xref: /openbmc/linux/net/mac80211/rx.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9  * Copyright (C) 2018-2021 Intel Corporation
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/kcov.h>
21 #include <linux/bitops.h>
22 #include <net/mac80211.h>
23 #include <net/ieee80211_radiotap.h>
24 #include <asm/unaligned.h>
25 
26 #include "ieee80211_i.h"
27 #include "driver-ops.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "tkip.h"
33 #include "wme.h"
34 #include "rate.h"
35 
36 /*
37  * monitor mode reception
38  *
39  * This function cleans up the SKB, i.e. it removes all the stuff
40  * only useful for monitoring.
41  */
42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
43 					   unsigned int present_fcs_len,
44 					   unsigned int rtap_space)
45 {
46 	struct ieee80211_hdr *hdr;
47 	unsigned int hdrlen;
48 	__le16 fc;
49 
50 	if (present_fcs_len)
51 		__pskb_trim(skb, skb->len - present_fcs_len);
52 	__pskb_pull(skb, rtap_space);
53 
54 	hdr = (void *)skb->data;
55 	fc = hdr->frame_control;
56 
57 	/*
58 	 * Remove the HT-Control field (if present) on management
59 	 * frames after we've sent the frame to monitoring. We
60 	 * (currently) don't need it, and don't properly parse
61 	 * frames with it present, due to the assumption of a
62 	 * fixed management header length.
63 	 */
64 	if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
65 		return skb;
66 
67 	hdrlen = ieee80211_hdrlen(fc);
68 	hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
69 
70 	if (!pskb_may_pull(skb, hdrlen)) {
71 		dev_kfree_skb(skb);
72 		return NULL;
73 	}
74 
75 	memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
76 		hdrlen - IEEE80211_HT_CTL_LEN);
77 	__pskb_pull(skb, IEEE80211_HT_CTL_LEN);
78 
79 	return skb;
80 }
81 
82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
83 				     unsigned int rtap_space)
84 {
85 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
86 	struct ieee80211_hdr *hdr;
87 
88 	hdr = (void *)(skb->data + rtap_space);
89 
90 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
91 			    RX_FLAG_FAILED_PLCP_CRC |
92 			    RX_FLAG_ONLY_MONITOR |
93 			    RX_FLAG_NO_PSDU))
94 		return true;
95 
96 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
97 		return true;
98 
99 	if (ieee80211_is_ctl(hdr->frame_control) &&
100 	    !ieee80211_is_pspoll(hdr->frame_control) &&
101 	    !ieee80211_is_back_req(hdr->frame_control))
102 		return true;
103 
104 	return false;
105 }
106 
107 static int
108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
109 			     struct ieee80211_rx_status *status,
110 			     struct sk_buff *skb)
111 {
112 	int len;
113 
114 	/* always present fields */
115 	len = sizeof(struct ieee80211_radiotap_header) + 8;
116 
117 	/* allocate extra bitmaps */
118 	if (status->chains)
119 		len += 4 * hweight8(status->chains);
120 	/* vendor presence bitmap */
121 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
122 		len += 4;
123 
124 	if (ieee80211_have_rx_timestamp(status)) {
125 		len = ALIGN(len, 8);
126 		len += 8;
127 	}
128 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
129 		len += 1;
130 
131 	/* antenna field, if we don't have per-chain info */
132 	if (!status->chains)
133 		len += 1;
134 
135 	/* padding for RX_FLAGS if necessary */
136 	len = ALIGN(len, 2);
137 
138 	if (status->encoding == RX_ENC_HT) /* HT info */
139 		len += 3;
140 
141 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
142 		len = ALIGN(len, 4);
143 		len += 8;
144 	}
145 
146 	if (status->encoding == RX_ENC_VHT) {
147 		len = ALIGN(len, 2);
148 		len += 12;
149 	}
150 
151 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
152 		len = ALIGN(len, 8);
153 		len += 12;
154 	}
155 
156 	if (status->encoding == RX_ENC_HE &&
157 	    status->flag & RX_FLAG_RADIOTAP_HE) {
158 		len = ALIGN(len, 2);
159 		len += 12;
160 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
161 	}
162 
163 	if (status->encoding == RX_ENC_HE &&
164 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
165 		len = ALIGN(len, 2);
166 		len += 12;
167 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
168 	}
169 
170 	if (status->flag & RX_FLAG_NO_PSDU)
171 		len += 1;
172 
173 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
174 		len = ALIGN(len, 2);
175 		len += 4;
176 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
177 	}
178 
179 	if (status->chains) {
180 		/* antenna and antenna signal fields */
181 		len += 2 * hweight8(status->chains);
182 	}
183 
184 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
185 		struct ieee80211_vendor_radiotap *rtap;
186 		int vendor_data_offset = 0;
187 
188 		/*
189 		 * The position to look at depends on the existence (or non-
190 		 * existence) of other elements, so take that into account...
191 		 */
192 		if (status->flag & RX_FLAG_RADIOTAP_HE)
193 			vendor_data_offset +=
194 				sizeof(struct ieee80211_radiotap_he);
195 		if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
196 			vendor_data_offset +=
197 				sizeof(struct ieee80211_radiotap_he_mu);
198 		if (status->flag & RX_FLAG_RADIOTAP_LSIG)
199 			vendor_data_offset +=
200 				sizeof(struct ieee80211_radiotap_lsig);
201 
202 		rtap = (void *)&skb->data[vendor_data_offset];
203 
204 		/* alignment for fixed 6-byte vendor data header */
205 		len = ALIGN(len, 2);
206 		/* vendor data header */
207 		len += 6;
208 		if (WARN_ON(rtap->align == 0))
209 			rtap->align = 1;
210 		len = ALIGN(len, rtap->align);
211 		len += rtap->len + rtap->pad;
212 	}
213 
214 	return len;
215 }
216 
217 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
218 					 struct sk_buff *skb,
219 					 int rtap_space)
220 {
221 	struct {
222 		struct ieee80211_hdr_3addr hdr;
223 		u8 category;
224 		u8 action_code;
225 	} __packed __aligned(2) action;
226 
227 	if (!sdata)
228 		return;
229 
230 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
231 
232 	if (skb->len < rtap_space + sizeof(action) +
233 		       VHT_MUMIMO_GROUPS_DATA_LEN)
234 		return;
235 
236 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
237 		return;
238 
239 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
240 
241 	if (!ieee80211_is_action(action.hdr.frame_control))
242 		return;
243 
244 	if (action.category != WLAN_CATEGORY_VHT)
245 		return;
246 
247 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
248 		return;
249 
250 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
251 		return;
252 
253 	skb = skb_copy(skb, GFP_ATOMIC);
254 	if (!skb)
255 		return;
256 
257 	skb_queue_tail(&sdata->skb_queue, skb);
258 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
259 }
260 
261 /*
262  * ieee80211_add_rx_radiotap_header - add radiotap header
263  *
264  * add a radiotap header containing all the fields which the hardware provided.
265  */
266 static void
267 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
268 				 struct sk_buff *skb,
269 				 struct ieee80211_rate *rate,
270 				 int rtap_len, bool has_fcs)
271 {
272 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
273 	struct ieee80211_radiotap_header *rthdr;
274 	unsigned char *pos;
275 	__le32 *it_present;
276 	u32 it_present_val;
277 	u16 rx_flags = 0;
278 	u16 channel_flags = 0;
279 	int mpdulen, chain;
280 	unsigned long chains = status->chains;
281 	struct ieee80211_vendor_radiotap rtap = {};
282 	struct ieee80211_radiotap_he he = {};
283 	struct ieee80211_radiotap_he_mu he_mu = {};
284 	struct ieee80211_radiotap_lsig lsig = {};
285 
286 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
287 		he = *(struct ieee80211_radiotap_he *)skb->data;
288 		skb_pull(skb, sizeof(he));
289 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
290 	}
291 
292 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
293 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
294 		skb_pull(skb, sizeof(he_mu));
295 	}
296 
297 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
298 		lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
299 		skb_pull(skb, sizeof(lsig));
300 	}
301 
302 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
303 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
304 		/* rtap.len and rtap.pad are undone immediately */
305 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
306 	}
307 
308 	mpdulen = skb->len;
309 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
310 		mpdulen += FCS_LEN;
311 
312 	rthdr = skb_push(skb, rtap_len);
313 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
314 	it_present = &rthdr->it_present;
315 
316 	/* radiotap header, set always present flags */
317 	rthdr->it_len = cpu_to_le16(rtap_len);
318 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
319 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
320 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
321 
322 	if (!status->chains)
323 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
324 
325 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
326 		it_present_val |=
327 			BIT(IEEE80211_RADIOTAP_EXT) |
328 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
329 		put_unaligned_le32(it_present_val, it_present);
330 		it_present++;
331 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
332 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
333 	}
334 
335 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
336 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
337 				  BIT(IEEE80211_RADIOTAP_EXT);
338 		put_unaligned_le32(it_present_val, it_present);
339 		it_present++;
340 		it_present_val = rtap.present;
341 	}
342 
343 	put_unaligned_le32(it_present_val, it_present);
344 
345 	pos = (void *)(it_present + 1);
346 
347 	/* the order of the following fields is important */
348 
349 	/* IEEE80211_RADIOTAP_TSFT */
350 	if (ieee80211_have_rx_timestamp(status)) {
351 		/* padding */
352 		while ((pos - (u8 *)rthdr) & 7)
353 			*pos++ = 0;
354 		put_unaligned_le64(
355 			ieee80211_calculate_rx_timestamp(local, status,
356 							 mpdulen, 0),
357 			pos);
358 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
359 		pos += 8;
360 	}
361 
362 	/* IEEE80211_RADIOTAP_FLAGS */
363 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
364 		*pos |= IEEE80211_RADIOTAP_F_FCS;
365 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
366 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
367 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
368 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
369 	pos++;
370 
371 	/* IEEE80211_RADIOTAP_RATE */
372 	if (!rate || status->encoding != RX_ENC_LEGACY) {
373 		/*
374 		 * Without rate information don't add it. If we have,
375 		 * MCS information is a separate field in radiotap,
376 		 * added below. The byte here is needed as padding
377 		 * for the channel though, so initialise it to 0.
378 		 */
379 		*pos = 0;
380 	} else {
381 		int shift = 0;
382 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
383 		if (status->bw == RATE_INFO_BW_10)
384 			shift = 1;
385 		else if (status->bw == RATE_INFO_BW_5)
386 			shift = 2;
387 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
388 	}
389 	pos++;
390 
391 	/* IEEE80211_RADIOTAP_CHANNEL */
392 	/* TODO: frequency offset in KHz */
393 	put_unaligned_le16(status->freq, pos);
394 	pos += 2;
395 	if (status->bw == RATE_INFO_BW_10)
396 		channel_flags |= IEEE80211_CHAN_HALF;
397 	else if (status->bw == RATE_INFO_BW_5)
398 		channel_flags |= IEEE80211_CHAN_QUARTER;
399 
400 	if (status->band == NL80211_BAND_5GHZ ||
401 	    status->band == NL80211_BAND_6GHZ)
402 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
403 	else if (status->encoding != RX_ENC_LEGACY)
404 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
405 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
406 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
407 	else if (rate)
408 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
409 	else
410 		channel_flags |= IEEE80211_CHAN_2GHZ;
411 	put_unaligned_le16(channel_flags, pos);
412 	pos += 2;
413 
414 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
415 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
416 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
417 		*pos = status->signal;
418 		rthdr->it_present |=
419 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
420 		pos++;
421 	}
422 
423 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
424 
425 	if (!status->chains) {
426 		/* IEEE80211_RADIOTAP_ANTENNA */
427 		*pos = status->antenna;
428 		pos++;
429 	}
430 
431 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
432 
433 	/* IEEE80211_RADIOTAP_RX_FLAGS */
434 	/* ensure 2 byte alignment for the 2 byte field as required */
435 	if ((pos - (u8 *)rthdr) & 1)
436 		*pos++ = 0;
437 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
438 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
439 	put_unaligned_le16(rx_flags, pos);
440 	pos += 2;
441 
442 	if (status->encoding == RX_ENC_HT) {
443 		unsigned int stbc;
444 
445 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
446 		*pos++ = local->hw.radiotap_mcs_details;
447 		*pos = 0;
448 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
449 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
450 		if (status->bw == RATE_INFO_BW_40)
451 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
452 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
453 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
454 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
455 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
456 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
457 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
458 		pos++;
459 		*pos++ = status->rate_idx;
460 	}
461 
462 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
463 		u16 flags = 0;
464 
465 		/* ensure 4 byte alignment */
466 		while ((pos - (u8 *)rthdr) & 3)
467 			pos++;
468 		rthdr->it_present |=
469 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
470 		put_unaligned_le32(status->ampdu_reference, pos);
471 		pos += 4;
472 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
473 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
474 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
475 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
476 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
477 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
478 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
479 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
480 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
481 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
482 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
483 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
484 		put_unaligned_le16(flags, pos);
485 		pos += 2;
486 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
487 			*pos++ = status->ampdu_delimiter_crc;
488 		else
489 			*pos++ = 0;
490 		*pos++ = 0;
491 	}
492 
493 	if (status->encoding == RX_ENC_VHT) {
494 		u16 known = local->hw.radiotap_vht_details;
495 
496 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
497 		put_unaligned_le16(known, pos);
498 		pos += 2;
499 		/* flags */
500 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
501 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
502 		/* in VHT, STBC is binary */
503 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
504 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
505 		if (status->enc_flags & RX_ENC_FLAG_BF)
506 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
507 		pos++;
508 		/* bandwidth */
509 		switch (status->bw) {
510 		case RATE_INFO_BW_80:
511 			*pos++ = 4;
512 			break;
513 		case RATE_INFO_BW_160:
514 			*pos++ = 11;
515 			break;
516 		case RATE_INFO_BW_40:
517 			*pos++ = 1;
518 			break;
519 		default:
520 			*pos++ = 0;
521 		}
522 		/* MCS/NSS */
523 		*pos = (status->rate_idx << 4) | status->nss;
524 		pos += 4;
525 		/* coding field */
526 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
527 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
528 		pos++;
529 		/* group ID */
530 		pos++;
531 		/* partial_aid */
532 		pos += 2;
533 	}
534 
535 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
536 		u16 accuracy = 0;
537 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
538 
539 		rthdr->it_present |=
540 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
541 
542 		/* ensure 8 byte alignment */
543 		while ((pos - (u8 *)rthdr) & 7)
544 			pos++;
545 
546 		put_unaligned_le64(status->device_timestamp, pos);
547 		pos += sizeof(u64);
548 
549 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
550 			accuracy = local->hw.radiotap_timestamp.accuracy;
551 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
552 		}
553 		put_unaligned_le16(accuracy, pos);
554 		pos += sizeof(u16);
555 
556 		*pos++ = local->hw.radiotap_timestamp.units_pos;
557 		*pos++ = flags;
558 	}
559 
560 	if (status->encoding == RX_ENC_HE &&
561 	    status->flag & RX_FLAG_RADIOTAP_HE) {
562 #define HE_PREP(f, val)	le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
563 
564 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
565 			he.data6 |= HE_PREP(DATA6_NSTS,
566 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
567 						      status->enc_flags));
568 			he.data3 |= HE_PREP(DATA3_STBC, 1);
569 		} else {
570 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
571 		}
572 
573 #define CHECK_GI(s) \
574 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
575 		     (int)NL80211_RATE_INFO_HE_GI_##s)
576 
577 		CHECK_GI(0_8);
578 		CHECK_GI(1_6);
579 		CHECK_GI(3_2);
580 
581 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
582 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
583 		he.data3 |= HE_PREP(DATA3_CODING,
584 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
585 
586 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
587 
588 		switch (status->bw) {
589 		case RATE_INFO_BW_20:
590 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
591 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
592 			break;
593 		case RATE_INFO_BW_40:
594 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
595 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
596 			break;
597 		case RATE_INFO_BW_80:
598 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
599 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
600 			break;
601 		case RATE_INFO_BW_160:
602 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
603 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
604 			break;
605 		case RATE_INFO_BW_HE_RU:
606 #define CHECK_RU_ALLOC(s) \
607 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
608 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
609 
610 			CHECK_RU_ALLOC(26);
611 			CHECK_RU_ALLOC(52);
612 			CHECK_RU_ALLOC(106);
613 			CHECK_RU_ALLOC(242);
614 			CHECK_RU_ALLOC(484);
615 			CHECK_RU_ALLOC(996);
616 			CHECK_RU_ALLOC(2x996);
617 
618 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
619 					    status->he_ru + 4);
620 			break;
621 		default:
622 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
623 		}
624 
625 		/* ensure 2 byte alignment */
626 		while ((pos - (u8 *)rthdr) & 1)
627 			pos++;
628 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
629 		memcpy(pos, &he, sizeof(he));
630 		pos += sizeof(he);
631 	}
632 
633 	if (status->encoding == RX_ENC_HE &&
634 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
635 		/* ensure 2 byte alignment */
636 		while ((pos - (u8 *)rthdr) & 1)
637 			pos++;
638 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
639 		memcpy(pos, &he_mu, sizeof(he_mu));
640 		pos += sizeof(he_mu);
641 	}
642 
643 	if (status->flag & RX_FLAG_NO_PSDU) {
644 		rthdr->it_present |=
645 			cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
646 		*pos++ = status->zero_length_psdu_type;
647 	}
648 
649 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
650 		/* ensure 2 byte alignment */
651 		while ((pos - (u8 *)rthdr) & 1)
652 			pos++;
653 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
654 		memcpy(pos, &lsig, sizeof(lsig));
655 		pos += sizeof(lsig);
656 	}
657 
658 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
659 		*pos++ = status->chain_signal[chain];
660 		*pos++ = chain;
661 	}
662 
663 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
664 		/* ensure 2 byte alignment for the vendor field as required */
665 		if ((pos - (u8 *)rthdr) & 1)
666 			*pos++ = 0;
667 		*pos++ = rtap.oui[0];
668 		*pos++ = rtap.oui[1];
669 		*pos++ = rtap.oui[2];
670 		*pos++ = rtap.subns;
671 		put_unaligned_le16(rtap.len, pos);
672 		pos += 2;
673 		/* align the actual payload as requested */
674 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
675 			*pos++ = 0;
676 		/* data (and possible padding) already follows */
677 	}
678 }
679 
680 static struct sk_buff *
681 ieee80211_make_monitor_skb(struct ieee80211_local *local,
682 			   struct sk_buff **origskb,
683 			   struct ieee80211_rate *rate,
684 			   int rtap_space, bool use_origskb)
685 {
686 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
687 	int rt_hdrlen, needed_headroom;
688 	struct sk_buff *skb;
689 
690 	/* room for the radiotap header based on driver features */
691 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
692 	needed_headroom = rt_hdrlen - rtap_space;
693 
694 	if (use_origskb) {
695 		/* only need to expand headroom if necessary */
696 		skb = *origskb;
697 		*origskb = NULL;
698 
699 		/*
700 		 * This shouldn't trigger often because most devices have an
701 		 * RX header they pull before we get here, and that should
702 		 * be big enough for our radiotap information. We should
703 		 * probably export the length to drivers so that we can have
704 		 * them allocate enough headroom to start with.
