 3097 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 3098 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 3099 /* Not from the current AP or not associated yet. */ 3100 return; 3101 } 3102 3103 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3104 /* Too short SA Query request frame */ 3105 return; 3106 } 3107 3108 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3109 if (skb == NULL) 3110 return; 3111 3112 skb_reserve(skb, local->hw.extra_tx_headroom); 3113 resp = skb_put_zero(skb, 24); 3114 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3115 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3116 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 3117 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3118 IEEE80211_STYPE_ACTION); 3119 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3120 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3121 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3122 memcpy(resp->u.action.u.sa_query.trans_id, 3123 mgmt->u.action.u.sa_query.trans_id, 3124 WLAN_SA_QUERY_TR_ID_LEN); 3125 3126 ieee80211_tx_skb(sdata, skb); 3127 } 3128 3129 static ieee80211_rx_result debug_noinline 3130 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3131 { 3132 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3133 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3134 3135 /* 3136 * From here on, look only at management frames. 3137 * Data and control frames are already handled, 3138 * and unknown (reserved) frames are useless. 3139 */ 3140 if (rx->skb->len < 24) 3141 return RX_DROP_MONITOR; 3142 3143 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3144 return RX_DROP_MONITOR; 3145 3146 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3147 ieee80211_is_beacon(mgmt->frame_control) && 3148 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3149 int sig = 0; 3150 3151 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3152 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3153 sig = status->signal; 3154 3155 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3156 rx->skb->data, rx->skb->len, 3157 ieee80211_rx_status_to_khz(status), 3158 sig); 3159 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3160 } 3161 3162 if (ieee80211_drop_unencrypted_mgmt(rx)) 3163 return RX_DROP_UNUSABLE; 3164 3165 return RX_CONTINUE; 3166 } 3167 3168 static ieee80211_rx_result debug_noinline 3169 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3170 { 3171 struct ieee80211_local *local = rx->local; 3172 struct ieee80211_sub_if_data *sdata = rx->sdata; 3173 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3174 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3175 int len = rx->skb->len; 3176 3177 if (!ieee80211_is_action(mgmt->frame_control)) 3178 return RX_CONTINUE; 3179 3180 /* drop too small frames */ 3181 if (len < IEEE80211_MIN_ACTION_SIZE) 3182 return RX_DROP_UNUSABLE; 3183 3184 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3185 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3186 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3187 return RX_DROP_UNUSABLE; 3188 3189 switch (mgmt->u.action.category) { 3190 case WLAN_CATEGORY_HT: 3191 /* reject HT action frames from stations not supporting HT */ 3192 if (!rx->sta->sta.ht_cap.ht_supported) 3193 goto invalid; 3194 3195 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3196 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3197 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3198 sdata->vif.type != NL80211_IFTYPE_AP && 3199 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3200 break; 3201 3202 /* verify action & smps_control/chanwidth are present */ 3203 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3204 goto invalid; 3205 3206 switch (mgmt->u.action.u.ht_smps.action) { 3207 case WLAN_HT_ACTION_SMPS: { 3208 struct ieee80211_supported_band *sband; 3209 enum ieee80211_smps_mode smps_mode; 3210 struct sta_opmode_info sta_opmode = {}; 3211 3212 if (sdata->vif.type != NL80211_IFTYPE_AP && 3213 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3214 goto handled; 3215 3216 /* convert to HT capability */ 3217 switch (mgmt->u.action.u.ht_smps.smps_control) { 3218 case WLAN_HT_SMPS_CONTROL_DISABLED: 3219 smps_mode = IEEE80211_SMPS_OFF; 3220 break; 3221 case WLAN_HT_SMPS_CONTROL_STATIC: 3222 smps_mode = IEEE80211_SMPS_STATIC; 3223 break; 3224 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3225 smps_mode = IEEE80211_SMPS_DYNAMIC; 3226 break; 3227 default: 3228 goto invalid; 3229 } 3230 3231 /* if no change do nothing */ 3232 if (rx->sta->sta.smps_mode == smps_mode) 3233 goto handled; 3234 rx->sta->sta.smps_mode = smps_mode; 3235 sta_opmode.smps_mode = 3236 ieee80211_smps_mode_to_smps_mode(smps_mode); 3237 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3238 3239 sband = rx->local->hw.wiphy->bands[status->band]; 3240 3241 rate_control_rate_update(local, sband, rx->sta, 3242 IEEE80211_RC_SMPS_CHANGED); 3243 cfg80211_sta_opmode_change_notify(sdata->dev, 3244 rx->sta->addr, 3245 &sta_opmode, 3246 GFP_ATOMIC); 3247 goto handled; 3248 } 3249 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3250 struct ieee80211_supported_band *sband; 3251 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3252 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3253 struct sta_opmode_info sta_opmode = {}; 3254 3255 /* If it doesn't support 40 MHz it can't change ... */ 3256 if (!(rx->sta->sta.ht_cap.cap & 3257 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3258 goto handled; 3259 3260 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3261 max_bw = IEEE80211_STA_RX_BW_20; 3262 else 3263 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3264 3265 /* set cur_max_bandwidth and recalc sta bw */ 3266 rx->sta->cur_max_bandwidth = max_bw; 3267 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3268 3269 if (rx->sta->sta.bandwidth == new_bw) 3270 goto handled; 3271 3272 rx->sta->sta.bandwidth = new_bw; 3273 sband = rx->local->hw.wiphy->bands[status->band]; 3274 sta_opmode.bw = 3275 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3276 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3277 3278 rate_control_rate_update(local, sband, rx->sta, 3279 IEEE80211_RC_BW_CHANGED); 3280 cfg80211_sta_opmode_change_notify(sdata->dev, 3281 rx->sta->addr, 3282 &sta_opmode, 3283 GFP_ATOMIC); 3284 goto handled; 3285 } 3286 default: 3287 goto invalid; 3288 } 3289 3290 break; 3291 case WLAN_CATEGORY_PUBLIC: 3292 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3293 goto invalid; 3294 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3295 