1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 Intel Corporation 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 */ 14 15 #include <linux/jiffies.h> 16 #include <linux/slab.h> 17 #include <linux/kernel.h> 18 #include <linux/skbuff.h> 19 #include <linux/netdevice.h> 20 #include <linux/etherdevice.h> 21 #include <linux/rcupdate.h> 22 #include <linux/export.h> 23 #include <linux/bitops.h> 24 #include <net/mac80211.h> 25 #include <net/ieee80211_radiotap.h> 26 #include <asm/unaligned.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "led.h" 31 #include "mesh.h" 32 #include "wep.h" 33 #include "wpa.h" 34 #include "tkip.h" 35 #include "wme.h" 36 #include "rate.h" 37 38 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 39 { 40 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 41 42 u64_stats_update_begin(&tstats->syncp); 43 tstats->rx_packets++; 44 tstats->rx_bytes += len; 45 u64_stats_update_end(&tstats->syncp); 46 } 47 48 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_mgmt(fc)) { 68 if (len < 24) /* drop incorrect hdr len (mgmt) */ 69 return NULL; 70 return hdr->addr3; 71 } 72 73 if (ieee80211_is_ctl(fc)) { 74 if (ieee80211_is_pspoll(fc)) 75 return hdr->addr1; 76 77 if (ieee80211_is_back_req(fc)) { 78 switch (type) { 79 case NL80211_IFTYPE_STATION: 80 return hdr->addr2; 81 case NL80211_IFTYPE_AP: 82 case NL80211_IFTYPE_AP_VLAN: 83 return hdr->addr1; 84 default: 85 break; /* fall through to the return */ 86 } 87 } 88 } 89 90 return NULL; 91 } 92 93 /* 94 * monitor mode reception 95 * 96 * This function cleans up the SKB, i.e. it removes all the stuff 97 * only useful for monitoring. 98 */ 99 static void remove_monitor_info(struct sk_buff *skb, 100 unsigned int present_fcs_len, 101 unsigned int rtap_space) 102 { 103 if (present_fcs_len) 104 __pskb_trim(skb, skb->len - present_fcs_len); 105 __pskb_pull(skb, rtap_space); 106 } 107 108 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 109 unsigned int rtap_space) 110 { 111 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 112 struct ieee80211_hdr *hdr; 113 114 hdr = (void *)(skb->data + rtap_space); 115 116 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 117 RX_FLAG_FAILED_PLCP_CRC | 118 RX_FLAG_ONLY_MONITOR)) 119 return true; 120 121 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 122 return true; 123 124 if (ieee80211_is_ctl(hdr->frame_control) && 125 !ieee80211_is_pspoll(hdr->frame_control) && 126 !ieee80211_is_back_req(hdr->frame_control)) 127 return true; 128 129 return false; 130 } 131 132 static int 133 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 134 struct ieee80211_rx_status *status, 135 struct sk_buff *skb) 136 { 137 int len; 138 139 /* always present fields */ 140 len = sizeof(struct ieee80211_radiotap_header) + 8; 141 142 /* allocate extra bitmaps */ 143 if (status->chains) 144 len += 4 * hweight8(status->chains); 145 146 if (ieee80211_have_rx_timestamp(status)) { 147 len = ALIGN(len, 8); 148 len += 8; 149 } 150 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 151 len += 1; 152 153 /* antenna field, if we don't have per-chain info */ 154 if (!status->chains) 155 len += 1; 156 157 /* padding for RX_FLAGS if necessary */ 158 len = ALIGN(len, 2); 159 160 if (status->encoding == RX_ENC_HT) /* HT info */ 161 len += 3; 162 163 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 164 len = ALIGN(len, 4); 165 len += 8; 166 } 167 168 if (status->encoding == RX_ENC_VHT) { 169 len = ALIGN(len, 2); 170 len += 12; 171 } 172 173 if (local->hw.radiotap_timestamp.units_pos >= 0) { 174 len = ALIGN(len, 8); 175 len += 12; 176 } 177 178 if (status->encoding == RX_ENC_HE && 179 status->flag & RX_FLAG_RADIOTAP_HE) { 180 len = ALIGN(len, 2); 181 len += 12; 182 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 183 } 184 185 if (status->encoding == RX_ENC_HE && 186 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 187 len = ALIGN(len, 2); 188 len += 12; 189 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 190 } 191 192 if (status->chains) { 193 /* antenna and antenna signal fields */ 194 len += 2 * hweight8(status->chains); 195 } 196 197 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 198 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 199 200 /* vendor presence bitmap */ 201 len += 4; 202 /* alignment for fixed 6-byte vendor data header */ 203 len = ALIGN(len, 2); 204 /* vendor data header */ 205 len += 6; 206 if (WARN_ON(rtap->align == 0)) 207 rtap->align = 1; 208 len = ALIGN(len, rtap->align); 209 len += rtap->len + rtap->pad; 210 } 211 212 return len; 213 } 214 215 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 216 struct sk_buff *skb, 217 int rtap_space) 218 { 219 struct { 220 struct ieee80211_hdr_3addr hdr; 221 u8 category; 222 u8 action_code; 223 } __packed action; 224 225 if (!sdata) 226 return; 227 228 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 229 230 if (skb->len < rtap_space + sizeof(action) + 231 VHT_MUMIMO_GROUPS_DATA_LEN) 232 return; 233 234 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 235 return; 236 237 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 238 239 if (!ieee80211_is_action(action.hdr.frame_control)) 240 return; 241 242 if (action.category != WLAN_CATEGORY_VHT) 243 return; 244 245 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 246 return; 247 248 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 249 return; 250 251 skb = skb_copy(skb, GFP_ATOMIC); 252 if (!skb) 253 return; 254 255 skb_queue_tail(&sdata->skb_queue, skb); 256 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 257 } 258 259 /* 260 * ieee80211_add_rx_radiotap_header - add radiotap header 261 * 262 * add a radiotap header containing all the fields which the hardware provided. 263 */ 264 static void 265 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 266 struct sk_buff *skb, 267 struct ieee80211_rate *rate, 268 int rtap_len, bool has_fcs) 269 { 270 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 271 struct ieee80211_radiotap_header *rthdr; 272 unsigned char *pos; 273 __le32 *it_present; 274 u32 it_present_val; 275 u16 rx_flags = 0; 276 u16 channel_flags = 0; 277 int mpdulen, chain; 278 unsigned long chains = status->chains; 279 struct ieee80211_vendor_radiotap rtap = {}; 280 struct ieee80211_radiotap_he he = {}; 281 struct ieee80211_radiotap_he_mu he_mu = {}; 282 283 if (status->flag & RX_FLAG_RADIOTAP_HE) { 284 he = *(struct ieee80211_radiotap_he *)skb->data; 285 skb_pull(skb, sizeof(he)); 286 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 287 } 288 289 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 290 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 291 skb_pull(skb, sizeof(he_mu)); 292 } 293 294 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 295 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 296 /* rtap.len and rtap.pad are undone immediately */ 297 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 298 } 299 300 mpdulen = skb->len; 301 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 302 mpdulen += FCS_LEN; 303 304 rthdr = skb_push(skb, rtap_len); 305 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 306 it_present = &rthdr->it_present; 307 308 /* radiotap header, set always present flags */ 309 rthdr->it_len = cpu_to_le16(rtap_len); 310 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 311 BIT(IEEE80211_RADIOTAP_CHANNEL) | 312 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 313 314 if (!status->chains) 315 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 316 317 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 318 it_present_val |= 319 BIT(IEEE80211_RADIOTAP_EXT) | 320 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 321 put_unaligned_le32(it_present_val, it_present); 322 it_present++; 323 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 324 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 325 } 326 327 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 328 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 329 BIT(IEEE80211_RADIOTAP_EXT); 330 put_unaligned_le32(it_present_val, it_present); 331 it_present++; 332 it_present_val = rtap.present; 333 } 334 335 put_unaligned_le32(it_present_val, it_present); 336 337 pos = (void *)(it_present + 1); 338 339 /* the order of the following fields is important */ 340 341 /* IEEE80211_RADIOTAP_TSFT */ 342 if (ieee80211_have_rx_timestamp(status)) { 343 /* padding */ 344 while ((pos - (u8 *)rthdr) & 7) 345 *pos++ = 0; 346 put_unaligned_le64( 347 ieee80211_calculate_rx_timestamp(local, status, 348 mpdulen, 0), 349 pos); 350 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 351 pos += 8; 352 } 353 354 /* IEEE80211_RADIOTAP_FLAGS */ 355 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 356 *pos |= IEEE80211_RADIOTAP_F_FCS; 357 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 358 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 359 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 360 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 361 pos++; 362 363 /* IEEE80211_RADIOTAP_RATE */ 364 if (!rate || status->encoding != RX_ENC_LEGACY) { 365 /* 366 * Without rate information don't add it. If we have, 367 * MCS information is a separate field in radiotap, 368 * added below. The byte here is needed as padding 369 * for the channel though, so initialise it to 0. 370 */ 371 *pos = 0; 372 } else { 373 int shift = 0; 374 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 375 if (status->bw == RATE_INFO_BW_10) 376 shift = 1; 377 else if (status->bw == RATE_INFO_BW_5) 378 shift = 2; 379 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 380 } 381 pos++; 382 383 /* IEEE80211_RADIOTAP_CHANNEL */ 384 put_unaligned_le16(status->freq, pos); 385 pos += 2; 386 if (status->bw == RATE_INFO_BW_10) 387 channel_flags |= IEEE80211_CHAN_HALF; 388 else if (status->bw == RATE_INFO_BW_5) 389 channel_flags |= IEEE80211_CHAN_QUARTER; 390 391 if (status->band == NL80211_BAND_5GHZ) 392 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 393 else if (status->encoding != RX_ENC_LEGACY) 394 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 395 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 396 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 397 else if (rate) 398 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 399 else 400 channel_flags |= IEEE80211_CHAN_2GHZ; 401 put_unaligned_le16(channel_flags, pos); 402 pos += 2; 403 404 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 405 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 406 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 407 *pos = status->signal; 408 rthdr->it_present |= 409 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 410 pos++; 411 } 412 413 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 414 415 if (!status->chains) { 416 /* IEEE80211_RADIOTAP_ANTENNA */ 417 *pos = status->antenna; 418 pos++; 419 } 420 421 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 422 423 /* IEEE80211_RADIOTAP_RX_FLAGS */ 424 /* ensure 2 byte alignment for the 2 byte field as required */ 425 if ((pos - (u8 *)rthdr) & 1) 426 *pos++ = 0; 427 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 428 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 429 put_unaligned_le16(rx_flags, pos); 430 pos += 2; 431 432 if (status->encoding == RX_ENC_HT) { 433 unsigned int stbc; 434 435 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 436 *pos++ = local->hw.radiotap_mcs_details; 437 *pos = 0; 438 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 439 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 440 if (status->bw == RATE_INFO_BW_40) 441 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 442 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 443 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 444 if (status->enc_flags & RX_ENC_FLAG_LDPC) 445 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 446 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 447 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 448 pos++; 449 *pos++ = status->rate_idx; 450 } 451 452 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 453 u16 flags = 0; 454 455 /* ensure 4 byte alignment */ 456 while ((pos - (u8 *)rthdr) & 3) 457 pos++; 458 rthdr->it_present |= 459 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 460 put_unaligned_le32(status->ampdu_reference, pos); 461 pos += 4; 462 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 463 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 464 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 465 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 466 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 467 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 468 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 469 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 470 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 471 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 472 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 473 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 474 put_unaligned_le16(flags, pos); 475 pos += 2; 476 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 477 *pos++ = status->ampdu_delimiter_crc; 478 else 479 *pos++ = 0; 480 *pos++ = 0; 481 } 482 483 if (status->encoding == RX_ENC_VHT) { 484 u16 known = local->hw.radiotap_vht_details; 485 486 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 487 put_unaligned_le16(known, pos); 488 pos += 2; 489 /* flags */ 490 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 491 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 492 /* in VHT, STBC is binary */ 493 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 494 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 495 if (status->enc_flags & RX_ENC_FLAG_BF) 496 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 497 pos++; 498 /* bandwidth */ 499 switch (status->bw) { 500 case RATE_INFO_BW_80: 501 *pos++ = 4; 502 break; 503 case RATE_INFO_BW_160: 504 *pos++ = 11; 505 break; 506 case RATE_INFO_BW_40: 507 *pos++ = 1; 508 break; 509 default: 510 *pos++ = 0; 511 } 512 /* MCS/NSS */ 513 *pos = (status->rate_idx << 4) | status->nss; 514 pos += 4; 515 /* coding field */ 516 if (status->enc_flags & RX_ENC_FLAG_LDPC) 517 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 518 pos++; 519 /* group ID */ 520 pos++; 521 /* partial_aid */ 522 pos += 2; 523 } 524 525 if (local->hw.radiotap_timestamp.units_pos >= 0) { 526 u16 accuracy = 0; 527 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 528 529 rthdr->it_present |= 530 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 531 532 /* ensure 8 byte alignment */ 533 while ((pos - (u8 *)rthdr) & 7) 534 pos++; 535 536 put_unaligned_le64(status->device_timestamp, pos); 537 pos += sizeof(u64); 538 539 if (local->hw.radiotap_timestamp.accuracy >= 0) { 540 accuracy = local->hw.radiotap_timestamp.accuracy; 541 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 542 } 543 put_unaligned_le16(accuracy, pos); 544 pos += sizeof(u16); 545 546 *pos++ = local->hw.radiotap_timestamp.units_pos; 547 *pos++ = flags; 548 } 549 550 if (status->encoding == RX_ENC_HE && 551 status->flag & RX_FLAG_RADIOTAP_HE) { 552 #define HE_PREP(f, val) cpu_to_le16(FIELD_PREP(IEEE80211_RADIOTAP_HE_##f, val)) 553 554 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 555 he.data6 |= HE_PREP(DATA6_NSTS, 556 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 557 status->enc_flags)); 558 he.data3 |= HE_PREP(DATA3_STBC, 1); 559 } else { 560 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 561 } 562 563 #define CHECK_GI(s) \ 564 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 565 (int)NL80211_RATE_INFO_HE_GI_##s) 566 567 CHECK_GI(0_8); 568 CHECK_GI(1_6); 569 CHECK_GI(3_2); 570 571 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 572 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 573 he.data3 |= HE_PREP(DATA3_CODING, 574 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 575 576 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 577 578 switch (status->bw) { 579 case RATE_INFO_BW_20: 580 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 581 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 582 break; 583 case RATE_INFO_BW_40: 584 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 585 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 586 break; 587 case RATE_INFO_BW_80: 588 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 589 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 590 break; 591 case RATE_INFO_BW_160: 592 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 593 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 594 break; 595 case RATE_INFO_BW_HE_RU: 596 #define CHECK_RU_ALLOC(s) \ 597 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 598 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 599 600 CHECK_RU_ALLOC(26); 601 CHECK_RU_ALLOC(52); 602 CHECK_RU_ALLOC(106); 603 CHECK_RU_ALLOC(242); 604 CHECK_RU_ALLOC(484); 605 CHECK_RU_ALLOC(996); 606 CHECK_RU_ALLOC(2x996); 607 608 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 609 status->he_ru + 4); 610 break; 611 default: 612 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 613 } 614 615 /* ensure 2 byte alignment */ 616 while ((pos - (u8 *)rthdr) & 1) 617 pos++; 618 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE); 619 memcpy(pos, &he, sizeof(he)); 620 pos += sizeof(he); 621 } 622 623 if (status->encoding == RX_ENC_HE && 624 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 625 /* ensure 2 byte alignment */ 626 while ((pos - (u8 *)rthdr) & 1) 627 pos++; 628 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU); 629 memcpy(pos, &he_mu, sizeof(he_mu)); 630 pos += sizeof(he_mu); 631 } 632 633 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 634 *pos++ = status->chain_signal[chain]; 635 *pos++ = chain; 636 } 637 638 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 639 /* ensure 2 byte alignment for the vendor field as required */ 640 if ((pos - (u8 *)rthdr) & 1) 641 *pos++ = 0; 642 *pos++ = rtap.oui[0]; 643 *pos++ = rtap.oui[1]; 644 *pos++ = rtap.oui[2]; 645 *pos++ = rtap.subns; 646 put_unaligned_le16(rtap.len, pos); 647 pos += 2; 648 /* align the actual payload as requested */ 649 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 650 *pos++ = 0; 651 /* data (and possible padding) already follows */ 652 } 653 } 654 655 static struct sk_buff * 656 ieee80211_make_monitor_skb(struct ieee80211_local *local, 657 struct sk_buff **origskb, 658 struct ieee80211_rate *rate, 659 int rtap_space, bool use_origskb) 660 { 661 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 662 int rt_hdrlen, needed_headroom; 663 struct sk_buff *skb; 664 665 /* room for the radiotap header based on driver features */ 666 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 667 needed_headroom = rt_hdrlen - rtap_space; 668 669 if (use_origskb) { 670 /* only need to expand headroom if necessary */ 671 skb = *origskb; 672 *origskb = NULL; 673 674 /* 675 * This shouldn't trigger often because most devices have an 676 * RX header they pull before we get here, and that should 677 * be big enough for our radiotap information. We should 678 * probably export the length to drivers so that we can have 679 * them allocate enough headroom to start with. 680 */ 681 if (skb_headroom(skb) < needed_headroom && 682 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 683 dev_kfree_skb(skb); 684 return NULL; 685 } 686 } else { 687 /* 688 * Need to make a copy and possibly remove radiotap header 689 * and FCS from the original. 