xref: /openbmc/linux/net/mac80211/rx.c (revision f39650de)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9  * Copyright (C) 2018-2021 Intel Corporation
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/kcov.h>
21 #include <linux/bitops.h>
22 #include <net/mac80211.h>
23 #include <net/ieee80211_radiotap.h>
24 #include <asm/unaligned.h>
25 
26 #include "ieee80211_i.h"
27 #include "driver-ops.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "tkip.h"
33 #include "wme.h"
34 #include "rate.h"
35 
36 /*
37  * monitor mode reception
38  *
39  * This function cleans up the SKB, i.e. it removes all the stuff
40  * only useful for monitoring.
41  */
42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
43 					   unsigned int present_fcs_len,
44 					   unsigned int rtap_space)
45 {
46 	struct ieee80211_hdr *hdr;
47 	unsigned int hdrlen;
48 	__le16 fc;
49 
50 	if (present_fcs_len)
51 		__pskb_trim(skb, skb->len - present_fcs_len);
52 	__pskb_pull(skb, rtap_space);
53 
54 	hdr = (void *)skb->data;
55 	fc = hdr->frame_control;
56 
57 	/*
58 	 * Remove the HT-Control field (if present) on management
59 	 * frames after we've sent the frame to monitoring. We
60 	 * (currently) don't need it, and don't properly parse
61 	 * frames with it present, due to the assumption of a
62 	 * fixed management header length.
63 	 */
64 	if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
65 		return skb;
66 
67 	hdrlen = ieee80211_hdrlen(fc);
68 	hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
69 
70 	if (!pskb_may_pull(skb, hdrlen)) {
71 		dev_kfree_skb(skb);
72 		return NULL;
73 	}
74 
75 	memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
76 		hdrlen - IEEE80211_HT_CTL_LEN);
77 	__pskb_pull(skb, IEEE80211_HT_CTL_LEN);
78 
79 	return skb;
80 }
81 
82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
83 				     unsigned int rtap_space)
84 {
85 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
86 	struct ieee80211_hdr *hdr;
87 
88 	hdr = (void *)(skb->data + rtap_space);
89 
90 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
91 			    RX_FLAG_FAILED_PLCP_CRC |
92 			    RX_FLAG_ONLY_MONITOR |
93 			    RX_FLAG_NO_PSDU))
94 		return true;
95 
96 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
97 		return true;
98 
99 	if (ieee80211_is_ctl(hdr->frame_control) &&
100 	    !ieee80211_is_pspoll(hdr->frame_control) &&
101 	    !ieee80211_is_back_req(hdr->frame_control))
102 		return true;
103 
104 	return false;
105 }
106 
107 static int
108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
109 			     struct ieee80211_rx_status *status,
110 			     struct sk_buff *skb)
111 {
112 	int len;
113 
114 	/* always present fields */
115 	len = sizeof(struct ieee80211_radiotap_header) + 8;
116 
117 	/* allocate extra bitmaps */
118 	if (status->chains)
119 		len += 4 * hweight8(status->chains);
120 	/* vendor presence bitmap */
121 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
122 		len += 4;
123 
124 	if (ieee80211_have_rx_timestamp(status)) {
125 		len = ALIGN(len, 8);
126 		len += 8;
127 	}
128 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
129 		len += 1;
130 
131 	/* antenna field, if we don't have per-chain info */
132 	if (!status->chains)
133 		len += 1;
134 
135 	/* padding for RX_FLAGS if necessary */
136 	len = ALIGN(len, 2);
137 
138 	if (status->encoding == RX_ENC_HT) /* HT info */
139 		len += 3;
140 
141 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
142 		len = ALIGN(len, 4);
143 		len += 8;
144 	}
145 
146 	if (status->encoding == RX_ENC_VHT) {
147 		len = ALIGN(len, 2);
148 		len += 12;
149 	}
150 
151 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
152 		len = ALIGN(len, 8);
153 		len += 12;
154 	}
155 
156 	if (status->encoding == RX_ENC_HE &&
157 	    status->flag & RX_FLAG_RADIOTAP_HE) {
158 		len = ALIGN(len, 2);
159 		len += 12;
160 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
161 	}
162 
163 	if (status->encoding == RX_ENC_HE &&
164 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
165 		len = ALIGN(len, 2);
166 		len += 12;
167 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
168 	}
169 
170 	if (status->flag & RX_FLAG_NO_PSDU)
171 		len += 1;
172 
173 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
174 		len = ALIGN(len, 2);
175 		len += 4;
176 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
177 	}
178 
179 	if (status->chains) {
180 		/* antenna and antenna signal fields */
181 		len += 2 * hweight8(status->chains);
182 	}
183 
184 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
185 		struct ieee80211_vendor_radiotap *rtap;
186 		int vendor_data_offset = 0;
187 
188 		/*
189 		 * The position to look at depends on the existence (or non-
190 		 * existence) of other elements, so take that into account...
191 		 */
192 		if (status->flag & RX_FLAG_RADIOTAP_HE)
193 			vendor_data_offset +=
194 				sizeof(struct ieee80211_radiotap_he);
195 		if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
196 			vendor_data_offset +=
197 				sizeof(struct ieee80211_radiotap_he_mu);
198 		if (status->flag & RX_FLAG_RADIOTAP_LSIG)
199 			vendor_data_offset +=
200 				sizeof(struct ieee80211_radiotap_lsig);
201 
202 		rtap = (void *)&skb->data[vendor_data_offset];
203 
204 		/* alignment for fixed 6-byte vendor data header */
205 		len = ALIGN(len, 2);
206 		/* vendor data header */
207 		len += 6;
208 		if (WARN_ON(rtap->align == 0))
209 			rtap->align = 1;
210 		len = ALIGN(len, rtap->align);
211 		len += rtap->len + rtap->pad;
212 	}
213 
214 	return len;
215 }
216 
217 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
218 					 struct sk_buff *skb,
219 					 int rtap_space)
220 {
221 	struct {
222 		struct ieee80211_hdr_3addr hdr;
223 		u8 category;
224 		u8 action_code;
225 	} __packed __aligned(2) action;
226 
227 	if (!sdata)
228 		return;
229 
230 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
231 
232 	if (skb->len < rtap_space + sizeof(action) +
233 		       VHT_MUMIMO_GROUPS_DATA_LEN)
234 		return;
235 
236 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
237 		return;
238 
239 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
240 
241 	if (!ieee80211_is_action(action.hdr.frame_control))
242 		return;
243 
244 	if (action.category != WLAN_CATEGORY_VHT)
245 		return;
246 
247 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
248 		return;
249 
250 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
251 		return;
252 
253 	skb = skb_copy(skb, GFP_ATOMIC);
254 	if (!skb)
255 		return;
256 
257 	skb_queue_tail(&sdata->skb_queue, skb);
258 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
259 }
260 
261 /*
262  * ieee80211_add_rx_radiotap_header - add radiotap header
263  *
264  * add a radiotap header containing all the fields which the hardware provided.
265  */
266 static void
267 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
268 				 struct sk_buff *skb,
269 				 struct ieee80211_rate *rate,
270 				 int rtap_len, bool has_fcs)
271 {
272 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
273 	struct ieee80211_radiotap_header *rthdr;
274 	unsigned char *pos;
275 	__le32 *it_present;
276 	u32 it_present_val;
277 	u16 rx_flags = 0;
278 	u16 channel_flags = 0;
279 	int mpdulen, chain;
280 	unsigned long chains = status->chains;
281 	struct ieee80211_vendor_radiotap rtap = {};
282 	struct ieee80211_radiotap_he he = {};
283 	struct ieee80211_radiotap_he_mu he_mu = {};
284 	struct ieee80211_radiotap_lsig lsig = {};
285 
286 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
287 		he = *(struct ieee80211_radiotap_he *)skb->data;
288 		skb_pull(skb, sizeof(he));
289 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
290 	}
291 
292 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
293 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
294 		skb_pull(skb, sizeof(he_mu));
295 	}
296 
297 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
298 		lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
299 		skb_pull(skb, sizeof(lsig));
300 	}
301 
302 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
303 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
304 		/* rtap.len and rtap.pad are undone immediately */
305 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
306 	}
307 
308 	mpdulen = skb->len;
309 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
310 		mpdulen += FCS_LEN;
311 
312 	rthdr = skb_push(skb, rtap_len);
313 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
314 	it_present = &rthdr->it_present;
315 
316 	/* radiotap header, set always present flags */
317 	rthdr->it_len = cpu_to_le16(rtap_len);
318 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
319 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
320 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
321 
322 	if (!status->chains)
323 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
324 
325 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
326 		it_present_val |=
327 			BIT(IEEE80211_RADIOTAP_EXT) |
328 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
329 		put_unaligned_le32(it_present_val, it_present);
330 		it_present++;
331 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
332 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
333 	}
334 
335 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
336 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
337 				  BIT(IEEE80211_RADIOTAP_EXT);
338 		put_unaligned_le32(it_present_val, it_present);
339 		it_present++;
340 		it_present_val = rtap.present;
341 	}
342 
343 	put_unaligned_le32(it_present_val, it_present);
344 
345 	pos = (void *)(it_present + 1);
346 
347 	/* the order of the following fields is important */
348 
349 	/* IEEE80211_RADIOTAP_TSFT */
350 	if (ieee80211_have_rx_timestamp(status)) {
351 		/* padding */
352 		while ((pos - (u8 *)rthdr) & 7)
353 			*pos++ = 0;
354 		put_unaligned_le64(
355 			ieee80211_calculate_rx_timestamp(local, status,
356 							 mpdulen, 0),
357 			pos);
358 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
359 		pos += 8;
360 	}
361 
362 	/* IEEE80211_RADIOTAP_FLAGS */
363 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
364 		*pos |= IEEE80211_RADIOTAP_F_FCS;
365 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
366 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
367 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
368 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
369 	pos++;
370 
371 	/* IEEE80211_RADIOTAP_RATE */
372 	if (!rate || status->encoding != RX_ENC_LEGACY) {
373 		/*
374 		 * Without rate information don't add it. If we have,
375 		 * MCS information is a separate field in radiotap,
376 		 * added below. The byte here is needed as padding
377 		 * for the channel though, so initialise it to 0.
378 		 */
379 		*pos = 0;
380 	} else {
381 		int shift = 0;
382 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
383 		if (status->bw == RATE_INFO_BW_10)
384 			shift = 1;
385 		else if (status->bw == RATE_INFO_BW_5)
386 			shift = 2;
387 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
388 	}
389 	pos++;
390 
391 	/* IEEE80211_RADIOTAP_CHANNEL */
392 	/* TODO: frequency offset in KHz */
393 	put_unaligned_le16(status->freq, pos);
394 	pos += 2;
395 	if (status->bw == RATE_INFO_BW_10)
396 		channel_flags |= IEEE80211_CHAN_HALF;
397 	else if (status->bw == RATE_INFO_BW_5)
398 		channel_flags |= IEEE80211_CHAN_QUARTER;
399 
400 	if (status->band == NL80211_BAND_5GHZ ||
401 	    status->band == NL80211_BAND_6GHZ)
402 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
403 	else if (status->encoding != RX_ENC_LEGACY)
404 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
405 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
406 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
407 	else if (rate)
408 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
409 	else
410 		channel_flags |= IEEE80211_CHAN_2GHZ;
411 	put_unaligned_le16(channel_flags, pos);
412 	pos += 2;
413 
414 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
415 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
416 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
417 		*pos = status->signal;
418 		rthdr->it_present |=
419 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
420 		pos++;
421 	}
422 
423 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
424 
425 	if (!status->chains) {
426 		/* IEEE80211_RADIOTAP_ANTENNA */
427 		*pos = status->antenna;
428 		pos++;
429 	}
430 
431 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
432 
433 	/* IEEE80211_RADIOTAP_RX_FLAGS */
434 	/* ensure 2 byte alignment for the 2 byte field as required */
435 	if ((pos - (u8 *)rthdr) & 1)
436 		*pos++ = 0;
437 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
438 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
439 	put_unaligned_le16(rx_flags, pos);
440 	pos += 2;
441 
442 	if (status->encoding == RX_ENC_HT) {
443 		unsigned int stbc;
444 
445 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
446 		*pos++ = local->hw.radiotap_mcs_details;
447 		*pos = 0;
448 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
449 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
450 		if (status->bw == RATE_INFO_BW_40)
451 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
452 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
453 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
454 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
455 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
456 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
457 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
458 		pos++;
459 		*pos++ = status->rate_idx;
460 	}
461 
462 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
463 		u16 flags = 0;
464 
465 		/* ensure 4 byte alignment */
466 		while ((pos - (u8 *)rthdr) & 3)
467 			pos++;
468 		rthdr->it_present |=
469 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
470 		put_unaligned_le32(status->ampdu_reference, pos);
471 		pos += 4;
472 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
473 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
474 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
475 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
476 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
477 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
478 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
479 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
480 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
481 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
482 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
483 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
484 		put_unaligned_le16(flags, pos);
485 		pos += 2;
486 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
487 			*pos++ = status->ampdu_delimiter_crc;
488 		else
489 			*pos++ = 0;
490 		*pos++ = 0;
491 	}
492 
493 	if (status->encoding == RX_ENC_VHT) {
494 		u16 known = local->hw.radiotap_vht_details;
495 
496 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
497 		put_unaligned_le16(known, pos);
498 		pos += 2;
499 		/* flags */
500 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
501 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
502 		/* in VHT, STBC is binary */
503 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
504 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
505 		if (status->enc_flags & RX_ENC_FLAG_BF)
506 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
507 		pos++;
508 		/* bandwidth */
509 		switch (status->bw) {
510 		case RATE_INFO_BW_80:
511 			*pos++ = 4;
512 			break;
513 		case RATE_INFO_BW_160:
514 			*pos++ = 11;
515 			break;
516 		case RATE_INFO_BW_40:
517 			*pos++ = 1;
518 			break;
519 		default:
520 			*pos++ = 0;
521 		}
522 		/* MCS/NSS */
523 		*pos = (status->rate_idx << 4) | status->nss;
524 		pos += 4;
525 		/* coding field */
526 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
527 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
528 		pos++;
529 		/* group ID */
530 		pos++;
531 		/* partial_aid */
532 		pos += 2;
533 	}
534 
535 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
536 		u16 accuracy = 0;
537 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
538 
539 		rthdr->it_present |=
540 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
541 
542 		/* ensure 8 byte alignment */
543 		while ((pos - (u8 *)rthdr) & 7)
544 			pos++;
545 
546 		put_unaligned_le64(status->device_timestamp, pos);
547 		pos += sizeof(u64);
548 
549 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
550 			accuracy = local->hw.radiotap_timestamp.accuracy;
551 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
552 		}
553 		put_unaligned_le16(accuracy, pos);
554 		pos += sizeof(u16);
555 
556 		*pos++ = local->hw.radiotap_timestamp.units_pos;
557 		*pos++ = flags;
558 	}
559 
560 	if (status->encoding == RX_ENC_HE &&
561 	    status->flag & RX_FLAG_RADIOTAP_HE) {
562 #define HE_PREP(f, val)	le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
563 
564 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
565 			he.data6 |= HE_PREP(DATA6_NSTS,
566 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
567 						      status->enc_flags));
568 			he.data3 |= HE_PREP(DATA3_STBC, 1);
569 		} else {
570 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
571 		}
572 
573 #define CHECK_GI(s) \
574 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
575 		     (int)NL80211_RATE_INFO_HE_GI_##s)
576 
577 		CHECK_GI(0_8);
578 		CHECK_GI(1_6);
579 		CHECK_GI(3_2);
580 
581 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
582 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
583 		he.data3 |= HE_PREP(DATA3_CODING,
584 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
585 
586 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
587 
588 		switch (status->bw) {
589 		case RATE_INFO_BW_20:
590 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
591 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
592 			break;
593 		case RATE_INFO_BW_40:
594 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
595 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
596 			break;
597 		case RATE_INFO_BW_80:
598 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
599 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
600 			break;
601 		case RATE_INFO_BW_160:
602 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
603 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
604 			break;
605 		case RATE_INFO_BW_HE_RU:
606 #define CHECK_RU_ALLOC(s) \
607 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
608 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
609 
610 			CHECK_RU_ALLOC(26);
611 			CHECK_RU_ALLOC(52);
612 			CHECK_RU_ALLOC(106);
613 			CHECK_RU_ALLOC(242);
614 			CHECK_RU_ALLOC(484);
615 			CHECK_RU_ALLOC(996);
616 			CHECK_RU_ALLOC(2x996);
617 
618 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
619 					    status->he_ru + 4);
620 			break;
621 		default:
622 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
623 		}
624 
625 		/* ensure 2 byte alignment */
626 		while ((pos - (u8 *)rthdr) & 1)
627 			pos++;
628 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
629 		memcpy(pos, &he, sizeof(he));
630 		pos += sizeof(he);
631 	}
632 
633 	if (status->encoding == RX_ENC_HE &&
634 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
635 		/* ensure 2 byte alignment */
636 		while ((pos - (u8 *)rthdr) & 1)
637 			pos++;
638 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
639 		memcpy(pos, &he_mu, sizeof(he_mu));
640 		pos += sizeof(he_mu);
641 	}
642 
643 	if (status->flag & RX_FLAG_NO_PSDU) {
644 		rthdr->it_present |=
645 			cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
646 		*pos++ = status->zero_length_psdu_type;
647 	}
648 
649 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
650 		/* ensure 2 byte alignment */
651 		while ((pos - (u8 *)rthdr) & 1)
652 			pos++;
653 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
654 		memcpy(pos, &lsig, sizeof(lsig));
655 		pos += sizeof(lsig);
656 	}
657 
658 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
659 		*pos++ = status->chain_signal[chain];
660 		*pos++ = chain;
661 	}
662 
663 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
664 		/* ensure 2 byte alignment for the vendor field as required */
665 		if ((pos - (u8 *)rthdr) & 1)
666 			*pos++ = 0;
667 		*pos++ = rtap.oui[0];
668 		*pos++ = rtap.oui[1];
669 		*pos++ = rtap.oui[2];
670 		*pos++ = rtap.subns;
671 		put_unaligned_le16(rtap.len, pos);
672 		pos += 2;
673 		/* align the actual payload as requested */
674 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
675 			*pos++ = 0;
676 		/* data (and possible padding) already follows */
677 	}
678 }
679 
680 static struct sk_buff *
681 ieee80211_make_monitor_skb(struct ieee80211_local *local,
682 			   struct sk_buff **origskb,
683 			   struct ieee80211_rate *rate,
684 			   int rtap_space, bool use_origskb)
685 {
686 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
687 	int rt_hdrlen, needed_headroom;
688 	struct sk_buff *skb;
689 
690 	/* room for the radiotap header based on driver features */
691 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
692 	needed_headroom = rt_hdrlen - rtap_space;
693 
694 	if (use_origskb) {
695 		/* only need to expand headroom if necessary */
696 		skb = *origskb;
697 		*origskb = NULL;
698 
699 		/*
700 		 * This shouldn't trigger often because most devices have an
701 		 * RX header they pull before we get here, and that should
702 		 * be big enough for our radiotap information. We should
703 		 * probably export the length to drivers so that we can have
704 		 * them allocate enough headroom to start with.