705 		 */
706 		if (skb_headroom(skb) < needed_headroom &&
707 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
708 			dev_kfree_skb(skb);
709 			return NULL;
710 		}
711 	} else {
712 		/*
713 		 * Need to make a copy and possibly remove radiotap header
714 		 * and FCS from the original.
715 		 */
716 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
717 
718 		if (!skb)
719 			return NULL;
720 	}
721 
722 	/* prepend radiotap information */
723 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
724 
725 	skb_reset_mac_header(skb);
726 	skb->ip_summed = CHECKSUM_UNNECESSARY;
727 	skb->pkt_type = PACKET_OTHERHOST;
728 	skb->protocol = htons(ETH_P_802_2);
729 
730 	return skb;
731 }
732 
733 /*
734  * This function copies a received frame to all monitor interfaces and
735  * returns a cleaned-up SKB that no longer includes the FCS nor the
736  * radiotap header the driver might have added.
737  */
738 static struct sk_buff *
739 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
740 		     struct ieee80211_rate *rate)
741 {
742 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
743 	struct ieee80211_sub_if_data *sdata;
744 	struct sk_buff *monskb = NULL;
745 	int present_fcs_len = 0;
746 	unsigned int rtap_space = 0;
747 	struct ieee80211_sub_if_data *monitor_sdata =
748 		rcu_dereference(local->monitor_sdata);
749 	bool only_monitor = false;
750 	unsigned int min_head_len;
751 
752 	if (status->flag & RX_FLAG_RADIOTAP_HE)
753 		rtap_space += sizeof(struct ieee80211_radiotap_he);
754 
755 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
756 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
757 
758 	if (status->flag & RX_FLAG_RADIOTAP_LSIG)
759 		rtap_space += sizeof(struct ieee80211_radiotap_lsig);
760 
761 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
762 		struct ieee80211_vendor_radiotap *rtap =
763 			(void *)(origskb->data + rtap_space);
764 
765 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
766 	}
767 
768 	min_head_len = rtap_space;
769 
770 	/*
771 	 * First, we may need to make a copy of the skb because
772 	 *  (1) we need to modify it for radiotap (if not present), and
773 	 *  (2) the other RX handlers will modify the skb we got.
774 	 *
775 	 * We don't need to, of course, if we aren't going to return
776 	 * the SKB because it has a bad FCS/PLCP checksum.
777 	 */
778 
779 	if (!(status->flag & RX_FLAG_NO_PSDU)) {
780 		if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
781 			if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
782 				/* driver bug */
783 				WARN_ON(1);
784 				dev_kfree_skb(origskb);
785 				return NULL;
786 			}
787 			present_fcs_len = FCS_LEN;
788 		}
789 
790 		/* also consider the hdr->frame_control */
791 		min_head_len += 2;
792 	}
793 
794 	/* ensure that the expected data elements are in skb head */
795 	if (!pskb_may_pull(origskb, min_head_len)) {
796 		dev_kfree_skb(origskb);
797 		return NULL;
798 	}
799 
800 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
801 
802 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
803 		if (only_monitor) {
804 			dev_kfree_skb(origskb);
805 			return NULL;
806 		}
807 
808 		return ieee80211_clean_skb(origskb, present_fcs_len,
809 					   rtap_space);
810 	}
811 
812 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
813 
814 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
815 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
816 						 &local->mon_list);
817 
818 		if (!monskb)
819 			monskb = ieee80211_make_monitor_skb(local, &origskb,
820 							    rate, rtap_space,
821 							    only_monitor &&
822 							    last_monitor);
823 
824 		if (monskb) {
825 			struct sk_buff *skb;
826 
827 			if (last_monitor) {
828 				skb = monskb;
829 				monskb = NULL;
830 			} else {
831 				skb = skb_clone(monskb, GFP_ATOMIC);
832 			}
833 
834 			if (skb) {
835 				skb->dev = sdata->dev;
836 				dev_sw_netstats_rx_add(skb->dev, skb->len);
837 				netif_receive_skb(skb);
838 			}
839 		}
840 
841 		if (last_monitor)
842 			break;
843 	}
844 
845 	/* this happens if last_monitor was erroneously false */
846 	dev_kfree_skb(monskb);
847 
848 	/* ditto */
849 	if (!origskb)
850 		return NULL;
851 
852 	return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
853 }
854 
855 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
856 {
857 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
858 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
859 	int tid, seqno_idx, security_idx;
860 
861 	/* does the frame have a qos control field? */
862 	if (ieee80211_is_data_qos(hdr->frame_control)) {
863 		u8 *qc = ieee80211_get_qos_ctl(hdr);
864 		/* frame has qos control */
865 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
866 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
867 			status->rx_flags |= IEEE80211_RX_AMSDU;
868 
869 		seqno_idx = tid;
870 		security_idx = tid;
871 	} else {
872 		/*
873 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
874 		 *
875 		 *	Sequence numbers for management frames, QoS data
876 		 *	frames with a broadcast/multicast address in the
877 		 *	Address 1 field, and all non-QoS data frames sent
878 		 *	by QoS STAs are assigned using an additional single
879 		 *	modulo-4096 counter, [...]
880 		 *
881 		 * We also use that counter for non-QoS STAs.
882 		 */
883 		seqno_idx = IEEE80211_NUM_TIDS;
884 		security_idx = 0;
885 		if (ieee80211_is_mgmt(hdr->frame_control))
886 			security_idx = IEEE80211_NUM_TIDS;
887 		tid = 0;
888 	}
889 
890 	rx->seqno_idx = seqno_idx;
891 	rx->security_idx = security_idx;
892 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
893 	 * For now, set skb->priority to 0 for other cases. */
894 	rx->skb->priority = (tid > 7) ? 0 : tid;
895 }
896 
897 /**
898  * DOC: Packet alignment
899  *
900  * Drivers always need to pass packets that are aligned to two-byte boundaries
901  * to the stack.
902  *
903  * Additionally, should, if possible, align the payload data in a way that
904  * guarantees that the contained IP header is aligned to a four-byte
905  * boundary. In the case of regular frames, this simply means aligning the
906  * payload to a four-byte boundary (because either the IP header is directly
907  * contained, or IV/RFC1042 headers that have a length divisible by four are
908  * in front of it).  If the payload data is not properly aligned and the
909  * architecture doesn't support efficient unaligned operations, mac80211
910  * will align the data.
911  *
912  * With A-MSDU frames, however, the payload data address must yield two modulo
913  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
914  * push the IP header further back to a multiple of four again. Thankfully, the
915  * specs were sane enough this time around to require padding each A-MSDU
916  * subframe to a length that is a multiple of four.
917  *
918  * Padding like Atheros hardware adds which is between the 802.11 header and
919  * the payload is not supported, the driver is required to move the 802.11
920  * header to be directly in front of the payload in that case.
921  */
922 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
923 {
924 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
925 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
926 #endif
927 }
928 
929 
930 /* rx handlers */
931 
932 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
933 {
934 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
935 
936 	if (is_multicast_ether_addr(hdr->addr1))
937 		return 0;
938 
939 	return ieee80211_is_robust_mgmt_frame(skb);
940 }
941 
942 
943 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
944 {
945 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
946 
947 	if (!is_multicast_ether_addr(hdr->addr1))
948 		return 0;
949 
950 	return ieee80211_is_robust_mgmt_frame(skb);
951 }
952 
953 
954 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
955 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
956 {
957 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
958 	struct ieee80211_mmie *mmie;
959 	struct ieee80211_mmie_16 *mmie16;
960 
961 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
962 		return -1;
963 
964 	if (!ieee80211_is_robust_mgmt_frame(skb) &&
965 	    !ieee80211_is_beacon(hdr->frame_control))
966 		return -1; /* not a robust management frame */
967 
968 	mmie = (struct ieee80211_mmie *)
969 		(skb->data + skb->len - sizeof(*mmie));
970 	if (mmie->element_id == WLAN_EID_MMIE &&
971 	    mmie->length == sizeof(*mmie) - 2)
972 		return le16_to_cpu(mmie->key_id);
973 
974 	mmie16 = (struct ieee80211_mmie_16 *)
975 		(skb->data + skb->len - sizeof(*mmie16));
976 	if (skb->len >= 24 + sizeof(*mmie16) &&
977 	    mmie16->element_id == WLAN_EID_MMIE &&
978 	    mmie16->length == sizeof(*mmie16) - 2)
979 		return le16_to_cpu(mmie16->key_id);
980 
981 	return -1;
982 }
983 
984 static int ieee80211_get_keyid(struct sk_buff *skb,
985 			       const struct ieee80211_cipher_scheme *cs)
986 {
987 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
988 	__le16 fc;
989 	int hdrlen;
990 	int minlen;
991 	u8 key_idx_off;
992 	u8 key_idx_shift;
993 	u8 keyid;
994 
995 	fc = hdr->frame_control;
996 	hdrlen = ieee80211_hdrlen(fc);
997 
998 	if (cs) {
999 		minlen = hdrlen + cs->hdr_len;
1000 		key_idx_off = hdrlen + cs->key_idx_off;
1001 		key_idx_shift = cs->key_idx_shift;
1002 	} else {
1003 		/* WEP, TKIP, CCMP and GCMP */
1004 		minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1005 		key_idx_off = hdrlen + 3;
1006 		key_idx_shift = 6;
1007 	}
1008 
1009 	if (unlikely(skb->len < minlen))
1010 		return -EINVAL;
1011 
1012 	skb_copy_bits(skb, key_idx_off, &keyid, 1);
1013 
1014 	if (cs)
1015 		keyid &= cs->key_idx_mask;
1016 	keyid >>= key_idx_shift;
1017 
1018 	/* cs could use more than the usual two bits for the keyid */
1019 	if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1020 		return -EINVAL;
1021 
1022 	return keyid;
1023 }
1024 
1025 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1026 {
1027 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1028 	char *dev_addr = rx->sdata->vif.addr;
1029 
1030 	if (ieee80211_is_data(hdr->frame_control)) {
1031 		if (is_multicast_ether_addr(hdr->addr1)) {
1032 			if (ieee80211_has_tods(hdr->frame_control) ||
1033 			    !ieee80211_has_fromds(hdr->frame_control))
1034 				return RX_DROP_MONITOR;
1035 			if (ether_addr_equal(hdr->addr3, dev_addr))
1036 				return RX_DROP_MONITOR;
1037 		} else {
1038 			if (!ieee80211_has_a4(hdr->frame_control))
1039 				return RX_DROP_MONITOR;
1040 			if (ether_addr_equal(hdr->addr4, dev_addr))
1041 				return RX_DROP_MONITOR;
1042 		}
1043 	}
1044 
1045 	/* If there is not an established peer link and this is not a peer link
1046 	 * establisment frame, beacon or probe, drop the frame.
1047 	 */
1048 
1049 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1050 		struct ieee80211_mgmt *mgmt;
1051 
1052 		if (!ieee80211_is_mgmt(hdr->frame_control))
1053 			return RX_DROP_MONITOR;
1054 
1055 		if (ieee80211_is_action(hdr->frame_control)) {
1056 			u8 category;
1057 
1058 			/* make sure category field is present */
1059 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1060 				return RX_DROP_MONITOR;
1061 
1062 			mgmt = (struct ieee80211_mgmt *)hdr;
1063 			category = mgmt->u.action.category;
1064 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1065 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1066 				return RX_DROP_MONITOR;
1067 			return RX_CONTINUE;
1068 		}
1069 
1070 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1071 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1072 		    ieee80211_is_beacon(hdr->frame_control) ||
1073 		    ieee80211_is_auth(hdr->frame_control))
1074 			return RX_CONTINUE;
1075 
1076 		return RX_DROP_MONITOR;
1077 	}
1078 
1079 	return RX_CONTINUE;
1080 }
1081 
1082 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1083 					      int index)
1084 {
1085 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1086 	struct sk_buff *tail = skb_peek_tail(frames);
1087 	struct ieee80211_rx_status *status;
1088 
1089 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1090 		return true;
1091 
1092 	if (!tail)
1093 		return false;
1094 
1095 	status = IEEE80211_SKB_RXCB(tail);
1096 	if (status->flag & RX_FLAG_AMSDU_MORE)
1097 		return false;
1098 
1099 	return true;
1100 }
1101 
1102 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1103 					    struct tid_ampdu_rx *tid_agg_rx,
1104 					    int index,
1105 					    struct sk_buff_head *frames)
1106 {
1107 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1108 	struct sk_buff *skb;
1109 	struct ieee80211_rx_status *status;
1110 
1111 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1112 
1113 	if (skb_queue_empty(skb_list))
1114 		goto no_frame;
1115 
1116 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1117 		__skb_queue_purge(skb_list);
1118 		goto no_frame;
1119 	}
1120 
1121 	/* release frames from the reorder ring buffer */
1122 	tid_agg_rx->stored_mpdu_num--;
1123 	while ((skb = __skb_dequeue(skb_list))) {
1124 		status = IEEE80211_SKB_RXCB(skb);
1125 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1126 		__skb_queue_tail(frames, skb);
1127 	}
1128 
1129 no_frame:
1130 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1131 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1132 }
1133 
1134 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1135 					     struct tid_ampdu_rx *tid_agg_rx,
1136 					     u16 head_seq_num,
1137 					     struct sk_buff_head *frames)
1138 {
1139 	int index;
1140 
1141 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1142 
1143 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1144 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1145 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1146 						frames);
1147 	}
1148 }
1149 
1150 /*
1151  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1152  * the skb was added to the buffer longer than this time ago, the earlier
1153  * frames that have not yet been received are assumed to be lost and the skb
1154  * can be released for processing. This may also release other skb's from the
1155  * reorder buffer if there are no additional gaps between the frames.
1156  *
1157  * Callers must hold tid_agg_rx->reorder_lock.
1158  */
1159 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1160 
1161 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1162 					  struct tid_ampdu_rx *tid_agg_rx,
1163 					  struct sk_buff_head *frames)
1164 {
1165 	int index, i, j;
1166 
1167 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1168 
1169 	/* release the buffer until next missing frame */
1170 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1171 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1172 	    tid_agg_rx->stored_mpdu_num) {
1173 		/*
1174 		 * No buffers ready to be released, but check whether any
1175 		 * frames in the reorder buffer have timed out.
1176 		 */
1177 		int skipped = 1;
1178 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1179 		     j = (j + 1) % tid_agg_rx->buf_size) {
1180 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1181 				skipped++;
1182 				continue;
1183 			}
1184 			if (skipped &&
1185 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1186 					HT_RX_REORDER_BUF_TIMEOUT))
1187 				goto set_release_timer;
1188 
1189 			/* don't leave incomplete A-MSDUs around */
1190 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1191 			     i = (i + 1) % tid_agg_rx->buf_size)
1192 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1193 
1194 			ht_dbg_ratelimited(sdata,
1195 					   "release an RX reorder frame due to timeout on earlier frames\n");
1196 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1197 							frames);
1198 
1199 			/*
1200 			 * Increment the head seq# also for the skipped slots.
1201 			 */
1202 			tid_agg_rx->head_seq_num =
1203 				(tid_agg_rx->head_seq_num +
1204 				 skipped) & IEEE80211_SN_MASK;
1205 			skipped = 0;
1206 		}
1207 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1208 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1209 						frames);
1210 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1211 	}
1212 
1213 	if (tid_agg_rx->stored_mpdu_num) {
1214 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1215 
1216 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1217 		     j = (j + 1) % tid_agg_rx->buf_size) {
1218 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1219 				break;
1220 		}
1221 
1222  set_release_timer:
1223 
1224 		if (!tid_agg_rx->removed)
1225 			mod_timer(&tid_agg_rx->reorder_timer,
1226 				  tid_agg_rx->reorder_time[j] + 1 +
1227 				  HT_RX_REORDER_BUF_TIMEOUT);
1228 	} else {
1229 		del_timer(&tid_agg_rx->reorder_timer);
1230 	}
1231 }
1232 
1233 /*
1234  * As this function belongs to the RX path it must be under
1235  * rcu_read_lock protection. It returns false if the frame
1236  * can be processed immediately, true if it was consumed.
1237  */
1238 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1239 					     struct tid_ampdu_rx *tid_agg_rx,
1240 					     struct sk_buff *skb,
1241 					     struct sk_buff_head *frames)
1242 {
1243 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1244 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1245 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1246 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1247 	u16 head_seq_num, buf_size;
1248 	int index;
1249 	bool ret = true;
1250 
1251 	spin_lock(&tid_agg_rx->reorder_lock);
1252 
1253 	/*
1254 	 * Offloaded BA sessions have no known starting sequence number so pick
1255 	 * one from first Rxed frame for this tid after BA was started.
1256 	 */
1257 	if (unlikely(tid_agg_rx->auto_seq)) {
1258 		tid_agg_rx->auto_seq = false;
1259 		tid_agg_rx->ssn = mpdu_seq_num;
1260 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1261 	}
1262 
1263 	buf_size = tid_agg_rx->buf_size;
1264 	head_seq_num = tid_agg_rx->head_seq_num;
1265 
1266 	/*
1267 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1268 	 * be reordered.
1269 	 */
1270 	if (unlikely(!tid_agg_rx->started)) {
1271 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1272 			ret = false;
1273 			goto out;
1274 		}
1275 		tid_agg_rx->started = true;
1276 	}
1277 
1278 	/* frame with out of date sequence number */
1279 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1280 		dev_kfree_skb(skb);
1281 		goto out;
1282 	}
1283 
1284 	/*
1285 	 * If frame the sequence number exceeds our buffering window
1286 	 * size release some previous frames to make room for this one.