690 */ 691 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 692 693 if (!skb) 694 return NULL; 695 } 696 697 /* prepend radiotap information */ 698 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 699 700 skb_reset_mac_header(skb); 701 skb->ip_summed = CHECKSUM_UNNECESSARY; 702 skb->pkt_type = PACKET_OTHERHOST; 703 skb->protocol = htons(ETH_P_802_2); 704 705 return skb; 706 } 707 708 /* 709 * This function copies a received frame to all monitor interfaces and 710 * returns a cleaned-up SKB that no longer includes the FCS nor the 711 * radiotap header the driver might have added. 712 */ 713 static struct sk_buff * 714 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 715 struct ieee80211_rate *rate) 716 { 717 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 718 struct ieee80211_sub_if_data *sdata; 719 struct sk_buff *monskb = NULL; 720 int present_fcs_len = 0; 721 unsigned int rtap_space = 0; 722 struct ieee80211_sub_if_data *monitor_sdata = 723 rcu_dereference(local->monitor_sdata); 724 bool only_monitor = false; 725 726 if (status->flag & RX_FLAG_RADIOTAP_HE) 727 rtap_space += sizeof(struct ieee80211_radiotap_he); 728 729 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 730 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 731 732 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 733 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 734 735 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 736 } 737 738 /* 739 * First, we may need to make a copy of the skb because 740 * (1) we need to modify it for radiotap (if not present), and 741 * (2) the other RX handlers will modify the skb we got. 742 * 743 * We don't need to, of course, if we aren't going to return 744 * the SKB because it has a bad FCS/PLCP checksum. 745 */ 746 747 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 748 if (unlikely(origskb->len <= FCS_LEN)) { 749 /* driver bug */ 750 WARN_ON(1); 751 dev_kfree_skb(origskb); 752 return NULL; 753 } 754 present_fcs_len = FCS_LEN; 755 } 756 757 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 758 if (!pskb_may_pull(origskb, 2 + rtap_space)) { 759 dev_kfree_skb(origskb); 760 return NULL; 761 } 762 763 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 764 765 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 766 if (only_monitor) { 767 dev_kfree_skb(origskb); 768 return NULL; 769 } 770 771 remove_monitor_info(origskb, present_fcs_len, rtap_space); 772 return origskb; 773 } 774 775 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 776 777 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 778 bool last_monitor = list_is_last(&sdata->u.mntr.list, 779 &local->mon_list); 780 781 if (!monskb) 782 monskb = ieee80211_make_monitor_skb(local, &origskb, 783 rate, rtap_space, 784 only_monitor && 785 last_monitor); 786 787 if (monskb) { 788 struct sk_buff *skb; 789 790 if (last_monitor) { 791 skb = monskb; 792 monskb = NULL; 793 } else { 794 skb = skb_clone(monskb, GFP_ATOMIC); 795 } 796 797 if (skb) { 798 skb->dev = sdata->dev; 799 ieee80211_rx_stats(skb->dev, skb->len); 800 netif_receive_skb(skb); 801 } 802 } 803 804 if (last_monitor) 805 break; 806 } 807 808 /* this happens if last_monitor was erroneously false */ 809 dev_kfree_skb(monskb); 810 811 /* ditto */ 812 if (!origskb) 813 return NULL; 814 815 remove_monitor_info(origskb, present_fcs_len, rtap_space); 816 return origskb; 817 } 818 819 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 820 { 821 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 822 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 823 int tid, seqno_idx, security_idx; 824 825 /* does the frame have a qos control field? */ 826 if (ieee80211_is_data_qos(hdr->frame_control)) { 827 u8 *qc = ieee80211_get_qos_ctl(hdr); 828 /* frame has qos control */ 829 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 830 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 831 status->rx_flags |= IEEE80211_RX_AMSDU; 832 833 seqno_idx = tid; 834 security_idx = tid; 835 } else { 836 /* 837 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 838 * 839 * Sequence numbers for management frames, QoS data 840 * frames with a broadcast/multicast address in the 841 * Address 1 field, and all non-QoS data frames sent 842 * by QoS STAs are assigned using an additional single 843 * modulo-4096 counter, [...] 844 * 845 * We also use that counter for non-QoS STAs. 846 */ 847 seqno_idx = IEEE80211_NUM_TIDS; 848 security_idx = 0; 849 if (ieee80211_is_mgmt(hdr->frame_control)) 850 security_idx = IEEE80211_NUM_TIDS; 851 tid = 0; 852 } 853 854 rx->seqno_idx = seqno_idx; 855 rx->security_idx = security_idx; 856 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 857 * For now, set skb->priority to 0 for other cases. */ 858 rx->skb->priority = (tid > 7) ? 0 : tid; 859 } 860 861 /** 862 * DOC: Packet alignment 863 * 864 * Drivers always need to pass packets that are aligned to two-byte boundaries 865 * to the stack. 866 * 867 * Additionally, should, if possible, align the payload data in a way that 868 * guarantees that the contained IP header is aligned to a four-byte 869 * boundary. In the case of regular frames, this simply means aligning the 870 * payload to a four-byte boundary (because either the IP header is directly 871 * contained, or IV/RFC1042 headers that have a length divisible by four are 872 * in front of it). If the payload data is not properly aligned and the 873 * architecture doesn't support efficient unaligned operations, mac80211 874 * will align the data. 875 * 876 * With A-MSDU frames, however, the payload data address must yield two modulo 877 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 878 * push the IP header further back to a multiple of four again. Thankfully, the 879 * specs were sane enough this time around to require padding each A-MSDU 880 * subframe to a length that is a multiple of four. 881 * 882 * Padding like Atheros hardware adds which is between the 802.11 header and 883 * the payload is not supported, the driver is required to move the 802.11 884 * header to be directly in front of the payload in that case. 885 */ 886 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 887 { 888 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 889 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 890 #endif 891 } 892 893 894 /* rx handlers */ 895 896 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 897 { 898 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 899 900 if (is_multicast_ether_addr(hdr->addr1)) 901 return 0; 902 903 return ieee80211_is_robust_mgmt_frame(skb); 904 } 905 906 907 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 908 { 909 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 910 911 if (!is_multicast_ether_addr(hdr->addr1)) 912 return 0; 913 914 return ieee80211_is_robust_mgmt_frame(skb); 915 } 916 917 918 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 919 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 920 { 921 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 922 struct ieee80211_mmie *mmie; 923 struct ieee80211_mmie_16 *mmie16; 924 925 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 926 return -1; 927 928 if (!ieee80211_is_robust_mgmt_frame(skb)) 929 return -1; /* not a robust management frame */ 930 931 mmie = (struct ieee80211_mmie *) 932 (skb->data + skb->len - sizeof(*mmie)); 933 if (mmie->element_id == WLAN_EID_MMIE && 934 mmie->length == sizeof(*mmie) - 2) 935 return le16_to_cpu(mmie->key_id); 936 937 mmie16 = (struct ieee80211_mmie_16 *) 938 (skb->data + skb->len - sizeof(*mmie16)); 939 if (skb->len >= 24 + sizeof(*mmie16) && 940 mmie16->element_id == WLAN_EID_MMIE && 941 mmie16->length == sizeof(*mmie16) - 2) 942 return le16_to_cpu(mmie16->key_id); 943 944 return -1; 945 } 946 947 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 948 struct sk_buff *skb) 949 { 950 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 951 __le16 fc; 952 int hdrlen; 953 u8 keyid; 954 955 fc = hdr->frame_control; 956 hdrlen = ieee80211_hdrlen(fc); 957 958 if (skb->len < hdrlen + cs->hdr_len) 959 return -EINVAL; 960 961 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 962 keyid &= cs->key_idx_mask; 963 keyid >>= cs->key_idx_shift; 964 965 return keyid; 966 } 967 968 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 969 { 970 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 971 char *dev_addr = rx->sdata->vif.addr; 972 973 if (ieee80211_is_data(hdr->frame_control)) { 974 if (is_multicast_ether_addr(hdr->addr1)) { 975 if (ieee80211_has_tods(hdr->frame_control) || 976 !ieee80211_has_fromds(hdr->frame_control)) 977 return RX_DROP_MONITOR; 978 if (ether_addr_equal(hdr->addr3, dev_addr)) 979 return RX_DROP_MONITOR; 980 } else { 981 if (!ieee80211_has_a4(hdr->frame_control)) 982 return RX_DROP_MONITOR; 983 if (ether_addr_equal(hdr->addr4, dev_addr)) 984 return RX_DROP_MONITOR; 985 } 986 } 987 988 /* If there is not an established peer link and this is not a peer link 989 * establisment frame, beacon or probe, drop the frame. 990 */ 991 992 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 993 struct ieee80211_mgmt *mgmt; 994 995 if (!ieee80211_is_mgmt(hdr->frame_control)) 996 return RX_DROP_MONITOR; 997 998 if (ieee80211_is_action(hdr->frame_control)) { 999 u8 category; 1000 1001 /* make sure category field is present */ 1002 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1003 return RX_DROP_MONITOR; 1004 1005 mgmt = (struct ieee80211_mgmt *)hdr; 1006 category = mgmt->u.action.category; 1007 if (category != WLAN_CATEGORY_MESH_ACTION && 1008 category != WLAN_CATEGORY_SELF_PROTECTED) 1009 return RX_DROP_MONITOR; 1010 return RX_CONTINUE; 1011 } 1012 1013 if (ieee80211_is_probe_req(hdr->frame_control) || 1014 ieee80211_is_probe_resp(hdr->frame_control) || 1015 ieee80211_is_beacon(hdr->frame_control) || 1016 ieee80211_is_auth(hdr->frame_control)) 1017 return RX_CONTINUE; 1018 1019 return RX_DROP_MONITOR; 1020 } 1021 1022 return RX_CONTINUE; 1023 } 1024 1025 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1026 int index) 1027 { 1028 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1029 struct sk_buff *tail = skb_peek_tail(frames); 1030 struct ieee80211_rx_status *status; 1031 1032 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1033 return true; 1034 1035 if (!tail) 1036 return false; 1037 1038 status = IEEE80211_SKB_RXCB(tail); 1039 if (status->flag & RX_FLAG_AMSDU_MORE) 1040 return false; 1041 1042 return true; 1043 } 1044 1045 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1046 struct tid_ampdu_rx *tid_agg_rx, 1047 int index, 1048 struct sk_buff_head *frames) 1049 { 1050 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1051 struct sk_buff *skb; 1052 struct ieee80211_rx_status *status; 1053 1054 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1055 1056 if (skb_queue_empty(skb_list)) 1057 goto no_frame; 1058 1059 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1060 __skb_queue_purge(skb_list); 1061 goto no_frame; 1062 } 1063 1064 /* release frames from the reorder ring buffer */ 1065 tid_agg_rx->stored_mpdu_num--; 1066 while ((skb = __skb_dequeue(skb_list))) { 1067 status = IEEE80211_SKB_RXCB(skb); 1068 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1069 __skb_queue_tail(frames, skb); 1070 } 1071 1072 no_frame: 1073 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1074 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1075 } 1076 1077 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1078 struct tid_ampdu_rx *tid_agg_rx, 1079 u16 head_seq_num, 1080 struct sk_buff_head *frames) 1081 { 1082 int index; 1083 1084 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1085 1086 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1087 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1088 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1089 frames); 1090 } 1091 } 1092 1093 /* 1094 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1095 * the skb was added to the buffer longer than this time ago, the earlier 1096 * frames that have not yet been received are assumed to be lost and the skb 1097 * can be released for processing. This may also release other skb's from the 1098 * reorder buffer if there are no additional gaps between the frames. 1099 * 1100 * Callers must hold tid_agg_rx->reorder_lock. 1101 */ 1102 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1103 1104 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1105 struct tid_ampdu_rx *tid_agg_rx, 1106 struct sk_buff_head *frames) 1107 { 1108 int index, i, j; 1109 1110 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1111 1112 /* release the buffer until next missing frame */ 1113 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1114 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1115 tid_agg_rx->stored_mpdu_num) { 1116 /* 1117 * No buffers ready to be released, but check whether any 1118 * frames in the reorder buffer have timed out. 1119 */ 1120 int skipped = 1; 1121 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1122 j = (j + 1) % tid_agg_rx->buf_size) { 1123 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1124 skipped++; 1125 continue; 1126 } 1127 if (skipped && 1128 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1129 HT_RX_REORDER_BUF_TIMEOUT)) 1130 goto set_release_timer; 1131 1132 /* don't leave incomplete A-MSDUs around */ 1133 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1134 i = (i + 1) % tid_agg_rx->buf_size) 1135 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1136 1137 ht_dbg_ratelimited(sdata, 1138 "release an RX reorder frame due to timeout on earlier frames\n"); 1139 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1140 frames); 1141 1142 /* 1143 * Increment the head seq# also for the skipped slots. 1144 */ 1145 tid_agg_rx->head_seq_num = 1146 (tid_agg_rx->head_seq_num + 1147 skipped) & IEEE80211_SN_MASK; 1148 skipped = 0; 1149 } 1150 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1151 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1152 frames); 1153 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1154 } 1155 1156 if (tid_agg_rx->stored_mpdu_num) { 1157 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1158 1159 for (; j != (index - 1) % tid_agg_rx->buf_size; 1160 j = (j + 1) % tid_agg_rx->buf_size) { 1161 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1162 break; 1163 } 1164 1165 set_release_timer: 1166 1167 if (!tid_agg_rx->removed) 1168 mod_timer(&tid_agg_rx->reorder_timer, 1169 tid_agg_rx->reorder_time[j] + 1 + 1170 HT_RX_REORDER_BUF_TIMEOUT); 1171 } else { 1172 del_timer(&tid_agg_rx->reorder_timer); 1173 } 1174 } 1175 1176 /* 1177 * As this function belongs to the RX path it must be under 1178 * rcu_read_lock protection. It returns false if the frame 1179 * can be processed immediately, true if it was consumed. 1180 */ 1181 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1182 struct tid_ampdu_rx *tid_agg_rx, 1183 struct sk_buff *skb, 1184 struct sk_buff_head *frames) 1185 { 1186 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1187 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1188 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1189 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1190 u16 head_seq_num, buf_size; 1191 int index; 1192 bool ret = true; 1193 1194 spin_lock(&tid_agg_rx->reorder_lock); 1195 1196 /* 1197 * Offloaded BA sessions have no known starting sequence number so pick 1198 * one from first Rxed frame for this tid after BA was started. 