705 		 */
706 		if (skb_headroom(skb) < needed_headroom &&
707 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
708 			dev_kfree_skb(skb);
709 			return NULL;
710 		}
711 	} else {
712 		/*
713 		 * Need to make a copy and possibly remove radiotap header
714 		 * and FCS from the original.
715 		 */
716 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
717 
718 		if (!skb)
719 			return NULL;
720 	}
721 
722 	/* prepend radiotap information */
723 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
724 
725 	skb_reset_mac_header(skb);
726 	skb->ip_summed = CHECKSUM_UNNECESSARY;
727 	skb->pkt_type = PACKET_OTHERHOST;
728 	skb->protocol = htons(ETH_P_802_2);
729 
730 	return skb;
731 }
732 
733 /*
734  * This function copies a received frame to all monitor interfaces and
735  * returns a cleaned-up SKB that no longer includes the FCS nor the
736  * radiotap header the driver might have added.
737  */
738 static struct sk_buff *
739 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
740 		     struct ieee80211_rate *rate)
741 {
742 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
743 	struct ieee80211_sub_if_data *sdata;
744 	struct sk_buff *monskb = NULL;
745 	int present_fcs_len = 0;
746 	unsigned int rtap_space = 0;
747 	struct ieee80211_sub_if_data *monitor_sdata =
748 		rcu_dereference(local->monitor_sdata);
749 	bool only_monitor = false;
750 	unsigned int min_head_len;
751 
752 	if (status->flag & RX_FLAG_RADIOTAP_HE)
753 		rtap_space += sizeof(struct ieee80211_radiotap_he);
754 
755 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
756 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
757 
758 	if (status->flag & RX_FLAG_RADIOTAP_LSIG)
759 		rtap_space += sizeof(struct ieee80211_radiotap_lsig);
760 
761 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
762 		struct ieee80211_vendor_radiotap *rtap =
763 			(void *)(origskb->data + rtap_space);
764 
765 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
766 	}
767 
768 	min_head_len = rtap_space;
769 
770 	/*
771 	 * First, we may need to make a copy of the skb because
772 	 *  (1) we need to modify it for radiotap (if not present), and
773 	 *  (2) the other RX handlers will modify the skb we got.
774 	 *
775 	 * We don't need to, of course, if we aren't going to return
776 	 * the SKB because it has a bad FCS/PLCP checksum.
777 	 */
778 
779 	if (!(status->flag & RX_FLAG_NO_PSDU)) {
780 		if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
781 			if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
782 				/* driver bug */
783 				WARN_ON(1);
784 				dev_kfree_skb(origskb);
785 				return NULL;
786 			}
787 			present_fcs_len = FCS_LEN;
788 		}
789 
790 		/* also consider the hdr->frame_control */
791 		min_head_len += 2;
792 	}
793 
794 	/* ensure that the expected data elements are in skb head */
795 	if (!pskb_may_pull(origskb, min_head_len)) {
796 		dev_kfree_skb(origskb);
797 		return NULL;
798 	}
799 
800 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
801 
802 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
803 		if (only_monitor) {
804 			dev_kfree_skb(origskb);
805 			return NULL;
806 		}
807 
808 		return ieee80211_clean_skb(origskb, present_fcs_len,
809 					   rtap_space);
810 	}
811 
812 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
813 
814 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
815 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
816 						 &local->mon_list);
817 
818 		if (!monskb)
819 			monskb = ieee80211_make_monitor_skb(local, &origskb,
820 							    rate, rtap_space,
821 							    only_monitor &&
822 							    last_monitor);
823 
824 		if (monskb) {
825 			struct sk_buff *skb;
826 
827 			if (last_monitor) {
828 				skb = monskb;
829 				monskb = NULL;
830 			} else {
831 				skb = skb_clone(monskb, GFP_ATOMIC);
832 			}
833 
834 			if (skb) {
835 				skb->dev = sdata->dev;
836 				dev_sw_netstats_rx_add(skb->dev, skb->len);
837 				netif_receive_skb(skb);
838 			}
839 		}
840 
841 		if (last_monitor)
842 			break;
843 	}
844 
845 	/* this happens if last_monitor was erroneously false */
846 	dev_kfree_skb(monskb);
847 
848 	/* ditto */
849 	if (!origskb)
850 		return NULL;
851 
852 	return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
853 }
854 
855 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
856 {
857 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
858 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
859 	int tid, seqno_idx, security_idx;
860 
861 	/* does the frame have a qos control field? */
862 	if (ieee80211_is_data_qos(hdr->frame_control)) {
863 		u8 *qc = ieee80211_get_qos_ctl(hdr);
864 		/* frame has qos control */
865 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
866 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
867 			status->rx_flags |= IEEE80211_RX_AMSDU;
868 
869 		seqno_idx = tid;
870 		security_idx = tid;
871 	} else {
872 		/*
873 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
874 		 *
875 		 *	Sequence numbers for management frames, QoS data
876 		 *	frames with a broadcast/multicast address in the
877 		 *	Address 1 field, and all non-QoS data frames sent
878 		 *	by QoS STAs are assigned using an additional single
879 		 *	modulo-4096 counter, [...]
880 		 *
881 		 * We also use that counter for non-QoS STAs.
882 		 */
883 		seqno_idx = IEEE80211_NUM_TIDS;
884 		security_idx = 0;
885 		if (ieee80211_is_mgmt(hdr->frame_control))
886 			security_idx = IEEE80211_NUM_TIDS;
887 		tid = 0;
888 	}
889 
890 	rx->seqno_idx = seqno_idx;
891 	rx->security_idx = security_idx;
892 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
893 	 * For now, set skb->priority to 0 for other cases. */
894 	rx->skb->priority = (tid > 7) ? 0 : tid;
895 }
896 
897 /**
898  * DOC: Packet alignment
899  *
900  * Drivers always need to pass packets that are aligned to two-byte boundaries
901  * to the stack.
902  *
903  * Additionally, should, if possible, align the payload data in a way that
904  * guarantees that the contained IP header is aligned to a four-byte
905  * boundary. In the case of regular frames, this simply means aligning the
906  * payload to a four-byte boundary (because either the IP header is directly
907  * contained, or IV/RFC1042 headers that have a length divisible by four are
908  * in front of it).  If the payload data is not properly aligned and the
909  * architecture doesn't support efficient unaligned operations, mac80211
910  * will align the data.
911  *
912  * With A-MSDU frames, however, the payload data address must yield two modulo
913  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
914  * push the IP header further back to a multiple of four again. Thankfully, the
915  * specs were sane enough this time around to require padding each A-MSDU
916  * subframe to a length that is a multiple of four.
917  *
918  * Padding like Atheros hardware adds which is between the 802.11 header and
919  * the payload is not supported, the driver is required to move the 802.11
920  * header to be directly in front of the payload in that case.
921  */
922 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
923 {
924 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
925 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
926 #endif
927 }
928 
929 
930 /* rx handlers */
931 
932 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
933 {
934 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
935 
936 	if (is_multicast_ether_addr(hdr->addr1))
937 		return 0;
938 
939 	return ieee80211_is_robust_mgmt_frame(skb);
940 }
941 
942 
943 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
944 {
945 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
946 
947 	if (!is_multicast_ether_addr(hdr->addr1))
948 		return 0;
949 
950 	return ieee80211_is_robust_mgmt_frame(skb);
951 }
952 
953 
954 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
955 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
956 {
957 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
958 	struct ieee80211_mmie *mmie;
959 	struct ieee80211_mmie_16 *mmie16;
960 
961 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
962 		return -1;
963 
964 	if (!ieee80211_is_robust_mgmt_frame(skb) &&
965 	    !ieee80211_is_beacon(hdr->frame_control))
966 		return -1; /* not a robust management frame */
967 
968 	mmie = (struct ieee80211_mmie *)
969 		(skb->data + skb->len - sizeof(*mmie));
970 	if (mmie->element_id == WLAN_EID_MMIE &&
971 	    mmie->length == sizeof(*mmie) - 2)
972 		return le16_to_cpu(mmie->key_id);
973 
974 	mmie16 = (struct ieee80211_mmie_16 *)
975 		(skb->data + skb->len - sizeof(*mmie16));
976 	if (skb->len >= 24 + sizeof(*mmie16) &&
977 	    mmie16->element_id == WLAN_EID_MMIE &&
978 	    mmie16->length == sizeof(*mmie16) - 2)
979 		return le16_to_cpu(mmie16->key_id);
980 
981 	return -1;
982 }
983 
984 static int ieee80211_get_keyid(struct sk_buff *skb,
985 			       const struct ieee80211_cipher_scheme *cs)
986 {
987 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
988 	__le16 fc;
989 	int hdrlen;
990 	int minlen;
991 	u8 key_idx_off;
992 	u8 key_idx_shift;
993 	u8 keyid;
994 
995 	fc = hdr->frame_control;
996 	hdrlen = ieee80211_hdrlen(fc);
997 
998 	if (cs) {
999 		minlen = hdrlen + cs->hdr_len;
1000 		key_idx_off = hdrlen + cs->key_idx_off;
1001 		key_idx_shift = cs->key_idx_shift;
1002 	} else {
1003 		/* WEP, TKIP, CCMP and GCMP */
1004 		minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1005 		key_idx_off = hdrlen + 3;
1006 		key_idx_shift = 6;
1007 	}
1008 
1009 	if (unlikely(skb->len < minlen))
1010 		return -EINVAL;
1011 
1012 	skb_copy_bits(skb, key_idx_off, &keyid, 1);
1013 
1014 	if (cs)
1015 		keyid &= cs->key_idx_mask;
1016 	keyid >>= key_idx_shift;
1017 
1018 	/* cs could use more than the usual two bits for the keyid */
1019 	if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1020 		return -EINVAL;
1021 
1022 	return keyid;
1023 }
1024 
1025 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1026 {
1027 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1028 	char *dev_addr = rx->sdata->vif.addr;
1029 
1030 	if (ieee80211_is_data(hdr->frame_control)) {
1031 		if (is_multicast_ether_addr(hdr->addr1)) {
1032 			if (ieee80211_has_tods(hdr->frame_control) ||
1033 			    !ieee80211_has_fromds(hdr->frame_control))
1034 				return RX_DROP_MONITOR;
1035 			if (ether_addr_equal(hdr->addr3, dev_addr))
1036 				return RX_DROP_MONITOR;
1037 		} else {
1038 			if (!ieee80211_has_a4(hdr->frame_control))
1039 				return RX_DROP_MONITOR;
1040 			if (ether_addr_equal(hdr->addr4, dev_addr))
1041 				return RX_DROP_MONITOR;
1042 		}
1043 	}
1044 
1045 	/* If there is not an established peer link and this is not a peer link
1046 	 * establisment frame, beacon or probe, drop the frame.
1047 	 */
1048 
1049 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1050 		struct ieee80211_mgmt *mgmt;
1051 
1052 		if (!ieee80211_is_mgmt(hdr->frame_control))
1053 			return RX_DROP_MONITOR;
1054 
1055 		if (ieee80211_is_action(hdr->frame_control)) {
1056 			u8 category;
1057 
1058 			/* make sure category field is present */
1059 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1060 				return RX_DROP_MONITOR;
1061 
1062 			mgmt = (struct ieee80211_mgmt *)hdr;
1063 			category = mgmt->u.action.category;
1064 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1065 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1066 				return RX_DROP_MONITOR;
1067 			return RX_CONTINUE;
1068 		}
1069 
1070 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1071 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1072 		    ieee80211_is_beacon(hdr->frame_control) ||
1073 		    ieee80211_is_auth(hdr->frame_control))
1074 			return RX_CONTINUE;
1075 
1076 		return RX_DROP_MONITOR;
1077 	}
1078 
1079 	return RX_CONTINUE;
1080 }
1081 
1082 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1083 					      int index)
1084 {
1085 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1086 	struct sk_buff *tail = skb_peek_tail(frames);
1087 	struct ieee80211_rx_status *status;
1088 
1089 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1090 		return true;
1091 
1092 	if (!tail)
1093 		return false;
1094 
1095 	status = IEEE80211_SKB_RXCB(tail);
1096 	if (status->flag & RX_FLAG_AMSDU_MORE)
1097 		return false;
1098 
1099 	return true;
1100 }
1101 
1102 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1103 					    struct tid_ampdu_rx *tid_agg_rx,
1104 					    int index,
1105 					    struct sk_buff_head *frames)
1106 {
1107 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1108 	struct sk_buff *skb;
1109 	struct ieee80211_rx_status *status;
1110 
1111 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1112 
1113 	if (skb_queue_empty(skb_list))
1114 		goto no_frame;
1115 
1116 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1117 		__skb_queue_purge(skb_list);
1118 		goto no_frame;
1119 	}
1120 
1121 	/* release frames from the reorder ring buffer */
1122 	tid_agg_rx->stored_mpdu_num--;
1123 	while ((skb = __skb_dequeue(skb_list))) {
1124 		status = IEEE80211_SKB_RXCB(skb);
1125 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1126 		__skb_queue_tail(frames, skb);
1127 	}
1128 
1129 no_frame:
1130 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1131 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1132 }
1133 
1134 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1135 					     struct tid_ampdu_rx *tid_agg_rx,
1136 					     u16 head_seq_num,
1137 					     struct sk_buff_head *frames)
1138 {
1139 	int index;
1140 
1141 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1142 
1143 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1144 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1145 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1146 						frames);
1147 	}
1148 }
1149 
1150 /*
1151  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1152  * the skb was added to the buffer longer than this time ago, the earlier
1153  * frames that have not yet been received are assumed to be lost and the skb
1154  * can be released for processing. This may also release other skb's from the
1155  * reorder buffer if there are no additional gaps between the frames.
1156  *
1157  * Callers must hold tid_agg_rx->reorder_lock.
1158  */
1159 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1160 
1161 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1162 					  struct tid_ampdu_rx *tid_agg_rx,
1163 					  struct sk_buff_head *frames)
1164 {
1165 	int index, i, j;
1166 
1167 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1168 
1169 	/* release the buffer until next missing frame */
1170 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1171 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1172 	    tid_agg_rx->stored_mpdu_num) {
1173 		/*
1174 		 * No buffers ready to be released, but check whether any
1175 		 * frames in the reorder buffer have timed out.
1176 		 */
1177 		int skipped = 1;
1178 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1179 		     j = (j + 1) % tid_agg_rx->buf_size) {
1180 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1181 				skipped++;
1182 				continue;
1183 			}
1184 			if (skipped &&
1185 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1186 					HT_RX_REORDER_BUF_TIMEOUT))
1187 				goto set_release_timer;
1188 
1189 			/* don't leave incomplete A-MSDUs around */
1190 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1191 			     i = (i + 1) % tid_agg_rx->buf_size)
1192 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1193 
1194 			ht_dbg_ratelimited(sdata,
1195 					   "release an RX reorder frame due to timeout on earlier frames\n");
1196 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1197 							frames);
1198 
1199 			/*
1200 			 * Increment the head seq# also for the skipped slots.
1201 			 */
1202 			tid_agg_rx->head_seq_num =
1203 				(tid_agg_rx->head_seq_num +
1204 				 skipped) & IEEE80211_SN_MASK;
1205 			skipped = 0;
1206 		}
1207 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1208 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1209 						frames);
1210 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1211 	}
1212 
1213 	if (tid_agg_rx->stored_mpdu_num) {
1214 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1215 
1216 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1217 		     j = (j + 1) % tid_agg_rx->buf_size) {
1218 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1219 				break;
1220 		}
1221 
1222  set_release_timer:
1223 
1224 		if (!tid_agg_rx->removed)
1225 			mod_timer(&tid_agg_rx->reorder_timer,
1226 				  tid_agg_rx->reorder_time[j] + 1 +
1227 				  HT_RX_REORDER_BUF_TIMEOUT);
1228 	} else {
1229 		del_timer(&tid_agg_rx->reorder_timer);
1230 	}
1231 }
1232 
1233 /*
1234  * As this function belongs to the RX path it must be under
1235  * rcu_read_lock protection. It returns false if the frame
1236  * can be processed immediately, true if it was consumed.
1237  */
1238 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1239 					     struct tid_ampdu_rx *tid_agg_rx,
1240 					     struct sk_buff *skb,
1241 					     struct sk_buff_head *frames)
1242 {
1243 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1244 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1245 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1246 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1247 	u16 head_seq_num, buf_size;
1248 	int index;
1249 	bool ret = true;
1250 
1251 	spin_lock(&tid_agg_rx->reorder_lock);
1252 
1253 	/*
1254 	 * Offloaded BA sessions have no known starting sequence number so pick
1255 	 * one from first Rxed frame for this tid after BA was started.
1256 	 */
1257 	if (unlikely(tid_agg_rx->auto_seq)) {
1258 		tid_agg_rx->auto_seq = false;
1259 		tid_agg_rx->ssn = mpdu_seq_num;
1260 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1261 	}
1262 
1263 	buf_size = tid_agg_rx->buf_size;
1264 	head_seq_num = tid_agg_rx->head_seq_num;
1265 
1266 	/*
1267 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1268 	 * be reordered.
1269 	 */
1270 	if (unlikely(!tid_agg_rx->started)) {
1271 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1272 			ret = false;
1273 			goto out;
1274 		}
1275 		tid_agg_rx->started = true;
1276 	}
1277 
1278 	/* frame with out of date sequence number */
1279 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1280 		dev_kfree_skb(skb);
1281 		goto out;
1282 	}
1283 
1284 	/*
1285 	 * If frame the sequence number exceeds our buffering window
1286 	 * size release some previous frames to make room for this one.
