xref: /openbmc/linux/net/mac80211/rx.c (revision ec2da07c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9  * Copyright (C) 2018-2019 Intel Corporation
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bitops.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24 
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34 
35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
36 {
37 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
38 
39 	u64_stats_update_begin(&tstats->syncp);
40 	tstats->rx_packets++;
41 	tstats->rx_bytes += len;
42 	u64_stats_update_end(&tstats->syncp);
43 }
44 
45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
46 			       enum nl80211_iftype type)
47 {
48 	__le16 fc = hdr->frame_control;
49 
50 	if (ieee80211_is_data(fc)) {
51 		if (len < 24) /* drop incorrect hdr len (data) */
52 			return NULL;
53 
54 		if (ieee80211_has_a4(fc))
55 			return NULL;
56 		if (ieee80211_has_tods(fc))
57 			return hdr->addr1;
58 		if (ieee80211_has_fromds(fc))
59 			return hdr->addr2;
60 
61 		return hdr->addr3;
62 	}
63 
64 	if (ieee80211_is_mgmt(fc)) {
65 		if (len < 24) /* drop incorrect hdr len (mgmt) */
66 			return NULL;
67 		return hdr->addr3;
68 	}
69 
70 	if (ieee80211_is_ctl(fc)) {
71 		if (ieee80211_is_pspoll(fc))
72 			return hdr->addr1;
73 
74 		if (ieee80211_is_back_req(fc)) {
75 			switch (type) {
76 			case NL80211_IFTYPE_STATION:
77 				return hdr->addr2;
78 			case NL80211_IFTYPE_AP:
79 			case NL80211_IFTYPE_AP_VLAN:
80 				return hdr->addr1;
81 			default:
82 				break; /* fall through to the return */
83 			}
84 		}
85 	}
86 
87 	return NULL;
88 }
89 
90 /*
91  * monitor mode reception
92  *
93  * This function cleans up the SKB, i.e. it removes all the stuff
94  * only useful for monitoring.
95  */
96 static void remove_monitor_info(struct sk_buff *skb,
97 				unsigned int present_fcs_len,
98 				unsigned int rtap_space)
99 {
100 	if (present_fcs_len)
101 		__pskb_trim(skb, skb->len - present_fcs_len);
102 	__pskb_pull(skb, rtap_space);
103 }
104 
105 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
106 				     unsigned int rtap_space)
107 {
108 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
109 	struct ieee80211_hdr *hdr;
110 
111 	hdr = (void *)(skb->data + rtap_space);
112 
113 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
114 			    RX_FLAG_FAILED_PLCP_CRC |
115 			    RX_FLAG_ONLY_MONITOR |
116 			    RX_FLAG_NO_PSDU))
117 		return true;
118 
119 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
120 		return true;
121 
122 	if (ieee80211_is_ctl(hdr->frame_control) &&
123 	    !ieee80211_is_pspoll(hdr->frame_control) &&
124 	    !ieee80211_is_back_req(hdr->frame_control))
125 		return true;
126 
127 	return false;
128 }
129 
130 static int
131 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
132 			     struct ieee80211_rx_status *status,
133 			     struct sk_buff *skb)
134 {
135 	int len;
136 
137 	/* always present fields */
138 	len = sizeof(struct ieee80211_radiotap_header) + 8;
139 
140 	/* allocate extra bitmaps */
141 	if (status->chains)
142 		len += 4 * hweight8(status->chains);
143 	/* vendor presence bitmap */
144 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
145 		len += 4;
146 
147 	if (ieee80211_have_rx_timestamp(status)) {
148 		len = ALIGN(len, 8);
149 		len += 8;
150 	}
151 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
152 		len += 1;
153 
154 	/* antenna field, if we don't have per-chain info */
155 	if (!status->chains)
156 		len += 1;
157 
158 	/* padding for RX_FLAGS if necessary */
159 	len = ALIGN(len, 2);
160 
161 	if (status->encoding == RX_ENC_HT) /* HT info */
162 		len += 3;
163 
164 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
165 		len = ALIGN(len, 4);
166 		len += 8;
167 	}
168 
169 	if (status->encoding == RX_ENC_VHT) {
170 		len = ALIGN(len, 2);
171 		len += 12;
172 	}
173 
174 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
175 		len = ALIGN(len, 8);
176 		len += 12;
177 	}
178 
179 	if (status->encoding == RX_ENC_HE &&
180 	    status->flag & RX_FLAG_RADIOTAP_HE) {
181 		len = ALIGN(len, 2);
182 		len += 12;
183 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
184 	}
185 
186 	if (status->encoding == RX_ENC_HE &&
187 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
188 		len = ALIGN(len, 2);
189 		len += 12;
190 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
191 	}
192 
193 	if (status->flag & RX_FLAG_NO_PSDU)
194 		len += 1;
195 
196 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
197 		len = ALIGN(len, 2);
198 		len += 4;
199 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
200 	}
201 
202 	if (status->chains) {
203 		/* antenna and antenna signal fields */
204 		len += 2 * hweight8(status->chains);
205 	}
206 
207 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
208 		struct ieee80211_vendor_radiotap *rtap;
209 		int vendor_data_offset = 0;
210 
211 		/*
212 		 * The position to look at depends on the existence (or non-
213 		 * existence) of other elements, so take that into account...
214 		 */
215 		if (status->flag & RX_FLAG_RADIOTAP_HE)
216 			vendor_data_offset +=
217 				sizeof(struct ieee80211_radiotap_he);
218 		if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
219 			vendor_data_offset +=
220 				sizeof(struct ieee80211_radiotap_he_mu);
221 		if (status->flag & RX_FLAG_RADIOTAP_LSIG)
222 			vendor_data_offset +=
223 				sizeof(struct ieee80211_radiotap_lsig);
224 
225 		rtap = (void *)&skb->data[vendor_data_offset];
226 
227 		/* alignment for fixed 6-byte vendor data header */
228 		len = ALIGN(len, 2);
229 		/* vendor data header */
230 		len += 6;
231 		if (WARN_ON(rtap->align == 0))
232 			rtap->align = 1;
233 		len = ALIGN(len, rtap->align);
234 		len += rtap->len + rtap->pad;
235 	}
236 
237 	return len;
238 }
239 
240 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
241 					 struct sk_buff *skb,
242 					 int rtap_space)
243 {
244 	struct {
245 		struct ieee80211_hdr_3addr hdr;
246 		u8 category;
247 		u8 action_code;
248 	} __packed __aligned(2) action;
249 
250 	if (!sdata)
251 		return;
252 
253 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
254 
255 	if (skb->len < rtap_space + sizeof(action) +
256 		       VHT_MUMIMO_GROUPS_DATA_LEN)
257 		return;
258 
259 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
260 		return;
261 
262 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
263 
264 	if (!ieee80211_is_action(action.hdr.frame_control))
265 		return;
266 
267 	if (action.category != WLAN_CATEGORY_VHT)
268 		return;
269 
270 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
271 		return;
272 
273 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
274 		return;
275 
276 	skb = skb_copy(skb, GFP_ATOMIC);
277 	if (!skb)
278 		return;
279 
280 	skb_queue_tail(&sdata->skb_queue, skb);
281 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
282 }
283 
284 /*
285  * ieee80211_add_rx_radiotap_header - add radiotap header
286  *
287  * add a radiotap header containing all the fields which the hardware provided.
288  */
289 static void
290 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
291 				 struct sk_buff *skb,
292 				 struct ieee80211_rate *rate,
293 				 int rtap_len, bool has_fcs)
294 {
295 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
296 	struct ieee80211_radiotap_header *rthdr;
297 	unsigned char *pos;
298 	__le32 *it_present;
299 	u32 it_present_val;
300 	u16 rx_flags = 0;
301 	u16 channel_flags = 0;
302 	int mpdulen, chain;
303 	unsigned long chains = status->chains;
304 	struct ieee80211_vendor_radiotap rtap = {};
305 	struct ieee80211_radiotap_he he = {};
306 	struct ieee80211_radiotap_he_mu he_mu = {};
307 	struct ieee80211_radiotap_lsig lsig = {};
308 
309 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
310 		he = *(struct ieee80211_radiotap_he *)skb->data;
311 		skb_pull(skb, sizeof(he));
312 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
313 	}
314 
315 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
316 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
317 		skb_pull(skb, sizeof(he_mu));
318 	}
319 
320 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
321 		lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
322 		skb_pull(skb, sizeof(lsig));
323 	}
324 
325 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
326 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
327 		/* rtap.len and rtap.pad are undone immediately */
328 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
329 	}
330 
331 	mpdulen = skb->len;
332 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
333 		mpdulen += FCS_LEN;
334 
335 	rthdr = skb_push(skb, rtap_len);
336 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
337 	it_present = &rthdr->it_present;
338 
339 	/* radiotap header, set always present flags */
340 	rthdr->it_len = cpu_to_le16(rtap_len);
341 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
342 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
343 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
344 
345 	if (!status->chains)
346 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
347 
348 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
349 		it_present_val |=
350 			BIT(IEEE80211_RADIOTAP_EXT) |
351 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
352 		put_unaligned_le32(it_present_val, it_present);
353 		it_present++;
354 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
355 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
356 	}
357 
358 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
359 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
360 				  BIT(IEEE80211_RADIOTAP_EXT);
361 		put_unaligned_le32(it_present_val, it_present);
362 		it_present++;
363 		it_present_val = rtap.present;
364 	}
365 
366 	put_unaligned_le32(it_present_val, it_present);
367 
368 	pos = (void *)(it_present + 1);
369 
370 	/* the order of the following fields is important */
371 
372 	/* IEEE80211_RADIOTAP_TSFT */
373 	if (ieee80211_have_rx_timestamp(status)) {
374 		/* padding */
375 		while ((pos - (u8 *)rthdr) & 7)
376 			*pos++ = 0;
377 		put_unaligned_le64(
378 			ieee80211_calculate_rx_timestamp(local, status,
379 							 mpdulen, 0),
380 			pos);
381 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
382 		pos += 8;
383 	}
384 
385 	/* IEEE80211_RADIOTAP_FLAGS */
386 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
387 		*pos |= IEEE80211_RADIOTAP_F_FCS;
388 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
389 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
390 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
391 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
392 	pos++;
393 
394 	/* IEEE80211_RADIOTAP_RATE */
395 	if (!rate || status->encoding != RX_ENC_LEGACY) {
396 		/*
397 		 * Without rate information don't add it. If we have,
398 		 * MCS information is a separate field in radiotap,
399 		 * added below. The byte here is needed as padding
400 		 * for the channel though, so initialise it to 0.