1287 	 */
1288 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1289 		head_seq_num = ieee80211_sn_inc(
1290 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1291 		/* release stored frames up to new head to stack */
1292 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1293 						 head_seq_num, frames);
1294 	}
1295 
1296 	/* Now the new frame is always in the range of the reordering buffer */
1297 
1298 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1299 
1300 	/* check if we already stored this frame */
1301 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1302 		dev_kfree_skb(skb);
1303 		goto out;
1304 	}
1305 
1306 	/*
1307 	 * If the current MPDU is in the right order and nothing else
1308 	 * is stored we can process it directly, no need to buffer it.
1309 	 * If it is first but there's something stored, we may be able
1310 	 * to release frames after this one.
1311 	 */
1312 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1313 	    tid_agg_rx->stored_mpdu_num == 0) {
1314 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1315 			tid_agg_rx->head_seq_num =
1316 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1317 		ret = false;
1318 		goto out;
1319 	}
1320 
1321 	/* put the frame in the reordering buffer */
1322 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1323 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1324 		tid_agg_rx->reorder_time[index] = jiffies;
1325 		tid_agg_rx->stored_mpdu_num++;
1326 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1327 	}
1328 
1329  out:
1330 	spin_unlock(&tid_agg_rx->reorder_lock);
1331 	return ret;
1332 }
1333 
1334 /*
1335  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1336  * true if the MPDU was buffered, false if it should be processed.
1337  */
1338 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1339 				       struct sk_buff_head *frames)
1340 {
1341 	struct sk_buff *skb = rx->skb;
1342 	struct ieee80211_local *local = rx->local;
1343 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1344 	struct sta_info *sta = rx->sta;
1345 	struct tid_ampdu_rx *tid_agg_rx;
1346 	u16 sc;
1347 	u8 tid, ack_policy;
1348 
1349 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1350 	    is_multicast_ether_addr(hdr->addr1))
1351 		goto dont_reorder;
1352 
1353 	/*
1354 	 * filter the QoS data rx stream according to
1355 	 * STA/TID and check if this STA/TID is on aggregation
1356 	 */
1357 
1358 	if (!sta)
1359 		goto dont_reorder;
1360 
1361 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1362 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1363 	tid = ieee80211_get_tid(hdr);
1364 
1365 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1366 	if (!tid_agg_rx) {
1367 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1368 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1369 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1370 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1371 					     WLAN_BACK_RECIPIENT,
1372 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1373 		goto dont_reorder;
1374 	}
1375 
1376 	/* qos null data frames are excluded */
1377 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1378 		goto dont_reorder;
1379 
1380 	/* not part of a BA session */
1381 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1382 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1383 		goto dont_reorder;
1384 
1385 	/* new, potentially un-ordered, ampdu frame - process it */
1386 
1387 	/* reset session timer */
1388 	if (tid_agg_rx->timeout)
1389 		tid_agg_rx->last_rx = jiffies;
1390 
1391 	/* if this mpdu is fragmented - terminate rx aggregation session */
1392 	sc = le16_to_cpu(hdr->seq_ctrl);
1393 	if (sc & IEEE80211_SCTL_FRAG) {
1394 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1395 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1396 		return;
1397 	}
1398 
1399 	/*
1400 	 * No locking needed -- we will only ever process one
1401 	 * RX packet at a time, and thus own tid_agg_rx. All
1402 	 * other code manipulating it needs to (and does) make
1403 	 * sure that we cannot get to it any more before doing
1404 	 * anything with it.
1405 	 */
1406 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1407 					     frames))
1408 		return;
1409 
1410  dont_reorder:
1411 	__skb_queue_tail(frames, skb);
1412 }
1413 
1414 static ieee80211_rx_result debug_noinline
1415 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1416 {
1417 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1418 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1419 
1420 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1421 		return RX_CONTINUE;
1422 
1423 	/*
1424 	 * Drop duplicate 802.11 retransmissions
1425 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1426 	 */
1427 
1428 	if (rx->skb->len < 24)
1429 		return RX_CONTINUE;
1430 
1431 	if (ieee80211_is_ctl(hdr->frame_control) ||
1432 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
1433 	    is_multicast_ether_addr(hdr->addr1))
1434 		return RX_CONTINUE;
1435 
1436 	if (!rx->sta)
1437 		return RX_CONTINUE;
1438 
1439 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1440 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1441 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1442 		rx->sta->rx_stats.num_duplicates++;
1443 		return RX_DROP_UNUSABLE;
1444 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1445 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1446 	}
1447 
1448 	return RX_CONTINUE;
1449 }
1450 
1451 static ieee80211_rx_result debug_noinline
1452 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1453 {
1454 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1455 
1456 	/* Drop disallowed frame classes based on STA auth/assoc state;
1457 	 * IEEE 802.11, Chap 5.5.
1458 	 *
1459 	 * mac80211 filters only based on association state, i.e. it drops
1460 	 * Class 3 frames from not associated stations. hostapd sends
1461 	 * deauth/disassoc frames when needed. In addition, hostapd is
1462 	 * responsible for filtering on both auth and assoc states.
1463 	 */
1464 
1465 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1466 		return ieee80211_rx_mesh_check(rx);
1467 
1468 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1469 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1470 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1471 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1472 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1473 		/*
1474 		 * accept port control frames from the AP even when it's not
1475 		 * yet marked ASSOC to prevent a race where we don't set the
1476 		 * assoc bit quickly enough before it sends the first frame
1477 		 */
1478 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1479 		    ieee80211_is_data_present(hdr->frame_control)) {
1480 			unsigned int hdrlen;
1481 			__be16 ethertype;
1482 
1483 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1484 
1485 			if (rx->skb->len < hdrlen + 8)
1486 				return RX_DROP_MONITOR;
1487 
1488 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1489 			if (ethertype == rx->sdata->control_port_protocol)
1490 				return RX_CONTINUE;
1491 		}
1492 
1493 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1494 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1495 					       hdr->addr2,
1496 					       GFP_ATOMIC))
1497 			return RX_DROP_UNUSABLE;
1498 
1499 		return RX_DROP_MONITOR;
1500 	}
1501 
1502 	return RX_CONTINUE;
1503 }
1504 
1505 
1506 static ieee80211_rx_result debug_noinline
1507 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1508 {
1509 	struct ieee80211_local *local;
1510 	struct ieee80211_hdr *hdr;
1511 	struct sk_buff *skb;
1512 
1513 	local = rx->local;
1514 	skb = rx->skb;
1515 	hdr = (struct ieee80211_hdr *) skb->data;
1516 
1517 	if (!local->pspolling)
1518 		return RX_CONTINUE;
1519 
1520 	if (!ieee80211_has_fromds(hdr->frame_control))
1521 		/* this is not from AP */
1522 		return RX_CONTINUE;
1523 
1524 	if (!ieee80211_is_data(hdr->frame_control))
1525 		return RX_CONTINUE;
1526 
1527 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1528 		/* AP has no more frames buffered for us */
1529 		local->pspolling = false;
1530 		return RX_CONTINUE;
1531 	}
1532 
1533 	/* more data bit is set, let's request a new frame from the AP */
1534 	ieee80211_send_pspoll(local, rx->sdata);
1535 
1536 	return RX_CONTINUE;
1537 }
1538 
1539 static void sta_ps_start(struct sta_info *sta)
1540 {
1541 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1542 	struct ieee80211_local *local = sdata->local;
1543 	struct ps_data *ps;
1544 	int tid;
1545 
1546 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1547 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1548 		ps = &sdata->bss->ps;
1549 	else
1550 		return;
1551 
1552 	atomic_inc(&ps->num_sta_ps);
1553 	set_sta_flag(sta, WLAN_STA_PS_STA);
1554 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1555 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1556 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1557 	       sta->sta.addr, sta->sta.aid);
1558 
1559 	ieee80211_clear_fast_xmit(sta);
1560 
1561 	if (!sta->sta.txq[0])
1562 		return;
1563 
1564 	for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1565 		struct ieee80211_txq *txq = sta->sta.txq[tid];
1566 		struct txq_info *txqi = to_txq_info(txq);
1567 
1568 		spin_lock(&local->active_txq_lock[txq->ac]);
1569 		if (!list_empty(&txqi->schedule_order))
1570 			list_del_init(&txqi->schedule_order);
1571 		spin_unlock(&local->active_txq_lock[txq->ac]);
1572 
1573 		if (txq_has_queue(txq))
1574 			set_bit(tid, &sta->txq_buffered_tids);
1575 		else
1576 			clear_bit(tid, &sta->txq_buffered_tids);
1577 	}
1578 }
1579 
1580 static void sta_ps_end(struct sta_info *sta)
1581 {
1582 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1583 	       sta->sta.addr, sta->sta.aid);
1584 
1585 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1586 		/*
1587 		 * Clear the flag only if the other one is still set
1588 		 * so that the TX path won't start TX'ing new frames
1589 		 * directly ... In the case that the driver flag isn't
1590 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1591 		 */
1592 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1593 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1594 		       sta->sta.addr, sta->sta.aid);
1595 		return;
1596 	}
1597 
1598 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1599 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1600 	ieee80211_sta_ps_deliver_wakeup(sta);
1601 }
1602 
1603 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1604 {
1605 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1606 	bool in_ps;
1607 
1608 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1609 
1610 	/* Don't let the same PS state be set twice */
1611 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1612 	if ((start && in_ps) || (!start && !in_ps))
1613 		return -EINVAL;
1614 
1615 	if (start)
1616 		sta_ps_start(sta);
1617 	else
1618 		sta_ps_end(sta);
1619 
1620 	return 0;
1621 }
1622 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1623 
1624 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1625 {
1626 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1627 
1628 	if (test_sta_flag(sta, WLAN_STA_SP))
1629 		return;
1630 
1631 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1632 		ieee80211_sta_ps_deliver_poll_response(sta);
1633 	else
1634 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1635 }
1636 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1637 
1638 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1639 {
1640 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1641 	int ac = ieee80211_ac_from_tid(tid);
1642 
1643 	/*
1644 	 * If this AC is not trigger-enabled do nothing unless the
1645 	 * driver is calling us after it already checked.
1646 	 *
1647 	 * NB: This could/should check a separate bitmap of trigger-
1648 	 * enabled queues, but for now we only implement uAPSD w/o
1649 	 * TSPEC changes to the ACs, so they're always the same.
1650 	 */
1651 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1652 	    tid != IEEE80211_NUM_TIDS)
1653 		return;
1654 
1655 	/* if we are in a service period, do nothing */
1656 	if (test_sta_flag(sta, WLAN_STA_SP))
1657 		return;
1658 
1659 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1660 		ieee80211_sta_ps_deliver_uapsd(sta);
1661 	else
1662 		set_sta_flag(sta, WLAN_STA_UAPSD);
1663 }
1664 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1665 
1666 static ieee80211_rx_result debug_noinline
1667 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1668 {
1669 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1670 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1671 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1672 
1673 	if (!rx->sta)
1674 		return RX_CONTINUE;
1675 
1676 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1677 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1678 		return RX_CONTINUE;
1679 
1680 	/*
1681 	 * The device handles station powersave, so don't do anything about
1682 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1683 	 * it to mac80211 since they're handled.)
1684 	 */
1685 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1686 		return RX_CONTINUE;
1687 
1688 	/*
1689 	 * Don't do anything if the station isn't already asleep. In
1690 	 * the uAPSD case, the station will probably be marked asleep,
1691 	 * in the PS-Poll case the station must be confused ...
1692 	 */
1693 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1694 		return RX_CONTINUE;
1695 
1696 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1697 		ieee80211_sta_pspoll(&rx->sta->sta);
1698 
1699 		/* Free PS Poll skb here instead of returning RX_DROP that would
1700 		 * count as an dropped frame. */
1701 		dev_kfree_skb(rx->skb);
1702 
1703 		return RX_QUEUED;
1704 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1705 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1706 		   ieee80211_has_pm(hdr->frame_control) &&
1707 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1708 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1709 		u8 tid = ieee80211_get_tid(hdr);
1710 
1711 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1712 	}
1713 
1714 	return RX_CONTINUE;
1715 }
1716 
1717 static ieee80211_rx_result debug_noinline
1718 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1719 {
1720 	struct sta_info *sta = rx->sta;
1721 	struct sk_buff *skb = rx->skb;
1722 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1723 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1724 	int i;
1725 
1726 	if (!sta)
1727 		return RX_CONTINUE;
1728 
1729 	/*
1730 	 * Update last_rx only for IBSS packets which are for the current
1731 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1732 	 * current IBSS network alive in cases where other STAs start
1733 	 * using different BSSID. This will also give the station another
1734 	 * chance to restart the authentication/authorization in case
1735 	 * something went wrong the first time.
1736 	 */
1737 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1738 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1739 						NL80211_IFTYPE_ADHOC);
1740 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1741 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1742 			sta->rx_stats.last_rx = jiffies;
1743 			if (ieee80211_is_data(hdr->frame_control) &&
1744 			    !is_multicast_ether_addr(hdr->addr1))
1745 				sta->rx_stats.last_rate =
1746 					sta_stats_encode_rate(status);
1747 		}
1748 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1749 		sta->rx_stats.last_rx = jiffies;
1750 	} else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1751 		   !is_multicast_ether_addr(hdr->addr1)) {
1752 		/*
1753 		 * Mesh beacons will update last_rx when if they are found to
1754 		 * match the current local configuration when processed.
1755 		 */
1756 		sta->rx_stats.last_rx = jiffies;
1757 		if (ieee80211_is_data(hdr->frame_control))
1758 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1759 	}
1760 
1761 	sta->rx_stats.fragments++;
1762 
1763 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1764 	sta->rx_stats.bytes += rx->skb->len;
1765 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1766 
1767 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1768 		sta->rx_stats.last_signal = status->signal;
1769 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1770 	}
1771 
1772 	if (status->chains) {
1773 		sta->rx_stats.chains = status->chains;
1774 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1775 			int signal = status->chain_signal[i];
1776 
1777 			if (!(status->chains & BIT(i)))
1778 				continue;
1779 
1780 			sta->rx_stats.chain_signal_last[i] = signal;
1781 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1782 					-signal);
1783 		}
1784 	}
1785 
1786 	if (ieee80211_is_s1g_beacon(hdr->frame_control))
1787 		return RX_CONTINUE;
1788 
1789 	/*
1790 	 * Change STA power saving mode only at the end of a frame
1791 	 * exchange sequence, and only for a data or management
1792 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1793 	 */
1794 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1795 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1796 	    !is_multicast_ether_addr(hdr->addr1) &&
1797 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1798 	     ieee80211_is_data(hdr->frame_control)) &&
1799 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1800 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1801 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1802 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1803 			if (!ieee80211_has_pm(hdr->frame_control))
1804 				sta_ps_end(sta);
1805 		} else {
1806 			if (ieee80211_has_pm(hdr->frame_control))
1807 				sta_ps_start(sta);
1808 		}
1809 	}
1810 
1811 	/* mesh power save support */
1812 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1813 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1814 
1815 	/*
1816 	 * Drop (qos-)data::nullfunc frames silently, since they
1817 	 * are used only to control station power saving mode.
1818 	 */
1819 	if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1820 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1821 
1822 		/*
1823 		 * If we receive a 4-addr nullfunc frame from a STA
1824 		 * that was not moved to a 4-addr STA vlan yet send
1825 		 * the event to userspace and for older hostapd drop
1826 		 * the frame to the monitor interface.
1827 		 */
1828 		if (ieee80211_has_a4(hdr->frame_control) &&
1829 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1830 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1831 		      !rx->sdata->u.vlan.sta))) {
1832 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1833 				cfg80211_rx_unexpected_4addr_frame(
1834 					rx->sdata->dev, sta->sta.addr,
1835 					GFP_ATOMIC);
1836 			return RX_DROP_MONITOR;
1837 		}
1838 		/*
1839 		 * Update counter and free packet here to avoid
1840 		 * counting this as a dropped packed.
1841 		 */
1842 		sta->rx_stats.packets++;
1843 		dev_kfree_skb(rx->skb);
1844 		return RX_QUEUED;
1845 	}
1846 
1847 	return RX_CONTINUE;
1848 } /* ieee80211_rx_h_sta_process */
1849 
1850 static struct ieee80211_key *
1851 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1852 {
1853 	struct ieee80211_key *key = NULL;
1854 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1855 	int idx2;
1856 
1857 	/* Make sure key gets set if either BIGTK key index is set so that
1858 	 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1859 	 * Beacon frames and Beacon frames that claim to use another BIGTK key
1860 	 * index (i.e., a key that we do not have).
1861 	 */
1862 
1863 	if (idx < 0) {
1864 		idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1865 		idx2 = idx + 1;
1866 	} else {
1867 		if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1868 			idx2 = idx + 1;
1869 		else
1870 			idx2 = idx - 1;
1871 	}
1872 
1873 	if (rx->sta)
1874 		key = rcu_dereference(rx->sta->gtk[idx]);
1875 	if (!key)
1876 		key = rcu_dereference(sdata->keys[idx]);
1877 	if (!key && rx->sta)
1878 		key = rcu_dereference(rx->sta->gtk[idx2]);
1879 	if (!key)
1880 		key = rcu_dereference(sdata->keys[idx2]);
1881 
1882 	return key;
1883 }
1884 
1885 static ieee80211_rx_result debug_noinline
1886 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1887 {
1888 	struct sk_buff *skb = rx->skb;
1889 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1890 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1891 	int keyidx;
1892 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1893 	struct ieee80211_key *sta_ptk = NULL;
1894 	struct ieee80211_key *ptk_idx = NULL;
1895 	int mmie_keyidx = -1;
1896 	__le16 fc;
1897 	const struct ieee80211_cipher_scheme *cs = NULL;
1898 
1899 	if (ieee80211_is_ext(hdr->frame_control))
1900 		return RX_CONTINUE;
1901 
1902 	/*
1903 	 * Key selection 101
1904 	 *
1905 	 * There are five types of keys:
1906 	 *  - GTK (group keys)
1907 	 *  - IGTK (group keys for management frames)
1908 	 *  - BIGTK (group keys for Beacon frames)
1909 	 *  - PTK (pairwise keys)
1910 	 *  - STK (station-to-station pairwise keys)
1911 	 *
1912 	 * When selecting a key, we have to distinguish between multicast
1913 	 * (including broadcast) and unicast frames, the latter can only
1914 	 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1915 	 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1916 	 * then unicast frames can also use key indices like GTKs. Hence, if we
1917 	 * don't have a PTK/STK we check the key index for a WEP key.
1918 	 *
1919 	 * Note that in a regular BSS, multicast frames are sent by the
1920 	 * AP only, associated stations unicast the frame to the AP first
1921 	 * which then multicasts it on their behalf.
1922 	 *
1923 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1924 	 * with each station, that is something we don't currently handle.
