xref: /openbmc/linux/net/mac80211/rx.c (revision f5005f78)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24 
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34 
35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
36 {
37 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
38 
39 	u64_stats_update_begin(&tstats->syncp);
40 	tstats->rx_packets++;
41 	tstats->rx_bytes += len;
42 	u64_stats_update_end(&tstats->syncp);
43 }
44 
45 /*
46  * monitor mode reception
47  *
48  * This function cleans up the SKB, i.e. it removes all the stuff
49  * only useful for monitoring.
50  */
51 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
52 					   struct sk_buff *skb,
53 					   unsigned int rtap_vendor_space)
54 {
55 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
56 		if (likely(skb->len > FCS_LEN))
57 			__pskb_trim(skb, skb->len - FCS_LEN);
58 		else {
59 			/* driver bug */
60 			WARN_ON(1);
61 			dev_kfree_skb(skb);
62 			return NULL;
63 		}
64 	}
65 
66 	__pskb_pull(skb, rtap_vendor_space);
67 
68 	return skb;
69 }
70 
71 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
72 				     unsigned int rtap_vendor_space)
73 {
74 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
75 	struct ieee80211_hdr *hdr;
76 
77 	hdr = (void *)(skb->data + rtap_vendor_space);
78 
79 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
80 			    RX_FLAG_FAILED_PLCP_CRC |
81 			    RX_FLAG_AMPDU_IS_ZEROLEN))
82 		return true;
83 
84 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
85 		return true;
86 
87 	if (ieee80211_is_ctl(hdr->frame_control) &&
88 	    !ieee80211_is_pspoll(hdr->frame_control) &&
89 	    !ieee80211_is_back_req(hdr->frame_control))
90 		return true;
91 
92 	return false;
93 }
94 
95 static int
96 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
97 			     struct ieee80211_rx_status *status,
98 			     struct sk_buff *skb)
99 {
100 	int len;
101 
102 	/* always present fields */
103 	len = sizeof(struct ieee80211_radiotap_header) + 8;
104 
105 	/* allocate extra bitmaps */
106 	if (status->chains)
107 		len += 4 * hweight8(status->chains);
108 
109 	if (ieee80211_have_rx_timestamp(status)) {
110 		len = ALIGN(len, 8);
111 		len += 8;
112 	}
113 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
114 		len += 1;
115 
116 	/* antenna field, if we don't have per-chain info */
117 	if (!status->chains)
118 		len += 1;
119 
120 	/* padding for RX_FLAGS if necessary */
121 	len = ALIGN(len, 2);
122 
123 	if (status->flag & RX_FLAG_HT) /* HT info */
124 		len += 3;
125 
126 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
127 		len = ALIGN(len, 4);
128 		len += 8;
129 	}
130 
131 	if (status->flag & RX_FLAG_VHT) {
132 		len = ALIGN(len, 2);
133 		len += 12;
134 	}
135 
136 	if (status->chains) {
137 		/* antenna and antenna signal fields */
138 		len += 2 * hweight8(status->chains);
139 	}
140 
141 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
142 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
143 
144 		/* vendor presence bitmap */
145 		len += 4;
146 		/* alignment for fixed 6-byte vendor data header */
147 		len = ALIGN(len, 2);
148 		/* vendor data header */
149 		len += 6;
150 		if (WARN_ON(rtap->align == 0))
151 			rtap->align = 1;
152 		len = ALIGN(len, rtap->align);
153 		len += rtap->len + rtap->pad;
154 	}
155 
156 	return len;
157 }
158 
159 /*
160  * ieee80211_add_rx_radiotap_header - add radiotap header
161  *
162  * add a radiotap header containing all the fields which the hardware provided.
163  */
164 static void
165 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
166 				 struct sk_buff *skb,
167 				 struct ieee80211_rate *rate,
168 				 int rtap_len, bool has_fcs)
169 {
170 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
171 	struct ieee80211_radiotap_header *rthdr;
172 	unsigned char *pos;
173 	__le32 *it_present;
174 	u32 it_present_val;
175 	u16 rx_flags = 0;
176 	u16 channel_flags = 0;
177 	int mpdulen, chain;
178 	unsigned long chains = status->chains;
179 	struct ieee80211_vendor_radiotap rtap = {};
180 
181 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
182 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
183 		/* rtap.len and rtap.pad are undone immediately */
184 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
185 	}
186 
187 	mpdulen = skb->len;
188 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
189 		mpdulen += FCS_LEN;
190 
191 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
192 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
193 	it_present = &rthdr->it_present;
194 
195 	/* radiotap header, set always present flags */
196 	rthdr->it_len = cpu_to_le16(rtap_len);
197 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
198 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
199 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
200 
201 	if (!status->chains)
202 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
203 
204 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
205 		it_present_val |=
206 			BIT(IEEE80211_RADIOTAP_EXT) |
207 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
208 		put_unaligned_le32(it_present_val, it_present);
209 		it_present++;
210 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
211 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
212 	}
213 
214 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
215 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
216 				  BIT(IEEE80211_RADIOTAP_EXT);
217 		put_unaligned_le32(it_present_val, it_present);
218 		it_present++;
219 		it_present_val = rtap.present;
220 	}
221 
222 	put_unaligned_le32(it_present_val, it_present);
223 
224 	pos = (void *)(it_present + 1);
225 
226 	/* the order of the following fields is important */
227 
228 	/* IEEE80211_RADIOTAP_TSFT */
229 	if (ieee80211_have_rx_timestamp(status)) {
230 		/* padding */
231 		while ((pos - (u8 *)rthdr) & 7)
232 			*pos++ = 0;
233 		put_unaligned_le64(
234 			ieee80211_calculate_rx_timestamp(local, status,
235 							 mpdulen, 0),
236 			pos);
237 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
238 		pos += 8;
239 	}
240 
241 	/* IEEE80211_RADIOTAP_FLAGS */
242 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
243 		*pos |= IEEE80211_RADIOTAP_F_FCS;
244 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
245 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
246 	if (status->flag & RX_FLAG_SHORTPRE)
247 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
248 	pos++;
249 
250 	/* IEEE80211_RADIOTAP_RATE */
251 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
252 		/*
253 		 * Without rate information don't add it. If we have,
254 		 * MCS information is a separate field in radiotap,
255 		 * added below. The byte here is needed as padding
256 		 * for the channel though, so initialise it to 0.
257 		 */
258 		*pos = 0;
259 	} else {
260 		int shift = 0;
261 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
262 		if (status->flag & RX_FLAG_10MHZ)
263 			shift = 1;
264 		else if (status->flag & RX_FLAG_5MHZ)
265 			shift = 2;
266 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
267 	}
268 	pos++;
269 
270 	/* IEEE80211_RADIOTAP_CHANNEL */
271 	put_unaligned_le16(status->freq, pos);
272 	pos += 2;
273 	if (status->flag & RX_FLAG_10MHZ)
274 		channel_flags |= IEEE80211_CHAN_HALF;
275 	else if (status->flag & RX_FLAG_5MHZ)
276 		channel_flags |= IEEE80211_CHAN_QUARTER;
277 
278 	if (status->band == IEEE80211_BAND_5GHZ)
279 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
280 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
281 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
282 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
283 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
284 	else if (rate)
285 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
286 	else
287 		channel_flags |= IEEE80211_CHAN_2GHZ;
288 	put_unaligned_le16(channel_flags, pos);
289 	pos += 2;
290 
291 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
292 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
293 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
294 		*pos = status->signal;
295 		rthdr->it_present |=
296 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
297 		pos++;
298 	}
299 
300 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
301 
302 	if (!status->chains) {
303 		/* IEEE80211_RADIOTAP_ANTENNA */
304 		*pos = status->antenna;
305 		pos++;
306 	}
307 
308 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
309 
310 	/* IEEE80211_RADIOTAP_RX_FLAGS */
311 	/* ensure 2 byte alignment for the 2 byte field as required */
312 	if ((pos - (u8 *)rthdr) & 1)
313 		*pos++ = 0;
314 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
315 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
316 	put_unaligned_le16(rx_flags, pos);
317 	pos += 2;
318 
319 	if (status->flag & RX_FLAG_HT) {
320 		unsigned int stbc;
321 
322 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
323 		*pos++ = local->hw.radiotap_mcs_details;
324 		*pos = 0;
325 		if (status->flag & RX_FLAG_SHORT_GI)
326 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
327 		if (status->flag & RX_FLAG_40MHZ)
328 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
329 		if (status->flag & RX_FLAG_HT_GF)
330 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
331 		if (status->flag & RX_FLAG_LDPC)
332 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
333 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
334 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
335 		pos++;
336 		*pos++ = status->rate_idx;
337 	}
338 
339 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
340 		u16 flags = 0;
341 
342 		/* ensure 4 byte alignment */
343 		while ((pos - (u8 *)rthdr) & 3)
344 			pos++;
345 		rthdr->it_present |=
346 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
347 		put_unaligned_le32(status->ampdu_reference, pos);
348 		pos += 4;
349 		if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
350 			flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
351 		if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
352 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
353 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
354 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
355 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
356 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
357 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
358 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
359 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
360 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
361 		put_unaligned_le16(flags, pos);
362 		pos += 2;
363 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
364 			*pos++ = status->ampdu_delimiter_crc;
365 		else
366 			*pos++ = 0;
367 		*pos++ = 0;
368 	}
369 
370 	if (status->flag & RX_FLAG_VHT) {
371 		u16 known = local->hw.radiotap_vht_details;
372 
373 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
374 		put_unaligned_le16(known, pos);
375 		pos += 2;
376 		/* flags */
377 		if (status->flag & RX_FLAG_SHORT_GI)
378 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
379 		/* in VHT, STBC is binary */
380 		if (status->flag & RX_FLAG_STBC_MASK)
381 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
382 		if (status->vht_flag & RX_VHT_FLAG_BF)
383 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
384 		pos++;
385 		/* bandwidth */
386 		if (status->vht_flag & RX_VHT_FLAG_80MHZ)
387 			*pos++ = 4;
388 		else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
389 			*pos++ = 11;
390 		else if (status->flag & RX_FLAG_40MHZ)
391 			*pos++ = 1;
392 		else /* 20 MHz */
393 			*pos++ = 0;
394 		/* MCS/NSS */
395 		*pos = (status->rate_idx << 4) | status->vht_nss;
396 		pos += 4;
397 		/* coding field */
398 		if (status->flag & RX_FLAG_LDPC)
399 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
400 		pos++;
401 		/* group ID */
402 		pos++;
403 		/* partial_aid */
404 		pos += 2;
405 	}
406 
407 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
408 		*pos++ = status->chain_signal[chain];
409 		*pos++ = chain;
410 	}
411 
412 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
413 		/* ensure 2 byte alignment for the vendor field as required */
414 		if ((pos - (u8 *)rthdr) & 1)
415 			*pos++ = 0;
416 		*pos++ = rtap.oui[0];
417 		*pos++ = rtap.oui[1];
418 		*pos++ = rtap.oui[2];
419 		*pos++ = rtap.subns;
420 		put_unaligned_le16(rtap.len, pos);
421 		pos += 2;
422 		/* align the actual payload as requested */
423 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
424 			*pos++ = 0;
425 		/* data (and possible padding) already follows */
426 	}
427 }
428 
429 /*
430  * This function copies a received frame to all monitor interfaces and
431  * returns a cleaned-up SKB that no longer includes the FCS nor the
432  * radiotap header the driver might have added.
433  */
434 static struct sk_buff *
435 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
436 		     struct ieee80211_rate *rate)
437 {
438 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
439 	struct ieee80211_sub_if_data *sdata;
440 	int rt_hdrlen, needed_headroom;
441 	struct sk_buff *skb, *skb2;
442 	struct net_device *prev_dev = NULL;
443 	int present_fcs_len = 0;
444 	unsigned int rtap_vendor_space = 0;
445 
446 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
447 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
448 
449 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
450 	}
451 
452 	/*
453 	 * First, we may need to make a copy of the skb because
454 	 *  (1) we need to modify it for radiotap (if not present), and
455 	 *  (2) the other RX handlers will modify the skb we got.
456 	 *
457 	 * We don't need to, of course, if we aren't going to return
458 	 * the SKB because it has a bad FCS/PLCP checksum.
459 	 */
460 
461 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
462 		present_fcs_len = FCS_LEN;
463 
464 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
465 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
466 		dev_kfree_skb(origskb);
467 		return NULL;
468 	}
469 
470 	if (!local->monitors) {
471 		if (should_drop_frame(origskb, present_fcs_len,
472 				      rtap_vendor_space)) {
473 			dev_kfree_skb(origskb);
474 			return NULL;
475 		}
476 
477 		return remove_monitor_info(local, origskb, rtap_vendor_space);
478 	}
479 
480 	/* room for the radiotap header based on driver features */
481 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
482 	needed_headroom = rt_hdrlen - rtap_vendor_space;
483 
484 	if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
485 		/* only need to expand headroom if necessary */
486 		skb = origskb;
487 		origskb = NULL;
488 
489 		/*
490 		 * This shouldn't trigger often because most devices have an
491 		 * RX header they pull before we get here, and that should
492 		 * be big enough for our radiotap information. We should
493 		 * probably export the length to drivers so that we can have
494 		 * them allocate enough headroom to start with.
495 		 */
496 		if (skb_headroom(skb) < needed_headroom &&
497 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
498 			dev_kfree_skb(skb);
499 			return NULL;
500 		}
501 	} else {
502 		/*
503 		 * Need to make a copy and possibly remove radiotap header
504 		 * and FCS from the original.