401 		 */
402 		*pos = 0;
403 	} else {
404 		int shift = 0;
405 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
406 		if (status->bw == RATE_INFO_BW_10)
407 			shift = 1;
408 		else if (status->bw == RATE_INFO_BW_5)
409 			shift = 2;
410 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
411 	}
412 	pos++;
413 
414 	/* IEEE80211_RADIOTAP_CHANNEL */
415 	put_unaligned_le16(status->freq, pos);
416 	pos += 2;
417 	if (status->bw == RATE_INFO_BW_10)
418 		channel_flags |= IEEE80211_CHAN_HALF;
419 	else if (status->bw == RATE_INFO_BW_5)
420 		channel_flags |= IEEE80211_CHAN_QUARTER;
421 
422 	if (status->band == NL80211_BAND_5GHZ)
423 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
424 	else if (status->encoding != RX_ENC_LEGACY)
425 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
426 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
427 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
428 	else if (rate)
429 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
430 	else
431 		channel_flags |= IEEE80211_CHAN_2GHZ;
432 	put_unaligned_le16(channel_flags, pos);
433 	pos += 2;
434 
435 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
436 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
437 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
438 		*pos = status->signal;
439 		rthdr->it_present |=
440 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
441 		pos++;
442 	}
443 
444 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
445 
446 	if (!status->chains) {
447 		/* IEEE80211_RADIOTAP_ANTENNA */
448 		*pos = status->antenna;
449 		pos++;
450 	}
451 
452 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
453 
454 	/* IEEE80211_RADIOTAP_RX_FLAGS */
455 	/* ensure 2 byte alignment for the 2 byte field as required */
456 	if ((pos - (u8 *)rthdr) & 1)
457 		*pos++ = 0;
458 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
459 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
460 	put_unaligned_le16(rx_flags, pos);
461 	pos += 2;
462 
463 	if (status->encoding == RX_ENC_HT) {
464 		unsigned int stbc;
465 
466 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
467 		*pos++ = local->hw.radiotap_mcs_details;
468 		*pos = 0;
469 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
470 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
471 		if (status->bw == RATE_INFO_BW_40)
472 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
473 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
474 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
475 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
476 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
477 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
478 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
479 		pos++;
480 		*pos++ = status->rate_idx;
481 	}
482 
483 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
484 		u16 flags = 0;
485 
486 		/* ensure 4 byte alignment */
487 		while ((pos - (u8 *)rthdr) & 3)
488 			pos++;
489 		rthdr->it_present |=
490 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
491 		put_unaligned_le32(status->ampdu_reference, pos);
492 		pos += 4;
493 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
494 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
495 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
496 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
497 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
498 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
499 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
500 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
501 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
502 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
503 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
504 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
505 		put_unaligned_le16(flags, pos);
506 		pos += 2;
507 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
508 			*pos++ = status->ampdu_delimiter_crc;
509 		else
510 			*pos++ = 0;
511 		*pos++ = 0;
512 	}
513 
514 	if (status->encoding == RX_ENC_VHT) {
515 		u16 known = local->hw.radiotap_vht_details;
516 
517 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
518 		put_unaligned_le16(known, pos);
519 		pos += 2;
520 		/* flags */
521 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
522 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
523 		/* in VHT, STBC is binary */
524 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
525 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
526 		if (status->enc_flags & RX_ENC_FLAG_BF)
527 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
528 		pos++;
529 		/* bandwidth */
530 		switch (status->bw) {
531 		case RATE_INFO_BW_80:
532 			*pos++ = 4;
533 			break;
534 		case RATE_INFO_BW_160:
535 			*pos++ = 11;
536 			break;
537 		case RATE_INFO_BW_40:
538 			*pos++ = 1;
539 			break;
540 		default:
541 			*pos++ = 0;
542 		}
543 		/* MCS/NSS */
544 		*pos = (status->rate_idx << 4) | status->nss;
545 		pos += 4;
546 		/* coding field */
547 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
548 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
549 		pos++;
550 		/* group ID */
551 		pos++;
552 		/* partial_aid */
553 		pos += 2;
554 	}
555 
556 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
557 		u16 accuracy = 0;
558 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
559 
560 		rthdr->it_present |=
561 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
562 
563 		/* ensure 8 byte alignment */
564 		while ((pos - (u8 *)rthdr) & 7)
565 			pos++;
566 
567 		put_unaligned_le64(status->device_timestamp, pos);
568 		pos += sizeof(u64);
569 
570 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
571 			accuracy = local->hw.radiotap_timestamp.accuracy;
572 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
573 		}
574 		put_unaligned_le16(accuracy, pos);
575 		pos += sizeof(u16);
576 
577 		*pos++ = local->hw.radiotap_timestamp.units_pos;
578 		*pos++ = flags;
579 	}
580 
581 	if (status->encoding == RX_ENC_HE &&
582 	    status->flag & RX_FLAG_RADIOTAP_HE) {
583 #define HE_PREP(f, val)	le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
584 
585 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
586 			he.data6 |= HE_PREP(DATA6_NSTS,
587 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
588 						      status->enc_flags));
589 			he.data3 |= HE_PREP(DATA3_STBC, 1);
590 		} else {
591 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
592 		}
593 
594 #define CHECK_GI(s) \
595 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
596 		     (int)NL80211_RATE_INFO_HE_GI_##s)
597 
598 		CHECK_GI(0_8);
599 		CHECK_GI(1_6);
600 		CHECK_GI(3_2);
601 
602 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
603 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
604 		he.data3 |= HE_PREP(DATA3_CODING,
605 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
606 
607 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
608 
609 		switch (status->bw) {
610 		case RATE_INFO_BW_20:
611 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
612 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
613 			break;
614 		case RATE_INFO_BW_40:
615 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
616 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
617 			break;
618 		case RATE_INFO_BW_80:
619 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
620 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
621 			break;
622 		case RATE_INFO_BW_160:
623 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
624 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
625 			break;
626 		case RATE_INFO_BW_HE_RU:
627 #define CHECK_RU_ALLOC(s) \
628 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
629 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
630 
631 			CHECK_RU_ALLOC(26);
632 			CHECK_RU_ALLOC(52);
633 			CHECK_RU_ALLOC(106);
634 			CHECK_RU_ALLOC(242);
635 			CHECK_RU_ALLOC(484);
636 			CHECK_RU_ALLOC(996);
637 			CHECK_RU_ALLOC(2x996);
638 
639 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
640 					    status->he_ru + 4);
641 			break;
642 		default:
643 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
644 		}
645 
646 		/* ensure 2 byte alignment */
647 		while ((pos - (u8 *)rthdr) & 1)
648 			pos++;
649 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
650 		memcpy(pos, &he, sizeof(he));
651 		pos += sizeof(he);
652 	}
653 
654 	if (status->encoding == RX_ENC_HE &&
655 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
656 		/* ensure 2 byte alignment */
657 		while ((pos - (u8 *)rthdr) & 1)
658 			pos++;
659 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
660 		memcpy(pos, &he_mu, sizeof(he_mu));
661 		pos += sizeof(he_mu);
662 	}
663 
664 	if (status->flag & RX_FLAG_NO_PSDU) {
665 		rthdr->it_present |=
666 			cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
667 		*pos++ = status->zero_length_psdu_type;
668 	}
669 
670 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
671 		/* ensure 2 byte alignment */
672 		while ((pos - (u8 *)rthdr) & 1)
673 			pos++;
674 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
675 		memcpy(pos, &lsig, sizeof(lsig));
676 		pos += sizeof(lsig);
677 	}
678 
679 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
680 		*pos++ = status->chain_signal[chain];
681 		*pos++ = chain;
682 	}
683 
684 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
685 		/* ensure 2 byte alignment for the vendor field as required */
686 		if ((pos - (u8 *)rthdr) & 1)
687 			*pos++ = 0;
688 		*pos++ = rtap.oui[0];
689 		*pos++ = rtap.oui[1];
690 		*pos++ = rtap.oui[2];
691 		*pos++ = rtap.subns;
692 		put_unaligned_le16(rtap.len, pos);
693 		pos += 2;
694 		/* align the actual payload as requested */
695 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
696 			*pos++ = 0;
697 		/* data (and possible padding) already follows */
698 	}
699 }
700 
701 static struct sk_buff *
702 ieee80211_make_monitor_skb(struct ieee80211_local *local,
703 			   struct sk_buff **origskb,
704 			   struct ieee80211_rate *rate,
705 			   int rtap_space, bool use_origskb)
706 {
707 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
708 	int rt_hdrlen, needed_headroom;
709 	struct sk_buff *skb;
710 
711 	/* room for the radiotap header based on driver features */
712 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
713 	needed_headroom = rt_hdrlen - rtap_space;
714 
715 	if (use_origskb) {
716 		/* only need to expand headroom if necessary */
717 		skb = *origskb;
718 		*origskb = NULL;
719 
720 		/*
721 		 * This shouldn't trigger often because most devices have an
722 		 * RX header they pull before we get here, and that should
723 		 * be big enough for our radiotap information. We should
724 		 * probably export the length to drivers so that we can have
725 		 * them allocate enough headroom to start with.
726 		 */
727 		if (skb_headroom(skb) < needed_headroom &&
728 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
729 			dev_kfree_skb(skb);
730 			return NULL;
731 		}
732 	} else {
733 		/*
734 		 * Need to make a copy and possibly remove radiotap header
735 		 * and FCS from the original.
736 		 */
737 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
738 
739 		if (!skb)
740 			return NULL;
741 	}
742 
743 	/* prepend radiotap information */
744 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
745 
746 	skb_reset_mac_header(skb);
747 	skb->ip_summed = CHECKSUM_UNNECESSARY;
748 	skb->pkt_type = PACKET_OTHERHOST;
749 	skb->protocol = htons(ETH_P_802_2);
750 
751 	return skb;
752 }
753 
754 /*
755  * This function copies a received frame to all monitor interfaces and
756  * returns a cleaned-up SKB that no longer includes the FCS nor the
757  * radiotap header the driver might have added.
758  */
759 static struct sk_buff *
760 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
761 		     struct ieee80211_rate *rate)
762 {
763 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
764 	struct ieee80211_sub_if_data *sdata;
765 	struct sk_buff *monskb = NULL;
766 	int present_fcs_len = 0;
767 	unsigned int rtap_space = 0;
768 	struct ieee80211_sub_if_data *monitor_sdata =
769 		rcu_dereference(local->monitor_sdata);
770 	bool only_monitor = false;
771 	unsigned int min_head_len;
772 
773 	if (status->flag & RX_FLAG_RADIOTAP_HE)
774 		rtap_space += sizeof(struct ieee80211_radiotap_he);
775 
776 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
777 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
778 
779 	if (status->flag & RX_FLAG_RADIOTAP_LSIG)
780 		rtap_space += sizeof(struct ieee80211_radiotap_lsig);
781 
782 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
783 		struct ieee80211_vendor_radiotap *rtap =
784 			(void *)(origskb->data + rtap_space);
785 
786 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
787 	}
788 
789 	min_head_len = rtap_space;
790 
791 	/*
792 	 * First, we may need to make a copy of the skb because
793 	 *  (1) we need to modify it for radiotap (if not present), and
794 	 *  (2) the other RX handlers will modify the skb we got.