1925 	 * The spec seems to expect that one negotiates the same key with
1926 	 * every station but there's no such requirement; VLANs could be
1927 	 * possible.
1928 	 */
1929 
1930 	/* start without a key */
1931 	rx->key = NULL;
1932 	fc = hdr->frame_control;
1933 
1934 	if (rx->sta) {
1935 		int keyid = rx->sta->ptk_idx;
1936 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1937 
1938 		if (ieee80211_has_protected(fc)) {
1939 			cs = rx->sta->cipher_scheme;
1940 			keyid = ieee80211_get_keyid(rx->skb, cs);
1941 
1942 			if (unlikely(keyid < 0))
1943 				return RX_DROP_UNUSABLE;
1944 
1945 			ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1946 		}
1947 	}
1948 
1949 	if (!ieee80211_has_protected(fc))
1950 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1951 
1952 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1953 		rx->key = ptk_idx ? ptk_idx : sta_ptk;
1954 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1955 		    (status->flag & RX_FLAG_IV_STRIPPED))
1956 			return RX_CONTINUE;
1957 		/* Skip decryption if the frame is not protected. */
1958 		if (!ieee80211_has_protected(fc))
1959 			return RX_CONTINUE;
1960 	} else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1961 		/* Broadcast/multicast robust management frame / BIP */
1962 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1963 		    (status->flag & RX_FLAG_IV_STRIPPED))
1964 			return RX_CONTINUE;
1965 
1966 		if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1967 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1968 		    NUM_DEFAULT_BEACON_KEYS) {
1969 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1970 						     skb->data,
1971 						     skb->len);
1972 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1973 		}
1974 
1975 		rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1976 		if (!rx->key)
1977 			return RX_CONTINUE; /* Beacon protection not in use */
1978 	} else if (mmie_keyidx >= 0) {
1979 		/* Broadcast/multicast robust management frame / BIP */
1980 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1981 		    (status->flag & RX_FLAG_IV_STRIPPED))
1982 			return RX_CONTINUE;
1983 
1984 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1985 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1986 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1987 		if (rx->sta) {
1988 			if (ieee80211_is_group_privacy_action(skb) &&
1989 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1990 				return RX_DROP_MONITOR;
1991 
1992 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1993 		}
1994 		if (!rx->key)
1995 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1996 	} else if (!ieee80211_has_protected(fc)) {
1997 		/*
1998 		 * The frame was not protected, so skip decryption. However, we
1999 		 * need to set rx->key if there is a key that could have been
2000 		 * used so that the frame may be dropped if encryption would
2001 		 * have been expected.
2002 		 */
2003 		struct ieee80211_key *key = NULL;
2004 		struct ieee80211_sub_if_data *sdata = rx->sdata;
2005 		int i;
2006 
2007 		if (ieee80211_is_beacon(fc)) {
2008 			key = ieee80211_rx_get_bigtk(rx, -1);
2009 		} else if (ieee80211_is_mgmt(fc) &&
2010 			   is_multicast_ether_addr(hdr->addr1)) {
2011 			key = rcu_dereference(rx->sdata->default_mgmt_key);
2012 		} else {
2013 			if (rx->sta) {
2014 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2015 					key = rcu_dereference(rx->sta->gtk[i]);
2016 					if (key)
2017 						break;
2018 				}
2019 			}
2020 			if (!key) {
2021 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2022 					key = rcu_dereference(sdata->keys[i]);
2023 					if (key)
2024 						break;
2025 				}
2026 			}
2027 		}
2028 		if (key)
2029 			rx->key = key;
2030 		return RX_CONTINUE;
2031 	} else {
2032 		/*
2033 		 * The device doesn't give us the IV so we won't be
2034 		 * able to look up the key. That's ok though, we
2035 		 * don't need to decrypt the frame, we just won't
2036 		 * be able to keep statistics accurate.
2037 		 * Except for key threshold notifications, should
2038 		 * we somehow allow the driver to tell us which key
2039 		 * the hardware used if this flag is set?
2040 		 */
2041 		if ((status->flag & RX_FLAG_DECRYPTED) &&
2042 		    (status->flag & RX_FLAG_IV_STRIPPED))
2043 			return RX_CONTINUE;
2044 
2045 		keyidx = ieee80211_get_keyid(rx->skb, cs);
2046 
2047 		if (unlikely(keyidx < 0))
2048 			return RX_DROP_UNUSABLE;
2049 
2050 		/* check per-station GTK first, if multicast packet */
2051 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2052 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2053 
2054 		/* if not found, try default key */
2055 		if (!rx->key) {
2056 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2057 
2058 			/*
2059 			 * RSNA-protected unicast frames should always be
2060 			 * sent with pairwise or station-to-station keys,
2061 			 * but for WEP we allow using a key index as well.
2062 			 */
2063 			if (rx->key &&
2064 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2065 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2066 			    !is_multicast_ether_addr(hdr->addr1))
2067 				rx->key = NULL;
2068 		}
2069 	}
2070 
2071 	if (rx->key) {
2072 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2073 			return RX_DROP_MONITOR;
2074 
2075 		/* TODO: add threshold stuff again */
2076 	} else {
2077 		return RX_DROP_MONITOR;
2078 	}
2079 
2080 	switch (rx->key->conf.cipher) {
2081 	case WLAN_CIPHER_SUITE_WEP40:
2082 	case WLAN_CIPHER_SUITE_WEP104:
2083 		result = ieee80211_crypto_wep_decrypt(rx);
2084 		break;
2085 	case WLAN_CIPHER_SUITE_TKIP:
2086 		result = ieee80211_crypto_tkip_decrypt(rx);
2087 		break;
2088 	case WLAN_CIPHER_SUITE_CCMP:
2089 		result = ieee80211_crypto_ccmp_decrypt(
2090 			rx, IEEE80211_CCMP_MIC_LEN);
2091 		break;
2092 	case WLAN_CIPHER_SUITE_CCMP_256:
2093 		result = ieee80211_crypto_ccmp_decrypt(
2094 			rx, IEEE80211_CCMP_256_MIC_LEN);
2095 		break;
2096 	case WLAN_CIPHER_SUITE_AES_CMAC:
2097 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
2098 		break;
2099 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2100 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2101 		break;
2102 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2103 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2104 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
2105 		break;
2106 	case WLAN_CIPHER_SUITE_GCMP:
2107 	case WLAN_CIPHER_SUITE_GCMP_256:
2108 		result = ieee80211_crypto_gcmp_decrypt(rx);
2109 		break;
2110 	default:
2111 		result = ieee80211_crypto_hw_decrypt(rx);
2112 	}
2113 
2114 	/* the hdr variable is invalid after the decrypt handlers */
2115 
2116 	/* either the frame has been decrypted or will be dropped */
2117 	status->flag |= RX_FLAG_DECRYPTED;
2118 
2119 	if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE))
2120 		cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2121 					     skb->data, skb->len);
2122 
2123 	return result;
2124 }
2125 
2126 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
2127 {
2128 	int i;
2129 
2130 	for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2131 		skb_queue_head_init(&cache->entries[i].skb_list);
2132 }
2133 
2134 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
2135 {
2136 	int i;
2137 
2138 	for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2139 		__skb_queue_purge(&cache->entries[i].skb_list);
2140 }
2141 
2142 static inline struct ieee80211_fragment_entry *
2143 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
2144 			 unsigned int frag, unsigned int seq, int rx_queue,
2145 			 struct sk_buff **skb)
2146 {
2147 	struct ieee80211_fragment_entry *entry;
2148 
2149 	entry = &cache->entries[cache->next++];
2150 	if (cache->next >= IEEE80211_FRAGMENT_MAX)
2151 		cache->next = 0;
2152 
2153 	__skb_queue_purge(&entry->skb_list);
2154 
2155 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2156 	*skb = NULL;
2157 	entry->first_frag_time = jiffies;
2158 	entry->seq = seq;
2159 	entry->rx_queue = rx_queue;
2160 	entry->last_frag = frag;
2161 	entry->check_sequential_pn = false;
2162 	entry->extra_len = 0;
2163 
2164 	return entry;
2165 }
2166 
2167 static inline struct ieee80211_fragment_entry *
2168 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
2169 			  unsigned int frag, unsigned int seq,
2170 			  int rx_queue, struct ieee80211_hdr *hdr)
2171 {
2172 	struct ieee80211_fragment_entry *entry;
2173 	int i, idx;
2174 
2175 	idx = cache->next;
2176 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2177 		struct ieee80211_hdr *f_hdr;
2178 		struct sk_buff *f_skb;
2179 
2180 		idx--;
2181 		if (idx < 0)
2182 			idx = IEEE80211_FRAGMENT_MAX - 1;
2183 
2184 		entry = &cache->entries[idx];
2185 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2186 		    entry->rx_queue != rx_queue ||
2187 		    entry->last_frag + 1 != frag)
2188 			continue;
2189 
2190 		f_skb = __skb_peek(&entry->skb_list);
2191 		f_hdr = (struct ieee80211_hdr *) f_skb->data;
2192 
2193 		/*
2194 		 * Check ftype and addresses are equal, else check next fragment
2195 		 */
2196 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2197 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2198 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2199 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2200 			continue;
2201 
2202 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2203 			__skb_queue_purge(&entry->skb_list);
2204 			continue;
2205 		}
2206 		return entry;
2207 	}
2208 
2209 	return NULL;
2210 }
2211 
2212 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
2213 {
2214 	return rx->key &&
2215 		(rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2216 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2217 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2218 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2219 		ieee80211_has_protected(fc);
2220 }
2221 
2222 static ieee80211_rx_result debug_noinline
2223 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2224 {
2225 	struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
2226 	struct ieee80211_hdr *hdr;
2227 	u16 sc;
2228 	__le16 fc;
2229 	unsigned int frag, seq;
2230 	struct ieee80211_fragment_entry *entry;
2231 	struct sk_buff *skb;
2232 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2233 
2234 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2235 	fc = hdr->frame_control;
2236 
2237 	if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2238 		return RX_CONTINUE;
2239 
2240 	sc = le16_to_cpu(hdr->seq_ctrl);
2241 	frag = sc & IEEE80211_SCTL_FRAG;
2242 
2243 	if (is_multicast_ether_addr(hdr->addr1)) {
2244 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2245 		goto out_no_led;
2246 	}
2247 
2248 	if (rx->sta)
2249 		cache = &rx->sta->frags;
2250 
2251 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2252 		goto out;
2253 
2254 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2255 
2256 	if (skb_linearize(rx->skb))
2257 		return RX_DROP_UNUSABLE;
2258 
2259 	/*
2260 	 *  skb_linearize() might change the skb->data and
2261 	 *  previously cached variables (in this case, hdr) need to
2262 	 *  be refreshed with the new data.
2263 	 */
2264 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2265 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2266 
2267 	if (frag == 0) {
2268 		/* This is the first fragment of a new frame. */
2269 		entry = ieee80211_reassemble_add(cache, frag, seq,
2270 						 rx->seqno_idx, &(rx->skb));
2271 		if (requires_sequential_pn(rx, fc)) {
2272 			int queue = rx->security_idx;
2273 
2274 			/* Store CCMP/GCMP PN so that we can verify that the
2275 			 * next fragment has a sequential PN value.
2276 			 */
2277 			entry->check_sequential_pn = true;
2278 			entry->is_protected = true;
2279 			entry->key_color = rx->key->color;
2280 			memcpy(entry->last_pn,
2281 			       rx->key->u.ccmp.rx_pn[queue],
2282 			       IEEE80211_CCMP_PN_LEN);
2283 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2284 					      u.ccmp.rx_pn) !=
2285 				     offsetof(struct ieee80211_key,
2286 					      u.gcmp.rx_pn));
2287 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2288 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2289 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2290 				     IEEE80211_GCMP_PN_LEN);
2291 		} else if (rx->key &&
2292 			   (ieee80211_has_protected(fc) ||
2293 			    (status->flag & RX_FLAG_DECRYPTED))) {
2294 			entry->is_protected = true;
2295 			entry->key_color = rx->key->color;
2296 		}
2297 		return RX_QUEUED;
2298 	}
2299 
2300 	/* This is a fragment for a frame that should already be pending in
2301 	 * fragment cache. Add this fragment to the end of the pending entry.
2302 	 */
2303 	entry = ieee80211_reassemble_find(cache, frag, seq,
2304 					  rx->seqno_idx, hdr);
2305 	if (!entry) {
2306 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2307 		return RX_DROP_MONITOR;
2308 	}
2309 
2310 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2311 	 *  MPDU PN values are not incrementing in steps of 1."
2312 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2313 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2314 	 */
2315 	if (entry->check_sequential_pn) {
2316 		int i;
2317 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2318 
2319 		if (!requires_sequential_pn(rx, fc))
2320 			return RX_DROP_UNUSABLE;
2321 
2322 		/* Prevent mixed key and fragment cache attacks */
2323 		if (entry->key_color != rx->key->color)
2324 			return RX_DROP_UNUSABLE;
2325 
2326 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2327 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2328 			pn[i]++;
2329 			if (pn[i])
2330 				break;
2331 		}
2332 
2333 		rpn = rx->ccm_gcm.pn;
2334 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2335 			return RX_DROP_UNUSABLE;
2336 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2337 	} else if (entry->is_protected &&
2338 		   (!rx->key ||
2339 		    (!ieee80211_has_protected(fc) &&
2340 		     !(status->flag & RX_FLAG_DECRYPTED)) ||
2341 		    rx->key->color != entry->key_color)) {
2342 		/* Drop this as a mixed key or fragment cache attack, even
2343 		 * if for TKIP Michael MIC should protect us, and WEP is a
2344 		 * lost cause anyway.
2345 		 */
2346 		return RX_DROP_UNUSABLE;
2347 	} else if (entry->is_protected && rx->key &&
2348 		   entry->key_color != rx->key->color &&
2349 		   (status->flag & RX_FLAG_DECRYPTED)) {
2350 		return RX_DROP_UNUSABLE;
2351 	}
2352 
2353 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2354 	__skb_queue_tail(&entry->skb_list, rx->skb);
2355 	entry->last_frag = frag;
2356 	entry->extra_len += rx->skb->len;
2357 	if (ieee80211_has_morefrags(fc)) {
2358 		rx->skb = NULL;
2359 		return RX_QUEUED;
2360 	}
2361 
2362 	rx->skb = __skb_dequeue(&entry->skb_list);
2363 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2364 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2365 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2366 					      GFP_ATOMIC))) {
2367 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2368 			__skb_queue_purge(&entry->skb_list);
2369 			return RX_DROP_UNUSABLE;
2370 		}
2371 	}
2372 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2373 		skb_put_data(rx->skb, skb->data, skb->len);
2374 		dev_kfree_skb(skb);
2375 	}
2376 
2377  out:
2378 	ieee80211_led_rx(rx->local);
2379  out_no_led:
2380 	if (rx->sta)
2381 		rx->sta->rx_stats.packets++;
2382 	return RX_CONTINUE;
2383 }
2384 
2385 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2386 {
2387 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2388 		return -EACCES;
2389 
2390 	return 0;
2391 }
2392 
2393 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2394 {
2395 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2396 	struct sk_buff *skb = rx->skb;
2397 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2398 
2399 	/*
2400 	 * Pass through unencrypted frames if the hardware has
2401 	 * decrypted them already.
2402 	 */
2403 	if (status->flag & RX_FLAG_DECRYPTED)
2404 		return 0;
2405 
2406 	/* check mesh EAPOL frames first */
2407 	if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2408 		     ieee80211_is_data(fc))) {
2409 		struct ieee80211s_hdr *mesh_hdr;
2410 		u16 hdr_len = ieee80211_hdrlen(fc);
2411 		u16 ethertype_offset;
2412 		__be16 ethertype;
2413 
2414 		if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2415 			goto drop_check;
2416 
2417 		/* make sure fixed part of mesh header is there, also checks skb len */
2418 		if (!pskb_may_pull(rx->skb, hdr_len + 6))
2419 			goto drop_check;
2420 
2421 		mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2422 		ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2423 				   sizeof(rfc1042_header);
2424 
2425 		if (skb_copy_bits(rx->skb, ethertype_offset, &ethertype, 2) == 0 &&
2426 		    ethertype == rx->sdata->control_port_protocol)
2427 			return 0;
2428 	}
2429 
2430 drop_check:
2431 	/* Drop unencrypted frames if key is set. */
2432 	if (unlikely(!ieee80211_has_protected(fc) &&
2433 		     !ieee80211_is_any_nullfunc(fc) &&
2434 		     ieee80211_is_data(fc) && rx->key))
2435 		return -EACCES;
2436 
2437 	return 0;
2438 }
2439 
2440 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2441 {
2442 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2443 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2444 	__le16 fc = hdr->frame_control;
2445 
2446 	/*
2447 	 * Pass through unencrypted frames if the hardware has
2448 	 * decrypted them already.
2449 	 */
2450 	if (status->flag & RX_FLAG_DECRYPTED)
2451 		return 0;
2452 
2453 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2454 		if (unlikely(!ieee80211_has_protected(fc) &&
2455 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2456 			     rx->key)) {
2457 			if (ieee80211_is_deauth(fc) ||
2458 			    ieee80211_is_disassoc(fc))
2459 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2460 							     rx->skb->data,
2461 							     rx->skb->len);
2462 			return -EACCES;
2463 		}
2464 		/* BIP does not use Protected field, so need to check MMIE */
2465 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2466 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2467 			if (ieee80211_is_deauth(fc) ||
2468 			    ieee80211_is_disassoc(fc))
2469 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2470 							     rx->skb->data,
2471 							     rx->skb->len);
2472 			return -EACCES;
2473 		}
2474 		if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2475 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2476 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2477 						     rx->skb->data,
2478 						     rx->skb->len);
2479 			return -EACCES;
2480 		}
2481 		/*
2482 		 * When using MFP, Action frames are not allowed prior to
2483 		 * having configured keys.