505 		 */
506 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
507 
508 		origskb = remove_monitor_info(local, origskb,
509 					      rtap_vendor_space);
510 
511 		if (!skb)
512 			return origskb;
513 	}
514 
515 	/* prepend radiotap information */
516 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
517 
518 	skb_reset_mac_header(skb);
519 	skb->ip_summed = CHECKSUM_UNNECESSARY;
520 	skb->pkt_type = PACKET_OTHERHOST;
521 	skb->protocol = htons(ETH_P_802_2);
522 
523 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
524 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
525 			continue;
526 
527 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
528 			continue;
529 
530 		if (!ieee80211_sdata_running(sdata))
531 			continue;
532 
533 		if (prev_dev) {
534 			skb2 = skb_clone(skb, GFP_ATOMIC);
535 			if (skb2) {
536 				skb2->dev = prev_dev;
537 				netif_receive_skb(skb2);
538 			}
539 		}
540 
541 		prev_dev = sdata->dev;
542 		ieee80211_rx_stats(sdata->dev, skb->len);
543 	}
544 
545 	if (prev_dev) {
546 		skb->dev = prev_dev;
547 		netif_receive_skb(skb);
548 	} else
549 		dev_kfree_skb(skb);
550 
551 	return origskb;
552 }
553 
554 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
555 {
556 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
557 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
558 	int tid, seqno_idx, security_idx;
559 
560 	/* does the frame have a qos control field? */
561 	if (ieee80211_is_data_qos(hdr->frame_control)) {
562 		u8 *qc = ieee80211_get_qos_ctl(hdr);
563 		/* frame has qos control */
564 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
565 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
566 			status->rx_flags |= IEEE80211_RX_AMSDU;
567 
568 		seqno_idx = tid;
569 		security_idx = tid;
570 	} else {
571 		/*
572 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
573 		 *
574 		 *	Sequence numbers for management frames, QoS data
575 		 *	frames with a broadcast/multicast address in the
576 		 *	Address 1 field, and all non-QoS data frames sent
577 		 *	by QoS STAs are assigned using an additional single
578 		 *	modulo-4096 counter, [...]
579 		 *
580 		 * We also use that counter for non-QoS STAs.
581 		 */
582 		seqno_idx = IEEE80211_NUM_TIDS;
583 		security_idx = 0;
584 		if (ieee80211_is_mgmt(hdr->frame_control))
585 			security_idx = IEEE80211_NUM_TIDS;
586 		tid = 0;
587 	}
588 
589 	rx->seqno_idx = seqno_idx;
590 	rx->security_idx = security_idx;
591 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
592 	 * For now, set skb->priority to 0 for other cases. */
593 	rx->skb->priority = (tid > 7) ? 0 : tid;
594 }
595 
596 /**
597  * DOC: Packet alignment
598  *
599  * Drivers always need to pass packets that are aligned to two-byte boundaries
600  * to the stack.
601  *
602  * Additionally, should, if possible, align the payload data in a way that
603  * guarantees that the contained IP header is aligned to a four-byte
604  * boundary. In the case of regular frames, this simply means aligning the
605  * payload to a four-byte boundary (because either the IP header is directly
606  * contained, or IV/RFC1042 headers that have a length divisible by four are
607  * in front of it).  If the payload data is not properly aligned and the
608  * architecture doesn't support efficient unaligned operations, mac80211
609  * will align the data.
610  *
611  * With A-MSDU frames, however, the payload data address must yield two modulo
612  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
613  * push the IP header further back to a multiple of four again. Thankfully, the
614  * specs were sane enough this time around to require padding each A-MSDU
615  * subframe to a length that is a multiple of four.
616  *
617  * Padding like Atheros hardware adds which is between the 802.11 header and
618  * the payload is not supported, the driver is required to move the 802.11
619  * header to be directly in front of the payload in that case.
620  */
621 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
622 {
623 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
624 	WARN_ONCE((unsigned long)rx->skb->data & 1,
625 		  "unaligned packet at 0x%p\n", rx->skb->data);
626 #endif
627 }
628 
629 
630 /* rx handlers */
631 
632 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
633 {
634 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
635 
636 	if (is_multicast_ether_addr(hdr->addr1))
637 		return 0;
638 
639 	return ieee80211_is_robust_mgmt_frame(skb);
640 }
641 
642 
643 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
644 {
645 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
646 
647 	if (!is_multicast_ether_addr(hdr->addr1))
648 		return 0;
649 
650 	return ieee80211_is_robust_mgmt_frame(skb);
651 }
652 
653 
654 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
655 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
656 {
657 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
658 	struct ieee80211_mmie *mmie;
659 	struct ieee80211_mmie_16 *mmie16;
660 
661 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
662 		return -1;
663 
664 	if (!ieee80211_is_robust_mgmt_frame(skb))
665 		return -1; /* not a robust management frame */
666 
667 	mmie = (struct ieee80211_mmie *)
668 		(skb->data + skb->len - sizeof(*mmie));
669 	if (mmie->element_id == WLAN_EID_MMIE &&
670 	    mmie->length == sizeof(*mmie) - 2)
671 		return le16_to_cpu(mmie->key_id);
672 
673 	mmie16 = (struct ieee80211_mmie_16 *)
674 		(skb->data + skb->len - sizeof(*mmie16));
675 	if (skb->len >= 24 + sizeof(*mmie16) &&
676 	    mmie16->element_id == WLAN_EID_MMIE &&
677 	    mmie16->length == sizeof(*mmie16) - 2)
678 		return le16_to_cpu(mmie16->key_id);
679 
680 	return -1;
681 }
682 
683 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
684 				 struct sk_buff *skb)
685 {
686 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
687 	__le16 fc;
688 	int hdrlen;
689 	u8 keyid;
690 
691 	fc = hdr->frame_control;
692 	hdrlen = ieee80211_hdrlen(fc);
693 
694 	if (skb->len < hdrlen + cs->hdr_len)
695 		return -EINVAL;
696 
697 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
698 	keyid &= cs->key_idx_mask;
699 	keyid >>= cs->key_idx_shift;
700 
701 	return keyid;
702 }
703 
704 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
705 {
706 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
707 	char *dev_addr = rx->sdata->vif.addr;
708 
709 	if (ieee80211_is_data(hdr->frame_control)) {
710 		if (is_multicast_ether_addr(hdr->addr1)) {
711 			if (ieee80211_has_tods(hdr->frame_control) ||
712 			    !ieee80211_has_fromds(hdr->frame_control))
713 				return RX_DROP_MONITOR;
714 			if (ether_addr_equal(hdr->addr3, dev_addr))
715 				return RX_DROP_MONITOR;
716 		} else {
717 			if (!ieee80211_has_a4(hdr->frame_control))
718 				return RX_DROP_MONITOR;
719 			if (ether_addr_equal(hdr->addr4, dev_addr))
720 				return RX_DROP_MONITOR;
721 		}
722 	}
723 
724 	/* If there is not an established peer link and this is not a peer link
725 	 * establisment frame, beacon or probe, drop the frame.
726 	 */
727 
728 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
729 		struct ieee80211_mgmt *mgmt;
730 
731 		if (!ieee80211_is_mgmt(hdr->frame_control))
732 			return RX_DROP_MONITOR;
733 
734 		if (ieee80211_is_action(hdr->frame_control)) {
735 			u8 category;
736 
737 			/* make sure category field is present */
738 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
739 				return RX_DROP_MONITOR;
740 
741 			mgmt = (struct ieee80211_mgmt *)hdr;
742 			category = mgmt->u.action.category;
743 			if (category != WLAN_CATEGORY_MESH_ACTION &&
744 			    category != WLAN_CATEGORY_SELF_PROTECTED)
745 				return RX_DROP_MONITOR;
746 			return RX_CONTINUE;
747 		}
748 
749 		if (ieee80211_is_probe_req(hdr->frame_control) ||
750 		    ieee80211_is_probe_resp(hdr->frame_control) ||
751 		    ieee80211_is_beacon(hdr->frame_control) ||
752 		    ieee80211_is_auth(hdr->frame_control))
753 			return RX_CONTINUE;
754 
755 		return RX_DROP_MONITOR;
756 	}
757 
758 	return RX_CONTINUE;
759 }
760 
761 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
762 					    struct tid_ampdu_rx *tid_agg_rx,
763 					    int index,
764 					    struct sk_buff_head *frames)
765 {
766 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
767 	struct sk_buff *skb;
768 	struct ieee80211_rx_status *status;
769 
770 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
771 
772 	if (skb_queue_empty(skb_list))
773 		goto no_frame;
774 
775 	if (!ieee80211_rx_reorder_ready(skb_list)) {
776 		__skb_queue_purge(skb_list);
777 		goto no_frame;
778 	}
779 
780 	/* release frames from the reorder ring buffer */
781 	tid_agg_rx->stored_mpdu_num--;
782 	while ((skb = __skb_dequeue(skb_list))) {
783 		status = IEEE80211_SKB_RXCB(skb);
784 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
785 		__skb_queue_tail(frames, skb);
786 	}
787 
788 no_frame:
789 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
790 }
791 
792 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
793 					     struct tid_ampdu_rx *tid_agg_rx,
794 					     u16 head_seq_num,
795 					     struct sk_buff_head *frames)
796 {
797 	int index;
798 
799 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
800 
801 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
802 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
803 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
804 						frames);
805 	}
806 }
807 
808 /*
809  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
810  * the skb was added to the buffer longer than this time ago, the earlier
811  * frames that have not yet been received are assumed to be lost and the skb
812  * can be released for processing. This may also release other skb's from the
813  * reorder buffer if there are no additional gaps between the frames.
814  *
815  * Callers must hold tid_agg_rx->reorder_lock.
816  */
817 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
818 
819 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
820 					  struct tid_ampdu_rx *tid_agg_rx,
821 					  struct sk_buff_head *frames)
822 {
823 	int index, i, j;
824 
825 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
826 
827 	/* release the buffer until next missing frame */
828 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
829 	if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
830 	    tid_agg_rx->stored_mpdu_num) {
831 		/*
832 		 * No buffers ready to be released, but check whether any
833 		 * frames in the reorder buffer have timed out.
834 		 */
835 		int skipped = 1;
836 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
837 		     j = (j + 1) % tid_agg_rx->buf_size) {
838 			if (!ieee80211_rx_reorder_ready(
839 					&tid_agg_rx->reorder_buf[j])) {
840 				skipped++;
841 				continue;
842 			}
843 			if (skipped &&
844 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
845 					HT_RX_REORDER_BUF_TIMEOUT))
846 				goto set_release_timer;
847 
848 			/* don't leave incomplete A-MSDUs around */
849 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
850 			     i = (i + 1) % tid_agg_rx->buf_size)
851 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
852 
853 			ht_dbg_ratelimited(sdata,
854 					   "release an RX reorder frame due to timeout on earlier frames\n");
855 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
856 							frames);
857 
858 			/*
859 			 * Increment the head seq# also for the skipped slots.
860 			 */
861 			tid_agg_rx->head_seq_num =
862 				(tid_agg_rx->head_seq_num +
863 				 skipped) & IEEE80211_SN_MASK;
864 			skipped = 0;
865 		}
866 	} else while (ieee80211_rx_reorder_ready(
867 				&tid_agg_rx->reorder_buf[index])) {
868 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
869 						frames);
870 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
871 	}
872 
873 	if (tid_agg_rx->stored_mpdu_num) {
874 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
875 
876 		for (; j != (index - 1) % tid_agg_rx->buf_size;
877 		     j = (j + 1) % tid_agg_rx->buf_size) {
878 			if (ieee80211_rx_reorder_ready(
879 					&tid_agg_rx->reorder_buf[j]))
880 				break;
881 		}
882 
883  set_release_timer:
884 
885 		if (!tid_agg_rx->removed)
886 			mod_timer(&tid_agg_rx->reorder_timer,
887 				  tid_agg_rx->reorder_time[j] + 1 +
888 				  HT_RX_REORDER_BUF_TIMEOUT);
889 	} else {
890 		del_timer(&tid_agg_rx->reorder_timer);
891 	}
892 }
893 
894 /*
895  * As this function belongs to the RX path it must be under
896  * rcu_read_lock protection. It returns false if the frame
897  * can be processed immediately, true if it was consumed.
898  */
899 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
900 					     struct tid_ampdu_rx *tid_agg_rx,
901 					     struct sk_buff *skb,
902 					     struct sk_buff_head *frames)
903 {
904 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
905 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
906 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
907 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
908 	u16 head_seq_num, buf_size;
909 	int index;
910 	bool ret = true;
911 
912 	spin_lock(&tid_agg_rx->reorder_lock);
913 
914 	/*
915 	 * Offloaded BA sessions have no known starting sequence number so pick
916 	 * one from first Rxed frame for this tid after BA was started.
917 	 */
918 	if (unlikely(tid_agg_rx->auto_seq)) {
919 		tid_agg_rx->auto_seq = false;
920 		tid_agg_rx->ssn = mpdu_seq_num;
921 		tid_agg_rx->head_seq_num = mpdu_seq_num;
922 	}
923 
924 	buf_size = tid_agg_rx->buf_size;
925 	head_seq_num = tid_agg_rx->head_seq_num;
926 
927 	/* frame with out of date sequence number */
928 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
929 		dev_kfree_skb(skb);
930 		goto out;
931 	}
932 
933 	/*
934 	 * If frame the sequence number exceeds our buffering window
935 	 * size release some previous frames to make room for this one.