795 	 *
796 	 * We don't need to, of course, if we aren't going to return
797 	 * the SKB because it has a bad FCS/PLCP checksum.
798 	 */
799 
800 	if (!(status->flag & RX_FLAG_NO_PSDU)) {
801 		if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
802 			if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
803 				/* driver bug */
804 				WARN_ON(1);
805 				dev_kfree_skb(origskb);
806 				return NULL;
807 			}
808 			present_fcs_len = FCS_LEN;
809 		}
810 
811 		/* also consider the hdr->frame_control */
812 		min_head_len += 2;
813 	}
814 
815 	/* ensure that the expected data elements are in skb head */
816 	if (!pskb_may_pull(origskb, min_head_len)) {
817 		dev_kfree_skb(origskb);
818 		return NULL;
819 	}
820 
821 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
822 
823 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
824 		if (only_monitor) {
825 			dev_kfree_skb(origskb);
826 			return NULL;
827 		}
828 
829 		remove_monitor_info(origskb, present_fcs_len, rtap_space);
830 		return origskb;
831 	}
832 
833 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
834 
835 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
836 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
837 						 &local->mon_list);
838 
839 		if (!monskb)
840 			monskb = ieee80211_make_monitor_skb(local, &origskb,
841 							    rate, rtap_space,
842 							    only_monitor &&
843 							    last_monitor);
844 
845 		if (monskb) {
846 			struct sk_buff *skb;
847 
848 			if (last_monitor) {
849 				skb = monskb;
850 				monskb = NULL;
851 			} else {
852 				skb = skb_clone(monskb, GFP_ATOMIC);
853 			}
854 
855 			if (skb) {
856 				skb->dev = sdata->dev;
857 				ieee80211_rx_stats(skb->dev, skb->len);
858 				netif_receive_skb(skb);
859 			}
860 		}
861 
862 		if (last_monitor)
863 			break;
864 	}
865 
866 	/* this happens if last_monitor was erroneously false */
867 	dev_kfree_skb(monskb);
868 
869 	/* ditto */
870 	if (!origskb)
871 		return NULL;
872 
873 	remove_monitor_info(origskb, present_fcs_len, rtap_space);
874 	return origskb;
875 }
876 
877 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
878 {
879 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
880 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
881 	int tid, seqno_idx, security_idx;
882 
883 	/* does the frame have a qos control field? */
884 	if (ieee80211_is_data_qos(hdr->frame_control)) {
885 		u8 *qc = ieee80211_get_qos_ctl(hdr);
886 		/* frame has qos control */
887 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
888 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
889 			status->rx_flags |= IEEE80211_RX_AMSDU;
890 
891 		seqno_idx = tid;
892 		security_idx = tid;
893 	} else {
894 		/*
895 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
896 		 *
897 		 *	Sequence numbers for management frames, QoS data
898 		 *	frames with a broadcast/multicast address in the
899 		 *	Address 1 field, and all non-QoS data frames sent
900 		 *	by QoS STAs are assigned using an additional single
901 		 *	modulo-4096 counter, [...]
902 		 *
903 		 * We also use that counter for non-QoS STAs.
904 		 */
905 		seqno_idx = IEEE80211_NUM_TIDS;
906 		security_idx = 0;
907 		if (ieee80211_is_mgmt(hdr->frame_control))
908 			security_idx = IEEE80211_NUM_TIDS;
909 		tid = 0;
910 	}
911 
912 	rx->seqno_idx = seqno_idx;
913 	rx->security_idx = security_idx;
914 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
915 	 * For now, set skb->priority to 0 for other cases. */
916 	rx->skb->priority = (tid > 7) ? 0 : tid;
917 }
918 
919 /**
920  * DOC: Packet alignment
921  *
922  * Drivers always need to pass packets that are aligned to two-byte boundaries
923  * to the stack.
924  *
925  * Additionally, should, if possible, align the payload data in a way that
926  * guarantees that the contained IP header is aligned to a four-byte
927  * boundary. In the case of regular frames, this simply means aligning the
928  * payload to a four-byte boundary (because either the IP header is directly
929  * contained, or IV/RFC1042 headers that have a length divisible by four are
930  * in front of it).  If the payload data is not properly aligned and the
931  * architecture doesn't support efficient unaligned operations, mac80211
932  * will align the data.
933  *
934  * With A-MSDU frames, however, the payload data address must yield two modulo
935  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
936  * push the IP header further back to a multiple of four again. Thankfully, the
937  * specs were sane enough this time around to require padding each A-MSDU
938  * subframe to a length that is a multiple of four.
939  *
940  * Padding like Atheros hardware adds which is between the 802.11 header and
941  * the payload is not supported, the driver is required to move the 802.11
942  * header to be directly in front of the payload in that case.
943  */
944 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
945 {
946 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
947 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
948 #endif
949 }
950 
951 
952 /* rx handlers */
953 
954 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
955 {
956 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
957 
958 	if (is_multicast_ether_addr(hdr->addr1))
959 		return 0;
960 
961 	return ieee80211_is_robust_mgmt_frame(skb);
962 }
963 
964 
965 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
966 {
967 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
968 
969 	if (!is_multicast_ether_addr(hdr->addr1))
970 		return 0;
971 
972 	return ieee80211_is_robust_mgmt_frame(skb);
973 }
974 
975 
976 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
977 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
978 {
979 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
980 	struct ieee80211_mmie *mmie;
981 	struct ieee80211_mmie_16 *mmie16;
982 
983 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
984 		return -1;
985 
986 	if (!ieee80211_is_robust_mgmt_frame(skb))
987 		return -1; /* not a robust management frame */
988 
989 	mmie = (struct ieee80211_mmie *)
990 		(skb->data + skb->len - sizeof(*mmie));
991 	if (mmie->element_id == WLAN_EID_MMIE &&
992 	    mmie->length == sizeof(*mmie) - 2)
993 		return le16_to_cpu(mmie->key_id);
994 
995 	mmie16 = (struct ieee80211_mmie_16 *)
996 		(skb->data + skb->len - sizeof(*mmie16));
997 	if (skb->len >= 24 + sizeof(*mmie16) &&
998 	    mmie16->element_id == WLAN_EID_MMIE &&
999 	    mmie16->length == sizeof(*mmie16) - 2)
1000 		return le16_to_cpu(mmie16->key_id);
1001 
1002 	return -1;
1003 }
1004 
1005 static int ieee80211_get_keyid(struct sk_buff *skb,
1006 			       const struct ieee80211_cipher_scheme *cs)
1007 {
1008 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1009 	__le16 fc;
1010 	int hdrlen;
1011 	int minlen;
1012 	u8 key_idx_off;
1013 	u8 key_idx_shift;
1014 	u8 keyid;
1015 
1016 	fc = hdr->frame_control;
1017 	hdrlen = ieee80211_hdrlen(fc);
1018 
1019 	if (cs) {
1020 		minlen = hdrlen + cs->hdr_len;
1021 		key_idx_off = hdrlen + cs->key_idx_off;
1022 		key_idx_shift = cs->key_idx_shift;
1023 	} else {
1024 		/* WEP, TKIP, CCMP and GCMP */
1025 		minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1026 		key_idx_off = hdrlen + 3;
1027 		key_idx_shift = 6;
1028 	}
1029 
1030 	if (unlikely(skb->len < minlen))
1031 		return -EINVAL;
1032 
1033 	skb_copy_bits(skb, key_idx_off, &keyid, 1);
1034 
1035 	if (cs)
1036 		keyid &= cs->key_idx_mask;
1037 	keyid >>= key_idx_shift;
1038 
1039 	/* cs could use more than the usual two bits for the keyid */
1040 	if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1041 		return -EINVAL;
1042 
1043 	return keyid;
1044 }
1045 
1046 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1047 {
1048 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1049 	char *dev_addr = rx->sdata->vif.addr;
1050 
1051 	if (ieee80211_is_data(hdr->frame_control)) {
1052 		if (is_multicast_ether_addr(hdr->addr1)) {
1053 			if (ieee80211_has_tods(hdr->frame_control) ||
1054 			    !ieee80211_has_fromds(hdr->frame_control))
1055 				return RX_DROP_MONITOR;
1056 			if (ether_addr_equal(hdr->addr3, dev_addr))
1057 				return RX_DROP_MONITOR;
1058 		} else {
1059 			if (!ieee80211_has_a4(hdr->frame_control))
1060 				return RX_DROP_MONITOR;
1061 			if (ether_addr_equal(hdr->addr4, dev_addr))
1062 				return RX_DROP_MONITOR;
1063 		}
1064 	}
1065 
1066 	/* If there is not an established peer link and this is not a peer link
1067 	 * establisment frame, beacon or probe, drop the frame.
1068 	 */
1069 
1070 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1071 		struct ieee80211_mgmt *mgmt;
1072 
1073 		if (!ieee80211_is_mgmt(hdr->frame_control))
1074 			return RX_DROP_MONITOR;
1075 
1076 		if (ieee80211_is_action(hdr->frame_control)) {
1077 			u8 category;
1078 
1079 			/* make sure category field is present */
1080 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1081 				return RX_DROP_MONITOR;
1082 
1083 			mgmt = (struct ieee80211_mgmt *)hdr;
1084 			category = mgmt->u.action.category;
1085 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1086 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1087 				return RX_DROP_MONITOR;
1088 			return RX_CONTINUE;
1089 		}
1090 
1091 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1092 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1093 		    ieee80211_is_beacon(hdr->frame_control) ||
1094 		    ieee80211_is_auth(hdr->frame_control))
1095 			return RX_CONTINUE;
1096 
1097 		return RX_DROP_MONITOR;
1098 	}
1099 
1100 	return RX_CONTINUE;
1101 }
1102 
1103 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1104 					      int index)
1105 {
1106 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1107 	struct sk_buff *tail = skb_peek_tail(frames);
1108 	struct ieee80211_rx_status *status;
1109 
1110 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1111 		return true;
1112 
1113 	if (!tail)
1114 		return false;
1115 
1116 	status = IEEE80211_SKB_RXCB(tail);
1117 	if (status->flag & RX_FLAG_AMSDU_MORE)
1118 		return false;
1119 
1120 	return true;
1121 }
1122 
1123 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1124 					    struct tid_ampdu_rx *tid_agg_rx,
1125 					    int index,
1126 					    struct sk_buff_head *frames)
1127 {
1128 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1129 	struct sk_buff *skb;
1130 	struct ieee80211_rx_status *status;
1131 
1132 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1133 
1134 	if (skb_queue_empty(skb_list))
1135 		goto no_frame;
1136 
1137 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1138 		__skb_queue_purge(skb_list);
1139 		goto no_frame;
1140 	}
1141 
1142 	/* release frames from the reorder ring buffer */
1143 	tid_agg_rx->stored_mpdu_num--;
1144 	while ((skb = __skb_dequeue(skb_list))) {
1145 		status = IEEE80211_SKB_RXCB(skb);
1146 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1147 		__skb_queue_tail(frames, skb);
1148 	}
1149 
1150 no_frame:
1151 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1152 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1153 }
1154 
1155 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1156 					     struct tid_ampdu_rx *tid_agg_rx,
1157 					     u16 head_seq_num,
1158 					     struct sk_buff_head *frames)
1159 {
1160 	int index;
1161 
1162 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1163 
1164 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1165 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1166 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1167 						frames);
1168 	}
1169 }
1170 
1171 /*
1172  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1173  * the skb was added to the buffer longer than this time ago, the earlier
1174  * frames that have not yet been received are assumed to be lost and the skb
1175  * can be released for processing. This may also release other skb's from the
1176  * reorder buffer if there are no additional gaps between the frames.
