1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2021 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <net/mac80211.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <asm/unaligned.h> 25 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "tkip.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* 37 * monitor mode reception 38 * 39 * This function cleans up the SKB, i.e. it removes all the stuff 40 * only useful for monitoring. 41 */ 42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 43 unsigned int present_fcs_len, 44 unsigned int rtap_space) 45 { 46 struct ieee80211_hdr *hdr; 47 unsigned int hdrlen; 48 __le16 fc; 49 50 if (present_fcs_len) 51 __pskb_trim(skb, skb->len - present_fcs_len); 52 __pskb_pull(skb, rtap_space); 53 54 hdr = (void *)skb->data; 55 fc = hdr->frame_control; 56 57 /* 58 * Remove the HT-Control field (if present) on management 59 * frames after we've sent the frame to monitoring. We 60 * (currently) don't need it, and don't properly parse 61 * frames with it present, due to the assumption of a 62 * fixed management header length. 63 */ 64 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 65 return skb; 66 67 hdrlen = ieee80211_hdrlen(fc); 68 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 69 70 if (!pskb_may_pull(skb, hdrlen)) { 71 dev_kfree_skb(skb); 72 return NULL; 73 } 74 75 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 76 hdrlen - IEEE80211_HT_CTL_LEN); 77 __pskb_pull(skb, IEEE80211_HT_CTL_LEN); 78 79 return skb; 80 } 81 82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 83 unsigned int rtap_space) 84 { 85 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 86 struct ieee80211_hdr *hdr; 87 88 hdr = (void *)(skb->data + rtap_space); 89 90 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 91 RX_FLAG_FAILED_PLCP_CRC | 92 RX_FLAG_ONLY_MONITOR | 93 RX_FLAG_NO_PSDU)) 94 return true; 95 96 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 97 return true; 98 99 if (ieee80211_is_ctl(hdr->frame_control) && 100 !ieee80211_is_pspoll(hdr->frame_control) && 101 !ieee80211_is_back_req(hdr->frame_control)) 102 return true; 103 104 return false; 105 } 106 107 static int 108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 109 struct ieee80211_rx_status *status, 110 struct sk_buff *skb) 111 { 112 int len; 113 114 /* always present fields */ 115 len = sizeof(struct ieee80211_radiotap_header) + 8; 116 117 /* allocate extra bitmaps */ 118 if (status->chains) 119 len += 4 * hweight8(status->chains); 120 /* vendor presence bitmap */ 121 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 122 len += 4; 123 124 if (ieee80211_have_rx_timestamp(status)) { 125 len = ALIGN(len, 8); 126 len += 8; 127 } 128 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 129 len += 1; 130 131 /* antenna field, if we don't have per-chain info */ 132 if (!status->chains) 133 len += 1; 134 135 /* padding for RX_FLAGS if necessary */ 136 len = ALIGN(len, 2); 137 138 if (status->encoding == RX_ENC_HT) /* HT info */ 139 len += 3; 140 141 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 142 len = ALIGN(len, 4); 143 len += 8; 144 } 145 146 if (status->encoding == RX_ENC_VHT) { 147 len = ALIGN(len, 2); 148 len += 12; 149 } 150 151 if (local->hw.radiotap_timestamp.units_pos >= 0) { 152 len = ALIGN(len, 8); 153 len += 12; 154 } 155 156 if (status->encoding == RX_ENC_HE && 157 status->flag & RX_FLAG_RADIOTAP_HE) { 158 len = ALIGN(len, 2); 159 len += 12; 160 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 161 } 162 163 if (status->encoding == RX_ENC_HE && 164 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 165 len = ALIGN(len, 2); 166 len += 12; 167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 168 } 169 170 if (status->flag & RX_FLAG_NO_PSDU) 171 len += 1; 172 173 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 174 len = ALIGN(len, 2); 175 len += 4; 176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 177 } 178 179 if (status->chains) { 180 /* antenna and antenna signal fields */ 181 len += 2 * hweight8(status->chains); 182 } 183 184 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 185 struct ieee80211_vendor_radiotap *rtap; 186 int vendor_data_offset = 0; 187 188 /* 189 * The position to look at depends on the existence (or non- 190 * existence) of other elements, so take that into account... 191 */ 192 if (status->flag & RX_FLAG_RADIOTAP_HE) 193 vendor_data_offset += 194 sizeof(struct ieee80211_radiotap_he); 195 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 196 vendor_data_offset += 197 sizeof(struct ieee80211_radiotap_he_mu); 198 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 199 vendor_data_offset += 200 sizeof(struct ieee80211_radiotap_lsig); 201 202 rtap = (void *)&skb->data[vendor_data_offset]; 203 204 /* alignment for fixed 6-byte vendor data header */ 205 len = ALIGN(len, 2); 206 /* vendor data header */ 207 len += 6; 208 if (WARN_ON(rtap->align == 0)) 209 rtap->align = 1; 210 len = ALIGN(len, rtap->align); 211 len += rtap->len + rtap->pad; 212 } 213 214 return len; 215 } 216 217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 218 struct sta_info *sta, 219 struct sk_buff *skb) 220 { 221 skb_queue_tail(&sdata->skb_queue, skb); 222 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 223 if (sta) 224 sta->rx_stats.packets++; 225 } 226 227 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 228 struct sta_info *sta, 229 struct sk_buff *skb) 230 { 231 skb->protocol = 0; 232 __ieee80211_queue_skb_to_iface(sdata, sta, skb); 233 } 234 235 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 236 struct sk_buff *skb, 237 int rtap_space) 238 { 239 struct { 240 struct ieee80211_hdr_3addr hdr; 241 u8 category; 242 u8 action_code; 243 } __packed __aligned(2) action; 244 245 if (!sdata) 246 return; 247 248 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 249 250 if (skb->len < rtap_space + sizeof(action) + 251 VHT_MUMIMO_GROUPS_DATA_LEN) 252 return; 253 254 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 255 return; 256 257 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 258 259 if (!ieee80211_is_action(action.hdr.frame_control)) 260 return; 261 262 if (action.category != WLAN_CATEGORY_VHT) 263 return; 264 265 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 266 return; 267 268 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 269 return; 270 271 skb = skb_copy(skb, GFP_ATOMIC); 272 if (!skb) 273 return; 274 275 ieee80211_queue_skb_to_iface(sdata, NULL, skb); 276 } 277 278 /* 279 * ieee80211_add_rx_radiotap_header - add radiotap header 280 * 281 * add a radiotap header containing all the fields which the hardware provided. 282 */ 283 static void 284 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 285 struct sk_buff *skb, 286 struct ieee80211_rate *rate, 287 int rtap_len, bool has_fcs) 288 { 289 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 290 struct ieee80211_radiotap_header *rthdr; 291 unsigned char *pos; 292 __le32 *it_present; 293 u32 it_present_val; 294 u16 rx_flags = 0; 295 u16 channel_flags = 0; 296 int mpdulen, chain; 297 unsigned long chains = status->chains; 298 struct ieee80211_vendor_radiotap rtap = {}; 299 struct ieee80211_radiotap_he he = {}; 300 struct ieee80211_radiotap_he_mu he_mu = {}; 301 struct ieee80211_radiotap_lsig lsig = {}; 302 303 if (status->flag & RX_FLAG_RADIOTAP_HE) { 304 he = *(struct ieee80211_radiotap_he *)skb->data; 305 skb_pull(skb, sizeof(he)); 306 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 307 } 308 309 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 310 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 311 skb_pull(skb, sizeof(he_mu)); 312 } 313 314 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 315 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 316 skb_pull(skb, sizeof(lsig)); 317 } 318 319 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 320 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 321 /* rtap.len and rtap.pad are undone immediately */ 322 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 323 } 324 325 mpdulen = skb->len; 326 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 327 mpdulen += FCS_LEN; 328 329 rthdr = skb_push(skb, rtap_len); 330 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 331 it_present = &rthdr->it_present; 332 333 /* radiotap header, set always present flags */ 334 rthdr->it_len = cpu_to_le16(rtap_len); 335 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 336 BIT(IEEE80211_RADIOTAP_CHANNEL) | 337 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 338 339 if (!status->chains) 340 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 341 342 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 343 it_present_val |= 344 BIT(IEEE80211_RADIOTAP_EXT) | 345 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 346 put_unaligned_le32(it_present_val, it_present); 347 it_present++; 348 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 349 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 350 } 351 352 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 353 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 354 BIT(IEEE80211_RADIOTAP_EXT); 355 put_unaligned_le32(it_present_val, it_present); 356 it_present++; 357 it_present_val = rtap.present; 358 } 359 360 put_unaligned_le32(it_present_val, it_present); 361 362 /* This references through an offset into it_optional[] rather 363 * than via it_present otherwise later uses of pos will cause 364 * the compiler to think we have walked past the end of the 365 * struct member. 366 */ 367 pos = (void *)&rthdr->it_optional[it_present - rthdr->it_optional]; 368 369 /* the order of the following fields is important */ 370 371 /* IEEE80211_RADIOTAP_TSFT */ 372 if (ieee80211_have_rx_timestamp(status)) { 373 /* padding */ 374 while ((pos - (u8 *)rthdr) & 7) 375 *pos++ = 0; 376 put_unaligned_le64( 377 ieee80211_calculate_rx_timestamp(local, status, 378 mpdulen, 0), 379 pos); 380 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 381 pos += 8; 382 } 383 384 /* IEEE80211_RADIOTAP_FLAGS */ 385 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 386 *pos |= IEEE80211_RADIOTAP_F_FCS; 387 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 388 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 389 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 390 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 391 pos++; 392 393 /* IEEE80211_RADIOTAP_RATE */ 394 if (!rate || status->encoding != RX_ENC_LEGACY) { 395 /* 396 * Without rate information don't add it. If we have, 397 * MCS information is a separate field in radiotap, 398 * added below. The byte here is needed as padding 399 * for the channel though, so initialise it to 0. 400 */ 401 *pos = 0; 402 } else { 403 int shift = 0; 404 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 405 if (status->bw == RATE_INFO_BW_10) 406 shift = 1; 407 else if (status->bw == RATE_INFO_BW_5) 408 shift = 2; 409 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 410 } 411 pos++; 412 413 /* IEEE80211_RADIOTAP_CHANNEL */ 414 /* TODO: frequency offset in KHz */ 415 put_unaligned_le16(status->freq, pos); 416 pos += 2; 417 if (status->bw == RATE_INFO_BW_10) 418 channel_flags |= IEEE80211_CHAN_HALF; 419 else if (status->bw == RATE_INFO_BW_5) 420 channel_flags |= IEEE80211_CHAN_QUARTER; 421 422 if (status->band == NL80211_BAND_5GHZ || 423 status->band == NL80211_BAND_6GHZ) 424 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 425 else if (status->encoding != RX_ENC_LEGACY) 426 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 427 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 428 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 429 else if (rate) 430 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 431 else 432 channel_flags |= IEEE80211_CHAN_2GHZ; 433 put_unaligned_le16(channel_flags, pos); 434 pos += 2; 435 436 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 437 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 438 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 439 *pos = status->signal; 440 rthdr->it_present |= 441 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 442 pos++; 443 } 444 445 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 446 447 if (!status->chains) { 448 /* IEEE80211_RADIOTAP_ANTENNA */ 449 *pos = status->antenna; 450 pos++; 451 } 452 453 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 454 455 /* IEEE80211_RADIOTAP_RX_FLAGS */ 456 /* ensure 2 byte alignment for the 2 byte field as required */ 457 if ((pos - (u8 *)rthdr) & 1) 458 *pos++ = 0; 459 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 460 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 461 put_unaligned_le16(rx_flags, pos); 462 pos += 2; 463 464 if (status->encoding == RX_ENC_HT) { 465 unsigned int stbc; 466 467 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 468 *pos++ = local->hw.radiotap_mcs_details; 469 *pos = 0; 470 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 471 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 472 if (status->bw == RATE_INFO_BW_40) 473 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 474 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 475 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 476 if (status->enc_flags & RX_ENC_FLAG_LDPC) 477 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 478 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 479 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 480 pos++; 481 *pos++ = status->rate_idx; 482 } 483 484 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 485 u16 flags = 0; 486 487 /* ensure 4 byte alignment */ 488 while ((pos - (u8 *)rthdr) & 3) 489 pos++; 490 rthdr->it_present |= 491 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 492 put_unaligned_le32(status->ampdu_reference, pos); 493 pos += 4; 494 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 495 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 496 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 497 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 498 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 499 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 500 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 501 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 502 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 503 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 504 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 505 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 506 put_unaligned_le16(flags, pos); 507 pos += 2; 508 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 509 *pos++ = status->ampdu_delimiter_crc; 510 else 511 *pos++ = 0; 512 *pos++ = 0; 513 } 514 515 if (status->encoding == RX_ENC_VHT) { 516 u16 known = local->hw.radiotap_vht_details; 517 518 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 519 put_unaligned_le16(known, pos); 520 pos += 2; 521 /* flags */ 522 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 523 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 524 /* in VHT, STBC is binary */ 525 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 526 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 527 if (status->enc_flags & RX_ENC_FLAG_BF) 528 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 529 pos++; 530 /* bandwidth */ 531 switch (status->bw) { 532 case RATE_INFO_BW_80: 533 *pos++ = 4; 534 break; 535 case RATE_INFO_BW_160: 536 *pos++ = 11; 537 break; 538 case RATE_INFO_BW_40: 539 *pos++ = 1; 540 break; 541 default: 542 *pos++ = 0; 543 } 544 /* MCS/NSS */ 545 *pos = (status->rate_idx << 4) | status->nss; 546 pos += 4; 547 /* coding field */ 548 if (status->enc_flags & RX_ENC_FLAG_LDPC) 549 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 550 pos++; 551 /* group ID */ 552 pos++; 553 /* partial_aid */ 554 pos += 2; 555 } 556 557 if (local->hw.radiotap_timestamp.units_pos >= 0) { 558 u16 accuracy = 0; 559 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 560 561 rthdr->it_present |= 562 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 563 564 /* ensure 8 byte alignment */ 565 while ((pos - (u8 *)rthdr) & 7) 566 pos++; 567 568 put_unaligned_le64(status->device_timestamp, pos); 569 pos += sizeof(u64); 570 571 if (local->hw.radiotap_timestamp.accuracy >= 0) { 572 accuracy = local->hw.radiotap_timestamp.accuracy; 573 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 574 } 575 put_unaligned_le16(accuracy, pos); 576 pos += sizeof(u16); 577 578 *pos++ = local->hw.radiotap_timestamp.units_pos; 579 *pos++ = flags; 580 } 581 582 if (status->encoding == RX_ENC_HE && 583 status->flag & RX_FLAG_RADIOTAP_HE) { 584 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 585 586 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 587 he.data6 |= HE_PREP(DATA6_NSTS, 588 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 589 status->enc_flags)); 590 he.data3 |= HE_PREP(DATA3_STBC, 1); 591 } else { 592 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 593 } 594 595 #define CHECK_GI(s) \ 596 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 597 (int)NL80211_RATE_INFO_HE_GI_##s) 598 599 CHECK_GI(0_8); 600 CHECK_GI(1_6); 601 CHECK_GI(3_2); 602 603 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 604 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 605 he.data3 |= HE_PREP(DATA3_CODING, 606 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 607 608 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 609 610 switch (status->bw) { 611 case RATE_INFO_BW_20: 612 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 613 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 614 break; 615 case RATE_INFO_BW_40: 616 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 617 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 618 break; 619 case RATE_INFO_BW_80: 620 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 621 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 622 break; 623 case RATE_INFO_BW_160: 624 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 625 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 626 break; 627 case RATE_INFO_BW_HE_RU: 628 #define CHECK_RU_ALLOC(s) \ 629 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 630 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 631 632 CHECK_RU_ALLOC(26); 633 CHECK_RU_ALLOC(52); 634 CHECK_RU_ALLOC(106); 635 CHECK_RU_ALLOC(242); 636 CHECK_RU_ALLOC(484); 637 CHECK_RU_ALLOC(996); 638 CHECK_RU_ALLOC(2x996); 639 640 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 641 status->he_ru + 4); 642 break; 643 default: 644 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 645 } 646 647 /* ensure 2 byte alignment */ 648 while ((pos - (u8 *)rthdr) & 1) 649 pos++; 650 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 651 memcpy(pos, &he, sizeof(he)); 652 pos += sizeof(he); 653 } 654 655 if (status->encoding == RX_ENC_HE && 656 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 657 /* ensure 2 byte alignment */ 658 while ((pos - (u8 *)rthdr) & 1) 659 pos++; 660 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 661 memcpy(pos, &he_mu, sizeof(he_mu)); 662 pos += sizeof(he_mu); 663 } 664 665 if (status->flag & RX_FLAG_NO_PSDU) { 666 rthdr->it_present |= 667 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 668 *pos++ = status->zero_length_psdu_type; 669 } 670 671 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 672 /* ensure 2 byte alignment */ 673 while ((pos - (u8 *)rthdr) & 1) 674 pos++; 675 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 676 memcpy(pos, &lsig, sizeof(lsig)); 677 pos += sizeof(lsig); 678 } 679 680 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 681 *pos++ = status->chain_signal[chain]; 682 *pos++ = chain; 683 } 684 685 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 686 /* ensure 2 byte alignment for the vendor field as required */ 687 if ((pos - (u8 *)rthdr) & 1) 688 *pos++ = 0; 689 *pos++ = rtap.oui[0]; 690 *pos++ = rtap.oui[1]; 691 *pos++ = rtap.oui[2]; 692 *pos++ = rtap.subns; 693 put_unaligned_le16(rtap.len, pos); 694 pos += 2; 695 /* align the actual payload as requested */ 696 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 697 *pos++ = 0; 698 /* data (and possible padding) already follows */ 699 } 700 } 701 702 static struct sk_buff * 703 ieee80211_make_monitor_skb(struct ieee80211_local *local, 704 struct sk_buff **origskb, 705 struct ieee80211_rate *rate, 706 int rtap_space, bool use_origskb) 707 { 708 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 709 int rt_hdrlen, needed_headroom; 710 struct sk_buff *skb; 711 712 /* room for the radiotap header based on driver features */ 713 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 714 needed_headroom = rt_hdrlen - rtap_space; 715 716 if (use_origskb) { 717 /* only need to expand headroom if necessary */ 718 skb = *origskb; 719 *origskb = NULL; 720 721 /* 722 * This shouldn't trigger often because most devices have an 723 * RX header they pull before we get here, and that should 724 * be big enough for our radiotap information. We should 725 * probably export the length to drivers so that we can have 726 * them allocate enough headroom to start with. 727 */ 728 if (skb_headroom(skb) < needed_headroom && 729 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 730 dev_kfree_skb(skb); 731 return NULL; 732 } 733 } else { 734 /* 735 * Need to make a copy and possibly remove radiotap header 736 * and FCS from the original. 