936 	 */
937 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
938 		head_seq_num = ieee80211_sn_inc(
939 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
940 		/* release stored frames up to new head to stack */
941 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
942 						 head_seq_num, frames);
943 	}
944 
945 	/* Now the new frame is always in the range of the reordering buffer */
946 
947 	index = mpdu_seq_num % tid_agg_rx->buf_size;
948 
949 	/* check if we already stored this frame */
950 	if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
951 		dev_kfree_skb(skb);
952 		goto out;
953 	}
954 
955 	/*
956 	 * If the current MPDU is in the right order and nothing else
957 	 * is stored we can process it directly, no need to buffer it.
958 	 * If it is first but there's something stored, we may be able
959 	 * to release frames after this one.
960 	 */
961 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
962 	    tid_agg_rx->stored_mpdu_num == 0) {
963 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
964 			tid_agg_rx->head_seq_num =
965 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
966 		ret = false;
967 		goto out;
968 	}
969 
970 	/* put the frame in the reordering buffer */
971 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
972 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
973 		tid_agg_rx->reorder_time[index] = jiffies;
974 		tid_agg_rx->stored_mpdu_num++;
975 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
976 	}
977 
978  out:
979 	spin_unlock(&tid_agg_rx->reorder_lock);
980 	return ret;
981 }
982 
983 /*
984  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
985  * true if the MPDU was buffered, false if it should be processed.
986  */
987 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
988 				       struct sk_buff_head *frames)
989 {
990 	struct sk_buff *skb = rx->skb;
991 	struct ieee80211_local *local = rx->local;
992 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
993 	struct sta_info *sta = rx->sta;
994 	struct tid_ampdu_rx *tid_agg_rx;
995 	u16 sc;
996 	u8 tid, ack_policy;
997 
998 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
999 	    is_multicast_ether_addr(hdr->addr1))
1000 		goto dont_reorder;
1001 
1002 	/*
1003 	 * filter the QoS data rx stream according to
1004 	 * STA/TID and check if this STA/TID is on aggregation
1005 	 */
1006 
1007 	if (!sta)
1008 		goto dont_reorder;
1009 
1010 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1011 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1012 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1013 
1014 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1015 	if (!tid_agg_rx)
1016 		goto dont_reorder;
1017 
1018 	/* qos null data frames are excluded */
1019 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1020 		goto dont_reorder;
1021 
1022 	/* not part of a BA session */
1023 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1024 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1025 		goto dont_reorder;
1026 
1027 	/* new, potentially un-ordered, ampdu frame - process it */
1028 
1029 	/* reset session timer */
1030 	if (tid_agg_rx->timeout)
1031 		tid_agg_rx->last_rx = jiffies;
1032 
1033 	/* if this mpdu is fragmented - terminate rx aggregation session */
1034 	sc = le16_to_cpu(hdr->seq_ctrl);
1035 	if (sc & IEEE80211_SCTL_FRAG) {
1036 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1037 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1038 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1039 		return;
1040 	}
1041 
1042 	/*
1043 	 * No locking needed -- we will only ever process one
1044 	 * RX packet at a time, and thus own tid_agg_rx. All
1045 	 * other code manipulating it needs to (and does) make
1046 	 * sure that we cannot get to it any more before doing
1047 	 * anything with it.
1048 	 */
1049 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1050 					     frames))
1051 		return;
1052 
1053  dont_reorder:
1054 	__skb_queue_tail(frames, skb);
1055 }
1056 
1057 static ieee80211_rx_result debug_noinline
1058 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1059 {
1060 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1061 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1062 
1063 	/*
1064 	 * Drop duplicate 802.11 retransmissions
1065 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1066 	 */
1067 
1068 	if (rx->skb->len < 24)
1069 		return RX_CONTINUE;
1070 
1071 	if (ieee80211_is_ctl(hdr->frame_control) ||
1072 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1073 	    is_multicast_ether_addr(hdr->addr1))
1074 		return RX_CONTINUE;
1075 
1076 	if (rx->sta) {
1077 		if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1078 			     rx->sta->last_seq_ctrl[rx->seqno_idx] ==
1079 			     hdr->seq_ctrl)) {
1080 			I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1081 			rx->sta->num_duplicates++;
1082 			return RX_DROP_UNUSABLE;
1083 		} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1084 			rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1085 		}
1086 	}
1087 
1088 	return RX_CONTINUE;
1089 }
1090 
1091 static ieee80211_rx_result debug_noinline
1092 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1093 {
1094 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1095 
1096 	if (unlikely(rx->skb->len < 16)) {
1097 		I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1098 		return RX_DROP_MONITOR;
1099 	}
1100 
1101 	/* Drop disallowed frame classes based on STA auth/assoc state;
1102 	 * IEEE 802.11, Chap 5.5.
1103 	 *
1104 	 * mac80211 filters only based on association state, i.e. it drops
1105 	 * Class 3 frames from not associated stations. hostapd sends
1106 	 * deauth/disassoc frames when needed. In addition, hostapd is
1107 	 * responsible for filtering on both auth and assoc states.
1108 	 */
1109 
1110 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1111 		return ieee80211_rx_mesh_check(rx);
1112 
1113 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1114 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1115 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1116 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1117 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1118 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1119 		/*
1120 		 * accept port control frames from the AP even when it's not
1121 		 * yet marked ASSOC to prevent a race where we don't set the
1122 		 * assoc bit quickly enough before it sends the first frame
1123 		 */
1124 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1125 		    ieee80211_is_data_present(hdr->frame_control)) {
1126 			unsigned int hdrlen;
1127 			__be16 ethertype;
1128 
1129 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1130 
1131 			if (rx->skb->len < hdrlen + 8)
1132 				return RX_DROP_MONITOR;
1133 
1134 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1135 			if (ethertype == rx->sdata->control_port_protocol)
1136 				return RX_CONTINUE;
1137 		}
1138 
1139 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1140 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1141 					       hdr->addr2,
1142 					       GFP_ATOMIC))
1143 			return RX_DROP_UNUSABLE;
1144 
1145 		return RX_DROP_MONITOR;
1146 	}
1147 
1148 	return RX_CONTINUE;
1149 }
1150 
1151 
1152 static ieee80211_rx_result debug_noinline
1153 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1154 {
1155 	struct ieee80211_local *local;
1156 	struct ieee80211_hdr *hdr;
1157 	struct sk_buff *skb;
1158 
1159 	local = rx->local;
1160 	skb = rx->skb;
1161 	hdr = (struct ieee80211_hdr *) skb->data;
1162 
1163 	if (!local->pspolling)
1164 		return RX_CONTINUE;
1165 
1166 	if (!ieee80211_has_fromds(hdr->frame_control))
1167 		/* this is not from AP */
1168 		return RX_CONTINUE;
1169 
1170 	if (!ieee80211_is_data(hdr->frame_control))
1171 		return RX_CONTINUE;
1172 
1173 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1174 		/* AP has no more frames buffered for us */
1175 		local->pspolling = false;
1176 		return RX_CONTINUE;
1177 	}
1178 
1179 	/* more data bit is set, let's request a new frame from the AP */
1180 	ieee80211_send_pspoll(local, rx->sdata);
1181 
1182 	return RX_CONTINUE;
1183 }
1184 
1185 static void sta_ps_start(struct sta_info *sta)
1186 {
1187 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1188 	struct ieee80211_local *local = sdata->local;
1189 	struct ps_data *ps;
1190 	int tid;
1191 
1192 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1193 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1194 		ps = &sdata->bss->ps;
1195 	else
1196 		return;
1197 
1198 	atomic_inc(&ps->num_sta_ps);
1199 	set_sta_flag(sta, WLAN_STA_PS_STA);
1200 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1201 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1202 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1203 	       sta->sta.addr, sta->sta.aid);
1204 
1205 	ieee80211_clear_fast_xmit(sta);
1206 
1207 	if (!sta->sta.txq[0])
1208 		return;
1209 
1210 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1211 		struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1212 
1213 		if (!skb_queue_len(&txqi->queue))
1214 			set_bit(tid, &sta->txq_buffered_tids);
1215 		else
1216 			clear_bit(tid, &sta->txq_buffered_tids);
1217 	}
1218 }
1219 
1220 static void sta_ps_end(struct sta_info *sta)
1221 {
1222 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1223 	       sta->sta.addr, sta->sta.aid);
1224 
1225 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1226 		/*
1227 		 * Clear the flag only if the other one is still set
1228 		 * so that the TX path won't start TX'ing new frames
1229 		 * directly ... In the case that the driver flag isn't
1230 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1231 		 */
1232 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1233 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1234 		       sta->sta.addr, sta->sta.aid);
1235 		return;
1236 	}
1237 
1238 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1239 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1240 	ieee80211_sta_ps_deliver_wakeup(sta);
1241 }
1242 
1243 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1244 {
1245 	struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1246 	bool in_ps;
1247 
1248 	WARN_ON(!ieee80211_hw_check(&sta_inf->local->hw, AP_LINK_PS));
1249 
1250 	/* Don't let the same PS state be set twice */
1251 	in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1252 	if ((start && in_ps) || (!start && !in_ps))
1253 		return -EINVAL;
1254 
1255 	if (start)
1256 		sta_ps_start(sta_inf);
1257 	else
1258 		sta_ps_end(sta_inf);
1259 
1260 	return 0;
1261 }
1262 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1263 
1264 static ieee80211_rx_result debug_noinline
1265 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1266 {
1267 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1268 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1269 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1270 	int tid, ac;
1271 
1272 	if (!rx->sta)
1273 		return RX_CONTINUE;
1274 
1275 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1276 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1277 		return RX_CONTINUE;
1278 
1279 	/*
1280 	 * The device handles station powersave, so don't do anything about
1281 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1282 	 * it to mac80211 since they're handled.)
1283 	 */
1284 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1285 		return RX_CONTINUE;
1286 
1287 	/*
1288 	 * Don't do anything if the station isn't already asleep. In
1289 	 * the uAPSD case, the station will probably be marked asleep,
1290 	 * in the PS-Poll case the station must be confused ...
1291 	 */
1292 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1293 		return RX_CONTINUE;
1294 
1295 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1296 		if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1297 			if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1298 				ieee80211_sta_ps_deliver_poll_response(rx->sta);
1299 			else
1300 				set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1301 		}
1302 
1303 		/* Free PS Poll skb here instead of returning RX_DROP that would
1304 		 * count as an dropped frame. */
1305 		dev_kfree_skb(rx->skb);
1306 
1307 		return RX_QUEUED;
1308 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1309 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1310 		   ieee80211_has_pm(hdr->frame_control) &&
1311 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1312 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1313 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1314 		ac = ieee802_1d_to_ac[tid & 7];
1315 
1316 		/*
1317 		 * If this AC is not trigger-enabled do nothing.
1318 		 *
1319 		 * NB: This could/should check a separate bitmap of trigger-
1320 		 * enabled queues, but for now we only implement uAPSD w/o
1321 		 * TSPEC changes to the ACs, so they're always the same.
1322 		 */
1323 		if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1324 			return RX_CONTINUE;
1325 
1326 		/* if we are in a service period, do nothing */
1327 		if (test_sta_flag(rx->sta, WLAN_STA_SP))
1328 			return RX_CONTINUE;
1329 
1330 		if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1331 			ieee80211_sta_ps_deliver_uapsd(rx->sta);
1332 		else
1333 			set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1334 	}
1335 
1336 	return RX_CONTINUE;
1337 }
1338 
1339 static ieee80211_rx_result debug_noinline
1340 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1341 {
1342 	struct sta_info *sta = rx->sta;
1343 	struct sk_buff *skb = rx->skb;
1344 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1345 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1346 	int i;
1347 
1348 	if (!sta)
1349 		return RX_CONTINUE;
1350 
1351 	/*
1352 	 * Update last_rx only for IBSS packets which are for the current
1353 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1354 	 * current IBSS network alive in cases where other STAs start
1355 	 * using different BSSID. This will also give the station another
1356 	 * chance to restart the authentication/authorization in case
1357 	 * something went wrong the first time.
1358 	 */
1359 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1360 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1361 						NL80211_IFTYPE_ADHOC);
1362 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1363 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1364 			sta->last_rx = jiffies;
1365 			if (ieee80211_is_data(hdr->frame_control) &&
1366 			    !is_multicast_ether_addr(hdr->addr1)) {
1367 				sta->last_rx_rate_idx = status->rate_idx;
1368 				sta->last_rx_rate_flag = status->flag;
1369 				sta->last_rx_rate_vht_flag = status->vht_flag;
1370 				sta->last_rx_rate_vht_nss = status->vht_nss;
1371 			}
1372 		}
1373 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1374 		sta->last_rx = jiffies;
1375 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1376 		/*
1377 		 * Mesh beacons will update last_rx when if they are found to
1378 		 * match the current local configuration when processed.
1379 		 */
1380 		sta->last_rx = jiffies;
1381 		if (ieee80211_is_data(hdr->frame_control)) {
1382 			sta->last_rx_rate_idx = status->rate_idx;
1383 			sta->last_rx_rate_flag = status->flag;
1384 			sta->last_rx_rate_vht_flag = status->vht_flag;
1385 			sta->last_rx_rate_vht_nss = status->vht_nss;
1386 		}
1387 	}
1388 
1389 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1390 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1391 
1392 	sta->rx_fragments++;
1393 	sta->rx_bytes += rx->skb->len;
1394 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1395 		sta->last_signal = status->signal;
1396 		ewma_add(&sta->avg_signal, -status->signal);
1397 	}
1398 
1399 	if (status->chains) {
1400 		sta->chains = status->chains;
1401 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1402 			int signal = status->chain_signal[i];
1403 
1404 			if (!(status->chains & BIT(i)))
1405 				continue;
1406 
1407 			sta->chain_signal_last[i] = signal;
1408 			ewma_add(&sta->chain_signal_avg[i], -signal);
1409 		}
1410 	}
1411 
1412 	/*
1413 	 * Change STA power saving mode only at the end of a frame
1414 	 * exchange sequence.