2484 		 */
2485 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2486 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2487 			return -EACCES;
2488 	}
2489 
2490 	return 0;
2491 }
2492 
2493 static int
2494 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2495 {
2496 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2497 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2498 	bool check_port_control = false;
2499 	struct ethhdr *ehdr;
2500 	int ret;
2501 
2502 	*port_control = false;
2503 	if (ieee80211_has_a4(hdr->frame_control) &&
2504 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2505 		return -1;
2506 
2507 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2508 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2509 
2510 		if (!sdata->u.mgd.use_4addr)
2511 			return -1;
2512 		else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2513 			check_port_control = true;
2514 	}
2515 
2516 	if (is_multicast_ether_addr(hdr->addr1) &&
2517 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2518 		return -1;
2519 
2520 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2521 	if (ret < 0)
2522 		return ret;
2523 
2524 	ehdr = (struct ethhdr *) rx->skb->data;
2525 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2526 		*port_control = true;
2527 	else if (check_port_control)
2528 		return -1;
2529 
2530 	return 0;
2531 }
2532 
2533 /*
2534  * requires that rx->skb is a frame with ethernet header
2535  */
2536 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2537 {
2538 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2539 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2540 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2541 
2542 	/*
2543 	 * Allow EAPOL frames to us/the PAE group address regardless of
2544 	 * whether the frame was encrypted or not, and always disallow
2545 	 * all other destination addresses for them.
2546 	 */
2547 	if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
2548 		return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2549 		       ether_addr_equal(ehdr->h_dest, pae_group_addr);
2550 
2551 	if (ieee80211_802_1x_port_control(rx) ||
2552 	    ieee80211_drop_unencrypted(rx, fc))
2553 		return false;
2554 
2555 	return true;
2556 }
2557 
2558 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2559 						 struct ieee80211_rx_data *rx)
2560 {
2561 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2562 	struct net_device *dev = sdata->dev;
2563 
2564 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2565 		     (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2566 		      !sdata->control_port_no_preauth)) &&
2567 		     sdata->control_port_over_nl80211)) {
2568 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2569 		bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2570 
2571 		cfg80211_rx_control_port(dev, skb, noencrypt);
2572 		dev_kfree_skb(skb);
2573 	} else {
2574 		struct ethhdr *ehdr = (void *)skb_mac_header(skb);
2575 
2576 		memset(skb->cb, 0, sizeof(skb->cb));
2577 
2578 		/*
2579 		 * 802.1X over 802.11 requires that the authenticator address
2580 		 * be used for EAPOL frames. However, 802.1X allows the use of
2581 		 * the PAE group address instead. If the interface is part of
2582 		 * a bridge and we pass the frame with the PAE group address,
2583 		 * then the bridge will forward it to the network (even if the
2584 		 * client was not associated yet), which isn't supposed to
2585 		 * happen.
2586 		 * To avoid that, rewrite the destination address to our own
2587 		 * address, so that the authenticator (e.g. hostapd) will see
2588 		 * the frame, but bridge won't forward it anywhere else. Note
2589 		 * that due to earlier filtering, the only other address can
2590 		 * be the PAE group address.
2591 		 */
2592 		if (unlikely(skb->protocol == sdata->control_port_protocol &&
2593 			     !ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
2594 			ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
2595 
2596 		/* deliver to local stack */
2597 		if (rx->list)
2598 			list_add_tail(&skb->list, rx->list);
2599 		else
2600 			netif_receive_skb(skb);
2601 	}
2602 }
2603 
2604 /*
2605  * requires that rx->skb is a frame with ethernet header
2606  */
2607 static void
2608 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2609 {
2610 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2611 	struct net_device *dev = sdata->dev;
2612 	struct sk_buff *skb, *xmit_skb;
2613 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2614 	struct sta_info *dsta;
2615 
2616 	skb = rx->skb;
2617 	xmit_skb = NULL;
2618 
2619 	dev_sw_netstats_rx_add(dev, skb->len);
2620 
2621 	if (rx->sta) {
2622 		/* The seqno index has the same property as needed
2623 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2624 		 * for non-QoS-data frames. Here we know it's a data
2625 		 * frame, so count MSDUs.
2626 		 */
2627 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2628 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2629 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2630 	}
2631 
2632 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2633 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2634 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2635 	    ehdr->h_proto != rx->sdata->control_port_protocol &&
2636 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2637 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2638 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2639 			/*
2640 			 * send multicast frames both to higher layers in
2641 			 * local net stack and back to the wireless medium
2642 			 */
2643 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2644 			if (!xmit_skb)
2645 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2646 						    dev->name);
2647 		} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2648 			   !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2649 			dsta = sta_info_get(sdata, ehdr->h_dest);
2650 			if (dsta) {
2651 				/*
2652 				 * The destination station is associated to
2653 				 * this AP (in this VLAN), so send the frame
2654 				 * directly to it and do not pass it to local
2655 				 * net stack.
2656 				 */
2657 				xmit_skb = skb;
2658 				skb = NULL;
2659 			}
2660 		}
2661 	}
2662 
2663 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2664 	if (skb) {
2665 		/* 'align' will only take the values 0 or 2 here since all
2666 		 * frames are required to be aligned to 2-byte boundaries
2667 		 * when being passed to mac80211; the code here works just
2668 		 * as well if that isn't true, but mac80211 assumes it can
2669 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2670 		 */
2671 		int align;
2672 
2673 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2674 		if (align) {
2675 			if (WARN_ON(skb_headroom(skb) < 3)) {
2676 				dev_kfree_skb(skb);
2677 				skb = NULL;
2678 			} else {
2679 				u8 *data = skb->data;
2680 				size_t len = skb_headlen(skb);
2681 				skb->data -= align;
2682 				memmove(skb->data, data, len);
2683 				skb_set_tail_pointer(skb, len);
2684 			}
2685 		}
2686 	}
2687 #endif
2688 
2689 	if (skb) {
2690 		skb->protocol = eth_type_trans(skb, dev);
2691 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2692 	}
2693 
2694 	if (xmit_skb) {
2695 		/*
2696 		 * Send to wireless media and increase priority by 256 to
2697 		 * keep the received priority instead of reclassifying
2698 		 * the frame (see cfg80211_classify8021d).
2699 		 */
2700 		xmit_skb->priority += 256;
2701 		xmit_skb->protocol = htons(ETH_P_802_3);
2702 		skb_reset_network_header(xmit_skb);
2703 		skb_reset_mac_header(xmit_skb);
2704 		dev_queue_xmit(xmit_skb);
2705 	}
2706 }
2707 
2708 static ieee80211_rx_result debug_noinline
2709 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2710 {
2711 	struct net_device *dev = rx->sdata->dev;
2712 	struct sk_buff *skb = rx->skb;
2713 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2714 	__le16 fc = hdr->frame_control;
2715 	struct sk_buff_head frame_list;
2716 	struct ethhdr ethhdr;
2717 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2718 
2719 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2720 		check_da = NULL;
2721 		check_sa = NULL;
2722 	} else switch (rx->sdata->vif.type) {
2723 		case NL80211_IFTYPE_AP:
2724 		case NL80211_IFTYPE_AP_VLAN:
2725 			check_da = NULL;
2726 			break;
2727 		case NL80211_IFTYPE_STATION:
2728 			if (!rx->sta ||
2729 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2730 				check_sa = NULL;
2731 			break;
2732 		case NL80211_IFTYPE_MESH_POINT:
2733 			check_sa = NULL;
2734 			break;
2735 		default:
2736 			break;
2737 	}
2738 
2739 	skb->dev = dev;
2740 	__skb_queue_head_init(&frame_list);
2741 
2742 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2743 					  rx->sdata->vif.addr,
2744 					  rx->sdata->vif.type,
2745 					  data_offset, true))
2746 		return RX_DROP_UNUSABLE;
2747 
2748 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2749 				 rx->sdata->vif.type,
2750 				 rx->local->hw.extra_tx_headroom,
2751 				 check_da, check_sa);
2752 
2753 	while (!skb_queue_empty(&frame_list)) {
2754 		rx->skb = __skb_dequeue(&frame_list);
2755 
2756 		if (!ieee80211_frame_allowed(rx, fc)) {
2757 			dev_kfree_skb(rx->skb);
2758 			continue;
2759 		}
2760 
2761 		ieee80211_deliver_skb(rx);
2762 	}
2763 
2764 	return RX_QUEUED;
2765 }
2766 
2767 static ieee80211_rx_result debug_noinline
2768 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2769 {
2770 	struct sk_buff *skb = rx->skb;
2771 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2772 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2773 	__le16 fc = hdr->frame_control;
2774 
2775 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2776 		return RX_CONTINUE;
2777 
2778 	if (unlikely(!ieee80211_is_data(fc)))
2779 		return RX_CONTINUE;
2780 
2781 	if (unlikely(!ieee80211_is_data_present(fc)))
2782 		return RX_DROP_MONITOR;
2783 
2784 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2785 		switch (rx->sdata->vif.type) {
2786 		case NL80211_IFTYPE_AP_VLAN:
2787 			if (!rx->sdata->u.vlan.sta)
2788 				return RX_DROP_UNUSABLE;
2789 			break;
2790 		case NL80211_IFTYPE_STATION:
2791 			if (!rx->sdata->u.mgd.use_4addr)
2792 				return RX_DROP_UNUSABLE;
2793 			break;
2794 		default:
2795 			return RX_DROP_UNUSABLE;
2796 		}
2797 	}
2798 
2799 	if (is_multicast_ether_addr(hdr->addr1))
2800 		return RX_DROP_UNUSABLE;
2801 
2802 	if (rx->key) {
2803 		/*
2804 		 * We should not receive A-MSDUs on pre-HT connections,
2805 		 * and HT connections cannot use old ciphers. Thus drop
2806 		 * them, as in those cases we couldn't even have SPP
2807 		 * A-MSDUs or such.
2808 		 */
2809 		switch (rx->key->conf.cipher) {
2810 		case WLAN_CIPHER_SUITE_WEP40:
2811 		case WLAN_CIPHER_SUITE_WEP104:
2812 		case WLAN_CIPHER_SUITE_TKIP:
2813 			return RX_DROP_UNUSABLE;
2814 		default:
2815 			break;
2816 		}
2817 	}
2818 
2819 	return __ieee80211_rx_h_amsdu(rx, 0);
2820 }
2821 
2822 #ifdef CONFIG_MAC80211_MESH
2823 static ieee80211_rx_result
2824 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2825 {
2826 	struct ieee80211_hdr *fwd_hdr, *hdr;
2827 	struct ieee80211_tx_info *info;
2828 	struct ieee80211s_hdr *mesh_hdr;
2829 	struct sk_buff *skb = rx->skb, *fwd_skb;
2830 	struct ieee80211_local *local = rx->local;
2831 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2832 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2833 	u16 ac, q, hdrlen;
2834 	int tailroom = 0;
2835 
2836 	hdr = (struct ieee80211_hdr *) skb->data;
2837 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2838 
2839 	/* make sure fixed part of mesh header is there, also checks skb len */
2840 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2841 		return RX_DROP_MONITOR;
2842 
2843 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2844 
2845 	/* make sure full mesh header is there, also checks skb len */
2846 	if (!pskb_may_pull(rx->skb,
2847 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2848 		return RX_DROP_MONITOR;
2849 
2850 	/* reload pointers */
2851 	hdr = (struct ieee80211_hdr *) skb->data;
2852 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2853 
2854 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2855 		return RX_DROP_MONITOR;
2856 
2857 	/* frame is in RMC, don't forward */
2858 	if (ieee80211_is_data(hdr->frame_control) &&
2859 	    is_multicast_ether_addr(hdr->addr1) &&
2860 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2861 		return RX_DROP_MONITOR;
2862 
2863 	if (!ieee80211_is_data(hdr->frame_control))
2864 		return RX_CONTINUE;
2865 
2866 	if (!mesh_hdr->ttl)
2867 		return RX_DROP_MONITOR;
2868 
2869 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2870 		struct mesh_path *mppath;
2871 		char *proxied_addr;
2872 		char *mpp_addr;
2873 
2874 		if (is_multicast_ether_addr(hdr->addr1)) {
2875 			mpp_addr = hdr->addr3;
2876 			proxied_addr = mesh_hdr->eaddr1;
2877 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2878 			    MESH_FLAGS_AE_A5_A6) {
2879 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2880 			mpp_addr = hdr->addr4;
2881 			proxied_addr = mesh_hdr->eaddr2;
2882 		} else {
2883 			return RX_DROP_MONITOR;
2884 		}
2885 
2886 		rcu_read_lock();
2887 		mppath = mpp_path_lookup(sdata, proxied_addr);
2888 		if (!mppath) {
2889 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2890 		} else {
2891 			spin_lock_bh(&mppath->state_lock);
2892 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2893 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2894 			mppath->exp_time = jiffies;
2895 			spin_unlock_bh(&mppath->state_lock);
2896 		}
2897 		rcu_read_unlock();
2898 	}
2899 
2900 	/* Frame has reached destination.  Don't forward */
2901 	if (!is_multicast_ether_addr(hdr->addr1) &&
2902 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2903 		return RX_CONTINUE;
2904 
2905 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2906 	q = sdata->vif.hw_queue[ac];
2907 	if (ieee80211_queue_stopped(&local->hw, q)) {
2908 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2909 		return RX_DROP_MONITOR;
2910 	}
2911 	skb_set_queue_mapping(skb, q);
2912 
2913 	if (!--mesh_hdr->ttl) {
2914 		if (!is_multicast_ether_addr(hdr->addr1))
2915 			IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2916 						     dropped_frames_ttl);
2917 		goto out;
2918 	}
2919 
2920 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2921 		goto out;
2922 
2923 	if (sdata->crypto_tx_tailroom_needed_cnt)
2924 		tailroom = IEEE80211_ENCRYPT_TAILROOM;
2925 
2926 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2927 				       sdata->encrypt_headroom,
2928 				  tailroom, GFP_ATOMIC);
2929 	if (!fwd_skb)
2930 		goto out;
2931 
2932 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2933 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2934 	info = IEEE80211_SKB_CB(fwd_skb);
2935 	memset(info, 0, sizeof(*info));
2936 	info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2937 	info->control.vif = &rx->sdata->vif;
2938 	info->control.jiffies = jiffies;
2939 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2940 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2941 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2942 		/* update power mode indication when forwarding */
2943 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2944 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2945 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2946 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2947 	} else {
2948 		/* unable to resolve next hop */
2949 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2950 				   fwd_hdr->addr3, 0,
2951 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2952 				   fwd_hdr->addr2);
2953 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2954 		kfree_skb(fwd_skb);
2955 		return RX_DROP_MONITOR;
2956 	}
2957 
2958 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2959 	ieee80211_add_pending_skb(local, fwd_skb);
2960  out:
2961 	if (is_multicast_ether_addr(hdr->addr1))
2962 		return RX_CONTINUE;
2963 	return RX_DROP_MONITOR;
2964 }
2965 #endif
2966 
2967 static ieee80211_rx_result debug_noinline
2968 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2969 {
2970 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2971 	struct ieee80211_local *local = rx->local;
2972 	struct net_device *dev = sdata->dev;
2973 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2974 	__le16 fc = hdr->frame_control;
2975 	bool port_control;
2976 	int err;
2977 
2978 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2979 		return RX_CONTINUE;
2980 
2981 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2982 		return RX_DROP_MONITOR;
2983 
2984 	/*
2985 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2986 	 * also drop the frame to cooked monitor interfaces.
2987 	 */
2988 	if (ieee80211_has_a4(hdr->frame_control) &&
2989 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2990 		if (rx->sta &&
2991 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2992 			cfg80211_rx_unexpected_4addr_frame(
2993 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2994 		return RX_DROP_MONITOR;
2995 	}
2996 
2997 	err = __ieee80211_data_to_8023(rx, &port_control);
2998 	if (unlikely(err))
2999 		return RX_DROP_UNUSABLE;
3000 
3001 	if (!ieee80211_frame_allowed(rx, fc))
3002 		return RX_DROP_MONITOR;
3003 
3004 	/* directly handle TDLS channel switch requests/responses */
3005 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
3006 						cpu_to_be16(ETH_P_TDLS))) {
3007 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
3008 
3009 		if (pskb_may_pull(rx->skb,
3010 				  offsetof(struct ieee80211_tdls_data, u)) &&
3011 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
3012 		    tf->category == WLAN_CATEGORY_TDLS &&
3013 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
3014 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
3015 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
3016 			schedule_work(&local->tdls_chsw_work);
3017 			if (rx->sta)
3018 				rx->sta->rx_stats.packets++;
3019 
3020 			return RX_QUEUED;
3021 		}
3022 	}
3023 
3024 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3025 	    unlikely(port_control) && sdata->bss) {
3026 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
3027 				     u.ap);
3028 		dev = sdata->dev;
3029 		rx->sdata = sdata;
3030 	}
3031 
3032 	rx->skb->dev = dev;
3033 
3034 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
3035 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
3036 	    !is_multicast_ether_addr(
3037 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
3038 	    (!local->scanning &&
3039 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
3040 		mod_timer(&local->dynamic_ps_timer, jiffies +
3041 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
3042 
3043 	ieee80211_deliver_skb(rx);
3044 
3045 	return RX_QUEUED;
3046 }
3047 
3048 static ieee80211_rx_result debug_noinline
3049 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
3050 {
3051 	struct sk_buff *skb = rx->skb;
3052 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
3053 	struct tid_ampdu_rx *tid_agg_rx;
3054 	u16 start_seq_num;
3055 	u16 tid;
3056 
3057 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
3058 		return RX_CONTINUE;
3059 
3060 	if (ieee80211_is_back_req(bar->frame_control)) {
3061 		struct {
3062 			__le16 control, start_seq_num;
3063 		} __packed bar_data;
3064 		struct ieee80211_event event = {
3065 			.type = BAR_RX_EVENT,
3066 		};
3067 
3068 		if (!rx->sta)
3069 			return RX_DROP_MONITOR;
3070 
3071 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
3072 				  &bar_data, sizeof(bar_data)))
3073 			return RX_DROP_MONITOR;
3074 
3075 		tid = le16_to_cpu(bar_data.control) >> 12;
3076 
3077 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3078 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3079 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3080 					     WLAN_BACK_RECIPIENT,
3081 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
3082 
3083 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3084 		if (!tid_agg_rx)
3085 			return RX_DROP_MONITOR;
3086 
3087 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3088 		event.u.ba.tid = tid;
3089 		event.u.ba.ssn = start_seq_num;
3090 		event.u.ba.sta = &rx->sta->sta;
3091 
3092 		/* reset session timer */
3093 		if (tid_agg_rx->timeout)
3094 			mod_timer(&tid_agg_rx->session_timer,
3095 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
3096 
3097 		spin_lock(&tid_agg_rx->reorder_lock);
3098 		/* release stored frames up to start of BAR */
3099 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3100 						 start_seq_num, frames);
3101 		spin_unlock(&tid_agg_rx->reorder_lock);
3102 
3103 		drv_event_callback(rx->local, rx->sdata, &event);
3104 
3105 		kfree_skb(skb);
3106 		return RX_QUEUED;
3107 	}
3108 
3109 	/*
3110 	 * After this point, we only want management frames,
3111 	 * so we can drop all remaining control frames to
3112 	 * cooked monitor interfaces.