1287 	 */
1288 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1289 		head_seq_num = ieee80211_sn_inc(
1290 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1291 		/* release stored frames up to new head to stack */
1292 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1293 						 head_seq_num, frames);
1294 	}
1295 
1296 	/* Now the new frame is always in the range of the reordering buffer */
1297 
1298 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1299 
1300 	/* check if we already stored this frame */
1301 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1302 		dev_kfree_skb(skb);
1303 		goto out;
1304 	}
1305 
1306 	/*
1307 	 * If the current MPDU is in the right order and nothing else
1308 	 * is stored we can process it directly, no need to buffer it.
1309 	 * If it is first but there's something stored, we may be able
1310 	 * to release frames after this one.
1311 	 */
1312 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1313 	    tid_agg_rx->stored_mpdu_num == 0) {
1314 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1315 			tid_agg_rx->head_seq_num =
1316 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1317 		ret = false;
1318 		goto out;
1319 	}
1320 
1321 	/* put the frame in the reordering buffer */
1322 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1323 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1324 		tid_agg_rx->reorder_time[index] = jiffies;
1325 		tid_agg_rx->stored_mpdu_num++;
1326 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1327 	}
1328 
1329  out:
1330 	spin_unlock(&tid_agg_rx->reorder_lock);
1331 	return ret;
1332 }
1333 
1334 /*
1335  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1336  * true if the MPDU was buffered, false if it should be processed.
1337  */
1338 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1339 				       struct sk_buff_head *frames)
1340 {
1341 	struct sk_buff *skb = rx->skb;
1342 	struct ieee80211_local *local = rx->local;
1343 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1344 	struct sta_info *sta = rx->sta;
1345 	struct tid_ampdu_rx *tid_agg_rx;
1346 	u16 sc;
1347 	u8 tid, ack_policy;
1348 
1349 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1350 	    is_multicast_ether_addr(hdr->addr1))
1351 		goto dont_reorder;
1352 
1353 	/*
1354 	 * filter the QoS data rx stream according to
1355 	 * STA/TID and check if this STA/TID is on aggregation
1356 	 */
1357 
1358 	if (!sta)
1359 		goto dont_reorder;
1360 
1361 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1362 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1363 	tid = ieee80211_get_tid(hdr);
1364 
1365 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1366 	if (!tid_agg_rx) {
1367 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1368 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1369 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1370 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1371 					     WLAN_BACK_RECIPIENT,
1372 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1373 		goto dont_reorder;
1374 	}
1375 
1376 	/* qos null data frames are excluded */
1377 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1378 		goto dont_reorder;
1379 
1380 	/* not part of a BA session */
1381 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1382 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1383 		goto dont_reorder;
1384 
1385 	/* new, potentially un-ordered, ampdu frame - process it */
1386 
1387 	/* reset session timer */
1388 	if (tid_agg_rx->timeout)
1389 		tid_agg_rx->last_rx = jiffies;
1390 
1391 	/* if this mpdu is fragmented - terminate rx aggregation session */
1392 	sc = le16_to_cpu(hdr->seq_ctrl);
1393 	if (sc & IEEE80211_SCTL_FRAG) {
1394 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1395 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1396 		return;
1397 	}
1398 
1399 	/*
1400 	 * No locking needed -- we will only ever process one
1401 	 * RX packet at a time, and thus own tid_agg_rx. All
1402 	 * other code manipulating it needs to (and does) make
1403 	 * sure that we cannot get to it any more before doing
1404 	 * anything with it.
1405 	 */
1406 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1407 					     frames))
1408 		return;
1409 
1410  dont_reorder:
1411 	__skb_queue_tail(frames, skb);
1412 }
1413 
1414 static ieee80211_rx_result debug_noinline
1415 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1416 {
1417 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1418 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1419 
1420 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1421 		return RX_CONTINUE;
1422 
1423 	/*
1424 	 * Drop duplicate 802.11 retransmissions
1425 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1426 	 */
1427 
1428 	if (rx->skb->len < 24)
1429 		return RX_CONTINUE;
1430 
1431 	if (ieee80211_is_ctl(hdr->frame_control) ||
1432 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
1433 	    is_multicast_ether_addr(hdr->addr1))
1434 		return RX_CONTINUE;
1435 
1436 	if (!rx->sta)
1437 		return RX_CONTINUE;
1438 
1439 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1440 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1441 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1442 		rx->sta->rx_stats.num_duplicates++;
1443 		return RX_DROP_UNUSABLE;
1444 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1445 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1446 	}
1447 
1448 	return RX_CONTINUE;
1449 }
1450 
1451 static ieee80211_rx_result debug_noinline
1452 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1453 {
1454 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1455 
1456 	/* Drop disallowed frame classes based on STA auth/assoc state;
1457 	 * IEEE 802.11, Chap 5.5.
1458 	 *
1459 	 * mac80211 filters only based on association state, i.e. it drops
1460 	 * Class 3 frames from not associated stations. hostapd sends
1461 	 * deauth/disassoc frames when needed. In addition, hostapd is
1462 	 * responsible for filtering on both auth and assoc states.
1463 	 */
1464 
1465 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1466 		return ieee80211_rx_mesh_check(rx);
1467 
1468 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1469 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1470 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1471 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1472 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1473 		/*
1474 		 * accept port control frames from the AP even when it's not
1475 		 * yet marked ASSOC to prevent a race where we don't set the
1476 		 * assoc bit quickly enough before it sends the first frame
1477 		 */
1478 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1479 		    ieee80211_is_data_present(hdr->frame_control)) {
1480 			unsigned int hdrlen;
1481 			__be16 ethertype;
1482 
1483 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1484 
1485 			if (rx->skb->len < hdrlen + 8)
1486 				return RX_DROP_MONITOR;
1487 
1488 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1489 			if (ethertype == rx->sdata->control_port_protocol)
1490 				return RX_CONTINUE;
1491 		}
1492 
1493 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1494 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1495 					       hdr->addr2,
1496 					       GFP_ATOMIC))
1497 			return RX_DROP_UNUSABLE;
1498 
1499 		return RX_DROP_MONITOR;
1500 	}
1501 
1502 	return RX_CONTINUE;
1503 }
1504 
1505 
1506 static ieee80211_rx_result debug_noinline
1507 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1508 {
1509 	struct ieee80211_local *local;
1510 	struct ieee80211_hdr *hdr;
1511 	struct sk_buff *skb;
1512 
1513 	local = rx->local;
1514 	skb = rx->skb;
1515 	hdr = (struct ieee80211_hdr *) skb->data;
1516 
1517 	if (!local->pspolling)
1518 		return RX_CONTINUE;
1519 
1520 	if (!ieee80211_has_fromds(hdr->frame_control))
1521 		/* this is not from AP */
1522 		return RX_CONTINUE;
1523 
1524 	if (!ieee80211_is_data(hdr->frame_control))
1525 		return RX_CONTINUE;
1526 
1527 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1528 		/* AP has no more frames buffered for us */
1529 		local->pspolling = false;
1530 		return RX_CONTINUE;
1531 	}
1532 
1533 	/* more data bit is set, let's request a new frame from the AP */
1534 	ieee80211_send_pspoll(local, rx->sdata);
1535 
1536 	return RX_CONTINUE;
1537 }
1538 
1539 static void sta_ps_start(struct sta_info *sta)
1540 {
1541 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1542 	struct ieee80211_local *local = sdata->local;
1543 	struct ps_data *ps;
1544 	int tid;
1545 
1546 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1547 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1548 		ps = &sdata->bss->ps;
1549 	else
1550 		return;
1551 
1552 	atomic_inc(&ps->num_sta_ps);
1553 	set_sta_flag(sta, WLAN_STA_PS_STA);
1554 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1555 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1556 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1557 	       sta->sta.addr, sta->sta.aid);
1558 
1559 	ieee80211_clear_fast_xmit(sta);
1560 
1561 	if (!sta->sta.txq[0])
1562 		return;
1563 
1564 	for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1565 		struct ieee80211_txq *txq = sta->sta.txq[tid];
1566 		struct txq_info *txqi = to_txq_info(txq);
1567 
1568 		spin_lock(&local->active_txq_lock[txq->ac]);
1569 		if (!list_empty(&txqi->schedule_order))
1570 			list_del_init(&txqi->schedule_order);
1571 		spin_unlock(&local->active_txq_lock[txq->ac]);
1572 
1573 		if (txq_has_queue(txq))
1574 			set_bit(tid, &sta->txq_buffered_tids);
1575 		else
1576 			clear_bit(tid, &sta->txq_buffered_tids);
1577 	}
1578 }
1579 
1580 static void sta_ps_end(struct sta_info *sta)
1581 {
1582 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1583 	       sta->sta.addr, sta->sta.aid);
1584 
1585 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1586 		/*
1587 		 * Clear the flag only if the other one is still set
1588 		 * so that the TX path won't start TX'ing new frames
1589 		 * directly ... In the case that the driver flag isn't
1590 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1591 		 */
1592 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1593 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1594 		       sta->sta.addr, sta->sta.aid);
1595 		return;
1596 	}
1597 
1598 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1599 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1600 	ieee80211_sta_ps_deliver_wakeup(sta);
1601 }
1602 
1603 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1604 {
1605 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1606 	bool in_ps;
1607 
1608 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1609 
1610 	/* Don't let the same PS state be set twice */
1611 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1612 	if ((start && in_ps) || (!start && !in_ps))
1613 		return -EINVAL;
1614 
1615 	if (start)
1616 		sta_ps_start(sta);
1617 	else
1618 		sta_ps_end(sta);
1619 
1620 	return 0;
1621 }
1622 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1623 
1624 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1625 {
1626 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1627 
1628 	if (test_sta_flag(sta, WLAN_STA_SP))
1629 		return;
1630 
1631 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1632 		ieee80211_sta_ps_deliver_poll_response(sta);
1633 	else
1634 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1635 }
1636 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1637 
1638 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1639 {
1640 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1641 	int ac = ieee80211_ac_from_tid(tid);
1642 
1643 	/*
1644 	 * If this AC is not trigger-enabled do nothing unless the
1645 	 * driver is calling us after it already checked.
1646 	 *
1647 	 * NB: This could/should check a separate bitmap of trigger-
1648 	 * enabled queues, but for now we only implement uAPSD w/o
1649 	 * TSPEC changes to the ACs, so they're always the same.
1650 	 */
1651 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1652 	    tid != IEEE80211_NUM_TIDS)
1653 		return;
1654 
1655 	/* if we are in a service period, do nothing */
1656 	if (test_sta_flag(sta, WLAN_STA_SP))
1657 		return;
1658 
1659 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1660 		ieee80211_sta_ps_deliver_uapsd(sta);
1661 	else
1662 		set_sta_flag(sta, WLAN_STA_UAPSD);
1663 }
1664 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1665 
1666 static ieee80211_rx_result debug_noinline
1667 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1668 {
1669 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1670 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1671 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1672 
1673 	if (!rx->sta)
1674 		return RX_CONTINUE;
1675 
1676 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1677 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1678 		return RX_CONTINUE;
1679 
1680 	/*
1681 	 * The device handles station powersave, so don't do anything about
1682 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1683 	 * it to mac80211 since they're handled.)
1684 	 */
1685 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1686 		return RX_CONTINUE;
1687 
1688 	/*
1689 	 * Don't do anything if the station isn't already asleep. In
1690 	 * the uAPSD case, the station will probably be marked asleep,
1691 	 * in the PS-Poll case the station must be confused ...
1692 	 */
1693 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1694 		return RX_CONTINUE;
1695 
1696 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1697 		ieee80211_sta_pspoll(&rx->sta->sta);
1698 
1699 		/* Free PS Poll skb here instead of returning RX_DROP that would
1700 		 * count as an dropped frame. */
1701 		dev_kfree_skb(rx->skb);
1702 
1703 		return RX_QUEUED;
1704 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1705 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1706 		   ieee80211_has_pm(hdr->frame_control) &&
1707 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1708 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1709 		u8 tid = ieee80211_get_tid(hdr);
1710 
1711 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1712 	}
1713 
1714 	return RX_CONTINUE;
1715 }
1716 
1717 static ieee80211_rx_result debug_noinline
1718 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1719 {
1720 	struct sta_info *sta = rx->sta;
1721 	struct sk_buff *skb = rx->skb;
1722 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1723 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1724 	int i;
1725 
1726 	if (!sta)
1727 		return RX_CONTINUE;
1728 
1729 	/*
1730 	 * Update last_rx only for IBSS packets which are for the current
1731 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1732 	 * current IBSS network alive in cases where other STAs start
1733 	 * using different BSSID. This will also give the station another
1734 	 * chance to restart the authentication/authorization in case
1735 	 * something went wrong the first time.
1736 	 */
1737 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1738 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1739 						NL80211_IFTYPE_ADHOC);
1740 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1741 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1742 			sta->rx_stats.last_rx = jiffies;
1743 			if (ieee80211_is_data(hdr->frame_control) &&
1744 			    !is_multicast_ether_addr(hdr->addr1))
1745 				sta->rx_stats.last_rate =
1746 					sta_stats_encode_rate(status);
1747 		}
1748 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1749 		sta->rx_stats.last_rx = jiffies;
1750 	} else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1751 		   !is_multicast_ether_addr(hdr->addr1)) {
1752 		/*
1753 		 * Mesh beacons will update last_rx when if they are found to
1754 		 * match the current local configuration when processed.
1755 		 */
1756 		sta->rx_stats.last_rx = jiffies;
1757 		if (ieee80211_is_data(hdr->frame_control))
1758 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1759 	}
1760 
1761 	sta->rx_stats.fragments++;
1762 
1763 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1764 	sta->rx_stats.bytes += rx->skb->len;
1765 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1766 
1767 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1768 		sta->rx_stats.last_signal = status->signal;
1769 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1770 	}
1771 
1772 	if (status->chains) {
1773 		sta->rx_stats.chains = status->chains;
1774 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1775 			int signal = status->chain_signal[i];
1776 
1777 			if (!(status->chains & BIT(i)))
1778 				continue;
1779 
1780 			sta->rx_stats.chain_signal_last[i] = signal;
1781 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1782 					-signal);
1783 		}
1784 	}
1785 
1786 	if (ieee80211_is_s1g_beacon(hdr->frame_control))
1787 		return RX_CONTINUE;
1788 
1789 	/*
1790 	 * Change STA power saving mode only at the end of a frame
1791 	 * exchange sequence, and only for a data or management
1792 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1793 	 */
1794 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1795 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1796 	    !is_multicast_ether_addr(hdr->addr1) &&
1797 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1798 	     ieee80211_is_data(hdr->frame_control)) &&
1799 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1800 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1801 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1802 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1803 			if (!ieee80211_has_pm(hdr->frame_control))
1804 				sta_ps_end(sta);
1805 		} else {
1806 			if (ieee80211_has_pm(hdr->frame_control))
1807 				sta_ps_start(sta);
1808 		}
1809 	}
1810 
1811 	/* mesh power save support */
1812 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1813 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1814 
1815 	/*
1816 	 * Drop (qos-)data::nullfunc frames silently, since they
1817 	 * are used only to control station power saving mode.
1818 	 */
1819 	if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1820 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1821 
1822 		/*
1823 		 * If we receive a 4-addr nullfunc frame from a STA
1824 		 * that was not moved to a 4-addr STA vlan yet send
1825 		 * the event to userspace and for older hostapd drop
1826 		 * the frame to the monitor interface.
1827 		 */
1828 		if (ieee80211_has_a4(hdr->frame_control) &&
1829 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1830 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1831 		      !rx->sdata->u.vlan.sta))) {
1832 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1833 				cfg80211_rx_unexpected_4addr_frame(
1834 					rx->sdata->dev, sta->sta.addr,
1835 					GFP_ATOMIC);
1836 			return RX_DROP_MONITOR;
1837 		}
1838 		/*
1839 		 * Update counter and free packet here to avoid
1840 		 * counting this as a dropped packed.
1841 		 */
1842 		sta->rx_stats.packets++;
1843 		dev_kfree_skb(rx->skb);
1844 		return RX_QUEUED;
1845 	}
1846 
1847 	return RX_CONTINUE;
1848 } /* ieee80211_rx_h_sta_process */
1849 
1850 static struct ieee80211_key *
1851 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1852 {
1853 	struct ieee80211_key *key = NULL;
1854 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1855 	int idx2;
1856 
1857 	/* Make sure key gets set if either BIGTK key index is set so that
1858 	 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1859 	 * Beacon frames and Beacon frames that claim to use another BIGTK key
1860 	 * index (i.e., a key that we do not have).
1861 	 */
1862 
1863 	if (idx < 0) {
1864 		idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1865 		idx2 = idx + 1;
1866 	} else {
1867 		if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1868 			idx2 = idx + 1;
1869 		else
1870 			idx2 = idx - 1;
1871 	}
1872 
1873 	if (rx->sta)
1874 		key = rcu_dereference(rx->sta->gtk[idx]);
1875 	if (!key)
1876 		key = rcu_dereference(sdata->keys[idx]);
1877 	if (!key && rx->sta)
1878 		key = rcu_dereference(rx->sta->gtk[idx2]);
1879 	if (!key)
1880 		key = rcu_dereference(sdata->keys[idx2]);
1881 
1882 	return key;
1883 }
1884 
1885 static ieee80211_rx_result debug_noinline
1886 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1887 {
1888 	struct sk_buff *skb = rx->skb;
1889 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1890 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1891 	int keyidx;
1892 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1893 	struct ieee80211_key *sta_ptk = NULL;
1894 	struct ieee80211_key *ptk_idx = NULL;
1895 	int mmie_keyidx = -1;
1896 	__le16 fc;
1897 	const struct ieee80211_cipher_scheme *cs = NULL;
1898 
1899 	if (ieee80211_is_ext(hdr->frame_control))
1900 		return RX_CONTINUE;
1901 
1902 	/*
1903 	 * Key selection 101
1904 	 *
1905 	 * There are five types of keys:
1906 	 *  - GTK (group keys)
1907 	 *  - IGTK (group keys for management frames)
1908 	 *  - BIGTK (group keys for Beacon frames)
1909 	 *  - PTK (pairwise keys)
1910 	 *  - STK (station-to-station pairwise keys)
1911 	 *
1912 	 * When selecting a key, we have to distinguish between multicast
1913 	 * (including broadcast) and unicast frames, the latter can only
1914 	 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1915 	 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1916 	 * then unicast frames can also use key indices like GTKs. Hence, if we
1917 	 * don't have a PTK/STK we check the key index for a WEP key.
1918 	 *
1919 	 * Note that in a regular BSS, multicast frames are sent by the
1920 	 * AP only, associated stations unicast the frame to the AP first
1921 	 * which then multicasts it on their behalf.
1922 	 *
1923 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1924 	 * with each station, that is something we don't currently handle.