1415 	 */
1416 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1417 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1418 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1419 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1420 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1421 	    /* PM bit is only checked in frames where it isn't reserved,
1422 	     * in AP mode it's reserved in non-bufferable management frames
1423 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1424 	     */
1425 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1426 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1427 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1428 			if (!ieee80211_has_pm(hdr->frame_control))
1429 				sta_ps_end(sta);
1430 		} else {
1431 			if (ieee80211_has_pm(hdr->frame_control))
1432 				sta_ps_start(sta);
1433 		}
1434 	}
1435 
1436 	/* mesh power save support */
1437 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1438 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1439 
1440 	/*
1441 	 * Drop (qos-)data::nullfunc frames silently, since they
1442 	 * are used only to control station power saving mode.
1443 	 */
1444 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1445 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1446 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1447 
1448 		/*
1449 		 * If we receive a 4-addr nullfunc frame from a STA
1450 		 * that was not moved to a 4-addr STA vlan yet send
1451 		 * the event to userspace and for older hostapd drop
1452 		 * the frame to the monitor interface.
1453 		 */
1454 		if (ieee80211_has_a4(hdr->frame_control) &&
1455 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1456 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1457 		      !rx->sdata->u.vlan.sta))) {
1458 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1459 				cfg80211_rx_unexpected_4addr_frame(
1460 					rx->sdata->dev, sta->sta.addr,
1461 					GFP_ATOMIC);
1462 			return RX_DROP_MONITOR;
1463 		}
1464 		/*
1465 		 * Update counter and free packet here to avoid
1466 		 * counting this as a dropped packed.
1467 		 */
1468 		sta->rx_packets++;
1469 		dev_kfree_skb(rx->skb);
1470 		return RX_QUEUED;
1471 	}
1472 
1473 	return RX_CONTINUE;
1474 } /* ieee80211_rx_h_sta_process */
1475 
1476 static ieee80211_rx_result debug_noinline
1477 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1478 {
1479 	struct sk_buff *skb = rx->skb;
1480 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1481 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1482 	int keyidx;
1483 	int hdrlen;
1484 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1485 	struct ieee80211_key *sta_ptk = NULL;
1486 	int mmie_keyidx = -1;
1487 	__le16 fc;
1488 	const struct ieee80211_cipher_scheme *cs = NULL;
1489 
1490 	/*
1491 	 * Key selection 101
1492 	 *
1493 	 * There are four types of keys:
1494 	 *  - GTK (group keys)
1495 	 *  - IGTK (group keys for management frames)
1496 	 *  - PTK (pairwise keys)
1497 	 *  - STK (station-to-station pairwise keys)
1498 	 *
1499 	 * When selecting a key, we have to distinguish between multicast
1500 	 * (including broadcast) and unicast frames, the latter can only
1501 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1502 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1503 	 * unicast frames can also use key indices like GTKs. Hence, if we
1504 	 * don't have a PTK/STK we check the key index for a WEP key.
1505 	 *
1506 	 * Note that in a regular BSS, multicast frames are sent by the
1507 	 * AP only, associated stations unicast the frame to the AP first
1508 	 * which then multicasts it on their behalf.
1509 	 *
1510 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1511 	 * with each station, that is something we don't currently handle.
1512 	 * The spec seems to expect that one negotiates the same key with
1513 	 * every station but there's no such requirement; VLANs could be
1514 	 * possible.
1515 	 */
1516 
1517 	/* start without a key */
1518 	rx->key = NULL;
1519 	fc = hdr->frame_control;
1520 
1521 	if (rx->sta) {
1522 		int keyid = rx->sta->ptk_idx;
1523 
1524 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1525 			cs = rx->sta->cipher_scheme;
1526 			keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1527 			if (unlikely(keyid < 0))
1528 				return RX_DROP_UNUSABLE;
1529 		}
1530 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1531 	}
1532 
1533 	if (!ieee80211_has_protected(fc))
1534 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1535 
1536 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1537 		rx->key = sta_ptk;
1538 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1539 		    (status->flag & RX_FLAG_IV_STRIPPED))
1540 			return RX_CONTINUE;
1541 		/* Skip decryption if the frame is not protected. */
1542 		if (!ieee80211_has_protected(fc))
1543 			return RX_CONTINUE;
1544 	} else if (mmie_keyidx >= 0) {
1545 		/* Broadcast/multicast robust management frame / BIP */
1546 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1547 		    (status->flag & RX_FLAG_IV_STRIPPED))
1548 			return RX_CONTINUE;
1549 
1550 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1551 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1552 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1553 		if (rx->sta)
1554 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1555 		if (!rx->key)
1556 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1557 	} else if (!ieee80211_has_protected(fc)) {
1558 		/*
1559 		 * The frame was not protected, so skip decryption. However, we
1560 		 * need to set rx->key if there is a key that could have been
1561 		 * used so that the frame may be dropped if encryption would
1562 		 * have been expected.
1563 		 */
1564 		struct ieee80211_key *key = NULL;
1565 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1566 		int i;
1567 
1568 		if (ieee80211_is_mgmt(fc) &&
1569 		    is_multicast_ether_addr(hdr->addr1) &&
1570 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1571 			rx->key = key;
1572 		else {
1573 			if (rx->sta) {
1574 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1575 					key = rcu_dereference(rx->sta->gtk[i]);
1576 					if (key)
1577 						break;
1578 				}
1579 			}
1580 			if (!key) {
1581 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1582 					key = rcu_dereference(sdata->keys[i]);
1583 					if (key)
1584 						break;
1585 				}
1586 			}
1587 			if (key)
1588 				rx->key = key;
1589 		}
1590 		return RX_CONTINUE;
1591 	} else {
1592 		u8 keyid;
1593 
1594 		/*
1595 		 * The device doesn't give us the IV so we won't be
1596 		 * able to look up the key. That's ok though, we
1597 		 * don't need to decrypt the frame, we just won't
1598 		 * be able to keep statistics accurate.
1599 		 * Except for key threshold notifications, should
1600 		 * we somehow allow the driver to tell us which key
1601 		 * the hardware used if this flag is set?
1602 		 */
1603 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1604 		    (status->flag & RX_FLAG_IV_STRIPPED))
1605 			return RX_CONTINUE;
1606 
1607 		hdrlen = ieee80211_hdrlen(fc);
1608 
1609 		if (cs) {
1610 			keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1611 
1612 			if (unlikely(keyidx < 0))
1613 				return RX_DROP_UNUSABLE;
1614 		} else {
1615 			if (rx->skb->len < 8 + hdrlen)
1616 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1617 			/*
1618 			 * no need to call ieee80211_wep_get_keyidx,
1619 			 * it verifies a bunch of things we've done already
1620 			 */
1621 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1622 			keyidx = keyid >> 6;
1623 		}
1624 
1625 		/* check per-station GTK first, if multicast packet */
1626 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1627 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1628 
1629 		/* if not found, try default key */
1630 		if (!rx->key) {
1631 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1632 
1633 			/*
1634 			 * RSNA-protected unicast frames should always be
1635 			 * sent with pairwise or station-to-station keys,
1636 			 * but for WEP we allow using a key index as well.
1637 			 */
1638 			if (rx->key &&
1639 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1640 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1641 			    !is_multicast_ether_addr(hdr->addr1))
1642 				rx->key = NULL;
1643 		}
1644 	}
1645 
1646 	if (rx->key) {
1647 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1648 			return RX_DROP_MONITOR;
1649 
1650 		rx->key->tx_rx_count++;
1651 		/* TODO: add threshold stuff again */
1652 	} else {
1653 		return RX_DROP_MONITOR;
1654 	}
1655 
1656 	switch (rx->key->conf.cipher) {
1657 	case WLAN_CIPHER_SUITE_WEP40:
1658 	case WLAN_CIPHER_SUITE_WEP104:
1659 		result = ieee80211_crypto_wep_decrypt(rx);
1660 		break;
1661 	case WLAN_CIPHER_SUITE_TKIP:
1662 		result = ieee80211_crypto_tkip_decrypt(rx);
1663 		break;
1664 	case WLAN_CIPHER_SUITE_CCMP:
1665 		result = ieee80211_crypto_ccmp_decrypt(
1666 			rx, IEEE80211_CCMP_MIC_LEN);
1667 		break;
1668 	case WLAN_CIPHER_SUITE_CCMP_256:
1669 		result = ieee80211_crypto_ccmp_decrypt(
1670 			rx, IEEE80211_CCMP_256_MIC_LEN);
1671 		break;
1672 	case WLAN_CIPHER_SUITE_AES_CMAC:
1673 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1674 		break;
1675 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1676 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1677 		break;
1678 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1679 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1680 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1681 		break;
1682 	case WLAN_CIPHER_SUITE_GCMP:
1683 	case WLAN_CIPHER_SUITE_GCMP_256:
1684 		result = ieee80211_crypto_gcmp_decrypt(rx);
1685 		break;
1686 	default:
1687 		result = ieee80211_crypto_hw_decrypt(rx);
1688 	}
1689 
1690 	/* the hdr variable is invalid after the decrypt handlers */
1691 
1692 	/* either the frame has been decrypted or will be dropped */
1693 	status->flag |= RX_FLAG_DECRYPTED;
1694 
1695 	return result;
1696 }
1697 
1698 static inline struct ieee80211_fragment_entry *
1699 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1700 			 unsigned int frag, unsigned int seq, int rx_queue,
1701 			 struct sk_buff **skb)
1702 {
1703 	struct ieee80211_fragment_entry *entry;
1704 
1705 	entry = &sdata->fragments[sdata->fragment_next++];
1706 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1707 		sdata->fragment_next = 0;
1708 
1709 	if (!skb_queue_empty(&entry->skb_list))
1710 		__skb_queue_purge(&entry->skb_list);
1711 
1712 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1713 	*skb = NULL;
1714 	entry->first_frag_time = jiffies;
1715 	entry->seq = seq;
1716 	entry->rx_queue = rx_queue;
1717 	entry->last_frag = frag;
1718 	entry->ccmp = 0;
1719 	entry->extra_len = 0;
1720 
1721 	return entry;
1722 }
1723 
1724 static inline struct ieee80211_fragment_entry *
1725 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1726 			  unsigned int frag, unsigned int seq,
1727 			  int rx_queue, struct ieee80211_hdr *hdr)
1728 {
1729 	struct ieee80211_fragment_entry *entry;
1730 	int i, idx;
1731 
1732 	idx = sdata->fragment_next;
1733 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1734 		struct ieee80211_hdr *f_hdr;
1735 
1736 		idx--;
1737 		if (idx < 0)
1738 			idx = IEEE80211_FRAGMENT_MAX - 1;
1739 
1740 		entry = &sdata->fragments[idx];
1741 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1742 		    entry->rx_queue != rx_queue ||
1743 		    entry->last_frag + 1 != frag)
1744 			continue;
1745 
1746 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1747 
1748 		/*
1749 		 * Check ftype and addresses are equal, else check next fragment
1750 		 */
1751 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1752 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1753 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1754 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1755 			continue;
1756 
1757 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1758 			__skb_queue_purge(&entry->skb_list);
1759 			continue;
1760 		}
1761 		return entry;
1762 	}
1763 
1764 	return NULL;
1765 }
1766 
1767 static ieee80211_rx_result debug_noinline
1768 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1769 {
1770 	struct ieee80211_hdr *hdr;
1771 	u16 sc;
1772 	__le16 fc;
1773 	unsigned int frag, seq;
1774 	struct ieee80211_fragment_entry *entry;
1775 	struct sk_buff *skb;
1776 	struct ieee80211_rx_status *status;
1777 
1778 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1779 	fc = hdr->frame_control;
1780 
1781 	if (ieee80211_is_ctl(fc))
1782 		return RX_CONTINUE;
1783 
1784 	sc = le16_to_cpu(hdr->seq_ctrl);
1785 	frag = sc & IEEE80211_SCTL_FRAG;
1786 
1787 	if (is_multicast_ether_addr(hdr->addr1)) {
1788 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1789 		goto out_no_led;
1790 	}
1791 
1792 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1793 		goto out;
1794 
1795 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1796 
1797 	if (skb_linearize(rx->skb))
1798 		return RX_DROP_UNUSABLE;
1799 
1800 	/*
1801 	 *  skb_linearize() might change the skb->data and
1802 	 *  previously cached variables (in this case, hdr) need to
1803 	 *  be refreshed with the new data.
1804 	 */
1805 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1806 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1807 
1808 	if (frag == 0) {
1809 		/* This is the first fragment of a new frame. */
1810 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1811 						 rx->seqno_idx, &(rx->skb));
1812 		if (rx->key &&
1813 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1814 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256) &&
1815 		    ieee80211_has_protected(fc)) {
1816 			int queue = rx->security_idx;
1817 			/* Store CCMP PN so that we can verify that the next
1818 			 * fragment has a sequential PN value. */
1819 			entry->ccmp = 1;
1820 			memcpy(entry->last_pn,
1821 			       rx->key->u.ccmp.rx_pn[queue],
1822 			       IEEE80211_CCMP_PN_LEN);
1823 		}
1824 		return RX_QUEUED;
1825 	}
1826 
1827 	/* This is a fragment for a frame that should already be pending in
1828 	 * fragment cache. Add this fragment to the end of the pending entry.