3113 	 */
3114 	return RX_DROP_MONITOR;
3115 }
3116 
3117 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3118 					   struct ieee80211_mgmt *mgmt,
3119 					   size_t len)
3120 {
3121 	struct ieee80211_local *local = sdata->local;
3122 	struct sk_buff *skb;
3123 	struct ieee80211_mgmt *resp;
3124 
3125 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3126 		/* Not to own unicast address */
3127 		return;
3128 	}
3129 
3130 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3131 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3132 		/* Not from the current AP or not associated yet. */
3133 		return;
3134 	}
3135 
3136 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3137 		/* Too short SA Query request frame */
3138 		return;
3139 	}
3140 
3141 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3142 	if (skb == NULL)
3143 		return;
3144 
3145 	skb_reserve(skb, local->hw.extra_tx_headroom);
3146 	resp = skb_put_zero(skb, 24);
3147 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
3148 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3149 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3150 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3151 					  IEEE80211_STYPE_ACTION);
3152 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3153 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3154 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3155 	memcpy(resp->u.action.u.sa_query.trans_id,
3156 	       mgmt->u.action.u.sa_query.trans_id,
3157 	       WLAN_SA_QUERY_TR_ID_LEN);
3158 
3159 	ieee80211_tx_skb(sdata, skb);
3160 }
3161 
3162 static ieee80211_rx_result debug_noinline
3163 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3164 {
3165 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3166 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3167 
3168 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3169 		return RX_CONTINUE;
3170 
3171 	/*
3172 	 * From here on, look only at management frames.
3173 	 * Data and control frames are already handled,
3174 	 * and unknown (reserved) frames are useless.
3175 	 */
3176 	if (rx->skb->len < 24)
3177 		return RX_DROP_MONITOR;
3178 
3179 	if (!ieee80211_is_mgmt(mgmt->frame_control))
3180 		return RX_DROP_MONITOR;
3181 
3182 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3183 	    ieee80211_is_beacon(mgmt->frame_control) &&
3184 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3185 		int sig = 0;
3186 
3187 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3188 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3189 			sig = status->signal;
3190 
3191 		cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3192 						rx->skb->data, rx->skb->len,
3193 						ieee80211_rx_status_to_khz(status),
3194 						sig);
3195 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3196 	}
3197 
3198 	if (ieee80211_drop_unencrypted_mgmt(rx))
3199 		return RX_DROP_UNUSABLE;
3200 
3201 	return RX_CONTINUE;
3202 }
3203 
3204 static ieee80211_rx_result debug_noinline
3205 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3206 {
3207 	struct ieee80211_local *local = rx->local;
3208 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3209 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3210 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3211 	int len = rx->skb->len;
3212 
3213 	if (!ieee80211_is_action(mgmt->frame_control))
3214 		return RX_CONTINUE;
3215 
3216 	/* drop too small frames */
3217 	if (len < IEEE80211_MIN_ACTION_SIZE)
3218 		return RX_DROP_UNUSABLE;
3219 
3220 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3221 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3222 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3223 		return RX_DROP_UNUSABLE;
3224 
3225 	switch (mgmt->u.action.category) {
3226 	case WLAN_CATEGORY_HT:
3227 		/* reject HT action frames from stations not supporting HT */
3228 		if (!rx->sta->sta.ht_cap.ht_supported)
3229 			goto invalid;
3230 
3231 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3232 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3233 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3234 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3235 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3236 			break;
3237 
3238 		/* verify action & smps_control/chanwidth are present */
3239 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3240 			goto invalid;
3241 
3242 		switch (mgmt->u.action.u.ht_smps.action) {
3243 		case WLAN_HT_ACTION_SMPS: {
3244 			struct ieee80211_supported_band *sband;
3245 			enum ieee80211_smps_mode smps_mode;
3246 			struct sta_opmode_info sta_opmode = {};
3247 
3248 			if (sdata->vif.type != NL80211_IFTYPE_AP &&
3249 			    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3250 				goto handled;
3251 
3252 			/* convert to HT capability */
3253 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3254 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3255 				smps_mode = IEEE80211_SMPS_OFF;
3256 				break;
3257 			case WLAN_HT_SMPS_CONTROL_STATIC:
3258 				smps_mode = IEEE80211_SMPS_STATIC;
3259 				break;
3260 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3261 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3262 				break;
3263 			default:
3264 				goto invalid;
3265 			}
3266 
3267 			/* if no change do nothing */
3268 			if (rx->sta->sta.smps_mode == smps_mode)
3269 				goto handled;
3270 			rx->sta->sta.smps_mode = smps_mode;
3271 			sta_opmode.smps_mode =
3272 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3273 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3274 
3275 			sband = rx->local->hw.wiphy->bands[status->band];
3276 
3277 			rate_control_rate_update(local, sband, rx->sta,
3278 						 IEEE80211_RC_SMPS_CHANGED);
3279 			cfg80211_sta_opmode_change_notify(sdata->dev,
3280 							  rx->sta->addr,
3281 							  &sta_opmode,
3282 							  GFP_ATOMIC);
3283 			goto handled;
3284 		}
3285 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3286 			struct ieee80211_supported_band *sband;
3287 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3288 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3289 			struct sta_opmode_info sta_opmode = {};
3290 
3291 			/* If it doesn't support 40 MHz it can't change ... */
3292 			if (!(rx->sta->sta.ht_cap.cap &
3293 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3294 				goto handled;
3295 
3296 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3297 				max_bw = IEEE80211_STA_RX_BW_20;
3298 			else
3299 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3300 
3301 			/* set cur_max_bandwidth and recalc sta bw */
3302 			rx->sta->cur_max_bandwidth = max_bw;
3303 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3304 
3305 			if (rx->sta->sta.bandwidth == new_bw)
3306 				goto handled;
3307 
3308 			rx->sta->sta.bandwidth = new_bw;
3309 			sband = rx->local->hw.wiphy->bands[status->band];
3310 			sta_opmode.bw =
3311 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3312 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3313 
3314 			rate_control_rate_update(local, sband, rx->sta,
3315 						 IEEE80211_RC_BW_CHANGED);
3316 			cfg80211_sta_opmode_change_notify(sdata->dev,
3317 							  rx->sta->addr,
3318 							  &sta_opmode,
3319 							  GFP_ATOMIC);
3320 			goto handled;
3321 		}
3322 		default:
3323 			goto invalid;
3324 		}
3325 
3326 		break;
3327 	case WLAN_CATEGORY_PUBLIC:
3328 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3329 			goto invalid;
3330 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3331 			break;
3332 		if (!rx->sta)
3333 			break;
3334 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3335 			break;
3336 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3337 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3338 			break;
3339 		if (len < offsetof(struct ieee80211_mgmt,
3340 				   u.action.u.ext_chan_switch.variable))
3341 			goto invalid;
3342 		goto queue;
3343 	case WLAN_CATEGORY_VHT:
3344 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3345 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3346 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3347 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3348 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3349 			break;
3350 
3351 		/* verify action code is present */
3352 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3353 			goto invalid;
3354 
3355 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3356 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3357 			/* verify opmode is present */
3358 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3359 				goto invalid;
3360 			goto queue;
3361 		}
3362 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3363 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3364 				goto invalid;
3365 			goto queue;
3366 		}
3367 		default:
3368 			break;
3369 		}
3370 		break;
3371 	case WLAN_CATEGORY_BACK:
3372 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3373 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3374 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3375 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3376 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3377 			break;
3378 
3379 		/* verify action_code is present */
3380 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3381 			break;
3382 
3383 		switch (mgmt->u.action.u.addba_req.action_code) {
3384 		case WLAN_ACTION_ADDBA_REQ:
3385 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3386 				   sizeof(mgmt->u.action.u.addba_req)))
3387 				goto invalid;
3388 			break;
3389 		case WLAN_ACTION_ADDBA_RESP:
3390 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3391 				   sizeof(mgmt->u.action.u.addba_resp)))
3392 				goto invalid;
3393 			break;
3394 		case WLAN_ACTION_DELBA:
3395 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3396 				   sizeof(mgmt->u.action.u.delba)))
3397 				goto invalid;
3398 			break;
3399 		default:
3400 			goto invalid;
3401 		}
3402 
3403 		goto queue;
3404 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3405 		/* verify action_code is present */
3406 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3407 			break;
3408 
3409 		switch (mgmt->u.action.u.measurement.action_code) {
3410 		case WLAN_ACTION_SPCT_MSR_REQ:
3411 			if (status->band != NL80211_BAND_5GHZ)
3412 				break;
3413 
3414 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3415 				   sizeof(mgmt->u.action.u.measurement)))
3416 				break;
3417 
3418 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3419 				break;
3420 
3421 			ieee80211_process_measurement_req(sdata, mgmt, len);
3422 			goto handled;
3423 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3424 			u8 *bssid;
3425 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3426 				   sizeof(mgmt->u.action.u.chan_switch)))
3427 				break;
3428 
3429 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3430 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3431 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3432 				break;
3433 
3434 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3435 				bssid = sdata->u.mgd.bssid;
3436 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3437 				bssid = sdata->u.ibss.bssid;
3438 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3439 				bssid = mgmt->sa;
3440 			else
3441 				break;
3442 
3443 			if (!ether_addr_equal(mgmt->bssid, bssid))
3444 				break;
3445 
3446 			goto queue;
3447 			}
3448 		}
3449 		break;
3450 	case WLAN_CATEGORY_SELF_PROTECTED:
3451 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3452 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3453 			break;
3454 
3455 		switch (mgmt->u.action.u.self_prot.action_code) {
3456 		case WLAN_SP_MESH_PEERING_OPEN:
3457 		case WLAN_SP_MESH_PEERING_CLOSE:
3458 		case WLAN_SP_MESH_PEERING_CONFIRM:
3459 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3460 				goto invalid;
3461 			if (sdata->u.mesh.user_mpm)
3462 				/* userspace handles this frame */
3463 				break;
3464 			goto queue;
3465 		case WLAN_SP_MGK_INFORM:
3466 		case WLAN_SP_MGK_ACK:
3467 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3468 				goto invalid;
3469 			break;
3470 		}
3471 		break;
3472 	case WLAN_CATEGORY_MESH_ACTION:
3473 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3474 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3475 			break;
3476 
3477 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3478 			break;
3479 		if (mesh_action_is_path_sel(mgmt) &&
3480 		    !mesh_path_sel_is_hwmp(sdata))
3481 			break;
3482 		goto queue;
3483 	}
3484 
3485 	return RX_CONTINUE;
3486 
3487  invalid:
3488 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3489 	/* will return in the next handlers */
3490 	return RX_CONTINUE;
3491 
3492  handled:
3493 	if (rx->sta)
3494 		rx->sta->rx_stats.packets++;
3495 	dev_kfree_skb(rx->skb);
3496 	return RX_QUEUED;
3497 
3498  queue:
3499 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3500 	ieee80211_queue_work(&local->hw, &sdata->work);
3501 	if (rx->sta)
3502 		rx->sta->rx_stats.packets++;
3503 	return RX_QUEUED;
3504 }
3505 
3506 static ieee80211_rx_result debug_noinline
3507 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3508 {
3509 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3510 	int sig = 0;
3511 
3512 	/* skip known-bad action frames and return them in the next handler */
3513 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3514 		return RX_CONTINUE;
3515 
3516 	/*
3517 	 * Getting here means the kernel doesn't know how to handle
3518 	 * it, but maybe userspace does ... include returned frames
3519 	 * so userspace can register for those to know whether ones
3520 	 * it transmitted were processed or returned.
3521 	 */
3522 
3523 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3524 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3525 		sig = status->signal;
3526 
3527 	if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3528 				 ieee80211_rx_status_to_khz(status), sig,
3529 				 rx->skb->data, rx->skb->len, 0)) {
3530 		if (rx->sta)
3531 			rx->sta->rx_stats.packets++;
3532 		dev_kfree_skb(rx->skb);
3533 		return RX_QUEUED;
3534 	}
3535 
3536 	return RX_CONTINUE;
3537 }
3538 
3539 static ieee80211_rx_result debug_noinline
3540 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3541 {
3542 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3543 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3544 	int len = rx->skb->len;
3545 
3546 	if (!ieee80211_is_action(mgmt->frame_control))
3547 		return RX_CONTINUE;
3548 
3549 	switch (mgmt->u.action.category) {
3550 	case WLAN_CATEGORY_SA_QUERY:
3551 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3552 			   sizeof(mgmt->u.action.u.sa_query)))
3553 			break;
3554 
3555 		switch (mgmt->u.action.u.sa_query.action) {
3556 		case WLAN_ACTION_SA_QUERY_REQUEST:
3557 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3558 				break;
3559 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3560 			goto handled;
3561 		}
3562 		break;
3563 	}
3564 
3565 	return RX_CONTINUE;
3566 
3567  handled:
3568 	if (rx->sta)
3569 		rx->sta->rx_stats.packets++;
3570 	dev_kfree_skb(rx->skb);
3571 	return RX_QUEUED;
3572 }
3573 
3574 static ieee80211_rx_result debug_noinline
3575 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3576 {
3577 	struct ieee80211_local *local = rx->local;
3578 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3579 	struct sk_buff *nskb;
3580 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3581 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3582 
3583 	if (!ieee80211_is_action(mgmt->frame_control))
3584 		return RX_CONTINUE;
3585 
3586 	/*
3587 	 * For AP mode, hostapd is responsible for handling any action
3588 	 * frames that we didn't handle, including returning unknown
3589 	 * ones. For all other modes we will return them to the sender,
3590 	 * setting the 0x80 bit in the action category, as required by
3591 	 * 802.11-2012 9.24.4.
3592 	 * Newer versions of hostapd shall also use the management frame
3593 	 * registration mechanisms, but older ones still use cooked
3594 	 * monitor interfaces so push all frames there.
3595 	 */
3596 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3597 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3598 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3599 		return RX_DROP_MONITOR;
3600 
3601 	if (is_multicast_ether_addr(mgmt->da))
3602 		return RX_DROP_MONITOR;
3603 
3604 	/* do not return rejected action frames */
3605 	if (mgmt->u.action.category & 0x80)
3606 		return RX_DROP_UNUSABLE;
3607 
3608 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3609 			       GFP_ATOMIC);
3610 	if (nskb) {
3611 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3612 
3613 		nmgmt->u.action.category |= 0x80;
3614 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3615 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3616 
3617 		memset(nskb->cb, 0, sizeof(nskb->cb));
3618 
3619 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3620 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3621 
3622 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3623 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3624 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3625 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3626 				info->hw_queue =
3627 					local->hw.offchannel_tx_hw_queue;
3628 		}
3629 
3630 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3631 					    status->band);
3632 	}
3633 	dev_kfree_skb(rx->skb);
3634 	return RX_QUEUED;
3635 }
3636 
3637 static ieee80211_rx_result debug_noinline
3638 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3639 {
3640 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3641 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3642 
3643 	if (!ieee80211_is_ext(hdr->frame_control))
3644 		return RX_CONTINUE;
3645 
3646 	if (sdata->vif.type != NL80211_IFTYPE_STATION)
3647 		return RX_DROP_MONITOR;
3648 
3649 	/* for now only beacons are ext, so queue them */
3650 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3651 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3652 	if (rx->sta)
3653 		rx->sta->rx_stats.packets++;
3654 
3655 	return RX_QUEUED;
3656 }
3657 
3658 static ieee80211_rx_result debug_noinline
3659 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3660 {
3661 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3662 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3663 	__le16 stype;
3664 
3665 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3666 
3667 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3668 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3669 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3670 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3671 		return RX_DROP_MONITOR;
3672 
3673 	switch (stype) {
3674 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3675 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3676 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3677 		/* process for all: mesh, mlme, ibss */
3678 		break;
3679 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3680 		if (is_multicast_ether_addr(mgmt->da) &&
3681 		    !is_broadcast_ether_addr(mgmt->da))
3682 			return RX_DROP_MONITOR;
3683 
3684 		/* process only for station/IBSS */
3685 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3686 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3687 			return RX_DROP_MONITOR;
3688 		break;
3689 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3690 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3691 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3692 		if (is_multicast_ether_addr(mgmt->da) &&
3693 		    !is_broadcast_ether_addr(mgmt->da))
3694 			return RX_DROP_MONITOR;
3695 
3696 		/* process only for station */
3697 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3698 			return RX_DROP_MONITOR;
3699 		break;
3700 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3701 		/* process only for ibss and mesh */
3702 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3703 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3704 			return RX_DROP_MONITOR;
3705 		break;
3706 	default:
3707 		return RX_DROP_MONITOR;
3708 	}
3709 
3710 	/* queue up frame and kick off work to process it */
3711 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3712 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3713 	if (rx->sta)
3714 		rx->sta->rx_stats.packets++;
3715 
3716 	return RX_QUEUED;
3717 }
3718 
3719 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3720 					struct ieee80211_rate *rate)
3721 {
3722 	struct ieee80211_sub_if_data *sdata;
3723 	struct ieee80211_local *local = rx->local;
3724 	struct sk_buff *skb = rx->skb, *skb2;
3725 	struct net_device *prev_dev = NULL;
3726 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3727 	int needed_headroom;
3728 
3729 	/*
3730 	 * If cooked monitor has been processed already, then
3731 	 * don't do it again. If not, set the flag.