1925 	 * The spec seems to expect that one negotiates the same key with
1926 	 * every station but there's no such requirement; VLANs could be
1927 	 * possible.
1928 	 */
1929 
1930 	/* start without a key */
1931 	rx->key = NULL;
1932 	fc = hdr->frame_control;
1933 
1934 	if (rx->sta) {
1935 		int keyid = rx->sta->ptk_idx;
1936 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1937 
1938 		if (ieee80211_has_protected(fc)) {
1939 			cs = rx->sta->cipher_scheme;
1940 			keyid = ieee80211_get_keyid(rx->skb, cs);
1941 
1942 			if (unlikely(keyid < 0))
1943 				return RX_DROP_UNUSABLE;
1944 
1945 			ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1946 		}
1947 	}
1948 
1949 	if (!ieee80211_has_protected(fc))
1950 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1951 
1952 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1953 		rx->key = ptk_idx ? ptk_idx : sta_ptk;
1954 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1955 		    (status->flag & RX_FLAG_IV_STRIPPED))
1956 			return RX_CONTINUE;
1957 		/* Skip decryption if the frame is not protected. */
1958 		if (!ieee80211_has_protected(fc))
1959 			return RX_CONTINUE;
1960 	} else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1961 		/* Broadcast/multicast robust management frame / BIP */
1962 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1963 		    (status->flag & RX_FLAG_IV_STRIPPED))
1964 			return RX_CONTINUE;
1965 
1966 		if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1967 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1968 		    NUM_DEFAULT_BEACON_KEYS) {
1969 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1970 						     skb->data,
1971 						     skb->len);
1972 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1973 		}
1974 
1975 		rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1976 		if (!rx->key)
1977 			return RX_CONTINUE; /* Beacon protection not in use */
1978 	} else if (mmie_keyidx >= 0) {
1979 		/* Broadcast/multicast robust management frame / BIP */
1980 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1981 		    (status->flag & RX_FLAG_IV_STRIPPED))
1982 			return RX_CONTINUE;
1983 
1984 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1985 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1986 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1987 		if (rx->sta) {
1988 			if (ieee80211_is_group_privacy_action(skb) &&
1989 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1990 				return RX_DROP_MONITOR;
1991 
1992 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1993 		}
1994 		if (!rx->key)
1995 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1996 	} else if (!ieee80211_has_protected(fc)) {
1997 		/*
1998 		 * The frame was not protected, so skip decryption. However, we
1999 		 * need to set rx->key if there is a key that could have been
2000 		 * used so that the frame may be dropped if encryption would
2001 		 * have been expected.
2002 		 */
2003 		struct ieee80211_key *key = NULL;
2004 		struct ieee80211_sub_if_data *sdata = rx->sdata;
2005 		int i;
2006 
2007 		if (ieee80211_is_beacon(fc)) {
2008 			key = ieee80211_rx_get_bigtk(rx, -1);
2009 		} else if (ieee80211_is_mgmt(fc) &&
2010 			   is_multicast_ether_addr(hdr->addr1)) {
2011 			key = rcu_dereference(rx->sdata->default_mgmt_key);
2012 		} else {
2013 			if (rx->sta) {
2014 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2015 					key = rcu_dereference(rx->sta->gtk[i]);
2016 					if (key)
2017 						break;
2018 				}
2019 			}
2020 			if (!key) {
2021 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2022 					key = rcu_dereference(sdata->keys[i]);
2023 					if (key)
2024 						break;
2025 				}
2026 			}
2027 		}
2028 		if (key)
2029 			rx->key = key;
2030 		return RX_CONTINUE;
2031 	} else {
2032 		/*
2033 		 * The device doesn't give us the IV so we won't be
2034 		 * able to look up the key. That's ok though, we
2035 		 * don't need to decrypt the frame, we just won't
2036 		 * be able to keep statistics accurate.
2037 		 * Except for key threshold notifications, should
2038 		 * we somehow allow the driver to tell us which key
2039 		 * the hardware used if this flag is set?
2040 		 */
2041 		if ((status->flag & RX_FLAG_DECRYPTED) &&
2042 		    (status->flag & RX_FLAG_IV_STRIPPED))
2043 			return RX_CONTINUE;
2044 
2045 		keyidx = ieee80211_get_keyid(rx->skb, cs);
2046 
2047 		if (unlikely(keyidx < 0))
2048 			return RX_DROP_UNUSABLE;
2049 
2050 		/* check per-station GTK first, if multicast packet */
2051 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2052 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2053 
2054 		/* if not found, try default key */
2055 		if (!rx->key) {
2056 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2057 
2058 			/*
2059 			 * RSNA-protected unicast frames should always be
2060 			 * sent with pairwise or station-to-station keys,
2061 			 * but for WEP we allow using a key index as well.
2062 			 */
2063 			if (rx->key &&
2064 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2065 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2066 			    !is_multicast_ether_addr(hdr->addr1))
2067 				rx->key = NULL;
2068 		}
2069 	}
2070 
2071 	if (rx->key) {
2072 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2073 			return RX_DROP_MONITOR;
2074 
2075 		/* TODO: add threshold stuff again */
2076 	} else {
2077 		return RX_DROP_MONITOR;
2078 	}
2079 
2080 	switch (rx->key->conf.cipher) {
2081 	case WLAN_CIPHER_SUITE_WEP40:
2082 	case WLAN_CIPHER_SUITE_WEP104:
2083 		result = ieee80211_crypto_wep_decrypt(rx);
2084 		break;
2085 	case WLAN_CIPHER_SUITE_TKIP:
2086 		result = ieee80211_crypto_tkip_decrypt(rx);
2087 		break;
2088 	case WLAN_CIPHER_SUITE_CCMP:
2089 		result = ieee80211_crypto_ccmp_decrypt(
2090 			rx, IEEE80211_CCMP_MIC_LEN);
2091 		break;
2092 	case WLAN_CIPHER_SUITE_CCMP_256:
2093 		result = ieee80211_crypto_ccmp_decrypt(
2094 			rx, IEEE80211_CCMP_256_MIC_LEN);
2095 		break;
2096 	case WLAN_CIPHER_SUITE_AES_CMAC:
2097 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
2098 		break;
2099 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2100 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2101 		break;
2102 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2103 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2104 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
2105 		break;
2106 	case WLAN_CIPHER_SUITE_GCMP:
2107 	case WLAN_CIPHER_SUITE_GCMP_256:
2108 		result = ieee80211_crypto_gcmp_decrypt(rx);
2109 		break;
2110 	default:
2111 		result = ieee80211_crypto_hw_decrypt(rx);
2112 	}
2113 
2114 	/* the hdr variable is invalid after the decrypt handlers */
2115 
2116 	/* either the frame has been decrypted or will be dropped */
2117 	status->flag |= RX_FLAG_DECRYPTED;
2118 
2119 	if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE))
2120 		cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2121 					     skb->data, skb->len);
2122 
2123 	return result;
2124 }
2125 
2126 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
2127 {
2128 	int i;
2129 
2130 	for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2131 		skb_queue_head_init(&cache->entries[i].skb_list);
2132 }
2133 
2134 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
2135 {
2136 	int i;
2137 
2138 	for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2139 		__skb_queue_purge(&cache->entries[i].skb_list);
2140 }
2141 
2142 static inline struct ieee80211_fragment_entry *
2143 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
2144 			 unsigned int frag, unsigned int seq, int rx_queue,
2145 			 struct sk_buff **skb)
2146 {
2147 	struct ieee80211_fragment_entry *entry;
2148 
2149 	entry = &cache->entries[cache->next++];
2150 	if (cache->next >= IEEE80211_FRAGMENT_MAX)
2151 		cache->next = 0;
2152 
2153 	__skb_queue_purge(&entry->skb_list);
2154 
2155 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2156 	*skb = NULL;
2157 	entry->first_frag_time = jiffies;
2158 	entry->seq = seq;
2159 	entry->rx_queue = rx_queue;
2160 	entry->last_frag = frag;
2161 	entry->check_sequential_pn = false;
2162 	entry->extra_len = 0;
2163 
2164 	return entry;
2165 }
2166 
2167 static inline struct ieee80211_fragment_entry *
2168 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
2169 			  unsigned int frag, unsigned int seq,
2170 			  int rx_queue, struct ieee80211_hdr *hdr)
2171 {
2172 	struct ieee80211_fragment_entry *entry;
2173 	int i, idx;
2174 
2175 	idx = cache->next;
2176 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2177 		struct ieee80211_hdr *f_hdr;
2178 		struct sk_buff *f_skb;
2179 
2180 		idx--;
2181 		if (idx < 0)
2182 			idx = IEEE80211_FRAGMENT_MAX - 1;
2183 
2184 		entry = &cache->entries[idx];
2185 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2186 		    entry->rx_queue != rx_queue ||
2187 		    entry->last_frag + 1 != frag)
2188 			continue;
2189 
2190 		f_skb = __skb_peek(&entry->skb_list);
2191 		f_hdr = (struct ieee80211_hdr *) f_skb->data;
2192 
2193 		/*
2194 		 * Check ftype and addresses are equal, else check next fragment
2195 		 */
2196 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2197 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2198 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2199 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2200 			continue;
2201 
2202 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2203 			__skb_queue_purge(&entry->skb_list);
2204 			continue;
2205 		}
2206 		return entry;
2207 	}
2208 
2209 	return NULL;
2210 }
2211 
2212 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
2213 {
2214 	return rx->key &&
2215 		(rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2216 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2217 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2218 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2219 		ieee80211_has_protected(fc);
2220 }
2221 
2222 static ieee80211_rx_result debug_noinline
2223 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2224 {
2225 	struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
2226 	struct ieee80211_hdr *hdr;
2227 	u16 sc;
2228 	__le16 fc;
2229 	unsigned int frag, seq;
2230 	struct ieee80211_fragment_entry *entry;
2231 	struct sk_buff *skb;
2232 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2233 
2234 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2235 	fc = hdr->frame_control;
2236 
2237 	if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2238 		return RX_CONTINUE;
2239 
2240 	sc = le16_to_cpu(hdr->seq_ctrl);
2241 	frag = sc & IEEE80211_SCTL_FRAG;
2242 
2243 	if (rx->sta)
2244 		cache = &rx->sta->frags;
2245 
2246 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2247 		goto out;
2248 
2249 	if (is_multicast_ether_addr(hdr->addr1))
2250 		return RX_DROP_MONITOR;
2251 
2252 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2253 
2254 	if (skb_linearize(rx->skb))
2255 		return RX_DROP_UNUSABLE;
2256 
2257 	/*
2258 	 *  skb_linearize() might change the skb->data and
2259 	 *  previously cached variables (in this case, hdr) need to
2260 	 *  be refreshed with the new data.
2261 	 */
2262 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2263 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2264 
2265 	if (frag == 0) {
2266 		/* This is the first fragment of a new frame. */
2267 		entry = ieee80211_reassemble_add(cache, frag, seq,
2268 						 rx->seqno_idx, &(rx->skb));
2269 		if (requires_sequential_pn(rx, fc)) {
2270 			int queue = rx->security_idx;
2271 
2272 			/* Store CCMP/GCMP PN so that we can verify that the
2273 			 * next fragment has a sequential PN value.
2274 			 */
2275 			entry->check_sequential_pn = true;
2276 			entry->is_protected = true;
2277 			entry->key_color = rx->key->color;
2278 			memcpy(entry->last_pn,
2279 			       rx->key->u.ccmp.rx_pn[queue],
2280 			       IEEE80211_CCMP_PN_LEN);
2281 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2282 					      u.ccmp.rx_pn) !=
2283 				     offsetof(struct ieee80211_key,
2284 					      u.gcmp.rx_pn));
2285 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2286 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2287 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2288 				     IEEE80211_GCMP_PN_LEN);
2289 		} else if (rx->key &&
2290 			   (ieee80211_has_protected(fc) ||
2291 			    (status->flag & RX_FLAG_DECRYPTED))) {
2292 			entry->is_protected = true;
2293 			entry->key_color = rx->key->color;
2294 		}
2295 		return RX_QUEUED;
2296 	}
2297 
2298 	/* This is a fragment for a frame that should already be pending in
2299 	 * fragment cache. Add this fragment to the end of the pending entry.
2300 	 */
2301 	entry = ieee80211_reassemble_find(cache, frag, seq,
2302 					  rx->seqno_idx, hdr);
2303 	if (!entry) {
2304 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2305 		return RX_DROP_MONITOR;
2306 	}
2307 
2308 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2309 	 *  MPDU PN values are not incrementing in steps of 1."
2310 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2311 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2312 	 */
2313 	if (entry->check_sequential_pn) {
2314 		int i;
2315 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2316 
2317 		if (!requires_sequential_pn(rx, fc))
2318 			return RX_DROP_UNUSABLE;
2319 
2320 		/* Prevent mixed key and fragment cache attacks */
2321 		if (entry->key_color != rx->key->color)
2322 			return RX_DROP_UNUSABLE;
2323 
2324 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2325 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2326 			pn[i]++;
2327 			if (pn[i])
2328 				break;
2329 		}
2330 
2331 		rpn = rx->ccm_gcm.pn;
2332 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2333 			return RX_DROP_UNUSABLE;
2334 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2335 	} else if (entry->is_protected &&
2336 		   (!rx->key ||
2337 		    (!ieee80211_has_protected(fc) &&
2338 		     !(status->flag & RX_FLAG_DECRYPTED)) ||
2339 		    rx->key->color != entry->key_color)) {
2340 		/* Drop this as a mixed key or fragment cache attack, even
2341 		 * if for TKIP Michael MIC should protect us, and WEP is a
2342 		 * lost cause anyway.
2343 		 */
2344 		return RX_DROP_UNUSABLE;
2345 	} else if (entry->is_protected && rx->key &&
2346 		   entry->key_color != rx->key->color &&
2347 		   (status->flag & RX_FLAG_DECRYPTED)) {
2348 		return RX_DROP_UNUSABLE;
2349 	}
2350 
2351 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2352 	__skb_queue_tail(&entry->skb_list, rx->skb);
2353 	entry->last_frag = frag;
2354 	entry->extra_len += rx->skb->len;
2355 	if (ieee80211_has_morefrags(fc)) {
2356 		rx->skb = NULL;
2357 		return RX_QUEUED;
2358 	}
2359 
2360 	rx->skb = __skb_dequeue(&entry->skb_list);
2361 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2362 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2363 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2364 					      GFP_ATOMIC))) {
2365 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2366 			__skb_queue_purge(&entry->skb_list);
2367 			return RX_DROP_UNUSABLE;
2368 		}
2369 	}
2370 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2371 		skb_put_data(rx->skb, skb->data, skb->len);
2372 		dev_kfree_skb(skb);
2373 	}
2374 
2375  out:
2376 	ieee80211_led_rx(rx->local);
2377 	if (rx->sta)
2378 		rx->sta->rx_stats.packets++;
2379 	return RX_CONTINUE;
2380 }
2381 
2382 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2383 {
2384 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2385 		return -EACCES;
2386 
2387 	return 0;
2388 }
2389 
2390 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2391 {
2392 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2393 	struct sk_buff *skb = rx->skb;
2394 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2395 
2396 	/*
2397 	 * Pass through unencrypted frames if the hardware has
2398 	 * decrypted them already.
2399 	 */
2400 	if (status->flag & RX_FLAG_DECRYPTED)
2401 		return 0;
2402 
2403 	/* check mesh EAPOL frames first */
2404 	if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2405 		     ieee80211_is_data(fc))) {
2406 		struct ieee80211s_hdr *mesh_hdr;
2407 		u16 hdr_len = ieee80211_hdrlen(fc);
2408 		u16 ethertype_offset;
2409 		__be16 ethertype;
2410 
2411 		if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2412 			goto drop_check;
2413 
2414 		/* make sure fixed part of mesh header is there, also checks skb len */
2415 		if (!pskb_may_pull(rx->skb, hdr_len + 6))
2416 			goto drop_check;
2417 
2418 		mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2419 		ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2420 				   sizeof(rfc1042_header);
2421 
2422 		if (skb_copy_bits(rx->skb, ethertype_offset, &ethertype, 2) == 0 &&
2423 		    ethertype == rx->sdata->control_port_protocol)
2424 			return 0;
2425 	}
2426 
2427 drop_check:
2428 	/* Drop unencrypted frames if key is set. */
2429 	if (unlikely(!ieee80211_has_protected(fc) &&
2430 		     !ieee80211_is_any_nullfunc(fc) &&
2431 		     ieee80211_is_data(fc) && rx->key))
2432 		return -EACCES;
2433 
2434 	return 0;
2435 }
2436 
2437 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2438 {
2439 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2440 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2441 	__le16 fc = hdr->frame_control;
2442 
2443 	/*
2444 	 * Pass through unencrypted frames if the hardware has
2445 	 * decrypted them already.
2446 	 */
2447 	if (status->flag & RX_FLAG_DECRYPTED)
2448 		return 0;
2449 
2450 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2451 		if (unlikely(!ieee80211_has_protected(fc) &&
2452 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2453 			     rx->key)) {
2454 			if (ieee80211_is_deauth(fc) ||
2455 			    ieee80211_is_disassoc(fc))
2456 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2457 							     rx->skb->data,
2458 							     rx->skb->len);
2459 			return -EACCES;
2460 		}
2461 		/* BIP does not use Protected field, so need to check MMIE */
2462 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2463 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2464 			if (ieee80211_is_deauth(fc) ||
2465 			    ieee80211_is_disassoc(fc))
2466 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2467 							     rx->skb->data,
2468 							     rx->skb->len);
2469 			return -EACCES;
2470 		}
2471 		if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2472 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2473 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2474 						     rx->skb->data,
2475 						     rx->skb->len);
2476 			return -EACCES;
2477 		}
2478 		/*
2479 		 * When using MFP, Action frames are not allowed prior to
2480 		 * having configured keys.