1177  *
1178  * Callers must hold tid_agg_rx->reorder_lock.
1179  */
1180 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1181 
1182 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1183 					  struct tid_ampdu_rx *tid_agg_rx,
1184 					  struct sk_buff_head *frames)
1185 {
1186 	int index, i, j;
1187 
1188 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1189 
1190 	/* release the buffer until next missing frame */
1191 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1192 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1193 	    tid_agg_rx->stored_mpdu_num) {
1194 		/*
1195 		 * No buffers ready to be released, but check whether any
1196 		 * frames in the reorder buffer have timed out.
1197 		 */
1198 		int skipped = 1;
1199 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1200 		     j = (j + 1) % tid_agg_rx->buf_size) {
1201 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1202 				skipped++;
1203 				continue;
1204 			}
1205 			if (skipped &&
1206 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1207 					HT_RX_REORDER_BUF_TIMEOUT))
1208 				goto set_release_timer;
1209 
1210 			/* don't leave incomplete A-MSDUs around */
1211 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1212 			     i = (i + 1) % tid_agg_rx->buf_size)
1213 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1214 
1215 			ht_dbg_ratelimited(sdata,
1216 					   "release an RX reorder frame due to timeout on earlier frames\n");
1217 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1218 							frames);
1219 
1220 			/*
1221 			 * Increment the head seq# also for the skipped slots.
1222 			 */
1223 			tid_agg_rx->head_seq_num =
1224 				(tid_agg_rx->head_seq_num +
1225 				 skipped) & IEEE80211_SN_MASK;
1226 			skipped = 0;
1227 		}
1228 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1229 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1230 						frames);
1231 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1232 	}
1233 
1234 	if (tid_agg_rx->stored_mpdu_num) {
1235 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1236 
1237 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1238 		     j = (j + 1) % tid_agg_rx->buf_size) {
1239 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1240 				break;
1241 		}
1242 
1243  set_release_timer:
1244 
1245 		if (!tid_agg_rx->removed)
1246 			mod_timer(&tid_agg_rx->reorder_timer,
1247 				  tid_agg_rx->reorder_time[j] + 1 +
1248 				  HT_RX_REORDER_BUF_TIMEOUT);
1249 	} else {
1250 		del_timer(&tid_agg_rx->reorder_timer);
1251 	}
1252 }
1253 
1254 /*
1255  * As this function belongs to the RX path it must be under
1256  * rcu_read_lock protection. It returns false if the frame
1257  * can be processed immediately, true if it was consumed.
1258  */
1259 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1260 					     struct tid_ampdu_rx *tid_agg_rx,
1261 					     struct sk_buff *skb,
1262 					     struct sk_buff_head *frames)
1263 {
1264 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1265 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1266 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1267 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1268 	u16 head_seq_num, buf_size;
1269 	int index;
1270 	bool ret = true;
1271 
1272 	spin_lock(&tid_agg_rx->reorder_lock);
1273 
1274 	/*
1275 	 * Offloaded BA sessions have no known starting sequence number so pick
1276 	 * one from first Rxed frame for this tid after BA was started.
1277 	 */
1278 	if (unlikely(tid_agg_rx->auto_seq)) {
1279 		tid_agg_rx->auto_seq = false;
1280 		tid_agg_rx->ssn = mpdu_seq_num;
1281 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1282 	}
1283 
1284 	buf_size = tid_agg_rx->buf_size;
1285 	head_seq_num = tid_agg_rx->head_seq_num;
1286 
1287 	/*
1288 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1289 	 * be reordered.
1290 	 */
1291 	if (unlikely(!tid_agg_rx->started)) {
1292 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1293 			ret = false;
1294 			goto out;
1295 		}
1296 		tid_agg_rx->started = true;
1297 	}
1298 
1299 	/* frame with out of date sequence number */
1300 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1301 		dev_kfree_skb(skb);
1302 		goto out;
1303 	}
1304 
1305 	/*
1306 	 * If frame the sequence number exceeds our buffering window
1307 	 * size release some previous frames to make room for this one.
1308 	 */
1309 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1310 		head_seq_num = ieee80211_sn_inc(
1311 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1312 		/* release stored frames up to new head to stack */
1313 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1314 						 head_seq_num, frames);
1315 	}
1316 
1317 	/* Now the new frame is always in the range of the reordering buffer */
1318 
1319 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1320 
1321 	/* check if we already stored this frame */
1322 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1323 		dev_kfree_skb(skb);
1324 		goto out;
1325 	}
1326 
1327 	/*
1328 	 * If the current MPDU is in the right order and nothing else
1329 	 * is stored we can process it directly, no need to buffer it.
1330 	 * If it is first but there's something stored, we may be able
1331 	 * to release frames after this one.
1332 	 */
1333 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1334 	    tid_agg_rx->stored_mpdu_num == 0) {
1335 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1336 			tid_agg_rx->head_seq_num =
1337 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1338 		ret = false;
1339 		goto out;
1340 	}
1341 
1342 	/* put the frame in the reordering buffer */
1343 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1344 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1345 		tid_agg_rx->reorder_time[index] = jiffies;
1346 		tid_agg_rx->stored_mpdu_num++;
1347 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1348 	}
1349 
1350  out:
1351 	spin_unlock(&tid_agg_rx->reorder_lock);
1352 	return ret;
1353 }
1354 
1355 /*
1356  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1357  * true if the MPDU was buffered, false if it should be processed.
1358  */
1359 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1360 				       struct sk_buff_head *frames)
1361 {
1362 	struct sk_buff *skb = rx->skb;
1363 	struct ieee80211_local *local = rx->local;
1364 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1365 	struct sta_info *sta = rx->sta;
1366 	struct tid_ampdu_rx *tid_agg_rx;
1367 	u16 sc;
1368 	u8 tid, ack_policy;
1369 
1370 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1371 	    is_multicast_ether_addr(hdr->addr1))
1372 		goto dont_reorder;
1373 
1374 	/*
1375 	 * filter the QoS data rx stream according to
1376 	 * STA/TID and check if this STA/TID is on aggregation
1377 	 */
1378 
1379 	if (!sta)
1380 		goto dont_reorder;
1381 
1382 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1383 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1384 	tid = ieee80211_get_tid(hdr);
1385 
1386 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1387 	if (!tid_agg_rx) {
1388 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1389 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1390 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1391 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1392 					     WLAN_BACK_RECIPIENT,
1393 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1394 		goto dont_reorder;
1395 	}
1396 
1397 	/* qos null data frames are excluded */
1398 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1399 		goto dont_reorder;
1400 
1401 	/* not part of a BA session */
1402 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1403 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1404 		goto dont_reorder;
1405 
1406 	/* new, potentially un-ordered, ampdu frame - process it */
1407 
1408 	/* reset session timer */
1409 	if (tid_agg_rx->timeout)
1410 		tid_agg_rx->last_rx = jiffies;
1411 
1412 	/* if this mpdu is fragmented - terminate rx aggregation session */
1413 	sc = le16_to_cpu(hdr->seq_ctrl);
1414 	if (sc & IEEE80211_SCTL_FRAG) {
1415 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1416 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1417 		return;
1418 	}
1419 
1420 	/*
1421 	 * No locking needed -- we will only ever process one
1422 	 * RX packet at a time, and thus own tid_agg_rx. All
1423 	 * other code manipulating it needs to (and does) make
1424 	 * sure that we cannot get to it any more before doing
1425 	 * anything with it.
1426 	 */
1427 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1428 					     frames))
1429 		return;
1430 
1431  dont_reorder:
1432 	__skb_queue_tail(frames, skb);
1433 }
1434 
1435 static ieee80211_rx_result debug_noinline
1436 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1437 {
1438 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1439 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1440 
1441 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1442 		return RX_CONTINUE;
1443 
1444 	/*
1445 	 * Drop duplicate 802.11 retransmissions
1446 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1447 	 */
1448 
1449 	if (rx->skb->len < 24)
1450 		return RX_CONTINUE;
1451 
1452 	if (ieee80211_is_ctl(hdr->frame_control) ||
1453 	    ieee80211_is_nullfunc(hdr->frame_control) ||
1454 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1455 	    is_multicast_ether_addr(hdr->addr1))
1456 		return RX_CONTINUE;
1457 
1458 	if (!rx->sta)
1459 		return RX_CONTINUE;
1460 
1461 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1462 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1463 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1464 		rx->sta->rx_stats.num_duplicates++;
1465 		return RX_DROP_UNUSABLE;
1466 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1467 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1468 	}
1469 
1470 	return RX_CONTINUE;
1471 }
1472 
1473 static ieee80211_rx_result debug_noinline
1474 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1475 {
1476 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1477 
1478 	/* Drop disallowed frame classes based on STA auth/assoc state;
1479 	 * IEEE 802.11, Chap 5.5.
1480 	 *
1481 	 * mac80211 filters only based on association state, i.e. it drops
1482 	 * Class 3 frames from not associated stations. hostapd sends
1483 	 * deauth/disassoc frames when needed. In addition, hostapd is
1484 	 * responsible for filtering on both auth and assoc states.