1829 	 */
1830 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1831 					  rx->seqno_idx, hdr);
1832 	if (!entry) {
1833 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1834 		return RX_DROP_MONITOR;
1835 	}
1836 
1837 	/* Verify that MPDUs within one MSDU have sequential PN values.
1838 	 * (IEEE 802.11i, 8.3.3.4.5) */
1839 	if (entry->ccmp) {
1840 		int i;
1841 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1842 		int queue;
1843 		if (!rx->key ||
1844 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1845 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256))
1846 			return RX_DROP_UNUSABLE;
1847 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1848 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1849 			pn[i]++;
1850 			if (pn[i])
1851 				break;
1852 		}
1853 		queue = rx->security_idx;
1854 		rpn = rx->key->u.ccmp.rx_pn[queue];
1855 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1856 			return RX_DROP_UNUSABLE;
1857 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1858 	}
1859 
1860 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1861 	__skb_queue_tail(&entry->skb_list, rx->skb);
1862 	entry->last_frag = frag;
1863 	entry->extra_len += rx->skb->len;
1864 	if (ieee80211_has_morefrags(fc)) {
1865 		rx->skb = NULL;
1866 		return RX_QUEUED;
1867 	}
1868 
1869 	rx->skb = __skb_dequeue(&entry->skb_list);
1870 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1871 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
1872 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1873 					      GFP_ATOMIC))) {
1874 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1875 			__skb_queue_purge(&entry->skb_list);
1876 			return RX_DROP_UNUSABLE;
1877 		}
1878 	}
1879 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1880 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1881 		dev_kfree_skb(skb);
1882 	}
1883 
1884 	/* Complete frame has been reassembled - process it now */
1885 	status = IEEE80211_SKB_RXCB(rx->skb);
1886 	status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1887 
1888  out:
1889 	ieee80211_led_rx(rx->local);
1890  out_no_led:
1891 	if (rx->sta)
1892 		rx->sta->rx_packets++;
1893 	return RX_CONTINUE;
1894 }
1895 
1896 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1897 {
1898 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1899 		return -EACCES;
1900 
1901 	return 0;
1902 }
1903 
1904 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1905 {
1906 	struct sk_buff *skb = rx->skb;
1907 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1908 
1909 	/*
1910 	 * Pass through unencrypted frames if the hardware has
1911 	 * decrypted them already.
1912 	 */
1913 	if (status->flag & RX_FLAG_DECRYPTED)
1914 		return 0;
1915 
1916 	/* Drop unencrypted frames if key is set. */
1917 	if (unlikely(!ieee80211_has_protected(fc) &&
1918 		     !ieee80211_is_nullfunc(fc) &&
1919 		     ieee80211_is_data(fc) && rx->key))
1920 		return -EACCES;
1921 
1922 	return 0;
1923 }
1924 
1925 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1926 {
1927 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1928 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1929 	__le16 fc = hdr->frame_control;
1930 
1931 	/*
1932 	 * Pass through unencrypted frames if the hardware has
1933 	 * decrypted them already.
1934 	 */
1935 	if (status->flag & RX_FLAG_DECRYPTED)
1936 		return 0;
1937 
1938 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1939 		if (unlikely(!ieee80211_has_protected(fc) &&
1940 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1941 			     rx->key)) {
1942 			if (ieee80211_is_deauth(fc) ||
1943 			    ieee80211_is_disassoc(fc))
1944 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1945 							     rx->skb->data,
1946 							     rx->skb->len);
1947 			return -EACCES;
1948 		}
1949 		/* BIP does not use Protected field, so need to check MMIE */
1950 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1951 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1952 			if (ieee80211_is_deauth(fc) ||
1953 			    ieee80211_is_disassoc(fc))
1954 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1955 							     rx->skb->data,
1956 							     rx->skb->len);
1957 			return -EACCES;
1958 		}
1959 		/*
1960 		 * When using MFP, Action frames are not allowed prior to
1961 		 * having configured keys.
1962 		 */
1963 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1964 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
1965 			return -EACCES;
1966 	}
1967 
1968 	return 0;
1969 }
1970 
1971 static int
1972 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1973 {
1974 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1975 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1976 	bool check_port_control = false;
1977 	struct ethhdr *ehdr;
1978 	int ret;
1979 
1980 	*port_control = false;
1981 	if (ieee80211_has_a4(hdr->frame_control) &&
1982 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1983 		return -1;
1984 
1985 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1986 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1987 
1988 		if (!sdata->u.mgd.use_4addr)
1989 			return -1;
1990 		else
1991 			check_port_control = true;
1992 	}
1993 
1994 	if (is_multicast_ether_addr(hdr->addr1) &&
1995 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1996 		return -1;
1997 
1998 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1999 	if (ret < 0)
2000 		return ret;
2001 
2002 	ehdr = (struct ethhdr *) rx->skb->data;
2003 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2004 		*port_control = true;
2005 	else if (check_port_control)
2006 		return -1;
2007 
2008 	return 0;
2009 }
2010 
2011 /*
2012  * requires that rx->skb is a frame with ethernet header
2013  */
2014 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2015 {
2016 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2017 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2018 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2019 
2020 	/*
2021 	 * Allow EAPOL frames to us/the PAE group address regardless
2022 	 * of whether the frame was encrypted or not.
2023 	 */
2024 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2025 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2026 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2027 		return true;
2028 
2029 	if (ieee80211_802_1x_port_control(rx) ||
2030 	    ieee80211_drop_unencrypted(rx, fc))
2031 		return false;
2032 
2033 	return true;
2034 }
2035 
2036 /*
2037  * requires that rx->skb is a frame with ethernet header
2038  */
2039 static void
2040 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2041 {
2042 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2043 	struct net_device *dev = sdata->dev;
2044 	struct sk_buff *skb, *xmit_skb;
2045 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2046 	struct sta_info *dsta;
2047 
2048 	skb = rx->skb;
2049 	xmit_skb = NULL;
2050 
2051 	ieee80211_rx_stats(dev, skb->len);
2052 
2053 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2054 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2055 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2056 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2057 		if (is_multicast_ether_addr(ehdr->h_dest)) {
2058 			/*
2059 			 * send multicast frames both to higher layers in
2060 			 * local net stack and back to the wireless medium
2061 			 */
2062 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2063 			if (!xmit_skb)
2064 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2065 						    dev->name);
2066 		} else {
2067 			dsta = sta_info_get(sdata, skb->data);
2068 			if (dsta) {
2069 				/*
2070 				 * The destination station is associated to
2071 				 * this AP (in this VLAN), so send the frame
2072 				 * directly to it and do not pass it to local
2073 				 * net stack.
2074 				 */
2075 				xmit_skb = skb;
2076 				skb = NULL;
2077 			}
2078 		}
2079 	}
2080 
2081 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2082 	if (skb) {
2083 		/* 'align' will only take the values 0 or 2 here since all
2084 		 * frames are required to be aligned to 2-byte boundaries
2085 		 * when being passed to mac80211; the code here works just
2086 		 * as well if that isn't true, but mac80211 assumes it can
2087 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2088 		 */
2089 		int align;
2090 
2091 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2092 		if (align) {
2093 			if (WARN_ON(skb_headroom(skb) < 3)) {
2094 				dev_kfree_skb(skb);
2095 				skb = NULL;
2096 			} else {
2097 				u8 *data = skb->data;
2098 				size_t len = skb_headlen(skb);
2099 				skb->data -= align;
2100 				memmove(skb->data, data, len);
2101 				skb_set_tail_pointer(skb, len);
2102 			}
2103 		}
2104 	}
2105 #endif
2106 
2107 	if (skb) {
2108 		/* deliver to local stack */
2109 		skb->protocol = eth_type_trans(skb, dev);
2110 		memset(skb->cb, 0, sizeof(skb->cb));
2111 		if (!(rx->flags & IEEE80211_RX_REORDER_TIMER) &&
2112 		    rx->local->napi)
2113 			napi_gro_receive(rx->local->napi, skb);
2114 		else
2115 			netif_receive_skb(skb);
2116 	}
2117 
2118 	if (xmit_skb) {
2119 		/*
2120 		 * Send to wireless media and increase priority by 256 to
2121 		 * keep the received priority instead of reclassifying
2122 		 * the frame (see cfg80211_classify8021d).
2123 		 */
2124 		xmit_skb->priority += 256;
2125 		xmit_skb->protocol = htons(ETH_P_802_3);
2126 		skb_reset_network_header(xmit_skb);
2127 		skb_reset_mac_header(xmit_skb);
2128 		dev_queue_xmit(xmit_skb);
2129 	}
2130 }
2131 
2132 static ieee80211_rx_result debug_noinline
2133 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2134 {
2135 	struct net_device *dev = rx->sdata->dev;
2136 	struct sk_buff *skb = rx->skb;
2137 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2138 	__le16 fc = hdr->frame_control;
2139 	struct sk_buff_head frame_list;
2140 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2141 
2142 	if (unlikely(!ieee80211_is_data(fc)))
2143 		return RX_CONTINUE;
2144 
2145 	if (unlikely(!ieee80211_is_data_present(fc)))
2146 		return RX_DROP_MONITOR;
2147 
2148 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2149 		return RX_CONTINUE;
2150 
2151 	if (ieee80211_has_a4(hdr->frame_control) &&
2152 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2153 	    !rx->sdata->u.vlan.sta)
2154 		return RX_DROP_UNUSABLE;
2155 
2156 	if (is_multicast_ether_addr(hdr->addr1) &&
2157 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2158 	      rx->sdata->u.vlan.sta) ||
2159 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2160 	      rx->sdata->u.mgd.use_4addr)))
2161 		return RX_DROP_UNUSABLE;
2162 
2163 	skb->dev = dev;
2164 	__skb_queue_head_init(&frame_list);
2165 
2166 	if (skb_linearize(skb))
2167 		return RX_DROP_UNUSABLE;
2168 
2169 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2170 				 rx->sdata->vif.type,
2171 				 rx->local->hw.extra_tx_headroom, true);
2172 
2173 	while (!skb_queue_empty(&frame_list)) {
2174 		rx->skb = __skb_dequeue(&frame_list);
2175 
2176 		if (!ieee80211_frame_allowed(rx, fc)) {
2177 			dev_kfree_skb(rx->skb);
2178 			continue;
2179 		}
2180 
2181 		ieee80211_deliver_skb(rx);
2182 	}
2183 
2184 	return RX_QUEUED;
2185 }
2186 
2187 #ifdef CONFIG_MAC80211_MESH
2188 static ieee80211_rx_result
2189 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2190 {
2191 	struct ieee80211_hdr *fwd_hdr, *hdr;
2192 	struct ieee80211_tx_info *info;
2193 	struct ieee80211s_hdr *mesh_hdr;
2194 	struct sk_buff *skb = rx->skb, *fwd_skb;
2195 	struct ieee80211_local *local = rx->local;
2196 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2197 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2198 	u16 q, hdrlen;
2199 
2200 	hdr = (struct ieee80211_hdr *) skb->data;
2201 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2202 
2203 	/* make sure fixed part of mesh header is there, also checks skb len */
2204 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2205 		return RX_DROP_MONITOR;
2206 
2207 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2208 
2209 	/* make sure full mesh header is there, also checks skb len */
2210 	if (!pskb_may_pull(rx->skb,
2211 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2212 		return RX_DROP_MONITOR;
2213 
2214 	/* reload pointers */
2215 	hdr = (struct ieee80211_hdr *) skb->data;
2216 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2217 
2218 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2219 		return RX_DROP_MONITOR;
2220 
2221 	/* frame is in RMC, don't forward */
2222 	if (ieee80211_is_data(hdr->frame_control) &&
2223 	    is_multicast_ether_addr(hdr->addr1) &&
2224 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2225 		return RX_DROP_MONITOR;
2226 
2227 	if (!ieee80211_is_data(hdr->frame_control))
2228 		return RX_CONTINUE;
2229 
2230 	if (!mesh_hdr->ttl)
2231 		return RX_DROP_MONITOR;
2232 
2233 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2234 		struct mesh_path *mppath;
2235 		char *proxied_addr;
2236 		char *mpp_addr;
2237 
2238 		if (is_multicast_ether_addr(hdr->addr1)) {
2239 			mpp_addr = hdr->addr3;
2240 			proxied_addr = mesh_hdr->eaddr1;
2241 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2242 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2243 			mpp_addr = hdr->addr4;
2244 			proxied_addr = mesh_hdr->eaddr2;
2245 		} else {
2246 			return RX_DROP_MONITOR;
2247 		}
2248 
2249 		rcu_read_lock();
2250 		mppath = mpp_path_lookup(sdata, proxied_addr);
2251 		if (!mppath) {
2252 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2253 		} else {
2254 			spin_lock_bh(&mppath->state_lock);
2255 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2256 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2257 			spin_unlock_bh(&mppath->state_lock);
2258 		}
2259 		rcu_read_unlock();
2260 	}
2261 
2262 	/* Frame has reached destination.  Don't forward */
2263 	if (!is_multicast_ether_addr(hdr->addr1) &&
2264 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2265 		return RX_CONTINUE;
2266 
2267 	q = ieee80211_select_queue_80211(sdata, skb, hdr);
2268 	if (ieee80211_queue_stopped(&local->hw, q)) {
2269 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2270 		return RX_DROP_MONITOR;
2271 	}
2272 	skb_set_queue_mapping(skb, q);
2273 
2274 	if (!--mesh_hdr->ttl) {
2275 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2276 		goto out;
2277 	}
2278 
2279 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2280 		goto out;
2281 
2282 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
2283 	if (!fwd_skb) {
2284 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2285 				    sdata->name);
2286 		goto out;
2287 	}
2288 
2289 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2290 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2291 	info = IEEE80211_SKB_CB(fwd_skb);
2292 	memset(info, 0, sizeof(*info));
2293 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2294 	info->control.vif = &rx->sdata->vif;
2295 	info->control.jiffies = jiffies;
2296 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2297 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2298 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2299 		/* update power mode indication when forwarding */
2300 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2301 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2302 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2303 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2304 	} else {
2305 		/* unable to resolve next hop */
2306 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2307 				   fwd_hdr->addr3, 0,
2308 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2309 				   fwd_hdr->addr2);
2310 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2311 		kfree_skb(fwd_skb);
2312 		return RX_DROP_MONITOR;
2313 	}
2314 
2315 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2316 	ieee80211_add_pending_skb(local, fwd_skb);
2317  out:
2318 	if (is_multicast_ether_addr(hdr->addr1))
2319 		return RX_CONTINUE;
2320 	return RX_DROP_MONITOR;
2321 }
2322 #endif
2323 
2324 static ieee80211_rx_result debug_noinline
2325 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2326 {
2327 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2328 	struct ieee80211_local *local = rx->local;
2329 	struct net_device *dev = sdata->dev;
2330 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2331 	__le16 fc = hdr->frame_control;
2332 	bool port_control;
2333 	int err;
2334 
2335 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2336 		return RX_CONTINUE;
2337 
2338 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2339 		return RX_DROP_MONITOR;
2340 
2341 	if (rx->sta) {
2342 		/* The seqno index has the same property as needed
2343 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2344 		 * for non-QoS-data frames. Here we know it's a data
2345 		 * frame, so count MSDUs.