1199 */ 1200 if (unlikely(tid_agg_rx->auto_seq)) { 1201 tid_agg_rx->auto_seq = false; 1202 tid_agg_rx->ssn = mpdu_seq_num; 1203 tid_agg_rx->head_seq_num = mpdu_seq_num; 1204 } 1205 1206 buf_size = tid_agg_rx->buf_size; 1207 head_seq_num = tid_agg_rx->head_seq_num; 1208 1209 /* 1210 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1211 * be reordered. 1212 */ 1213 if (unlikely(!tid_agg_rx->started)) { 1214 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1215 ret = false; 1216 goto out; 1217 } 1218 tid_agg_rx->started = true; 1219 } 1220 1221 /* frame with out of date sequence number */ 1222 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1223 dev_kfree_skb(skb); 1224 goto out; 1225 } 1226 1227 /* 1228 * If frame the sequence number exceeds our buffering window 1229 * size release some previous frames to make room for this one. 1230 */ 1231 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1232 head_seq_num = ieee80211_sn_inc( 1233 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1234 /* release stored frames up to new head to stack */ 1235 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1236 head_seq_num, frames); 1237 } 1238 1239 /* Now the new frame is always in the range of the reordering buffer */ 1240 1241 index = mpdu_seq_num % tid_agg_rx->buf_size; 1242 1243 /* check if we already stored this frame */ 1244 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1245 dev_kfree_skb(skb); 1246 goto out; 1247 } 1248 1249 /* 1250 * If the current MPDU is in the right order and nothing else 1251 * is stored we can process it directly, no need to buffer it. 1252 * If it is first but there's something stored, we may be able 1253 * to release frames after this one. 1254 */ 1255 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1256 tid_agg_rx->stored_mpdu_num == 0) { 1257 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1258 tid_agg_rx->head_seq_num = 1259 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1260 ret = false; 1261 goto out; 1262 } 1263 1264 /* put the frame in the reordering buffer */ 1265 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1266 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1267 tid_agg_rx->reorder_time[index] = jiffies; 1268 tid_agg_rx->stored_mpdu_num++; 1269 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1270 } 1271 1272 out: 1273 spin_unlock(&tid_agg_rx->reorder_lock); 1274 return ret; 1275 } 1276 1277 /* 1278 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1279 * true if the MPDU was buffered, false if it should be processed. 1280 */ 1281 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1282 struct sk_buff_head *frames) 1283 { 1284 struct sk_buff *skb = rx->skb; 1285 struct ieee80211_local *local = rx->local; 1286 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1287 struct sta_info *sta = rx->sta; 1288 struct tid_ampdu_rx *tid_agg_rx; 1289 u16 sc; 1290 u8 tid, ack_policy; 1291 1292 if (!ieee80211_is_data_qos(hdr->frame_control) || 1293 is_multicast_ether_addr(hdr->addr1)) 1294 goto dont_reorder; 1295 1296 /* 1297 * filter the QoS data rx stream according to 1298 * STA/TID and check if this STA/TID is on aggregation 1299 */ 1300 1301 if (!sta) 1302 goto dont_reorder; 1303 1304 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1305 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1306 tid = ieee80211_get_tid(hdr); 1307 1308 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1309 if (!tid_agg_rx) { 1310 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1311 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1312 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1313 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1314 WLAN_BACK_RECIPIENT, 1315 WLAN_REASON_QSTA_REQUIRE_SETUP); 1316 goto dont_reorder; 1317 } 1318 1319 /* qos null data frames are excluded */ 1320 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1321 goto dont_reorder; 1322 1323 /* not part of a BA session */ 1324 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1325 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1326 goto dont_reorder; 1327 1328 /* new, potentially un-ordered, ampdu frame - process it */ 1329 1330 /* reset session timer */ 1331 if (tid_agg_rx->timeout) 1332 tid_agg_rx->last_rx = jiffies; 1333 1334 /* if this mpdu is fragmented - terminate rx aggregation session */ 1335 sc = le16_to_cpu(hdr->seq_ctrl); 1336 if (sc & IEEE80211_SCTL_FRAG) { 1337 skb_queue_tail(&rx->sdata->skb_queue, skb); 1338 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1339 return; 1340 } 1341 1342 /* 1343 * No locking needed -- we will only ever process one 1344 * RX packet at a time, and thus own tid_agg_rx. All 1345 * other code manipulating it needs to (and does) make 1346 * sure that we cannot get to it any more before doing 1347 * anything with it. 1348 */ 1349 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1350 frames)) 1351 return; 1352 1353 dont_reorder: 1354 __skb_queue_tail(frames, skb); 1355 } 1356 1357 static ieee80211_rx_result debug_noinline 1358 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1359 { 1360 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1361 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1362 1363 if (status->flag & RX_FLAG_DUP_VALIDATED) 1364 return RX_CONTINUE; 1365 1366 /* 1367 * Drop duplicate 802.11 retransmissions 1368 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1369 */ 1370 1371 if (rx->skb->len < 24) 1372 return RX_CONTINUE; 1373 1374 if (ieee80211_is_ctl(hdr->frame_control) || 1375 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1376 is_multicast_ether_addr(hdr->addr1)) 1377 return RX_CONTINUE; 1378 1379 if (!rx->sta) 1380 return RX_CONTINUE; 1381 1382 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1383 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1384 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1385 rx->sta->rx_stats.num_duplicates++; 1386 return RX_DROP_UNUSABLE; 1387 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1388 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1389 } 1390 1391 return RX_CONTINUE; 1392 } 1393 1394 static ieee80211_rx_result debug_noinline 1395 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1396 { 1397 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1398 1399 /* Drop disallowed frame classes based on STA auth/assoc state; 1400 * IEEE 802.11, Chap 5.5. 1401 * 1402 * mac80211 filters only based on association state, i.e. it drops 1403 * Class 3 frames from not associated stations. hostapd sends 1404 * deauth/disassoc frames when needed. In addition, hostapd is 1405 * responsible for filtering on both auth and assoc states. 1406 */ 1407 1408 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1409 return ieee80211_rx_mesh_check(rx); 1410 1411 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1412 ieee80211_is_pspoll(hdr->frame_control)) && 1413 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1414 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1415 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1416 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1417 /* 1418 * accept port control frames from the AP even when it's not 1419 * yet marked ASSOC to prevent a race where we don't set the 1420 * assoc bit quickly enough before it sends the first frame 1421 */ 1422 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1423 ieee80211_is_data_present(hdr->frame_control)) { 1424 unsigned int hdrlen; 1425 __be16 ethertype; 1426 1427 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1428 1429 if (rx->skb->len < hdrlen + 8) 1430 return RX_DROP_MONITOR; 1431 1432 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1433 if (ethertype == rx->sdata->control_port_protocol) 1434 return RX_CONTINUE; 1435 } 1436 1437 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1438 cfg80211_rx_spurious_frame(rx->sdata->dev, 1439 hdr->addr2, 1440 GFP_ATOMIC)) 1441 return RX_DROP_UNUSABLE; 1442 1443 return RX_DROP_MONITOR; 1444 } 1445 1446 return RX_CONTINUE; 1447 } 1448 1449 1450 static ieee80211_rx_result debug_noinline 1451 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1452 { 1453 struct ieee80211_local *local; 1454 struct ieee80211_hdr *hdr; 1455 struct sk_buff *skb; 1456 1457 local = rx->local; 1458 skb = rx->skb; 1459 hdr = (struct ieee80211_hdr *) skb->data; 1460 1461 if (!local->pspolling) 1462 return RX_CONTINUE; 1463 1464 if (!ieee80211_has_fromds(hdr->frame_control)) 1465 /* this is not from AP */ 1466 return RX_CONTINUE; 1467 1468 if (!ieee80211_is_data(hdr->frame_control)) 1469 return RX_CONTINUE; 1470 1471 if (!ieee80211_has_moredata(hdr->frame_control)) { 1472 /* AP has no more frames buffered for us */ 1473 local->pspolling = false; 1474 return RX_CONTINUE; 1475 } 1476 1477 /* more data bit is set, let's request a new frame from the AP */ 1478 ieee80211_send_pspoll(local, rx->sdata); 1479 1480 return RX_CONTINUE; 1481 } 1482 1483 static void sta_ps_start(struct sta_info *sta) 1484 { 1485 struct ieee80211_sub_if_data *sdata = sta->sdata; 1486 struct ieee80211_local *local = sdata->local; 1487 struct ps_data *ps; 1488 int tid; 1489 1490 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1491 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1492 ps = &sdata->bss->ps; 1493 else 1494 return; 1495 1496 atomic_inc(&ps->num_sta_ps); 1497 set_sta_flag(sta, WLAN_STA_PS_STA); 1498 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1499 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1500 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1501 sta->sta.addr, sta->sta.aid); 1502 1503 ieee80211_clear_fast_xmit(sta); 1504 1505 if (!sta->sta.txq[0]) 1506 return; 1507 1508 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1509 if (txq_has_queue(sta->sta.txq[tid])) 1510 set_bit(tid, &sta->txq_buffered_tids); 1511 else 1512 clear_bit(tid, &sta->txq_buffered_tids); 1513 } 1514 } 1515 1516 static void sta_ps_end(struct sta_info *sta) 1517 { 1518 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1519 sta->sta.addr, sta->sta.aid); 1520 1521 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1522 /* 1523 * Clear the flag only if the other one is still set 1524 * so that the TX path won't start TX'ing new frames 1525 * directly ... In the case that the driver flag isn't 1526 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1527 */ 1528 clear_sta_flag(sta, WLAN_STA_PS_STA); 1529 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1530 sta->sta.addr, sta->sta.aid); 1531 return; 1532 } 1533 1534 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1535 clear_sta_flag(sta, WLAN_STA_PS_STA); 1536 ieee80211_sta_ps_deliver_wakeup(sta); 1537 } 1538 1539 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1540 { 1541 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1542 bool in_ps; 1543 1544 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1545 1546 /* Don't let the same PS state be set twice */ 1547 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1548 if ((start && in_ps) || (!start && !in_ps)) 1549 return -EINVAL; 1550 1551 if (start) 1552 sta_ps_start(sta); 1553 else 1554 sta_ps_end(sta); 1555 1556 return 0; 1557 } 1558 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1559 1560 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1561 { 1562 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1563 1564 if (test_sta_flag(sta, WLAN_STA_SP)) 1565 return; 1566 1567 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1568 ieee80211_sta_ps_deliver_poll_response(sta); 1569 else 1570 set_sta_flag(sta, WLAN_STA_PSPOLL); 1571 } 1572 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1573 1574 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1575 { 1576 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1577 int ac = ieee80211_ac_from_tid(tid); 1578 1579 /* 1580 * If this AC is not trigger-enabled do nothing unless the 1581 * driver is calling us after it already checked. 1582 * 1583 * NB: This could/should check a separate bitmap of trigger- 1584 * enabled queues, but for now we only implement uAPSD w/o 1585 * TSPEC changes to the ACs, so they're always the same. 1586 */ 1587 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1588 tid != IEEE80211_NUM_TIDS) 1589 return; 1590 1591 /* if we are in a service period, do nothing */ 1592 if (test_sta_flag(sta, WLAN_STA_SP)) 1593 return; 1594 1595 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1596 ieee80211_sta_ps_deliver_uapsd(sta); 1597 else 1598 set_sta_flag(sta, WLAN_STA_UAPSD); 1599 } 1600 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1601 1602 static ieee80211_rx_result debug_noinline 1603 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1604 { 1605 struct ieee80211_sub_if_data *sdata = rx->sdata; 1606 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1607 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1608 1609 if (!rx->sta) 1610 return RX_CONTINUE; 1611 1612 if (sdata->vif.type != NL80211_IFTYPE_AP && 1613 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1614 return RX_CONTINUE; 1615 1616 /* 1617 * The device handles station powersave, so don't do anything about 1618 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1619 * it to mac80211 since they're handled.) 1620 */ 1621 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1622 return RX_CONTINUE; 1623 1624 /* 1625 * Don't do anything if the station isn't already asleep. In 1626 * the uAPSD case, the station will probably be marked asleep, 1627 * in the PS-Poll case the station must be confused ... 1628 */ 1629 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1630 return RX_CONTINUE; 1631 1632 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1633 ieee80211_sta_pspoll(&rx->sta->sta); 1634 1635 /* Free PS Poll skb here instead of returning RX_DROP that would 1636 * count as an dropped frame. */ 1637 dev_kfree_skb(rx->skb); 1638 1639 return RX_QUEUED; 1640 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1641 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1642 ieee80211_has_pm(hdr->frame_control) && 1643 (ieee80211_is_data_qos(hdr->frame_control) || 1644 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1645 u8 tid = ieee80211_get_tid(hdr); 1646 1647 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1648 } 1649 1650 return RX_CONTINUE; 1651 } 1652 1653 static ieee80211_rx_result debug_noinline 1654 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1655 { 1656 struct sta_info *sta = rx->sta; 1657 struct sk_buff *skb = rx->skb; 1658 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1659 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1660 int i; 1661 1662 if (!sta) 1663 return RX_CONTINUE; 1664 1665 /* 1666 * Update last_rx only for IBSS packets which are for the current 1667 * BSSID and for station already AUTHORIZED to avoid keeping the 1668 * current IBSS network alive in cases where other STAs start 1669 * using different BSSID. This will also give the station another 1670 * chance to restart the authentication/authorization in case 1671 * something went wrong the first time. 1672 */ 1673 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1674 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1675 NL80211_IFTYPE_ADHOC); 1676 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1677 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1678 sta->rx_stats.last_rx = jiffies; 1679 if (ieee80211_is_data(hdr->frame_control) && 1680 !is_multicast_ether_addr(hdr->addr1)) 1681 sta->rx_stats.last_rate = 1682 sta_stats_encode_rate(status); 1683 } 1684 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1685 sta->rx_stats.last_rx = jiffies; 1686 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1687 /* 1688 * Mesh beacons will update last_rx when if they are found to 1689 * match the current local configuration when processed. 1690 */ 1691 sta->rx_stats.last_rx = jiffies; 1692 if (ieee80211_is_data(hdr->frame_control)) 1693 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1694 } 1695 1696 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1697 ieee80211_sta_rx_notify(rx->sdata, hdr); 1698 1699 sta->rx_stats.fragments++; 1700 1701 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1702 sta->rx_stats.bytes += rx->skb->len; 1703 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1704 1705 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1706 sta->rx_stats.last_signal = status->signal; 1707 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1708 } 1709 1710 if (status->chains) { 1711 sta->rx_stats.chains = status->chains; 1712 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1713 int signal = status->chain_signal[i]; 1714 1715 if (!