2481 		 */
2482 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2483 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2484 			return -EACCES;
2485 	}
2486 
2487 	return 0;
2488 }
2489 
2490 static int
2491 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2492 {
2493 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2494 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2495 	bool check_port_control = false;
2496 	struct ethhdr *ehdr;
2497 	int ret;
2498 
2499 	*port_control = false;
2500 	if (ieee80211_has_a4(hdr->frame_control) &&
2501 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2502 		return -1;
2503 
2504 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2505 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2506 
2507 		if (!sdata->u.mgd.use_4addr)
2508 			return -1;
2509 		else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2510 			check_port_control = true;
2511 	}
2512 
2513 	if (is_multicast_ether_addr(hdr->addr1) &&
2514 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2515 		return -1;
2516 
2517 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2518 	if (ret < 0)
2519 		return ret;
2520 
2521 	ehdr = (struct ethhdr *) rx->skb->data;
2522 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2523 		*port_control = true;
2524 	else if (check_port_control)
2525 		return -1;
2526 
2527 	return 0;
2528 }
2529 
2530 /*
2531  * requires that rx->skb is a frame with ethernet header
2532  */
2533 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2534 {
2535 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2536 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2537 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2538 
2539 	/*
2540 	 * Allow EAPOL frames to us/the PAE group address regardless of
2541 	 * whether the frame was encrypted or not, and always disallow
2542 	 * all other destination addresses for them.
2543 	 */
2544 	if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
2545 		return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2546 		       ether_addr_equal(ehdr->h_dest, pae_group_addr);
2547 
2548 	if (ieee80211_802_1x_port_control(rx) ||
2549 	    ieee80211_drop_unencrypted(rx, fc))
2550 		return false;
2551 
2552 	return true;
2553 }
2554 
2555 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2556 						 struct ieee80211_rx_data *rx)
2557 {
2558 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2559 	struct net_device *dev = sdata->dev;
2560 
2561 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2562 		     (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2563 		      !sdata->control_port_no_preauth)) &&
2564 		     sdata->control_port_over_nl80211)) {
2565 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2566 		bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2567 
2568 		cfg80211_rx_control_port(dev, skb, noencrypt);
2569 		dev_kfree_skb(skb);
2570 	} else {
2571 		struct ethhdr *ehdr = (void *)skb_mac_header(skb);
2572 
2573 		memset(skb->cb, 0, sizeof(skb->cb));
2574 
2575 		/*
2576 		 * 802.1X over 802.11 requires that the authenticator address
2577 		 * be used for EAPOL frames. However, 802.1X allows the use of
2578 		 * the PAE group address instead. If the interface is part of
2579 		 * a bridge and we pass the frame with the PAE group address,
2580 		 * then the bridge will forward it to the network (even if the
2581 		 * client was not associated yet), which isn't supposed to
2582 		 * happen.
2583 		 * To avoid that, rewrite the destination address to our own
2584 		 * address, so that the authenticator (e.g. hostapd) will see
2585 		 * the frame, but bridge won't forward it anywhere else. Note
2586 		 * that due to earlier filtering, the only other address can
2587 		 * be the PAE group address.
2588 		 */
2589 		if (unlikely(skb->protocol == sdata->control_port_protocol &&
2590 			     !ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
2591 			ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
2592 
2593 		/* deliver to local stack */
2594 		if (rx->list)
2595 			list_add_tail(&skb->list, rx->list);
2596 		else
2597 			netif_receive_skb(skb);
2598 	}
2599 }
2600 
2601 /*
2602  * requires that rx->skb is a frame with ethernet header
2603  */
2604 static void
2605 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2606 {
2607 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2608 	struct net_device *dev = sdata->dev;
2609 	struct sk_buff *skb, *xmit_skb;
2610 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2611 	struct sta_info *dsta;
2612 
2613 	skb = rx->skb;
2614 	xmit_skb = NULL;
2615 
2616 	dev_sw_netstats_rx_add(dev, skb->len);
2617 
2618 	if (rx->sta) {
2619 		/* The seqno index has the same property as needed
2620 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2621 		 * for non-QoS-data frames. Here we know it's a data
2622 		 * frame, so count MSDUs.
2623 		 */
2624 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2625 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2626 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2627 	}
2628 
2629 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2630 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2631 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2632 	    ehdr->h_proto != rx->sdata->control_port_protocol &&
2633 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2634 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2635 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2636 			/*
2637 			 * send multicast frames both to higher layers in
2638 			 * local net stack and back to the wireless medium
2639 			 */
2640 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2641 			if (!xmit_skb)
2642 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2643 						    dev->name);
2644 		} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2645 			   !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2646 			dsta = sta_info_get(sdata, ehdr->h_dest);
2647 			if (dsta) {
2648 				/*
2649 				 * The destination station is associated to
2650 				 * this AP (in this VLAN), so send the frame
2651 				 * directly to it and do not pass it to local
2652 				 * net stack.
2653 				 */
2654 				xmit_skb = skb;
2655 				skb = NULL;
2656 			}
2657 		}
2658 	}
2659 
2660 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2661 	if (skb) {
2662 		/* 'align' will only take the values 0 or 2 here since all
2663 		 * frames are required to be aligned to 2-byte boundaries
2664 		 * when being passed to mac80211; the code here works just
2665 		 * as well if that isn't true, but mac80211 assumes it can
2666 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2667 		 */
2668 		int align;
2669 
2670 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2671 		if (align) {
2672 			if (WARN_ON(skb_headroom(skb) < 3)) {
2673 				dev_kfree_skb(skb);
2674 				skb = NULL;
2675 			} else {
2676 				u8 *data = skb->data;
2677 				size_t len = skb_headlen(skb);
2678 				skb->data -= align;
2679 				memmove(skb->data, data, len);
2680 				skb_set_tail_pointer(skb, len);
2681 			}
2682 		}
2683 	}
2684 #endif
2685 
2686 	if (skb) {
2687 		skb->protocol = eth_type_trans(skb, dev);
2688 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2689 	}
2690 
2691 	if (xmit_skb) {
2692 		/*
2693 		 * Send to wireless media and increase priority by 256 to
2694 		 * keep the received priority instead of reclassifying
2695 		 * the frame (see cfg80211_classify8021d).
2696 		 */
2697 		xmit_skb->priority += 256;
2698 		xmit_skb->protocol = htons(ETH_P_802_3);
2699 		skb_reset_network_header(xmit_skb);
2700 		skb_reset_mac_header(xmit_skb);
2701 		dev_queue_xmit(xmit_skb);
2702 	}
2703 }
2704 
2705 static ieee80211_rx_result debug_noinline
2706 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2707 {
2708 	struct net_device *dev = rx->sdata->dev;
2709 	struct sk_buff *skb = rx->skb;
2710 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2711 	__le16 fc = hdr->frame_control;
2712 	struct sk_buff_head frame_list;
2713 	struct ethhdr ethhdr;
2714 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2715 
2716 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2717 		check_da = NULL;
2718 		check_sa = NULL;
2719 	} else switch (rx->sdata->vif.type) {
2720 		case NL80211_IFTYPE_AP:
2721 		case NL80211_IFTYPE_AP_VLAN:
2722 			check_da = NULL;
2723 			break;
2724 		case NL80211_IFTYPE_STATION:
2725 			if (!rx->sta ||
2726 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2727 				check_sa = NULL;
2728 			break;
2729 		case NL80211_IFTYPE_MESH_POINT:
2730 			check_sa = NULL;
2731 			break;
2732 		default:
2733 			break;
2734 	}
2735 
2736 	skb->dev = dev;
2737 	__skb_queue_head_init(&frame_list);
2738 
2739 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2740 					  rx->sdata->vif.addr,
2741 					  rx->sdata->vif.type,
2742 					  data_offset, true))
2743 		return RX_DROP_UNUSABLE;
2744 
2745 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2746 				 rx->sdata->vif.type,
2747 				 rx->local->hw.extra_tx_headroom,
2748 				 check_da, check_sa);
2749 
2750 	while (!skb_queue_empty(&frame_list)) {
2751 		rx->skb = __skb_dequeue(&frame_list);
2752 
2753 		if (!ieee80211_frame_allowed(rx, fc)) {
2754 			dev_kfree_skb(rx->skb);
2755 			continue;
2756 		}
2757 
2758 		ieee80211_deliver_skb(rx);
2759 	}
2760 
2761 	return RX_QUEUED;
2762 }
2763 
2764 static ieee80211_rx_result debug_noinline
2765 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2766 {
2767 	struct sk_buff *skb = rx->skb;
2768 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2769 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2770 	__le16 fc = hdr->frame_control;
2771 
2772 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2773 		return RX_CONTINUE;
2774 
2775 	if (unlikely(!ieee80211_is_data(fc)))
2776 		return RX_CONTINUE;
2777 
2778 	if (unlikely(!ieee80211_is_data_present(fc)))
2779 		return RX_DROP_MONITOR;
2780 
2781 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2782 		switch (rx->sdata->vif.type) {
2783 		case NL80211_IFTYPE_AP_VLAN:
2784 			if (!rx->sdata->u.vlan.sta)
2785 				return RX_DROP_UNUSABLE;
2786 			break;
2787 		case NL80211_IFTYPE_STATION:
2788 			if (!rx->sdata->u.mgd.use_4addr)
2789 				return RX_DROP_UNUSABLE;
2790 			break;
2791 		default:
2792 			return RX_DROP_UNUSABLE;
2793 		}
2794 	}
2795 
2796 	if (is_multicast_ether_addr(hdr->addr1))
2797 		return RX_DROP_UNUSABLE;
2798 
2799 	if (rx->key) {
2800 		/*
2801 		 * We should not receive A-MSDUs on pre-HT connections,
2802 		 * and HT connections cannot use old ciphers. Thus drop
2803 		 * them, as in those cases we couldn't even have SPP
2804 		 * A-MSDUs or such.
2805 		 */
2806 		switch (rx->key->conf.cipher) {
2807 		case WLAN_CIPHER_SUITE_WEP40:
2808 		case WLAN_CIPHER_SUITE_WEP104:
2809 		case WLAN_CIPHER_SUITE_TKIP:
2810 			return RX_DROP_UNUSABLE;
2811 		default:
2812 			break;
2813 		}
2814 	}
2815 
2816 	return __ieee80211_rx_h_amsdu(rx, 0);
2817 }
2818 
2819 #ifdef CONFIG_MAC80211_MESH
2820 static ieee80211_rx_result
2821 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2822 {
2823 	struct ieee80211_hdr *fwd_hdr, *hdr;
2824 	struct ieee80211_tx_info *info;
2825 	struct ieee80211s_hdr *mesh_hdr;
2826 	struct sk_buff *skb = rx->skb, *fwd_skb;
2827 	struct ieee80211_local *local = rx->local;
2828 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2829 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2830 	u16 ac, q, hdrlen;
2831 	int tailroom = 0;
2832 
2833 	hdr = (struct ieee80211_hdr *) skb->data;
2834 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2835 
2836 	/* make sure fixed part of mesh header is there, also checks skb len */
2837 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2838 		return RX_DROP_MONITOR;
2839 
2840 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2841 
2842 	/* make sure full mesh header is there, also checks skb len */
2843 	if (!pskb_may_pull(rx->skb,
2844 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2845 		return RX_DROP_MONITOR;
2846 
2847 	/* reload pointers */
2848 	hdr = (struct ieee80211_hdr *) skb->data;
2849 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2850 
2851 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2852 		return RX_DROP_MONITOR;
2853 
2854 	/* frame is in RMC, don't forward */
2855 	if (ieee80211_is_data(hdr->frame_control) &&
2856 	    is_multicast_ether_addr(hdr->addr1) &&
2857 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2858 		return RX_DROP_MONITOR;
2859 
2860 	if (!ieee80211_is_data(hdr->frame_control))
2861 		return RX_CONTINUE;
2862 
2863 	if (!mesh_hdr->ttl)
2864 		return RX_DROP_MONITOR;
2865 
2866 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2867 		struct mesh_path *mppath;
2868 		char *proxied_addr;
2869 		char *mpp_addr;
2870 
2871 		if (is_multicast_ether_addr(hdr->addr1)) {
2872 			mpp_addr = hdr->addr3;
2873 			proxied_addr = mesh_hdr->eaddr1;
2874 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2875 			    MESH_FLAGS_AE_A5_A6) {
2876 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2877 			mpp_addr = hdr->addr4;
2878 			proxied_addr = mesh_hdr->eaddr2;
2879 		} else {
2880 			return RX_DROP_MONITOR;
2881 		}
2882 
2883 		rcu_read_lock();
2884 		mppath = mpp_path_lookup(sdata, proxied_addr);
2885 		if (!mppath) {
2886 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2887 		} else {
2888 			spin_lock_bh(&mppath->state_lock);
2889 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2890 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2891 			mppath->exp_time = jiffies;
2892 			spin_unlock_bh(&mppath->state_lock);
2893 		}
2894 		rcu_read_unlock();
2895 	}
2896 
2897 	/* Frame has reached destination.  Don't forward */
2898 	if (!is_multicast_ether_addr(hdr->addr1) &&
2899 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2900 		return RX_CONTINUE;
2901 
2902 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2903 	q = sdata->vif.hw_queue[ac];
2904 	if (ieee80211_queue_stopped(&local->hw, q)) {
2905 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2906 		return RX_DROP_MONITOR;
2907 	}
2908 	skb_set_queue_mapping(skb, q);
2909 
2910 	if (!--mesh_hdr->ttl) {
2911 		if (!is_multicast_ether_addr(hdr->addr1))
2912 			IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2913 						     dropped_frames_ttl);
2914 		goto out;
2915 	}
2916 
2917 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2918 		goto out;
2919 
2920 	if (sdata->crypto_tx_tailroom_needed_cnt)
2921 		tailroom = IEEE80211_ENCRYPT_TAILROOM;
2922 
2923 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2924 				       sdata->encrypt_headroom,
2925 				  tailroom, GFP_ATOMIC);
2926 	if (!fwd_skb)
2927 		goto out;
2928 
2929 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2930 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2931 	info = IEEE80211_SKB_CB(fwd_skb);
2932 	memset(info, 0, sizeof(*info));
2933 	info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2934 	info->control.vif = &rx->sdata->vif;
2935 	info->control.jiffies = jiffies;
2936 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2937 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2938 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2939 		/* update power mode indication when forwarding */
2940 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2941 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2942 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2943 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2944 	} else {
2945 		/* unable to resolve next hop */
2946 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2947 				   fwd_hdr->addr3, 0,
2948 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2949 				   fwd_hdr->addr2);
2950 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2951 		kfree_skb(fwd_skb);
2952 		return RX_DROP_MONITOR;
2953 	}
2954 
2955 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2956 	ieee80211_add_pending_skb(local, fwd_skb);
2957  out:
2958 	if (is_multicast_ether_addr(hdr->addr1))
2959 		return RX_CONTINUE;
2960 	return RX_DROP_MONITOR;
2961 }
2962 #endif
2963 
2964 static ieee80211_rx_result debug_noinline
2965 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2966 {
2967 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2968 	struct ieee80211_local *local = rx->local;
2969 	struct net_device *dev = sdata->dev;
2970 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2971 	__le16 fc = hdr->frame_control;
2972 	bool port_control;
2973 	int err;
2974 
2975 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2976 		return RX_CONTINUE;
2977 
2978 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2979 		return RX_DROP_MONITOR;
2980 
2981 	/*
2982 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2983 	 * also drop the frame to cooked monitor interfaces.
2984 	 */
2985 	if (ieee80211_has_a4(hdr->frame_control) &&
2986 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2987 		if (rx->sta &&
2988 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2989 			cfg80211_rx_unexpected_4addr_frame(
2990 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2991 		return RX_DROP_MONITOR;
2992 	}
2993 
2994 	err = __ieee80211_data_to_8023(rx, &port_control);
2995 	if (unlikely(err))
2996 		return RX_DROP_UNUSABLE;
2997 
2998 	if (!ieee80211_frame_allowed(rx, fc))
2999 		return RX_DROP_MONITOR;
3000 
3001 	/* directly handle TDLS channel switch requests/responses */
3002 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
3003 						cpu_to_be16(ETH_P_TDLS))) {
3004 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
3005 
3006 		if (pskb_may_pull(rx->skb,
3007 				  offsetof(struct ieee80211_tdls_data, u)) &&
3008 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
3009 		    tf->category == WLAN_CATEGORY_TDLS &&
3010 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
3011 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
3012 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
3013 			schedule_work(&local->tdls_chsw_work);
3014 			if (rx->sta)
3015 				rx->sta->rx_stats.packets++;
3016 
3017 			return RX_QUEUED;
3018 		}
3019 	}
3020 
3021 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3022 	    unlikely(port_control) && sdata->bss) {
3023 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
3024 				     u.ap);
3025 		dev = sdata->dev;
3026 		rx->sdata = sdata;
3027 	}
3028 
3029 	rx->skb->dev = dev;
3030 
3031 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
3032 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
3033 	    !is_multicast_ether_addr(
3034 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
3035 	    (!local->scanning &&
3036 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
3037 		mod_timer(&local->dynamic_ps_timer, jiffies +
3038 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
3039 
3040 	ieee80211_deliver_skb(rx);
3041 
3042 	return RX_QUEUED;
3043 }
3044 
3045 static ieee80211_rx_result debug_noinline
3046 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
3047 {
3048 	struct sk_buff *skb = rx->skb;
3049 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
3050 	struct tid_ampdu_rx *tid_agg_rx;
3051 	u16 start_seq_num;
3052 	u16 tid;
3053 
3054 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
3055 		return RX_CONTINUE;
3056 
3057 	if (ieee80211_is_back_req(bar->frame_control)) {
3058 		struct {
3059 			__le16 control, start_seq_num;
3060 		} __packed bar_data;
3061 		struct ieee80211_event event = {
3062 			.type = BAR_RX_EVENT,
3063 		};
3064 
3065 		if (!rx->sta)
3066 			return RX_DROP_MONITOR;
3067 
3068 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
3069 				  &bar_data, sizeof(bar_data)))
3070 			return RX_DROP_MONITOR;
3071 
3072 		tid = le16_to_cpu(bar_data.control) >> 12;
3073 
3074 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3075 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3076 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3077 					     WLAN_BACK_RECIPIENT,
3078 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
3079 
3080 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3081 		if (!tid_agg_rx)
3082 			return RX_DROP_MONITOR;
3083 
3084 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3085 		event.u.ba.tid = tid;
3086 		event.u.ba.ssn = start_seq_num;
3087 		event.u.ba.sta = &rx->sta->sta;
3088 
3089 		/* reset session timer */
3090 		if (tid_agg_rx->timeout)
3091 			mod_timer(&tid_agg_rx->session_timer,
3092 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
3093 
3094 		spin_lock(&tid_agg_rx->reorder_lock);
3095 		/* release stored frames up to start of BAR */
3096 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3097 						 start_seq_num, frames);
3098 		spin_unlock(&tid_agg_rx->reorder_lock);
3099 
3100 		drv_event_callback(rx->local, rx->sdata, &event);
3101 
3102 		kfree_skb(skb);
3103 		return RX_QUEUED;
3104 	}
3105 
3106 	/*
3107 	 * After this point, we only want management frames,
3108 	 * so we can drop all remaining control frames to
3109 	 * cooked monitor interfaces.