737 */ 738 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 739 0, GFP_ATOMIC); 740 741 if (!skb) 742 return NULL; 743 } 744 745 /* prepend radiotap information */ 746 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 747 748 skb_reset_mac_header(skb); 749 skb->ip_summed = CHECKSUM_UNNECESSARY; 750 skb->pkt_type = PACKET_OTHERHOST; 751 skb->protocol = htons(ETH_P_802_2); 752 753 return skb; 754 } 755 756 /* 757 * This function copies a received frame to all monitor interfaces and 758 * returns a cleaned-up SKB that no longer includes the FCS nor the 759 * radiotap header the driver might have added. 760 */ 761 static struct sk_buff * 762 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 763 struct ieee80211_rate *rate) 764 { 765 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 766 struct ieee80211_sub_if_data *sdata; 767 struct sk_buff *monskb = NULL; 768 int present_fcs_len = 0; 769 unsigned int rtap_space = 0; 770 struct ieee80211_sub_if_data *monitor_sdata = 771 rcu_dereference(local->monitor_sdata); 772 bool only_monitor = false; 773 unsigned int min_head_len; 774 775 if (status->flag & RX_FLAG_RADIOTAP_HE) 776 rtap_space += sizeof(struct ieee80211_radiotap_he); 777 778 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 779 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 780 781 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 782 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 783 784 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 785 struct ieee80211_vendor_radiotap *rtap = 786 (void *)(origskb->data + rtap_space); 787 788 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 789 } 790 791 min_head_len = rtap_space; 792 793 /* 794 * First, we may need to make a copy of the skb because 795 * (1) we need to modify it for radiotap (if not present), and 796 * (2) the other RX handlers will modify the skb we got. 797 * 798 * We don't need to, of course, if we aren't going to return 799 * the SKB because it has a bad FCS/PLCP checksum. 800 */ 801 802 if (!(status->flag & RX_FLAG_NO_PSDU)) { 803 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 804 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 805 /* driver bug */ 806 WARN_ON(1); 807 dev_kfree_skb(origskb); 808 return NULL; 809 } 810 present_fcs_len = FCS_LEN; 811 } 812 813 /* also consider the hdr->frame_control */ 814 min_head_len += 2; 815 } 816 817 /* ensure that the expected data elements are in skb head */ 818 if (!pskb_may_pull(origskb, min_head_len)) { 819 dev_kfree_skb(origskb); 820 return NULL; 821 } 822 823 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 824 825 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 826 if (only_monitor) { 827 dev_kfree_skb(origskb); 828 return NULL; 829 } 830 831 return ieee80211_clean_skb(origskb, present_fcs_len, 832 rtap_space); 833 } 834 835 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 836 837 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 838 bool last_monitor = list_is_last(&sdata->u.mntr.list, 839 &local->mon_list); 840 841 if (!monskb) 842 monskb = ieee80211_make_monitor_skb(local, &origskb, 843 rate, rtap_space, 844 only_monitor && 845 last_monitor); 846 847 if (monskb) { 848 struct sk_buff *skb; 849 850 if (last_monitor) { 851 skb = monskb; 852 monskb = NULL; 853 } else { 854 skb = skb_clone(monskb, GFP_ATOMIC); 855 } 856 857 if (skb) { 858 skb->dev = sdata->dev; 859 dev_sw_netstats_rx_add(skb->dev, skb->len); 860 netif_receive_skb(skb); 861 } 862 } 863 864 if (last_monitor) 865 break; 866 } 867 868 /* this happens if last_monitor was erroneously false */ 869 dev_kfree_skb(monskb); 870 871 /* ditto */ 872 if (!origskb) 873 return NULL; 874 875 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 876 } 877 878 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 879 { 880 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 881 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 882 int tid, seqno_idx, security_idx; 883 884 /* does the frame have a qos control field? */ 885 if (ieee80211_is_data_qos(hdr->frame_control)) { 886 u8 *qc = ieee80211_get_qos_ctl(hdr); 887 /* frame has qos control */ 888 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 889 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 890 status->rx_flags |= IEEE80211_RX_AMSDU; 891 892 seqno_idx = tid; 893 security_idx = tid; 894 } else { 895 /* 896 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 897 * 898 * Sequence numbers for management frames, QoS data 899 * frames with a broadcast/multicast address in the 900 * Address 1 field, and all non-QoS data frames sent 901 * by QoS STAs are assigned using an additional single 902 * modulo-4096 counter, [...] 903 * 904 * We also use that counter for non-QoS STAs. 905 */ 906 seqno_idx = IEEE80211_NUM_TIDS; 907 security_idx = 0; 908 if (ieee80211_is_mgmt(hdr->frame_control)) 909 security_idx = IEEE80211_NUM_TIDS; 910 tid = 0; 911 } 912 913 rx->seqno_idx = seqno_idx; 914 rx->security_idx = security_idx; 915 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 916 * For now, set skb->priority to 0 for other cases. */ 917 rx->skb->priority = (tid > 7) ? 0 : tid; 918 } 919 920 /** 921 * DOC: Packet alignment 922 * 923 * Drivers always need to pass packets that are aligned to two-byte boundaries 924 * to the stack. 925 * 926 * Additionally, should, if possible, align the payload data in a way that 927 * guarantees that the contained IP header is aligned to a four-byte 928 * boundary. In the case of regular frames, this simply means aligning the 929 * payload to a four-byte boundary (because either the IP header is directly 930 * contained, or IV/RFC1042 headers that have a length divisible by four are 931 * in front of it). If the payload data is not properly aligned and the 932 * architecture doesn't support efficient unaligned operations, mac80211 933 * will align the data. 934 * 935 * With A-MSDU frames, however, the payload data address must yield two modulo 936 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 937 * push the IP header further back to a multiple of four again. Thankfully, the 938 * specs were sane enough this time around to require padding each A-MSDU 939 * subframe to a length that is a multiple of four. 940 * 941 * Padding like Atheros hardware adds which is between the 802.11 header and 942 * the payload is not supported, the driver is required to move the 802.11 943 * header to be directly in front of the payload in that case. 944 */ 945 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 946 { 947 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 948 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 949 #endif 950 } 951 952 953 /* rx handlers */ 954 955 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 956 { 957 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 958 959 if (is_multicast_ether_addr(hdr->addr1)) 960 return 0; 961 962 return ieee80211_is_robust_mgmt_frame(skb); 963 } 964 965 966 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 967 { 968 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 969 970 if (!is_multicast_ether_addr(hdr->addr1)) 971 return 0; 972 973 return ieee80211_is_robust_mgmt_frame(skb); 974 } 975 976 977 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 978 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 979 { 980 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 981 struct ieee80211_mmie *mmie; 982 struct ieee80211_mmie_16 *mmie16; 983 984 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 985 return -1; 986 987 if (!ieee80211_is_robust_mgmt_frame(skb) && 988 !ieee80211_is_beacon(hdr->frame_control)) 989 return -1; /* not a robust management frame */ 990 991 mmie = (struct ieee80211_mmie *) 992 (skb->data + skb->len - sizeof(*mmie)); 993 if (mmie->element_id == WLAN_EID_MMIE && 994 mmie->length == sizeof(*mmie) - 2) 995 return le16_to_cpu(mmie->key_id); 996 997 mmie16 = (struct ieee80211_mmie_16 *) 998 (skb->data + skb->len - sizeof(*mmie16)); 999 if (skb->len >= 24 + sizeof(*mmie16) && 1000 mmie16->element_id == WLAN_EID_MMIE && 1001 mmie16->length == sizeof(*mmie16) - 2) 1002 return le16_to_cpu(mmie16->key_id); 1003 1004 return -1; 1005 } 1006 1007 static int ieee80211_get_keyid(struct sk_buff *skb, 1008 const struct ieee80211_cipher_scheme *cs) 1009 { 1010 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1011 __le16 fc; 1012 int hdrlen; 1013 int minlen; 1014 u8 key_idx_off; 1015 u8 key_idx_shift; 1016 u8 keyid; 1017 1018 fc = hdr->frame_control; 1019 hdrlen = ieee80211_hdrlen(fc); 1020 1021 if (cs) { 1022 minlen = hdrlen + cs->hdr_len; 1023 key_idx_off = hdrlen + cs->key_idx_off; 1024 key_idx_shift = cs->key_idx_shift; 1025 } else { 1026 /* WEP, TKIP, CCMP and GCMP */ 1027 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1028 key_idx_off = hdrlen + 3; 1029 key_idx_shift = 6; 1030 } 1031 1032 if (unlikely(skb->len < minlen)) 1033 return -EINVAL; 1034 1035 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1036 1037 if (cs) 1038 keyid &= cs->key_idx_mask; 1039 keyid >>= key_idx_shift; 1040 1041 /* cs could use more than the usual two bits for the keyid */ 1042 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1043 return -EINVAL; 1044 1045 return keyid; 1046 } 1047 1048 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1049 { 1050 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1051 char *dev_addr = rx->sdata->vif.addr; 1052 1053 if (ieee80211_is_data(hdr->frame_control)) { 1054 if (is_multicast_ether_addr(hdr->addr1)) { 1055 if (ieee80211_has_tods(hdr->frame_control) || 1056 !ieee80211_has_fromds(hdr->frame_control)) 1057 return RX_DROP_MONITOR; 1058 if (ether_addr_equal(hdr->addr3, dev_addr)) 1059 return RX_DROP_MONITOR; 1060 } else { 1061 if (!ieee80211_has_a4(hdr->frame_control)) 1062 return RX_DROP_MONITOR; 1063 if (ether_addr_equal(hdr->addr4, dev_addr)) 1064 return RX_DROP_MONITOR; 1065 } 1066 } 1067 1068 /* If there is not an established peer link and this is not a peer link 1069 * establisment frame, beacon or probe, drop the frame. 1070 */ 1071 1072 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1073 struct ieee80211_mgmt *mgmt; 1074 1075 if (!ieee80211_is_mgmt(hdr->frame_control)) 1076 return RX_DROP_MONITOR; 1077 1078 if (ieee80211_is_action(hdr->frame_control)) { 1079 u8 category; 1080 1081 /* make sure category field is present */ 1082 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1083 return RX_DROP_MONITOR; 1084 1085 mgmt = (struct ieee80211_mgmt *)hdr; 1086 category = mgmt->u.action.category; 1087 if (category != WLAN_CATEGORY_MESH_ACTION && 1088 category != WLAN_CATEGORY_SELF_PROTECTED) 1089 return RX_DROP_MONITOR; 1090 return RX_CONTINUE; 1091 } 1092 1093 if (ieee80211_is_probe_req(hdr->frame_control) || 1094 ieee80211_is_probe_resp(hdr->frame_control) || 1095 ieee80211_is_beacon(hdr->frame_control) || 1096 ieee80211_is_auth(hdr->frame_control)) 1097 return RX_CONTINUE; 1098 1099 return RX_DROP_MONITOR; 1100 } 1101 1102 return RX_CONTINUE; 1103 } 1104 1105 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1106 int index) 1107 { 1108 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1109 struct sk_buff *tail = skb_peek_tail(frames); 1110 struct ieee80211_rx_status *status; 1111 1112 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1113 return true; 1114 1115 if (!tail) 1116 return false; 1117 1118 status = IEEE80211_SKB_RXCB(tail); 1119 if (status->flag & RX_FLAG_AMSDU_MORE) 1120 return false; 1121 1122 return true; 1123 } 1124 1125 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1126 struct tid_ampdu_rx *tid_agg_rx, 1127 int index, 1128 struct sk_buff_head *frames) 1129 { 1130 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1131 struct sk_buff *skb; 1132 struct ieee80211_rx_status *status; 1133 1134 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1135 1136 if (skb_queue_empty(skb_list)) 1137 goto no_frame; 1138 1139 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1140 __skb_queue_purge(skb_list); 1141 goto no_frame; 1142 } 1143 1144 /* release frames from the reorder ring buffer */ 1145 tid_agg_rx->stored_mpdu_num--; 1146 while ((skb = __skb_dequeue(skb_list))) { 1147 status = IEEE80211_SKB_RXCB(skb); 1148 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1149 __skb_queue_tail(frames, skb); 1150 } 1151 1152 no_frame: 1153 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1154 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1155 } 1156 1157 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1158 struct tid_ampdu_rx *tid_agg_rx, 1159 u16 head_seq_num, 1160 struct sk_buff_head *frames) 1161 { 1162 int index; 1163 1164 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1165 1166 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1167 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1168 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1169 frames); 1170 } 1171 } 1172 1173 /* 1174 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1175 * the skb was added to the buffer longer than this time ago, the earlier 1176 * frames that have not yet been received are assumed to be lost and the skb 1177 * can be released for processing. This may also release other skb's from the 1178 * reorder buffer if there are no additional gaps between the frames. 1179 * 1180 * Callers must hold tid_agg_rx->reorder_lock. 1181 */ 1182 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1183 1184 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1185 struct tid_ampdu_rx *tid_agg_rx, 1186 struct sk_buff_head *frames) 1187 { 1188 int index, i, j; 1189 1190 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1191 1192 /* release the buffer until next missing frame */ 1193 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1194 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1195 tid_agg_rx->stored_mpdu_num) { 1196 /* 1197 * No buffers ready to be released, but check whether any 1198 * frames in the reorder buffer have timed out. 1199 */ 1200 int skipped = 1; 1201 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1202 j = (j + 1) % tid_agg_rx->buf_size) { 1203 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1204 skipped++; 1205 continue; 1206 } 1207 if (skipped && 1208 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1209 HT_RX_REORDER_BUF_TIMEOUT)) 1210 goto set_release_timer; 1211 1212 /* don't leave incomplete A-MSDUs around */ 1213 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1214 i = (i + 1) % tid_agg_rx->buf_size) 1215 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1216 1217 ht_dbg_ratelimited(sdata, 1218 "release an RX reorder frame due to timeout on earlier frames\n"); 1219 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1220 frames); 1221 1222 /* 1223 * Increment the head seq# also for the skipped slots. 1224 */ 1225 tid_agg_rx->head_seq_num = 1226 (tid_agg_rx->head_seq_num + 1227 skipped) & IEEE80211_SN_MASK; 1228 skipped = 0; 1229 } 1230 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1231 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1232 frames); 1233 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1234 } 1235 1236 if (tid_agg_rx->stored_mpdu_num) { 1237 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1238 1239 for (; j != (index - 1) % tid_agg_rx->buf_size; 1240 j = (j + 1) % tid_agg_rx->buf_size) { 1241 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1242 break; 1243 } 1244 1245 set_release_timer: 1246 1247 if (!tid_agg_rx->removed) 1248 mod_timer(&tid_agg_rx->reorder_timer, 1249 tid_agg_rx->reorder_time[j] + 1 + 1250 HT_RX_REORDER_BUF_TIMEOUT); 1251 } else { 1252 del_timer(&tid_agg_rx->reorder_timer); 1253 } 1254 } 1255 1256 /* 1257 * As this function belongs to the RX path it must be under 1258 * rcu_read_lock protection. It returns false if the frame 1259 * can be processed immediately, true if it was consumed. 1260 */ 1261 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1262 struct tid_ampdu_rx *tid_agg_rx, 1263 struct sk_buff *skb, 1264 struct sk_buff_head *frames) 1265 { 1266 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1267 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1268 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1269 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1270 u16 head_seq_num, buf_size; 1271 int index; 1272 bool ret = true; 1273 1274 spin_lock(&tid_agg_rx->reorder_lock); 1275 1276 /* 1277 * Offloaded BA sessions have no known starting sequence number so pick 1278 * one from first Rxed frame for this tid after BA was started. 1279 */ 1280 if (unlikely(tid_agg_rx->auto_seq)) { 1281 tid_agg_rx->auto_seq = false; 1282 tid_agg_rx->ssn = mpdu_seq_num; 1283 tid_agg_rx->head_seq_num = mpdu_seq_num; 1284 } 1285 1286 buf_size = tid_agg_rx->buf_size; 1287 head_seq_num = tid_agg_rx->head_seq_num; 1288 1289 /* 1290 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1291 * be reordered. 