1485 	 */
1486 
1487 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1488 		return ieee80211_rx_mesh_check(rx);
1489 
1490 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1491 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1492 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1493 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1494 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1495 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1496 		/*
1497 		 * accept port control frames from the AP even when it's not
1498 		 * yet marked ASSOC to prevent a race where we don't set the
1499 		 * assoc bit quickly enough before it sends the first frame
1500 		 */
1501 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1502 		    ieee80211_is_data_present(hdr->frame_control)) {
1503 			unsigned int hdrlen;
1504 			__be16 ethertype;
1505 
1506 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1507 
1508 			if (rx->skb->len < hdrlen + 8)
1509 				return RX_DROP_MONITOR;
1510 
1511 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1512 			if (ethertype == rx->sdata->control_port_protocol)
1513 				return RX_CONTINUE;
1514 		}
1515 
1516 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1517 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1518 					       hdr->addr2,
1519 					       GFP_ATOMIC))
1520 			return RX_DROP_UNUSABLE;
1521 
1522 		return RX_DROP_MONITOR;
1523 	}
1524 
1525 	return RX_CONTINUE;
1526 }
1527 
1528 
1529 static ieee80211_rx_result debug_noinline
1530 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1531 {
1532 	struct ieee80211_local *local;
1533 	struct ieee80211_hdr *hdr;
1534 	struct sk_buff *skb;
1535 
1536 	local = rx->local;
1537 	skb = rx->skb;
1538 	hdr = (struct ieee80211_hdr *) skb->data;
1539 
1540 	if (!local->pspolling)
1541 		return RX_CONTINUE;
1542 
1543 	if (!ieee80211_has_fromds(hdr->frame_control))
1544 		/* this is not from AP */
1545 		return RX_CONTINUE;
1546 
1547 	if (!ieee80211_is_data(hdr->frame_control))
1548 		return RX_CONTINUE;
1549 
1550 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1551 		/* AP has no more frames buffered for us */
1552 		local->pspolling = false;
1553 		return RX_CONTINUE;
1554 	}
1555 
1556 	/* more data bit is set, let's request a new frame from the AP */
1557 	ieee80211_send_pspoll(local, rx->sdata);
1558 
1559 	return RX_CONTINUE;
1560 }
1561 
1562 static void sta_ps_start(struct sta_info *sta)
1563 {
1564 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1565 	struct ieee80211_local *local = sdata->local;
1566 	struct ps_data *ps;
1567 	int tid;
1568 
1569 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1570 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1571 		ps = &sdata->bss->ps;
1572 	else
1573 		return;
1574 
1575 	atomic_inc(&ps->num_sta_ps);
1576 	set_sta_flag(sta, WLAN_STA_PS_STA);
1577 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1578 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1579 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1580 	       sta->sta.addr, sta->sta.aid);
1581 
1582 	ieee80211_clear_fast_xmit(sta);
1583 
1584 	if (!sta->sta.txq[0])
1585 		return;
1586 
1587 	for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1588 		struct ieee80211_txq *txq = sta->sta.txq[tid];
1589 		struct txq_info *txqi = to_txq_info(txq);
1590 
1591 		spin_lock(&local->active_txq_lock[txq->ac]);
1592 		if (!list_empty(&txqi->schedule_order))
1593 			list_del_init(&txqi->schedule_order);
1594 		spin_unlock(&local->active_txq_lock[txq->ac]);
1595 
1596 		if (txq_has_queue(txq))
1597 			set_bit(tid, &sta->txq_buffered_tids);
1598 		else
1599 			clear_bit(tid, &sta->txq_buffered_tids);
1600 	}
1601 }
1602 
1603 static void sta_ps_end(struct sta_info *sta)
1604 {
1605 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1606 	       sta->sta.addr, sta->sta.aid);
1607 
1608 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1609 		/*
1610 		 * Clear the flag only if the other one is still set
1611 		 * so that the TX path won't start TX'ing new frames
1612 		 * directly ... In the case that the driver flag isn't
1613 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1614 		 */
1615 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1616 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1617 		       sta->sta.addr, sta->sta.aid);
1618 		return;
1619 	}
1620 
1621 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1622 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1623 	ieee80211_sta_ps_deliver_wakeup(sta);
1624 }
1625 
1626 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1627 {
1628 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1629 	bool in_ps;
1630 
1631 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1632 
1633 	/* Don't let the same PS state be set twice */
1634 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1635 	if ((start && in_ps) || (!start && !in_ps))
1636 		return -EINVAL;
1637 
1638 	if (start)
1639 		sta_ps_start(sta);
1640 	else
1641 		sta_ps_end(sta);
1642 
1643 	return 0;
1644 }
1645 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1646 
1647 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1648 {
1649 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1650 
1651 	if (test_sta_flag(sta, WLAN_STA_SP))
1652 		return;
1653 
1654 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1655 		ieee80211_sta_ps_deliver_poll_response(sta);
1656 	else
1657 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1658 }
1659 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1660 
1661 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1662 {
1663 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1664 	int ac = ieee80211_ac_from_tid(tid);
1665 
1666 	/*
1667 	 * If this AC is not trigger-enabled do nothing unless the
1668 	 * driver is calling us after it already checked.
1669 	 *
1670 	 * NB: This could/should check a separate bitmap of trigger-
1671 	 * enabled queues, but for now we only implement uAPSD w/o
1672 	 * TSPEC changes to the ACs, so they're always the same.
1673 	 */
1674 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1675 	    tid != IEEE80211_NUM_TIDS)
1676 		return;
1677 
1678 	/* if we are in a service period, do nothing */
1679 	if (test_sta_flag(sta, WLAN_STA_SP))
1680 		return;
1681 
1682 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1683 		ieee80211_sta_ps_deliver_uapsd(sta);
1684 	else
1685 		set_sta_flag(sta, WLAN_STA_UAPSD);
1686 }
1687 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1688 
1689 static ieee80211_rx_result debug_noinline
1690 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1691 {
1692 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1693 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1694 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1695 
1696 	if (!rx->sta)
1697 		return RX_CONTINUE;
1698 
1699 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1700 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1701 		return RX_CONTINUE;
1702 
1703 	/*
1704 	 * The device handles station powersave, so don't do anything about
1705 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1706 	 * it to mac80211 since they're handled.)
1707 	 */
1708 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1709 		return RX_CONTINUE;
1710 
1711 	/*
1712 	 * Don't do anything if the station isn't already asleep. In
1713 	 * the uAPSD case, the station will probably be marked asleep,
1714 	 * in the PS-Poll case the station must be confused ...
1715 	 */
1716 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1717 		return RX_CONTINUE;
1718 
1719 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1720 		ieee80211_sta_pspoll(&rx->sta->sta);
1721 
1722 		/* Free PS Poll skb here instead of returning RX_DROP that would
1723 		 * count as an dropped frame. */
1724 		dev_kfree_skb(rx->skb);
1725 
1726 		return RX_QUEUED;
1727 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1728 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1729 		   ieee80211_has_pm(hdr->frame_control) &&
1730 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1731 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1732 		u8 tid = ieee80211_get_tid(hdr);
1733 
1734 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1735 	}
1736 
1737 	return RX_CONTINUE;
1738 }
1739 
1740 static ieee80211_rx_result debug_noinline
1741 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1742 {
1743 	struct sta_info *sta = rx->sta;
1744 	struct sk_buff *skb = rx->skb;
1745 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1746 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1747 	int i;
1748 
1749 	if (!sta)
1750 		return RX_CONTINUE;
1751 
1752 	/*
1753 	 * Update last_rx only for IBSS packets which are for the current
1754 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1755 	 * current IBSS network alive in cases where other STAs start
1756 	 * using different BSSID. This will also give the station another
1757 	 * chance to restart the authentication/authorization in case
1758 	 * something went wrong the first time.
1759 	 */
1760 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1761 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1762 						NL80211_IFTYPE_ADHOC);
1763 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1764 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1765 			sta->rx_stats.last_rx = jiffies;
1766 			if (ieee80211_is_data(hdr->frame_control) &&
1767 			    !is_multicast_ether_addr(hdr->addr1))
1768 				sta->rx_stats.last_rate =
1769 					sta_stats_encode_rate(status);
1770 		}
1771 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1772 		sta->rx_stats.last_rx = jiffies;
1773 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1774 		/*
1775 		 * Mesh beacons will update last_rx when if they are found to
1776 		 * match the current local configuration when processed.
1777 		 */
1778 		sta->rx_stats.last_rx = jiffies;
1779 		if (ieee80211_is_data(hdr->frame_control))
1780 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1781 	}
1782 
1783 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1784 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1785 
1786 	sta->rx_stats.fragments++;
1787 
1788 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1789 	sta->rx_stats.bytes += rx->skb->len;
1790 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1791 
1792 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1793 		sta->rx_stats.last_signal = status->signal;
1794 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1795 	}
1796 
1797 	if (status->chains) {
1798 		sta->rx_stats.chains = status->chains;
1799 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1800 			int signal = status->chain_signal[i];
1801 
1802 			if (!(status->chains & BIT(i)))
1803 				continue;
1804 
1805 			sta->rx_stats.chain_signal_last[i] = signal;
1806 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1807 					-signal);
1808 		}
1809 	}
1810 
1811 	/*
1812 	 * Change STA power saving mode only at the end of a frame
1813 	 * exchange sequence, and only for a data or management
1814 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1815 	 */
1816 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1817 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1818 	    !is_multicast_ether_addr(hdr->addr1) &&
1819 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1820 	     ieee80211_is_data(hdr->frame_control)) &&
1821 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1822 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1823 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1824 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1825 			if (!ieee80211_has_pm(hdr->frame_control))
1826 				sta_ps_end(sta);
1827 		} else {
1828 			if (ieee80211_has_pm(hdr->frame_control))
1829 				sta_ps_start(sta);
1830 		}
1831 	}
1832 
1833 	/* mesh power save support */
1834 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1835 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1836 
1837 	/*
1838 	 * Drop (qos-)data::nullfunc frames silently, since they
1839 	 * are used only to control station power saving mode.
1840 	 */
1841 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1842 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1843 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1844 
1845 		/*
1846 		 * If we receive a 4-addr nullfunc frame from a STA
1847 		 * that was not moved to a 4-addr STA vlan yet send
1848 		 * the event to userspace and for older hostapd drop
1849 		 * the frame to the monitor interface.
1850 		 */
1851 		if (ieee80211_has_a4(hdr->frame_control) &&
1852 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1853 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1854 		      !rx->sdata->u.vlan.sta))) {
1855 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1856 				cfg80211_rx_unexpected_4addr_frame(
1857 					rx->sdata->dev, sta->sta.addr,
1858 					GFP_ATOMIC);
1859 			return RX_DROP_MONITOR;
1860 		}
1861 		/*
1862 		 * Update counter and free packet here to avoid
1863 		 * counting this as a dropped packed.
1864 		 */
1865 		sta->rx_stats.packets++;
1866 		dev_kfree_skb(rx->skb);
1867 		return RX_QUEUED;
1868 	}
1869 
1870 	return RX_CONTINUE;
1871 } /* ieee80211_rx_h_sta_process */
1872 
1873 static ieee80211_rx_result debug_noinline
1874 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1875 {
1876 	struct sk_buff *skb = rx->skb;
1877 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1878 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1879 	int keyidx;
1880 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1881 	struct ieee80211_key *sta_ptk = NULL;
1882 	struct ieee80211_key *ptk_idx = NULL;
1883 	int mmie_keyidx = -1;
1884 	__le16 fc;
1885 	const struct ieee80211_cipher_scheme *cs = NULL;
1886 
1887 	/*
1888 	 * Key selection 101
1889 	 *
1890 	 * There are four types of keys:
1891 	 *  - GTK (group keys)
1892 	 *  - IGTK (group keys for management frames)
1893 	 *  - PTK (pairwise keys)
1894 	 *  - STK (station-to-station pairwise keys)
1895 	 *
1896 	 * When selecting a key, we have to distinguish between multicast
1897 	 * (including broadcast) and unicast frames, the latter can only
1898 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1899 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1900 	 * unicast frames can also use key indices like GTKs. Hence, if we
1901 	 * don't have a PTK/STK we check the key index for a WEP key.