3110 	 */
3111 	return RX_DROP_MONITOR;
3112 }
3113 
3114 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3115 					   struct ieee80211_mgmt *mgmt,
3116 					   size_t len)
3117 {
3118 	struct ieee80211_local *local = sdata->local;
3119 	struct sk_buff *skb;
3120 	struct ieee80211_mgmt *resp;
3121 
3122 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3123 		/* Not to own unicast address */
3124 		return;
3125 	}
3126 
3127 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3128 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3129 		/* Not from the current AP or not associated yet. */
3130 		return;
3131 	}
3132 
3133 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3134 		/* Too short SA Query request frame */
3135 		return;
3136 	}
3137 
3138 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3139 	if (skb == NULL)
3140 		return;
3141 
3142 	skb_reserve(skb, local->hw.extra_tx_headroom);
3143 	resp = skb_put_zero(skb, 24);
3144 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
3145 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3146 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3147 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3148 					  IEEE80211_STYPE_ACTION);
3149 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3150 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3151 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3152 	memcpy(resp->u.action.u.sa_query.trans_id,
3153 	       mgmt->u.action.u.sa_query.trans_id,
3154 	       WLAN_SA_QUERY_TR_ID_LEN);
3155 
3156 	ieee80211_tx_skb(sdata, skb);
3157 }
3158 
3159 static ieee80211_rx_result debug_noinline
3160 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3161 {
3162 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3163 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3164 
3165 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3166 		return RX_CONTINUE;
3167 
3168 	/*
3169 	 * From here on, look only at management frames.
3170 	 * Data and control frames are already handled,
3171 	 * and unknown (reserved) frames are useless.
3172 	 */
3173 	if (rx->skb->len < 24)
3174 		return RX_DROP_MONITOR;
3175 
3176 	if (!ieee80211_is_mgmt(mgmt->frame_control))
3177 		return RX_DROP_MONITOR;
3178 
3179 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3180 	    ieee80211_is_beacon(mgmt->frame_control) &&
3181 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3182 		int sig = 0;
3183 
3184 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3185 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3186 			sig = status->signal;
3187 
3188 		cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3189 						rx->skb->data, rx->skb->len,
3190 						ieee80211_rx_status_to_khz(status),
3191 						sig);
3192 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3193 	}
3194 
3195 	if (ieee80211_drop_unencrypted_mgmt(rx))
3196 		return RX_DROP_UNUSABLE;
3197 
3198 	return RX_CONTINUE;
3199 }
3200 
3201 static ieee80211_rx_result debug_noinline
3202 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3203 {
3204 	struct ieee80211_local *local = rx->local;
3205 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3206 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3207 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3208 	int len = rx->skb->len;
3209 
3210 	if (!ieee80211_is_action(mgmt->frame_control))
3211 		return RX_CONTINUE;
3212 
3213 	/* drop too small frames */
3214 	if (len < IEEE80211_MIN_ACTION_SIZE)
3215 		return RX_DROP_UNUSABLE;
3216 
3217 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3218 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3219 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3220 		return RX_DROP_UNUSABLE;
3221 
3222 	switch (mgmt->u.action.category) {
3223 	case WLAN_CATEGORY_HT:
3224 		/* reject HT action frames from stations not supporting HT */
3225 		if (!rx->sta->sta.ht_cap.ht_supported)
3226 			goto invalid;
3227 
3228 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3229 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3230 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3231 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3232 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3233 			break;
3234 
3235 		/* verify action & smps_control/chanwidth are present */
3236 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3237 			goto invalid;
3238 
3239 		switch (mgmt->u.action.u.ht_smps.action) {
3240 		case WLAN_HT_ACTION_SMPS: {
3241 			struct ieee80211_supported_band *sband;
3242 			enum ieee80211_smps_mode smps_mode;
3243 			struct sta_opmode_info sta_opmode = {};
3244 
3245 			if (sdata->vif.type != NL80211_IFTYPE_AP &&
3246 			    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3247 				goto handled;
3248 
3249 			/* convert to HT capability */
3250 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3251 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3252 				smps_mode = IEEE80211_SMPS_OFF;
3253 				break;
3254 			case WLAN_HT_SMPS_CONTROL_STATIC:
3255 				smps_mode = IEEE80211_SMPS_STATIC;
3256 				break;
3257 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3258 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3259 				break;
3260 			default:
3261 				goto invalid;
3262 			}
3263 
3264 			/* if no change do nothing */
3265 			if (rx->sta->sta.smps_mode == smps_mode)
3266 				goto handled;
3267 			rx->sta->sta.smps_mode = smps_mode;
3268 			sta_opmode.smps_mode =
3269 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3270 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3271 
3272 			sband = rx->local->hw.wiphy->bands[status->band];
3273 
3274 			rate_control_rate_update(local, sband, rx->sta,
3275 						 IEEE80211_RC_SMPS_CHANGED);
3276 			cfg80211_sta_opmode_change_notify(sdata->dev,
3277 							  rx->sta->addr,
3278 							  &sta_opmode,
3279 							  GFP_ATOMIC);
3280 			goto handled;
3281 		}
3282 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3283 			struct ieee80211_supported_band *sband;
3284 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3285 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3286 			struct sta_opmode_info sta_opmode = {};
3287 
3288 			/* If it doesn't support 40 MHz it can't change ... */
3289 			if (!(rx->sta->sta.ht_cap.cap &
3290 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3291 				goto handled;
3292 
3293 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3294 				max_bw = IEEE80211_STA_RX_BW_20;
3295 			else
3296 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3297 
3298 			/* set cur_max_bandwidth and recalc sta bw */
3299 			rx->sta->cur_max_bandwidth = max_bw;
3300 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3301 
3302 			if (rx->sta->sta.bandwidth == new_bw)
3303 				goto handled;
3304 
3305 			rx->sta->sta.bandwidth = new_bw;
3306 			sband = rx->local->hw.wiphy->bands[status->band];
3307 			sta_opmode.bw =
3308 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3309 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3310 
3311 			rate_control_rate_update(local, sband, rx->sta,
3312 						 IEEE80211_RC_BW_CHANGED);
3313 			cfg80211_sta_opmode_change_notify(sdata->dev,
3314 							  rx->sta->addr,
3315 							  &sta_opmode,
3316 							  GFP_ATOMIC);
3317 			goto handled;
3318 		}
3319 		default:
3320 			goto invalid;
3321 		}
3322 
3323 		break;
3324 	case WLAN_CATEGORY_PUBLIC:
3325 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3326 			goto invalid;
3327 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3328 			break;
3329 		if (!rx->sta)
3330 			break;
3331 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3332 			break;
3333 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3334 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3335 			break;
3336 		if (len < offsetof(struct ieee80211_mgmt,
3337 				   u.action.u.ext_chan_switch.variable))
3338 			goto invalid;
3339 		goto queue;
3340 	case WLAN_CATEGORY_VHT:
3341 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3342 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3343 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3344 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3345 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3346 			break;
3347 
3348 		/* verify action code is present */
3349 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3350 			goto invalid;
3351 
3352 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3353 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3354 			/* verify opmode is present */
3355 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3356 				goto invalid;
3357 			goto queue;
3358 		}
3359 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3360 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3361 				goto invalid;
3362 			goto queue;
3363 		}
3364 		default:
3365 			break;
3366 		}
3367 		break;
3368 	case WLAN_CATEGORY_BACK:
3369 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3370 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3371 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3372 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3373 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3374 			break;
3375 
3376 		/* verify action_code is present */
3377 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3378 			break;
3379 
3380 		switch (mgmt->u.action.u.addba_req.action_code) {
3381 		case WLAN_ACTION_ADDBA_REQ:
3382 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3383 				   sizeof(mgmt->u.action.u.addba_req)))
3384 				goto invalid;
3385 			break;
3386 		case WLAN_ACTION_ADDBA_RESP:
3387 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3388 				   sizeof(mgmt->u.action.u.addba_resp)))
3389 				goto invalid;
3390 			break;
3391 		case WLAN_ACTION_DELBA:
3392 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3393 				   sizeof(mgmt->u.action.u.delba)))
3394 				goto invalid;
3395 			break;
3396 		default:
3397 			goto invalid;
3398 		}
3399 
3400 		goto queue;
3401 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3402 		/* verify action_code is present */
3403 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3404 			break;
3405 
3406 		switch (mgmt->u.action.u.measurement.action_code) {
3407 		case WLAN_ACTION_SPCT_MSR_REQ:
3408 			if (status->band != NL80211_BAND_5GHZ)
3409 				break;
3410 
3411 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3412 				   sizeof(mgmt->u.action.u.measurement)))
3413 				break;
3414 
3415 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3416 				break;
3417 
3418 			ieee80211_process_measurement_req(sdata, mgmt, len);
3419 			goto handled;
3420 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3421 			u8 *bssid;
3422 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3423 				   sizeof(mgmt->u.action.u.chan_switch)))
3424 				break;
3425 
3426 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3427 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3428 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3429 				break;
3430 
3431 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3432 				bssid = sdata->u.mgd.bssid;
3433 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3434 				bssid = sdata->u.ibss.bssid;
3435 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3436 				bssid = mgmt->sa;
3437 			else
3438 				break;
3439 
3440 			if (!ether_addr_equal(mgmt->bssid, bssid))
3441 				break;
3442 
3443 			goto queue;
3444 			}
3445 		}
3446 		break;
3447 	case WLAN_CATEGORY_SELF_PROTECTED:
3448 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3449 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3450 			break;
3451 
3452 		switch (mgmt->u.action.u.self_prot.action_code) {
3453 		case WLAN_SP_MESH_PEERING_OPEN:
3454 		case WLAN_SP_MESH_PEERING_CLOSE:
3455 		case WLAN_SP_MESH_PEERING_CONFIRM:
3456 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3457 				goto invalid;
3458 			if (sdata->u.mesh.user_mpm)
3459 				/* userspace handles this frame */
3460 				break;
3461 			goto queue;
3462 		case WLAN_SP_MGK_INFORM:
3463 		case WLAN_SP_MGK_ACK:
3464 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3465 				goto invalid;
3466 			break;
3467 		}
3468 		break;
3469 	case WLAN_CATEGORY_MESH_ACTION:
3470 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3471 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3472 			break;
3473 
3474 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3475 			break;
3476 		if (mesh_action_is_path_sel(mgmt) &&
3477 		    !mesh_path_sel_is_hwmp(sdata))
3478 			break;
3479 		goto queue;
3480 	}
3481 
3482 	return RX_CONTINUE;
3483 
3484  invalid:
3485 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3486 	/* will return in the next handlers */
3487 	return RX_CONTINUE;
3488 
3489  handled:
3490 	if (rx->sta)
3491 		rx->sta->rx_stats.packets++;
3492 	dev_kfree_skb(rx->skb);
3493 	return RX_QUEUED;
3494 
3495  queue:
3496 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3497 	ieee80211_queue_work(&local->hw, &sdata->work);
3498 	if (rx->sta)
3499 		rx->sta->rx_stats.packets++;
3500 	return RX_QUEUED;
3501 }
3502 
3503 static ieee80211_rx_result debug_noinline
3504 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3505 {
3506 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3507 	int sig = 0;
3508 
3509 	/* skip known-bad action frames and return them in the next handler */
3510 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3511 		return RX_CONTINUE;
3512 
3513 	/*
3514 	 * Getting here means the kernel doesn't know how to handle
3515 	 * it, but maybe userspace does ... include returned frames
3516 	 * so userspace can register for those to know whether ones
3517 	 * it transmitted were processed or returned.
3518 	 */
3519 
3520 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3521 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3522 		sig = status->signal;
3523 
3524 	if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3525 				 ieee80211_rx_status_to_khz(status), sig,
3526 				 rx->skb->data, rx->skb->len, 0)) {
3527 		if (rx->sta)
3528 			rx->sta->rx_stats.packets++;
3529 		dev_kfree_skb(rx->skb);
3530 		return RX_QUEUED;
3531 	}
3532 
3533 	return RX_CONTINUE;
3534 }
3535 
3536 static ieee80211_rx_result debug_noinline
3537 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3538 {
3539 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3540 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3541 	int len = rx->skb->len;
3542 
3543 	if (!ieee80211_is_action(mgmt->frame_control))
3544 		return RX_CONTINUE;
3545 
3546 	switch (mgmt->u.action.category) {
3547 	case WLAN_CATEGORY_SA_QUERY:
3548 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3549 			   sizeof(mgmt->u.action.u.sa_query)))
3550 			break;
3551 
3552 		switch (mgmt->u.action.u.sa_query.action) {
3553 		case WLAN_ACTION_SA_QUERY_REQUEST:
3554 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3555 				break;
3556 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3557 			goto handled;
3558 		}
3559 		break;
3560 	}
3561 
3562 	return RX_CONTINUE;
3563 
3564  handled:
3565 	if (rx->sta)
3566 		rx->sta->rx_stats.packets++;
3567 	dev_kfree_skb(rx->skb);
3568 	return RX_QUEUED;
3569 }
3570 
3571 static ieee80211_rx_result debug_noinline
3572 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3573 {
3574 	struct ieee80211_local *local = rx->local;
3575 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3576 	struct sk_buff *nskb;
3577 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3578 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3579 
3580 	if (!ieee80211_is_action(mgmt->frame_control))
3581 		return RX_CONTINUE;
3582 
3583 	/*
3584 	 * For AP mode, hostapd is responsible for handling any action
3585 	 * frames that we didn't handle, including returning unknown
3586 	 * ones. For all other modes we will return them to the sender,
3587 	 * setting the 0x80 bit in the action category, as required by
3588 	 * 802.11-2012 9.24.4.
3589 	 * Newer versions of hostapd shall also use the management frame
3590 	 * registration mechanisms, but older ones still use cooked
3591 	 * monitor interfaces so push all frames there.
3592 	 */
3593 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3594 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3595 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3596 		return RX_DROP_MONITOR;
3597 
3598 	if (is_multicast_ether_addr(mgmt->da))
3599 		return RX_DROP_MONITOR;
3600 
3601 	/* do not return rejected action frames */
3602 	if (mgmt->u.action.category & 0x80)
3603 		return RX_DROP_UNUSABLE;
3604 
3605 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3606 			       GFP_ATOMIC);
3607 	if (nskb) {
3608 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3609 
3610 		nmgmt->u.action.category |= 0x80;
3611 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3612 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3613 
3614 		memset(nskb->cb, 0, sizeof(nskb->cb));
3615 
3616 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3617 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3618 
3619 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3620 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3621 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3622 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3623 				info->hw_queue =
3624 					local->hw.offchannel_tx_hw_queue;
3625 		}
3626 
3627 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3628 					    status->band);
3629 	}
3630 	dev_kfree_skb(rx->skb);
3631 	return RX_QUEUED;
3632 }
3633 
3634 static ieee80211_rx_result debug_noinline
3635 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3636 {
3637 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3638 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3639 
3640 	if (!ieee80211_is_ext(hdr->frame_control))
3641 		return RX_CONTINUE;
3642 
3643 	if (sdata->vif.type != NL80211_IFTYPE_STATION)
3644 		return RX_DROP_MONITOR;
3645 
3646 	/* for now only beacons are ext, so queue them */
3647 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3648 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3649 	if (rx->sta)
3650 		rx->sta->rx_stats.packets++;
3651 
3652 	return RX_QUEUED;
3653 }
3654 
3655 static ieee80211_rx_result debug_noinline
3656 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3657 {
3658 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3659 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3660 	__le16 stype;
3661 
3662 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3663 
3664 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3665 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3666 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3667 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3668 		return RX_DROP_MONITOR;
3669 
3670 	switch (stype) {
3671 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3672 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3673 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3674 		/* process for all: mesh, mlme, ibss */
3675 		break;
3676 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3677 		if (is_multicast_ether_addr(mgmt->da) &&
3678 		    !is_broadcast_ether_addr(mgmt->da))
3679 			return RX_DROP_MONITOR;
3680 
3681 		/* process only for station/IBSS */
3682 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3683 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3684 			return RX_DROP_MONITOR;
3685 		break;
3686 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3687 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3688 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3689 		if (is_multicast_ether_addr(mgmt->da) &&
3690 		    !is_broadcast_ether_addr(mgmt->da))
3691 			return RX_DROP_MONITOR;
3692 
3693 		/* process only for station */
3694 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3695 			return RX_DROP_MONITOR;
3696 		break;
3697 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3698 		/* process only for ibss and mesh */
3699 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3700 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3701 			return RX_DROP_MONITOR;
3702 		break;
3703 	default:
3704 		return RX_DROP_MONITOR;
3705 	}
3706 
3707 	/* queue up frame and kick off work to process it */
3708 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3709 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3710 	if (rx->sta)
3711 		rx->sta->rx_stats.packets++;
3712 
3713 	return RX_QUEUED;
3714 }
3715 
3716 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3717 					struct ieee80211_rate *rate)
3718 {
3719 	struct ieee80211_sub_if_data *sdata;
3720 	struct ieee80211_local *local = rx->local;
3721 	struct sk_buff *skb = rx->skb, *skb2;
3722 	struct net_device *prev_dev = NULL;
3723 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3724 	int needed_headroom;
3725 
3726 	/*
3727 	 * If cooked monitor has been processed already, then
3728 	 * don't do it again. If not, set the flag.