break; 3296 if (!rx->sta) 3297 break; 3298 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3299 break; 3300 if (mgmt->u.action.u.ext_chan_switch.action_code != 3301 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3302 break; 3303 if (len < offsetof(struct ieee80211_mgmt, 3304 u.action.u.ext_chan_switch.variable)) 3305 goto invalid; 3306 goto queue; 3307 case WLAN_CATEGORY_VHT: 3308 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3309 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3310 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3311 sdata->vif.type != NL80211_IFTYPE_AP && 3312 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3313 break; 3314 3315 /* verify action code is present */ 3316 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3317 goto invalid; 3318 3319 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3320 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3321 /* verify opmode is present */ 3322 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3323 goto invalid; 3324 goto queue; 3325 } 3326 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3327 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3328 goto invalid; 3329 goto queue; 3330 } 3331 default: 3332 break; 3333 } 3334 break; 3335 case WLAN_CATEGORY_BACK: 3336 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3337 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3338 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3339 sdata->vif.type != NL80211_IFTYPE_AP && 3340 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3341 break; 3342 3343 /* verify action_code is present */ 3344 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3345 break; 3346 3347 switch (mgmt->u.action.u.addba_req.action_code) { 3348 case WLAN_ACTION_ADDBA_REQ: 3349 if (len < (IEEE80211_MIN_ACTION_SIZE + 3350 sizeof(mgmt->u.action.u.addba_req))) 3351 goto invalid; 3352 break; 3353 case WLAN_ACTION_ADDBA_RESP: 3354 if (len < (IEEE80211_MIN_ACTION_SIZE + 3355 sizeof(mgmt->u.action.u.addba_resp))) 3356 goto invalid; 3357 break; 3358 case WLAN_ACTION_DELBA: 3359 if (len < (IEEE80211_MIN_ACTION_SIZE + 3360 sizeof(mgmt->u.action.u.delba))) 3361 goto invalid; 3362 break; 3363 default: 3364 goto invalid; 3365 } 3366 3367 goto queue; 3368 case WLAN_CATEGORY_SPECTRUM_MGMT: 3369 /* verify action_code is present */ 3370 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3371 break; 3372 3373 switch (mgmt->u.action.u.measurement.action_code) { 3374 case WLAN_ACTION_SPCT_MSR_REQ: 3375 if (status->band != NL80211_BAND_5GHZ) 3376 break; 3377 3378 if (len < (IEEE80211_MIN_ACTION_SIZE + 3379 sizeof(mgmt->u.action.u.measurement))) 3380 break; 3381 3382 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3383 break; 3384 3385 ieee80211_process_measurement_req(sdata, mgmt, len); 3386 goto handled; 3387 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3388 u8 *bssid; 3389 if (len < (IEEE80211_MIN_ACTION_SIZE + 3390 sizeof(mgmt->u.action.u.chan_switch))) 3391 break; 3392 3393 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3394 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3395 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3396 break; 3397 3398 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3399 bssid = sdata->u.mgd.bssid; 3400 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3401 bssid = sdata->u.ibss.bssid; 3402 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3403 bssid = mgmt->sa; 3404 else 3405 break; 3406 3407 if (!ether_addr_equal(mgmt->bssid, bssid)) 3408 break; 3409 3410 goto queue; 3411 } 3412 } 3413 break; 3414 case WLAN_CATEGORY_SELF_PROTECTED: 3415 if (len < (IEEE80211_MIN_ACTION_SIZE + 3416 sizeof(mgmt->u.action.u.self_prot.action_code))) 3417 break; 3418 3419 switch (mgmt->u.action.u.self_prot.action_code) { 3420 case WLAN_SP_MESH_PEERING_OPEN: 3421 case WLAN_SP_MESH_PEERING_CLOSE: 3422 case WLAN_SP_MESH_PEERING_CONFIRM: 3423 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3424 goto invalid; 3425 if (sdata->u.mesh.user_mpm) 3426 /* userspace handles this frame */ 3427 break; 3428 goto queue; 3429 case WLAN_SP_MGK_INFORM: 3430 case WLAN_SP_MGK_ACK: 3431 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3432 goto invalid; 3433 break; 3434 } 3435 break; 3436 case WLAN_CATEGORY_MESH_ACTION: 3437 if (len < (IEEE80211_MIN_ACTION_SIZE + 3438 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3439 break; 3440 3441 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3442 break; 3443 if (mesh_action_is_path_sel(mgmt) && 3444 !mesh_path_sel_is_hwmp(sdata)) 3445 break; 3446 goto queue; 3447 } 3448 3449 return RX_CONTINUE; 3450 3451 invalid: 3452 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3453 /* will return in the next handlers */ 3454 return RX_CONTINUE; 3455 3456 handled: 3457 if (rx->sta) 3458 rx->sta->rx_stats.packets++; 3459 dev_kfree_skb(rx->skb); 3460 return RX_QUEUED; 3461 3462 queue: 3463 skb_queue_tail(&sdata->skb_queue, rx->skb); 3464 ieee80211_queue_work(&local->hw, &sdata->work); 3465 if (rx->sta) 3466 rx->sta->rx_stats.packets++; 3467 return RX_QUEUED; 3468 } 3469 3470 static ieee80211_rx_result debug_noinline 3471 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3472 { 3473 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3474 int sig = 0; 3475 3476 /* skip known-bad action frames and return them in the next handler */ 3477 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3478 return RX_CONTINUE; 3479 3480 /* 3481 * Getting here means the kernel doesn't know how to handle 3482 * it, but maybe userspace does ... include returned frames 3483 * so userspace can register for those to know whether ones 3484 * it transmitted were processed or returned. 