1292 */ 1293 if (unlikely(!tid_agg_rx->started)) { 1294 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1295 ret = false; 1296 goto out; 1297 } 1298 tid_agg_rx->started = true; 1299 } 1300 1301 /* frame with out of date sequence number */ 1302 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1303 dev_kfree_skb(skb); 1304 goto out; 1305 } 1306 1307 /* 1308 * If frame the sequence number exceeds our buffering window 1309 * size release some previous frames to make room for this one. 1310 */ 1311 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1312 head_seq_num = ieee80211_sn_inc( 1313 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1314 /* release stored frames up to new head to stack */ 1315 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1316 head_seq_num, frames); 1317 } 1318 1319 /* Now the new frame is always in the range of the reordering buffer */ 1320 1321 index = mpdu_seq_num % tid_agg_rx->buf_size; 1322 1323 /* check if we already stored this frame */ 1324 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1325 dev_kfree_skb(skb); 1326 goto out; 1327 } 1328 1329 /* 1330 * If the current MPDU is in the right order and nothing else 1331 * is stored we can process it directly, no need to buffer it. 1332 * If it is first but there's something stored, we may be able 1333 * to release frames after this one. 1334 */ 1335 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1336 tid_agg_rx->stored_mpdu_num == 0) { 1337 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1338 tid_agg_rx->head_seq_num = 1339 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1340 ret = false; 1341 goto out; 1342 } 1343 1344 /* put the frame in the reordering buffer */ 1345 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1346 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1347 tid_agg_rx->reorder_time[index] = jiffies; 1348 tid_agg_rx->stored_mpdu_num++; 1349 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1350 } 1351 1352 out: 1353 spin_unlock(&tid_agg_rx->reorder_lock); 1354 return ret; 1355 } 1356 1357 /* 1358 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1359 * true if the MPDU was buffered, false if it should be processed. 1360 */ 1361 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1362 struct sk_buff_head *frames) 1363 { 1364 struct sk_buff *skb = rx->skb; 1365 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1366 struct sta_info *sta = rx->sta; 1367 struct tid_ampdu_rx *tid_agg_rx; 1368 u16 sc; 1369 u8 tid, ack_policy; 1370 1371 if (!ieee80211_is_data_qos(hdr->frame_control) || 1372 is_multicast_ether_addr(hdr->addr1)) 1373 goto dont_reorder; 1374 1375 /* 1376 * filter the QoS data rx stream according to 1377 * STA/TID and check if this STA/TID is on aggregation 1378 */ 1379 1380 if (!sta) 1381 goto dont_reorder; 1382 1383 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1384 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1385 tid = ieee80211_get_tid(hdr); 1386 1387 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1388 if (!tid_agg_rx) { 1389 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1390 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1391 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1392 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1393 WLAN_BACK_RECIPIENT, 1394 WLAN_REASON_QSTA_REQUIRE_SETUP); 1395 goto dont_reorder; 1396 } 1397 1398 /* qos null data frames are excluded */ 1399 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1400 goto dont_reorder; 1401 1402 /* not part of a BA session */ 1403 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1404 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1405 goto dont_reorder; 1406 1407 /* new, potentially un-ordered, ampdu frame - process it */ 1408 1409 /* reset session timer */ 1410 if (tid_agg_rx->timeout) 1411 tid_agg_rx->last_rx = jiffies; 1412 1413 /* if this mpdu is fragmented - terminate rx aggregation session */ 1414 sc = le16_to_cpu(hdr->seq_ctrl); 1415 if (sc & IEEE80211_SCTL_FRAG) { 1416 ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb); 1417 return; 1418 } 1419 1420 /* 1421 * No locking needed -- we will only ever process one 1422 * RX packet at a time, and thus own tid_agg_rx. All 1423 * other code manipulating it needs to (and does) make 1424 * sure that we cannot get to it any more before doing 1425 * anything with it. 1426 */ 1427 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1428 frames)) 1429 return; 1430 1431 dont_reorder: 1432 __skb_queue_tail(frames, skb); 1433 } 1434 1435 static ieee80211_rx_result debug_noinline 1436 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1437 { 1438 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1439 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1440 1441 if (status->flag & RX_FLAG_DUP_VALIDATED) 1442 return RX_CONTINUE; 1443 1444 /* 1445 * Drop duplicate 802.11 retransmissions 1446 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1447 */ 1448 1449 if (rx->skb->len < 24) 1450 return RX_CONTINUE; 1451 1452 if (ieee80211_is_ctl(hdr->frame_control) || 1453 ieee80211_is_any_nullfunc(hdr->frame_control) || 1454 is_multicast_ether_addr(hdr->addr1)) 1455 return RX_CONTINUE; 1456 1457 if (!rx->sta) 1458 return RX_CONTINUE; 1459 1460 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1461 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1462 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1463 rx->sta->rx_stats.num_duplicates++; 1464 return RX_DROP_UNUSABLE; 1465 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1466 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1467 } 1468 1469 return RX_CONTINUE; 1470 } 1471 1472 static ieee80211_rx_result debug_noinline 1473 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1474 { 1475 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1476 1477 /* Drop disallowed frame classes based on STA auth/assoc state; 1478 * IEEE 802.11, Chap 5.5. 1479 * 1480 * mac80211 filters only based on association state, i.e. it drops 1481 * Class 3 frames from not associated stations. hostapd sends 1482 * deauth/disassoc frames when needed. In addition, hostapd is 1483 * responsible for filtering on both auth and assoc states. 1484 */ 1485 1486 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1487 return ieee80211_rx_mesh_check(rx); 1488 1489 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1490 ieee80211_is_pspoll(hdr->frame_control)) && 1491 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1492 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1493 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1494 /* 1495 * accept port control frames from the AP even when it's not 1496 * yet marked ASSOC to prevent a race where we don't set the 1497 * assoc bit quickly enough before it sends the first frame 1498 */ 1499 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1500 ieee80211_is_data_present(hdr->frame_control)) { 1501 unsigned int hdrlen; 1502 __be16 ethertype; 1503 1504 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1505 1506 if (rx->skb->len < hdrlen + 8) 1507 return RX_DROP_MONITOR; 1508 1509 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1510 if (ethertype == rx->sdata->control_port_protocol) 1511 return RX_CONTINUE; 1512 } 1513 1514 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1515 cfg80211_rx_spurious_frame(rx->sdata->dev, 1516 hdr->addr2, 1517 GFP_ATOMIC)) 1518 return RX_DROP_UNUSABLE; 1519 1520 return RX_DROP_MONITOR; 1521 } 1522 1523 return RX_CONTINUE; 1524 } 1525 1526 1527 static ieee80211_rx_result debug_noinline 1528 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1529 { 1530 struct ieee80211_local *local; 1531 struct ieee80211_hdr *hdr; 1532 struct sk_buff *skb; 1533 1534 local = rx->local; 1535 skb = rx->skb; 1536 hdr = (struct ieee80211_hdr *) skb->data; 1537 1538 if (!local->pspolling) 1539 return RX_CONTINUE; 1540 1541 if (!ieee80211_has_fromds(hdr->frame_control)) 1542 /* this is not from AP */ 1543 return RX_CONTINUE; 1544 1545 if (!ieee80211_is_data(hdr->frame_control)) 1546 return RX_CONTINUE; 1547 1548 if (!ieee80211_has_moredata(hdr->frame_control)) { 1549 /* AP has no more frames buffered for us */ 1550 local->pspolling = false; 1551 return RX_CONTINUE; 1552 } 1553 1554 /* more data bit is set, let's request a new frame from the AP */ 1555 ieee80211_send_pspoll(local, rx->sdata); 1556 1557 return RX_CONTINUE; 1558 } 1559 1560 static void sta_ps_start(struct sta_info *sta) 1561 { 1562 struct ieee80211_sub_if_data *sdata = sta->sdata; 1563 struct ieee80211_local *local = sdata->local; 1564 struct ps_data *ps; 1565 int tid; 1566 1567 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1568 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1569 ps = &sdata->bss->ps; 1570 else 1571 return; 1572 1573 atomic_inc(&ps->num_sta_ps); 1574 set_sta_flag(sta, WLAN_STA_PS_STA); 1575 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1576 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1577 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1578 sta->sta.addr, sta->sta.aid); 1579 1580 ieee80211_clear_fast_xmit(sta); 1581 1582 if (!sta->sta.txq[0]) 1583 return; 1584 1585 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1586 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1587 1588 ieee80211_unschedule_txq(&local->hw, txq, false); 1589 1590 if (txq_has_queue(txq)) 1591 set_bit(tid, &sta->txq_buffered_tids); 1592 else 1593 clear_bit(tid, &sta->txq_buffered_tids); 1594 } 1595 } 1596 1597 static void sta_ps_end(struct sta_info *sta) 1598 { 1599 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1600 sta->sta.addr, sta->sta.aid); 1601 1602 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1603 /* 1604 * Clear the flag only if the other one is still set 1605 * so that the TX path won't start TX'ing new frames 1606 * directly ... In the case that the driver flag isn't 1607 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1608 */ 1609 clear_sta_flag(sta, WLAN_STA_PS_STA); 1610 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1611 sta->sta.addr, sta->sta.aid); 1612 return; 1613 } 1614 1615 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1616 clear_sta_flag(sta, WLAN_STA_PS_STA); 1617 ieee80211_sta_ps_deliver_wakeup(sta); 1618 } 1619 1620 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1621 { 1622 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1623 bool in_ps; 1624 1625 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1626 1627 /* Don't let the same PS state be set twice */ 1628 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1629 if ((start && in_ps) || (!start && !in_ps)) 1630 return -EINVAL; 1631 1632 if (start) 1633 sta_ps_start(sta); 1634 else 1635 sta_ps_end(sta); 1636 1637 return 0; 1638 } 1639 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1640 1641 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1642 { 1643 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1644 1645 if (test_sta_flag(sta, WLAN_STA_SP)) 1646 return; 1647 1648 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1649 ieee80211_sta_ps_deliver_poll_response(sta); 1650 else 1651 set_sta_flag(sta, WLAN_STA_PSPOLL); 1652 } 1653 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1654 1655 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1656 { 1657 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1658 int ac = ieee80211_ac_from_tid(tid); 1659 1660 /* 1661 * If this AC is not trigger-enabled do nothing unless the 1662 * driver is calling us after it already checked. 1663 * 1664 * NB: This could/should check a separate bitmap of trigger- 1665 * enabled queues, but for now we only implement uAPSD w/o 1666 * TSPEC changes to the ACs, so they're always the same. 1667 */ 1668 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1669 tid != IEEE80211_NUM_TIDS) 1670 return; 1671 1672 /* if we are in a service period, do nothing */ 1673 if (test_sta_flag(sta, WLAN_STA_SP)) 1674 return; 1675 1676 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1677 ieee80211_sta_ps_deliver_uapsd(sta); 1678 else 1679 set_sta_flag(sta, WLAN_STA_UAPSD); 1680 } 1681 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1682 1683 static ieee80211_rx_result debug_noinline 1684 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1685 { 1686 struct ieee80211_sub_if_data *sdata = rx->sdata; 1687 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1688 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1689 1690 if (!rx->sta) 1691 return RX_CONTINUE; 1692 1693 if (sdata->vif.type != NL80211_IFTYPE_AP && 1694 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1695 return RX_CONTINUE; 1696 1697 /* 1698 * The device handles station powersave, so don't do anything about 1699 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1700 * it to mac80211 since they're handled.) 1701 */ 1702 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1703 return RX_CONTINUE; 1704 1705 /* 1706 * Don't do anything if the station isn't already asleep. In 1707 * the uAPSD case, the station will probably be marked asleep, 1708 * in the PS-Poll case the station must be confused ... 1709 */ 1710 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1711 return RX_CONTINUE; 1712 1713 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1714 ieee80211_sta_pspoll(&rx->sta->sta); 1715 1716 /* Free PS Poll skb here instead of returning RX_DROP that would 1717 * count as an dropped frame. */ 1718 dev_kfree_skb(rx->skb); 1719 1720 return RX_QUEUED; 1721 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1722 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1723 ieee80211_has_pm(hdr->frame_control) && 1724 (ieee80211_is_data_qos(hdr->frame_control) || 1725 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1726 u8 tid = ieee80211_get_tid(hdr); 1727 1728 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1729 } 1730 1731 return RX_CONTINUE; 1732 } 1733 1734 static ieee80211_rx_result debug_noinline 1735 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1736 { 1737 struct sta_info *sta = rx->sta; 1738 struct sk_buff *skb = rx->skb; 1739 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1740 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1741 int i; 1742 1743 if (!sta) 1744 return RX_CONTINUE; 1745 1746 /* 1747 * Update last_rx only for IBSS packets which are for the current 1748 * BSSID and for station already AUTHORIZED to avoid keeping the 1749 * current IBSS network alive in cases where other STAs start 1750 * using different BSSID. This will also give the station another 1751 * chance to restart the authentication/authorization in case 1752 * something went wrong the first time. 1753 */ 1754 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1755 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1756 NL80211_IFTYPE_ADHOC); 1757 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1758 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1759 sta->rx_stats.last_rx = jiffies; 1760 if (ieee80211_is_data(hdr->frame_control) && 1761 !is_multicast_ether_addr(hdr->addr1)) 1762 sta->rx_stats.last_rate = 1763 sta_stats_encode_rate(status); 1764 } 1765 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1766 sta->rx_stats.last_rx = jiffies; 1767 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1768 !is_multicast_ether_addr(hdr->addr1)) { 1769 /* 1770 * Mesh beacons will update last_rx when if they are found to 1771 * match the current local configuration when processed. 1772 */ 1773 sta->rx_stats.last_rx = jiffies; 1774 if (ieee80211_is_data(hdr->frame_control)) 1775 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1776 } 1777 1778 sta->rx_stats.fragments++; 1779 1780 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1781 sta->rx_stats.bytes += rx->skb->len; 1782 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1783 1784 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1785 sta->rx_stats.last_signal = status->signal; 1786 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1787 } 1788 1789 if (status->chains) { 1790 sta->rx_stats.chains = status->chains; 1791 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1792 int signal = status->chain_signal[i]; 1793 1794 if (!(status->chains & BIT(i))) 1795 continue; 1796 1797 sta->rx_stats.chain_signal_last[i] = signal; 1798 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1799 -signal); 1800 } 1801 } 1802 1803 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1804 return RX_CONTINUE; 1805 1806 /* 1807 * Change STA power saving mode only at the end of a frame 1808 * exchange sequence, and only for a data or management 1809 * frame as specified in IEEE 802.11-2016 11.2.3.2 1810 */ 1811 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1812 !ieee80211_has_morefrags(hdr->frame_control) && 1813 !is_multicast_ether_addr(hdr->addr1) && 1814 (ieee80211_is_mgmt(hdr->frame_control) || 1815 ieee80211_is_data(hdr->frame_control)) && 1816 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1817 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1818 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1819 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1820 if (!ieee80211_has_pm(hdr->frame_control)) 1821 sta_ps_end(sta); 1822 } else { 1823 if (ieee80211_has_pm(hdr->frame_control)) 1824 sta_ps_start(sta); 1825 } 1826 } 1827 1828 /* mesh power save support */ 1829 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1830 ieee80211_mps_rx_h_sta_process(sta, hdr); 1831 1832 /* 1833 * Drop (qos-)data::nullfunc frames silently, since they 1834 * are used only to control station power saving mode. 1835 */ 1836 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1837 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1838 1839 /* 1840 * If we receive a 4-addr nullfunc frame from a STA 1841 * that was not moved to a 4-addr STA vlan yet send 1842 * the event to userspace and for older hostapd drop 1843 * the frame to the monitor interface. 1844 */ 1845 if (ieee80211_has_a4(hdr->frame_control) && 1846 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1847 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1848 !rx->sdata->u.vlan.sta))) { 1849 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1850 cfg80211_rx_unexpected_4addr_frame( 1851 rx->sdata->dev, sta->sta.addr, 1852 GFP_ATOMIC); 1853 return RX_DROP_MONITOR; 1854 } 1855 /* 1856 * Update counter and free packet here to avoid 1857 * counting this as a dropped packed. 1858 */ 1859 sta->rx_stats.packets++; 1860 dev_kfree_skb(rx->skb); 1861 return RX_QUEUED; 1862 } 1863 1864 return RX_CONTINUE; 1865 } /* ieee80211_rx_h_sta_process */ 1866 1867 static struct ieee80211_key * 1868 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1869 { 1870 struct ieee80211_key *key = NULL; 1871 struct ieee80211_sub_if_data *sdata = rx->sdata; 1872 int idx2; 1873 1874 /* Make sure key gets set if either BIGTK key index is set so that 1875 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1876 * Beacon frames and Beacon frames that claim to use another BIGTK key 1877 * index (i.e., a key that we do not have). 