2346 		 */
2347 		rx->sta->rx_msdu[rx->seqno_idx]++;
2348 	}
2349 
2350 	/*
2351 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2352 	 * also drop the frame to cooked monitor interfaces.
2353 	 */
2354 	if (ieee80211_has_a4(hdr->frame_control) &&
2355 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2356 		if (rx->sta &&
2357 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2358 			cfg80211_rx_unexpected_4addr_frame(
2359 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2360 		return RX_DROP_MONITOR;
2361 	}
2362 
2363 	err = __ieee80211_data_to_8023(rx, &port_control);
2364 	if (unlikely(err))
2365 		return RX_DROP_UNUSABLE;
2366 
2367 	if (!ieee80211_frame_allowed(rx, fc))
2368 		return RX_DROP_MONITOR;
2369 
2370 	/* directly handle TDLS channel switch requests/responses */
2371 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2372 						cpu_to_be16(ETH_P_TDLS))) {
2373 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2374 
2375 		if (pskb_may_pull(rx->skb,
2376 				  offsetof(struct ieee80211_tdls_data, u)) &&
2377 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2378 		    tf->category == WLAN_CATEGORY_TDLS &&
2379 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2380 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2381 			rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TDLS_CHSW;
2382 			skb_queue_tail(&sdata->skb_queue, rx->skb);
2383 			ieee80211_queue_work(&rx->local->hw, &sdata->work);
2384 			if (rx->sta)
2385 				rx->sta->rx_packets++;
2386 
2387 			return RX_QUEUED;
2388 		}
2389 	}
2390 
2391 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2392 	    unlikely(port_control) && sdata->bss) {
2393 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2394 				     u.ap);
2395 		dev = sdata->dev;
2396 		rx->sdata = sdata;
2397 	}
2398 
2399 	rx->skb->dev = dev;
2400 
2401 	if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2402 	    !is_multicast_ether_addr(
2403 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2404 	    (!local->scanning &&
2405 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2406 			mod_timer(&local->dynamic_ps_timer, jiffies +
2407 			 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2408 	}
2409 
2410 	ieee80211_deliver_skb(rx);
2411 
2412 	return RX_QUEUED;
2413 }
2414 
2415 static ieee80211_rx_result debug_noinline
2416 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2417 {
2418 	struct sk_buff *skb = rx->skb;
2419 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2420 	struct tid_ampdu_rx *tid_agg_rx;
2421 	u16 start_seq_num;
2422 	u16 tid;
2423 
2424 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2425 		return RX_CONTINUE;
2426 
2427 	if (ieee80211_is_back_req(bar->frame_control)) {
2428 		struct {
2429 			__le16 control, start_seq_num;
2430 		} __packed bar_data;
2431 		struct ieee80211_event event = {
2432 			.type = BAR_RX_EVENT,
2433 		};
2434 
2435 		if (!rx->sta)
2436 			return RX_DROP_MONITOR;
2437 
2438 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2439 				  &bar_data, sizeof(bar_data)))
2440 			return RX_DROP_MONITOR;
2441 
2442 		tid = le16_to_cpu(bar_data.control) >> 12;
2443 
2444 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2445 		if (!tid_agg_rx)
2446 			return RX_DROP_MONITOR;
2447 
2448 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2449 		event.u.ba.tid = tid;
2450 		event.u.ba.ssn = start_seq_num;
2451 		event.u.ba.sta = &rx->sta->sta;
2452 
2453 		/* reset session timer */
2454 		if (tid_agg_rx->timeout)
2455 			mod_timer(&tid_agg_rx->session_timer,
2456 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2457 
2458 		spin_lock(&tid_agg_rx->reorder_lock);
2459 		/* release stored frames up to start of BAR */
2460 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2461 						 start_seq_num, frames);
2462 		spin_unlock(&tid_agg_rx->reorder_lock);
2463 
2464 		drv_event_callback(rx->local, rx->sdata, &event);
2465 
2466 		kfree_skb(skb);
2467 		return RX_QUEUED;
2468 	}
2469 
2470 	/*
2471 	 * After this point, we only want management frames,
2472 	 * so we can drop all remaining control frames to
2473 	 * cooked monitor interfaces.
2474 	 */
2475 	return RX_DROP_MONITOR;
2476 }
2477 
2478 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2479 					   struct ieee80211_mgmt *mgmt,
2480 					   size_t len)
2481 {
2482 	struct ieee80211_local *local = sdata->local;
2483 	struct sk_buff *skb;
2484 	struct ieee80211_mgmt *resp;
2485 
2486 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2487 		/* Not to own unicast address */
2488 		return;
2489 	}
2490 
2491 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2492 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2493 		/* Not from the current AP or not associated yet. */
2494 		return;
2495 	}
2496 
2497 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2498 		/* Too short SA Query request frame */
2499 		return;
2500 	}
2501 
2502 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2503 	if (skb == NULL)
2504 		return;
2505 
2506 	skb_reserve(skb, local->hw.extra_tx_headroom);
2507 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2508 	memset(resp, 0, 24);
2509 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2510 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2511 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2512 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2513 					  IEEE80211_STYPE_ACTION);
2514 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2515 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2516 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2517 	memcpy(resp->u.action.u.sa_query.trans_id,
2518 	       mgmt->u.action.u.sa_query.trans_id,
2519 	       WLAN_SA_QUERY_TR_ID_LEN);
2520 
2521 	ieee80211_tx_skb(sdata, skb);
2522 }
2523 
2524 static ieee80211_rx_result debug_noinline
2525 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2526 {
2527 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2528 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2529 
2530 	/*
2531 	 * From here on, look only at management frames.
2532 	 * Data and control frames are already handled,
2533 	 * and unknown (reserved) frames are useless.
2534 	 */
2535 	if (rx->skb->len < 24)
2536 		return RX_DROP_MONITOR;
2537 
2538 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2539 		return RX_DROP_MONITOR;
2540 
2541 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2542 	    ieee80211_is_beacon(mgmt->frame_control) &&
2543 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2544 		int sig = 0;
2545 
2546 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2547 			sig = status->signal;
2548 
2549 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2550 					    rx->skb->data, rx->skb->len,
2551 					    status->freq, sig);
2552 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2553 	}
2554 
2555 	if (ieee80211_drop_unencrypted_mgmt(rx))
2556 		return RX_DROP_UNUSABLE;
2557 
2558 	return RX_CONTINUE;
2559 }
2560 
2561 static ieee80211_rx_result debug_noinline
2562 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2563 {
2564 	struct ieee80211_local *local = rx->local;
2565 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2566 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2567 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2568 	int len = rx->skb->len;
2569 
2570 	if (!ieee80211_is_action(mgmt->frame_control))
2571 		return RX_CONTINUE;
2572 
2573 	/* drop too small frames */
2574 	if (len < IEEE80211_MIN_ACTION_SIZE)
2575 		return RX_DROP_UNUSABLE;
2576 
2577 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2578 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2579 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2580 		return RX_DROP_UNUSABLE;
2581 
2582 	switch (mgmt->u.action.category) {
2583 	case WLAN_CATEGORY_HT:
2584 		/* reject HT action frames from stations not supporting HT */
2585 		if (!rx->sta->sta.ht_cap.ht_supported)
2586 			goto invalid;
2587 
2588 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2589 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2590 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2591 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2592 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2593 			break;
2594 
2595 		/* verify action & smps_control/chanwidth are present */
2596 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2597 			goto invalid;
2598 
2599 		switch (mgmt->u.action.u.ht_smps.action) {
2600 		case WLAN_HT_ACTION_SMPS: {
2601 			struct ieee80211_supported_band *sband;
2602 			enum ieee80211_smps_mode smps_mode;
2603 
2604 			/* convert to HT capability */
2605 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2606 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2607 				smps_mode = IEEE80211_SMPS_OFF;
2608 				break;
2609 			case WLAN_HT_SMPS_CONTROL_STATIC:
2610 				smps_mode = IEEE80211_SMPS_STATIC;
2611 				break;
2612 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2613 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2614 				break;
2615 			default:
2616 				goto invalid;
2617 			}
2618 
2619 			/* if no change do nothing */
2620 			if (rx->sta->sta.smps_mode == smps_mode)
2621 				goto handled;
2622 			rx->sta->sta.smps_mode = smps_mode;
2623 
2624 			sband = rx->local->hw.wiphy->bands[status->band];
2625 
2626 			rate_control_rate_update(local, sband, rx->sta,
2627 						 IEEE80211_RC_SMPS_CHANGED);
2628 			goto handled;
2629 		}
2630 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2631 			struct ieee80211_supported_band *sband;
2632 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2633 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2634 
2635 			/* If it doesn't support 40 MHz it can't change ... */
2636 			if (!(rx->sta->sta.ht_cap.cap &
2637 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2638 				goto handled;
2639 
2640 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2641 				max_bw = IEEE80211_STA_RX_BW_20;
2642 			else
2643 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2644 
2645 			/* set cur_max_bandwidth and recalc sta bw */
2646 			rx->sta->cur_max_bandwidth = max_bw;
2647 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2648 
2649 			if (rx->sta->sta.bandwidth == new_bw)
2650 				goto handled;
2651 
2652 			rx->sta->sta.bandwidth = new_bw;
2653 			sband = rx->local->hw.wiphy->bands[status->band];
2654 
2655 			rate_control_rate_update(local, sband, rx->sta,
2656 						 IEEE80211_RC_BW_CHANGED);
2657 			goto handled;
2658 		}
2659 		default:
2660 			goto invalid;
2661 		}
2662 
2663 		break;
2664 	case WLAN_CATEGORY_PUBLIC:
2665 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2666 			goto invalid;
2667 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2668 			break;
2669 		if (!rx->sta)
2670 			break;
2671 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2672 			break;
2673 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2674 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2675 			break;
2676 		if (len < offsetof(struct ieee80211_mgmt,
2677 				   u.action.u.ext_chan_switch.variable))
2678 			goto invalid;
2679 		goto queue;
2680 	case WLAN_CATEGORY_VHT:
2681 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2682 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2683 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2684 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2685 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2686 			break;
2687 
2688 		/* verify action code is present */
2689 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2690 			goto invalid;
2691 
2692 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2693 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2694 			u8 opmode;
2695 
2696 			/* verify opmode is present */
2697 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2698 				goto invalid;
2699 
2700 			opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2701 
2702 			ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2703 						    opmode, status->band,
2704 						    false);
2705 			goto handled;
2706 		}
2707 		default:
2708 			break;
2709 		}
2710 		break;
2711 	case WLAN_CATEGORY_BACK:
2712 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2713 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2714 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2715 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2716 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2717 			break;
2718 
2719 		/* verify action_code is present */
2720 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2721 			break;
2722 
2723 		switch (mgmt->u.action.u.addba_req.action_code) {
2724 		case WLAN_ACTION_ADDBA_REQ:
2725 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2726 				   sizeof(mgmt->u.action.u.addba_req)))
2727 				goto invalid;
2728 			break;
2729 		case WLAN_ACTION_ADDBA_RESP:
2730 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2731 				   sizeof(mgmt->u.action.u.addba_resp)))
2732 				goto invalid;
2733 			break;
2734 		case WLAN_ACTION_DELBA:
2735 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2736 				   sizeof(mgmt->u.action.u.delba)))
2737 				goto invalid;
2738 			break;
2739 		default:
2740 			goto invalid;
2741 		}
2742 
2743 		goto queue;
2744 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2745 		/* verify action_code is present */
2746 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2747 			break;
2748 
2749 		switch (mgmt->u.action.u.measurement.action_code) {
2750 		case WLAN_ACTION_SPCT_MSR_REQ:
2751 			if (status->band != IEEE80211_BAND_5GHZ)
2752 				break;
2753 
2754 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2755 				   sizeof(mgmt->u.action.u.measurement)))
2756 				break;
2757 
2758 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2759 				break;
2760 
2761 			ieee80211_process_measurement_req(sdata, mgmt, len);
2762 			goto handled;
2763 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2764 			u8 *bssid;
2765 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2766 				   sizeof(mgmt->u.action.u.chan_switch)))
2767 				break;
2768 
2769 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2770 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2771 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2772 				break;
2773 
2774 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2775 				bssid = sdata->u.mgd.bssid;
2776 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2777 				bssid = sdata->u.ibss.bssid;
2778 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2779 				bssid = mgmt->sa;
2780 			else
2781 				break;
2782 
2783 			if (!ether_addr_equal(mgmt->bssid, bssid))
2784 				break;
2785 
2786 			goto queue;
2787 			}
2788 		}
2789 		break;
2790 	case WLAN_CATEGORY_SA_QUERY:
2791 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2792 			   sizeof(mgmt->u.action.u.sa_query)))
2793 			break;
2794 
2795 		switch (mgmt->u.action.u.sa_query.action) {
2796 		case WLAN_ACTION_SA_QUERY_REQUEST:
2797 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2798 				break;
2799 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2800 			goto handled;
2801 		}
2802 		break;
2803 	case WLAN_CATEGORY_SELF_PROTECTED:
2804 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2805 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2806 			break;
2807 
2808 		switch (mgmt->u.action.u.self_prot.action_code) {
2809 		case WLAN_SP_MESH_PEERING_OPEN:
2810 		case WLAN_SP_MESH_PEERING_CLOSE:
2811 		case WLAN_SP_MESH_PEERING_CONFIRM:
2812 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2813 				goto invalid;
2814 			if (sdata->u.mesh.user_mpm)
2815 				/* userspace handles this frame */
2816 				break;
2817 			goto queue;
2818 		case WLAN_SP_MGK_INFORM:
2819 		case WLAN_SP_MGK_ACK:
2820 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2821 				goto invalid;
2822 			break;
2823 		}
2824 		break;
2825 	case WLAN_CATEGORY_MESH_ACTION:
2826 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2827 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
2828 			break;
2829 
2830 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2831 			break;
2832 		if (mesh_action_is_path_sel(mgmt) &&
2833 		    !mesh_path_sel_is_hwmp(sdata))
2834 			break;
2835 		goto queue;
2836 	}
2837 
2838 	return RX_CONTINUE;
2839 
2840  invalid:
2841 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2842 	/* will return in the next handlers */
2843 	return RX_CONTINUE;
2844 
2845  handled:
2846 	if (rx->sta)
2847 		rx->sta->rx_packets++;
2848 	dev_kfree_skb(rx->skb);
2849 	return RX_QUEUED;
2850 
2851  queue:
2852 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2853 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2854 	ieee80211_queue_work(&local->hw, &sdata->work);
2855 	if (rx->sta)
2856 		rx->sta->rx_packets++;
2857 	return RX_QUEUED;
2858 }
2859 
2860 static ieee80211_rx_result debug_noinline
2861 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2862 {
2863 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2864 	int sig = 0;
2865 
2866 	/* skip known-bad action frames and return them in the next handler */
2867 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2868 		return RX_CONTINUE;
2869 
2870 	/*
2871 	 * Getting here means the kernel doesn't know how to handle
2872 	 * it, but maybe userspace does ... include returned frames
2873 	 * so userspace can register for those to know whether ones
2874 	 * it transmitted were processed or returned.