3485 */ 3486 3487 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3488 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3489 sig = status->signal; 3490 3491 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev, 3492 ieee80211_rx_status_to_khz(status), sig, 3493 rx->skb->data, rx->skb->len, 0)) { 3494 if (rx->sta) 3495 rx->sta->rx_stats.packets++; 3496 dev_kfree_skb(rx->skb); 3497 return RX_QUEUED; 3498 } 3499 3500 return RX_CONTINUE; 3501 } 3502 3503 static ieee80211_rx_result debug_noinline 3504 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3505 { 3506 struct ieee80211_sub_if_data *sdata = rx->sdata; 3507 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3508 int len = rx->skb->len; 3509 3510 if (!ieee80211_is_action(mgmt->frame_control)) 3511 return RX_CONTINUE; 3512 3513 switch (mgmt->u.action.category) { 3514 case WLAN_CATEGORY_SA_QUERY: 3515 if (len < (IEEE80211_MIN_ACTION_SIZE + 3516 sizeof(mgmt->u.action.u.sa_query))) 3517 break; 3518 3519 switch (mgmt->u.action.u.sa_query.action) { 3520 case WLAN_ACTION_SA_QUERY_REQUEST: 3521 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3522 break; 3523 ieee80211_process_sa_query_req(sdata, mgmt, len); 3524 goto handled; 3525 } 3526 break; 3527 } 3528 3529 return RX_CONTINUE; 3530 3531 handled: 3532 if (rx->sta) 3533 rx->sta->rx_stats.packets++; 3534 dev_kfree_skb(rx->skb); 3535 return RX_QUEUED; 3536 } 3537 3538 static ieee80211_rx_result debug_noinline 3539 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3540 { 3541 struct ieee80211_local *local = rx->local; 3542 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3543 struct sk_buff *nskb; 3544 struct ieee80211_sub_if_data *sdata = rx->sdata; 3545 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3546 3547 if (!ieee80211_is_action(mgmt->frame_control)) 3548 return RX_CONTINUE; 3549 3550 /* 3551 * For AP mode, hostapd is responsible for handling any action 3552 * frames that we didn't handle, including returning unknown 3553 * ones. For all other modes we will return them to the sender, 3554 * setting the 0x80 bit in the action category, as required by 3555 * 802.11-2012 9.24.4. 3556 * Newer versions of hostapd shall also use the management frame 3557 * registration mechanisms, but older ones still use cooked 3558 * monitor interfaces so push all frames there. 3559 */ 3560 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3561 (sdata->vif.type == NL80211_IFTYPE_AP || 3562 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3563 return RX_DROP_MONITOR; 3564 3565 if (is_multicast_ether_addr(mgmt->da)) 3566 return RX_DROP_MONITOR; 3567 3568 /* do not return rejected action frames */ 3569 if (mgmt->u.action.category & 0x80) 3570 return RX_DROP_UNUSABLE; 3571 3572 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3573 GFP_ATOMIC); 3574 if (nskb) { 3575 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3576 3577 nmgmt->u.action.category |= 0x80; 3578 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3579 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3580 3581 memset(nskb->cb, 0, sizeof(nskb->cb)); 3582 3583 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3584 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3585 3586 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3587 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3588 IEEE80211_TX_CTL_NO_CCK_RATE; 3589 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3590 info->hw_queue = 3591 local->hw.offchannel_tx_hw_queue; 3592 } 3593 3594 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3595 status->band); 3596 } 3597 dev_kfree_skb(rx->skb); 3598 return RX_QUEUED; 3599 } 3600 3601 static ieee80211_rx_result debug_noinline 3602 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3603 { 3604 struct ieee80211_sub_if_data *sdata = rx->sdata; 3605 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3606 __le16 stype; 3607 3608 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3609 3610 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3611 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3612 sdata->vif.type != NL80211_IFTYPE_OCB && 3613 sdata->vif.type != NL80211_IFTYPE_STATION) 3614 return RX_DROP_MONITOR; 3615 3616 switch (stype) { 3617 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3618 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3619 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3620 /* process for all: mesh, mlme, ibss */ 3621 break; 3622 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3623 if (is_multicast_ether_addr(mgmt->da) && 3624 !is_broadcast_ether_addr(mgmt->da)) 3625 return RX_DROP_MONITOR; 3626 3627 /* process only for station/IBSS */ 3628 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3629 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3630 return RX_DROP_MONITOR; 3631 break; 3632 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3633 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3634 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3635 if (is_multicast_ether_addr(mgmt->da) && 3636 !is_broadcast_ether_addr(mgmt->da)) 3637 return RX_DROP_MONITOR; 3638 3639 /* process only for station */ 3640 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3641 return RX_DROP_MONITOR; 3642 break; 3643 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3644 /* process only for ibss and mesh */ 3645 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3646 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3647 return RX_DROP_MONITOR; 3648 break; 3649 default: 3650 return RX_DROP_MONITOR; 3651 } 3652 3653 /* queue up frame and kick off work to process it */ 3654 skb_queue_tail(&sdata->skb_queue, rx->skb); 3655 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3656 if (rx->sta) 3657 rx->sta->rx_stats.packets++; 3658 3659 return RX_QUEUED; 3660 } 3661 3662 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3663 struct ieee80211_rate *rate) 3664 { 3665 struct ieee80211_sub_if_data *sdata; 3666 struct ieee80211_local *local = rx->local; 3667 struct sk_buff *skb = rx->skb, *skb2; 3668 struct net_device *prev_dev = NULL; 3669 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3670 int needed_headroom; 3671 3672 /* 3673 * If cooked monitor has been processed already, then 3674 * don't do it again. If not, set the flag. 3675 */ 3676 if (rx->flags & IEEE80211_RX_CMNTR) 3677 goto out_free_skb; 3678 rx->flags |= IEEE80211_RX_CMNTR; 3679 3680 /* If there are no cooked monitor interfaces, just free the SKB */ 3681 if (!local->cooked_mntrs) 3682 goto out_free_skb; 3683 3684 /* vendor data is long removed here */ 3685 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3686 /* room for the radiotap header based on driver features */ 3687 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3688 3689 if (skb_headroom(skb) < needed_headroom && 3690 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3691 goto out_free_skb; 3692 3693 /* prepend radiotap information */ 3694 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3695 false); 3696 3697 skb_reset_mac_header(skb); 3698 skb->ip_summed = CHECKSUM_UNNECESSARY; 3699 skb->pkt_type = PACKET_OTHERHOST; 3700 skb->protocol = htons(ETH_P_802_2); 3701 3702 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3703 if (!ieee80211_sdata_running(sdata)) 3704 continue; 3705 3706 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3707 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3708 