(status->chains & BIT(i))) 1716 continue; 1717 1718 sta->rx_stats.chain_signal_last[i] = signal; 1719 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1720 -signal); 1721 } 1722 } 1723 1724 /* 1725 * Change STA power saving mode only at the end of a frame 1726 * exchange sequence, and only for a data or management 1727 * frame as specified in IEEE 802.11-2016 11.2.3.2 1728 */ 1729 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1730 !ieee80211_has_morefrags(hdr->frame_control) && 1731 (ieee80211_is_mgmt(hdr->frame_control) || 1732 ieee80211_is_data(hdr->frame_control)) && 1733 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1734 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1735 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1736 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1737 if (!ieee80211_has_pm(hdr->frame_control)) 1738 sta_ps_end(sta); 1739 } else { 1740 if (ieee80211_has_pm(hdr->frame_control)) 1741 sta_ps_start(sta); 1742 } 1743 } 1744 1745 /* mesh power save support */ 1746 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1747 ieee80211_mps_rx_h_sta_process(sta, hdr); 1748 1749 /* 1750 * Drop (qos-)data::nullfunc frames silently, since they 1751 * are used only to control station power saving mode. 1752 */ 1753 if (ieee80211_is_nullfunc(hdr->frame_control) || 1754 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1755 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1756 1757 /* 1758 * If we receive a 4-addr nullfunc frame from a STA 1759 * that was not moved to a 4-addr STA vlan yet send 1760 * the event to userspace and for older hostapd drop 1761 * the frame to the monitor interface. 1762 */ 1763 if (ieee80211_has_a4(hdr->frame_control) && 1764 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1765 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1766 !rx->sdata->u.vlan.sta))) { 1767 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1768 cfg80211_rx_unexpected_4addr_frame( 1769 rx->sdata->dev, sta->sta.addr, 1770 GFP_ATOMIC); 1771 return RX_DROP_MONITOR; 1772 } 1773 /* 1774 * Update counter and free packet here to avoid 1775 * counting this as a dropped packed. 1776 */ 1777 sta->rx_stats.packets++; 1778 dev_kfree_skb(rx->skb); 1779 return RX_QUEUED; 1780 } 1781 1782 return RX_CONTINUE; 1783 } /* ieee80211_rx_h_sta_process */ 1784 1785 static ieee80211_rx_result debug_noinline 1786 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1787 { 1788 struct sk_buff *skb = rx->skb; 1789 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1790 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1791 int keyidx; 1792 int hdrlen; 1793 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1794 struct ieee80211_key *sta_ptk = NULL; 1795 int mmie_keyidx = -1; 1796 __le16 fc; 1797 const struct ieee80211_cipher_scheme *cs = NULL; 1798 1799 /* 1800 * Key selection 101 1801 * 1802 * There are four types of keys: 1803 * - GTK (group keys) 1804 * - IGTK (group keys for management frames) 1805 * - PTK (pairwise keys) 1806 * - STK (station-to-station pairwise keys) 1807 * 1808 * When selecting a key, we have to distinguish between multicast 1809 * (including broadcast) and unicast frames, the latter can only 1810 * use PTKs and STKs while the former always use GTKs and IGTKs. 1811 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1812 * unicast frames can also use key indices like GTKs. Hence, if we 1813 * don't have a PTK/STK we check the key index for a WEP key. 1814 * 1815 * Note that in a regular BSS, multicast frames are sent by the 1816 * AP only, associated stations unicast the frame to the AP first 1817 * which then multicasts it on their behalf. 1818 * 1819 * There is also a slight problem in IBSS mode: GTKs are negotiated 1820 * with each station, that is something we don't currently handle. 1821 * The spec seems to expect that one negotiates the same key with 1822 * every station but there's no such requirement; VLANs could be 1823 * possible. 1824 */ 1825 1826 /* start without a key */ 1827 rx->key = NULL; 1828 fc = hdr->frame_control; 1829 1830 if (rx->sta) { 1831 int keyid = rx->sta->ptk_idx; 1832 1833 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1834 cs = rx->sta->cipher_scheme; 1835 keyid = ieee80211_get_cs_keyid(cs, rx->skb); 1836 if (unlikely(keyid < 0)) 1837 return RX_DROP_UNUSABLE; 1838 } 1839 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1840 } 1841 1842 if (!ieee80211_has_protected(fc)) 1843 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1844 1845 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1846 rx->key = sta_ptk; 1847 if ((status->flag & RX_FLAG_DECRYPTED) && 1848 (status->flag & RX_FLAG_IV_STRIPPED)) 1849 return RX_CONTINUE; 1850 /* Skip decryption if the frame is not protected. */ 1851 if (!ieee80211_has_protected(fc)) 1852 return RX_CONTINUE; 1853 } else if (mmie_keyidx >= 0) { 1854 /* Broadcast/multicast robust management frame / BIP */ 1855 if ((status->flag & RX_FLAG_DECRYPTED) && 1856 (status->flag & RX_FLAG_IV_STRIPPED)) 1857 return RX_CONTINUE; 1858 1859 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1860 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1861 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1862 if (rx->sta) { 1863 if (ieee80211_is_group_privacy_action(skb) && 1864 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1865 return RX_DROP_MONITOR; 1866 1867 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1868 } 1869 if (!rx->key) 1870 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1871 } else if (!ieee80211_has_protected(fc)) { 1872 /* 1873 * The frame was not protected, so skip decryption. However, we 1874 * need to set rx->key if there is a key that could have been 1875 * used so that the frame may be dropped if encryption would 1876 * have been expected. 1877 */ 1878 struct ieee80211_key *key = NULL; 1879 struct ieee80211_sub_if_data *sdata = rx->sdata; 1880 int i; 1881 1882 if (ieee80211_is_mgmt(fc) && 1883 is_multicast_ether_addr(hdr->addr1) && 1884 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1885 rx->key = key; 1886 else { 1887 if (rx->sta) { 1888 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1889 key = rcu_dereference(rx->sta->gtk[i]); 1890 if (key) 1891 break; 1892 } 1893 } 1894 if (!key) { 1895 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1896 key = rcu_dereference(sdata->keys[i]); 1897 if (key) 1898 break; 1899 } 1900 } 1901 if (key) 1902 rx->key = key; 1903 } 1904 return RX_CONTINUE; 1905 } else { 1906 u8 keyid; 1907 1908 /* 1909 * The device doesn't give us the IV so we won't be 1910 * able to look up the key. That's ok though, we 1911 * don't need to decrypt the frame, we just won't 1912 * be able to keep statistics accurate. 1913 * Except for key threshold notifications, should 1914 * we somehow allow the driver to tell us which key 1915 * the hardware used if this flag is set? 1916 */ 1917 if ((status->flag & RX_FLAG_DECRYPTED) && 1918 (status->flag & RX_FLAG_IV_STRIPPED)) 1919 return RX_CONTINUE; 1920 1921 hdrlen = ieee80211_hdrlen(fc); 1922 1923 if (cs) { 1924 keyidx = ieee80211_get_cs_keyid(cs, rx->skb); 1925 1926 if (unlikely(keyidx < 0)) 1927 return RX_DROP_UNUSABLE; 1928 } else { 1929 if (rx->skb->len < 8 + hdrlen) 1930 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1931 /* 1932 * no need to call ieee80211_wep_get_keyidx, 1933 * it verifies a bunch of things we've done already 1934 */ 1935 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1936 keyidx = keyid >> 6; 1937 } 1938 1939 /* check per-station GTK first, if multicast packet */ 1940 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1941 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1942 1943 /* if not found, try default key */ 1944 if (!rx->key) { 1945 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1946 1947 /* 1948 * RSNA-protected unicast frames should always be 1949 * sent with pairwise or station-to-station keys, 1950 * but for WEP we allow using a key index as well. 1951 */ 1952 if (rx->key && 1953 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1954 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1955 !is_multicast_ether_addr(hdr->addr1)) 1956 rx->key = NULL; 1957 } 1958 } 1959 1960 if (rx->key) { 1961 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1962 return RX_DROP_MONITOR; 1963 1964 /* TODO: add threshold stuff again */ 1965 } else { 1966 return RX_DROP_MONITOR; 1967 } 1968 1969 switch (rx->key->conf.cipher) { 1970 case WLAN_CIPHER_SUITE_WEP40: 1971 case WLAN_CIPHER_SUITE_WEP104: 1972 result = ieee80211_crypto_wep_decrypt(rx); 1973 break; 1974 case WLAN_CIPHER_SUITE_TKIP: 1975 result = ieee80211_crypto_tkip_decrypt(rx); 1976 break; 1977 case WLAN_CIPHER_SUITE_CCMP: 1978 result = ieee80211_crypto_ccmp_decrypt( 1979 rx, IEEE80211_CCMP_MIC_LEN); 1980 break; 1981 case WLAN_CIPHER_SUITE_CCMP_256: 1982 result = ieee80211_crypto_ccmp_decrypt( 1983 rx, IEEE80211_CCMP_256_MIC_LEN); 1984 break; 1985 case WLAN_CIPHER_SUITE_AES_CMAC: 1986 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1987 break; 1988 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1989 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 1990 break; 1991 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1992 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1993 result = ieee80211_crypto_aes_gmac_decrypt(rx); 1994 break; 1995 case WLAN_CIPHER_SUITE_GCMP: 1996 case WLAN_CIPHER_SUITE_GCMP_256: 1997 result = ieee80211_crypto_gcmp_decrypt(rx); 1998 break; 1999 default: 2000 result = ieee80211_crypto_hw_decrypt(rx); 2001 } 2002 2003 /* the hdr variable is invalid after the decrypt handlers */ 2004 2005 /* either the frame has been decrypted or will be dropped */ 2006 status->flag |= RX_FLAG_DECRYPTED; 2007 2008 return result; 2009 } 2010 2011 static inline struct ieee80211_fragment_entry * 2012 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 2013 unsigned int frag, unsigned int seq, int rx_queue, 2014 struct sk_buff **skb) 2015 { 2016 struct ieee80211_fragment_entry *entry; 2017 2018 entry = &sdata->fragments[sdata->fragment_next++]; 2019 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 2020 sdata->fragment_next = 0; 2021 2022 if (!skb_queue_empty(&entry->skb_list)) 2023 __skb_queue_purge(&entry->skb_list); 2024 2025 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2026 *skb = NULL; 2027 entry->first_frag_time = jiffies; 2028 entry->seq = seq; 2029 entry->rx_queue = rx_queue; 2030 entry->last_frag = frag; 2031 entry->check_sequential_pn = false; 2032 entry->extra_len = 0; 2033 2034 return entry; 2035 } 2036 2037 static inline struct ieee80211_fragment_entry * 2038 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 2039 unsigned int frag, unsigned int seq, 2040 int rx_queue, struct ieee80211_hdr *hdr) 2041 { 2042 struct ieee80211_fragment_entry *entry; 2043 int i, idx; 2044 2045 idx = sdata->fragment_next; 2046 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2047 struct ieee80211_hdr *f_hdr; 2048 2049 idx--; 2050 if (idx < 0) 2051 idx = IEEE80211_FRAGMENT_MAX - 1; 2052 2053 entry = &sdata->fragments[idx]; 2054 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2055 entry->rx_queue != rx_queue || 2056 entry->last_frag + 1 != frag) 2057 continue; 2058 2059 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 2060 2061 /* 2062 * Check ftype and addresses are equal, else check next fragment 2063 */ 2064 if (((hdr->frame_control ^ f_hdr->frame_control) & 2065 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2066 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2067 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2068 continue; 2069 2070 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2071 __skb_queue_purge(&entry->skb_list); 2072 continue; 2073 } 2074 return entry; 2075 } 2076 2077 return NULL; 2078 } 2079 2080 static ieee80211_rx_result debug_noinline 2081 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2082 { 2083 struct ieee80211_hdr *hdr; 2084 u16 sc; 2085 __le16 fc; 2086 unsigned int frag, seq; 2087 struct ieee80211_fragment_entry *entry; 2088 struct sk_buff *skb; 2089 2090 hdr = (struct ieee80211_hdr *)rx->skb->data; 2091 fc = hdr->frame_control; 2092 2093 if (ieee80211_is_ctl(fc)) 2094 return RX_CONTINUE; 2095 2096 sc = le16_to_cpu(hdr->seq_ctrl); 2097 frag = sc & IEEE80211_SCTL_FRAG; 2098 2099 if (is_multicast_ether_addr(hdr->addr1)) { 2100 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 2101 goto out_no_led; 2102 } 2103 2104 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2105 goto out; 2106 2107 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2108 2109 if (skb_linearize(rx->skb)) 2110 return RX_DROP_UNUSABLE; 2111 2112 /* 2113 * skb_linearize() might change the skb->data and 2114 * previously cached variables (in this case, hdr) need to 2115 * be refreshed with the new data. 2116 */ 2117 hdr = (struct ieee80211_hdr *)rx->skb->data; 2118 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2119 2120 if (frag == 0) { 2121 /* This is the first fragment of a new frame. */ 2122 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2123 rx->seqno_idx, &(rx->skb)); 2124 if (rx->key && 2125 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2126 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2127 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2128 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2129 ieee80211_has_protected(fc)) { 2130 int queue = rx->security_idx; 2131 2132 /* Store CCMP/GCMP PN so that we can verify that the 2133 * next fragment has a sequential PN value. 2134 */ 2135 entry->check_sequential_pn = true; 2136 memcpy(entry->last_pn, 2137 rx->key->u.ccmp.rx_pn[queue], 2138 IEEE80211_CCMP_PN_LEN); 2139 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2140 u.ccmp.rx_pn) != 2141 offsetof(struct ieee80211_key, 2142 u.gcmp.rx_pn)); 2143 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2144 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2145 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2146 IEEE80211_GCMP_PN_LEN); 2147 } 2148 return RX_QUEUED; 2149 } 2150 2151 /* This is a fragment for a frame that should already be pending in 2152 * fragment cache. Add this fragment to the end of the pending entry. 2153 */ 2154 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2155 rx->seqno_idx, hdr); 2156 if (!entry) { 2157 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2158 return RX_DROP_MONITOR; 2159 } 2160 2161 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2162 * MPDU PN values are not incrementing in steps of 1." 2163 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2164 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2165 */ 2166 if (entry->check_sequential_pn) { 2167 int i; 2168 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2169 int queue; 2170 2171 if (!rx->key || 2172 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2173 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2174 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2175 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2176 return RX_DROP_UNUSABLE; 2177 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2178 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2179 pn[i]++; 2180 if (pn[i]) 2181 break; 2182 } 2183 queue = rx->security_idx; 2184 rpn = rx->key->u.ccmp.rx_pn[queue]; 2185 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2186 return RX_DROP_UNUSABLE; 2187 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2188 } 2189 2190 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2191 __skb_queue_tail(&entry->skb_list, rx->skb); 2192 entry->last_frag = frag; 2193 entry->extra_len += rx->skb->len; 2194 if (ieee80211_has_morefrags(fc)) { 2195 rx->skb = NULL; 2196 return RX_QUEUED; 2197 } 2198 2199 rx->skb = __skb_dequeue(&entry->skb_list); 2200 if (skb_tailroom(rx->skb) < entry->extra_len) { 2201 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2202 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2203 GFP_ATOMIC))) { 2204 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2205 __skb_queue_purge(&entry->skb_list); 2206 return RX_DROP_UNUSABLE; 2207 } 2208 } 2209 while ((skb = __skb_dequeue(&entry->skb_list))) { 2210 skb_put_data(rx->skb, skb->data, skb->len); 2211 dev_kfree_skb(skb); 2212 } 2213 2214 out: 2215 ieee80211_led_rx(rx->local); 2216 out_no_led: 2217 if (rx->sta) 2218 rx->sta->rx_stats.packets++; 2219 return RX_CONTINUE; 2220 } 2221 2222 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2223 { 2224 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2225 return -EACCES; 2226 2227 return 0; 2228 } 2229 2230 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2231 { 2232 struct sk_buff *skb = rx->skb; 2233 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2234 2235 /* 2236 * Pass through unencrypted frames if the hardware has 2237 * decrypted them already. 2238 */ 2239 if (status->flag & RX_FLAG_DECRYPTED) 2240 return 0; 2241 2242 /* Drop unencrypted frames if key is set. */ 2243 if (unlikely(!ieee80211_has_protected(fc) && 2244 !ieee80211_is_nullfunc(fc) && 2245 ieee80211_is_data(fc) && rx->key)) 2246 return -EACCES; 2247 2248 return 0; 2249 } 2250 2251 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2252 { 2253 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2254 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2255 __le16 fc = hdr->frame_control; 2256 2257 /* 2258 * Pass through unencrypted frames if the hardware has 2259 * decrypted them already. 