2875 	 */
2876 
2877 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2878 		sig = status->signal;
2879 
2880 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2881 			     rx->skb->data, rx->skb->len, 0)) {
2882 		if (rx->sta)
2883 			rx->sta->rx_packets++;
2884 		dev_kfree_skb(rx->skb);
2885 		return RX_QUEUED;
2886 	}
2887 
2888 	return RX_CONTINUE;
2889 }
2890 
2891 static ieee80211_rx_result debug_noinline
2892 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2893 {
2894 	struct ieee80211_local *local = rx->local;
2895 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2896 	struct sk_buff *nskb;
2897 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2898 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2899 
2900 	if (!ieee80211_is_action(mgmt->frame_control))
2901 		return RX_CONTINUE;
2902 
2903 	/*
2904 	 * For AP mode, hostapd is responsible for handling any action
2905 	 * frames that we didn't handle, including returning unknown
2906 	 * ones. For all other modes we will return them to the sender,
2907 	 * setting the 0x80 bit in the action category, as required by
2908 	 * 802.11-2012 9.24.4.
2909 	 * Newer versions of hostapd shall also use the management frame
2910 	 * registration mechanisms, but older ones still use cooked
2911 	 * monitor interfaces so push all frames there.
2912 	 */
2913 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2914 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
2915 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2916 		return RX_DROP_MONITOR;
2917 
2918 	if (is_multicast_ether_addr(mgmt->da))
2919 		return RX_DROP_MONITOR;
2920 
2921 	/* do not return rejected action frames */
2922 	if (mgmt->u.action.category & 0x80)
2923 		return RX_DROP_UNUSABLE;
2924 
2925 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2926 			       GFP_ATOMIC);
2927 	if (nskb) {
2928 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2929 
2930 		nmgmt->u.action.category |= 0x80;
2931 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2932 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2933 
2934 		memset(nskb->cb, 0, sizeof(nskb->cb));
2935 
2936 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2937 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2938 
2939 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2940 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2941 				      IEEE80211_TX_CTL_NO_CCK_RATE;
2942 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
2943 				info->hw_queue =
2944 					local->hw.offchannel_tx_hw_queue;
2945 		}
2946 
2947 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2948 					    status->band);
2949 	}
2950 	dev_kfree_skb(rx->skb);
2951 	return RX_QUEUED;
2952 }
2953 
2954 static ieee80211_rx_result debug_noinline
2955 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2956 {
2957 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2958 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2959 	__le16 stype;
2960 
2961 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2962 
2963 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2964 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2965 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
2966 	    sdata->vif.type != NL80211_IFTYPE_STATION)
2967 		return RX_DROP_MONITOR;
2968 
2969 	switch (stype) {
2970 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
2971 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
2972 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2973 		/* process for all: mesh, mlme, ibss */
2974 		break;
2975 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2976 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2977 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2978 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2979 		if (is_multicast_ether_addr(mgmt->da) &&
2980 		    !is_broadcast_ether_addr(mgmt->da))
2981 			return RX_DROP_MONITOR;
2982 
2983 		/* process only for station */
2984 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2985 			return RX_DROP_MONITOR;
2986 		break;
2987 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2988 		/* process only for ibss and mesh */
2989 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2990 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2991 			return RX_DROP_MONITOR;
2992 		break;
2993 	default:
2994 		return RX_DROP_MONITOR;
2995 	}
2996 
2997 	/* queue up frame and kick off work to process it */
2998 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2999 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3000 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3001 	if (rx->sta)
3002 		rx->sta->rx_packets++;
3003 
3004 	return RX_QUEUED;
3005 }
3006 
3007 /* TODO: use IEEE80211_RX_FRAGMENTED */
3008 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3009 					struct ieee80211_rate *rate)
3010 {
3011 	struct ieee80211_sub_if_data *sdata;
3012 	struct ieee80211_local *local = rx->local;
3013 	struct sk_buff *skb = rx->skb, *skb2;
3014 	struct net_device *prev_dev = NULL;
3015 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3016 	int needed_headroom;
3017 
3018 	/*
3019 	 * If cooked monitor has been processed already, then
3020 	 * don't do it again. If not, set the flag.
3021 	 */
3022 	if (rx->flags & IEEE80211_RX_CMNTR)
3023 		goto out_free_skb;
3024 	rx->flags |= IEEE80211_RX_CMNTR;
3025 
3026 	/* If there are no cooked monitor interfaces, just free the SKB */
3027 	if (!local->cooked_mntrs)
3028 		goto out_free_skb;
3029 
3030 	/* vendor data is long removed here */
3031 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3032 	/* room for the radiotap header based on driver features */
3033 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3034 
3035 	if (skb_headroom(skb) < needed_headroom &&
3036 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3037 		goto out_free_skb;
3038 
3039 	/* prepend radiotap information */
3040 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3041 					 false);
3042 
3043 	skb_set_mac_header(skb, 0);
3044 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3045 	skb->pkt_type = PACKET_OTHERHOST;
3046 	skb->protocol = htons(ETH_P_802_2);
3047 
3048 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3049 		if (!ieee80211_sdata_running(sdata))
3050 			continue;
3051 
3052 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3053 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3054 			continue;
3055 
3056 		if (prev_dev) {
3057 			skb2 = skb_clone(skb, GFP_ATOMIC);
3058 			if (skb2) {
3059 				skb2->dev = prev_dev;
3060 				netif_receive_skb(skb2);
3061 			}
3062 		}
3063 
3064 		prev_dev = sdata->dev;
3065 		ieee80211_rx_stats(sdata->dev, skb->len);
3066 	}
3067 
3068 	if (prev_dev) {
3069 		skb->dev = prev_dev;
3070 		netif_receive_skb(skb);
3071 		return;
3072 	}
3073 
3074  out_free_skb:
3075 	dev_kfree_skb(skb);
3076 }
3077 
3078 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3079 					 ieee80211_rx_result res)
3080 {
3081 	switch (res) {
3082 	case RX_DROP_MONITOR:
3083 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3084 		if (rx->sta)
3085 			rx->sta->rx_dropped++;
3086 		/* fall through */
3087 	case RX_CONTINUE: {
3088 		struct ieee80211_rate *rate = NULL;
3089 		struct ieee80211_supported_band *sband;
3090 		struct ieee80211_rx_status *status;
3091 
3092 		status = IEEE80211_SKB_RXCB((rx->skb));
3093 
3094 		sband = rx->local->hw.wiphy->bands[status->band];
3095 		if (!(status->flag & RX_FLAG_HT) &&
3096 		    !(status->flag & RX_FLAG_VHT))
3097 			rate = &sband->bitrates[status->rate_idx];
3098 
3099 		ieee80211_rx_cooked_monitor(rx, rate);
3100 		break;
3101 		}
3102 	case RX_DROP_UNUSABLE:
3103 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3104 		if (rx->sta)
3105 			rx->sta->rx_dropped++;
3106 		dev_kfree_skb(rx->skb);
3107 		break;
3108 	case RX_QUEUED:
3109 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3110 		break;
3111 	}
3112 }
3113 
3114 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3115 				  struct sk_buff_head *frames)
3116 {
3117 	ieee80211_rx_result res = RX_DROP_MONITOR;
3118 	struct sk_buff *skb;
3119 
3120 #define CALL_RXH(rxh)			\
3121 	do {				\
3122 		res = rxh(rx);		\
3123 		if (res != RX_CONTINUE)	\
3124 			goto rxh_next;  \
3125 	} while (0);
3126 
3127 	/* Lock here to avoid hitting all of the data used in the RX
3128 	 * path (e.g. key data, station data, ...) concurrently when
3129 	 * a frame is released from the reorder buffer due to timeout
3130 	 * from the timer, potentially concurrently with RX from the
3131 	 * driver.
3132 	 */
3133 	spin_lock_bh(&rx->local->rx_path_lock);
3134 
3135 	while ((skb = __skb_dequeue(frames))) {
3136 		/*
3137 		 * all the other fields are valid across frames
3138 		 * that belong to an aMPDU since they are on the
3139 		 * same TID from the same station
3140 		 */
3141 		rx->skb = skb;
3142 
3143 		CALL_RXH(ieee80211_rx_h_check_more_data)
3144 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3145 		CALL_RXH(ieee80211_rx_h_sta_process)
3146 		CALL_RXH(ieee80211_rx_h_decrypt)
3147 		CALL_RXH(ieee80211_rx_h_defragment)
3148 		CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3149 		/* must be after MMIC verify so header is counted in MPDU mic */
3150 #ifdef CONFIG_MAC80211_MESH
3151 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3152 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3153 #endif
3154 		CALL_RXH(ieee80211_rx_h_amsdu)
3155 		CALL_RXH(ieee80211_rx_h_data)
3156 
3157 		/* special treatment -- needs the queue */
3158 		res = ieee80211_rx_h_ctrl(rx, frames);
3159 		if (res != RX_CONTINUE)
3160 			goto rxh_next;
3161 
3162 		CALL_RXH(ieee80211_rx_h_mgmt_check)
3163 		CALL_RXH(ieee80211_rx_h_action)
3164 		CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3165 		CALL_RXH(ieee80211_rx_h_action_return)
3166 		CALL_RXH(ieee80211_rx_h_mgmt)
3167 
3168  rxh_next:
3169 		ieee80211_rx_handlers_result(rx, res);
3170 
3171 #undef CALL_RXH
3172 	}
3173 
3174 	spin_unlock_bh(&rx->local->rx_path_lock);
3175 }
3176 
3177 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3178 {
3179 	struct sk_buff_head reorder_release;
3180 	ieee80211_rx_result res = RX_DROP_MONITOR;
3181 
3182 	__skb_queue_head_init(&reorder_release);
3183 
3184 #define CALL_RXH(rxh)			\
3185 	do {				\
3186 		res = rxh(rx);		\
3187 		if (res != RX_CONTINUE)	\
3188 			goto rxh_next;  \
3189 	} while (0);
3190 
3191 	CALL_RXH(ieee80211_rx_h_check_dup)
3192 	CALL_RXH(ieee80211_rx_h_check)
3193 
3194 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3195 
3196 	ieee80211_rx_handlers(rx, &reorder_release);
3197 	return;
3198 
3199  rxh_next:
3200 	ieee80211_rx_handlers_result(rx, res);
3201 
3202 #undef CALL_RXH
3203 }
3204 
3205 /*
3206  * This function makes calls into the RX path, therefore
3207  * it has to be invoked under RCU read lock.