continue; 3709 3710 if (prev_dev) { 3711 skb2 = skb_clone(skb, GFP_ATOMIC); 3712 if (skb2) { 3713 skb2->dev = prev_dev; 3714 netif_receive_skb(skb2); 3715 } 3716 } 3717 3718 prev_dev = sdata->dev; 3719 ieee80211_rx_stats(sdata->dev, skb->len); 3720 } 3721 3722 if (prev_dev) { 3723 skb->dev = prev_dev; 3724 netif_receive_skb(skb); 3725 return; 3726 } 3727 3728 out_free_skb: 3729 dev_kfree_skb(skb); 3730 } 3731 3732 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3733 ieee80211_rx_result res) 3734 { 3735 switch (res) { 3736 case RX_DROP_MONITOR: 3737 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3738 if (rx->sta) 3739 rx->sta->rx_stats.dropped++; 3740 fallthrough; 3741 case RX_CONTINUE: { 3742 struct ieee80211_rate *rate = NULL; 3743 struct ieee80211_supported_band *sband; 3744 struct ieee80211_rx_status *status; 3745 3746 status = IEEE80211_SKB_RXCB((rx->skb)); 3747 3748 sband = rx->local->hw.wiphy->bands[status->band]; 3749 if (status->encoding == RX_ENC_LEGACY) 3750 rate = &sband->bitrates[status->rate_idx]; 3751 3752 ieee80211_rx_cooked_monitor(rx, rate); 3753 break; 3754 } 3755 case RX_DROP_UNUSABLE: 3756 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3757 if (rx->sta) 3758 rx->sta->rx_stats.dropped++; 3759 dev_kfree_skb(rx->skb); 3760 break; 3761 case RX_QUEUED: 3762 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3763 break; 3764 } 3765 } 3766 3767 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3768 struct sk_buff_head *frames) 3769 { 3770 ieee80211_rx_result res = RX_DROP_MONITOR; 3771 struct sk_buff *skb; 3772 3773 #define CALL_RXH(rxh) \ 3774 do { \ 3775 res = rxh(rx); \ 3776 if (res != RX_CONTINUE) \ 3777 goto rxh_next; \ 3778 } while (0) 3779 3780 /* Lock here to avoid hitting all of the data used in the RX 3781 * path (e.g. key data, station data, ...) concurrently when 3782 * a frame is released from the reorder buffer due to timeout 3783 * from the timer, potentially concurrently with RX from the 3784 * driver. 3785 */ 3786 spin_lock_bh(&rx->local->rx_path_lock); 3787 3788 while ((skb = __skb_dequeue(frames))) { 3789 /* 3790 * all the other fields are valid across frames 3791 * that belong to an aMPDU since they are on the 3792 * same TID from the same station 3793 */ 3794 rx->skb = skb; 3795 3796 CALL_RXH(ieee80211_rx_h_check_more_data); 3797 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3798 CALL_RXH(ieee80211_rx_h_sta_process); 3799 CALL_RXH(ieee80211_rx_h_decrypt); 3800 CALL_RXH(ieee80211_rx_h_defragment); 3801 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3802 /* must be after MMIC verify so header is counted in MPDU mic */ 3803 #ifdef CONFIG_MAC80211_MESH 3804 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3805 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3806 #endif 3807 CALL_RXH(ieee80211_rx_h_amsdu); 3808 CALL_RXH(ieee80211_rx_h_data); 3809 3810 /* special treatment -- needs the queue */ 3811 res = ieee80211_rx_h_ctrl(rx, frames); 3812 if (res != RX_CONTINUE) 3813 goto rxh_next; 3814 3815 CALL_RXH(ieee80211_rx_h_mgmt_check); 3816 CALL_RXH(ieee80211_rx_h_action); 3817 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3818 CALL_RXH(ieee80211_rx_h_action_post_userspace); 3819 CALL_RXH(ieee80211_rx_h_action_return); 3820 CALL_RXH(ieee80211_rx_h_mgmt); 3821 3822 rxh_next: 3823 ieee80211_rx_handlers_result(rx, res); 3824 3825 #undef CALL_RXH 3826 } 3827 3828 spin_unlock_bh(&rx->local->rx_path_lock); 3829 } 3830 3831 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3832 { 3833 struct sk_buff_head reorder_release; 3834 ieee80211_rx_result res = RX_DROP_MONITOR; 3835 3836 __skb_queue_head_init(&reorder_release); 3837 3838 #define CALL_RXH(rxh) \ 3839 do { \ 3840 res = rxh(rx); \ 3841 if (res != RX_CONTINUE) \ 3842 goto rxh_next; \ 3843 } while (0) 3844 3845 CALL_RXH(ieee80211_rx_h_check_dup); 3846 CALL_RXH(ieee80211_rx_h_check); 3847 3848 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3849 3850 ieee80211_rx_handlers(rx, &reorder_release); 3851 return; 3852 3853 rxh_next: 3854 ieee80211_rx_handlers_result(rx, res); 3855 3856 #undef CALL_RXH 3857 } 3858 3859 /* 3860 * This function makes calls into the RX path, therefore 3861 * it has to be invoked under RCU read lock. 3862 */ 3863 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3864 { 3865 struct sk_buff_head frames; 3866 struct ieee80211_rx_data rx = { 3867 .sta = sta, 3868 .sdata = sta->sdata, 3869 .local = sta->local, 3870 /* This is OK -- must be QoS data frame */ 3871 .security_idx = tid, 3872 .seqno_idx = tid, 3873 }; 3874 struct tid_ampdu_rx *tid_agg_rx; 3875 3876 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3877 if (!tid_agg_rx) 3878 return; 3879 3880 __skb_queue_head_init(&frames); 3881 3882 spin_lock(&tid_agg_rx->reorder_lock); 3883 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3884 spin_unlock(&tid_agg_rx->reorder_lock); 3885 3886 if (!skb_queue_empty(&frames)) { 3887 struct ieee80211_event event = { 3888 .type = BA_FRAME_TIMEOUT, 3889 .u.ba.tid = tid, 3890 .u.ba.sta = &sta->sta, 3891 }; 3892 drv_event_callback(rx.local, rx.sdata, &event); 3893 } 3894 3895 ieee80211_rx_handlers(&rx, &frames); 3896 } 3897 3898 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3899 u16 ssn, u64 filtered, 3900 u16 received_mpdus) 3901 { 3902 struct sta_info *sta; 3903 struct tid_ampdu_rx *tid_agg_rx; 3904 struct sk_buff_head frames; 3905 struct ieee80211_rx_data rx = { 3906 /* This is OK -- must be QoS data frame */ 3907 .security_idx = tid, 3908 .seqno_idx = tid, 3909 }; 3910 int i, diff; 3911 3912 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3913 return; 3914 3915 __skb_queue_head_init(&frames); 3916 3917 sta = container_of(pubsta, struct sta_info, sta); 3918 3919 rx.sta = sta; 3920 rx.sdata = sta->sdata; 3921 rx.local = sta->local; 3922 3923 rcu_read_lock(); 3924 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3925 if (!tid_agg_rx) 3926 goto out; 3927 3928 spin_lock_bh(&tid_agg_rx->reorder_lock); 3929 3930 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3931 int release; 3932 3933 /* release all frames in the reorder buffer */ 3934 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3935 IEEE80211_SN_MODULO; 3936 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3937 release, &frames); 3938 /* update ssn to match received ssn */ 3939 tid_agg_rx->head_seq_num = ssn; 3940 } else { 3941 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3942 &frames); 3943 } 3944 3945 /* handle the case that received ssn is behind the mac ssn. 3946 * it can be tid_agg_rx->buf_size behind