1902 	 *
1903 	 * Note that in a regular BSS, multicast frames are sent by the
1904 	 * AP only, associated stations unicast the frame to the AP first
1905 	 * which then multicasts it on their behalf.
1906 	 *
1907 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1908 	 * with each station, that is something we don't currently handle.
1909 	 * The spec seems to expect that one negotiates the same key with
1910 	 * every station but there's no such requirement; VLANs could be
1911 	 * possible.
1912 	 */
1913 
1914 	/* start without a key */
1915 	rx->key = NULL;
1916 	fc = hdr->frame_control;
1917 
1918 	if (rx->sta) {
1919 		int keyid = rx->sta->ptk_idx;
1920 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1921 
1922 		if (ieee80211_has_protected(fc)) {
1923 			cs = rx->sta->cipher_scheme;
1924 			keyid = ieee80211_get_keyid(rx->skb, cs);
1925 
1926 			if (unlikely(keyid < 0))
1927 				return RX_DROP_UNUSABLE;
1928 
1929 			ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1930 		}
1931 	}
1932 
1933 	if (!ieee80211_has_protected(fc))
1934 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1935 
1936 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1937 		rx->key = ptk_idx ? ptk_idx : sta_ptk;
1938 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1939 		    (status->flag & RX_FLAG_IV_STRIPPED))
1940 			return RX_CONTINUE;
1941 		/* Skip decryption if the frame is not protected. */
1942 		if (!ieee80211_has_protected(fc))
1943 			return RX_CONTINUE;
1944 	} else if (mmie_keyidx >= 0) {
1945 		/* Broadcast/multicast robust management frame / BIP */
1946 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1947 		    (status->flag & RX_FLAG_IV_STRIPPED))
1948 			return RX_CONTINUE;
1949 
1950 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1951 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1952 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1953 		if (rx->sta) {
1954 			if (ieee80211_is_group_privacy_action(skb) &&
1955 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1956 				return RX_DROP_MONITOR;
1957 
1958 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1959 		}
1960 		if (!rx->key)
1961 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1962 	} else if (!ieee80211_has_protected(fc)) {
1963 		/*
1964 		 * The frame was not protected, so skip decryption. However, we
1965 		 * need to set rx->key if there is a key that could have been
1966 		 * used so that the frame may be dropped if encryption would
1967 		 * have been expected.
1968 		 */
1969 		struct ieee80211_key *key = NULL;
1970 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1971 		int i;
1972 
1973 		if (ieee80211_is_mgmt(fc) &&
1974 		    is_multicast_ether_addr(hdr->addr1) &&
1975 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1976 			rx->key = key;
1977 		else {
1978 			if (rx->sta) {
1979 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1980 					key = rcu_dereference(rx->sta->gtk[i]);
1981 					if (key)
1982 						break;
1983 				}
1984 			}
1985 			if (!key) {
1986 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1987 					key = rcu_dereference(sdata->keys[i]);
1988 					if (key)
1989 						break;
1990 				}
1991 			}
1992 			if (key)
1993 				rx->key = key;
1994 		}
1995 		return RX_CONTINUE;
1996 	} else {
1997 		/*
1998 		 * The device doesn't give us the IV so we won't be
1999 		 * able to look up the key. That's ok though, we
2000 		 * don't need to decrypt the frame, we just won't
2001 		 * be able to keep statistics accurate.
2002 		 * Except for key threshold notifications, should
2003 		 * we somehow allow the driver to tell us which key
2004 		 * the hardware used if this flag is set?
2005 		 */
2006 		if ((status->flag & RX_FLAG_DECRYPTED) &&
2007 		    (status->flag & RX_FLAG_IV_STRIPPED))
2008 			return RX_CONTINUE;
2009 
2010 		keyidx = ieee80211_get_keyid(rx->skb, cs);
2011 
2012 		if (unlikely(keyidx < 0))
2013 			return RX_DROP_UNUSABLE;
2014 
2015 		/* check per-station GTK first, if multicast packet */
2016 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2017 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2018 
2019 		/* if not found, try default key */
2020 		if (!rx->key) {
2021 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2022 
2023 			/*
2024 			 * RSNA-protected unicast frames should always be
2025 			 * sent with pairwise or station-to-station keys,
2026 			 * but for WEP we allow using a key index as well.
2027 			 */
2028 			if (rx->key &&
2029 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2030 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2031 			    !is_multicast_ether_addr(hdr->addr1))
2032 				rx->key = NULL;
2033 		}
2034 	}
2035 
2036 	if (rx->key) {
2037 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2038 			return RX_DROP_MONITOR;
2039 
2040 		/* TODO: add threshold stuff again */
2041 	} else {
2042 		return RX_DROP_MONITOR;
2043 	}
2044 
2045 	switch (rx->key->conf.cipher) {
2046 	case WLAN_CIPHER_SUITE_WEP40:
2047 	case WLAN_CIPHER_SUITE_WEP104:
2048 		result = ieee80211_crypto_wep_decrypt(rx);
2049 		break;
2050 	case WLAN_CIPHER_SUITE_TKIP:
2051 		result = ieee80211_crypto_tkip_decrypt(rx);
2052 		break;
2053 	case WLAN_CIPHER_SUITE_CCMP:
2054 		result = ieee80211_crypto_ccmp_decrypt(
2055 			rx, IEEE80211_CCMP_MIC_LEN);
2056 		break;
2057 	case WLAN_CIPHER_SUITE_CCMP_256:
2058 		result = ieee80211_crypto_ccmp_decrypt(
2059 			rx, IEEE80211_CCMP_256_MIC_LEN);
2060 		break;
2061 	case WLAN_CIPHER_SUITE_AES_CMAC:
2062 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
2063 		break;
2064 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2065 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2066 		break;
2067 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2068 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2069 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
2070 		break;
2071 	case WLAN_CIPHER_SUITE_GCMP:
2072 	case WLAN_CIPHER_SUITE_GCMP_256:
2073 		result = ieee80211_crypto_gcmp_decrypt(rx);
2074 		break;
2075 	default:
2076 		result = ieee80211_crypto_hw_decrypt(rx);
2077 	}
2078 
2079 	/* the hdr variable is invalid after the decrypt handlers */
2080 
2081 	/* either the frame has been decrypted or will be dropped */
2082 	status->flag |= RX_FLAG_DECRYPTED;
2083 
2084 	return result;
2085 }
2086 
2087 static inline struct ieee80211_fragment_entry *
2088 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
2089 			 unsigned int frag, unsigned int seq, int rx_queue,
2090 			 struct sk_buff **skb)
2091 {
2092 	struct ieee80211_fragment_entry *entry;
2093 
2094 	entry = &sdata->fragments[sdata->fragment_next++];
2095 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
2096 		sdata->fragment_next = 0;
2097 
2098 	if (!skb_queue_empty(&entry->skb_list))
2099 		__skb_queue_purge(&entry->skb_list);
2100 
2101 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2102 	*skb = NULL;
2103 	entry->first_frag_time = jiffies;
2104 	entry->seq = seq;
2105 	entry->rx_queue = rx_queue;
2106 	entry->last_frag = frag;
2107 	entry->check_sequential_pn = false;
2108 	entry->extra_len = 0;
2109 
2110 	return entry;
2111 }
2112 
2113 static inline struct ieee80211_fragment_entry *
2114 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
2115 			  unsigned int frag, unsigned int seq,
2116 			  int rx_queue, struct ieee80211_hdr *hdr)
2117 {
2118 	struct ieee80211_fragment_entry *entry;
2119 	int i, idx;
2120 
2121 	idx = sdata->fragment_next;
2122 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2123 		struct ieee80211_hdr *f_hdr;
2124 		struct sk_buff *f_skb;
2125 
2126 		idx--;
2127 		if (idx < 0)
2128 			idx = IEEE80211_FRAGMENT_MAX - 1;
2129 
2130 		entry = &sdata->fragments[idx];
2131 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2132 		    entry->rx_queue != rx_queue ||
2133 		    entry->last_frag + 1 != frag)
2134 			continue;
2135 
2136 		f_skb = __skb_peek(&entry->skb_list);
2137 		f_hdr = (struct ieee80211_hdr *) f_skb->data;
2138 
2139 		/*
2140 		 * Check ftype and addresses are equal, else check next fragment
2141 		 */
2142 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2143 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2144 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2145 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2146 			continue;
2147 
2148 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2149 			__skb_queue_purge(&entry->skb_list);
2150 			continue;
2151 		}
2152 		return entry;
2153 	}
2154 
2155 	return NULL;
2156 }
2157 
2158 static ieee80211_rx_result debug_noinline
2159 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2160 {
2161 	struct ieee80211_hdr *hdr;
2162 	u16 sc;
2163 	__le16 fc;
2164 	unsigned int frag, seq;
2165 	struct ieee80211_fragment_entry *entry;
2166 	struct sk_buff *skb;
2167 
2168 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2169 	fc = hdr->frame_control;
2170 
2171 	if (ieee80211_is_ctl(fc))
2172 		return RX_CONTINUE;
2173 
2174 	sc = le16_to_cpu(hdr->seq_ctrl);
2175 	frag = sc & IEEE80211_SCTL_FRAG;
2176 
2177 	if (is_multicast_ether_addr(hdr->addr1)) {
2178 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2179 		goto out_no_led;
2180 	}
2181 
2182 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2183 		goto out;
2184 
2185 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2186 
2187 	if (skb_linearize(rx->skb))
2188 		return RX_DROP_UNUSABLE;
2189 
2190 	/*
2191 	 *  skb_linearize() might change the skb->data and
2192 	 *  previously cached variables (in this case, hdr) need to
2193 	 *  be refreshed with the new data.
2194 	 */
2195 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2196 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2197 
2198 	if (frag == 0) {
2199 		/* This is the first fragment of a new frame. */
2200 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2201 						 rx->seqno_idx, &(rx->skb));
2202 		if (rx->key &&
2203 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2204 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2205 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2206 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2207 		    ieee80211_has_protected(fc)) {
2208 			int queue = rx->security_idx;
2209 
2210 			/* Store CCMP/GCMP PN so that we can verify that the
2211 			 * next fragment has a sequential PN value.