3208  */
3209 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3210 {
3211 	struct sk_buff_head frames;
3212 	struct ieee80211_rx_data rx = {
3213 		.sta = sta,
3214 		.sdata = sta->sdata,
3215 		.local = sta->local,
3216 		/* This is OK -- must be QoS data frame */
3217 		.security_idx = tid,
3218 		.seqno_idx = tid,
3219 		.flags = IEEE80211_RX_REORDER_TIMER,
3220 	};
3221 	struct tid_ampdu_rx *tid_agg_rx;
3222 
3223 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3224 	if (!tid_agg_rx)
3225 		return;
3226 
3227 	__skb_queue_head_init(&frames);
3228 
3229 	spin_lock(&tid_agg_rx->reorder_lock);
3230 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3231 	spin_unlock(&tid_agg_rx->reorder_lock);
3232 
3233 	if (!skb_queue_empty(&frames)) {
3234 		struct ieee80211_event event = {
3235 			.type = BA_FRAME_TIMEOUT,
3236 			.u.ba.tid = tid,
3237 			.u.ba.sta = &sta->sta,
3238 		};
3239 		drv_event_callback(rx.local, rx.sdata, &event);
3240 	}
3241 
3242 	ieee80211_rx_handlers(&rx, &frames);
3243 }
3244 
3245 /* main receive path */
3246 
3247 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3248 {
3249 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3250 	struct sk_buff *skb = rx->skb;
3251 	struct ieee80211_hdr *hdr = (void *)skb->data;
3252 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3253 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3254 	int multicast = is_multicast_ether_addr(hdr->addr1);
3255 
3256 	switch (sdata->vif.type) {
3257 	case NL80211_IFTYPE_STATION:
3258 		if (!bssid && !sdata->u.mgd.use_4addr)
3259 			return false;
3260 		if (multicast)
3261 			return true;
3262 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3263 	case NL80211_IFTYPE_ADHOC:
3264 		if (!bssid)
3265 			return false;
3266 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3267 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3268 			return false;
3269 		if (ieee80211_is_beacon(hdr->frame_control))
3270 			return true;
3271 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3272 			return false;
3273 		if (!multicast &&
3274 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3275 			return false;
3276 		if (!rx->sta) {
3277 			int rate_idx;
3278 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3279 				rate_idx = 0; /* TODO: HT/VHT rates */
3280 			else
3281 				rate_idx = status->rate_idx;
3282 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3283 						 BIT(rate_idx));
3284 		}
3285 		return true;
3286 	case NL80211_IFTYPE_OCB:
3287 		if (!bssid)
3288 			return false;
3289 		if (ieee80211_is_beacon(hdr->frame_control))
3290 			return false;
3291 		if (!is_broadcast_ether_addr(bssid))
3292 			return false;
3293 		if (!multicast &&
3294 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3295 			return false;
3296 		if (!rx->sta) {
3297 			int rate_idx;
3298 			if (status->flag & RX_FLAG_HT)
3299 				rate_idx = 0; /* TODO: HT rates */
3300 			else
3301 				rate_idx = status->rate_idx;
3302 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3303 						BIT(rate_idx));
3304 		}
3305 		return true;
3306 	case NL80211_IFTYPE_MESH_POINT:
3307 		if (multicast)
3308 			return true;
3309 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3310 	case NL80211_IFTYPE_AP_VLAN:
3311 	case NL80211_IFTYPE_AP:
3312 		if (!bssid)
3313 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3314 
3315 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3316 			/*
3317 			 * Accept public action frames even when the
3318 			 * BSSID doesn't match, this is used for P2P
3319 			 * and location updates. Note that mac80211
3320 			 * itself never looks at these frames.
3321 			 */
3322 			if (!multicast &&
3323 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3324 				return false;
3325 			if (ieee80211_is_public_action(hdr, skb->len))
3326 				return true;
3327 			return ieee80211_is_beacon(hdr->frame_control);
3328 		}
3329 
3330 		if (!ieee80211_has_tods(hdr->frame_control)) {
3331 			/* ignore data frames to TDLS-peers */
3332 			if (ieee80211_is_data(hdr->frame_control))
3333 				return false;
3334 			/* ignore action frames to TDLS-peers */
3335 			if (ieee80211_is_action(hdr->frame_control) &&
3336 			    !ether_addr_equal(bssid, hdr->addr1))
3337 				return false;
3338 		}
3339 		return true;
3340 	case NL80211_IFTYPE_WDS:
3341 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3342 			return false;
3343 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3344 	case NL80211_IFTYPE_P2P_DEVICE:
3345 		return ieee80211_is_public_action(hdr, skb->len) ||
3346 		       ieee80211_is_probe_req(hdr->frame_control) ||
3347 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3348 		       ieee80211_is_beacon(hdr->frame_control);
3349 	default:
3350 		break;
3351 	}
3352 
3353 	WARN_ON_ONCE(1);
3354 	return false;
3355 }
3356 
3357 /*
3358  * This function returns whether or not the SKB
3359  * was destined for RX processing or not, which,
3360  * if consume is true, is equivalent to whether
3361  * or not the skb was consumed.
3362  */
3363 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3364 					    struct sk_buff *skb, bool consume)
3365 {
3366 	struct ieee80211_local *local = rx->local;
3367 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3368 
3369 	rx->skb = skb;
3370 
3371 	if (!ieee80211_accept_frame(rx))
3372 		return false;
3373 
3374 	if (!consume) {
3375 		skb = skb_copy(skb, GFP_ATOMIC);
3376 		if (!skb) {
3377 			if (net_ratelimit())
3378 				wiphy_debug(local->hw.wiphy,
3379 					"failed to copy skb for %s\n",
3380 					sdata->name);
3381 			return true;
3382 		}
3383 
3384 		rx->skb = skb;
3385 	}
3386 
3387 	ieee80211_invoke_rx_handlers(rx);
3388 	return true;
3389 }
3390 
3391 /*
3392  * This is the actual Rx frames handler. as it belongs to Rx path it must
3393  * be called with rcu_read_lock protection.
3394  */
3395 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3396 					 struct sk_buff *skb)
3397 {
3398 	struct ieee80211_local *local = hw_to_local(hw);
3399 	struct ieee80211_sub_if_data *sdata;
3400 	struct ieee80211_hdr *hdr;
3401 	__le16 fc;
3402 	struct ieee80211_rx_data rx;
3403 	struct ieee80211_sub_if_data *prev;
3404 	struct sta_info *sta, *prev_sta;
3405 	struct rhash_head *tmp;
3406 	int err = 0;
3407 
3408 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3409 	memset(&rx, 0, sizeof(rx));
3410 	rx.skb = skb;
3411 	rx.local = local;
3412 
3413 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3414 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
3415 
3416 	if (ieee80211_is_mgmt(fc)) {
3417 		/* drop frame if too short for header */
3418 		if (skb->len < ieee80211_hdrlen(fc))
3419 			err = -ENOBUFS;
3420 		else
3421 			err = skb_linearize(skb);
3422 	} else {
3423 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3424 	}
3425 
3426 	if (err) {
3427 		dev_kfree_skb(skb);
3428 		return;
3429 	}
3430 
3431 	hdr = (struct ieee80211_hdr *)skb->data;
3432 	ieee80211_parse_qos(&rx);
3433 	ieee80211_verify_alignment(&rx);
3434 
3435 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3436 		     ieee80211_is_beacon(hdr->frame_control)))
3437 		ieee80211_scan_rx(local, skb);
3438 
3439 	if (ieee80211_is_data(fc)) {
3440 		const struct bucket_table *tbl;
3441 
3442 		prev_sta = NULL;
3443 
3444 		tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
3445 
3446 		for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
3447 			if (!prev_sta) {
3448 				prev_sta = sta;
3449 				continue;
3450 			}
3451 
3452 			rx.sta = prev_sta;
3453 			rx.sdata = prev_sta->sdata;
3454 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
3455 
3456 			prev_sta = sta;
3457 		}
3458 
3459 		if (prev_sta) {
3460 			rx.sta = prev_sta;
3461 			rx.sdata = prev_sta->sdata;
3462 
3463 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3464 				return;
3465 			goto out;
3466 		}
3467 	}
3468 
3469 	prev = NULL;
3470 
3471 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3472 		if (!ieee80211_sdata_running(sdata))
3473 			continue;
3474 
3475 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3476 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3477 			continue;
3478 
3479 		/*
3480 		 * frame is destined for this interface, but if it's
3481 		 * not also for the previous one we handle that after
3482 		 * the loop to avoid copying the SKB once too much
3483 		 */
3484 
3485 		if (!prev) {
3486 			prev = sdata;
3487 			continue;
3488 		}
3489 
3490 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3491 		rx.sdata = prev;
3492 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
3493 
3494 		prev = sdata;
3495 	}
3496 
3497 	if (prev) {
3498 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3499 		rx.sdata = prev;
3500 
3501 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3502 			return;
3503 	}
3504 
3505  out:
3506 	dev_kfree_skb(skb);
3507 }
3508 
3509 /*
3510  * This is the receive path handler. It is called by a low level driver when an
3511  * 802.11 MPDU is received from the hardware.
3512  */
3513 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3514 {
3515 	struct ieee80211_local *local = hw_to_local(hw);
3516 	struct ieee80211_rate *rate = NULL;
3517 	struct ieee80211_supported_band *sband;
3518 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3519 
3520 	WARN_ON_ONCE(softirq_count() == 0);
3521 
3522 	if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3523 		goto drop;
3524 
3525 	sband = local->hw.wiphy->bands[status->band];
3526 	if (WARN_ON(!sband))
3527 		goto drop;
3528 
3529 	/*
3530 	 * If we're suspending, it is possible although not too likely
3531 	 * that we'd be receiving frames after having already partially
3532 	 * quiesced the stack. We can't process such frames then since
3533 	 * that might, for example, cause stations to be added or other
3534 	 * driver callbacks be invoked.
3535 	 */
3536 	if (unlikely(local->quiescing || local->suspended))
3537 		goto drop;
3538 
3539 	/* We might be during a HW reconfig, prevent Rx for the same reason */
3540 	if (unlikely(local->in_reconfig))
3541 		goto drop;
3542 
3543 	/*
3544 	 * The same happens when we're not even started,
3545 	 * but that's worth a warning.
3546 	 */
3547 	if (WARN_ON(!local->started))
3548 		goto drop;
3549 
3550 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3551 		/*
3552 		 * Validate the rate, unless a PLCP error means that
3553 		 * we probably can't have a valid rate here anyway.
3554 		 */
3555 
3556 		if (status->flag & RX_FLAG_HT) {
3557 			/*
3558 			 * rate_idx is MCS index, which can be [0-76]
3559 			 * as documented on:
3560 			 *
3561 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3562 			 *
3563 			 * Anything else would be some sort of driver or
3564 			 * hardware error. The driver should catch hardware
3565 			 * errors.
3566 			 */
3567 			if (WARN(status->rate_idx > 76,
3568 				 "Rate marked as an HT rate but passed "
3569 				 "status->rate_idx is not "
3570 				 "an MCS index [0-76]: %d (0x%02x)\n",
3571 				 status->rate_idx,
3572 				 status->rate_idx))
3573 				goto drop;
3574 		} else if (status->flag & RX_FLAG_VHT) {
3575 			if (WARN_ONCE(status->rate_idx > 9 ||
3576 				      !status->vht_nss ||
3577 				      status->vht_nss > 8,
3578 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3579 				      status->rate_idx, status->vht_nss))
3580 				goto drop;
3581 		} else {
3582 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3583 				goto drop;
3584 			rate = &sband->bitrates[status->rate_idx];
3585 		}
3586 	}
3587 
3588 	status->rx_flags = 0;
3589 
3590 	/*
3591 	 * key references and virtual interfaces are protected using RCU
3592 	 * and this requires that we are in a read-side RCU section during
3593 	 * receive processing
3594 	 */
3595 	rcu_read_lock();
3596 
3597 	/*
3598 	 * Frames with failed FCS/PLCP checksum are not returned,
3599 	 * all other frames are returned without radiotap header
3600 	 * if it was previously present.
3601 	 * Also, frames with less than 16 bytes are dropped.
3602 	 */
3603 	skb = ieee80211_rx_monitor(local, skb, rate);
3604 	if (!skb) {
3605 		rcu_read_unlock();
3606 		return;
3607 	}
3608 
3609 	ieee80211_tpt_led_trig_rx(local,
3610 			((struct ieee80211_hdr *)skb->data)->frame_control,
3611 			skb->len);
3612 	__ieee80211_rx_handle_packet(hw, skb);
3613 
3614 	rcu_read_unlock();
3615 
3616 	return;
3617  drop:
3618 	kfree_skb(skb);
3619 }
3620 EXPORT_SYMBOL(ieee80211_rx);
3621 
3622 /* This is a version of the rx handler that can be called from hard irq
3623  * context. Post the skb on the queue and schedule the tasklet */
3624 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3625 {
3626 	struct ieee80211_local *local = hw_to_local(hw);
3627 
3628 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3629 
3630 	skb->pkt_type = IEEE80211_RX_MSG;
3631 	skb_queue_tail(&local->skb_queue, skb);
3632 	tasklet_schedule(&local->tasklet);
3633 }
3634 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
3635