1878 */ 1879 1880 if (idx < 0) { 1881 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1882 idx2 = idx + 1; 1883 } else { 1884 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1885 idx2 = idx + 1; 1886 else 1887 idx2 = idx - 1; 1888 } 1889 1890 if (rx->sta) 1891 key = rcu_dereference(rx->sta->gtk[idx]); 1892 if (!key) 1893 key = rcu_dereference(sdata->keys[idx]); 1894 if (!key && rx->sta) 1895 key = rcu_dereference(rx->sta->gtk[idx2]); 1896 if (!key) 1897 key = rcu_dereference(sdata->keys[idx2]); 1898 1899 return key; 1900 } 1901 1902 static ieee80211_rx_result debug_noinline 1903 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1904 { 1905 struct sk_buff *skb = rx->skb; 1906 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1907 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1908 int keyidx; 1909 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1910 struct ieee80211_key *sta_ptk = NULL; 1911 struct ieee80211_key *ptk_idx = NULL; 1912 int mmie_keyidx = -1; 1913 __le16 fc; 1914 const struct ieee80211_cipher_scheme *cs = NULL; 1915 1916 if (ieee80211_is_ext(hdr->frame_control)) 1917 return RX_CONTINUE; 1918 1919 /* 1920 * Key selection 101 1921 * 1922 * There are five types of keys: 1923 * - GTK (group keys) 1924 * - IGTK (group keys for management frames) 1925 * - BIGTK (group keys for Beacon frames) 1926 * - PTK (pairwise keys) 1927 * - STK (station-to-station pairwise keys) 1928 * 1929 * When selecting a key, we have to distinguish between multicast 1930 * (including broadcast) and unicast frames, the latter can only 1931 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1932 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1933 * then unicast frames can also use key indices like GTKs. Hence, if we 1934 * don't have a PTK/STK we check the key index for a WEP key. 1935 * 1936 * Note that in a regular BSS, multicast frames are sent by the 1937 * AP only, associated stations unicast the frame to the AP first 1938 * which then multicasts it on their behalf. 1939 * 1940 * There is also a slight problem in IBSS mode: GTKs are negotiated 1941 * with each station, that is something we don't currently handle. 1942 * The spec seems to expect that one negotiates the same key with 1943 * every station but there's no such requirement; VLANs could be 1944 * possible. 1945 */ 1946 1947 /* start without a key */ 1948 rx->key = NULL; 1949 fc = hdr->frame_control; 1950 1951 if (rx->sta) { 1952 int keyid = rx->sta->ptk_idx; 1953 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1954 1955 if (ieee80211_has_protected(fc)) { 1956 cs = rx->sta->cipher_scheme; 1957 keyid = ieee80211_get_keyid(rx->skb, cs); 1958 1959 if (unlikely(keyid < 0)) 1960 return RX_DROP_UNUSABLE; 1961 1962 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1963 } 1964 } 1965 1966 if (!ieee80211_has_protected(fc)) 1967 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1968 1969 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1970 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1971 if ((status->flag & RX_FLAG_DECRYPTED) && 1972 (status->flag & RX_FLAG_IV_STRIPPED)) 1973 return RX_CONTINUE; 1974 /* Skip decryption if the frame is not protected. */ 1975 if (!ieee80211_has_protected(fc)) 1976 return RX_CONTINUE; 1977 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1978 /* Broadcast/multicast robust management frame / BIP */ 1979 if ((status->flag & RX_FLAG_DECRYPTED) && 1980 (status->flag & RX_FLAG_IV_STRIPPED)) 1981 return RX_CONTINUE; 1982 1983 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1984 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1985 NUM_DEFAULT_BEACON_KEYS) { 1986 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1987 skb->data, 1988 skb->len); 1989 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1990 } 1991 1992 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1993 if (!rx->key) 1994 return RX_CONTINUE; /* Beacon protection not in use */ 1995 } else if (mmie_keyidx >= 0) { 1996 /* Broadcast/multicast robust management frame / BIP */ 1997 if ((status->flag & RX_FLAG_DECRYPTED) && 1998 (status->flag & RX_FLAG_IV_STRIPPED)) 1999 return RX_CONTINUE; 2000 2001 if (mmie_keyidx < NUM_DEFAULT_KEYS || 2002 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 2003 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2004 if (rx->sta) { 2005 if (ieee80211_is_group_privacy_action(skb) && 2006 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2007 return RX_DROP_MONITOR; 2008 2009 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 2010 } 2011 if (!rx->key) 2012 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 2013 } else if (!ieee80211_has_protected(fc)) { 2014 /* 2015 * The frame was not protected, so skip decryption. However, we 2016 * need to set rx->key if there is a key that could have been 2017 * used so that the frame may be dropped if encryption would 2018 * have been expected. 2019 */ 2020 struct ieee80211_key *key = NULL; 2021 struct ieee80211_sub_if_data *sdata = rx->sdata; 2022 int i; 2023 2024 if (ieee80211_is_beacon(fc)) { 2025 key = ieee80211_rx_get_bigtk(rx, -1); 2026 } else if (ieee80211_is_mgmt(fc) && 2027 is_multicast_ether_addr(hdr->addr1)) { 2028 key = rcu_dereference(rx->sdata->default_mgmt_key); 2029 } else { 2030 if (rx->sta) { 2031 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2032 key = rcu_dereference(rx->sta->gtk[i]); 2033 if (key) 2034 break; 2035 } 2036 } 2037 if (!key) { 2038 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2039 key = rcu_dereference(sdata->keys[i]); 2040 if (key) 2041 break; 2042 } 2043 } 2044 } 2045 if (key) 2046 rx->key = key; 2047 return RX_CONTINUE; 2048 } else { 2049 /* 2050 * The device doesn't give us the IV so we won't be 2051 * able to look up the key. That's ok though, we 2052 * don't need to decrypt the frame, we just won't 2053 * be able to keep statistics accurate. 2054 * Except for key threshold notifications, should 2055 * we somehow allow the driver to tell us which key 2056 * the hardware used if this flag is set? 2057 */ 2058 if ((status->flag & RX_FLAG_DECRYPTED) && 2059 (status->flag & RX_FLAG_IV_STRIPPED)) 2060 return RX_CONTINUE; 2061 2062 keyidx = ieee80211_get_keyid(rx->skb, cs); 2063 2064 if (unlikely(keyidx < 0)) 2065 return RX_DROP_UNUSABLE; 2066 2067 /* check per-station GTK first, if multicast packet */ 2068 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2069 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 2070 2071 /* if not found, try default key */ 2072 if (!rx->key) { 2073 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2074 2075 /* 2076 * RSNA-protected unicast frames should always be 2077 * sent with pairwise or station-to-station keys, 2078 * but for WEP we allow using a key index as well. 2079 */ 2080 if (rx->key && 2081 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2082 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2083 !is_multicast_ether_addr(hdr->addr1)) 2084 rx->key = NULL; 2085 } 2086 } 2087 2088 if (rx->key) { 2089 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2090 return RX_DROP_MONITOR; 2091 2092 /* TODO: add threshold stuff again */ 2093 } else { 2094 return RX_DROP_MONITOR; 2095 } 2096 2097 switch (rx->key->conf.cipher) { 2098 case WLAN_CIPHER_SUITE_WEP40: 2099 case WLAN_CIPHER_SUITE_WEP104: 2100 result = ieee80211_crypto_wep_decrypt(rx); 2101 break; 2102 case WLAN_CIPHER_SUITE_TKIP: 2103 result = ieee80211_crypto_tkip_decrypt(rx); 2104 break; 2105 case WLAN_CIPHER_SUITE_CCMP: 2106 result = ieee80211_crypto_ccmp_decrypt( 2107 rx, IEEE80211_CCMP_MIC_LEN); 2108 break; 2109 case WLAN_CIPHER_SUITE_CCMP_256: 2110 result = ieee80211_crypto_ccmp_decrypt( 2111 rx, IEEE80211_CCMP_256_MIC_LEN); 2112 break; 2113 case WLAN_CIPHER_SUITE_AES_CMAC: 2114 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2115 break; 2116 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2117 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2118 break; 2119 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2120 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2121 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2122 break; 2123 case WLAN_CIPHER_SUITE_GCMP: 2124 case WLAN_CIPHER_SUITE_GCMP_256: 2125 result = ieee80211_crypto_gcmp_decrypt(rx); 2126 break; 2127 default: 2128 result = ieee80211_crypto_hw_decrypt(rx); 2129 } 2130 2131 /* the hdr variable is invalid after the decrypt handlers */ 2132 2133 /* either the frame has been decrypted or will be dropped */ 2134 status->flag |= RX_FLAG_DECRYPTED; 2135 2136 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) 2137 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2138 skb->data, skb->len); 2139 2140 return result; 2141 } 2142 2143 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2144 { 2145 int i; 2146 2147 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2148 skb_queue_head_init(&cache->entries[i].skb_list); 2149 } 2150 2151 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2152 { 2153 int i; 2154 2155 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2156 __skb_queue_purge(&cache->entries[i].skb_list); 2157 } 2158 2159 static inline struct ieee80211_fragment_entry * 2160 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2161 unsigned int frag, unsigned int seq, int rx_queue, 2162 struct sk_buff **skb) 2163 { 2164 struct ieee80211_fragment_entry *entry; 2165 2166 entry = &cache->entries[cache->next++]; 2167 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2168 cache->next = 0; 2169 2170 __skb_queue_purge(&entry->skb_list); 2171 2172 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2173 *skb = NULL; 2174 entry->first_frag_time = jiffies; 2175 entry->seq = seq; 2176 entry->rx_queue = rx_queue; 2177 entry->last_frag = frag; 2178 entry->check_sequential_pn = false; 2179 entry->extra_len = 0; 2180 2181 return entry; 2182 } 2183 2184 static inline struct ieee80211_fragment_entry * 2185 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2186 unsigned int frag, unsigned int seq, 2187 int rx_queue, struct ieee80211_hdr *hdr) 2188 { 2189 struct ieee80211_fragment_entry *entry; 2190 int i, idx; 2191 2192 idx = cache->next; 2193 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2194 struct ieee80211_hdr *f_hdr; 2195 struct sk_buff *f_skb; 2196 2197 idx--; 2198 if (idx < 0) 2199 idx = IEEE80211_FRAGMENT_MAX - 1; 2200 2201 entry = &cache->entries[idx]; 2202 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2203 entry->rx_queue != rx_queue || 2204 entry->last_frag + 1 != frag) 2205 continue; 2206 2207 f_skb = __skb_peek(&entry->skb_list); 2208 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2209 2210 /* 2211 * Check ftype and addresses are equal, else check next fragment 2212 */ 2213 if (((hdr->frame_control ^ f_hdr->frame_control) & 2214 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2215 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2216 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2217 continue; 2218 2219 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2220 __skb_queue_purge(&entry->skb_list); 2221 continue; 2222 } 2223 return entry; 2224 } 2225 2226 return NULL; 2227 } 2228 2229 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2230 { 2231 return rx->key && 2232 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2233 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2234 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2235 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2236 ieee80211_has_protected(fc); 2237 } 2238 2239 static ieee80211_rx_result debug_noinline 2240 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2241 { 2242 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2243 struct ieee80211_hdr *hdr; 2244 u16 sc; 2245 __le16 fc; 2246 unsigned int frag, seq; 2247 struct ieee80211_fragment_entry *entry; 2248 struct sk_buff *skb; 2249 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2250 2251 hdr = (struct ieee80211_hdr *)rx->skb->data; 2252 fc = hdr->frame_control; 2253 2254 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2255 return RX_CONTINUE; 2256 2257 sc = le16_to_cpu(hdr->seq_ctrl); 2258 frag = sc & IEEE80211_SCTL_FRAG; 2259 2260 if (rx->sta) 2261 cache = &rx->sta->frags; 2262 2263 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2264 goto out; 2265 2266 if (is_multicast_ether_addr(hdr->addr1)) 2267 return RX_DROP_MONITOR; 2268 2269 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2270 2271 if (skb_linearize(rx->skb)) 2272 return RX_DROP_UNUSABLE; 2273 2274 /* 2275 * skb_linearize() might change the skb->data and 2276 * previously cached variables (in this case, hdr) need to 2277 * be refreshed with the new data. 2278 */ 2279 hdr = (struct ieee80211_hdr *)rx->skb->data; 2280 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2281 2282 if (frag == 0) { 2283 /* This is the first fragment of a new frame. */ 2284 entry = ieee80211_reassemble_add(cache, frag, seq, 2285 rx->seqno_idx, &(rx->skb)); 2286 if (requires_sequential_pn(rx, fc)) { 2287 int queue = rx->security_idx; 2288 2289 /* Store CCMP/GCMP PN so that we can verify that the 2290 * next fragment has a sequential PN value. 2291 */ 2292 entry->check_sequential_pn = true; 2293 entry->is_protected = true; 2294 entry->key_color = rx->key->color; 2295 memcpy(entry->last_pn, 2296 rx->key->u.ccmp.rx_pn[queue], 2297 IEEE80211_CCMP_PN_LEN); 2298 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2299 u.ccmp.rx_pn) != 2300 offsetof(struct ieee80211_key, 2301 u.gcmp.rx_pn)); 2302 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2303 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2304 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2305 IEEE80211_GCMP_PN_LEN); 2306 } else if (rx->key && 2307 (ieee80211_has_protected(fc) || 2308 (status->flag & RX_FLAG_DECRYPTED))) { 2309 entry->is_protected = true; 2310 entry->key_color = rx->key->color; 2311 } 2312 return RX_QUEUED; 2313 } 2314 2315 /* This is a fragment for a frame that should already be pending in 2316 * fragment cache. Add this fragment to the end of the pending entry. 2317 */ 2318 entry = ieee80211_reassemble_find(cache, frag, seq, 2319 rx->seqno_idx, hdr); 2320 if (!entry) { 2321 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2322 return RX_DROP_MONITOR; 2323 } 2324 2325 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2326 * MPDU PN values are not incrementing in steps of 1." 2327 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2328 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2329 */ 2330 if (entry->check_sequential_pn) { 2331 int i; 2332 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2333 2334 if (!requires_sequential_pn(rx, fc)) 2335 return RX_DROP_UNUSABLE; 2336 2337 /* Prevent mixed key and fragment cache attacks */ 2338 if (entry->key_color != rx->key->color) 2339 return RX_DROP_UNUSABLE; 2340 2341 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2342 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2343 pn[i]++; 2344 if (pn[i]) 2345 break; 2346 } 2347 2348 rpn = rx->ccm_gcm.pn; 2349 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2350 return RX_DROP_UNUSABLE; 2351 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2352 } else if (entry->is_protected && 2353 (!rx->key || 2354 (!ieee80211_has_protected(fc) && 2355 !(status->flag & RX_FLAG_DECRYPTED)) || 2356 rx->key->color != entry->key_color)) { 2357 /* Drop this as a mixed key or fragment cache attack, even 2358 * if for TKIP Michael MIC should protect us, and WEP is a 2359 * lost cause anyway. 2360 */ 2361 return RX_DROP_UNUSABLE; 2362 } else if (entry->is_protected && rx->key && 2363 entry->key_color != rx->key->color && 2364 (status->flag & RX_FLAG_DECRYPTED)) { 2365 return RX_DROP_UNUSABLE; 2366 } 2367 2368 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2369 __skb_queue_tail(&entry->skb_list, rx->skb); 2370 entry->last_frag = frag; 2371 entry->extra_len += rx->skb->len; 2372 if (ieee80211_has_morefrags(fc)) { 2373 rx->skb = NULL; 2374 return RX_QUEUED; 2375 } 2376 2377 rx->skb = __skb_dequeue(&entry->skb_list); 2378 if (skb_tailroom(rx->skb) < entry->extra_len) { 2379 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2380 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2381 GFP_ATOMIC))) { 2382 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2383 __skb_queue_purge(&entry->skb_list); 2384 return RX_DROP_UNUSABLE; 2385 } 2386 } 2387 while ((skb = __skb_dequeue(&entry->skb_list))) { 2388 skb_put_data(rx->skb, skb->data, skb->len); 2389 dev_kfree_skb(skb); 2390 } 2391 2392 out: 2393 ieee80211_led_rx(rx->local); 2394 if (rx->sta) 2395 rx->sta->rx_stats.packets++; 2396 return RX_CONTINUE; 2397 } 2398 2399 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2400 { 2401 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2402 return -EACCES; 2403 2404 return 0; 2405 } 2406 2407 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2408 { 2409 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 2410 struct sk_buff *skb = rx->skb; 2411 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2412 2413 /* 2414 * Pass through unencrypted frames if the hardware has 2415 * decrypted them already. 2416 */ 2417 if (status->flag & RX_FLAG_DECRYPTED) 2418 return 0; 2419 2420 /* check mesh EAPOL frames first */ 2421 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && 2422 ieee80211_is_data(fc))) { 2423 struct ieee80211s_hdr *mesh_hdr; 2424 u16 hdr_len = ieee80211_hdrlen(fc); 2425 u16 ethertype_offset; 2426 __be16 ethertype; 2427 2428 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) 2429 goto drop_check; 2430 2431 /* make sure fixed part of mesh header is there, also checks skb len */ 2432 if (!pskb_may_pull(rx->skb, hdr_len + 6)) 2433 goto drop_check; 2434 2435 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); 2436 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + 2437 sizeof(rfc1042_header); 2438 2439 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && 2440 ethertype == rx->sdata->control_port_protocol) 2441 return 0; 2442 } 2443 2444 drop_check: 2445 /* Drop unencrypted frames if key is set. */ 2446 if (unlikely(!ieee80211_has_protected(fc) && 2447 !ieee80211_is_any_nullfunc(fc) && 2448 ieee80211_is_data(fc) && rx->key)) 2449 return -EACCES; 2450 2451 return 0; 2452 } 2453 2454 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2455 { 2456 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2457 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2458 __le16 fc = hdr->frame_control; 2459 2460 /* 2461 * Pass through unencrypted frames if the hardware has 2462 * decrypted them already. 