and still be valid */ 3947 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3948 if (diff >= tid_agg_rx->buf_size) { 3949 tid_agg_rx->reorder_buf_filtered = 0; 3950 goto release; 3951 } 3952 filtered = filtered >> diff; 3953 ssn += diff; 3954 3955 /* update bitmap */ 3956 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3957 int index = (ssn + i) % tid_agg_rx->buf_size; 3958 3959 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3960 if (filtered & BIT_ULL(i)) 3961 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3962 } 3963 3964 /* now process also frames that the filter marking released */ 3965 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3966 3967 release: 3968 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3969 3970 ieee80211_rx_handlers(&rx, &frames); 3971 3972 out: 3973 rcu_read_unlock(); 3974 } 3975 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3976 3977 /* main receive path */ 3978 3979 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3980 { 3981 struct ieee80211_sub_if_data *sdata = rx->sdata; 3982 struct sk_buff *skb = rx->skb; 3983 struct ieee80211_hdr *hdr = (void *)skb->data; 3984 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3985 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3986 bool multicast = is_multicast_ether_addr(hdr->addr1); 3987 3988 switch (sdata->vif.type) { 3989 case NL80211_IFTYPE_STATION: 3990 if (!bssid && !sdata->u.mgd.use_4addr) 3991 return false; 3992 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 3993 return false; 3994 if (multicast) 3995 return true; 3996 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3997 case NL80211_IFTYPE_ADHOC: 3998 if (!bssid) 3999 return false; 4000 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4001 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 4002 return false; 4003 if (ieee80211_is_beacon(hdr->frame_control)) 4004 return true; 4005 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4006 return false; 4007 if (!multicast && 4008 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4009 return false; 4010 if (!rx->sta) { 4011 int rate_idx; 4012 if (status->encoding != RX_ENC_LEGACY) 4013 rate_idx = 0; /* TODO: HT/VHT rates */ 4014 else 4015 rate_idx = status->rate_idx; 4016 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4017 BIT(rate_idx)); 4018 } 4019 return true; 4020 case NL80211_IFTYPE_OCB: 4021 if (!bssid) 4022 return false; 4023 if (!ieee80211_is_data_present(hdr->frame_control)) 4024 return false; 4025 if (!is_broadcast_ether_addr(bssid)) 4026 return false; 4027 if (!multicast && 4028 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4029 return false; 4030 if (!rx->sta) { 4031 int rate_idx; 4032 if (status->encoding != RX_ENC_LEGACY) 4033 rate_idx = 0; /* TODO: HT rates */ 4034 else 4035 rate_idx = status->rate_idx; 4036 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4037 BIT(rate_idx)); 4038 } 4039 return true; 4040 case NL80211_IFTYPE_MESH_POINT: 4041 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4042 return false; 4043 if (multicast) 4044 return true; 4045 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4046 case NL80211_IFTYPE_AP_VLAN: 4047 case NL80211_IFTYPE_AP: 4048 if (!bssid) 4049 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4050 4051 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 4052 /* 4053 * Accept public action frames even when the 4054 * BSSID doesn't match, this is used for P2P 4055 * and location updates. Note that mac80211 4056 * itself never looks at these frames. 4057 */ 4058 if (!multicast && 4059 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4060 return false; 4061 if (ieee80211_is_public_action(hdr, skb->len)) 4062 return true; 4063 return ieee80211_is_beacon(hdr->frame_control); 4064 } 4065 4066 if (!ieee80211_has_tods(hdr->frame_control)) { 4067 /* ignore data frames to TDLS-peers */ 4068 if (ieee80211_is_data(hdr->frame_control)) 4069 return false; 4070 /* ignore action frames to TDLS-peers */ 4071 if (ieee80211_is_action(hdr->frame_control) && 4072 !is_broadcast_ether_addr(bssid) && 4073 !ether_addr_equal(bssid, hdr->addr1)) 4074 return false; 4075 } 4076 4077 /* 4078 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4079 * the BSSID - we've checked that already but may have accepted 4080 * the wildcard (ff:ff:ff:ff:ff:ff). 4081 * 4082 * It also says: 4083 * The BSSID of the Data frame is determined as follows: 4084 * a) If the STA is contained within an AP or is associated 4085 * with an AP, the BSSID is the address currently in use 4086 * by the STA contained in the AP. 4087 * 4088 * So we should not accept data frames with an address that's 4089 * multicast. 4090 * 4091 * Accepting it also opens a security problem because stations 4092 * could encrypt it with the GTK and inject traffic that way. 4093 */ 4094 if (ieee80211_is_data(hdr->frame_control) && multicast) 4095 return false; 4096 4097 return true; 4098 case NL80211_IFTYPE_WDS: 4099 if (bssid || !ieee80211_is_data(hdr->frame_control)) 4100 return false; 4101 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 4102 case NL80211_IFTYPE_P2P_DEVICE: 4103 return ieee80211_is_public_action(hdr, skb->len) || 4104 ieee80211_is_probe_req(hdr->frame_control) || 4105 ieee80211_is_probe_resp(hdr->frame_control) || 4106 ieee80211_is_beacon(hdr->frame_control); 4107 case NL80211_IFTYPE_NAN: 4108 /* Currently no frames on NAN interface are allowed */ 4109 return false; 4110 default: 4111 break; 4112 } 4113 4114 WARN_ON_ONCE(1); 4115 return false; 4116 } 4117 4118 void ieee80211_check_fast_rx(struct sta_info *sta) 4119 { 4120 struct ieee80211_sub_if_data *sdata = sta->sdata; 4121 struct ieee80211_local *local = sdata->local; 4122 struct ieee80211_key *key; 4123 struct ieee80211_fast_rx fastrx = { 4124 .dev = sdata->dev, 4125 .vif_type = sdata->vif.type, 4126 .control_port_protocol = sdata->control_port_protocol, 4127 }, *old, *new = NULL; 4128 bool assign = false; 4129 4130 /* use sparse to check that we don't return without updating */ 4131 __acquire(check_fast_rx); 4132 4133 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4134 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4135 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4136 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4137 4138 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4139 4140 /* fast-rx doesn't do reordering */ 4141 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4142 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4143 goto clear; 4144 4145 switch (sdata->vif.type) { 4146 case