3729 	 */
3730 	if (rx->flags & IEEE80211_RX_CMNTR)
3731 		goto out_free_skb;
3732 	rx->flags |= IEEE80211_RX_CMNTR;
3733 
3734 	/* If there are no cooked monitor interfaces, just free the SKB */
3735 	if (!local->cooked_mntrs)
3736 		goto out_free_skb;
3737 
3738 	/* vendor data is long removed here */
3739 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3740 	/* room for the radiotap header based on driver features */
3741 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3742 
3743 	if (skb_headroom(skb) < needed_headroom &&
3744 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3745 		goto out_free_skb;
3746 
3747 	/* prepend radiotap information */
3748 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3749 					 false);
3750 
3751 	skb_reset_mac_header(skb);
3752 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3753 	skb->pkt_type = PACKET_OTHERHOST;
3754 	skb->protocol = htons(ETH_P_802_2);
3755 
3756 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3757 		if (!ieee80211_sdata_running(sdata))
3758 			continue;
3759 
3760 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3761 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3762 			continue;
3763 
3764 		if (prev_dev) {
3765 			skb2 = skb_clone(skb, GFP_ATOMIC);
3766 			if (skb2) {
3767 				skb2->dev = prev_dev;
3768 				netif_receive_skb(skb2);
3769 			}
3770 		}
3771 
3772 		prev_dev = sdata->dev;
3773 		dev_sw_netstats_rx_add(sdata->dev, skb->len);
3774 	}
3775 
3776 	if (prev_dev) {
3777 		skb->dev = prev_dev;
3778 		netif_receive_skb(skb);
3779 		return;
3780 	}
3781 
3782  out_free_skb:
3783 	dev_kfree_skb(skb);
3784 }
3785 
3786 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3787 					 ieee80211_rx_result res)
3788 {
3789 	switch (res) {
3790 	case RX_DROP_MONITOR:
3791 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3792 		if (rx->sta)
3793 			rx->sta->rx_stats.dropped++;
3794 		fallthrough;
3795 	case RX_CONTINUE: {
3796 		struct ieee80211_rate *rate = NULL;
3797 		struct ieee80211_supported_band *sband;
3798 		struct ieee80211_rx_status *status;
3799 
3800 		status = IEEE80211_SKB_RXCB((rx->skb));
3801 
3802 		sband = rx->local->hw.wiphy->bands[status->band];
3803 		if (status->encoding == RX_ENC_LEGACY)
3804 			rate = &sband->bitrates[status->rate_idx];
3805 
3806 		ieee80211_rx_cooked_monitor(rx, rate);
3807 		break;
3808 		}
3809 	case RX_DROP_UNUSABLE:
3810 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3811 		if (rx->sta)
3812 			rx->sta->rx_stats.dropped++;
3813 		dev_kfree_skb(rx->skb);
3814 		break;
3815 	case RX_QUEUED:
3816 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3817 		break;
3818 	}
3819 }
3820 
3821 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3822 				  struct sk_buff_head *frames)
3823 {
3824 	ieee80211_rx_result res = RX_DROP_MONITOR;
3825 	struct sk_buff *skb;
3826 
3827 #define CALL_RXH(rxh)			\
3828 	do {				\
3829 		res = rxh(rx);		\
3830 		if (res != RX_CONTINUE)	\
3831 			goto rxh_next;  \
3832 	} while (0)
3833 
3834 	/* Lock here to avoid hitting all of the data used in the RX
3835 	 * path (e.g. key data, station data, ...) concurrently when
3836 	 * a frame is released from the reorder buffer due to timeout
3837 	 * from the timer, potentially concurrently with RX from the
3838 	 * driver.
3839 	 */
3840 	spin_lock_bh(&rx->local->rx_path_lock);
3841 
3842 	while ((skb = __skb_dequeue(frames))) {
3843 		/*
3844 		 * all the other fields are valid across frames
3845 		 * that belong to an aMPDU since they are on the
3846 		 * same TID from the same station
3847 		 */
3848 		rx->skb = skb;
3849 
3850 		CALL_RXH(ieee80211_rx_h_check_more_data);
3851 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3852 		CALL_RXH(ieee80211_rx_h_sta_process);
3853 		CALL_RXH(ieee80211_rx_h_decrypt);
3854 		CALL_RXH(ieee80211_rx_h_defragment);
3855 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3856 		/* must be after MMIC verify so header is counted in MPDU mic */
3857 #ifdef CONFIG_MAC80211_MESH
3858 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3859 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3860 #endif
3861 		CALL_RXH(ieee80211_rx_h_amsdu);
3862 		CALL_RXH(ieee80211_rx_h_data);
3863 
3864 		/* special treatment -- needs the queue */
3865 		res = ieee80211_rx_h_ctrl(rx, frames);
3866 		if (res != RX_CONTINUE)
3867 			goto rxh_next;
3868 
3869 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3870 		CALL_RXH(ieee80211_rx_h_action);
3871 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3872 		CALL_RXH(ieee80211_rx_h_action_post_userspace);
3873 		CALL_RXH(ieee80211_rx_h_action_return);
3874 		CALL_RXH(ieee80211_rx_h_ext);
3875 		CALL_RXH(ieee80211_rx_h_mgmt);
3876 
3877  rxh_next:
3878 		ieee80211_rx_handlers_result(rx, res);
3879 
3880 #undef CALL_RXH
3881 	}
3882 
3883 	spin_unlock_bh(&rx->local->rx_path_lock);
3884 }
3885 
3886 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3887 {
3888 	struct sk_buff_head reorder_release;
3889 	ieee80211_rx_result res = RX_DROP_MONITOR;
3890 
3891 	__skb_queue_head_init(&reorder_release);
3892 
3893 #define CALL_RXH(rxh)			\
3894 	do {				\
3895 		res = rxh(rx);		\
3896 		if (res != RX_CONTINUE)	\
3897 			goto rxh_next;  \
3898 	} while (0)
3899 
3900 	CALL_RXH(ieee80211_rx_h_check_dup);
3901 	CALL_RXH(ieee80211_rx_h_check);
3902 
3903 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3904 
3905 	ieee80211_rx_handlers(rx, &reorder_release);
3906 	return;
3907 
3908  rxh_next:
3909 	ieee80211_rx_handlers_result(rx, res);
3910 
3911 #undef CALL_RXH
3912 }
3913 
3914 /*
3915  * This function makes calls into the RX path, therefore
3916  * it has to be invoked under RCU read lock.
3917  */
3918 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3919 {
3920 	struct sk_buff_head frames;
3921 	struct ieee80211_rx_data rx = {
3922 		.sta = sta,
3923 		.sdata = sta->sdata,
3924 		.local = sta->local,
3925 		/* This is OK -- must be QoS data frame */
3926 		.security_idx = tid,
3927 		.seqno_idx = tid,
3928 	};
3929 	struct tid_ampdu_rx *tid_agg_rx;
3930 
3931 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3932 	if (!tid_agg_rx)
3933 		return;
3934 
3935 	__skb_queue_head_init(&frames);
3936 
3937 	spin_lock(&tid_agg_rx->reorder_lock);
3938 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3939 	spin_unlock(&tid_agg_rx->reorder_lock);
3940 
3941 	if (!skb_queue_empty(&frames)) {
3942 		struct ieee80211_event event = {
3943 			.type = BA_FRAME_TIMEOUT,
3944 			.u.ba.tid = tid,
3945 			.u.ba.sta = &sta->sta,
3946 		};
3947 		drv_event_callback(rx.local, rx.sdata, &event);
3948 	}
3949 
3950 	ieee80211_rx_handlers(&rx, &frames);
3951 }
3952 
3953 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3954 					  u16 ssn, u64 filtered,
3955 					  u16 received_mpdus)
3956 {
3957 	struct sta_info *sta;
3958 	struct tid_ampdu_rx *tid_agg_rx;
3959 	struct sk_buff_head frames;
3960 	struct ieee80211_rx_data rx = {
3961 		/* This is OK -- must be QoS data frame */
3962 		.security_idx = tid,
3963 		.seqno_idx = tid,
3964 	};
3965 	int i, diff;
3966 
3967 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3968 		return;
3969 
3970 	__skb_queue_head_init(&frames);
3971 
3972 	sta = container_of(pubsta, struct sta_info, sta);
3973 
3974 	rx.sta = sta;
3975 	rx.sdata = sta->sdata;
3976 	rx.local = sta->local;
3977 
3978 	rcu_read_lock();
3979 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3980 	if (!tid_agg_rx)
3981 		goto out;
3982 
3983 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3984 
3985 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3986 		int release;
3987 
3988 		/* release all frames in the reorder buffer */
3989 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3990 			   IEEE80211_SN_MODULO;
3991 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3992 						 release, &frames);
3993 		/* update ssn to match received ssn */
3994 		tid_agg_rx->head_seq_num = ssn;
3995 	} else {
3996 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3997 						 &frames);
3998 	}
3999 
4000 	/* handle the case that received ssn is behind the mac ssn.
4001 	 * it can be tid_agg_rx->buf_size behind and still be valid */
4002 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
4003 	if (diff >= tid_agg_rx->buf_size) {
4004 		tid_agg_rx->reorder_buf_filtered = 0;
4005 		goto release;
4006 	}
4007 	filtered = filtered >> diff;
4008 	ssn += diff;
4009 
4010 	/* update bitmap */
4011 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
4012 		int index = (ssn + i) % tid_agg_rx->buf_size;
4013 
4014 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
4015 		if (filtered & BIT_ULL(i))
4016 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
4017 	}
4018 
4019 	/* now process also frames that the filter marking released */
4020 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4021 
4022 release:
4023 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
4024 
4025 	ieee80211_rx_handlers(&rx, &frames);
4026 
4027  out:
4028 	rcu_read_unlock();
4029 }
4030 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
4031 
4032 /* main receive path */
4033 
4034 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
4035 {
4036 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4037 	struct sk_buff *skb = rx->skb;
4038 	struct ieee80211_hdr *hdr = (void *)skb->data;
4039 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4040 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
4041 	bool multicast = is_multicast_ether_addr(hdr->addr1) ||
4042 			 ieee80211_is_s1g_beacon(hdr->frame_control);
4043 
4044 	switch (sdata->vif.type) {
4045 	case NL80211_IFTYPE_STATION:
4046 		if (!bssid && !sdata->u.mgd.use_4addr)
4047 			return false;
4048 		if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
4049 			return false;
4050 		if (multicast)
4051 			return true;
4052 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4053 	case NL80211_IFTYPE_ADHOC:
4054 		if (!bssid)
4055 			return false;
4056 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
4057 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
4058 			return false;
4059 		if (ieee80211_is_beacon(hdr->frame_control))
4060 			return true;
4061 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
4062 			return false;
4063 		if (!multicast &&
4064 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4065 			return false;
4066 		if (!rx->sta) {
4067 			int rate_idx;
4068 			if (status->encoding != RX_ENC_LEGACY)
4069 				rate_idx = 0; /* TODO: HT/VHT rates */
4070 			else
4071 				rate_idx = status->rate_idx;
4072 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4073 						 BIT(rate_idx));
4074 		}
4075 		return true;
4076 	case NL80211_IFTYPE_OCB:
4077 		if (!bssid)
4078 			return false;
4079 		if (!ieee80211_is_data_present(hdr->frame_control))
4080 			return false;
4081 		if (!is_broadcast_ether_addr(bssid))
4082 			return false;
4083 		if (!multicast &&
4084 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4085 			return false;
4086 		if (!rx->sta) {
4087 			int rate_idx;
4088 			if (status->encoding != RX_ENC_LEGACY)
4089 				rate_idx = 0; /* TODO: HT rates */
4090 			else
4091 				rate_idx = status->rate_idx;
4092 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4093 						BIT(rate_idx));
4094 		}
4095 		return true;
4096 	case NL80211_IFTYPE_MESH_POINT:
4097 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4098 			return false;
4099 		if (multicast)
4100 			return true;
4101 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4102 	case NL80211_IFTYPE_AP_VLAN:
4103 	case NL80211_IFTYPE_AP:
4104 		if (!bssid)
4105 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4106 
4107 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4108 			/*
4109 			 * Accept public action frames even when the
4110 			 * BSSID doesn't match, this is used for P2P
4111 			 * and location updates. Note that mac80211
4112 			 * itself never looks at these frames.
4113 			 */
4114 			if (!multicast &&
4115 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4116 				return false;
4117 			if (ieee80211_is_public_action(hdr, skb->len))
4118 				return true;
4119 			return ieee80211_is_beacon(hdr->frame_control);
4120 		}
4121 
4122 		if (!ieee80211_has_tods(hdr->frame_control)) {
4123 			/* ignore data frames to TDLS-peers */
4124 			if (ieee80211_is_data(hdr->frame_control))
4125 				return false;
4126 			/* ignore action frames to TDLS-peers */
4127 			if (ieee80211_is_action(hdr->frame_control) &&
4128 			    !is_broadcast_ether_addr(bssid) &&
4129 			    !ether_addr_equal(bssid, hdr->addr1))
4130 				return false;
4131 		}
4132 
4133 		/*
4134 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4135 		 * the BSSID - we've checked that already but may have accepted
4136 		 * the wildcard (ff:ff:ff:ff:ff:ff).
4137 		 *
4138 		 * It also says:
4139 		 *	The BSSID of the Data frame is determined as follows:
4140 		 *	a) If the STA is contained within an AP or is associated
4141 		 *	   with an AP, the BSSID is the address currently in use
4142 		 *	   by the STA contained in the AP.
4143 		 *
4144 		 * So we should not accept data frames with an address that's
4145 		 * multicast.
4146 		 *
4147 		 * Accepting it also opens a security problem because stations
4148 		 * could encrypt it with the GTK and inject traffic that way.
4149 		 */
4150 		if (ieee80211_is_data(hdr->frame_control) && multicast)
4151 			return false;
4152 
4153 		return true;
4154 	case NL80211_IFTYPE_P2P_DEVICE:
4155 		return ieee80211_is_public_action(hdr, skb->len) ||
4156 		       ieee80211_is_probe_req(hdr->frame_control) ||
4157 		       ieee80211_is_probe_resp(hdr->frame_control) ||
4158 		       ieee80211_is_beacon(hdr->frame_control);
4159 	case NL80211_IFTYPE_NAN:
4160 		/* Currently no frames on NAN interface are allowed */
4161 		return false;
4162 	default:
4163 		break;
4164 	}
4165 
4166 	WARN_ON_ONCE(1);
4167 	return false;
4168 }
4169 
4170 void ieee80211_check_fast_rx(struct sta_info *sta)
4171 {
4172 	struct ieee80211_sub_if_data *sdata = sta->sdata;
4173 	struct ieee80211_local *local = sdata->local;
4174 	struct ieee80211_key *key;
4175 	struct ieee80211_fast_rx fastrx = {
4176 		.dev = sdata->dev,
4177 		.vif_type = sdata->vif.type,
4178 		.control_port_protocol = sdata->control_port_protocol,
4179 	}, *old, *new = NULL;
4180 	bool set_offload = false;
4181 	bool assign = false;
4182 	bool offload;
4183 
4184 	/* use sparse to check that we don't return without updating */
4185 	__acquire(check_fast_rx);
4186 
4187 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4188 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4189 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4190 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4191 
4192 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4193 
4194 	/* fast-rx doesn't do reordering */
4195 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4196 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4197 		goto clear;
4198 
4199 	switch (sdata->vif.type) {
4200 	case NL80211_IFTYPE_STATION:
4201 		if (sta->sta.tdls) {
4202 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4203 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4204 			fastrx.expected_ds_bits = 0;
4205 		} else {
4206 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4207 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4208 			fastrx.expected_ds_bits =
4209 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4210 		}
4211 
4212 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4213 			fastrx.expected_ds_bits |=
4214 				cpu_to_le16(IEEE80211_FCTL_TODS);
4215 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4216 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4217 		}
4218 
4219 		if (!sdata->u.mgd.powersave)
4220 			break;
4221 
4222 		/* software powersave is a huge mess, avoid all of it */
4223 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4224 			goto clear;
4225 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4226 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4227 			goto clear;
4228 		break;
4229 	case NL80211_IFTYPE_AP_VLAN:
4230 	case NL80211_IFTYPE_AP:
4231 		/* parallel-rx requires this, at least with calls to
4232 		 * ieee80211_sta_ps_transition()
4233 		 */
4234 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4235 			goto clear;
4236 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4237 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4238 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4239 
4240 		fastrx.internal_forward =
4241 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4242 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4243 			 !sdata->u.vlan.sta);
4244 
4245 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4246 		    sdata->u.vlan.sta) {
4247 			fastrx.expected_ds_bits |=
4248 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4249 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4250 			fastrx.internal_forward = 0;
4251 		}
4252 
4253 		break;
4254 	default:
4255 		goto clear;
4256 	}
4257 
4258 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4259 		goto clear;
4260 
4261 	rcu_read_lock();
4262 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4263 	if (!key)
4264 		key = rcu_dereference(sdata->default_unicast_key);
4265 	if (key) {
4266 		switch (key->conf.cipher) {
4267 		case WLAN_CIPHER_SUITE_TKIP:
4268 			/* we don't want to deal with MMIC in fast-rx */
4269 			goto clear_rcu;
4270 		case WLAN_CIPHER_SUITE_CCMP:
4271 		case WLAN_CIPHER_SUITE_CCMP_256:
4272 		case WLAN_CIPHER_SUITE_GCMP:
4273 		case WLAN_CIPHER_SUITE_GCMP_256:
4274 			break;
4275 		default:
4276 			/* We also don't want to deal with
4277 			 * WEP or cipher scheme.
4278 			 */
4279 			goto clear_rcu;
4280 		}
4281 
4282 		fastrx.key = true;
4283 		fastrx.icv_len = key->conf.icv_len;
4284 	}
4285 
4286 	assign = true;
4287  clear_rcu:
4288 	rcu_read_unlock();
4289  clear:
4290 	__release(check_fast_rx);
4291 
4292 	if (assign)
4293 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4294 
4295 	offload = assign &&
4296 		  (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED);
4297 
4298 	if (offload)
4299 		set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4300 	else
4301 		set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4302 
4303 	if (set_offload)
4304 		drv_sta_set_decap_offload(local, sdata, &sta->sta, assign);
4305 
4306 	spin_lock_bh(&sta->lock);
4307 	old = rcu_dereference_protected(sta->fast_rx, true);
4308 	rcu_assign_pointer(sta->fast_rx, new);
4309 	spin_unlock_bh(&sta->lock);
4310 
4311 	if (old)
4312 		kfree_rcu(old, rcu_head);
4313 }
4314 
4315 void ieee80211_clear_fast_rx(struct sta_info *sta)
4316 {
4317 	struct ieee80211_fast_rx *old;
4318 
4319 	spin_lock_bh(&sta->lock);
4320 	old = rcu_dereference_protected(sta->fast_rx, true);
4321 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4322 	spin_unlock_bh(&sta->lock);
4323 
4324 	if (old)
4325 		kfree_rcu(old, rcu_head);
4326 }
4327 
4328 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4329 {
4330 	struct ieee80211_local *local = sdata->local;
4331 	struct sta_info *sta;
4332 
4333 	lockdep_assert_held(&local->sta_mtx);
4334 
4335 	list_for_each_entry(sta, &local->sta_list, list) {
4336 		if (sdata != sta->sdata &&
4337 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4338 			continue;
4339 		ieee80211_check_fast_rx(sta);
4340 	}
4341 }
4342 
4343 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4344 {
4345 	struct ieee80211_local *local = sdata->local;
4346 
4347 	mutex_lock(&local->sta_mtx);
4348 	__ieee80211_check_fast_rx_iface(sdata);
4349 	mutex_unlock(&local->sta_mtx);
4350 }
4351 
4352 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
4353 			      struct ieee80211_fast_rx *fast_rx,
4354 			      int orig_len)
4355 {
4356 	struct ieee80211_sta_rx_stats *stats;
4357 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
4358 	struct sta_info *sta = rx->sta;
4359 	struct sk_buff *skb = rx->skb;
4360 	void *sa = skb->data + ETH_ALEN;
4361 	void *da = skb->data;
4362 
4363 	stats = &sta->rx_stats;
4364 	if (fast_rx->uses_rss)
4365 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4366 
4367 	/* statistics part of ieee80211_rx_h_sta_process() */
4368 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4369 		stats->last_signal = status->signal;
4370 		if (!fast_rx->uses_rss)
4371 			ewma_signal_add(&sta->rx_stats_avg.signal,
4372 					-status->signal);
4373 	}
4374 
4375 	if (status->chains) {
4376 		int i;
4377 
4378 		stats->chains = status->chains;
4379 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4380 			int signal = status->chain_signal[i];
4381 
4382 			if (!(status->chains & BIT(i)))
4383 				continue;
4384 
4385 			stats->chain_signal_last[i] = signal;
4386 			if (!fast_rx->uses_rss)
4387 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4388 						-signal);
4389 		}
4390 	}
4391 	/* end of statistics */
4392 
4393 	stats->last_rx = jiffies;
4394 	stats->last_rate = sta_stats_encode_rate(status);
4395 
4396 	stats->fragments++;
4397 	stats->packets++;
4398 
4399 	skb->dev = fast_rx->dev;
4400 
4401 	dev_sw_netstats_rx_add(fast_rx->dev, skb->len);
4402 
4403 	/* The seqno index has the same property as needed
4404 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4405 	 * for non-QoS-data frames. Here we know it's a data
4406 	 * frame, so count MSDUs.