3732 	 */
3733 	if (rx->flags & IEEE80211_RX_CMNTR)
3734 		goto out_free_skb;
3735 	rx->flags |= IEEE80211_RX_CMNTR;
3736 
3737 	/* If there are no cooked monitor interfaces, just free the SKB */
3738 	if (!local->cooked_mntrs)
3739 		goto out_free_skb;
3740 
3741 	/* vendor data is long removed here */
3742 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3743 	/* room for the radiotap header based on driver features */
3744 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3745 
3746 	if (skb_headroom(skb) < needed_headroom &&
3747 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3748 		goto out_free_skb;
3749 
3750 	/* prepend radiotap information */
3751 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3752 					 false);
3753 
3754 	skb_reset_mac_header(skb);
3755 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3756 	skb->pkt_type = PACKET_OTHERHOST;
3757 	skb->protocol = htons(ETH_P_802_2);
3758 
3759 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3760 		if (!ieee80211_sdata_running(sdata))
3761 			continue;
3762 
3763 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3764 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3765 			continue;
3766 
3767 		if (prev_dev) {
3768 			skb2 = skb_clone(skb, GFP_ATOMIC);
3769 			if (skb2) {
3770 				skb2->dev = prev_dev;
3771 				netif_receive_skb(skb2);
3772 			}
3773 		}
3774 
3775 		prev_dev = sdata->dev;
3776 		dev_sw_netstats_rx_add(sdata->dev, skb->len);
3777 	}
3778 
3779 	if (prev_dev) {
3780 		skb->dev = prev_dev;
3781 		netif_receive_skb(skb);
3782 		return;
3783 	}
3784 
3785  out_free_skb:
3786 	dev_kfree_skb(skb);
3787 }
3788 
3789 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3790 					 ieee80211_rx_result res)
3791 {
3792 	switch (res) {
3793 	case RX_DROP_MONITOR:
3794 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3795 		if (rx->sta)
3796 			rx->sta->rx_stats.dropped++;
3797 		fallthrough;
3798 	case RX_CONTINUE: {
3799 		struct ieee80211_rate *rate = NULL;
3800 		struct ieee80211_supported_band *sband;
3801 		struct ieee80211_rx_status *status;
3802 
3803 		status = IEEE80211_SKB_RXCB((rx->skb));
3804 
3805 		sband = rx->local->hw.wiphy->bands[status->band];
3806 		if (status->encoding == RX_ENC_LEGACY)
3807 			rate = &sband->bitrates[status->rate_idx];
3808 
3809 		ieee80211_rx_cooked_monitor(rx, rate);
3810 		break;
3811 		}
3812 	case RX_DROP_UNUSABLE:
3813 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3814 		if (rx->sta)
3815 			rx->sta->rx_stats.dropped++;
3816 		dev_kfree_skb(rx->skb);
3817 		break;
3818 	case RX_QUEUED:
3819 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3820 		break;
3821 	}
3822 }
3823 
3824 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3825 				  struct sk_buff_head *frames)
3826 {
3827 	ieee80211_rx_result res = RX_DROP_MONITOR;
3828 	struct sk_buff *skb;
3829 
3830 #define CALL_RXH(rxh)			\
3831 	do {				\
3832 		res = rxh(rx);		\
3833 		if (res != RX_CONTINUE)	\
3834 			goto rxh_next;  \
3835 	} while (0)
3836 
3837 	/* Lock here to avoid hitting all of the data used in the RX
3838 	 * path (e.g. key data, station data, ...) concurrently when
3839 	 * a frame is released from the reorder buffer due to timeout
3840 	 * from the timer, potentially concurrently with RX from the
3841 	 * driver.
3842 	 */
3843 	spin_lock_bh(&rx->local->rx_path_lock);
3844 
3845 	while ((skb = __skb_dequeue(frames))) {
3846 		/*
3847 		 * all the other fields are valid across frames
3848 		 * that belong to an aMPDU since they are on the
3849 		 * same TID from the same station
3850 		 */
3851 		rx->skb = skb;
3852 
3853 		CALL_RXH(ieee80211_rx_h_check_more_data);
3854 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3855 		CALL_RXH(ieee80211_rx_h_sta_process);
3856 		CALL_RXH(ieee80211_rx_h_decrypt);
3857 		CALL_RXH(ieee80211_rx_h_defragment);
3858 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3859 		/* must be after MMIC verify so header is counted in MPDU mic */
3860 #ifdef CONFIG_MAC80211_MESH
3861 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3862 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3863 #endif
3864 		CALL_RXH(ieee80211_rx_h_amsdu);
3865 		CALL_RXH(ieee80211_rx_h_data);
3866 
3867 		/* special treatment -- needs the queue */
3868 		res = ieee80211_rx_h_ctrl(rx, frames);
3869 		if (res != RX_CONTINUE)
3870 			goto rxh_next;
3871 
3872 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3873 		CALL_RXH(ieee80211_rx_h_action);
3874 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3875 		CALL_RXH(ieee80211_rx_h_action_post_userspace);
3876 		CALL_RXH(ieee80211_rx_h_action_return);
3877 		CALL_RXH(ieee80211_rx_h_ext);
3878 		CALL_RXH(ieee80211_rx_h_mgmt);
3879 
3880  rxh_next:
3881 		ieee80211_rx_handlers_result(rx, res);
3882 
3883 #undef CALL_RXH
3884 	}
3885 
3886 	spin_unlock_bh(&rx->local->rx_path_lock);
3887 }
3888 
3889 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3890 {
3891 	struct sk_buff_head reorder_release;
3892 	ieee80211_rx_result res = RX_DROP_MONITOR;
3893 
3894 	__skb_queue_head_init(&reorder_release);
3895 
3896 #define CALL_RXH(rxh)			\
3897 	do {				\
3898 		res = rxh(rx);		\
3899 		if (res != RX_CONTINUE)	\
3900 			goto rxh_next;  \
3901 	} while (0)
3902 
3903 	CALL_RXH(ieee80211_rx_h_check_dup);
3904 	CALL_RXH(ieee80211_rx_h_check);
3905 
3906 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3907 
3908 	ieee80211_rx_handlers(rx, &reorder_release);
3909 	return;
3910 
3911  rxh_next:
3912 	ieee80211_rx_handlers_result(rx, res);
3913 
3914 #undef CALL_RXH
3915 }
3916 
3917 /*
3918  * This function makes calls into the RX path, therefore
3919  * it has to be invoked under RCU read lock.
3920  */
3921 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3922 {
3923 	struct sk_buff_head frames;
3924 	struct ieee80211_rx_data rx = {
3925 		.sta = sta,
3926 		.sdata = sta->sdata,
3927 		.local = sta->local,
3928 		/* This is OK -- must be QoS data frame */
3929 		.security_idx = tid,
3930 		.seqno_idx = tid,
3931 	};
3932 	struct tid_ampdu_rx *tid_agg_rx;
3933 
3934 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3935 	if (!tid_agg_rx)
3936 		return;
3937 
3938 	__skb_queue_head_init(&frames);
3939 
3940 	spin_lock(&tid_agg_rx->reorder_lock);
3941 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3942 	spin_unlock(&tid_agg_rx->reorder_lock);
3943 
3944 	if (!skb_queue_empty(&frames)) {
3945 		struct ieee80211_event event = {
3946 			.type = BA_FRAME_TIMEOUT,
3947 			.u.ba.tid = tid,
3948 			.u.ba.sta = &sta->sta,
3949 		};
3950 		drv_event_callback(rx.local, rx.sdata, &event);
3951 	}
3952 
3953 	ieee80211_rx_handlers(&rx, &frames);
3954 }
3955 
3956 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3957 					  u16 ssn, u64 filtered,
3958 					  u16 received_mpdus)
3959 {
3960 	struct sta_info *sta;
3961 	struct tid_ampdu_rx *tid_agg_rx;
3962 	struct sk_buff_head frames;
3963 	struct ieee80211_rx_data rx = {
3964 		/* This is OK -- must be QoS data frame */
3965 		.security_idx = tid,
3966 		.seqno_idx = tid,
3967 	};
3968 	int i, diff;
3969 
3970 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3971 		return;
3972 
3973 	__skb_queue_head_init(&frames);
3974 
3975 	sta = container_of(pubsta, struct sta_info, sta);
3976 
3977 	rx.sta = sta;
3978 	rx.sdata = sta->sdata;
3979 	rx.local = sta->local;
3980 
3981 	rcu_read_lock();
3982 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3983 	if (!tid_agg_rx)
3984 		goto out;
3985 
3986 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3987 
3988 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3989 		int release;
3990 
3991 		/* release all frames in the reorder buffer */
3992 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3993 			   IEEE80211_SN_MODULO;
3994 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3995 						 release, &frames);
3996 		/* update ssn to match received ssn */
3997 		tid_agg_rx->head_seq_num = ssn;
3998 	} else {
3999 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
4000 						 &frames);
4001 	}
4002 
4003 	/* handle the case that received ssn is behind the mac ssn.
4004 	 * it can be tid_agg_rx->buf_size behind and still be valid */
4005 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
4006 	if (diff >= tid_agg_rx->buf_size) {
4007 		tid_agg_rx->reorder_buf_filtered = 0;
4008 		goto release;
4009 	}
4010 	filtered = filtered >> diff;
4011 	ssn += diff;
4012 
4013 	/* update bitmap */
4014 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
4015 		int index = (ssn + i) % tid_agg_rx->buf_size;
4016 
4017 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
4018 		if (filtered & BIT_ULL(i))
4019 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
4020 	}
4021 
4022 	/* now process also frames that the filter marking released */
4023 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4024 
4025 release:
4026 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
4027 
4028 	ieee80211_rx_handlers(&rx, &frames);
4029 
4030  out:
4031 	rcu_read_unlock();
4032 }
4033 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
4034 
4035 /* main receive path */
4036 
4037 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
4038 {
4039 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4040 	struct sk_buff *skb = rx->skb;
4041 	struct ieee80211_hdr *hdr = (void *)skb->data;
4042 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4043 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
4044 	bool multicast = is_multicast_ether_addr(hdr->addr1) ||
4045 			 ieee80211_is_s1g_beacon(hdr->frame_control);
4046 
4047 	switch (sdata->vif.type) {
4048 	case NL80211_IFTYPE_STATION:
4049 		if (!bssid && !sdata->u.mgd.use_4addr)
4050 			return false;
4051 		if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
4052 			return false;
4053 		if (multicast)
4054 			return true;
4055 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4056 	case NL80211_IFTYPE_ADHOC:
4057 		if (!bssid)
4058 			return false;
4059 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
4060 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
4061 			return false;
4062 		if (ieee80211_is_beacon(hdr->frame_control))
4063 			return true;
4064 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
4065 			return false;
4066 		if (!multicast &&
4067 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4068 			return false;
4069 		if (!rx->sta) {
4070 			int rate_idx;
4071 			if (status->encoding != RX_ENC_LEGACY)
4072 				rate_idx = 0; /* TODO: HT/VHT rates */
4073 			else
4074 				rate_idx = status->rate_idx;
4075 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4076 						 BIT(rate_idx));
4077 		}
4078 		return true;
4079 	case NL80211_IFTYPE_OCB:
4080 		if (!bssid)
4081 			return false;
4082 		if (!ieee80211_is_data_present(hdr->frame_control))
4083 			return false;
4084 		if (!is_broadcast_ether_addr(bssid))
4085 			return false;
4086 		if (!multicast &&
4087 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4088 			return false;
4089 		if (!rx->sta) {
4090 			int rate_idx;
4091 			if (status->encoding != RX_ENC_LEGACY)
4092 				rate_idx = 0; /* TODO: HT rates */
4093 			else
4094 				rate_idx = status->rate_idx;
4095 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4096 						BIT(rate_idx));
4097 		}
4098 		return true;
4099 	case NL80211_IFTYPE_MESH_POINT:
4100 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4101 			return false;
4102 		if (multicast)
4103 			return true;
4104 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4105 	case NL80211_IFTYPE_AP_VLAN:
4106 	case NL80211_IFTYPE_AP:
4107 		if (!bssid)
4108 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4109 
4110 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4111 			/*
4112 			 * Accept public action frames even when the
4113 			 * BSSID doesn't match, this is used for P2P
4114 			 * and location updates. Note that mac80211
4115 			 * itself never looks at these frames.
4116 			 */
4117 			if (!multicast &&
4118 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4119 				return false;
4120 			if (ieee80211_is_public_action(hdr, skb->len))
4121 				return true;
4122 			return ieee80211_is_beacon(hdr->frame_control);
4123 		}
4124 
4125 		if (!ieee80211_has_tods(hdr->frame_control)) {
4126 			/* ignore data frames to TDLS-peers */
4127 			if (ieee80211_is_data(hdr->frame_control))
4128 				return false;
4129 			/* ignore action frames to TDLS-peers */
4130 			if (ieee80211_is_action(hdr->frame_control) &&
4131 			    !is_broadcast_ether_addr(bssid) &&
4132 			    !ether_addr_equal(bssid, hdr->addr1))
4133 				return false;
4134 		}
4135 
4136 		/*
4137 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4138 		 * the BSSID - we've checked that already but may have accepted
4139 		 * the wildcard (ff:ff:ff:ff:ff:ff).
4140 		 *
4141 		 * It also says:
4142 		 *	The BSSID of the Data frame is determined as follows:
4143 		 *	a) If the STA is contained within an AP or is associated
4144 		 *	   with an AP, the BSSID is the address currently in use
4145 		 *	   by the STA contained in the AP.
4146 		 *
4147 		 * So we should not accept data frames with an address that's
4148 		 * multicast.
4149 		 *
4150 		 * Accepting it also opens a security problem because stations
4151 		 * could encrypt it with the GTK and inject traffic that way.
4152 		 */
4153 		if (ieee80211_is_data(hdr->frame_control) && multicast)
4154 			return false;
4155 
4156 		return true;
4157 	case NL80211_IFTYPE_P2P_DEVICE:
4158 		return ieee80211_is_public_action(hdr, skb->len) ||
4159 		       ieee80211_is_probe_req(hdr->frame_control) ||
4160 		       ieee80211_is_probe_resp(hdr->frame_control) ||
4161 		       ieee80211_is_beacon(hdr->frame_control);
4162 	case NL80211_IFTYPE_NAN:
4163 		/* Currently no frames on NAN interface are allowed */
4164 		return false;
4165 	default:
4166 		break;
4167 	}
4168 
4169 	WARN_ON_ONCE(1);
4170 	return false;
4171 }
4172 
4173 void ieee80211_check_fast_rx(struct sta_info *sta)
4174 {
4175 	struct ieee80211_sub_if_data *sdata = sta->sdata;
4176 	struct ieee80211_local *local = sdata->local;
4177 	struct ieee80211_key *key;
4178 	struct ieee80211_fast_rx fastrx = {
4179 		.dev = sdata->dev,
4180 		.vif_type = sdata->vif.type,
4181 		.control_port_protocol = sdata->control_port_protocol,
4182 	}, *old, *new = NULL;
4183 	bool set_offload = false;
4184 	bool assign = false;
4185 	bool offload;
4186 
4187 	/* use sparse to check that we don't return without updating */
4188 	__acquire(check_fast_rx);
4189 
4190 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4191 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4192 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4193 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4194 
4195 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4196 
4197 	/* fast-rx doesn't do reordering */
4198 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4199 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4200 		goto clear;
4201 
4202 	switch (sdata->vif.type) {
4203 	case NL80211_IFTYPE_STATION:
4204 		if (sta->sta.tdls) {
4205 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4206 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4207 			fastrx.expected_ds_bits = 0;
4208 		} else {
4209 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4210 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4211 			fastrx.expected_ds_bits =
4212 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4213 		}
4214 
4215 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4216 			fastrx.expected_ds_bits |=
4217 				cpu_to_le16(IEEE80211_FCTL_TODS);
4218 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4219 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4220 		}
4221 
4222 		if (!sdata->u.mgd.powersave)
4223 			break;
4224 
4225 		/* software powersave is a huge mess, avoid all of it */
4226 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4227 			goto clear;
4228 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4229 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4230 			goto clear;
4231 		break;
4232 	case NL80211_IFTYPE_AP_VLAN:
4233 	case NL80211_IFTYPE_AP:
4234 		/* parallel-rx requires this, at least with calls to
4235 		 * ieee80211_sta_ps_transition()
4236 		 */
4237 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4238 			goto clear;
4239 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4240 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4241 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4242 
4243 		fastrx.internal_forward =
4244 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4245 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4246 			 !sdata->u.vlan.sta);
4247 
4248 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4249 		    sdata->u.vlan.sta) {
4250 			fastrx.expected_ds_bits |=
4251 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4252 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4253 			fastrx.internal_forward = 0;
4254 		}
4255 
4256 		break;
4257 	default:
4258 		goto clear;
4259 	}
4260 
4261 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4262 		goto clear;
4263 
4264 	rcu_read_lock();
4265 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4266 	if (!key)
4267 		key = rcu_dereference(sdata->default_unicast_key);
4268 	if (key) {
4269 		switch (key->conf.cipher) {
4270 		case WLAN_CIPHER_SUITE_TKIP:
4271 			/* we don't want to deal with MMIC in fast-rx */
4272 			goto clear_rcu;
4273 		case WLAN_CIPHER_SUITE_CCMP:
4274 		case WLAN_CIPHER_SUITE_CCMP_256:
4275 		case WLAN_CIPHER_SUITE_GCMP:
4276 		case WLAN_CIPHER_SUITE_GCMP_256:
4277 			break;
4278 		default:
4279 			/* We also don't want to deal with
4280 			 * WEP or cipher scheme.
4281 			 */
4282 			goto clear_rcu;
4283 		}
4284 
4285 		fastrx.key = true;
4286 		fastrx.icv_len = key->conf.icv_len;
4287 	}
4288 
4289 	assign = true;
4290  clear_rcu:
4291 	rcu_read_unlock();
4292  clear:
4293 	__release(check_fast_rx);
4294 
4295 	if (assign)
4296 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4297 
4298 	offload = assign &&
4299 		  (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED);
4300 
4301 	if (offload)
4302 		set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4303 	else
4304 		set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4305 
4306 	if (set_offload)
4307 		drv_sta_set_decap_offload(local, sdata, &sta->sta, assign);
4308 
4309 	spin_lock_bh(&sta->lock);
4310 	old = rcu_dereference_protected(sta->fast_rx, true);
4311 	rcu_assign_pointer(sta->fast_rx, new);
4312 	spin_unlock_bh(&sta->lock);
4313 
4314 	if (old)
4315 		kfree_rcu(old, rcu_head);
4316 }
4317 
4318 void ieee80211_clear_fast_rx(struct sta_info *sta)
4319 {
4320 	struct ieee80211_fast_rx *old;
4321 
4322 	spin_lock_bh(&sta->lock);
4323 	old = rcu_dereference_protected(sta->fast_rx, true);
4324 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4325 	spin_unlock_bh(&sta->lock);
4326 
4327 	if (old)
4328 		kfree_rcu(old, rcu_head);
4329 }
4330 
4331 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4332 {
4333 	struct ieee80211_local *local = sdata->local;
4334 	struct sta_info *sta;
4335 
4336 	lockdep_assert_held(&local->sta_mtx);
4337 
4338 	list_for_each_entry(sta, &local->sta_list, list) {
4339 		if (sdata != sta->sdata &&
4340 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4341 			continue;
4342 		ieee80211_check_fast_rx(sta);
4343 	}
4344 }
4345 
4346 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4347 {
4348 	struct ieee80211_local *local = sdata->local;
4349 
4350 	mutex_lock(&local->sta_mtx);
4351 	__ieee80211_check_fast_rx_iface(sdata);
4352 	mutex_unlock(&local->sta_mtx);
4353 }
4354 
4355 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
4356 			      struct ieee80211_fast_rx *fast_rx,
4357 			      int orig_len)
4358 {
4359 	struct ieee80211_sta_rx_stats *stats;
4360 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
4361 	struct sta_info *sta = rx->sta;
4362 	struct sk_buff *skb = rx->skb;
4363 	void *sa = skb->data + ETH_ALEN;
4364 	void *da = skb->data;
4365 
4366 	stats = &sta->rx_stats;
4367 	if (fast_rx->uses_rss)
4368 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4369 
4370 	/* statistics part of ieee80211_rx_h_sta_process() */
4371 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4372 		stats->last_signal = status->signal;
4373 		if (!fast_rx->uses_rss)
4374 			ewma_signal_add(&sta->rx_stats_avg.signal,
4375 					-status->signal);
4376 	}
4377 
4378 	if (status->chains) {
4379 		int i;
4380 
4381 		stats->chains = status->chains;
4382 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4383 			int signal = status->chain_signal[i];
4384 
4385 			if (!(status->chains & BIT(i)))
4386 				continue;
4387 
4388 			stats->chain_signal_last[i] = signal;
4389 			if (!fast_rx->uses_rss)
4390 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4391 						-signal);
4392 		}
4393 	}
4394 	/* end of statistics */
4395 
4396 	stats->last_rx = jiffies;
4397 	stats->last_rate = sta_stats_encode_rate(status);
4398 
4399 	stats->fragments++;
4400 	stats->packets++;
4401 
4402 	skb->dev = fast_rx->dev;
4403 
4404 	dev_sw_netstats_rx_add(fast_rx->dev, skb->len);
4405 
4406 	/* The seqno index has the same property as needed
4407 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4408 	 * for non-QoS-data frames. Here we know it's a data
4409 	 * frame, so count MSDUs.