NL80211_IFTYPE_STATION: 4147 if (sta->sta.tdls) { 4148 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4149 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4150 fastrx.expected_ds_bits = 0; 4151 } else { 4152 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 4153 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4154 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4155 fastrx.expected_ds_bits = 4156 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4157 } 4158 4159 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4160 fastrx.expected_ds_bits |= 4161 cpu_to_le16(IEEE80211_FCTL_TODS); 4162 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4163 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4164 } 4165 4166 if (!sdata->u.mgd.powersave) 4167 break; 4168 4169 /* software powersave is a huge mess, avoid all of it */ 4170 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4171 goto clear; 4172 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4173 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4174 goto clear; 4175 break; 4176 case NL80211_IFTYPE_AP_VLAN: 4177 case NL80211_IFTYPE_AP: 4178 /* parallel-rx requires this, at least with calls to 4179 * ieee80211_sta_ps_transition() 4180 */ 4181 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4182 goto clear; 4183 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4184 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4185 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4186 4187 fastrx.internal_forward = 4188 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4189 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4190 !sdata->u.vlan.sta); 4191 4192 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4193 sdata->u.vlan.sta) { 4194 fastrx.expected_ds_bits |= 4195 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4196 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4197 fastrx.internal_forward = 0; 4198 } 4199 4200 break; 4201 default: 4202 goto clear; 4203 } 4204 4205 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4206 goto clear; 4207 4208 rcu_read_lock(); 4209 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4210 if (key) { 4211 switch (key->conf.cipher) { 4212 case WLAN_CIPHER_SUITE_TKIP: 4213 /* we don't want to deal with MMIC in fast-rx */ 4214 goto clear_rcu; 4215 case WLAN_CIPHER_SUITE_CCMP: 4216 case WLAN_CIPHER_SUITE_CCMP_256: 4217 case WLAN_CIPHER_SUITE_GCMP: 4218 case WLAN_CIPHER_SUITE_GCMP_256: 4219 break; 4220 default: 4221 /* We also don't want to deal with 4222 * WEP or cipher scheme. 4223 */ 4224 goto clear_rcu; 4225 } 4226 4227 fastrx.key = true; 4228 fastrx.icv_len = key->conf.icv_len; 4229 } 4230 4231 assign = true; 4232 clear_rcu: 4233 rcu_read_unlock(); 4234 clear: 4235 __release(check_fast_rx); 4236 4237 if (assign) 4238 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4239 4240 spin_lock_bh(&sta->lock); 4241 old = rcu_dereference_protected(sta->fast_rx, true); 4242 rcu_assign_pointer(sta->fast_rx, new); 4243 spin_unlock_bh(&sta->lock); 4244 4245 if (old) 4246 kfree_rcu(old, rcu_head); 4247 } 4248 4249 void ieee80211_clear_fast_rx(struct sta_info *sta) 4250 { 4251 struct ieee80211_fast_rx *old; 4252 4253 spin_lock_bh(&sta->lock); 4254 old = rcu_dereference_protected(sta->fast_rx, true); 4255 RCU_INIT_POINTER(sta->fast_rx, NULL); 4256 spin_unlock_bh(&sta->lock); 4257 4258 if (old) 4259 kfree_rcu(old, rcu_head); 4260 } 4261 4262 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4263 { 4264 struct ieee80211_local *local = sdata->local; 4265 struct sta_info *sta; 4266 4267 lockdep_assert_held(&local->sta_mtx); 4268 4269 list_for_each_entry(sta, &local->sta_list, list) { 4270 if (sdata != sta->sdata && 4271 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4272 continue; 4273 ieee80211_check_fast_rx(sta); 4274 } 4275 } 4276 4277 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4278 { 4279 struct ieee80211_local *local = sdata->local; 4280 4281 mutex_lock(&local->sta_mtx); 4282 __ieee80211_check_fast_rx_iface(sdata); 4283 mutex_unlock(&local->sta_mtx); 4284 } 4285 4286 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4287 struct ieee80211_fast_rx *fast_rx) 4288 { 4289 struct sk_buff *skb = rx->skb; 4290 struct ieee80211_hdr *hdr = (void *)skb->data; 4291 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4292 struct sta_info *sta = rx->sta; 4293 int orig_len = skb->len; 4294 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4295 int snap_offs = hdrlen; 4296 struct { 4297 u8 snap[sizeof(rfc1042_header)]; 4298 __be16 proto; 4299 } *payload __aligned(2); 4300 struct { 4301 u8 da[ETH_ALEN]; 4302 u8 sa[ETH_ALEN]; 4303 } addrs __aligned(2); 4304 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4305 4306 if (fast_rx->uses_rss) 4307 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4308 4309 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4310 * to a common data structure; drivers can implement that per queue 4311 * but we don't have that information in mac80211 4312 */ 4313 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4314 return false; 4315 4316 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4317 4318 /* If using encryption, we also need to have: 4319 * - PN_VALIDATED: similar, but the implementation is tricky 4320 * - DECRYPTED: necessary for PN_VALIDATED 4321 */ 4322 if (fast_rx->key && 4323 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4324 return false; 4325 4326 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4327 return false; 4328 4329 if (unlikely(ieee80211_is_frag(hdr))) 4330 return false; 4331 4332 /* Since our interface address cannot be multicast, this 4333 * implicitly also rejects multicast frames without the 4334 * explicit check. 4335 * 4336 * We shouldn't get any *data* frames not addressed to us 4337 * (AP mode will accept multicast *management* frames), but 4338 * punting here will make it go through the full checks in 4339 * ieee80211_accept_frame(). 