2212 			 */
2213 			entry->check_sequential_pn = true;
2214 			memcpy(entry->last_pn,
2215 			       rx->key->u.ccmp.rx_pn[queue],
2216 			       IEEE80211_CCMP_PN_LEN);
2217 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2218 					      u.ccmp.rx_pn) !=
2219 				     offsetof(struct ieee80211_key,
2220 					      u.gcmp.rx_pn));
2221 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2222 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2223 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2224 				     IEEE80211_GCMP_PN_LEN);
2225 		}
2226 		return RX_QUEUED;
2227 	}
2228 
2229 	/* This is a fragment for a frame that should already be pending in
2230 	 * fragment cache. Add this fragment to the end of the pending entry.
2231 	 */
2232 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2233 					  rx->seqno_idx, hdr);
2234 	if (!entry) {
2235 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2236 		return RX_DROP_MONITOR;
2237 	}
2238 
2239 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2240 	 *  MPDU PN values are not incrementing in steps of 1."
2241 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2242 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2243 	 */
2244 	if (entry->check_sequential_pn) {
2245 		int i;
2246 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2247 		int queue;
2248 
2249 		if (!rx->key ||
2250 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2251 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2252 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2253 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2254 			return RX_DROP_UNUSABLE;
2255 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2256 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2257 			pn[i]++;
2258 			if (pn[i])
2259 				break;
2260 		}
2261 		queue = rx->security_idx;
2262 		rpn = rx->key->u.ccmp.rx_pn[queue];
2263 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2264 			return RX_DROP_UNUSABLE;
2265 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2266 	}
2267 
2268 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2269 	__skb_queue_tail(&entry->skb_list, rx->skb);
2270 	entry->last_frag = frag;
2271 	entry->extra_len += rx->skb->len;
2272 	if (ieee80211_has_morefrags(fc)) {
2273 		rx->skb = NULL;
2274 		return RX_QUEUED;
2275 	}
2276 
2277 	rx->skb = __skb_dequeue(&entry->skb_list);
2278 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2279 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2280 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2281 					      GFP_ATOMIC))) {
2282 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2283 			__skb_queue_purge(&entry->skb_list);
2284 			return RX_DROP_UNUSABLE;
2285 		}
2286 	}
2287 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2288 		skb_put_data(rx->skb, skb->data, skb->len);
2289 		dev_kfree_skb(skb);
2290 	}
2291 
2292  out:
2293 	ieee80211_led_rx(rx->local);
2294  out_no_led:
2295 	if (rx->sta)
2296 		rx->sta->rx_stats.packets++;
2297 	return RX_CONTINUE;
2298 }
2299 
2300 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2301 {
2302 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2303 		return -EACCES;
2304 
2305 	return 0;
2306 }
2307 
2308 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2309 {
2310 	struct sk_buff *skb = rx->skb;
2311 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2312 
2313 	/*
2314 	 * Pass through unencrypted frames if the hardware has
2315 	 * decrypted them already.
2316 	 */
2317 	if (status->flag & RX_FLAG_DECRYPTED)
2318 		return 0;
2319 
2320 	/* Drop unencrypted frames if key is set. */
2321 	if (unlikely(!ieee80211_has_protected(fc) &&
2322 		     !ieee80211_is_nullfunc(fc) &&
2323 		     ieee80211_is_data(fc) && rx->key))
2324 		return -EACCES;
2325 
2326 	return 0;
2327 }
2328 
2329 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2330 {
2331 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2332 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2333 	__le16 fc = hdr->frame_control;
2334 
2335 	/*
2336 	 * Pass through unencrypted frames if the hardware has
2337 	 * decrypted them already.
2338 	 */
2339 	if (status->flag & RX_FLAG_DECRYPTED)
2340 		return 0;
2341 
2342 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2343 		if (unlikely(!ieee80211_has_protected(fc) &&
2344 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2345 			     rx->key)) {
2346 			if (ieee80211_is_deauth(fc) ||
2347 			    ieee80211_is_disassoc(fc))
2348 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2349 							     rx->skb->data,
2350 							     rx->skb->len);
2351 			return -EACCES;
2352 		}
2353 		/* BIP does not use Protected field, so need to check MMIE */
2354 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2355 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2356 			if (ieee80211_is_deauth(fc) ||
2357 			    ieee80211_is_disassoc(fc))
2358 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2359 							     rx->skb->data,
2360 							     rx->skb->len);
2361 			return -EACCES;
2362 		}
2363 		/*
2364 		 * When using MFP, Action frames are not allowed prior to
2365 		 * having configured keys.
2366 		 */
2367 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2368 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2369 			return -EACCES;
2370 	}
2371 
2372 	return 0;
2373 }
2374 
2375 static int
2376 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2377 {
2378 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2379 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2380 	bool check_port_control = false;
2381 	struct ethhdr *ehdr;
2382 	int ret;
2383 
2384 	*port_control = false;
2385 	if (ieee80211_has_a4(hdr->frame_control) &&
2386 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2387 		return -1;
2388 
2389 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2390 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2391 
2392 		if (!sdata->u.mgd.use_4addr)
2393 			return -1;
2394 		else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2395 			check_port_control = true;
2396 	}
2397 
2398 	if (is_multicast_ether_addr(hdr->addr1) &&
2399 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2400 		return -1;
2401 
2402 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2403 	if (ret < 0)
2404 		return ret;
2405 
2406 	ehdr = (struct ethhdr *) rx->skb->data;
2407 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2408 		*port_control = true;
2409 	else if (check_port_control)
2410 		return -1;
2411 
2412 	return 0;
2413 }
2414 
2415 /*
2416  * requires that rx->skb is a frame with ethernet header
2417  */
2418 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2419 {
2420 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2421 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2422 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2423 
2424 	/*
2425 	 * Allow EAPOL frames to us/the PAE group address regardless
2426 	 * of whether the frame was encrypted or not.
2427 	 */
2428 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2429 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2430 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2431 		return true;
2432 
2433 	if (ieee80211_802_1x_port_control(rx) ||
2434 	    ieee80211_drop_unencrypted(rx, fc))
2435 		return false;
2436 
2437 	return true;
2438 }
2439 
2440 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2441 						 struct ieee80211_rx_data *rx)
2442 {
2443 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2444 	struct net_device *dev = sdata->dev;
2445 
2446 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2447 		      skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) &&
2448 		     sdata->control_port_over_nl80211)) {
2449 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2450 		bool noencrypt = status->flag & RX_FLAG_DECRYPTED;
2451 
2452 		cfg80211_rx_control_port(dev, skb, noencrypt);
2453 		dev_kfree_skb(skb);
2454 	} else {
2455 		/* deliver to local stack */
2456 		if (rx->napi)
2457 			napi_gro_receive(rx->napi, skb);
2458 		else
2459 			netif_receive_skb(skb);
2460 	}
2461 }
2462 
2463 /*
2464  * requires that rx->skb is a frame with ethernet header
2465  */
2466 static void
2467 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2468 {
2469 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2470 	struct net_device *dev = sdata->dev;
2471 	struct sk_buff *skb, *xmit_skb;
2472 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2473 	struct sta_info *dsta;
2474 
2475 	skb = rx->skb;
2476 	xmit_skb = NULL;
2477 
2478 	ieee80211_rx_stats(dev, skb->len);
2479 
2480 	if (rx->sta) {
2481 		/* The seqno index has the same property as needed
2482 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2483 		 * for non-QoS-data frames. Here we know it's a data
2484 		 * frame, so count MSDUs.
2485 		 */
2486 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2487 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2488 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2489 	}
2490 
2491 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2492 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2493 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2494 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2495 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2496 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2497 			/*
2498 			 * send multicast frames both to higher layers in
2499 			 * local net stack and back to the wireless medium
2500 			 */
2501 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2502 			if (!xmit_skb)
2503 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2504 						    dev->name);
2505 		} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2506 			   !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2507 			dsta = sta_info_get(sdata, ehdr->h_dest);
2508 			if (dsta) {
2509 				/*
2510 				 * The destination station is associated to
2511 				 * this AP (in this VLAN), so send the frame
2512 				 * directly to it and do not pass it to local
2513 				 * net stack.
2514 				 */
2515 				xmit_skb = skb;
2516 				skb = NULL;
2517 			}
2518 		}
2519 	}
2520 
2521 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2522 	if (skb) {
2523 		/* 'align' will only take the values 0 or 2 here since all
2524 		 * frames are required to be aligned to 2-byte boundaries
2525 		 * when being passed to mac80211; the code here works just
2526 		 * as well if that isn't true, but mac80211 assumes it can
2527 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2528 		 */
2529 		int align;
2530 
2531 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2532 		if (align) {
2533 			if (WARN_ON(skb_headroom(skb) < 3)) {
2534 				dev_kfree_skb(skb);
2535 				skb = NULL;
2536 			} else {
2537 				u8 *data = skb->data;
2538 				size_t len = skb_headlen(skb);
2539 				skb->data -= align;
2540 				memmove(skb->data, data, len);
2541 				skb_set_tail_pointer(skb, len);
2542 			}
2543 		}
2544 	}
2545 #endif
2546 
2547 	if (skb) {
2548 		skb->protocol = eth_type_trans(skb, dev);
2549 		memset(skb->cb, 0, sizeof(skb->cb));
2550 
2551 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2552 	}
2553 
2554 	if (xmit_skb) {
2555 		/*
2556 		 * Send to wireless media and increase priority by 256 to
2557 		 * keep the received priority instead of reclassifying
2558 		 * the frame (see cfg80211_classify8021d).