4407 	 */
4408 	u64_stats_update_begin(&stats->syncp);
4409 	stats->msdu[rx->seqno_idx]++;
4410 	stats->bytes += orig_len;
4411 	u64_stats_update_end(&stats->syncp);
4412 
4413 	if (fast_rx->internal_forward) {
4414 		struct sk_buff *xmit_skb = NULL;
4415 		if (is_multicast_ether_addr(da)) {
4416 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4417 		} else if (!ether_addr_equal(da, sa) &&
4418 			   sta_info_get(rx->sdata, da)) {
4419 			xmit_skb = skb;
4420 			skb = NULL;
4421 		}
4422 
4423 		if (xmit_skb) {
4424 			/*
4425 			 * Send to wireless media and increase priority by 256
4426 			 * to keep the received priority instead of
4427 			 * reclassifying the frame (see cfg80211_classify8021d).
4428 			 */
4429 			xmit_skb->priority += 256;
4430 			xmit_skb->protocol = htons(ETH_P_802_3);
4431 			skb_reset_network_header(xmit_skb);
4432 			skb_reset_mac_header(xmit_skb);
4433 			dev_queue_xmit(xmit_skb);
4434 		}
4435 
4436 		if (!skb)
4437 			return;
4438 	}
4439 
4440 	/* deliver to local stack */
4441 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4442 	memset(skb->cb, 0, sizeof(skb->cb));
4443 	if (rx->list)
4444 		list_add_tail(&skb->list, rx->list);
4445 	else
4446 		netif_receive_skb(skb);
4447 
4448 }
4449 
4450 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4451 				     struct ieee80211_fast_rx *fast_rx)
4452 {
4453 	struct sk_buff *skb = rx->skb;
4454 	struct ieee80211_hdr *hdr = (void *)skb->data;
4455 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4456 	struct sta_info *sta = rx->sta;
4457 	int orig_len = skb->len;
4458 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4459 	int snap_offs = hdrlen;
4460 	struct {
4461 		u8 snap[sizeof(rfc1042_header)];
4462 		__be16 proto;
4463 	} *payload __aligned(2);
4464 	struct {
4465 		u8 da[ETH_ALEN];
4466 		u8 sa[ETH_ALEN];
4467 	} addrs __aligned(2);
4468 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4469 
4470 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4471 	 * to a common data structure; drivers can implement that per queue
4472 	 * but we don't have that information in mac80211
4473 	 */
4474 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4475 		return false;
4476 
4477 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4478 
4479 	/* If using encryption, we also need to have:
4480 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4481 	 *  - DECRYPTED: necessary for PN_VALIDATED
4482 	 */
4483 	if (fast_rx->key &&
4484 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4485 		return false;
4486 
4487 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4488 		return false;
4489 
4490 	if (unlikely(ieee80211_is_frag(hdr)))
4491 		return false;
4492 
4493 	/* Since our interface address cannot be multicast, this
4494 	 * implicitly also rejects multicast frames without the
4495 	 * explicit check.
4496 	 *
4497 	 * We shouldn't get any *data* frames not addressed to us
4498 	 * (AP mode will accept multicast *management* frames), but
4499 	 * punting here will make it go through the full checks in
4500 	 * ieee80211_accept_frame().
4501 	 */
4502 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4503 		return false;
4504 
4505 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4506 					      IEEE80211_FCTL_TODS)) !=
4507 	    fast_rx->expected_ds_bits)
4508 		return false;
4509 
4510 	/* assign the key to drop unencrypted frames (later)
4511 	 * and strip the IV/MIC if necessary
4512 	 */
4513 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4514 		/* GCMP header length is the same */
4515 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4516 	}
4517 
4518 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4519 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4520 			goto drop;
4521 
4522 		payload = (void *)(skb->data + snap_offs);
4523 
4524 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4525 			return false;
4526 
4527 		/* Don't handle these here since they require special code.
4528 		 * Accept AARP and IPX even though they should come with a
4529 		 * bridge-tunnel header - but if we get them this way then
4530 		 * there's little point in discarding them.
4531 		 */
4532 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4533 			     payload->proto == fast_rx->control_port_protocol))
4534 			return false;
4535 	}
4536 
4537 	/* after this point, don't punt to the slowpath! */
4538 
4539 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4540 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4541 		goto drop;
4542 
4543 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4544 		goto drop;
4545 
4546 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4547 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4548 		    RX_QUEUED)
4549 			goto drop;
4550 
4551 		return true;
4552 	}
4553 
4554 	/* do the header conversion - first grab the addresses */
4555 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4556 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4557 	/* remove the SNAP but leave the ethertype */
4558 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4559 	/* push the addresses in front */
4560 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4561 
4562 	ieee80211_rx_8023(rx, fast_rx, orig_len);
4563 
4564 	return true;
4565  drop:
4566 	dev_kfree_skb(skb);
4567 	if (fast_rx->uses_rss)
4568 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4569 
4570 	stats->dropped++;
4571 	return true;
4572 }
4573 
4574 /*
4575  * This function returns whether or not the SKB
4576  * was destined for RX processing or not, which,
4577  * if consume is true, is equivalent to whether
4578  * or not the skb was consumed.
4579  */
4580 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4581 					    struct sk_buff *skb, bool consume)
4582 {
4583 	struct ieee80211_local *local = rx->local;
4584 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4585 
4586 	rx->skb = skb;
4587 
4588 	/* See if we can do fast-rx; if we have to copy we already lost,
4589 	 * so punt in that case. We should never have to deliver a data
4590 	 * frame to multiple interfaces anyway.
4591 	 *
4592 	 * We skip the ieee80211_accept_frame() call and do the necessary
4593 	 * checking inside ieee80211_invoke_fast_rx().
4594 	 */
4595 	if (consume && rx->sta) {
4596 		struct ieee80211_fast_rx *fast_rx;
4597 
4598 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4599 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4600 			return true;
4601 	}
4602 
4603 	if (!ieee80211_accept_frame(rx))
4604 		return false;
4605 
4606 	if (!consume) {
4607 		skb = skb_copy(skb, GFP_ATOMIC);
4608 		if (!skb) {
4609 			if (net_ratelimit())
4610 				wiphy_debug(local->hw.wiphy,
4611 					"failed to copy skb for %s\n",
4612 					sdata->name);
4613 			return true;
4614 		}
4615 
4616 		rx->skb = skb;
4617 	}
4618 
4619 	ieee80211_invoke_rx_handlers(rx);
4620 	return true;
4621 }
4622 
4623 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
4624 				       struct ieee80211_sta *pubsta,
4625 				       struct sk_buff *skb,
4626 				       struct list_head *list)
4627 {
4628 	struct ieee80211_local *local = hw_to_local(hw);
4629 	struct ieee80211_fast_rx *fast_rx;
4630 	struct ieee80211_rx_data rx;
4631 
4632 	memset(&rx, 0, sizeof(rx));
4633 	rx.skb = skb;
4634 	rx.local = local;
4635 	rx.list = list;
4636 
4637 	I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4638 
4639 	/* drop frame if too short for header */
4640 	if (skb->len < sizeof(struct ethhdr))
4641 		goto drop;
4642 
4643 	if (!pubsta)
4644 		goto drop;
4645 
4646 	rx.sta = container_of(pubsta, struct sta_info, sta);
4647 	rx.sdata = rx.sta->sdata;
4648 
4649 	fast_rx = rcu_dereference(rx.sta->fast_rx);
4650 	if (!fast_rx)
4651 		goto drop;
4652 
4653 	ieee80211_rx_8023(&rx, fast_rx, skb->len);
4654 	return;
4655 
4656 drop:
4657 	dev_kfree_skb(skb);
4658 }
4659 
4660 /*
4661  * This is the actual Rx frames handler. as it belongs to Rx path it must
4662  * be called with rcu_read_lock protection.
4663  */
4664 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4665 					 struct ieee80211_sta *pubsta,
4666 					 struct sk_buff *skb,
4667 					 struct list_head *list)
4668 {
4669 	struct ieee80211_local *local = hw_to_local(hw);
4670 	struct ieee80211_sub_if_data *sdata;
4671 	struct ieee80211_hdr *hdr;
4672 	__le16 fc;
4673 	struct ieee80211_rx_data rx;
4674 	struct ieee80211_sub_if_data *prev;
4675 	struct rhlist_head *tmp;
4676 	int err = 0;
4677 
4678 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4679 	memset(&rx, 0, sizeof(rx));
4680 	rx.skb = skb;
4681 	rx.local = local;
4682 	rx.list = list;
4683 
4684 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4685 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4686 
4687 	if (ieee80211_is_mgmt(fc)) {
4688 		/* drop frame if too short for header */
4689 		if (skb->len < ieee80211_hdrlen(fc))
4690 			err = -ENOBUFS;
4691 		else
4692 			err = skb_linearize(skb);
4693 	} else {
4694 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4695 	}
4696 
4697 	if (err) {
4698 		dev_kfree_skb(skb);
4699 		return;
4700 	}
4701 
4702 	hdr = (struct ieee80211_hdr *)skb->data;
4703 	ieee80211_parse_qos(&rx);
4704 	ieee80211_verify_alignment(&rx);
4705 
4706 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4707 		     ieee80211_is_beacon(hdr->frame_control) ||
4708 		     ieee80211_is_s1g_beacon(hdr->frame_control)))
4709 		ieee80211_scan_rx(local, skb);
4710 
4711 	if (ieee80211_is_data(fc)) {
4712 		struct sta_info *sta, *prev_sta;
4713 
4714 		if (pubsta) {
4715 			rx.sta = container_of(pubsta, struct sta_info, sta);
4716 			rx.sdata = rx.sta->sdata;
4717 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4718 				return;
4719 			goto out;
4720 		}
4721 
4722 		prev_sta = NULL;
4723 
4724 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4725 			if (!prev_sta) {
4726 				prev_sta = sta;
4727 				continue;
4728 			}
4729 
4730 			rx.sta = prev_sta;
4731 			rx.sdata = prev_sta->sdata;
4732 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4733 
4734 			prev_sta = sta;
4735 		}
4736 
4737 		if (prev_sta) {
4738 			rx.sta = prev_sta;
4739 			rx.sdata = prev_sta->sdata;
4740 
4741 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4742 				return;
4743 			goto out;
4744 		}
4745 	}
4746 
4747 	prev = NULL;
4748 
4749 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4750 		if (!ieee80211_sdata_running(sdata))
4751 			continue;
4752 
4753 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4754 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4755 			continue;
4756 
4757 		/*
4758 		 * frame is destined for this interface, but if it's
4759 		 * not also for the previous one we handle that after
4760 		 * the loop to avoid copying the SKB once too much
4761 		 */
4762 
4763 		if (!prev) {
4764 			prev = sdata;
4765 			continue;
4766 		}
4767 
4768 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4769 		rx.sdata = prev;
4770 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4771 
4772 		prev = sdata;
4773 	}
4774 
4775 	if (prev) {
4776 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4777 		rx.sdata = prev;
4778 
4779 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4780 			return;
4781 	}
4782 
4783  out:
4784 	dev_kfree_skb(skb);
4785 }
4786 
4787 /*
4788  * This is the receive path handler. It is called by a low level driver when an
4789  * 802.11 MPDU is received from the hardware.
4790  */
4791 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4792 		       struct sk_buff *skb, struct list_head *list)
4793 {
4794 	struct ieee80211_local *local = hw_to_local(hw);
4795 	struct ieee80211_rate *rate = NULL;
4796 	struct ieee80211_supported_band *sband;
4797 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4798 
4799 	WARN_ON_ONCE(softirq_count() == 0);
4800 
4801 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4802 		goto drop;
4803 
4804 	sband = local->hw.wiphy->bands[status->band];
4805 	if (WARN_ON(!sband))
4806 		goto drop;
4807 
4808 	/*
4809 	 * If we're suspending, it is possible although not too likely
4810 	 * that we'd be receiving frames after having already partially
4811 	 * quiesced the stack. We can't process such frames then since
4812 	 * that might, for example, cause stations to be added or other
4813 	 * driver callbacks be invoked.
4814 	 */
4815 	if (unlikely(local->quiescing || local->suspended))
4816 		goto drop;
4817 
4818 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4819 	if (unlikely(local->in_reconfig))
4820 		goto drop;
4821 
4822 	/*
4823 	 * The same happens when we're not even started,
4824 	 * but that's worth a warning.
4825 	 */
4826 	if (WARN_ON(!local->started))
4827 		goto drop;
4828 
4829 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4830 		/*
4831 		 * Validate the rate, unless a PLCP error means that
4832 		 * we probably can't have a valid rate here anyway.
4833 		 */
4834 
4835 		switch (status->encoding) {
4836 		case RX_ENC_HT:
4837 			/*
4838 			 * rate_idx is MCS index, which can be [0-76]
4839 			 * as documented on:
4840 			 *
4841 			 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4842 			 *
4843 			 * Anything else would be some sort of driver or
4844 			 * hardware error. The driver should catch hardware
4845 			 * errors.
4846 			 */
4847 			if (WARN(status->rate_idx > 76,
4848 				 "Rate marked as an HT rate but passed "
4849 				 "status->rate_idx is not "
4850 				 "an MCS index [0-76]: %d (0x%02x)\n",
4851 				 status->rate_idx,
4852 				 status->rate_idx))
4853 				goto drop;
4854 			break;
4855 		case RX_ENC_VHT:
4856 			if (WARN_ONCE(status->rate_idx > 9 ||
4857 				      !status->nss ||
4858 				      status->nss > 8,
4859 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4860 				      status->rate_idx, status->nss))
4861 				goto drop;
4862 			break;
4863 		case RX_ENC_HE:
4864 			if (WARN_ONCE(status->rate_idx > 11 ||
4865 				      !status->nss ||
4866 				      status->nss > 8,
4867 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4868 				      status->rate_idx, status->nss))
4869 				goto drop;
4870 			break;
4871 		default:
4872 			WARN_ON_ONCE(1);
4873 			fallthrough;
4874 		case RX_ENC_LEGACY:
4875 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4876 				goto drop;
4877 			rate = &sband->bitrates[status->rate_idx];
4878 		}
4879 	}
4880 
4881 	status->rx_flags = 0;
4882 
4883 	kcov_remote_start_common(skb_get_kcov_handle(skb));
4884 
4885 	/*
4886 	 * Frames with failed FCS/PLCP checksum are not returned,
4887 	 * all other frames are returned without radiotap header
4888 	 * if it was previously present.
4889 	 * Also, frames with less than 16 bytes are dropped.
4890 	 */
4891 	if (!(status->flag & RX_FLAG_8023))
4892 		skb = ieee80211_rx_monitor(local, skb, rate);
4893 	if (skb) {
4894 		ieee80211_tpt_led_trig_rx(local,
4895 					  ((struct ieee80211_hdr *)skb->data)->frame_control,
4896 					  skb->len);
4897 
4898 		if (status->flag & RX_FLAG_8023)
4899 			__ieee80211_rx_handle_8023(hw, pubsta, skb, list);
4900 		else
4901 			__ieee80211_rx_handle_packet(hw, pubsta, skb, list);
4902 	}
4903 
4904 	kcov_remote_stop();
4905 	return;
4906  drop:
4907 	kfree_skb(skb);
4908 }
4909 EXPORT_SYMBOL(ieee80211_rx_list);
4910 
4911 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4912 		       struct sk_buff *skb, struct napi_struct *napi)
4913 {
4914 	struct sk_buff *tmp;
4915 	LIST_HEAD(list);
4916 
4917 
4918 	/*
4919 	 * key references and virtual interfaces are protected using RCU
4920 	 * and this requires that we are in a read-side RCU section during
4921 	 * receive processing
4922 	 */
4923 	rcu_read_lock();
4924 	ieee80211_rx_list(hw, pubsta, skb, &list);
4925 	rcu_read_unlock();
4926 
4927 	if (!napi) {
4928 		netif_receive_skb_list(&list);
4929 		return;
4930 	}
4931 
4932 	list_for_each_entry_safe(skb, tmp, &list, list) {
4933 		skb_list_del_init(skb);
4934 		napi_gro_receive(napi, skb);
4935 	}
4936 }
4937 EXPORT_SYMBOL(ieee80211_rx_napi);
4938 
4939 /* This is a version of the rx handler that can be called from hard irq
4940  * context. Post the skb on the queue and schedule the tasklet */
4941 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4942 {
4943 	struct ieee80211_local *local = hw_to_local(hw);
4944 
4945 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4946 
4947 	skb->pkt_type = IEEE80211_RX_MSG;
4948 	skb_queue_tail(&local->skb_queue, skb);
4949 	tasklet_schedule(&local->tasklet);
4950 }
4951 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4952