4340 */ 4341 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4342 return false; 4343 4344 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4345 IEEE80211_FCTL_TODS)) != 4346 fast_rx->expected_ds_bits) 4347 return false; 4348 4349 /* assign the key to drop unencrypted frames (later) 4350 * and strip the IV/MIC if necessary 4351 */ 4352 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4353 /* GCMP header length is the same */ 4354 snap_offs += IEEE80211_CCMP_HDR_LEN; 4355 } 4356 4357 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4358 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4359 goto drop; 4360 4361 payload = (void *)(skb->data + snap_offs); 4362 4363 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4364 return false; 4365 4366 /* Don't handle these here since they require special code. 4367 * Accept AARP and IPX even though they should come with a 4368 * bridge-tunnel header - but if we get them this way then 4369 * there's little point in discarding them. 4370 */ 4371 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4372 payload->proto == fast_rx->control_port_protocol)) 4373 return false; 4374 } 4375 4376 /* after this point, don't punt to the slowpath! */ 4377 4378 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4379 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4380 goto drop; 4381 4382 if (unlikely(fast_rx->sta_notify)) { 4383 ieee80211_sta_rx_notify(rx->sdata, hdr); 4384 fast_rx->sta_notify = false; 4385 } 4386 4387 /* statistics part of ieee80211_rx_h_sta_process() */ 4388 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4389 stats->last_signal = status->signal; 4390 if (!fast_rx->uses_rss) 4391 ewma_signal_add(&sta->rx_stats_avg.signal, 4392 -status->signal); 4393 } 4394 4395 if (status->chains) { 4396 int i; 4397 4398 stats->chains = status->chains; 4399 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4400 int signal = status->chain_signal[i]; 4401 4402 if (!(status->chains & BIT(i))) 4403 continue; 4404 4405 stats->chain_signal_last[i] = signal; 4406 if (!fast_rx->uses_rss) 4407 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4408 -signal); 4409 } 4410 } 4411 /* end of statistics */ 4412 4413 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4414 goto drop; 4415 4416 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4417 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4418 RX_QUEUED) 4419 goto drop; 4420 4421 return true; 4422 } 4423 4424 stats->last_rx = jiffies; 4425 stats->last_rate = sta_stats_encode_rate(status); 4426 4427 stats->fragments++; 4428 stats->packets++; 4429 4430 /* do the header conversion - first grab the addresses */ 4431 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4432 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4433 /* remove the SNAP but leave the ethertype */ 4434 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4435 /* push the addresses in front */ 4436 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4437 4438 skb->dev = fast_rx->dev; 4439 4440 ieee80211_rx_stats(fast_rx->dev, skb->len); 4441 4442 /* The seqno index has the same property as needed 4443 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4444 * for non-QoS-data frames. Here we know it's a data 4445 * frame, so count MSDUs. 4446 */ 4447 u64_stats_update_begin(&stats->syncp); 4448 stats->msdu[rx->seqno_idx]++; 4449 stats->bytes += orig_len; 4450 u64_stats_update_end(&stats->syncp); 4451 4452 if (fast_rx->internal_forward) { 4453 struct sk_buff *xmit_skb = NULL; 4454 if (is_multicast_ether_addr(addrs.da)) { 4455 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4456 } else if (!ether_addr_equal(addrs.da, addrs.sa) && 4457 sta_info_get(rx->sdata, addrs.da)) { 4458 xmit_skb = skb; 4459 skb = NULL; 4460 } 4461 4462 if (xmit_skb) { 4463 /* 4464 * Send to wireless media and increase priority by 256 4465 * to keep the received priority instead of 4466 * reclassifying the frame (see cfg80211_classify8021d). 4467 */ 4468 xmit_skb->priority += 256; 4469 xmit_skb->protocol = htons(ETH_P_802_3); 4470 skb_reset_network_header(xmit_skb); 4471 skb_reset_mac_header(xmit_skb); 4472 dev_queue_xmit(xmit_skb); 4473 } 4474 4475 if (!skb) 4476 return true; 4477 } 4478 4479 /* deliver to local stack */ 4480 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4481 memset(skb->cb, 0, sizeof(skb->cb)); 4482 if (rx->list) 4483 list_add_tail(&skb->list, rx->list); 4484 else 4485 netif_receive_skb(skb); 4486 4487 return true; 4488 drop: 4489 dev_kfree_skb(skb); 4490 stats->dropped++; 4491 return true; 4492 } 4493 4494 /* 4495 * This function returns whether or not the SKB 4496 * was destined for RX processing or not, which, 4497 * if consume is true, is equivalent to whether 4498 * or not the skb was consumed. 4499 */ 4500 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4501 struct sk_buff *skb, bool consume) 4502 { 4503 struct ieee80211_local *local = rx->local; 4504 struct ieee80211_sub_if_data *sdata = rx->sdata; 4505 4506 rx->skb = skb; 4507 4508 /* See if we can do fast-rx; if we have to copy we already lost, 4509 * so punt in that case. We should never have to deliver a data 4510 * frame to multiple interfaces anyway. 4511 * 4512 * We skip the ieee80211_accept_frame() call and do the necessary 4513 * checking inside ieee80211_invoke_fast_rx(). 4514 */ 4515 if (consume && rx->sta) { 4516 struct ieee80211_fast_rx *fast_rx; 4517 4518 fast_rx = rcu_dereference(rx->sta->fast_rx); 4519 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4520 return true; 4521 } 4522 4523 if (!ieee80211_accept_frame(rx)) 4524 return false; 4525 4526 if (!consume) { 4527 skb = skb_copy(skb, GFP_ATOMIC); 4528 if (!skb) { 4529 if (net_ratelimit()) 4530 wiphy_debug(local->hw.wiphy, 4531 "failed to copy skb for %s\n", 4532 sdata->name); 4533 return true; 4534 } 4535 4536 rx->skb = skb; 4537 } 4538 4539 ieee80211_invoke_rx_handlers(rx); 4540 return true; 4541 } 4542 4543 /* 4544 * This is the actual Rx frames handler. as it belongs to Rx path it must 4545 * be called with rcu_read_lock protection. 4546 */ 4547 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4548 struct ieee80211_sta *pubsta, 4549 struct sk_buff *skb, 4550 struct list_head *list) 4551 { 4552 struct ieee80211_local *local = hw_to_local(hw); 4553 struct ieee80211_sub_if_data *sdata; 4554 struct ieee80211_hdr *hdr; 4555 __le16 fc; 4556 struct ieee80211_rx_data rx; 4557 struct ieee80211_sub_if_data *prev; 4558 struct rhlist_head *tmp; 4559 int err = 0; 4560 4561 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4562 memset(&rx, 0, sizeof(rx)); 4563 rx.skb = skb; 4564 rx.local = local; 4565 rx.list = list; 4566 4567 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4568 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4569 4570 if (ieee80211_is_mgmt(fc)) { 4571 /* drop frame if too short for header */ 4572 if (skb->len < ieee80211_hdrlen(fc)) 4573 err = -ENOBUFS; 4574 else 4575 err = skb_linearize(skb); 4576 } else { 4577 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4578 } 4579 4580 if (err) { 4581 dev_kfree_skb(skb); 4582 return; 4583 } 4584 4585 hdr = (struct ieee80211_hdr *)skb->data; 4586 ieee80211_parse_qos(&rx); 4587 