2463 */ 2464 if (status->flag & RX_FLAG_DECRYPTED) 2465 return 0; 2466 2467 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2468 if (unlikely(!ieee80211_has_protected(fc) && 2469 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2470 rx->key)) { 2471 if (ieee80211_is_deauth(fc) || 2472 ieee80211_is_disassoc(fc)) 2473 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2474 rx->skb->data, 2475 rx->skb->len); 2476 return -EACCES; 2477 } 2478 /* BIP does not use Protected field, so need to check MMIE */ 2479 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2480 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2481 if (ieee80211_is_deauth(fc) || 2482 ieee80211_is_disassoc(fc)) 2483 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2484 rx->skb->data, 2485 rx->skb->len); 2486 return -EACCES; 2487 } 2488 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2489 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2490 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2491 rx->skb->data, 2492 rx->skb->len); 2493 return -EACCES; 2494 } 2495 /* 2496 * When using MFP, Action frames are not allowed prior to 2497 * having configured keys. 2498 */ 2499 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2500 ieee80211_is_robust_mgmt_frame(rx->skb))) 2501 return -EACCES; 2502 } 2503 2504 return 0; 2505 } 2506 2507 static int 2508 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2509 { 2510 struct ieee80211_sub_if_data *sdata = rx->sdata; 2511 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2512 bool check_port_control = false; 2513 struct ethhdr *ehdr; 2514 int ret; 2515 2516 *port_control = false; 2517 if (ieee80211_has_a4(hdr->frame_control) && 2518 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2519 return -1; 2520 2521 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2522 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2523 2524 if (!sdata->u.mgd.use_4addr) 2525 return -1; 2526 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2527 check_port_control = true; 2528 } 2529 2530 if (is_multicast_ether_addr(hdr->addr1) && 2531 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2532 return -1; 2533 2534 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2535 if (ret < 0) 2536 return ret; 2537 2538 ehdr = (struct ethhdr *) rx->skb->data; 2539 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2540 *port_control = true; 2541 else if (check_port_control) 2542 return -1; 2543 2544 return 0; 2545 } 2546 2547 /* 2548 * requires that rx->skb is a frame with ethernet header 2549 */ 2550 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2551 { 2552 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2553 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2554 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2555 2556 /* 2557 * Allow EAPOL frames to us/the PAE group address regardless of 2558 * whether the frame was encrypted or not, and always disallow 2559 * all other destination addresses for them. 2560 */ 2561 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2562 return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2563 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2564 2565 if (ieee80211_802_1x_port_control(rx) || 2566 ieee80211_drop_unencrypted(rx, fc)) 2567 return false; 2568 2569 return true; 2570 } 2571 2572 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2573 struct ieee80211_rx_data *rx) 2574 { 2575 struct ieee80211_sub_if_data *sdata = rx->sdata; 2576 struct net_device *dev = sdata->dev; 2577 2578 if (unlikely((skb->protocol == sdata->control_port_protocol || 2579 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2580 !sdata->control_port_no_preauth)) && 2581 sdata->control_port_over_nl80211)) { 2582 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2583 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2584 2585 cfg80211_rx_control_port(dev, skb, noencrypt); 2586 dev_kfree_skb(skb); 2587 } else { 2588 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2589 2590 memset(skb->cb, 0, sizeof(skb->cb)); 2591 2592 /* 2593 * 802.1X over 802.11 requires that the authenticator address 2594 * be used for EAPOL frames. However, 802.1X allows the use of 2595 * the PAE group address instead. If the interface is part of 2596 * a bridge and we pass the frame with the PAE group address, 2597 * then the bridge will forward it to the network (even if the 2598 * client was not associated yet), which isn't supposed to 2599 * happen. 2600 * To avoid that, rewrite the destination address to our own 2601 * address, so that the authenticator (e.g. hostapd) will see 2602 * the frame, but bridge won't forward it anywhere else. Note 2603 * that due to earlier filtering, the only other address can 2604 * be the PAE group address. 2605 */ 2606 if (unlikely(skb->protocol == sdata->control_port_protocol && 2607 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2608 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2609 2610 /* deliver to local stack */ 2611 if (rx->list) 2612 list_add_tail(&skb->list, rx->list); 2613 else 2614 netif_receive_skb(skb); 2615 } 2616 } 2617 2618 /* 2619 * requires that rx->skb is a frame with ethernet header 2620 */ 2621 static void 2622 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2623 { 2624 struct ieee80211_sub_if_data *sdata = rx->sdata; 2625 struct net_device *dev = sdata->dev; 2626 struct sk_buff *skb, *xmit_skb; 2627 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2628 struct sta_info *dsta; 2629 2630 skb = rx->skb; 2631 xmit_skb = NULL; 2632 2633 dev_sw_netstats_rx_add(dev, skb->len); 2634 2635 if (rx->sta) { 2636 /* The seqno index has the same property as needed 2637 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2638 * for non-QoS-data frames. Here we know it's a data 2639 * frame, so count MSDUs. 2640 */ 2641 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2642 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2643 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2644 } 2645 2646 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2647 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2648 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2649 ehdr->h_proto != rx->sdata->control_port_protocol && 2650 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2651 if (is_multicast_ether_addr(ehdr->h_dest) && 2652 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2653 /* 2654 * send multicast frames both to higher layers in 2655 * local net stack and back to the wireless medium 2656 */ 2657 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2658 if (!xmit_skb) 2659 net_info_ratelimited("%s: failed to clone multicast frame\n", 2660 dev->name); 2661 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2662 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2663 dsta = sta_info_get(sdata, ehdr->h_dest); 2664 if (dsta) { 2665 /* 2666 * The destination station is associated to 2667 * this AP (in this VLAN), so send the frame 2668 * directly to it and do not pass it to local 2669 * net stack. 2670 */ 2671 xmit_skb = skb; 2672 skb = NULL; 2673 } 2674 } 2675 } 2676 2677 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2678 if (skb) { 2679 /* 'align' will only take the values 0 or 2 here since all 2680 * frames are required to be aligned to 2-byte boundaries 2681 * when being passed to mac80211; the code here works just 2682 * as well if that isn't true, but mac80211 assumes it can 2683 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2684 */ 2685 int align; 2686 2687 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2688 if (align) { 2689 if (WARN_ON(skb_headroom(skb) < 3)) { 2690 dev_kfree_skb(skb); 2691 skb = NULL; 2692 } else { 2693 u8 *data = skb->data; 2694 size_t len = skb_headlen(skb); 2695 skb->data -= align; 2696 memmove(skb->data, data, len); 2697 skb_set_tail_pointer(skb, len); 2698 } 2699 } 2700 } 2701 #endif 2702 2703 if (skb) { 2704 skb->protocol = eth_type_trans(skb, dev); 2705 ieee80211_deliver_skb_to_local_stack(skb, rx); 2706 } 2707 2708 if (xmit_skb) { 2709 /* 2710 * Send to wireless media and increase priority by 256 to 2711 * keep the received priority instead of reclassifying 2712 * the frame (see cfg80211_classify8021d). 2713 */ 2714 xmit_skb->priority += 256; 2715 xmit_skb->protocol = htons(ETH_P_802_3); 2716 skb_reset_network_header(xmit_skb); 2717 skb_reset_mac_header(xmit_skb); 2718 dev_queue_xmit(xmit_skb); 2719 } 2720 } 2721 2722 static ieee80211_rx_result debug_noinline 2723 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2724 { 2725 struct net_device *dev = rx->sdata->dev; 2726 struct sk_buff *skb = rx->skb; 2727 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2728 __le16 fc = hdr->frame_control; 2729 struct sk_buff_head frame_list; 2730 struct ethhdr ethhdr; 2731 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2732 2733 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2734 check_da = NULL; 2735 check_sa = NULL; 2736 } else switch (rx->sdata->vif.type) { 2737 case NL80211_IFTYPE_AP: 2738 case NL80211_IFTYPE_AP_VLAN: 2739 check_da = NULL; 2740 break; 2741 case NL80211_IFTYPE_STATION: 2742 if (!rx->sta || 2743 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2744 check_sa = NULL; 2745 break; 2746 case NL80211_IFTYPE_MESH_POINT: 2747 check_sa = NULL; 2748 break; 2749 default: 2750 break; 2751 } 2752 2753 skb->dev = dev; 2754 __skb_queue_head_init(&frame_list); 2755 2756 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2757 rx->sdata->vif.addr, 2758 rx->sdata->vif.type, 2759 data_offset, true)) 2760 return RX_DROP_UNUSABLE; 2761 2762 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2763 rx->sdata->vif.type, 2764 rx->local->hw.extra_tx_headroom, 2765 check_da, check_sa); 2766 2767 while (!skb_queue_empty(&frame_list)) { 2768 rx->skb = __skb_dequeue(&frame_list); 2769 2770 if (!ieee80211_frame_allowed(rx, fc)) { 2771 dev_kfree_skb(rx->skb); 2772 continue; 2773 } 2774 2775 ieee80211_deliver_skb(rx); 2776 } 2777 2778 return RX_QUEUED; 2779 } 2780 2781 static ieee80211_rx_result debug_noinline 2782 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2783 { 2784 struct sk_buff *skb = rx->skb; 2785 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2786 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2787 __le16 fc = hdr->frame_control; 2788 2789 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2790 return RX_CONTINUE; 2791 2792 if (unlikely(!ieee80211_is_data(fc))) 2793 return RX_CONTINUE; 2794 2795 if (unlikely(!ieee80211_is_data_present(fc))) 2796 return RX_DROP_MONITOR; 2797 2798 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2799 switch (rx->sdata->vif.type) { 2800 case NL80211_IFTYPE_AP_VLAN: 2801 if (!rx->sdata->u.vlan.sta) 2802 return RX_DROP_UNUSABLE; 2803 break; 2804 case NL80211_IFTYPE_STATION: 2805 if (!rx->sdata->u.mgd.use_4addr) 2806 return RX_DROP_UNUSABLE; 2807 break; 2808 default: 2809 return RX_DROP_UNUSABLE; 2810 } 2811 } 2812 2813 if (is_multicast_ether_addr(hdr->addr1)) 2814 return RX_DROP_UNUSABLE; 2815 2816 if (rx->key) { 2817 /* 2818 * We should not receive A-MSDUs on pre-HT connections, 2819 * and HT connections cannot use old ciphers. Thus drop 2820 * them, as in those cases we couldn't even have SPP 2821 * A-MSDUs or such. 2822 */ 2823 switch (rx->key->conf.cipher) { 2824 case WLAN_CIPHER_SUITE_WEP40: 2825 case WLAN_CIPHER_SUITE_WEP104: 2826 case WLAN_CIPHER_SUITE_TKIP: 2827 return RX_DROP_UNUSABLE; 2828 default: 2829 break; 2830 } 2831 } 2832 2833 return __ieee80211_rx_h_amsdu(rx, 0); 2834 } 2835 2836 #ifdef CONFIG_MAC80211_MESH 2837 static ieee80211_rx_result 2838 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2839 { 2840 struct ieee80211_hdr *fwd_hdr, *hdr; 2841 struct ieee80211_tx_info *info; 2842 struct ieee80211s_hdr *mesh_hdr; 2843 struct sk_buff *skb = rx->skb, *fwd_skb; 2844 struct ieee80211_local *local = rx->local; 2845 struct ieee80211_sub_if_data *sdata = rx->sdata; 2846 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2847 u16 ac, q, hdrlen; 2848 int tailroom = 0; 2849 2850 hdr = (struct ieee80211_hdr *) skb->data; 2851 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2852 2853 /* make sure fixed part of mesh header is there, also checks skb len */ 2854 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2855 return RX_DROP_MONITOR; 2856 2857 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2858 2859 /* make sure full mesh header is there, also checks skb len */ 2860 if (!pskb_may_pull(rx->skb, 2861 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2862 return RX_DROP_MONITOR; 2863 2864 /* reload pointers */ 2865 hdr = (struct ieee80211_hdr *) skb->data; 2866 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2867 2868 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2869 return RX_DROP_MONITOR; 2870 2871 /* frame is in RMC, don't forward */ 2872 if (ieee80211_is_data(hdr->frame_control) && 2873 is_multicast_ether_addr(hdr->addr1) && 2874 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2875 return RX_DROP_MONITOR; 2876 2877 if (!ieee80211_is_data(hdr->frame_control)) 2878 return RX_CONTINUE; 2879 2880 if (!mesh_hdr->ttl) 2881 return RX_DROP_MONITOR; 2882 2883 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2884 struct mesh_path *mppath; 2885 char *proxied_addr; 2886 char *mpp_addr; 2887 2888 if (is_multicast_ether_addr(hdr->addr1)) { 2889 mpp_addr = hdr->addr3; 2890 proxied_addr = mesh_hdr->eaddr1; 2891 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2892 MESH_FLAGS_AE_A5_A6) { 2893 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2894 mpp_addr = hdr->addr4; 2895 proxied_addr = mesh_hdr->eaddr2; 2896 } else { 2897 return RX_DROP_MONITOR; 2898 } 2899 2900 rcu_read_lock(); 2901 mppath = mpp_path_lookup(sdata, proxied_addr); 2902 if (!mppath) { 2903 mpp_path_add(sdata, proxied_addr, mpp_addr); 2904 } else { 2905 spin_lock_bh(&mppath->state_lock); 2906 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2907 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2908 mppath->exp_time = jiffies; 2909 spin_unlock_bh(&mppath->state_lock); 2910 } 2911 rcu_read_unlock(); 2912 } 2913 2914 /* Frame has reached destination. Don't forward */ 2915 if (!is_multicast_ether_addr(hdr->addr1) && 2916 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2917 return RX_CONTINUE; 2918 2919 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2920 q = sdata->vif.hw_queue[ac]; 2921 if (ieee80211_queue_stopped(&local->hw, q)) { 2922 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2923 return RX_DROP_MONITOR; 2924 } 2925 skb_set_queue_mapping(skb, q); 2926 2927 if (!--mesh_hdr->ttl) { 2928 if (!is_multicast_ether_addr(hdr->addr1)) 2929 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2930 dropped_frames_ttl); 2931 goto out; 2932 } 2933 2934 if (!ifmsh->mshcfg.dot11MeshForwarding) 2935 goto out; 2936 2937 if (sdata->crypto_tx_tailroom_needed_cnt) 2938 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2939 2940 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2941 sdata->encrypt_headroom, 2942 tailroom, GFP_ATOMIC); 2943 if (!fwd_skb) 2944 goto out; 2945 2946 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2947 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2948 info = IEEE80211_SKB_CB(fwd_skb); 2949 memset(info, 0, sizeof(*info)); 2950 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2951 info->control.vif = &rx->sdata->vif; 2952 info->control.jiffies = jiffies; 2953 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2954 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2955 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2956 /* update power mode indication when forwarding */ 2957 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2958 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2959 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2960 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2961 } else { 2962 /* unable to resolve next hop */ 2963 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2964 fwd_hdr->addr3, 0, 2965 WLAN_REASON_MESH_PATH_NOFORWARD, 2966 fwd_hdr->addr2); 2967 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2968 kfree_skb(fwd_skb); 2969 return RX_DROP_MONITOR; 2970 } 2971 2972 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2973 ieee80211_add_pending_skb(local, fwd_skb); 2974 out: 2975 if (is_multicast_ether_addr(hdr->addr1)) 2976 return RX_CONTINUE; 2977 return RX_DROP_MONITOR; 2978 } 2979 #endif 2980 2981 static ieee80211_rx_result debug_noinline 2982 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2983 { 2984 struct ieee80211_sub_if_data *sdata = rx->sdata; 2985 struct ieee80211_local *local = rx->local; 2986 struct net_device *dev = sdata->dev; 2987 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2988 __le16 fc = hdr->frame_control; 2989 bool port_control; 2990 int err; 2991 2992 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2993 return RX_CONTINUE; 2994 2995 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2996 return RX_DROP_MONITOR; 2997 2998 /* 2999 * Send unexpected-4addr-frame event to hostapd. For older versions, 3000 * also drop the frame to cooked monitor interfaces. 3001 */ 3002 if (ieee80211_has_a4(hdr->frame_control) && 3003 sdata->vif.type == NL80211_IFTYPE_AP) { 3004 if (rx->sta && 3005 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3006 cfg80211_rx_unexpected_4addr_frame( 3007 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3008 return RX_DROP_MONITOR; 3009 } 3010 3011 err = __ieee80211_data_to_8023(rx, &port_control); 3012 if (unlikely(err)) 3013 return RX_DROP_UNUSABLE; 3014 3015 if (!ieee80211_frame_allowed(rx, fc)) 3016 return RX_DROP_MONITOR; 3017 3018 /* directly handle TDLS channel switch requests/responses */ 3019 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3020 cpu_to_be16(ETH_P_TDLS))) { 3021 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3022 3023 if (pskb_may_pull(rx->skb, 3024 offsetof(struct ieee80211_tdls_data, u)) && 3025 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3026 tf->category == WLAN_CATEGORY_TDLS && 3027 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3028 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3029 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3030 __ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3031 return RX_QUEUED; 3032 } 3033 } 3034 3035 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3036 unlikely(port_control) && sdata->bss) { 3037 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3038 u.ap); 3039 dev = sdata->dev; 3040 rx->sdata = sdata; 3041 } 3042 3043 rx->skb->dev = dev; 3044 3045 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3046 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3047 !is_multicast_ether_addr( 3048 ((struct ethhdr *)rx->skb->data)->h_dest) && 3049 (!local->scanning && 3050 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3051 mod_timer(&local->dynamic_ps_timer, jiffies + 3052 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3053 3054 ieee80211_deliver_skb(rx); 3055 3056 return RX_QUEUED; 3057 } 3058 3059 static ieee80211_rx_result debug_noinline 3060 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3061 { 3062 struct sk_buff *skb = rx->skb; 3063 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3064 struct tid_ampdu_rx *tid_agg_rx; 3065 u16 start_seq_num; 3066 u16 tid; 3067 3068 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3069 return RX_CONTINUE; 3070 3071 if (ieee80211_is_back_req(bar->frame_control)) { 3072 struct { 3073 __le16 control, start_seq_num; 3074 } __packed bar_data; 3075 struct ieee80211_event event = { 3076 .type = BAR_RX_EVENT, 3077 }; 3078 3079 if (!rx->sta) 3080 return RX_DROP_MONITOR; 3081 3082 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3083 &bar_data, sizeof(bar_data))) 3084 return RX_DROP_MONITOR; 3085 3086 tid = le16_to_cpu(bar_data.control) >> 12; 3087 3088 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3089 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3090 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3091 WLAN_BACK_RECIPIENT, 3092 WLAN_REASON_QSTA_REQUIRE_SETUP); 3093 3094 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3095 if (!tid_agg_rx) 3096 return RX_DROP_MONITOR; 3097 3098 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3099 event.u.ba.tid = tid; 3100 event.u.ba.ssn = start_seq_num; 3101 event.u.ba.sta = &rx->sta->sta; 3102 3103 /* reset session timer */ 3104 if (tid_agg_rx->timeout) 3105 mod_timer(&tid_agg_rx->session_timer, 3106 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3107 3108 spin_lock(&tid_agg_rx->reorder_lock); 3109 /* release stored frames up to start of BAR */ 3110 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3111 start_seq_num, frames); 3112 spin_unlock(&tid_agg_rx->reorder_lock); 3113 3114 drv_event_callback(rx->local, rx->sdata, &event); 3115 3116 kfree_skb(skb); 3117 return RX_QUEUED; 3118 } 3119 3120 /* 3121 * After this point, we only want management frames, 3122 * so we can drop all remaining control frames to 3123 * cooked monitor interfaces. 