4410 	 */
4411 	u64_stats_update_begin(&stats->syncp);
4412 	stats->msdu[rx->seqno_idx]++;
4413 	stats->bytes += orig_len;
4414 	u64_stats_update_end(&stats->syncp);
4415 
4416 	if (fast_rx->internal_forward) {
4417 		struct sk_buff *xmit_skb = NULL;
4418 		if (is_multicast_ether_addr(da)) {
4419 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4420 		} else if (!ether_addr_equal(da, sa) &&
4421 			   sta_info_get(rx->sdata, da)) {
4422 			xmit_skb = skb;
4423 			skb = NULL;
4424 		}
4425 
4426 		if (xmit_skb) {
4427 			/*
4428 			 * Send to wireless media and increase priority by 256
4429 			 * to keep the received priority instead of
4430 			 * reclassifying the frame (see cfg80211_classify8021d).
4431 			 */
4432 			xmit_skb->priority += 256;
4433 			xmit_skb->protocol = htons(ETH_P_802_3);
4434 			skb_reset_network_header(xmit_skb);
4435 			skb_reset_mac_header(xmit_skb);
4436 			dev_queue_xmit(xmit_skb);
4437 		}
4438 
4439 		if (!skb)
4440 			return;
4441 	}
4442 
4443 	/* deliver to local stack */
4444 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4445 	memset(skb->cb, 0, sizeof(skb->cb));
4446 	if (rx->list)
4447 		list_add_tail(&skb->list, rx->list);
4448 	else
4449 		netif_receive_skb(skb);
4450 
4451 }
4452 
4453 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4454 				     struct ieee80211_fast_rx *fast_rx)
4455 {
4456 	struct sk_buff *skb = rx->skb;
4457 	struct ieee80211_hdr *hdr = (void *)skb->data;
4458 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4459 	struct sta_info *sta = rx->sta;
4460 	int orig_len = skb->len;
4461 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4462 	int snap_offs = hdrlen;
4463 	struct {
4464 		u8 snap[sizeof(rfc1042_header)];
4465 		__be16 proto;
4466 	} *payload __aligned(2);
4467 	struct {
4468 		u8 da[ETH_ALEN];
4469 		u8 sa[ETH_ALEN];
4470 	} addrs __aligned(2);
4471 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4472 
4473 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4474 	 * to a common data structure; drivers can implement that per queue
4475 	 * but we don't have that information in mac80211
4476 	 */
4477 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4478 		return false;
4479 
4480 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4481 
4482 	/* If using encryption, we also need to have:
4483 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4484 	 *  - DECRYPTED: necessary for PN_VALIDATED
4485 	 */
4486 	if (fast_rx->key &&
4487 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4488 		return false;
4489 
4490 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4491 		return false;
4492 
4493 	if (unlikely(ieee80211_is_frag(hdr)))
4494 		return false;
4495 
4496 	/* Since our interface address cannot be multicast, this
4497 	 * implicitly also rejects multicast frames without the
4498 	 * explicit check.
4499 	 *
4500 	 * We shouldn't get any *data* frames not addressed to us
4501 	 * (AP mode will accept multicast *management* frames), but
4502 	 * punting here will make it go through the full checks in
4503 	 * ieee80211_accept_frame().
4504 	 */
4505 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4506 		return false;
4507 
4508 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4509 					      IEEE80211_FCTL_TODS)) !=
4510 	    fast_rx->expected_ds_bits)
4511 		return false;
4512 
4513 	/* assign the key to drop unencrypted frames (later)
4514 	 * and strip the IV/MIC if necessary
4515 	 */
4516 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4517 		/* GCMP header length is the same */
4518 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4519 	}
4520 
4521 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4522 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4523 			goto drop;
4524 
4525 		payload = (void *)(skb->data + snap_offs);
4526 
4527 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4528 			return false;
4529 
4530 		/* Don't handle these here since they require special code.
4531 		 * Accept AARP and IPX even though they should come with a
4532 		 * bridge-tunnel header - but if we get them this way then
4533 		 * there's little point in discarding them.
4534 		 */
4535 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4536 			     payload->proto == fast_rx->control_port_protocol))
4537 			return false;
4538 	}
4539 
4540 	/* after this point, don't punt to the slowpath! */
4541 
4542 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4543 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4544 		goto drop;
4545 
4546 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4547 		goto drop;
4548 
4549 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4550 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4551 		    RX_QUEUED)
4552 			goto drop;
4553 
4554 		return true;
4555 	}
4556 
4557 	/* do the header conversion - first grab the addresses */
4558 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4559 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4560 	/* remove the SNAP but leave the ethertype */
4561 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4562 	/* push the addresses in front */
4563 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4564 
4565 	ieee80211_rx_8023(rx, fast_rx, orig_len);
4566 
4567 	return true;
4568  drop:
4569 	dev_kfree_skb(skb);
4570 	if (fast_rx->uses_rss)
4571 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4572 
4573 	stats->dropped++;
4574 	return true;
4575 }
4576 
4577 /*
4578  * This function returns whether or not the SKB
4579  * was destined for RX processing or not, which,
4580  * if consume is true, is equivalent to whether
4581  * or not the skb was consumed.
4582  */
4583 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4584 					    struct sk_buff *skb, bool consume)
4585 {
4586 	struct ieee80211_local *local = rx->local;
4587 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4588 
4589 	rx->skb = skb;
4590 
4591 	/* See if we can do fast-rx; if we have to copy we already lost,
4592 	 * so punt in that case. We should never have to deliver a data
4593 	 * frame to multiple interfaces anyway.
4594 	 *
4595 	 * We skip the ieee80211_accept_frame() call and do the necessary
4596 	 * checking inside ieee80211_invoke_fast_rx().
4597 	 */
4598 	if (consume && rx->sta) {
4599 		struct ieee80211_fast_rx *fast_rx;
4600 
4601 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4602 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4603 			return true;
4604 	}
4605 
4606 	if (!ieee80211_accept_frame(rx))
4607 		return false;
4608 
4609 	if (!consume) {
4610 		skb = skb_copy(skb, GFP_ATOMIC);
4611 		if (!skb) {
4612 			if (net_ratelimit())
4613 				wiphy_debug(local->hw.wiphy,
4614 					"failed to copy skb for %s\n",
4615 					sdata->name);
4616 			return true;
4617 		}
4618 
4619 		rx->skb = skb;
4620 	}
4621 
4622 	ieee80211_invoke_rx_handlers(rx);
4623 	return true;
4624 }
4625 
4626 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
4627 				       struct ieee80211_sta *pubsta,
4628 				       struct sk_buff *skb,
4629 				       struct list_head *list)
4630 {
4631 	struct ieee80211_local *local = hw_to_local(hw);
4632 	struct ieee80211_fast_rx *fast_rx;
4633 	struct ieee80211_rx_data rx;
4634 
4635 	memset(&rx, 0, sizeof(rx));
4636 	rx.skb = skb;
4637 	rx.local = local;
4638 	rx.list = list;
4639 
4640 	I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4641 
4642 	/* drop frame if too short for header */
4643 	if (skb->len < sizeof(struct ethhdr))
4644 		goto drop;
4645 
4646 	if (!pubsta)
4647 		goto drop;
4648 
4649 	rx.sta = container_of(pubsta, struct sta_info, sta);
4650 	rx.sdata = rx.sta->sdata;
4651 
4652 	fast_rx = rcu_dereference(rx.sta->fast_rx);
4653 	if (!fast_rx)
4654 		goto drop;
4655 
4656 	ieee80211_rx_8023(&rx, fast_rx, skb->len);
4657 	return;
4658 
4659 drop:
4660 	dev_kfree_skb(skb);
4661 }
4662 
4663 /*
4664  * This is the actual Rx frames handler. as it belongs to Rx path it must
4665  * be called with rcu_read_lock protection.
4666  */
4667 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4668 					 struct ieee80211_sta *pubsta,
4669 					 struct sk_buff *skb,
4670 					 struct list_head *list)
4671 {
4672 	struct ieee80211_local *local = hw_to_local(hw);
4673 	struct ieee80211_sub_if_data *sdata;
4674 	struct ieee80211_hdr *hdr;
4675 	__le16 fc;
4676 	struct ieee80211_rx_data rx;
4677 	struct ieee80211_sub_if_data *prev;
4678 	struct rhlist_head *tmp;
4679 	int err = 0;
4680 
4681 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4682 	memset(&rx, 0, sizeof(rx));
4683 	rx.skb = skb;
4684 	rx.local = local;
4685 	rx.list = list;
4686 
4687 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4688 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4689 
4690 	if (ieee80211_is_mgmt(fc)) {
4691 		/* drop frame if too short for header */
4692 		if (skb->len < ieee80211_hdrlen(fc))
4693 			err = -ENOBUFS;
4694 		else
4695 			err = skb_linearize(skb);
4696 	} else {
4697 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4698 	}
4699 
4700 	if (err) {
4701 		dev_kfree_skb(skb);
4702 		return;
4703 	}
4704 
4705 	hdr = (struct ieee80211_hdr *)skb->data;
4706 	ieee80211_parse_qos(&rx);
4707 	ieee80211_verify_alignment(&rx);
4708 
4709 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4710 		     ieee80211_is_beacon(hdr->frame_control) ||
4711 		     ieee80211_is_s1g_beacon(hdr->frame_control)))
4712 		ieee80211_scan_rx(local, skb);
4713 
4714 	if (ieee80211_is_data(fc)) {
4715 		struct sta_info *sta, *prev_sta;
4716 
4717 		if (pubsta) {
4718 			rx.sta = container_of(pubsta, struct sta_info, sta);
4719 			rx.sdata = rx.sta->sdata;
4720 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4721 				return;
4722 			goto out;
4723 		}
4724 
4725 		prev_sta = NULL;
4726 
4727 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4728 			if (!prev_sta) {
4729 				prev_sta = sta;
4730 				continue;
4731 			}
4732 
4733 			rx.sta = prev_sta;
4734 			rx.sdata = prev_sta->sdata;
4735 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4736 
4737 			prev_sta = sta;
4738 		}
4739 
4740 		if (prev_sta) {
4741 			rx.sta = prev_sta;
4742 			rx.sdata = prev_sta->sdata;
4743 
4744 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4745 				return;
4746 			goto out;
4747 		}
4748 	}
4749 
4750 	prev = NULL;
4751 
4752 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4753 		if (!ieee80211_sdata_running(sdata))
4754 			continue;
4755 
4756 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4757 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4758 			continue;
4759 
4760 		/*
4761 		 * frame is destined for this interface, but if it's
4762 		 * not also for the previous one we handle that after
4763 		 * the loop to avoid copying the SKB once too much
4764 		 */
4765 
4766 		if (!prev) {
4767 			prev = sdata;
4768 			continue;
4769 		}
4770 
4771 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4772 		rx.sdata = prev;
4773 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4774 
4775 		prev = sdata;
4776 	}
4777 
4778 	if (prev) {
4779 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4780 		rx.sdata = prev;
4781 
4782 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4783 			return;
4784 	}
4785 
4786  out:
4787 	dev_kfree_skb(skb);
4788 }
4789 
4790 /*
4791  * This is the receive path handler. It is called by a low level driver when an
4792  * 802.11 MPDU is received from the hardware.
4793  */
4794 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4795 		       struct sk_buff *skb, struct list_head *list)
4796 {
4797 	struct ieee80211_local *local = hw_to_local(hw);
4798 	struct ieee80211_rate *rate = NULL;
4799 	struct ieee80211_supported_band *sband;
4800 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4801 
4802 	WARN_ON_ONCE(softirq_count() == 0);
4803 
4804 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4805 		goto drop;
4806 
4807 	sband = local->hw.wiphy->bands[status->band];
4808 	if (WARN_ON(!sband))
4809 		goto drop;
4810 
4811 	/*
4812 	 * If we're suspending, it is possible although not too likely
4813 	 * that we'd be receiving frames after having already partially
4814 	 * quiesced the stack. We can't process such frames then since
4815 	 * that might, for example, cause stations to be added or other
4816 	 * driver callbacks be invoked.
4817 	 */
4818 	if (unlikely(local->quiescing || local->suspended))
4819 		goto drop;
4820 
4821 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4822 	if (unlikely(local->in_reconfig))
4823 		goto drop;
4824 
4825 	/*
4826 	 * The same happens when we're not even started,
4827 	 * but that's worth a warning.
4828 	 */
4829 	if (WARN_ON(!local->started))
4830 		goto drop;
4831 
4832 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4833 		/*
4834 		 * Validate the rate, unless a PLCP error means that
4835 		 * we probably can't have a valid rate here anyway.
4836 		 */
4837 
4838 		switch (status->encoding) {
4839 		case RX_ENC_HT:
4840 			/*
4841 			 * rate_idx is MCS index, which can be [0-76]
4842 			 * as documented on:
4843 			 *
4844 			 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4845 			 *
4846 			 * Anything else would be some sort of driver or
4847 			 * hardware error. The driver should catch hardware
4848 			 * errors.
4849 			 */
4850 			if (WARN(status->rate_idx > 76,
4851 				 "Rate marked as an HT rate but passed "
4852 				 "status->rate_idx is not "
4853 				 "an MCS index [0-76]: %d (0x%02x)\n",
4854 				 status->rate_idx,
4855 				 status->rate_idx))
4856 				goto drop;
4857 			break;
4858 		case RX_ENC_VHT:
4859 			if (WARN_ONCE(status->rate_idx > 9 ||
4860 				      !status->nss ||
4861 				      status->nss > 8,
4862 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4863 				      status->rate_idx, status->nss))
4864 				goto drop;
4865 			break;
4866 		case RX_ENC_HE:
4867 			if (WARN_ONCE(status->rate_idx > 11 ||
4868 				      !status->nss ||
4869 				      status->nss > 8,
4870 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4871 				      status->rate_idx, status->nss))
4872 				goto drop;
4873 			break;
4874 		default:
4875 			WARN_ON_ONCE(1);
4876 			fallthrough;
4877 		case RX_ENC_LEGACY:
4878 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4879 				goto drop;
4880 			rate = &sband->bitrates[status->rate_idx];
4881 		}
4882 	}
4883 
4884 	status->rx_flags = 0;
4885 
4886 	kcov_remote_start_common(skb_get_kcov_handle(skb));
4887 
4888 	/*
4889 	 * Frames with failed FCS/PLCP checksum are not returned,
4890 	 * all other frames are returned without radiotap header
4891 	 * if it was previously present.
4892 	 * Also, frames with less than 16 bytes are dropped.
4893 	 */
4894 	if (!(status->flag & RX_FLAG_8023))
4895 		skb = ieee80211_rx_monitor(local, skb, rate);
4896 	if (skb) {
4897 		ieee80211_tpt_led_trig_rx(local,
4898 					  ((struct ieee80211_hdr *)skb->data)->frame_control,
4899 					  skb->len);
4900 
4901 		if (status->flag & RX_FLAG_8023)
4902 			__ieee80211_rx_handle_8023(hw, pubsta, skb, list);
4903 		else
4904 			__ieee80211_rx_handle_packet(hw, pubsta, skb, list);
4905 	}
4906 
4907 	kcov_remote_stop();
4908 	return;
4909  drop:
4910 	kfree_skb(skb);
4911 }
4912 EXPORT_SYMBOL(ieee80211_rx_list);
4913 
4914 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4915 		       struct sk_buff *skb, struct napi_struct *napi)
4916 {
4917 	struct sk_buff *tmp;
4918 	LIST_HEAD(list);
4919 
4920 
4921 	/*
4922 	 * key references and virtual interfaces are protected using RCU
4923 	 * and this requires that we are in a read-side RCU section during
4924 	 * receive processing
4925 	 */
4926 	rcu_read_lock();
4927 	ieee80211_rx_list(hw, pubsta, skb, &list);
4928 	rcu_read_unlock();
4929 
4930 	if (!napi) {
4931 		netif_receive_skb_list(&list);
4932 		return;
4933 	}
4934 
4935 	list_for_each_entry_safe(skb, tmp, &list, list) {
4936 		skb_list_del_init(skb);
4937 		napi_gro_receive(napi, skb);
4938 	}
4939 }
4940 EXPORT_SYMBOL(ieee80211_rx_napi);
4941 
4942 /* This is a version of the rx handler that can be called from hard irq
4943  * context. Post the skb on the queue and schedule the tasklet */
4944 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4945 {
4946 	struct ieee80211_local *local = hw_to_local(hw);
4947 
4948 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4949 
4950 	skb->pkt_type = IEEE80211_RX_MSG;
4951 	skb_queue_tail(&local->skb_queue, skb);
4952 	tasklet_schedule(&local->tasklet);
4953 }
4954 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4955