ieee80211_verify_alignment(&rx); 4588 4589 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4590 ieee80211_is_beacon(hdr->frame_control))) 4591 ieee80211_scan_rx(local, skb); 4592 4593 if (ieee80211_is_data(fc)) { 4594 struct sta_info *sta, *prev_sta; 4595 4596 if (pubsta) { 4597 rx.sta = container_of(pubsta, struct sta_info, sta); 4598 rx.sdata = rx.sta->sdata; 4599 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4600 return; 4601 goto out; 4602 } 4603 4604 prev_sta = NULL; 4605 4606 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4607 if (!prev_sta) { 4608 prev_sta = sta; 4609 continue; 4610 } 4611 4612 rx.sta = prev_sta; 4613 rx.sdata = prev_sta->sdata; 4614 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4615 4616 prev_sta = sta; 4617 } 4618 4619 if (prev_sta) { 4620 rx.sta = prev_sta; 4621 rx.sdata = prev_sta->sdata; 4622 4623 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4624 return; 4625 goto out; 4626 } 4627 } 4628 4629 prev = NULL; 4630 4631 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4632 if (!ieee80211_sdata_running(sdata)) 4633 continue; 4634 4635 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4636 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4637 continue; 4638 4639 /* 4640 * frame is destined for this interface, but if it's 4641 * not also for the previous one we handle that after 4642 * the loop to avoid copying the SKB once too much 4643 */ 4644 4645 if (!prev) { 4646 prev = sdata; 4647 continue; 4648 } 4649 4650 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4651 rx.sdata = prev; 4652 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4653 4654 prev = sdata; 4655 } 4656 4657 if (prev) { 4658 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4659 rx.sdata = prev; 4660 4661 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4662 return; 4663 } 4664 4665 out: 4666 dev_kfree_skb(skb); 4667 } 4668 4669 /* 4670 * This is the receive path handler. It is called by a low level driver when an 4671 * 802.11 MPDU is received from the hardware. 4672 */ 4673 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4674 struct sk_buff *skb, struct list_head *list) 4675 { 4676 struct ieee80211_local *local = hw_to_local(hw); 4677 struct ieee80211_rate *rate = NULL; 4678 struct ieee80211_supported_band *sband; 4679 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4680 4681 WARN_ON_ONCE(softirq_count() == 0); 4682 4683 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4684 goto drop; 4685 4686 sband = local->hw.wiphy->bands[status->band]; 4687 if (WARN_ON(!sband)) 4688 goto drop; 4689 4690 /* 4691 * If we're suspending, it is possible although not too likely 4692 * that we'd be receiving frames after having already partially 4693 * quiesced the stack. We can't process such frames then since 4694 * that might, for example, cause stations to be added or other 4695 * driver callbacks be invoked. 4696 */ 4697 if (unlikely(local->quiescing || local->suspended)) 4698 goto drop; 4699 4700 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4701 if (unlikely(local->in_reconfig)) 4702 goto drop; 4703 4704 /* 4705 * The same happens when we're not even started, 4706 * but that's worth a warning. 4707 */ 4708 if (WARN_ON(!local->started)) 4709 goto drop; 4710 4711 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4712 /* 4713 * Validate the rate, unless a PLCP error means that 4714 * we probably can't have a valid rate here anyway. 4715 */ 4716 4717 switch (status->encoding) { 4718 case RX_ENC_HT: 4719 /* 4720 * rate_idx is MCS index, which can be [0-76] 4721 * as documented on: 4722 * 4723 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 4724 * 4725 * Anything else would be some sort of driver or 4726 * hardware error. The driver should catch hardware 4727 * errors. 4728 */ 4729 if (WARN(status->rate_idx > 76, 4730 "Rate marked as an HT rate but passed " 4731 "status->rate_idx is not " 4732 "an MCS index [0-76]: %d (0x%02x)\n", 4733 status->rate_idx, 4734 status->rate_idx)) 4735 goto drop; 4736 break; 4737 case RX_ENC_VHT: 4738 if (WARN_ONCE(status->rate_idx > 9 || 4739 !status->nss || 4740 status->nss > 8, 4741 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4742 status->rate_idx, status->nss)) 4743 goto drop; 4744 break; 4745 case RX_ENC_HE: 4746 if (WARN_ONCE(status->rate_idx > 11 || 4747 !status->nss || 4748 status->nss > 8, 4749 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4750 status->rate_idx, status->nss)) 4751 goto drop; 4752 break; 4753 default: 4754 WARN_ON_ONCE(1); 4755 fallthrough; 4756 case RX_ENC_LEGACY: 4757 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4758 goto drop; 4759 rate = &sband->bitrates[status->rate_idx]; 4760 } 4761 } 4762 4763 status->rx_flags = 0; 4764 4765 /* 4766 * Frames with failed FCS/PLCP checksum are not returned, 4767 * all other frames are returned without radiotap header 4768 * if it was previously present. 4769 * Also, frames with less than 16 bytes are dropped. 4770 */ 4771 skb = ieee80211_rx_monitor(local, skb, rate); 4772 if (!skb) 4773 return; 4774 4775 ieee80211_tpt_led_trig_rx(local, 4776 ((struct ieee80211_hdr *)skb->data)->frame_control, 4777 skb->len); 4778 4779 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 4780 4781 return; 4782 drop: 4783 kfree_skb(skb); 4784 } 4785 EXPORT_SYMBOL(ieee80211_rx_list); 4786 4787 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4788 struct sk_buff *skb, struct napi_struct *napi) 4789 { 4790 struct sk_buff *tmp; 4791 LIST_HEAD(list); 4792 4793 4794 /* 4795 * key references and virtual interfaces are protected using RCU 4796 * and this requires that we are in a read-side RCU section during 4797 * receive processing 4798 */ 4799 rcu_read_lock(); 4800 ieee80211_rx_list(hw, pubsta, skb, &list); 4801 rcu_read_unlock(); 4802 4803 if (!napi) { 4804 netif_receive_skb_list(&list); 4805 return; 4806 } 4807 4808 list_for_each_entry_safe(skb, tmp, &list, list) { 4809 skb_list_del_init(skb); 4810 napi_gro_receive(napi, skb); 4811 } 4812 } 4813 EXPORT_SYMBOL(ieee80211_rx_napi); 4814 4815 /* This is a version of the rx handler that can be called from hard irq 4816 * context. Post the skb on the queue and schedule the tasklet */ 4817 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4818 { 4819 struct ieee80211_local *local = hw_to_local(hw); 4820 4821 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4822 4823 skb->pkt_type = IEEE80211_RX_MSG; 4824 skb_queue_tail(&local->skb_queue, skb); 4825 tasklet_schedule(&local->tasklet); 4826 } 4827 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4828