3124 */ 3125 return RX_DROP_MONITOR; 3126 } 3127 3128 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3129 struct ieee80211_mgmt *mgmt, 3130 size_t len) 3131 { 3132 struct ieee80211_local *local = sdata->local; 3133 struct sk_buff *skb; 3134 struct ieee80211_mgmt *resp; 3135 3136 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3137 /* Not to own unicast address */ 3138 return; 3139 } 3140 3141 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 3142 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 3143 /* Not from the current AP or not associated yet. */ 3144 return; 3145 } 3146 3147 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3148 /* Too short SA Query request frame */ 3149 return; 3150 } 3151 3152 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3153 if (skb == NULL) 3154 return; 3155 3156 skb_reserve(skb, local->hw.extra_tx_headroom); 3157 resp = skb_put_zero(skb, 24); 3158 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3159 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3160 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 3161 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3162 IEEE80211_STYPE_ACTION); 3163 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3164 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3165 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3166 memcpy(resp->u.action.u.sa_query.trans_id, 3167 mgmt->u.action.u.sa_query.trans_id, 3168 WLAN_SA_QUERY_TR_ID_LEN); 3169 3170 ieee80211_tx_skb(sdata, skb); 3171 } 3172 3173 static ieee80211_rx_result debug_noinline 3174 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3175 { 3176 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3177 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3178 3179 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3180 return RX_CONTINUE; 3181 3182 /* 3183 * From here on, look only at management frames. 3184 * Data and control frames are already handled, 3185 * and unknown (reserved) frames are useless. 3186 */ 3187 if (rx->skb->len < 24) 3188 return RX_DROP_MONITOR; 3189 3190 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3191 return RX_DROP_MONITOR; 3192 3193 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3194 ieee80211_is_beacon(mgmt->frame_control) && 3195 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3196 int sig = 0; 3197 3198 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3199 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3200 sig = status->signal; 3201 3202 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3203 rx->skb->data, rx->skb->len, 3204 ieee80211_rx_status_to_khz(status), 3205 sig); 3206 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3207 } 3208 3209 if (ieee80211_drop_unencrypted_mgmt(rx)) 3210 return RX_DROP_UNUSABLE; 3211 3212 return RX_CONTINUE; 3213 } 3214 3215 static bool 3216 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3217 { 3218 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3219 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3220 struct ieee80211_sub_if_data *sdata = rx->sdata; 3221 const struct ieee80211_sta_he_cap *hecap; 3222 struct ieee80211_supported_band *sband; 3223 3224 /* TWT actions are only supported in AP for the moment */ 3225 if (sdata->vif.type != NL80211_IFTYPE_AP) 3226 return false; 3227 3228 if (!rx->local->ops->add_twt_setup) 3229 return false; 3230 3231 sband = rx->local->hw.wiphy->bands[status->band]; 3232 hecap = ieee80211_get_he_iftype_cap(sband, 3233 ieee80211_vif_type_p2p(&sdata->vif)); 3234 if (!hecap) 3235 return false; 3236 3237 if (!(hecap->he_cap_elem.mac_cap_info[0] & 3238 IEEE80211_HE_MAC_CAP0_TWT_RES)) 3239 return false; 3240 3241 if (!rx->sta) 3242 return false; 3243 3244 switch (mgmt->u.action.u.s1g.action_code) { 3245 case WLAN_S1G_TWT_SETUP: { 3246 struct ieee80211_twt_setup *twt; 3247 3248 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3249 1 + /* action code */ 3250 sizeof(struct ieee80211_twt_setup) + 3251 2 /* TWT req_type agrt */) 3252 break; 3253 3254 twt = (void *)mgmt->u.action.u.s1g.variable; 3255 if (twt->element_id != WLAN_EID_S1G_TWT) 3256 break; 3257 3258 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3259 4 + /* action code + token + tlv */ 3260 twt->length) 3261 break; 3262 3263 return true; /* queue the frame */ 3264 } 3265 case WLAN_S1G_TWT_TEARDOWN: 3266 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3267 break; 3268 3269 return true; /* queue the frame */ 3270 default: 3271 break; 3272 } 3273 3274 return false; 3275 } 3276 3277 static ieee80211_rx_result debug_noinline 3278 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3279 { 3280 struct ieee80211_local *local = rx->local; 3281 struct ieee80211_sub_if_data *sdata = rx->sdata; 3282 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3283 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3284 int len = rx->skb->len; 3285 3286 if (!ieee80211_is_action(mgmt->frame_control)) 3287 return RX_CONTINUE; 3288 3289 /* drop too small frames */ 3290 if (len < IEEE80211_MIN_ACTION_SIZE) 3291 return RX_DROP_UNUSABLE; 3292 3293 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3294 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3295 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3296 return RX_DROP_UNUSABLE; 3297 3298 switch (mgmt->u.action.category) { 3299 case WLAN_CATEGORY_HT: 3300 /* reject HT action frames from stations not supporting HT */ 3301 if (!rx->sta->sta.ht_cap.ht_supported) 3302 goto invalid; 3303 3304 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3305 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3306 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3307 sdata->vif.type != NL80211_IFTYPE_AP && 3308 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3309 break; 3310 3311 /* verify action & smps_control/chanwidth are present */ 3312 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3313 goto invalid; 3314 3315 switch (mgmt->u.action.u.ht_smps.action) { 3316 case WLAN_HT_ACTION_SMPS: { 3317 struct ieee80211_supported_band *sband; 3318 enum ieee80211_smps_mode smps_mode; 3319 struct sta_opmode_info sta_opmode = {}; 3320 3321 if (sdata->vif.type != NL80211_IFTYPE_AP && 3322 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3323 goto handled; 3324 3325 /* convert to HT capability */ 3326 switch (mgmt->u.action.u.ht_smps.smps_control) { 3327 case WLAN_HT_SMPS_CONTROL_DISABLED: 3328 smps_mode = IEEE80211_SMPS_OFF; 3329 break; 3330 case WLAN_HT_SMPS_CONTROL_STATIC: 3331 smps_mode = IEEE80211_SMPS_STATIC; 3332 break; 3333 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3334 smps_mode = IEEE80211_SMPS_DYNAMIC; 3335 break; 3336 default: 3337 goto invalid; 3338 } 3339 3340 /* if no change do nothing */ 3341 if (rx->sta->sta.smps_mode == smps_mode) 3342 goto handled; 3343 rx->sta->sta.smps_mode = smps_mode; 3344 sta_opmode.smps_mode = 3345 ieee80211_smps_mode_to_smps_mode(smps_mode); 3346 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3347 3348 sband = rx->local->hw.wiphy->bands[status->band]; 3349 3350 rate_control_rate_update(local, sband, rx->sta, 3351 IEEE80211_RC_SMPS_CHANGED); 3352 cfg80211_sta_opmode_change_notify(sdata->dev, 3353 rx->sta->addr, 3354 &sta_opmode, 3355 GFP_ATOMIC); 3356 goto handled; 3357 } 3358 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3359 struct ieee80211_supported_band *sband; 3360 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3361 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3362 struct sta_opmode_info sta_opmode = {}; 3363 3364 /* If it doesn't support 40 MHz it can't change ... */ 3365 if (!(rx->sta->sta.ht_cap.cap & 3366 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3367 goto handled; 3368 3369 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3370 max_bw = IEEE80211_STA_RX_BW_20; 3371 else 3372 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3373 3374 /* set cur_max_bandwidth and recalc sta bw */ 3375 rx->sta->cur_max_bandwidth = max_bw; 3376 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3377 3378 if (rx->sta->sta.bandwidth == new_bw) 3379 goto handled; 3380 3381 rx->sta->sta.bandwidth = new_bw; 3382 sband = rx->local->hw.wiphy->bands[status->band]; 3383 sta_opmode.bw = 3384 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3385 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3386 3387 rate_control_rate_update(local, sband, rx->sta, 3388 IEEE80211_RC_BW_CHANGED); 3389 cfg80211_sta_opmode_change_notify(sdata->dev, 3390 rx->sta->addr, 3391 &sta_opmode, 3392 GFP_ATOMIC); 3393 goto handled; 3394 } 3395 default: 3396 goto invalid; 3397 } 3398 3399 break; 3400 case WLAN_CATEGORY_PUBLIC: 3401 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3402 goto invalid; 3403 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3404 break; 3405 if (!rx->sta) 3406 break; 3407 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3408 break; 3409 if (mgmt->u.action.u.ext_chan_switch.action_code != 3410 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3411 break; 3412 if (len < offsetof(struct ieee80211_mgmt, 3413 u.action.u.ext_chan_switch.variable)) 3414 goto invalid; 3415 goto queue; 3416 case WLAN_CATEGORY_VHT: 3417 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3418 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3419 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3420 sdata->vif.type != NL80211_IFTYPE_AP && 3421 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3422 break; 3423 3424 /* verify action code is present */ 3425 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3426 goto invalid; 3427 3428 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3429 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3430 /* verify opmode is present */ 3431 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3432 goto invalid; 3433 goto queue; 3434 } 3435 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3436 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3437 goto invalid; 3438 goto queue; 3439 } 3440 default: 3441 break; 3442 } 3443 break; 3444 case WLAN_CATEGORY_BACK: 3445 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3446 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3447 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3448 sdata->vif.type != NL80211_IFTYPE_AP && 3449 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3450 break; 3451 3452 /* verify action_code is present */ 3453 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3454 break; 3455 3456 switch (mgmt->u.action.u.addba_req.action_code) { 3457 case WLAN_ACTION_ADDBA_REQ: 3458 if (len < (IEEE80211_MIN_ACTION_SIZE + 3459 sizeof(mgmt->u.action.u.addba_req))) 3460 goto invalid; 3461 break; 3462 case WLAN_ACTION_ADDBA_RESP: 3463 if (len < (IEEE80211_MIN_ACTION_SIZE + 3464 sizeof(mgmt->u.action.u.addba_resp))) 3465 goto invalid; 3466 break; 3467 case WLAN_ACTION_DELBA: 3468 if (len < (IEEE80211_MIN_ACTION_SIZE + 3469 sizeof(mgmt->u.action.u.delba))) 3470 goto invalid; 3471 break; 3472 default: 3473 goto invalid; 3474 } 3475 3476 goto queue; 3477 case WLAN_CATEGORY_SPECTRUM_MGMT: 3478 /* verify action_code is present */ 3479 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3480 break; 3481 3482 switch (mgmt->u.action.u.measurement.action_code) { 3483 case WLAN_ACTION_SPCT_MSR_REQ: 3484 if (status->band != NL80211_BAND_5GHZ) 3485 break; 3486 3487 if (len < (IEEE80211_MIN_ACTION_SIZE + 3488 sizeof(mgmt->u.action.u.measurement))) 3489 break; 3490 3491 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3492 break; 3493 3494 ieee80211_process_measurement_req(sdata, mgmt, len); 3495 goto handled; 3496 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3497 u8 *bssid; 3498 if (len < (IEEE80211_MIN_ACTION_SIZE + 3499 sizeof(mgmt->u.action.u.chan_switch))) 3500 break; 3501 3502 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3503 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3504 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3505 break; 3506 3507 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3508 bssid = sdata->u.mgd.bssid; 3509 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3510 bssid = sdata->u.ibss.bssid; 3511 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3512 bssid = mgmt->sa; 3513 else 3514 break; 3515 3516 if (!ether_addr_equal(mgmt->bssid, bssid)) 3517 break; 3518 3519 goto queue; 3520 } 3521 } 3522 break; 3523 case WLAN_CATEGORY_SELF_PROTECTED: 3524 if (len < (IEEE80211_MIN_ACTION_SIZE + 3525 sizeof(mgmt->u.action.u.self_prot.action_code))) 3526 break; 3527 3528 switch (mgmt->u.action.u.self_prot.action_code) { 3529 case WLAN_SP_MESH_PEERING_OPEN: 3530 case WLAN_SP_MESH_PEERING_CLOSE: 3531 case WLAN_SP_MESH_PEERING_CONFIRM: 3532 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3533 goto invalid; 3534 if (sdata->u.mesh.user_mpm) 3535 /* userspace handles this frame */ 3536 break; 3537 goto queue; 3538 case WLAN_SP_MGK_INFORM: 3539 case WLAN_SP_MGK_ACK: 3540 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3541 goto invalid; 3542 break; 3543 } 3544 break; 3545 case WLAN_CATEGORY_MESH_ACTION: 3546 if (len < (IEEE80211_MIN_ACTION_SIZE + 3547 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3548 break; 3549 3550 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3551 break; 3552 if (mesh_action_is_path_sel(mgmt) && 3553 !mesh_path_sel_is_hwmp(sdata)) 3554 break; 3555 goto queue; 3556 case WLAN_CATEGORY_S1G: 3557 switch (mgmt->u.action.u.s1g.action_code) { 3558 case WLAN_S1G_TWT_SETUP: 3559 case WLAN_S1G_TWT_TEARDOWN: 3560 if (ieee80211_process_rx_twt_action(rx)) 3561 goto queue; 3562 break; 3563 default: 3564 break; 3565 } 3566 break; 3567 } 3568 3569 return RX_CONTINUE; 3570 3571 invalid: 3572 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3573 /* will return in the next handlers */ 3574 return RX_CONTINUE; 3575 3576 handled: 3577 if (rx->sta) 3578 rx->sta->rx_stats.packets++; 3579 dev_kfree_skb(rx->skb); 3580 return RX_QUEUED; 3581 3582 queue: 3583 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3584 return RX_QUEUED; 3585 } 3586 3587 static ieee80211_rx_result debug_noinline 3588 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3589 { 3590 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3591 int sig = 0; 3592 3593 /* skip known-bad action frames and return them in the next handler */ 3594 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3595 return RX_CONTINUE; 3596 3597 /* 3598 * Getting here means the kernel doesn't know how to handle 3599 * it, but maybe userspace does ... include returned frames 3600 * so userspace can register for those to know whether ones 3601 * it transmitted were processed or returned. 3602 */ 3603 3604 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3605 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3606 sig = status->signal; 3607 3608 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev, 3609 ieee80211_rx_status_to_khz(status), sig, 3610 rx->skb->data, rx->skb->len, 0)) { 3611 if (rx->sta) 3612 rx->sta->rx_stats.packets++; 3613 dev_kfree_skb(rx->skb); 3614 return RX_QUEUED; 3615 } 3616 3617 return RX_CONTINUE; 3618 } 3619 3620 static ieee80211_rx_result debug_noinline 3621 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3622 { 3623 struct ieee80211_sub_if_data *sdata = rx->sdata; 3624 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3625 int len = rx->skb->len; 3626 3627 if (!ieee80211_is_action(mgmt->frame_control)) 3628 return RX_CONTINUE; 3629 3630 switch (mgmt->u.action.category) { 3631 case WLAN_CATEGORY_SA_QUERY: 3632 if (len < (IEEE80211_MIN_ACTION_SIZE + 3633 sizeof(mgmt->u.action.u.sa_query))) 3634 break; 3635 3636 switch (mgmt->u.action.u.sa_query.action) { 3637 case WLAN_ACTION_SA_QUERY_REQUEST: 3638 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3639 break; 3640 ieee80211_process_sa_query_req(sdata, mgmt, len); 3641 goto handled; 3642 } 3643 break; 3644 } 3645 3646 return RX_CONTINUE; 3647 3648 handled: 3649 if (rx->sta) 3650 rx->sta->rx_stats.packets++; 3651 dev_kfree_skb(rx->skb); 3652 return RX_QUEUED; 3653 } 3654 3655 static ieee80211_rx_result debug_noinline 3656 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3657 { 3658 struct ieee80211_local *local = rx->local; 3659 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3660 struct sk_buff *nskb; 3661 struct ieee80211_sub_if_data *sdata = rx->sdata; 3662 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3663 3664 if (!ieee80211_is_action(mgmt->frame_control)) 3665 return RX_CONTINUE; 3666 3667 /* 3668 * For AP mode, hostapd is responsible for handling any action 3669 * frames that we didn't handle, including returning unknown 3670 * ones. For all other modes we will return them to the sender, 3671 * setting the 0x80 bit in the action category, as required by 3672 * 802.11-2012 9.24.4. 3673 * Newer versions of hostapd shall also use the management frame 3674 * registration mechanisms, but older ones still use cooked 3675 * monitor interfaces so push all frames there. 