2260 */ 2261 if (status->flag & RX_FLAG_DECRYPTED) 2262 return 0; 2263 2264 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2265 if (unlikely(!ieee80211_has_protected(fc) && 2266 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2267 rx->key)) { 2268 if (ieee80211_is_deauth(fc) || 2269 ieee80211_is_disassoc(fc)) 2270 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2271 rx->skb->data, 2272 rx->skb->len); 2273 return -EACCES; 2274 } 2275 /* BIP does not use Protected field, so need to check MMIE */ 2276 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2277 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2278 if (ieee80211_is_deauth(fc) || 2279 ieee80211_is_disassoc(fc)) 2280 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2281 rx->skb->data, 2282 rx->skb->len); 2283 return -EACCES; 2284 } 2285 /* 2286 * When using MFP, Action frames are not allowed prior to 2287 * having configured keys. 2288 */ 2289 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2290 ieee80211_is_robust_mgmt_frame(rx->skb))) 2291 return -EACCES; 2292 } 2293 2294 return 0; 2295 } 2296 2297 static int 2298 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2299 { 2300 struct ieee80211_sub_if_data *sdata = rx->sdata; 2301 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2302 bool check_port_control = false; 2303 struct ethhdr *ehdr; 2304 int ret; 2305 2306 *port_control = false; 2307 if (ieee80211_has_a4(hdr->frame_control) && 2308 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2309 return -1; 2310 2311 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2312 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2313 2314 if (!sdata->u.mgd.use_4addr) 2315 return -1; 2316 else 2317 check_port_control = true; 2318 } 2319 2320 if (is_multicast_ether_addr(hdr->addr1) && 2321 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2322 return -1; 2323 2324 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2325 if (ret < 0) 2326 return ret; 2327 2328 ehdr = (struct ethhdr *) rx->skb->data; 2329 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2330 *port_control = true; 2331 else if (check_port_control) 2332 return -1; 2333 2334 return 0; 2335 } 2336 2337 /* 2338 * requires that rx->skb is a frame with ethernet header 2339 */ 2340 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2341 { 2342 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2343 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2344 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2345 2346 /* 2347 * Allow EAPOL frames to us/the PAE group address regardless 2348 * of whether the frame was encrypted or not. 2349 */ 2350 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2351 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2352 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2353 return true; 2354 2355 if (ieee80211_802_1x_port_control(rx) || 2356 ieee80211_drop_unencrypted(rx, fc)) 2357 return false; 2358 2359 return true; 2360 } 2361 2362 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2363 struct ieee80211_rx_data *rx) 2364 { 2365 struct ieee80211_sub_if_data *sdata = rx->sdata; 2366 struct net_device *dev = sdata->dev; 2367 2368 if (unlikely((skb->protocol == sdata->control_port_protocol || 2369 skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) && 2370 sdata->control_port_over_nl80211)) { 2371 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2372 bool noencrypt = status->flag & RX_FLAG_DECRYPTED; 2373 2374 cfg80211_rx_control_port(dev, skb, noencrypt); 2375 dev_kfree_skb(skb); 2376 } else { 2377 /* deliver to local stack */ 2378 if (rx->napi) 2379 napi_gro_receive(rx->napi, skb); 2380 else 2381 netif_receive_skb(skb); 2382 } 2383 } 2384 2385 /* 2386 * requires that rx->skb is a frame with ethernet header 2387 */ 2388 static void 2389 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2390 { 2391 struct ieee80211_sub_if_data *sdata = rx->sdata; 2392 struct net_device *dev = sdata->dev; 2393 struct sk_buff *skb, *xmit_skb; 2394 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2395 struct sta_info *dsta; 2396 2397 skb = rx->skb; 2398 xmit_skb = NULL; 2399 2400 ieee80211_rx_stats(dev, skb->len); 2401 2402 if (rx->sta) { 2403 /* The seqno index has the same property as needed 2404 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2405 * for non-QoS-data frames. Here we know it's a data 2406 * frame, so count MSDUs. 2407 */ 2408 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2409 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2410 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2411 } 2412 2413 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2414 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2415 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2416 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2417 if (is_multicast_ether_addr(ehdr->h_dest) && 2418 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2419 /* 2420 * send multicast frames both to higher layers in 2421 * local net stack and back to the wireless medium 2422 */ 2423 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2424 if (!xmit_skb) 2425 net_info_ratelimited("%s: failed to clone multicast frame\n", 2426 dev->name); 2427 } else if (!is_multicast_ether_addr(ehdr->h_dest)) { 2428 dsta = sta_info_get(sdata, skb->data); 2429 if (dsta) { 2430 /* 2431 * The destination station is associated to 2432 * this AP (in this VLAN), so send the frame 2433 * directly to it and do not pass it to local 2434 * net stack. 2435 */ 2436 xmit_skb = skb; 2437 skb = NULL; 2438 } 2439 } 2440 } 2441 2442 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2443 if (skb) { 2444 /* 'align' will only take the values 0 or 2 here since all 2445 * frames are required to be aligned to 2-byte boundaries 2446 * when being passed to mac80211; the code here works just 2447 * as well if that isn't true, but mac80211 assumes it can 2448 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2449 */ 2450 int align; 2451 2452 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2453 if (align) { 2454 if (WARN_ON(skb_headroom(skb) < 3)) { 2455 dev_kfree_skb(skb); 2456 skb = NULL; 2457 } else { 2458 u8 *data = skb->data; 2459 size_t len = skb_headlen(skb); 2460 skb->data -= align; 2461 memmove(skb->data, data, len); 2462 skb_set_tail_pointer(skb, len); 2463 } 2464 } 2465 } 2466 #endif 2467 2468 if (skb) { 2469 skb->protocol = eth_type_trans(skb, dev); 2470 memset(skb->cb, 0, sizeof(skb->cb)); 2471 2472 ieee80211_deliver_skb_to_local_stack(skb, rx); 2473 } 2474 2475 if (xmit_skb) { 2476 /* 2477 * Send to wireless media and increase priority by 256 to 2478 * keep the received priority instead of reclassifying 2479 * the frame (see cfg80211_classify8021d). 2480 */ 2481 xmit_skb->priority += 256; 2482 xmit_skb->protocol = htons(ETH_P_802_3); 2483 skb_reset_network_header(xmit_skb); 2484 skb_reset_mac_header(xmit_skb); 2485 dev_queue_xmit(xmit_skb); 2486 } 2487 } 2488 2489 static ieee80211_rx_result debug_noinline 2490 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2491 { 2492 struct net_device *dev = rx->sdata->dev; 2493 struct sk_buff *skb = rx->skb; 2494 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2495 __le16 fc = hdr->frame_control; 2496 struct sk_buff_head frame_list; 2497 struct ethhdr ethhdr; 2498 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2499 2500 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2501 check_da = NULL; 2502 check_sa = NULL; 2503 } else switch (rx->sdata->vif.type) { 2504 case NL80211_IFTYPE_AP: 2505 case NL80211_IFTYPE_AP_VLAN: 2506 check_da = NULL; 2507 break; 2508 case NL80211_IFTYPE_STATION: 2509 if (!rx->sta || 2510 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2511 check_sa = NULL; 2512 break; 2513 case NL80211_IFTYPE_MESH_POINT: 2514 check_sa = NULL; 2515 break; 2516 default: 2517 break; 2518 } 2519 2520 skb->dev = dev; 2521 __skb_queue_head_init(&frame_list); 2522 2523 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2524 rx->sdata->vif.addr, 2525 rx->sdata->vif.type, 2526 data_offset)) 2527 return RX_DROP_UNUSABLE; 2528 2529 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2530 rx->sdata->vif.type, 2531 rx->local->hw.extra_tx_headroom, 2532 check_da, check_sa); 2533 2534 while (!skb_queue_empty(&frame_list)) { 2535 rx->skb = __skb_dequeue(&frame_list); 2536 2537 if (!ieee80211_frame_allowed(rx, fc)) { 2538 dev_kfree_skb(rx->skb); 2539 continue; 2540 } 2541 2542 ieee80211_deliver_skb(rx); 2543 } 2544 2545 return RX_QUEUED; 2546 } 2547 2548 static ieee80211_rx_result debug_noinline 2549 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2550 { 2551 struct sk_buff *skb = rx->skb; 2552 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2553 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2554 __le16 fc = hdr->frame_control; 2555 2556 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2557 return RX_CONTINUE; 2558 2559 if (unlikely(!ieee80211_is_data(fc))) 2560 return RX_CONTINUE; 2561 2562 if (unlikely(!ieee80211_is_data_present(fc))) 2563 return RX_DROP_MONITOR; 2564 2565 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2566 switch (rx->sdata->vif.type) { 2567 case NL80211_IFTYPE_AP_VLAN: 2568 if (!rx->sdata->u.vlan.sta) 2569 return RX_DROP_UNUSABLE; 2570 break; 2571 case NL80211_IFTYPE_STATION: 2572 if (!rx->sdata->u.mgd.use_4addr) 2573 return RX_DROP_UNUSABLE; 2574 break; 2575 default: 2576 return RX_DROP_UNUSABLE; 2577 } 2578 } 2579 2580 if (is_multicast_ether_addr(hdr->addr1)) 2581 return RX_DROP_UNUSABLE; 2582 2583 return __ieee80211_rx_h_amsdu(rx, 0); 2584 } 2585 2586 #ifdef CONFIG_MAC80211_MESH 2587 static ieee80211_rx_result 2588 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2589 { 2590 struct ieee80211_hdr *fwd_hdr, *hdr; 2591 struct ieee80211_tx_info *info; 2592 struct ieee80211s_hdr *mesh_hdr; 2593 struct sk_buff *skb = rx->skb, *fwd_skb; 2594 struct ieee80211_local *local = rx->local; 2595 struct ieee80211_sub_if_data *sdata = rx->sdata; 2596 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2597 u16 ac, q, hdrlen; 2598 2599 hdr = (struct ieee80211_hdr *) skb->data; 2600 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2601 2602 /* make sure fixed part of mesh header is there, also checks skb len */ 2603 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2604 return RX_DROP_MONITOR; 2605 2606 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2607 2608 /* make sure full mesh header is there, also checks skb len */ 2609 if (!pskb_may_pull(rx->skb, 2610 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2611 return RX_DROP_MONITOR; 2612 2613 /* reload pointers */ 2614 hdr = (struct ieee80211_hdr *) skb->data; 2615 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2616 2617 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2618 return RX_DROP_MONITOR; 2619 2620 /* frame is in RMC, don't forward */ 2621 if (ieee80211_is_data(hdr->frame_control) && 2622 is_multicast_ether_addr(hdr->addr1) && 2623 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2624 return RX_DROP_MONITOR; 2625 2626 if (!ieee80211_is_data(hdr->frame_control)) 2627 return RX_CONTINUE; 2628 2629 if (!mesh_hdr->ttl) 2630 return RX_DROP_MONITOR; 2631 2632 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2633 struct mesh_path *mppath; 2634 char *proxied_addr; 2635 char *mpp_addr; 2636 2637 if (is_multicast_ether_addr(hdr->addr1)) { 2638 mpp_addr = hdr->addr3; 2639 proxied_addr = mesh_hdr->eaddr1; 2640 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2641 MESH_FLAGS_AE_A5_A6) { 2642 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2643 mpp_addr = hdr->addr4; 2644 proxied_addr = mesh_hdr->eaddr2; 2645 } else { 2646 return RX_DROP_MONITOR; 2647 } 2648 2649 rcu_read_lock(); 2650 mppath = mpp_path_lookup(sdata, proxied_addr); 2651 if (!mppath) { 2652 mpp_path_add(sdata, proxied_addr, mpp_addr); 2653 } else { 2654 spin_lock_bh(&mppath->state_lock); 2655 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2656 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2657 mppath->exp_time = jiffies; 2658 spin_unlock_bh(&mppath->state_lock); 2659 } 2660 rcu_read_unlock(); 2661 } 2662 2663 /* Frame has reached destination. Don't forward */ 2664 if (!is_multicast_ether_addr(hdr->addr1) && 2665 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2666 return RX_CONTINUE; 2667 2668 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2669 q = sdata->vif.hw_queue[ac]; 2670 if (ieee80211_queue_stopped(&local->hw, q)) { 2671 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2672 return RX_DROP_MONITOR; 2673 } 2674 skb_set_queue_mapping(skb, q); 2675 2676 if (!--mesh_hdr->ttl) { 2677 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2678 goto out; 2679 } 2680 2681 if (!ifmsh->mshcfg.dot11MeshForwarding) 2682 goto out; 2683 2684 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2685 sdata->encrypt_headroom, 0, GFP_ATOMIC); 2686 if (!fwd_skb) 2687 goto out; 2688 2689 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2690 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2691 info = IEEE80211_SKB_CB(fwd_skb); 2692 memset(info, 0, sizeof(*info)); 2693 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2694 info->control.vif = &rx->sdata->vif; 2695 info->control.jiffies = jiffies; 2696 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2697 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2698 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2699 /* update power mode indication when forwarding */ 2700 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2701 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2702 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2703 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2704 } else { 2705 /* unable to resolve next hop */ 2706 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2707 fwd_hdr->addr3, 0, 2708 WLAN_REASON_MESH_PATH_NOFORWARD, 2709 fwd_hdr->addr2); 2710 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2711 kfree_skb(fwd_skb); 2712 return RX_DROP_MONITOR; 2713 } 2714 2715 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2716 ieee80211_add_pending_skb(local, fwd_skb); 2717 out: 2718 if (is_multicast_ether_addr(hdr->addr1)) 2719 return RX_CONTINUE; 2720 return RX_DROP_MONITOR; 2721 } 2722 #endif 2723 2724 static ieee80211_rx_result debug_noinline 2725 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2726 { 2727 struct ieee80211_sub_if_data *sdata = rx->sdata; 2728 struct ieee80211_local *local = rx->local; 2729 struct net_device *dev = sdata->dev; 2730 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2731 __le16 fc = hdr->frame_control; 2732 bool port_control; 2733 int err; 2734 2735 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2736 return RX_CONTINUE; 2737 2738 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2739 return RX_DROP_MONITOR; 2740 2741 /* 2742 * Send unexpected-4addr-frame event to hostapd. For older versions, 2743 * also drop the frame to cooked monitor interfaces. 2744 */ 2745 if (ieee80211_has_a4(hdr->frame_control) && 2746 sdata->vif.type == NL80211_IFTYPE_AP) { 2747 if (rx->sta && 2748 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2749 cfg80211_rx_unexpected_4addr_frame( 2750 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2751 return RX_DROP_MONITOR; 2752 } 2753 2754 err = __ieee80211_data_to_8023(rx, &port_control); 2755 if (unlikely(err)) 2756 return RX_DROP_UNUSABLE; 2757 2758 if (!ieee80211_frame_allowed(rx, fc)) 2759 return RX_DROP_MONITOR; 2760 2761 /* directly handle TDLS channel switch requests/responses */ 2762 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2763 cpu_to_be16(ETH_P_TDLS))) { 2764 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2765 2766 if (pskb_may_pull(rx->skb, 2767 offsetof(struct ieee80211_tdls_data, u)) && 2768 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2769 tf->category == WLAN_CATEGORY_TDLS && 2770 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2771 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2772 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2773 schedule_work(&local->tdls_chsw_work); 2774 if (rx->sta) 2775 rx->sta->rx_stats.packets++; 2776 2777 return RX_QUEUED; 2778 } 2779 } 2780 2781 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2782 unlikely(port_control) && sdata->bss) { 2783 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2784 u.ap); 2785 dev = sdata->dev; 2786 rx->sdata = sdata; 2787 } 2788 2789 rx->skb->dev = dev; 2790 2791 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2792 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2793 !is_multicast_ether_addr( 2794 ((struct ethhdr *)rx->skb->data)->h_dest) && 2795 (!local->scanning && 2796 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2797 mod_timer(&local->dynamic_ps_timer, jiffies + 2798 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2799 2800 ieee80211_deliver_skb(rx); 2801 2802 return RX_QUEUED; 2803 } 2804 2805 static ieee80211_rx_result debug_noinline 2806 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2807 { 2808 struct sk_buff *skb = rx->skb; 2809 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2810 struct tid_ampdu_rx *tid_agg_rx; 2811 u16 start_seq_num; 2812 u16 tid; 2813 2814 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2815 return RX_CONTINUE; 2816 2817 if (ieee80211_is_back_req(bar->frame_control)) { 2818 struct { 2819 __le16 control, start_seq_num; 2820 } __packed bar_data; 2821 struct ieee80211_event event = { 2822 .type = BAR_RX_EVENT, 2823 }; 2824 2825 if (!rx->sta) 2826 return RX_DROP_MONITOR; 2827 2828 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2829 &bar_data, sizeof(bar_data))) 2830 return RX_DROP_MONITOR; 2831 2832 tid = le16_to_cpu(bar_data.control) >> 12; 2833 2834 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2835 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2836 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2837 WLAN_BACK_RECIPIENT, 2838 WLAN_REASON_QSTA_REQUIRE_SETUP); 2839 2840 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2841 if (!tid_agg_rx) 2842 return RX_DROP_MONITOR; 2843 2844 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2845 event.u.ba.tid = tid; 2846 event.u.ba.ssn = start_seq_num; 2847 event.u.ba.sta = &rx->sta->sta; 2848 2849 /* reset session timer */ 2850 if (tid_agg_rx->timeout) 2851 mod_timer(&tid_agg_rx->session_timer, 2852 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2853 2854 spin_lock(&tid_agg_rx->reorder_lock); 2855 /* release stored frames up to start of BAR */ 2856 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2857 start_seq_num, frames); 2858 spin_unlock(&tid_agg_rx->reorder_lock); 2859 2860 drv_event_callback(rx->local, rx->sdata, &event); 2861 2862 kfree_skb(skb); 2863 return RX_QUEUED; 2864 } 2865 2866 /* 2867 * After this point, we only want management frames, 2868 * so we can drop all remaining control frames to 2869 * cooked monitor interfaces. 