3676 */ 3677 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3678 (sdata->vif.type == NL80211_IFTYPE_AP || 3679 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3680 return RX_DROP_MONITOR; 3681 3682 if (is_multicast_ether_addr(mgmt->da)) 3683 return RX_DROP_MONITOR; 3684 3685 /* do not return rejected action frames */ 3686 if (mgmt->u.action.category & 0x80) 3687 return RX_DROP_UNUSABLE; 3688 3689 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3690 GFP_ATOMIC); 3691 if (nskb) { 3692 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3693 3694 nmgmt->u.action.category |= 0x80; 3695 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3696 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3697 3698 memset(nskb->cb, 0, sizeof(nskb->cb)); 3699 3700 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3701 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3702 3703 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3704 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3705 IEEE80211_TX_CTL_NO_CCK_RATE; 3706 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3707 info->hw_queue = 3708 local->hw.offchannel_tx_hw_queue; 3709 } 3710 3711 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3712 status->band); 3713 } 3714 dev_kfree_skb(rx->skb); 3715 return RX_QUEUED; 3716 } 3717 3718 static ieee80211_rx_result debug_noinline 3719 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3720 { 3721 struct ieee80211_sub_if_data *sdata = rx->sdata; 3722 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3723 3724 if (!ieee80211_is_ext(hdr->frame_control)) 3725 return RX_CONTINUE; 3726 3727 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3728 return RX_DROP_MONITOR; 3729 3730 /* for now only beacons are ext, so queue them */ 3731 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3732 3733 return RX_QUEUED; 3734 } 3735 3736 static ieee80211_rx_result debug_noinline 3737 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3738 { 3739 struct ieee80211_sub_if_data *sdata = rx->sdata; 3740 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3741 __le16 stype; 3742 3743 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3744 3745 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3746 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3747 sdata->vif.type != NL80211_IFTYPE_OCB && 3748 sdata->vif.type != NL80211_IFTYPE_STATION) 3749 return RX_DROP_MONITOR; 3750 3751 switch (stype) { 3752 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3753 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3754 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3755 /* process for all: mesh, mlme, ibss */ 3756 break; 3757 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3758 if (is_multicast_ether_addr(mgmt->da) && 3759 !is_broadcast_ether_addr(mgmt->da)) 3760 return RX_DROP_MONITOR; 3761 3762 /* process only for station/IBSS */ 3763 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3764 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3765 return RX_DROP_MONITOR; 3766 break; 3767 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3768 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3769 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3770 if (is_multicast_ether_addr(mgmt->da) && 3771 !is_broadcast_ether_addr(mgmt->da)) 3772 return RX_DROP_MONITOR; 3773 3774 /* process only for station */ 3775 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3776 return RX_DROP_MONITOR; 3777 break; 3778 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3779 /* process only for ibss and mesh */ 3780 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3781 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3782 return RX_DROP_MONITOR; 3783 break; 3784 default: 3785 return RX_DROP_MONITOR; 3786 } 3787 3788 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3789 3790 return RX_QUEUED; 3791 } 3792 3793 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3794 struct ieee80211_rate *rate) 3795 { 3796 struct ieee80211_sub_if_data *sdata; 3797 struct ieee80211_local *local = rx->local; 3798 struct sk_buff *skb = rx->skb, *skb2; 3799 struct net_device *prev_dev = NULL; 3800 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3801 int needed_headroom; 3802 3803 /* 3804 * If cooked monitor has been processed already, then 3805 * don't do it again. If not, set the flag. 3806 */ 3807 if (rx->flags & IEEE80211_RX_CMNTR) 3808 goto out_free_skb; 3809 rx->flags |= IEEE80211_RX_CMNTR; 3810 3811 /* If there are no cooked monitor interfaces, just free the SKB */ 3812 if (!local->cooked_mntrs) 3813 goto out_free_skb; 3814 3815 /* vendor data is long removed here */ 3816 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3817 /* room for the radiotap header based on driver features */ 3818 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3819 3820 if (skb_headroom(skb) < needed_headroom && 3821 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3822 goto out_free_skb; 3823 3824 /* prepend radiotap information */ 3825 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3826 false); 3827 3828 skb_reset_mac_header(skb); 3829 skb->ip_summed = CHECKSUM_UNNECESSARY; 3830 skb->pkt_type = PACKET_OTHERHOST; 3831 skb->protocol = htons(ETH_P_802_2); 3832 3833 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3834 if (!ieee80211_sdata_running(sdata)) 3835 continue; 3836 3837 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3838 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3839 continue; 3840 3841 if (prev_dev) { 3842 skb2 = skb_clone(skb, GFP_ATOMIC); 3843 if (skb2) { 3844 skb2->dev = prev_dev; 3845 netif_receive_skb(skb2); 3846 } 3847 } 3848 3849 prev_dev = sdata->dev; 3850 dev_sw_netstats_rx_add(sdata->dev, skb->len); 3851 } 3852 3853 if (prev_dev) { 3854 skb->dev = prev_dev; 3855 netif_receive_skb(skb); 3856 return; 3857 } 3858 3859 out_free_skb: 3860 dev_kfree_skb(skb); 3861 } 3862 3863 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3864 ieee80211_rx_result res) 3865 { 3866 switch (res) { 3867 case RX_DROP_MONITOR: 3868 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3869 if (rx->sta) 3870 rx->sta->rx_stats.dropped++; 3871 fallthrough; 3872 case RX_CONTINUE: { 3873 struct ieee80211_rate *rate = NULL; 3874 struct ieee80211_supported_band *sband; 3875 struct ieee80211_rx_status *status; 3876 3877 status = IEEE80211_SKB_RXCB((rx->skb)); 3878 3879 sband = rx->local->hw.wiphy->bands[status->band]; 3880 if (status->encoding == RX_ENC_LEGACY) 3881 rate = &sband->bitrates[status->rate_idx]; 3882 3883 ieee80211_rx_cooked_monitor(rx, rate); 3884 break; 3885 } 3886 case RX_DROP_UNUSABLE: 3887 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3888 if (rx->sta) 3889 rx->sta->rx_stats.dropped++; 3890 dev_kfree_skb(rx->skb); 3891 break; 3892 case RX_QUEUED: 3893 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3894 break; 3895 } 3896 } 3897 3898 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3899 struct sk_buff_head *frames) 3900 { 3901 ieee80211_rx_result res = RX_DROP_MONITOR; 3902 struct sk_buff *skb; 3903 3904 #define CALL_RXH(rxh) \ 3905 do { \ 3906 res = rxh(rx); \ 3907 if (res != RX_CONTINUE) \ 3908 goto rxh_next; \ 3909 } while (0) 3910 3911 /* Lock here to avoid hitting all of the data used in the RX 3912 * path (e.g. key data, station data, ...) concurrently when 3913 * a frame is released from the reorder buffer due to timeout 3914 * from the timer, potentially concurrently with RX from the 3915 * driver. 3916 */ 3917 spin_lock_bh(&rx->local->rx_path_lock); 3918 3919 while ((skb = __skb_dequeue(frames))) { 3920 /* 3921 * all the other fields are valid across frames 3922 * that belong to an aMPDU since they are on the 3923 * same TID from the same station 3924 */ 3925 rx->skb = skb; 3926 3927 CALL_RXH(ieee80211_rx_h_check_more_data); 3928 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3929 CALL_RXH(ieee80211_rx_h_sta_process); 3930 CALL_RXH(ieee80211_rx_h_decrypt); 3931 CALL_RXH(ieee80211_rx_h_defragment); 3932 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3933 /* must be after MMIC verify so header is counted in MPDU mic */ 3934 #ifdef CONFIG_MAC80211_MESH 3935 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3936 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3937 #endif 3938 CALL_RXH(ieee80211_rx_h_amsdu); 3939 CALL_RXH(ieee80211_rx_h_data); 3940 3941 /* special treatment -- needs the queue */ 3942 res = ieee80211_rx_h_ctrl(rx, frames); 3943 if (res != RX_CONTINUE) 3944 goto rxh_next; 3945 3946 CALL_RXH(ieee80211_rx_h_mgmt_check); 3947 CALL_RXH(ieee80211_rx_h_action); 3948 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3949 CALL_RXH(ieee80211_rx_h_action_post_userspace); 3950 CALL_RXH(ieee80211_rx_h_action_return); 3951 CALL_RXH(ieee80211_rx_h_ext); 3952 CALL_RXH(ieee80211_rx_h_mgmt); 3953 3954 rxh_next: 3955 ieee80211_rx_handlers_result(rx, res); 3956 3957 #undef CALL_RXH 3958 } 3959 3960 spin_unlock_bh(&rx->local->rx_path_lock); 3961 } 3962 3963 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3964 { 3965 struct sk_buff_head reorder_release; 3966 ieee80211_rx_result res = RX_DROP_MONITOR; 3967 3968 __skb_queue_head_init(&reorder_release); 3969 3970 #define CALL_RXH(rxh) \ 3971 do { \ 3972 res = rxh(rx); \ 3973 if (res != RX_CONTINUE) \ 3974 goto rxh_next; \ 3975 } while (0) 3976 3977 CALL_RXH(ieee80211_rx_h_check_dup); 3978 CALL_RXH(ieee80211_rx_h_check); 3979 3980 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3981 3982 ieee80211_rx_handlers(rx, &reorder_release); 3983 return; 3984 3985 rxh_next: 3986 ieee80211_rx_handlers_result(rx, res); 3987 3988 #undef CALL_RXH 3989 } 3990 3991 /* 3992 * This function makes calls into the RX path, therefore 3993 * it has to be invoked under RCU read lock. 3994 */ 3995 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3996 { 3997 struct sk_buff_head frames; 3998 struct ieee80211_rx_data rx = { 3999 .sta = sta, 4000 .sdata = sta->sdata, 4001 .local = sta->local, 4002 /* This is OK -- must be QoS data frame */ 4003 .security_idx = tid, 4004 .seqno_idx = tid, 4005 }; 4006 struct tid_ampdu_rx *tid_agg_rx; 4007 4008 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4009 if (!tid_agg_rx) 4010 return; 4011 4012 __skb_queue_head_init(&frames); 4013 4014 spin_lock(&tid_agg_rx->reorder_lock); 4015 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4016 spin_unlock(&tid_agg_rx->reorder_lock); 4017 4018 if (!skb_queue_empty(&frames)) { 4019 struct ieee80211_event event = { 4020 .type = BA_FRAME_TIMEOUT, 4021 .u.ba.tid = tid, 4022 .u.ba.sta = &sta->sta, 4023 }; 4024 drv_event_callback(rx.local, rx.sdata, &event); 4025 } 4026 4027 ieee80211_rx_handlers(&rx, &frames); 4028 } 4029 4030 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4031 u16 ssn, u64 filtered, 4032 u16 received_mpdus) 4033 { 4034 struct sta_info *sta; 4035 struct tid_ampdu_rx *tid_agg_rx; 4036 struct sk_buff_head frames; 4037 struct ieee80211_rx_data rx = { 4038 /* This is OK -- must be QoS data frame */ 4039 .security_idx = tid, 4040 .seqno_idx = tid, 4041 }; 4042 int i, diff; 4043 4044 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4045 return; 4046 4047 __skb_queue_head_init(&frames); 4048 4049 sta = container_of(pubsta, struct sta_info, sta); 4050 4051 rx.sta = sta; 4052 rx.sdata = sta->sdata; 4053 rx.local = sta->local; 4054 4055 rcu_read_lock(); 4056 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4057 if (!tid_agg_rx) 4058 goto out; 4059 4060 spin_lock_bh(&tid_agg_rx->reorder_lock); 4061 4062 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4063 int release; 4064 4065 /* release all frames in the reorder buffer */ 4066 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4067 IEEE80211_SN_MODULO; 4068 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4069 release, &frames); 4070 /* update ssn to match received ssn */ 4071 tid_agg_rx->head_seq_num = ssn; 4072 } else { 4073 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4074 &frames); 4075 } 4076 4077 /* handle the case that received ssn is behind the mac ssn. 4078 * it can be tid_agg_rx->buf_size behind and still be valid */ 4079 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4080 if (diff >= tid_agg_rx->buf_size) { 4081 tid_agg_rx->reorder_buf_filtered = 0; 4082 goto release; 4083 } 4084 filtered = filtered >> diff; 4085 ssn += diff; 4086 4087 /* update bitmap */ 4088 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4089 int index = (ssn + i) % tid_agg_rx->buf_size; 4090 4091 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4092 if (filtered & BIT_ULL(i)) 4093 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4094 } 4095 4096 /* now process also frames that the filter marking released */ 4097 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4098 4099 release: 4100 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4101 4102 ieee80211_rx_handlers(&rx, &frames); 4103 4104 out: 4105 rcu_read_unlock(); 4106 } 4107 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4108 4109 /* main receive path */ 4110 4111 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4112 { 4113 struct ieee80211_sub_if_data *sdata = rx->sdata; 4114 struct sk_buff *skb = rx->skb; 4115 struct ieee80211_hdr *hdr = (void *)skb->data; 4116 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4117 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4118 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4119 ieee80211_is_s1g_beacon(hdr->frame_control); 4120 4121 switch (sdata->vif.type) { 4122 case NL80211_IFTYPE_STATION: 4123 if (!bssid && !sdata->u.mgd.use_4addr) 4124 return false; 4125 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4126 return false; 4127 if (multicast) 4128 return true; 4129 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4130 case NL80211_IFTYPE_ADHOC: 4131 if (!bssid) 4132 return false; 4133 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4134 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4135 !is_valid_ether_addr(hdr->addr2)) 4136 return false; 4137 if (ieee80211_is_beacon(hdr->frame_control)) 4138 return true; 4139 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4140 return false; 4141 if (!multicast && 4142 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4143 return false; 4144 if (!rx->sta) { 4145 int rate_idx; 4146 if (status->encoding != RX_ENC_LEGACY) 4147 rate_idx = 0; /* TODO: HT/VHT rates */ 4148 else 4149 rate_idx = status->rate_idx; 4150 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4151 BIT(rate_idx)); 4152 } 4153 return true; 4154 case NL80211_IFTYPE_OCB: 4155 if (!bssid) 4156 return false; 4157 if (!ieee80211_is_data_present(hdr->frame_control)) 4158 return false; 4159 if (!is_broadcast_ether_addr(bssid)) 4160 return false; 4161 if (!multicast && 4162 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4163 return false; 4164 if (!rx->sta) { 4165 int rate_idx; 4166 if (status->encoding != RX_ENC_LEGACY) 4167 rate_idx = 0; /* TODO: HT rates */ 4168 else 4169 rate_idx = status->rate_idx; 4170 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4171 BIT(rate_idx)); 4172 } 4173 return true; 4174 case NL80211_IFTYPE_MESH_POINT: 4175 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4176 return false; 4177 if (multicast) 4178 return true; 4179 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4180 case NL80211_IFTYPE_AP_VLAN: 4181 case NL80211_IFTYPE_AP: 4182 if (!bssid) 4183 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4184 4185 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 4186 /* 4187 * Accept public action frames even when the 4188 * BSSID doesn't match, this is used for P2P 4189 * and location updates. Note that mac80211 4190 * itself never looks at these frames. 4191 */ 4192 if (!multicast && 4193 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4194 return false; 4195 if (ieee80211_is_public_action(hdr, skb->len)) 4196 return true; 4197 return ieee80211_is_beacon(hdr->frame_control); 4198 } 4199 4200 if (!ieee80211_has_tods(hdr->frame_control)) { 4201 /* ignore data frames to TDLS-peers */ 4202 if (ieee80211_is_data(hdr->frame_control)) 4203 return false; 4204 /* ignore action frames to TDLS-peers */ 4205 if (ieee80211_is_action(hdr->frame_control) && 4206 !is_broadcast_ether_addr(bssid) && 4207 !ether_addr_equal(bssid, hdr->addr1)) 4208 return false; 4209 } 4210 4211 /* 4212 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4213 * the BSSID - we've checked that already but may have accepted 4214 * the wildcard (ff:ff:ff:ff:ff:ff). 4215 * 4216 * It also says: 4217 * The BSSID of the Data frame is determined as follows: 4218 * a) If the STA is contained within an AP or is associated 4219 * with an AP, the BSSID is the address currently in use 4220 * by the STA contained in the AP. 4221 * 4222 * So we should not accept data frames with an address that's 4223 * multicast. 4224 * 4225 * Accepting it also opens a security problem because stations 4226 * could encrypt it with the GTK and inject traffic that way. 4227 */ 4228 if (ieee80211_is_data(hdr->frame_control) && multicast) 4229 return false; 4230 4231 return true; 4232 case NL80211_IFTYPE_P2P_DEVICE: 4233 return ieee80211_is_public_action(hdr, skb->len) || 4234 ieee80211_is_probe_req(hdr->frame_control) || 4235 ieee80211_is_probe_resp(hdr->frame_control) || 4236 ieee80211_is_beacon(hdr->frame_control); 4237 case NL80211_IFTYPE_NAN: 4238 /* Currently no frames on NAN interface are allowed */ 4239 return false; 4240 default: 4241 break; 4242 } 4243 4244 WARN_ON_ONCE(1); 4245 return false; 4246 } 4247 4248 void ieee80211_check_fast_rx(struct sta_info *sta) 4249 { 4250 struct ieee80211_sub_if_data *sdata = sta->sdata; 4251 struct ieee80211_local *local = sdata->local; 4252 struct ieee80211_key *key; 4253 struct ieee80211_fast_rx fastrx = { 4254 .dev = sdata->dev, 4255 .vif_type = sdata->vif.type, 4256 .control_port_protocol = sdata->control_port_protocol, 4257 }, *old, *new = NULL; 4258 bool set_offload = false; 4259 bool assign = false; 4260 bool offload; 4261 4262 /* use sparse to check that we don't return without updating */ 4263 __acquire(check_fast_rx); 4264 4265 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4266 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4267 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4268 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4269 4270 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4271 4272 /* fast-rx doesn't do reordering */ 4273 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4274 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4275 goto clear; 4276 4277 switch (sdata->vif.type) { 4278 case NL80211_IFTYPE_STATION: 4279 if (sta->sta.tdls) { 4280 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4281 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4282 fastrx.expected_ds_bits = 0; 4283 } else { 4284 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4285 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4286 fastrx.expected_ds_bits = 4287 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4288 } 4289 4290 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4291 fastrx.expected_ds_bits |= 4292 cpu_to_le16(IEEE80211_FCTL_TODS); 4293 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4294 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4295 } 4296 4297 if (!sdata->u.mgd.powersave) 4298 break; 4299 4300 /* software powersave is a huge mess, avoid all of it */ 4301 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4302 goto clear; 4303 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4304 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4305 goto clear; 4306 break; 4307 case NL80211_IFTYPE_AP_VLAN: 4308 case NL80211_IFTYPE_AP: 4309 /* parallel-rx requires this, at least with calls to 4310 * ieee80211_sta_ps_transition() 4311 */ 4312 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4313 goto clear; 4314 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4315 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4316 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4317 4318 fastrx.internal_forward = 4319 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4320 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4321 !sdata->u.vlan.sta); 4322 4323 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4324 sdata->u.vlan.sta) { 4325 fastrx.expected_ds_bits |= 4326 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4327 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4328 fastrx.internal_forward = 0; 4329 } 4330 4331 break; 4332 default: 4333 goto clear; 4334 } 4335 4336 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4337 goto clear; 4338 4339 rcu_read_lock(); 4340 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4341 if (!key) 4342 key = rcu_dereference(sdata->default_unicast_key); 4343 if (key) { 4344 switch (key->conf.cipher) { 4345 case WLAN_CIPHER_SUITE_TKIP: 4346 /* we don't want to deal with MMIC in fast-rx */ 4347 goto clear_rcu; 4348 case WLAN_CIPHER_SUITE_CCMP: 4349 case WLAN_CIPHER_SUITE_CCMP_256: 4350 case WLAN_CIPHER_SUITE_GCMP: 4351 case WLAN_CIPHER_SUITE_GCMP_256: 4352 break; 4353 default: 4354 /* We also don't want to deal with 4355 * WEP or cipher scheme. 