2870 */ 2871 return RX_DROP_MONITOR; 2872 } 2873 2874 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2875 struct ieee80211_mgmt *mgmt, 2876 size_t len) 2877 { 2878 struct ieee80211_local *local = sdata->local; 2879 struct sk_buff *skb; 2880 struct ieee80211_mgmt *resp; 2881 2882 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2883 /* Not to own unicast address */ 2884 return; 2885 } 2886 2887 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2888 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2889 /* Not from the current AP or not associated yet. */ 2890 return; 2891 } 2892 2893 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2894 /* Too short SA Query request frame */ 2895 return; 2896 } 2897 2898 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2899 if (skb == NULL) 2900 return; 2901 2902 skb_reserve(skb, local->hw.extra_tx_headroom); 2903 resp = skb_put_zero(skb, 24); 2904 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2905 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2906 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2907 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2908 IEEE80211_STYPE_ACTION); 2909 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2910 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2911 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2912 memcpy(resp->u.action.u.sa_query.trans_id, 2913 mgmt->u.action.u.sa_query.trans_id, 2914 WLAN_SA_QUERY_TR_ID_LEN); 2915 2916 ieee80211_tx_skb(sdata, skb); 2917 } 2918 2919 static ieee80211_rx_result debug_noinline 2920 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2921 { 2922 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2923 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2924 2925 /* 2926 * From here on, look only at management frames. 2927 * Data and control frames are already handled, 2928 * and unknown (reserved) frames are useless. 2929 */ 2930 if (rx->skb->len < 24) 2931 return RX_DROP_MONITOR; 2932 2933 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2934 return RX_DROP_MONITOR; 2935 2936 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2937 ieee80211_is_beacon(mgmt->frame_control) && 2938 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2939 int sig = 0; 2940 2941 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 2942 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 2943 sig = status->signal; 2944 2945 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2946 rx->skb->data, rx->skb->len, 2947 status->freq, sig); 2948 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2949 } 2950 2951 if (ieee80211_drop_unencrypted_mgmt(rx)) 2952 return RX_DROP_UNUSABLE; 2953 2954 return RX_CONTINUE; 2955 } 2956 2957 static ieee80211_rx_result debug_noinline 2958 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2959 { 2960 struct ieee80211_local *local = rx->local; 2961 struct ieee80211_sub_if_data *sdata = rx->sdata; 2962 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2963 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2964 int len = rx->skb->len; 2965 2966 if (!ieee80211_is_action(mgmt->frame_control)) 2967 return RX_CONTINUE; 2968 2969 /* drop too small frames */ 2970 if (len < IEEE80211_MIN_ACTION_SIZE) 2971 return RX_DROP_UNUSABLE; 2972 2973 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2974 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2975 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2976 return RX_DROP_UNUSABLE; 2977 2978 switch (mgmt->u.action.category) { 2979 case WLAN_CATEGORY_HT: 2980 /* reject HT action frames from stations not supporting HT */ 2981 if (!rx->sta->sta.ht_cap.ht_supported) 2982 goto invalid; 2983 2984 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2985 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2986 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2987 sdata->vif.type != NL80211_IFTYPE_AP && 2988 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2989 break; 2990 2991 /* verify action & smps_control/chanwidth are present */ 2992 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2993 goto invalid; 2994 2995 switch (mgmt->u.action.u.ht_smps.action) { 2996 case WLAN_HT_ACTION_SMPS: { 2997 struct ieee80211_supported_band *sband; 2998 enum ieee80211_smps_mode smps_mode; 2999 struct sta_opmode_info sta_opmode = {}; 3000 3001 /* convert to HT capability */ 3002 switch (mgmt->u.action.u.ht_smps.smps_control) { 3003 case WLAN_HT_SMPS_CONTROL_DISABLED: 3004 smps_mode = IEEE80211_SMPS_OFF; 3005 break; 3006 case WLAN_HT_SMPS_CONTROL_STATIC: 3007 smps_mode = IEEE80211_SMPS_STATIC; 3008 break; 3009 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3010 smps_mode = IEEE80211_SMPS_DYNAMIC; 3011 break; 3012 default: 3013 goto invalid; 3014 } 3015 3016 /* if no change do nothing */ 3017 if (rx->sta->sta.smps_mode == smps_mode) 3018 goto handled; 3019 rx->sta->sta.smps_mode = smps_mode; 3020 sta_opmode.smps_mode = 3021 ieee80211_smps_mode_to_smps_mode(smps_mode); 3022 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3023 3024 sband = rx->local->hw.wiphy->bands[status->band]; 3025 3026 rate_control_rate_update(local, sband, rx->sta, 3027 IEEE80211_RC_SMPS_CHANGED); 3028 cfg80211_sta_opmode_change_notify(sdata->dev, 3029 rx->sta->addr, 3030 &sta_opmode, 3031 GFP_KERNEL); 3032 goto handled; 3033 } 3034 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3035 struct ieee80211_supported_band *sband; 3036 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3037 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3038 struct sta_opmode_info sta_opmode = {}; 3039 3040 /* If it doesn't support 40 MHz it can't change ... */ 3041 if (!(rx->sta->sta.ht_cap.cap & 3042 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3043 goto handled; 3044 3045 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3046 max_bw = IEEE80211_STA_RX_BW_20; 3047 else 3048 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3049 3050 /* set cur_max_bandwidth and recalc sta bw */ 3051 rx->sta->cur_max_bandwidth = max_bw; 3052 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3053 3054 if (rx->sta->sta.bandwidth == new_bw) 3055 goto handled; 3056 3057 rx->sta->sta.bandwidth = new_bw; 3058 sband = rx->local->hw.wiphy->bands[status->band]; 3059 sta_opmode.bw = 3060 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3061 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3062 3063 rate_control_rate_update(local, sband, rx->sta, 3064 IEEE80211_RC_BW_CHANGED); 3065 cfg80211_sta_opmode_change_notify(sdata->dev, 3066 rx->sta->addr, 3067 &sta_opmode, 3068 GFP_KERNEL); 3069 goto handled; 3070 } 3071 default: 3072 goto invalid; 3073 } 3074 3075 break; 3076 case WLAN_CATEGORY_PUBLIC: 3077 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3078 goto invalid; 3079 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3080 break; 3081 if (!rx->sta) 3082 break; 3083 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3084 break; 3085 if (mgmt->u.action.u.ext_chan_switch.action_code != 3086 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3087 break; 3088 if (len < offsetof(struct ieee80211_mgmt, 3089 u.action.u.ext_chan_switch.variable)) 3090 goto invalid; 3091 goto queue; 3092 case WLAN_CATEGORY_VHT: 3093 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3094 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3095 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3096 sdata->vif.type != NL80211_IFTYPE_AP && 3097 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3098 break; 3099 3100 /* verify action code is present */ 3101 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3102 goto invalid; 3103 3104 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3105 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3106 /* verify opmode is present */ 3107 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3108 goto invalid; 3109 goto queue; 3110 } 3111 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3112 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3113 goto invalid; 3114 goto queue; 3115 } 3116 default: 3117 break; 3118 } 3119 break; 3120 case WLAN_CATEGORY_BACK: 3121 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3122 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3123 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3124 sdata->vif.type != NL80211_IFTYPE_AP && 3125 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3126 break; 3127 3128 /* verify action_code is present */ 3129 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3130 break; 3131 3132 switch (mgmt->u.action.u.addba_req.action_code) { 3133 case WLAN_ACTION_ADDBA_REQ: 3134 if (len < (IEEE80211_MIN_ACTION_SIZE + 3135 sizeof(mgmt->u.action.u.addba_req))) 3136 goto invalid; 3137 break; 3138 case WLAN_ACTION_ADDBA_RESP: 3139 if (len < (IEEE80211_MIN_ACTION_SIZE + 3140 sizeof(mgmt->u.action.u.addba_resp))) 3141 goto invalid; 3142 break; 3143 case WLAN_ACTION_DELBA: 3144 if (len < (IEEE80211_MIN_ACTION_SIZE + 3145 sizeof(mgmt->u.action.u.delba))) 3146 goto invalid; 3147 break; 3148 default: 3149 goto invalid; 3150 } 3151 3152 goto queue; 3153 case WLAN_CATEGORY_SPECTRUM_MGMT: 3154 /* verify action_code is present */ 3155 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3156 break; 3157 3158 switch (mgmt->u.action.u.measurement.action_code) { 3159 case WLAN_ACTION_SPCT_MSR_REQ: 3160 if (status->band != NL80211_BAND_5GHZ) 3161 break; 3162 3163 if (len < (IEEE80211_MIN_ACTION_SIZE + 3164 sizeof(mgmt->u.action.u.measurement))) 3165 break; 3166 3167 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3168 break; 3169 3170 ieee80211_process_measurement_req(sdata, mgmt, len); 3171 goto handled; 3172 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3173 u8 *bssid; 3174 if (len < (IEEE80211_MIN_ACTION_SIZE + 3175 sizeof(mgmt->u.action.u.chan_switch))) 3176 break; 3177 3178 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3179 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3180 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3181 break; 3182 3183 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3184 bssid = sdata->u.mgd.bssid; 3185 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3186 bssid = sdata->u.ibss.bssid; 3187 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3188 bssid = mgmt->sa; 3189 else 3190 break; 3191 3192 if (!ether_addr_equal(mgmt->bssid, bssid)) 3193 break; 3194 3195 goto queue; 3196 } 3197 } 3198 break; 3199 case WLAN_CATEGORY_SA_QUERY: 3200 if (len < (IEEE80211_MIN_ACTION_SIZE + 3201 sizeof(mgmt->u.action.u.sa_query))) 3202 break; 3203 3204 switch (mgmt->u.action.u.sa_query.action) { 3205 case WLAN_ACTION_SA_QUERY_REQUEST: 3206 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3207 break; 3208 ieee80211_process_sa_query_req(sdata, mgmt, len); 3209 goto handled; 3210 } 3211 break; 3212 case WLAN_CATEGORY_SELF_PROTECTED: 3213 if (len < (IEEE80211_MIN_ACTION_SIZE + 3214 sizeof(mgmt->u.action.u.self_prot.action_code))) 3215 break; 3216 3217 switch (mgmt->u.action.u.self_prot.action_code) { 3218 case WLAN_SP_MESH_PEERING_OPEN: 3219 case WLAN_SP_MESH_PEERING_CLOSE: 3220 case WLAN_SP_MESH_PEERING_CONFIRM: 3221 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3222 goto invalid; 3223 if (sdata->u.mesh.user_mpm) 3224 /* userspace handles this frame */ 3225 break; 3226 goto queue; 3227 case WLAN_SP_MGK_INFORM: 3228 case WLAN_SP_MGK_ACK: 3229 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3230 goto invalid; 3231 break; 3232 } 3233 break; 3234 case WLAN_CATEGORY_MESH_ACTION: 3235 if (len < (IEEE80211_MIN_ACTION_SIZE + 3236 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3237 break; 3238 3239 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3240 break; 3241 if (mesh_action_is_path_sel(mgmt) && 3242 !mesh_path_sel_is_hwmp(sdata)) 3243 break; 3244 goto queue; 3245 } 3246 3247 return RX_CONTINUE; 3248 3249 invalid: 3250 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3251 /* will return in the next handlers */ 3252 return RX_CONTINUE; 3253 3254 handled: 3255 if (rx->sta) 3256 rx->sta->rx_stats.packets++; 3257 dev_kfree_skb(rx->skb); 3258 return RX_QUEUED; 3259 3260 queue: 3261 skb_queue_tail(&sdata->skb_queue, rx->skb); 3262 ieee80211_queue_work(&local->hw, &sdata->work); 3263 if (rx->sta) 3264 rx->sta->rx_stats.packets++; 3265 return RX_QUEUED; 3266 } 3267 3268 static ieee80211_rx_result debug_noinline 3269 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3270 { 3271 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3272 int sig = 0; 3273 3274 /* skip known-bad action frames and return them in the next handler */ 3275 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3276 return RX_CONTINUE; 3277 3278 /* 3279 * Getting here means the kernel doesn't know how to handle 3280 * it, but maybe userspace does ... include returned frames 3281 * so userspace can register for those to know whether ones 3282 * it transmitted were processed or returned. 3283 */ 3284 3285 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3286 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3287 sig = status->signal; 3288 3289 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 3290 rx->skb->data, rx->skb->len, 0)) { 3291 if (rx->sta) 3292 rx->sta->rx_stats.packets++; 3293 dev_kfree_skb(rx->skb); 3294 return RX_QUEUED; 3295 } 3296 3297 return RX_CONTINUE; 3298 } 3299 3300 static ieee80211_rx_result debug_noinline 3301 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3302 { 3303 struct ieee80211_local *local = rx->local; 3304 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3305 struct sk_buff *nskb; 3306 struct ieee80211_sub_if_data *sdata = rx->sdata; 3307 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3308 3309 if (!ieee80211_is_action(mgmt->frame_control)) 3310 return RX_CONTINUE; 3311 3312 /* 3313 * For AP mode, hostapd is responsible for handling any action 3314 * frames that we didn't handle, including returning unknown 3315 * ones. For all other modes we will return them to the sender, 3316 * setting the 0x80 bit in the action category, as required by 3317 * 802.11-2012 9.24.4. 3318 * Newer versions of hostapd shall also use the management frame 3319 * registration mechanisms, but older ones still use cooked 3320 * monitor interfaces so push all frames there. 