4356 */ 4357 goto clear_rcu; 4358 } 4359 4360 fastrx.key = true; 4361 fastrx.icv_len = key->conf.icv_len; 4362 } 4363 4364 assign = true; 4365 clear_rcu: 4366 rcu_read_unlock(); 4367 clear: 4368 __release(check_fast_rx); 4369 4370 if (assign) 4371 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4372 4373 offload = assign && 4374 (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED); 4375 4376 if (offload) 4377 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4378 else 4379 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4380 4381 if (set_offload) 4382 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4383 4384 spin_lock_bh(&sta->lock); 4385 old = rcu_dereference_protected(sta->fast_rx, true); 4386 rcu_assign_pointer(sta->fast_rx, new); 4387 spin_unlock_bh(&sta->lock); 4388 4389 if (old) 4390 kfree_rcu(old, rcu_head); 4391 } 4392 4393 void ieee80211_clear_fast_rx(struct sta_info *sta) 4394 { 4395 struct ieee80211_fast_rx *old; 4396 4397 spin_lock_bh(&sta->lock); 4398 old = rcu_dereference_protected(sta->fast_rx, true); 4399 RCU_INIT_POINTER(sta->fast_rx, NULL); 4400 spin_unlock_bh(&sta->lock); 4401 4402 if (old) 4403 kfree_rcu(old, rcu_head); 4404 } 4405 4406 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4407 { 4408 struct ieee80211_local *local = sdata->local; 4409 struct sta_info *sta; 4410 4411 lockdep_assert_held(&local->sta_mtx); 4412 4413 list_for_each_entry(sta, &local->sta_list, list) { 4414 if (sdata != sta->sdata && 4415 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4416 continue; 4417 ieee80211_check_fast_rx(sta); 4418 } 4419 } 4420 4421 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4422 { 4423 struct ieee80211_local *local = sdata->local; 4424 4425 mutex_lock(&local->sta_mtx); 4426 __ieee80211_check_fast_rx_iface(sdata); 4427 mutex_unlock(&local->sta_mtx); 4428 } 4429 4430 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4431 struct ieee80211_fast_rx *fast_rx, 4432 int orig_len) 4433 { 4434 struct ieee80211_sta_rx_stats *stats; 4435 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4436 struct sta_info *sta = rx->sta; 4437 struct sk_buff *skb = rx->skb; 4438 void *sa = skb->data + ETH_ALEN; 4439 void *da = skb->data; 4440 4441 stats = &sta->rx_stats; 4442 if (fast_rx->uses_rss) 4443 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4444 4445 /* statistics part of ieee80211_rx_h_sta_process() */ 4446 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4447 stats->last_signal = status->signal; 4448 if (!fast_rx->uses_rss) 4449 ewma_signal_add(&sta->rx_stats_avg.signal, 4450 -status->signal); 4451 } 4452 4453 if (status->chains) { 4454 int i; 4455 4456 stats->chains = status->chains; 4457 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4458 int signal = status->chain_signal[i]; 4459 4460 if (!(status->chains & BIT(i))) 4461 continue; 4462 4463 stats->chain_signal_last[i] = signal; 4464 if (!fast_rx->uses_rss) 4465 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4466 -signal); 4467 } 4468 } 4469 /* end of statistics */ 4470 4471 stats->last_rx = jiffies; 4472 stats->last_rate = sta_stats_encode_rate(status); 4473 4474 stats->fragments++; 4475 stats->packets++; 4476 4477 skb->dev = fast_rx->dev; 4478 4479 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4480 4481 /* The seqno index has the same property as needed 4482 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4483 * for non-QoS-data frames. Here we know it's a data 4484 * frame, so count MSDUs. 4485 */ 4486 u64_stats_update_begin(&stats->syncp); 4487 stats->msdu[rx->seqno_idx]++; 4488 stats->bytes += orig_len; 4489 u64_stats_update_end(&stats->syncp); 4490 4491 if (fast_rx->internal_forward) { 4492 struct sk_buff *xmit_skb = NULL; 4493 if (is_multicast_ether_addr(da)) { 4494 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4495 } else if (!ether_addr_equal(da, sa) && 4496 sta_info_get(rx->sdata, da)) { 4497 xmit_skb = skb; 4498 skb = NULL; 4499 } 4500 4501 if (xmit_skb) { 4502 /* 4503 * Send to wireless media and increase priority by 256 4504 * to keep the received priority instead of 4505 * reclassifying the frame (see cfg80211_classify8021d). 4506 */ 4507 xmit_skb->priority += 256; 4508 xmit_skb->protocol = htons(ETH_P_802_3); 4509 skb_reset_network_header(xmit_skb); 4510 skb_reset_mac_header(xmit_skb); 4511 dev_queue_xmit(xmit_skb); 4512 } 4513 4514 if (!skb) 4515 return; 4516 } 4517 4518 /* deliver to local stack */ 4519 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4520 memset(skb->cb, 0, sizeof(skb->cb)); 4521 if (rx->list) 4522 list_add_tail(&skb->list, rx->list); 4523 else 4524 netif_receive_skb(skb); 4525 4526 } 4527 4528 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4529 struct ieee80211_fast_rx *fast_rx) 4530 { 4531 struct sk_buff *skb = rx->skb; 4532 struct ieee80211_hdr *hdr = (void *)skb->data; 4533 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4534 struct sta_info *sta = rx->sta; 4535 int orig_len = skb->len; 4536 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4537 int snap_offs = hdrlen; 4538 struct { 4539 u8 snap[sizeof(rfc1042_header)]; 4540 __be16 proto; 4541 } *payload __aligned(2); 4542 struct { 4543 u8 da[ETH_ALEN]; 4544 u8 sa[ETH_ALEN]; 4545 } addrs __aligned(2); 4546 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4547 4548 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4549 * to a common data structure; drivers can implement that per queue 4550 * but we don't have that information in mac80211 4551 */ 4552 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4553 return false; 4554 4555 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4556 4557 /* If using encryption, we also need to have: 4558 * - PN_VALIDATED: similar, but the implementation is tricky 4559 * - DECRYPTED: necessary for PN_VALIDATED 4560 */ 4561 if (fast_rx->key && 4562 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4563 return false; 4564 4565 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4566 return false; 4567 4568 if (unlikely(ieee80211_is_frag(hdr))) 4569 return false; 4570 4571 /* Since our interface address cannot be multicast, this 4572 * implicitly also rejects multicast frames without the 4573 * explicit check. 4574 * 4575 * We shouldn't get any *data* frames not addressed to us 4576 * (AP mode will accept multicast *management* frames), but 4577 * punting here will make it go through the full checks in 4578 * ieee80211_accept_frame(). 4579 */ 4580 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4581 return false; 4582 4583 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4584 IEEE80211_FCTL_TODS)) != 4585 fast_rx->expected_ds_bits) 4586 return false; 4587 4588 /* assign the key to drop unencrypted frames (later) 4589 * and strip the IV/MIC if necessary 4590 */ 4591 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4592 /* GCMP header length is the same */ 4593 snap_offs += IEEE80211_CCMP_HDR_LEN; 4594 } 4595 4596 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4597 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4598 goto drop; 4599 4600 payload = (void *)(skb->data + snap_offs); 4601 4602 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4603 return false; 4604 4605 /* Don't handle these here since they require special code. 4606 * Accept AARP and IPX even though they should come with a 4607 * bridge-tunnel header - but if we get them this way then 4608 * there's little point in discarding them. 4609 */ 4610 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4611 payload->proto == fast_rx->control_port_protocol)) 4612 return false; 4613 } 4614 4615 /* after this point, don't punt to the slowpath! */ 4616 4617 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4618 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4619 goto drop; 4620 4621 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4622 goto drop; 4623 4624 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4625 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4626 RX_QUEUED) 4627 goto drop; 4628 4629 return true; 4630 } 4631 4632 /* do the header conversion - first grab the addresses */ 4633 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4634 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4635 /* remove the SNAP but leave the ethertype */ 4636 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4637 /* push the addresses in front */ 4638 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4639 4640 ieee80211_rx_8023(rx, fast_rx, orig_len); 4641 4642 return true; 4643 drop: 4644 dev_kfree_skb(skb); 4645 if (fast_rx->uses_rss) 4646 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4647 4648 stats->dropped++; 4649 return true; 4650 } 4651 4652 /* 4653 * This function returns whether or not the SKB 4654 * was destined for RX processing or not, which, 4655 * if consume is true, is equivalent to whether 4656 * or not the skb was consumed. 4657 */ 4658 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4659 struct sk_buff *skb, bool consume) 4660 { 4661 struct ieee80211_local *local = rx->local; 4662 struct ieee80211_sub_if_data *sdata = rx->sdata; 4663 4664 rx->skb = skb; 4665 4666 /* See if we can do fast-rx; if we have to copy we already lost, 4667 * so punt in that case. We should never have to deliver a data 4668 * frame to multiple interfaces anyway. 4669 * 4670 * We skip the ieee80211_accept_frame() call and do the necessary 4671 * checking inside ieee80211_invoke_fast_rx(). 4672 */ 4673 if (consume && rx->sta) { 4674 struct ieee80211_fast_rx *fast_rx; 4675 4676 fast_rx = rcu_dereference(rx->sta->fast_rx); 4677 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4678 return true; 4679 } 4680 4681 if (!ieee80211_accept_frame(rx)) 4682 return false; 4683 4684 if (!consume) { 4685 skb = skb_copy(skb, GFP_ATOMIC); 4686 if (!skb) { 4687 if (net_ratelimit()) 4688 wiphy_debug(local->hw.wiphy, 4689 "failed to copy skb for %s\n", 4690 sdata->name); 4691 return true; 4692 } 4693 4694 rx->skb = skb; 4695 } 4696 4697 ieee80211_invoke_rx_handlers(rx); 4698 return true; 4699 } 4700 4701 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 4702 struct ieee80211_sta *pubsta, 4703 struct sk_buff *skb, 4704 struct list_head *list) 4705 { 4706 struct ieee80211_local *local = hw_to_local(hw); 4707 struct ieee80211_fast_rx *fast_rx; 4708 struct ieee80211_rx_data rx; 4709 4710 memset(&rx, 0, sizeof(rx)); 4711 rx.skb = skb; 4712 rx.local = local; 4713 rx.list = list; 4714 4715 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4716 4717 /* drop frame if too short for header */ 4718 if (skb->len < sizeof(struct ethhdr)) 4719 goto drop; 4720 4721 if (!pubsta) 4722 goto drop; 4723 4724 rx.sta = container_of(pubsta, struct sta_info, sta); 4725 rx.sdata = rx.sta->sdata; 4726 4727 fast_rx = rcu_dereference(rx.sta->fast_rx); 4728 if (!fast_rx) 4729 goto drop; 4730 4731 ieee80211_rx_8023(&rx, fast_rx, skb->len); 4732 return; 4733 4734 drop: 4735 dev_kfree_skb(skb); 4736 } 4737 4738 /* 4739 * This is the actual Rx frames handler. as it belongs to Rx path it must 4740 * be called with rcu_read_lock protection. 4741 */ 4742 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4743 struct ieee80211_sta *pubsta, 4744 struct sk_buff *skb, 4745 struct list_head *list) 4746 { 4747 struct ieee80211_local *local = hw_to_local(hw); 4748 struct ieee80211_sub_if_data *sdata; 4749 struct ieee80211_hdr *hdr; 4750 __le16 fc; 4751 struct ieee80211_rx_data rx; 4752 struct ieee80211_sub_if_data *prev; 4753 struct rhlist_head *tmp; 4754 int err = 0; 4755 4756 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4757 memset(&rx, 0, sizeof(rx)); 4758 rx.skb = skb; 4759 rx.local = local; 4760 rx.list = list; 4761 4762 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4763 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4764 4765 if (ieee80211_is_mgmt(fc)) { 4766 /* drop frame if too short for header */ 4767 if (skb->len < ieee80211_hdrlen(fc)) 4768 err = -ENOBUFS; 4769 else 4770 err = skb_linearize(skb); 4771 } else { 4772 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4773 } 4774 4775 if (err) { 4776 dev_kfree_skb(skb); 4777 return; 4778 } 4779 4780 hdr = (struct ieee80211_hdr *)skb->data; 4781 ieee80211_parse_qos(&rx); 4782 ieee80211_verify_alignment(&rx); 4783 4784 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4785 ieee80211_is_beacon(hdr->frame_control) || 4786 ieee80211_is_s1g_beacon(hdr->frame_control))) 4787 ieee80211_scan_rx(local, skb); 4788 4789 if (ieee80211_is_data(fc)) { 4790 struct sta_info *sta, *prev_sta; 4791 4792 if (pubsta) { 4793 rx.sta = container_of(pubsta, struct sta_info, sta); 4794 rx.sdata = rx.sta->sdata; 4795 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4796 return; 4797 goto out; 4798 } 4799 4800 prev_sta = NULL; 4801 4802 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4803 if (!prev_sta) { 4804 prev_sta = sta; 4805 continue; 4806 } 4807 4808 rx.sta = prev_sta; 4809 rx.sdata = prev_sta->sdata; 4810 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4811 4812 prev_sta = sta; 4813 } 4814 4815 if (prev_sta) { 4816 rx.sta = prev_sta; 4817 rx.sdata = prev_sta->sdata; 4818 4819 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4820 return; 4821 goto out; 4822 } 4823 } 4824 4825 prev = NULL; 4826 4827 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4828 if (!ieee80211_sdata_running(sdata)) 4829 continue; 4830 4831 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4832 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4833 continue; 4834 4835 /* 4836 * frame is destined for this interface, but if it's 4837 * not also for the previous one we handle that after 4838 * the loop to avoid copying the SKB once too much 4839 */ 4840 4841 if (!prev) { 4842 prev = sdata; 4843 continue; 4844 } 4845 4846 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4847 rx.sdata = prev; 4848 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4849 4850 prev = sdata; 4851 } 4852 4853 if (prev) { 4854 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4855 rx.sdata = prev; 4856 4857 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4858 return; 4859 } 4860 4861 out: 4862 dev_kfree_skb(skb); 4863 } 4864 4865 /* 4866 * This is the receive path handler. It is called by a low level driver when an 4867 * 802.11 MPDU is received from the hardware. 4868 */ 4869 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4870 struct sk_buff *skb, struct list_head *list) 4871 { 4872 struct ieee80211_local *local = hw_to_local(hw); 4873 struct ieee80211_rate *rate = NULL; 4874 struct ieee80211_supported_band *sband; 4875 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4876 4877 WARN_ON_ONCE(softirq_count() == 0); 4878 4879 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4880 goto drop; 4881 4882 sband = local->hw.wiphy->bands[status->band]; 4883 if (WARN_ON(!sband)) 4884 goto drop; 4885 4886 /* 4887 * If we're suspending, it is possible although not too likely 4888 * that we'd be receiving frames after having already partially 4889 * quiesced the stack. We can't process such frames then since 4890 * that might, for example, cause stations to be added or other 4891 * driver callbacks be invoked. 4892 */ 4893 if (unlikely(local->quiescing || local->suspended)) 4894 goto drop; 4895 4896 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4897 if (unlikely(local->in_reconfig)) 4898 goto drop; 4899 4900 /* 4901 * The same happens when we're not even started, 4902 * but that's worth a warning. 4903 */ 4904 if (WARN_ON(!local->started)) 4905 goto drop; 4906 4907 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4908 /* 4909 * Validate the rate, unless a PLCP error means that 4910 * we probably can't have a valid rate here anyway. 4911 */ 4912 4913 switch (status->encoding) { 4914 case RX_ENC_HT: 4915 /* 4916 * rate_idx is MCS index, which can be [0-76] 4917 * as documented on: 4918 * 4919 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 4920 * 4921 * Anything else would be some sort of driver or 4922 * hardware error. The driver should catch hardware 4923 * errors. 4924 */ 4925 if (WARN(status->rate_idx > 76, 4926 "Rate marked as an HT rate but passed " 4927 "status->rate_idx is not " 4928 "an MCS index [0-76]: %d (0x%02x)\n", 4929 status->rate_idx, 4930 status->rate_idx)) 4931 goto drop; 4932 break; 4933 case RX_ENC_VHT: 4934 if (WARN_ONCE(status->rate_idx > 9 || 4935 !status->nss || 4936 status->nss > 8, 4937 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4938 status->rate_idx, status->nss)) 4939 goto drop; 4940 break; 4941 case RX_ENC_HE: 4942 if (WARN_ONCE(status->rate_idx > 11 || 4943 !status->nss || 4944 status->nss > 8, 4945 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4946 status->rate_idx, status->nss)) 4947 goto drop; 4948 break; 4949 default: 4950 WARN_ON_ONCE(1); 4951 fallthrough; 4952 case RX_ENC_LEGACY: 4953 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4954 goto drop; 4955 rate = &sband->bitrates[status->rate_idx]; 4956 } 4957 } 4958 4959 status->rx_flags = 0; 4960 4961 kcov_remote_start_common(skb_get_kcov_handle(skb)); 4962 4963 /* 4964 * Frames with failed FCS/PLCP checksum are not returned, 4965 * all other frames are returned without radiotap header 4966 * if it was previously present. 4967 * Also, frames with less than 16 bytes are dropped. 4968 */ 4969 if (!(status->flag & RX_FLAG_8023)) 4970 skb = ieee80211_rx_monitor(local, skb, rate); 4971 if (skb) { 4972 ieee80211_tpt_led_trig_rx(local, 4973 ((struct ieee80211_hdr *)skb->data)->frame_control, 4974 skb->len); 4975 4976 if (status->flag & RX_FLAG_8023) 4977 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 4978 else 4979 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 4980 } 4981 4982 kcov_remote_stop(); 4983 return; 4984 drop: 4985 kfree_skb(skb); 4986 } 4987 EXPORT_SYMBOL(ieee80211_rx_list); 4988 4989 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4990 struct sk_buff *skb, struct napi_struct *napi) 4991 { 4992 struct sk_buff *tmp; 4993 LIST_HEAD(list); 4994 4995 4996 /* 4997 * key references and virtual interfaces are protected using RCU 4998 * and this requires that we are in a read-side RCU section during 4999 * receive processing 5000 */ 5001 rcu_read_lock(); 5002 ieee80211_rx_list(hw, pubsta, skb, &list); 5003 rcu_read_unlock(); 5004 5005 if (!napi) { 5006 netif_receive_skb_list(&list); 5007 return; 5008 } 5009 5010 list_for_each_entry_safe(skb, tmp, &list, list) { 5011 skb_list_del_init(skb); 5012 napi_gro_receive(napi, skb); 5013 } 5014 } 5015 EXPORT_SYMBOL(ieee80211_rx_napi); 5016 5017 /* This is a version of the rx handler that can be called from hard irq 5018 * context. Post the skb on the queue and schedule the tasklet */ 5019 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5020 { 5021 struct ieee80211_local *local = hw_to_local(hw); 5022 5023 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5024 5025 skb->pkt_type = IEEE80211_RX_MSG; 5026 skb_queue_tail(&local->skb_queue, skb); 5027 tasklet_schedule(&local->tasklet); 5028 } 5029 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5030