3321 */ 3322 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3323 (sdata->vif.type == NL80211_IFTYPE_AP || 3324 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3325 return RX_DROP_MONITOR; 3326 3327 if (is_multicast_ether_addr(mgmt->da)) 3328 return RX_DROP_MONITOR; 3329 3330 /* do not return rejected action frames */ 3331 if (mgmt->u.action.category & 0x80) 3332 return RX_DROP_UNUSABLE; 3333 3334 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3335 GFP_ATOMIC); 3336 if (nskb) { 3337 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3338 3339 nmgmt->u.action.category |= 0x80; 3340 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3341 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3342 3343 memset(nskb->cb, 0, sizeof(nskb->cb)); 3344 3345 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3346 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3347 3348 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3349 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3350 IEEE80211_TX_CTL_NO_CCK_RATE; 3351 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3352 info->hw_queue = 3353 local->hw.offchannel_tx_hw_queue; 3354 } 3355 3356 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3357 status->band, 0); 3358 } 3359 dev_kfree_skb(rx->skb); 3360 return RX_QUEUED; 3361 } 3362 3363 static ieee80211_rx_result debug_noinline 3364 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3365 { 3366 struct ieee80211_sub_if_data *sdata = rx->sdata; 3367 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3368 __le16 stype; 3369 3370 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3371 3372 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3373 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3374 sdata->vif.type != NL80211_IFTYPE_OCB && 3375 sdata->vif.type != NL80211_IFTYPE_STATION) 3376 return RX_DROP_MONITOR; 3377 3378 switch (stype) { 3379 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3380 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3381 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3382 /* process for all: mesh, mlme, ibss */ 3383 break; 3384 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3385 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3386 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3387 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3388 if (is_multicast_ether_addr(mgmt->da) && 3389 !is_broadcast_ether_addr(mgmt->da)) 3390 return RX_DROP_MONITOR; 3391 3392 /* process only for station */ 3393 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3394 return RX_DROP_MONITOR; 3395 break; 3396 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3397 /* process only for ibss and mesh */ 3398 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3399 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3400 return RX_DROP_MONITOR; 3401 break; 3402 default: 3403 return RX_DROP_MONITOR; 3404 } 3405 3406 /* queue up frame and kick off work to process it */ 3407 skb_queue_tail(&sdata->skb_queue, rx->skb); 3408 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3409 if (rx->sta) 3410 rx->sta->rx_stats.packets++; 3411 3412 return RX_QUEUED; 3413 } 3414 3415 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3416 struct ieee80211_rate *rate) 3417 { 3418 struct ieee80211_sub_if_data *sdata; 3419 struct ieee80211_local *local = rx->local; 3420 struct sk_buff *skb = rx->skb, *skb2; 3421 struct net_device *prev_dev = NULL; 3422 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3423 int needed_headroom; 3424 3425 /* 3426 * If cooked monitor has been processed already, then 3427 * don't do it again. If not, set the flag. 3428 */ 3429 if (rx->flags & IEEE80211_RX_CMNTR) 3430 goto out_free_skb; 3431 rx->flags |= IEEE80211_RX_CMNTR; 3432 3433 /* If there are no cooked monitor interfaces, just free the SKB */ 3434 if (!local->cooked_mntrs) 3435 goto out_free_skb; 3436 3437 /* vendor data is long removed here */ 3438 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3439 /* room for the radiotap header based on driver features */ 3440 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3441 3442 if (skb_headroom(skb) < needed_headroom && 3443 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3444 goto out_free_skb; 3445 3446 /* prepend radiotap information */ 3447 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3448 false); 3449 3450 skb_reset_mac_header(skb); 3451 skb->ip_summed = CHECKSUM_UNNECESSARY; 3452 skb->pkt_type = PACKET_OTHERHOST; 3453 skb->protocol = htons(ETH_P_802_2); 3454 3455 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3456 if (!ieee80211_sdata_running(sdata)) 3457 continue; 3458 3459 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3460 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3461 continue; 3462 3463 if (prev_dev) { 3464 skb2 = skb_clone(skb, GFP_ATOMIC); 3465 if (skb2) { 3466 skb2->dev = prev_dev; 3467 netif_receive_skb(skb2); 3468 } 3469 } 3470 3471 prev_dev = sdata->dev; 3472 ieee80211_rx_stats(sdata->dev, skb->len); 3473 } 3474 3475 if (prev_dev) { 3476 skb->dev = prev_dev; 3477 netif_receive_skb(skb); 3478 return; 3479 } 3480 3481 out_free_skb: 3482 dev_kfree_skb(skb); 3483 } 3484 3485 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3486 ieee80211_rx_result res) 3487 { 3488 switch (res) { 3489 case RX_DROP_MONITOR: 3490 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3491 if (rx->sta) 3492 rx->sta->rx_stats.dropped++; 3493 /* fall through */ 3494 case RX_CONTINUE: { 3495 struct ieee80211_rate *rate = NULL; 3496 struct ieee80211_supported_band *sband; 3497 struct ieee80211_rx_status *status; 3498 3499 status = IEEE80211_SKB_RXCB((rx->skb)); 3500 3501 sband = rx->local->hw.wiphy->bands[status->band]; 3502 if (status->encoding == RX_ENC_LEGACY) 3503 rate = &sband->bitrates[status->rate_idx]; 3504 3505 ieee80211_rx_cooked_monitor(rx, rate); 3506 break; 3507 } 3508 case RX_DROP_UNUSABLE: 3509 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3510 if (rx->sta) 3511 rx->sta->rx_stats.dropped++; 3512 dev_kfree_skb(rx->skb); 3513 break; 3514 case RX_QUEUED: 3515 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3516 break; 3517 } 3518 } 3519 3520 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3521 struct sk_buff_head *frames) 3522 { 3523 ieee80211_rx_result res = RX_DROP_MONITOR; 3524 struct sk_buff *skb; 3525 3526 #define CALL_RXH(rxh) \ 3527 do { \ 3528 res = rxh(rx); \ 3529 if (res != RX_CONTINUE) \ 3530 goto rxh_next; \ 3531 } while (0) 3532 3533 /* Lock here to avoid hitting all of the data used in the RX 3534 * path (e.g. key data, station data, ...) concurrently when 3535 * a frame is released from the reorder buffer due to timeout 3536 * from the timer, potentially concurrently with RX from the 3537 * driver. 3538 */ 3539 spin_lock_bh(&rx->local->rx_path_lock); 3540 3541 while ((skb = __skb_dequeue(frames))) { 3542 /* 3543 * all the other fields are valid across frames 3544 * that belong to an aMPDU since they are on the 3545 * same TID from the same station 3546 */ 3547 rx->skb = skb; 3548 3549 CALL_RXH(ieee80211_rx_h_check_more_data); 3550 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3551 CALL_RXH(ieee80211_rx_h_sta_process); 3552 CALL_RXH(ieee80211_rx_h_decrypt); 3553 CALL_RXH(ieee80211_rx_h_defragment); 3554 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3555 /* must be after MMIC verify so header is counted in MPDU mic */ 3556 #ifdef CONFIG_MAC80211_MESH 3557 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3558 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3559 #endif 3560 CALL_RXH(ieee80211_rx_h_amsdu); 3561 CALL_RXH(ieee80211_rx_h_data); 3562 3563 /* special treatment -- needs the queue */ 3564 res = ieee80211_rx_h_ctrl(rx, frames); 3565 if (res != RX_CONTINUE) 3566 goto rxh_next; 3567 3568 CALL_RXH(ieee80211_rx_h_mgmt_check); 3569 CALL_RXH(ieee80211_rx_h_action); 3570 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3571 CALL_RXH(ieee80211_rx_h_action_return); 3572 CALL_RXH(ieee80211_rx_h_mgmt); 3573 3574 rxh_next: 3575 ieee80211_rx_handlers_result(rx, res); 3576 3577 #undef CALL_RXH 3578 } 3579 3580 spin_unlock_bh(&rx->local->rx_path_lock); 3581 } 3582 3583 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3584 { 3585 struct sk_buff_head reorder_release; 3586 ieee80211_rx_result res = RX_DROP_MONITOR; 3587 3588 __skb_queue_head_init(&reorder_release); 3589 3590 #define CALL_RXH(rxh) \ 3591 do { \ 3592 res = rxh(rx); \ 3593 if (res != RX_CONTINUE) \ 3594 goto rxh_next; \ 3595 } while (0) 3596 3597 CALL_RXH(ieee80211_rx_h_check_dup); 3598 CALL_RXH(ieee80211_rx_h_check); 3599 3600 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3601 3602 ieee80211_rx_handlers(rx, &reorder_release); 3603 return; 3604 3605 rxh_next: 3606 ieee80211_rx_handlers_result(rx, res); 3607 3608 #undef CALL_RXH 3609 } 3610 3611 /* 3612 * This function makes calls into the RX path, therefore 3613 * it has to be invoked under RCU read lock. 3614 */ 3615 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3616 { 3617 struct sk_buff_head frames; 3618 struct ieee80211_rx_data rx = { 3619 .sta = sta, 3620 .sdata = sta->sdata, 3621 .local = sta->local, 3622 /* This is OK -- must be QoS data frame */ 3623 .security_idx = tid, 3624 .seqno_idx = tid, 3625 .napi = NULL, /* must be NULL to not have races */ 3626 }; 3627 struct tid_ampdu_rx *tid_agg_rx; 3628 3629 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3630 if (!tid_agg_rx) 3631 return; 3632 3633 __skb_queue_head_init(&frames); 3634 3635 spin_lock(&tid_agg_rx->reorder_lock); 3636 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3637 spin_unlock(&tid_agg_rx->reorder_lock); 3638 3639 if (!skb_queue_empty(&frames)) { 3640 struct ieee80211_event event = { 3641 .type = BA_FRAME_TIMEOUT, 3642 .u.ba.tid = tid, 3643 .u.ba.sta = &sta->sta, 3644 }; 3645 drv_event_callback(rx.local, rx.sdata, &event); 3646 } 3647 3648 ieee80211_rx_handlers(&rx, &frames); 3649 } 3650 3651 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3652 u16 ssn, u64 filtered, 3653 u16 received_mpdus) 3654 { 3655 struct sta_info *sta; 3656 struct tid_ampdu_rx *tid_agg_rx; 3657 struct sk_buff_head frames; 3658 struct ieee80211_rx_data rx = { 3659 /* This is OK -- must be QoS data frame */ 3660 .security_idx = tid, 3661 .seqno_idx = tid, 3662 }; 3663 int i, diff; 3664 3665 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3666 return; 3667 3668 __skb_queue_head_init(&frames); 3669 3670 sta = container_of(pubsta, struct sta_info, sta); 3671 3672 rx.sta = sta; 3673 rx.sdata = sta->sdata; 3674 rx.local = sta->local; 3675 3676 rcu_read_lock(); 3677 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3678 if (!tid_agg_rx) 3679 goto out; 3680 3681 spin_lock_bh(&tid_agg_rx->reorder_lock); 3682 3683 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3684 int release; 3685 3686 /* release all frames in the reorder buffer */ 3687 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3688 IEEE80211_SN_MODULO; 3689 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3690 release, &frames); 3691 /* update ssn to match received ssn */ 3692 tid_agg_rx->head_seq_num = ssn; 3693 } else { 3694 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3695 &frames); 3696 } 3697 3698 /* handle the case that received ssn is behind the mac ssn. 3699 * it can be tid_agg_rx->buf_size behind and still be valid */ 3700 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3701 if (diff >= tid_agg_rx->buf_size) { 3702 tid_agg_rx->reorder_buf_filtered = 0; 3703 goto release; 3704 } 3705 filtered = filtered >> diff; 3706 ssn += diff; 3707 3708 /* update bitmap */ 3709 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3710 int index = (ssn + i) % tid_agg_rx->buf_size; 3711 3712 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3713 if (filtered & BIT_ULL(i)) 3714 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3715 } 3716 3717 /* now process also frames that the filter marking released */ 3718 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3719 3720 release: 3721 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3722 3723 ieee80211_rx_handlers(&rx, &frames); 3724 3725 out: 3726 rcu_read_unlock(); 3727 } 3728 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3729 3730 /* main receive path */ 3731 3732 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3733 { 3734 struct ieee80211_sub_if_data *sdata = rx->sdata; 3735 struct sk_buff *skb = rx->skb; 3736 struct ieee80211_hdr *hdr = (void *)skb->data; 3737 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3738 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3739 bool multicast = is_multicast_ether_addr(hdr->addr1); 3740 3741 switch (sdata->vif.type) { 3742 case NL80211_IFTYPE_STATION: 3743 if (!bssid && !sdata->u.mgd.use_4addr) 3744 return false; 3745 if (multicast) 3746 return true; 3747 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3748 case NL80211_IFTYPE_ADHOC: 3749 if (!bssid) 3750 return false; 3751 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3752 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3753 return false; 3754 if (ieee80211_is_beacon(hdr->frame_control)) 3755 return true; 3756 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3757 return false; 3758 if (!multicast && 3759 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3760 return false; 3761 if (!rx->sta) { 3762 int rate_idx; 3763 if (status->encoding != RX_ENC_LEGACY) 3764 rate_idx = 0; /* TODO: HT/VHT rates */ 3765 else 3766 rate_idx = status->rate_idx; 3767 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3768 BIT(rate_idx)); 3769 } 3770 return true; 3771 case NL80211_IFTYPE_OCB: 3772 if (!bssid) 3773 return false; 3774 if (!ieee80211_is_data_present(hdr->frame_control)) 3775 return false; 3776 if (!is_broadcast_ether_addr(bssid)) 3777 return false; 3778 if (!multicast && 3779 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3780 return false; 3781 if (!rx->sta) { 3782 int rate_idx; 3783 if (status->encoding != RX_ENC_LEGACY) 3784 rate_idx = 0; /* TODO: HT rates */ 3785 else 3786 rate_idx = status->rate_idx; 3787 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3788 BIT(rate_idx)); 3789 } 3790 return true; 3791 case NL80211_IFTYPE_MESH_POINT: 3792 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 3793 return false; 3794 if (multicast) 3795 return true; 3796 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3797 case NL80211_IFTYPE_AP_VLAN: 3798 case NL80211_IFTYPE_AP: 3799 if (!bssid) 3800 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3801 3802 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3803 /* 3804 * Accept public action frames even when the 3805 * BSSID doesn't match, this is used for P2P 3806 * and location updates. Note that mac80211 3807 * itself never looks at these frames. 3808 */ 3809 if (!multicast && 3810 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3811 return false; 3812 if (ieee80211_is_public_action(hdr, skb->len)) 3813 return true; 3814 return ieee80211_is_beacon(hdr->frame_control); 3815 } 3816 3817 if (!ieee80211_has_tods(hdr->frame_control)) { 3818 /* ignore data frames to TDLS-peers */ 3819 if (ieee80211_is_data(hdr->frame_control)) 3820 return false; 3821 /* ignore action frames to TDLS-peers */ 3822 if (ieee80211_is_action(hdr->frame_control) && 3823 !is_broadcast_ether_addr(bssid) && 3824 !ether_addr_equal(bssid, hdr->addr1)) 3825 return false; 3826 } 3827 3828 /* 3829 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 3830 * the BSSID - we've checked that already but may have accepted 3831 * the wildcard (ff:ff:ff:ff:ff:ff). 3832 * 3833 * It also says: 3834 * The BSSID of the Data frame is determined as follows: 3835 * a) If the STA is contained within an AP or is associated 3836 * with an AP, the BSSID is the address currently in use 3837 * by the STA contained in the AP. 3838 * 3839 * So we should not accept data frames with an address that's 3840 * multicast. 3841 * 3842 * Accepting it also opens a security problem because stations 3843 * could encrypt it with the GTK and inject traffic that way. 3844 */ 3845 if (ieee80211_is_data(hdr->frame_control) && multicast) 3846 return false; 3847 3848 return true; 3849 case NL80211_IFTYPE_WDS: 3850 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3851 return false; 3852 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 3853 case NL80211_IFTYPE_P2P_DEVICE: 3854 return ieee80211_is_public_action(hdr, skb->len) || 3855 ieee80211_is_probe_req(hdr->frame_control) || 3856 ieee80211_is_probe_resp(hdr->frame_control) || 3857 ieee80211_is_beacon(hdr->frame_control); 3858 case NL80211_IFTYPE_NAN: 3859 /* Currently no frames on NAN interface are allowed */ 3860 return false; 3861 default: 3862 break; 3863 } 3864 3865 WARN_ON_ONCE(1); 3866 return false; 3867 } 3868 3869 void ieee80211_check_fast_rx(struct sta_info *sta) 3870 { 3871 struct ieee80211_sub_if_data *sdata = sta->sdata; 3872 struct ieee80211_local *local = sdata->local; 3873 struct ieee80211_key *key; 3874 struct ieee80211_fast_rx fastrx = { 3875 .dev = sdata->dev, 3876 .vif_type = sdata->vif.type, 3877 .control_port_protocol = sdata->control_port_protocol, 3878 }, *old, *new = NULL; 3879 bool assign = false; 3880 3881 /* use sparse to check that we don't return without updating */ 3882 __acquire(check_fast_rx); 3883 3884 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 3885 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 3886 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 3887 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 3888 3889 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 3890 3891 /* fast-rx doesn't do reordering */ 3892 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 3893 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 3894 goto clear; 3895 3896 switch (sdata->vif.type) { 3897 case NL80211_IFTYPE_STATION: 3898 if (sta->sta.tdls) { 3899 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3900 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3901 fastrx.expected_ds_bits = 0; 3902 } else { 3903 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 3904 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3905 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 3906 fastrx.expected_ds_bits = 3907 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3908 } 3909 3910 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 3911 fastrx.expected_ds_bits |= 3912 cpu_to_le16(IEEE80211_FCTL_TODS); 3913 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3914 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 3915 } 3916 3917 if (!sdata->u.mgd.powersave) 3918 break; 3919 3920 /* software powersave is a huge mess, avoid all of it */ 3921 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 3922 goto clear; 3923 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 3924 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 3925 goto clear; 3926 break; 3927 case NL80211_IFTYPE_AP_VLAN: 3928 case NL80211_IFTYPE_AP: 3929 /* parallel-rx requires this, at least with calls to 3930 * ieee80211_sta_ps_transition() 3931 */ 3932 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 3933 goto clear; 3934 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3935 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3936 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 3937 3938 fastrx.internal_forward = 3939 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 3940 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 3941 !sdata->u.vlan.sta); 3942 3943 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3944 sdata->u.vlan.sta) { 3945 fastrx.expected_ds_bits |= 3946 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3947 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 3948 fastrx.internal_forward = 0; 3949 } 3950 3951 break; 3952 default: 3953 goto clear; 3954 } 3955 3956 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 3957 goto clear; 3958 3959 rcu_read_lock(); 3960 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 3961 if (key) { 3962 switch (key->conf.cipher) { 3963 case WLAN_CIPHER_SUITE_TKIP: 3964 /* we don't want to deal with MMIC in fast-rx */ 3965 goto clear_rcu; 3966 case WLAN_CIPHER_SUITE_CCMP: 3967 case WLAN_CIPHER_SUITE_CCMP_256: 3968 case WLAN_CIPHER_SUITE_GCMP: 3969 case WLAN_CIPHER_SUITE_GCMP_256: 3970 break; 3971 default: 3972 /* we also don't want to deal with WEP or cipher scheme 3973 * since those require looking up the key idx in the 3974 * frame, rather than assuming the PTK is used 3975 * (we need to revisit this once we implement the real 3976 * PTK index, which is now valid in the spec, but we 3977 * haven't implemented that part yet) 3978 */ 3979 goto clear_rcu; 3980 } 3981 3982 fastrx.key = true; 3983 fastrx.icv_len = key->conf.icv_len; 3984 } 3985 3986 assign = true; 3987 clear_rcu: 3988 rcu_read_unlock(); 3989 clear: 3990 __release(check_fast_rx); 3991 3992 if (assign) 3993 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 3994 3995 spin_lock_bh(&sta->lock); 3996 old = rcu_dereference_protected(sta->fast_rx, true); 3997 rcu_assign_pointer(sta->fast_rx, new); 3998 spin_unlock_bh(&sta->lock); 3999 4000 if (old) 4001 kfree_rcu(old, rcu_head); 4002 } 4003 4004 void ieee80211_clear_fast_rx(struct sta_info *sta) 4005 { 4006 struct ieee80211_fast_rx *old; 4007 4008 spin_lock_bh(&sta->lock); 4009 old = rcu_dereference_protected(sta->fast_rx, true); 4010 RCU_INIT_POINTER(sta->fast_rx, NULL); 4011 spin_unlock_bh(&sta->lock); 4012 4013 if (old) 4014 kfree_rcu(old, rcu_head); 4015 } 4016 4017 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4018 { 4019 struct ieee80211_local *local = sdata->local; 4020 struct sta_info *sta; 4021 4022 lockdep_assert_held(&local->sta_mtx); 4023 4024 list_for_each_entry_rcu(sta, &local->sta_list, list) { 4025 if (sdata != sta->sdata && 4026 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4027 continue; 4028 ieee80211_check_fast_rx(sta); 4029 } 4030 } 4031 4032 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4033 { 4034 struct ieee80211_local *local = sdata->local; 4035 4036 mutex_lock(&local->sta_mtx); 4037 __ieee80211_check_fast_rx_iface(sdata); 4038 mutex_unlock(&local->sta_mtx); 4039 } 4040 4041 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4042 struct ieee80211_fast_rx *fast_rx) 4043 { 4044 struct sk_buff *skb = rx->skb; 4045 struct ieee80211_hdr *hdr = (void *)skb->data; 4046 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4047 struct sta_info *sta = rx->sta; 4048 int orig_len = skb->len; 4049 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4050 int snap_offs = hdrlen; 4051 struct { 4052 u8 snap[sizeof(rfc1042_header)]; 4053 __be16 proto; 4054 } *payload __aligned(2); 4055 struct { 4056 u8 da[ETH_ALEN]; 4057 u8 sa[ETH_ALEN]; 4058 } addrs __aligned(2); 4059 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4060 4061 if (fast_rx->uses_rss) 4062 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4063 4064 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4065 * to a common data structure; drivers can implement that per queue 4066 * but we don't have that information in mac80211 4067 */ 4068 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4069 return false; 4070 4071 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4072 4073 /* If using encryption, we also need to have: 4074 * - PN_VALIDATED: similar, but the implementation is tricky 4075 * - DECRYPTED: necessary for PN_VALIDATED 4076 */ 4077 if (fast_rx->key && 4078 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4079 return false; 4080 4081 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4082 return false; 4083 4084 if (unlikely(ieee80211_is_frag(hdr))) 4085 return false; 4086 4087 /* Since our interface address cannot be multicast, this 4088 * implicitly also rejects multicast frames without the 4089 * explicit check. 4090 * 4091 * We shouldn't get any *data* frames not addressed to us 4092 * (AP mode will accept multicast *management* frames), but 4093 * punting here will make it go through the full checks in 4094 * ieee80211_accept_frame(). 4095 */ 4096 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4097 return false; 4098 4099 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4100 IEEE80211_FCTL_TODS)) != 4101 fast_rx->expected_ds_bits) 4102 return false; 4103 4104 /* assign the key to drop unencrypted frames (later) 4105 * and strip the IV/MIC if necessary 4106 */ 4107 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4108 /* GCMP header length is the same */ 4109 snap_offs += IEEE80211_CCMP_HDR_LEN; 4110 } 4111 4112 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4113 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4114 goto drop; 4115 4116 payload = (void *)(skb->data + snap_offs); 4117 4118 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4119 return false; 4120 4121 /* Don't handle these here since they require special code. 4122 * Accept AARP and IPX even though they should come with a 4123 * bridge-tunnel header - but if we get them this way then 4124 * there's little point in discarding them. 4125 */ 4126 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4127 payload->proto == fast_rx->control_port_protocol)) 4128 return false; 4129 } 4130 4131 /* after this point, don't punt to the slowpath! */ 4132 4133 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4134 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4135 goto drop; 4136 4137 if (unlikely(fast_rx->sta_notify)) { 4138 ieee80211_sta_rx_notify(rx->sdata, hdr); 4139 fast_rx->sta_notify = false; 4140 } 4141 4142 /* statistics part of ieee80211_rx_h_sta_process() */ 4143 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4144 stats->last_signal = status->signal; 4145 if (!fast_rx->uses_rss) 4146 ewma_signal_add(&sta->rx_stats_avg.signal, 4147 -status->signal); 4148 } 4149 4150 if (status->chains) { 4151 int i; 4152 4153 stats->chains = status->chains; 4154 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4155 int signal = status->chain_signal[i]; 4156 4157 if (!(status->chains & BIT(i))) 4158 continue; 4159 4160 stats->chain_signal_last[i] = signal; 4161 if (!fast_rx->uses_rss) 4162 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4163 -signal); 4164 } 4165 } 4166 /* end of statistics */ 4167 4168 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4169 goto drop; 4170 4171 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4172 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4173 RX_QUEUED) 4174 goto drop; 4175 4176 return true; 4177 } 4178 4179 stats->last_rx = jiffies; 4180 stats->last_rate = sta_stats_encode_rate(status); 4181 4182 stats->fragments++; 4183 stats->packets++; 4184 4185 /* do the header conversion - first grab the addresses */ 4186 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4187 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4188 /* remove the SNAP but leave the ethertype */ 4189 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4190 /* push the addresses in front */ 4191 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4192 4193 skb->dev = fast_rx->dev; 4194 4195 ieee80211_rx_stats(fast_rx->dev, skb->len); 4196 4197 /* The seqno index has the same property as needed 4198 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4199 * for non-QoS-data frames. Here we know it's a data 4200 * frame, so count MSDUs. 4201 */ 4202 u64_stats_update_begin(&stats->syncp); 4203 stats->msdu[rx->seqno_idx]++; 4204 stats->bytes += orig_len; 4205 u64_stats_update_end(&stats->syncp); 4206 4207 if (fast_rx->internal_forward) { 4208 struct sk_buff *xmit_skb = NULL; 4209 bool multicast = is_multicast_ether_addr(skb->data); 4210 4211 if (multicast) { 4212 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4213 } else if (sta_info_get(rx->sdata, skb->data)) { 4214 xmit_skb = skb; 4215 skb = NULL; 4216 } 4217 4218 if (xmit_skb) { 4219 /* 4220 * Send to wireless media and increase priority by 256 4221 * to keep the received priority instead of 4222 * reclassifying the frame (see cfg80211_classify8021d). 4223 */ 4224 xmit_skb->priority += 256; 4225 xmit_skb->protocol = htons(ETH_P_802_3); 4226 skb_reset_network_header(xmit_skb); 4227 skb_reset_mac_header(xmit_skb); 4228 dev_queue_xmit(xmit_skb); 4229 } 4230 4231 if (!skb) 4232 return true; 4233 } 4234 4235 /* deliver to local stack */ 4236 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4237 memset(skb->cb, 0, sizeof(skb->cb)); 4238 if (rx->napi) 4239 napi_gro_receive(rx->napi, skb); 4240 else 4241 netif_receive_skb(skb); 4242 4243 return true; 4244 drop: 4245 dev_kfree_skb(skb); 4246 stats->dropped++; 4247 return true; 4248 } 4249 4250 /* 4251 * This function returns whether or not the SKB 4252 * was destined for RX processing or not, which, 4253 * if consume is true, is equivalent to whether 4254 * or not the skb was consumed. 4255 */ 4256 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4257 struct sk_buff *skb, bool consume) 4258 { 4259 struct ieee80211_local *local = rx->local; 4260 struct ieee80211_sub_if_data *sdata = rx->sdata; 4261 4262 rx->skb = skb; 4263 4264 /* See if we can do fast-rx; if we have to copy we already lost, 4265 * so punt in that case. We should never have to deliver a data 4266 * frame to multiple interfaces anyway. 4267 * 4268 * We skip the ieee80211_accept_frame() call and do the necessary 4269 * checking inside ieee80211_invoke_fast_rx(). 4270 */ 4271 if (consume && rx->sta) { 4272 struct ieee80211_fast_rx *fast_rx; 4273 4274 fast_rx = rcu_dereference(rx->sta->fast_rx); 4275 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4276 return true; 4277 } 4278 4279 if (!ieee80211_accept_frame(rx)) 4280 return false; 4281 4282 if (!consume) { 4283 skb = skb_copy(skb, GFP_ATOMIC); 4284 if (!skb) { 4285 if (net_ratelimit()) 4286 wiphy_debug(local->hw.wiphy, 4287 "failed to copy skb for %s\n", 4288 sdata->name); 4289 return true; 4290 } 4291 4292 rx->skb = skb; 4293 } 4294 4295 ieee80211_invoke_rx_handlers(rx); 4296 return true; 4297 } 4298 4299 /* 4300 * This is the actual Rx frames handler. as it belongs to Rx path it must 4301 * be called with rcu_read_lock protection. 4302 */ 4303 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4304 struct ieee80211_sta *pubsta, 4305 struct sk_buff *skb, 4306 struct napi_struct *napi) 4307 { 4308 struct ieee80211_local *local = hw_to_local(hw); 4309 struct ieee80211_sub_if_data *sdata; 4310 struct ieee80211_hdr *hdr; 4311 __le16 fc; 4312 struct ieee80211_rx_data rx; 4313 struct ieee80211_sub_if_data *prev; 4314 struct rhlist_head *tmp; 4315 int err = 0; 4316 4317 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4318 memset(&rx, 0, sizeof(rx)); 4319 rx.skb = skb; 4320 rx.local = local; 4321 rx.napi = napi; 4322 4323 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4324 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4325 4326 if (ieee80211_is_mgmt(fc)) { 4327 /* drop frame if too short for header */ 4328 if (skb->len < ieee80211_hdrlen(fc)) 4329 err = -ENOBUFS; 4330 else 4331 err = skb_linearize(skb); 4332 } else { 4333 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4334 } 4335 4336 if (err) { 4337 dev_kfree_skb(skb); 4338 return; 4339 } 4340 4341 hdr = (struct ieee80211_hdr *)skb->data; 4342 ieee80211_parse_qos(&rx); 4343 ieee80211_verify_alignment(&rx); 4344 4345 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4346 ieee80211_is_beacon(hdr->frame_control))) 4347 ieee80211_scan_rx(local, skb); 4348 4349 if (ieee80211_is_data(fc)) { 4350 struct sta_info *sta, *prev_sta; 4351 4352 if (pubsta) { 4353 rx.sta = container_of(pubsta, struct sta_info, sta); 4354 rx.sdata = rx.sta->sdata; 4355 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4356 return; 4357 goto out; 4358 } 4359 4360 prev_sta = NULL; 4361 4362 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4363 if (!prev_sta) { 4364 prev_sta = sta; 4365 continue; 4366 } 4367 4368 rx.sta = prev_sta; 4369 rx.sdata = prev_sta->sdata; 4370 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4371 4372 prev_sta = sta; 4373 } 4374 4375 if (prev_sta) { 4376 rx.sta = prev_sta; 4377 rx.sdata = prev_sta->sdata; 4378 4379 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4380 return; 4381 goto out; 4382 } 4383 } 4384 4385 prev = NULL; 4386 4387 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4388 if (!ieee80211_sdata_running(sdata)) 4389 continue; 4390 4391 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4392 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4393 continue; 4394 4395 /* 4396 * frame is destined for this interface, but if it's 4397 * not also for the previous one we handle that after 4398 * the loop to avoid copying the SKB once too much 4399 */ 4400 4401 if (!prev) { 4402 prev = sdata; 4403 continue; 4404 } 4405 4406 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4407 rx.sdata = prev; 4408 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4409 4410 prev = sdata; 4411 } 4412 4413 if (prev) { 4414 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4415 rx.sdata = prev; 4416 4417 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4418 return; 4419 } 4420 4421 out: 4422 dev_kfree_skb(skb); 4423 } 4424 4425 /* 4426 * This is the receive path handler. It is called by a low level driver when an 4427 * 802.11 MPDU is received from the hardware. 4428 */ 4429 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4430 struct sk_buff *skb, struct napi_struct *napi) 4431 { 4432 struct ieee80211_local *local = hw_to_local(hw); 4433 struct ieee80211_rate *rate = NULL; 4434 struct ieee80211_supported_band *sband; 4435 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4436 4437 WARN_ON_ONCE(softirq_count() == 0); 4438 4439 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4440 goto drop; 4441 4442 sband = local->hw.wiphy->bands[status->band]; 4443 if (WARN_ON(!sband)) 4444 goto drop; 4445 4446 /* 4447 * If we're suspending, it is possible although not too likely 4448 * that we'd be receiving frames after having already partially 4449 * quiesced the stack. We can't process such frames then since 4450 * that might, for example, cause stations to be added or other 4451 * driver callbacks be invoked. 4452 */ 4453 if (unlikely(local->quiescing || local->suspended)) 4454 goto drop; 4455 4456 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4457 if (unlikely(local->in_reconfig)) 4458 goto drop; 4459 4460 /* 4461 * The same happens when we're not even started, 4462 * but that's worth a warning. 4463 */ 4464 if (WARN_ON(!local->started)) 4465 goto drop; 4466 4467 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4468 /* 4469 * Validate the rate, unless a PLCP error means that 4470 * we probably can't have a valid rate here anyway. 4471 */ 4472 4473 switch (status->encoding) { 4474 case RX_ENC_HT: 4475 /* 4476 * rate_idx is MCS index, which can be [0-76] 4477 * as documented on: 4478 * 4479 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4480 * 4481 * Anything else would be some sort of driver or 4482 * hardware error. The driver should catch hardware 4483 * errors. 4484 */ 4485 if (WARN(status->rate_idx > 76, 4486 "Rate marked as an HT rate but passed " 4487 "status->rate_idx is not " 4488 "an MCS index [0-76]: %d (0x%02x)\n", 4489 status->rate_idx, 4490 status->rate_idx)) 4491 goto drop; 4492 break; 4493 case RX_ENC_VHT: 4494 if (WARN_ONCE(status->rate_idx > 9 || 4495 !status->nss || 4496 status->nss > 8, 4497 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4498 status->rate_idx, status->nss)) 4499 goto drop; 4500 break; 4501 case RX_ENC_HE: 4502 if (WARN_ONCE(status->rate_idx > 11 || 4503 !status->nss || 4504 status->nss > 8, 4505 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4506 status->rate_idx, status->nss)) 4507 goto drop; 4508 break; 4509 default: 4510 WARN_ON_ONCE(1); 4511 /* fall through */ 4512 case RX_ENC_LEGACY: 4513 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4514 goto drop; 4515 rate = &sband->bitrates[status->rate_idx]; 4516 } 4517 } 4518 4519 status->rx_flags = 0; 4520 4521 /* 4522 * key references and virtual interfaces are protected using RCU 4523 * and this requires that we are in a read-side RCU section during 4524 * receive processing 4525 */ 4526 rcu_read_lock(); 4527 4528 /* 4529 * Frames with failed FCS/PLCP checksum are not returned, 4530 * all other frames are returned without radiotap header 4531 * if it was previously present. 4532 * Also, frames with less than 16 bytes are dropped. 4533 */ 4534 skb = ieee80211_rx_monitor(local, skb, rate); 4535 if (!skb) { 4536 rcu_read_unlock(); 4537 return; 4538 } 4539 4540 ieee80211_tpt_led_trig_rx(local, 4541 ((struct ieee80211_hdr *)skb->data)->frame_control, 4542 skb->len); 4543 4544 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4545 4546 rcu_read_unlock(); 4547 4548 return; 4549 drop: 4550 kfree_skb(skb); 4551 } 4552 EXPORT_SYMBOL(ieee80211_rx_napi); 4553 4554 /* This is a version of the rx handler that can be called from hard irq 4555 * context. Post the skb on the queue and schedule the tasklet */ 4556 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4557 { 4558 struct ieee80211_local *local = hw_to_local(hw); 4559 4560 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4561 4562 skb->pkt_type = IEEE80211_RX_MSG; 4563 skb_queue_tail(&local->skb_queue, skb); 4564 tasklet_schedule(&local->tasklet); 4565 } 4566 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4567