2559 		 */
2560 		xmit_skb->priority += 256;
2561 		xmit_skb->protocol = htons(ETH_P_802_3);
2562 		skb_reset_network_header(xmit_skb);
2563 		skb_reset_mac_header(xmit_skb);
2564 		dev_queue_xmit(xmit_skb);
2565 	}
2566 }
2567 
2568 static ieee80211_rx_result debug_noinline
2569 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2570 {
2571 	struct net_device *dev = rx->sdata->dev;
2572 	struct sk_buff *skb = rx->skb;
2573 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2574 	__le16 fc = hdr->frame_control;
2575 	struct sk_buff_head frame_list;
2576 	struct ethhdr ethhdr;
2577 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2578 
2579 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2580 		check_da = NULL;
2581 		check_sa = NULL;
2582 	} else switch (rx->sdata->vif.type) {
2583 		case NL80211_IFTYPE_AP:
2584 		case NL80211_IFTYPE_AP_VLAN:
2585 			check_da = NULL;
2586 			break;
2587 		case NL80211_IFTYPE_STATION:
2588 			if (!rx->sta ||
2589 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2590 				check_sa = NULL;
2591 			break;
2592 		case NL80211_IFTYPE_MESH_POINT:
2593 			check_sa = NULL;
2594 			break;
2595 		default:
2596 			break;
2597 	}
2598 
2599 	skb->dev = dev;
2600 	__skb_queue_head_init(&frame_list);
2601 
2602 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2603 					  rx->sdata->vif.addr,
2604 					  rx->sdata->vif.type,
2605 					  data_offset))
2606 		return RX_DROP_UNUSABLE;
2607 
2608 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2609 				 rx->sdata->vif.type,
2610 				 rx->local->hw.extra_tx_headroom,
2611 				 check_da, check_sa);
2612 
2613 	while (!skb_queue_empty(&frame_list)) {
2614 		rx->skb = __skb_dequeue(&frame_list);
2615 
2616 		if (!ieee80211_frame_allowed(rx, fc)) {
2617 			dev_kfree_skb(rx->skb);
2618 			continue;
2619 		}
2620 
2621 		ieee80211_deliver_skb(rx);
2622 	}
2623 
2624 	return RX_QUEUED;
2625 }
2626 
2627 static ieee80211_rx_result debug_noinline
2628 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2629 {
2630 	struct sk_buff *skb = rx->skb;
2631 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2632 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2633 	__le16 fc = hdr->frame_control;
2634 
2635 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2636 		return RX_CONTINUE;
2637 
2638 	if (unlikely(!ieee80211_is_data(fc)))
2639 		return RX_CONTINUE;
2640 
2641 	if (unlikely(!ieee80211_is_data_present(fc)))
2642 		return RX_DROP_MONITOR;
2643 
2644 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2645 		switch (rx->sdata->vif.type) {
2646 		case NL80211_IFTYPE_AP_VLAN:
2647 			if (!rx->sdata->u.vlan.sta)
2648 				return RX_DROP_UNUSABLE;
2649 			break;
2650 		case NL80211_IFTYPE_STATION:
2651 			if (!rx->sdata->u.mgd.use_4addr)
2652 				return RX_DROP_UNUSABLE;
2653 			break;
2654 		default:
2655 			return RX_DROP_UNUSABLE;
2656 		}
2657 	}
2658 
2659 	if (is_multicast_ether_addr(hdr->addr1))
2660 		return RX_DROP_UNUSABLE;
2661 
2662 	return __ieee80211_rx_h_amsdu(rx, 0);
2663 }
2664 
2665 #ifdef CONFIG_MAC80211_MESH
2666 static ieee80211_rx_result
2667 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2668 {
2669 	struct ieee80211_hdr *fwd_hdr, *hdr;
2670 	struct ieee80211_tx_info *info;
2671 	struct ieee80211s_hdr *mesh_hdr;
2672 	struct sk_buff *skb = rx->skb, *fwd_skb;
2673 	struct ieee80211_local *local = rx->local;
2674 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2675 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2676 	u16 ac, q, hdrlen;
2677 	int tailroom = 0;
2678 
2679 	hdr = (struct ieee80211_hdr *) skb->data;
2680 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2681 
2682 	/* make sure fixed part of mesh header is there, also checks skb len */
2683 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2684 		return RX_DROP_MONITOR;
2685 
2686 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2687 
2688 	/* make sure full mesh header is there, also checks skb len */
2689 	if (!pskb_may_pull(rx->skb,
2690 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2691 		return RX_DROP_MONITOR;
2692 
2693 	/* reload pointers */
2694 	hdr = (struct ieee80211_hdr *) skb->data;
2695 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2696 
2697 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2698 		return RX_DROP_MONITOR;
2699 
2700 	/* frame is in RMC, don't forward */
2701 	if (ieee80211_is_data(hdr->frame_control) &&
2702 	    is_multicast_ether_addr(hdr->addr1) &&
2703 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2704 		return RX_DROP_MONITOR;
2705 
2706 	if (!ieee80211_is_data(hdr->frame_control))
2707 		return RX_CONTINUE;
2708 
2709 	if (!mesh_hdr->ttl)
2710 		return RX_DROP_MONITOR;
2711 
2712 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2713 		struct mesh_path *mppath;
2714 		char *proxied_addr;
2715 		char *mpp_addr;
2716 
2717 		if (is_multicast_ether_addr(hdr->addr1)) {
2718 			mpp_addr = hdr->addr3;
2719 			proxied_addr = mesh_hdr->eaddr1;
2720 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2721 			    MESH_FLAGS_AE_A5_A6) {
2722 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2723 			mpp_addr = hdr->addr4;
2724 			proxied_addr = mesh_hdr->eaddr2;
2725 		} else {
2726 			return RX_DROP_MONITOR;
2727 		}
2728 
2729 		rcu_read_lock();
2730 		mppath = mpp_path_lookup(sdata, proxied_addr);
2731 		if (!mppath) {
2732 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2733 		} else {
2734 			spin_lock_bh(&mppath->state_lock);
2735 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2736 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2737 			mppath->exp_time = jiffies;
2738 			spin_unlock_bh(&mppath->state_lock);
2739 		}
2740 		rcu_read_unlock();
2741 	}
2742 
2743 	/* Frame has reached destination.  Don't forward */
2744 	if (!is_multicast_ether_addr(hdr->addr1) &&
2745 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2746 		return RX_CONTINUE;
2747 
2748 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2749 	q = sdata->vif.hw_queue[ac];
2750 	if (ieee80211_queue_stopped(&local->hw, q)) {
2751 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2752 		return RX_DROP_MONITOR;
2753 	}
2754 	skb_set_queue_mapping(skb, q);
2755 
2756 	if (!--mesh_hdr->ttl) {
2757 		if (!is_multicast_ether_addr(hdr->addr1))
2758 			IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2759 						     dropped_frames_ttl);
2760 		goto out;
2761 	}
2762 
2763 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2764 		goto out;
2765 
2766 	if (sdata->crypto_tx_tailroom_needed_cnt)
2767 		tailroom = IEEE80211_ENCRYPT_TAILROOM;
2768 
2769 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2770 				       sdata->encrypt_headroom,
2771 				  tailroom, GFP_ATOMIC);
2772 	if (!fwd_skb)
2773 		goto out;
2774 
2775 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2776 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2777 	info = IEEE80211_SKB_CB(fwd_skb);
2778 	memset(info, 0, sizeof(*info));
2779 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2780 	info->control.vif = &rx->sdata->vif;
2781 	info->control.jiffies = jiffies;
2782 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2783 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2784 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2785 		/* update power mode indication when forwarding */
2786 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2787 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2788 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2789 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2790 	} else {
2791 		/* unable to resolve next hop */
2792 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2793 				   fwd_hdr->addr3, 0,
2794 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2795 				   fwd_hdr->addr2);
2796 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2797 		kfree_skb(fwd_skb);
2798 		return RX_DROP_MONITOR;
2799 	}
2800 
2801 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2802 	ieee80211_add_pending_skb(local, fwd_skb);
2803  out:
2804 	if (is_multicast_ether_addr(hdr->addr1))
2805 		return RX_CONTINUE;
2806 	return RX_DROP_MONITOR;
2807 }
2808 #endif
2809 
2810 static ieee80211_rx_result debug_noinline
2811 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2812 {
2813 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2814 	struct ieee80211_local *local = rx->local;
2815 	struct net_device *dev = sdata->dev;
2816 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2817 	__le16 fc = hdr->frame_control;
2818 	bool port_control;
2819 	int err;
2820 
2821 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2822 		return RX_CONTINUE;
2823 
2824 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2825 		return RX_DROP_MONITOR;
2826 
2827 	/*
2828 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2829 	 * also drop the frame to cooked monitor interfaces.
2830 	 */
2831 	if (ieee80211_has_a4(hdr->frame_control) &&
2832 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2833 		if (rx->sta &&
2834 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2835 			cfg80211_rx_unexpected_4addr_frame(
2836 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2837 		return RX_DROP_MONITOR;
2838 	}
2839 
2840 	err = __ieee80211_data_to_8023(rx, &port_control);
2841 	if (unlikely(err))
2842 		return RX_DROP_UNUSABLE;
2843 
2844 	if (!ieee80211_frame_allowed(rx, fc))
2845 		return RX_DROP_MONITOR;
2846 
2847 	/* directly handle TDLS channel switch requests/responses */
2848 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2849 						cpu_to_be16(ETH_P_TDLS))) {
2850 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2851 
2852 		if (pskb_may_pull(rx->skb,
2853 				  offsetof(struct ieee80211_tdls_data, u)) &&
2854 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2855 		    tf->category == WLAN_CATEGORY_TDLS &&
2856 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2857 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2858 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2859 			schedule_work(&local->tdls_chsw_work);
2860 			if (rx->sta)
2861 				rx->sta->rx_stats.packets++;
2862 
2863 			return RX_QUEUED;
2864 		}
2865 	}
2866 
2867 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2868 	    unlikely(port_control) && sdata->bss) {
2869 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2870 				     u.ap);
2871 		dev = sdata->dev;
2872 		rx->sdata = sdata;
2873 	}
2874 
2875 	rx->skb->dev = dev;
2876 
2877 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2878 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2879 	    !is_multicast_ether_addr(
2880 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2881 	    (!local->scanning &&
2882 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2883 		mod_timer(&local->dynamic_ps_timer, jiffies +
2884 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2885 
2886 	ieee80211_deliver_skb(rx);
2887 
2888 	return RX_QUEUED;
2889 }
2890 
2891 static ieee80211_rx_result debug_noinline
2892 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2893 {
2894 	struct sk_buff *skb = rx->skb;
2895 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2896 	struct tid_ampdu_rx *tid_agg_rx;
2897 	u16 start_seq_num;
2898 	u16 tid;
2899 
2900 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2901 		return RX_CONTINUE;
2902 
2903 	if (ieee80211_is_back_req(bar->frame_control)) {
2904 		struct {
2905 			__le16 control, start_seq_num;
2906 		} __packed bar_data;
2907 		struct ieee80211_event event = {
2908 			.type = BAR_RX_EVENT,
2909 		};
2910 
2911 		if (!rx->sta)
2912 			return RX_DROP_MONITOR;
2913 
2914 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2915 				  &bar_data, sizeof(bar_data)))
2916 			return RX_DROP_MONITOR;
2917 
2918 		tid = le16_to_cpu(bar_data.control) >> 12;
2919 
2920 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2921 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2922 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2923 					     WLAN_BACK_RECIPIENT,
2924 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2925 
2926 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2927 		if (!tid_agg_rx)
2928 			return RX_DROP_MONITOR;
2929 
2930 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2931 		event.u.ba.tid = tid;
2932 		event.u.ba.ssn = start_seq_num;
2933 		event.u.ba.sta = &rx->sta->sta;
2934 
2935 		/* reset session timer */
2936 		if (tid_agg_rx->timeout)
2937 			mod_timer(&tid_agg_rx->session_timer,
2938 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2939 
2940 		spin_lock(&tid_agg_rx->reorder_lock);
2941 		/* release stored frames up to start of BAR */
2942 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2943 						 start_seq_num, frames);
2944 		spin_unlock(&tid_agg_rx->reorder_lock);
2945 
2946 		drv_event_callback(rx->local, rx->sdata, &event);
2947 
2948 		kfree_skb(skb);
2949 		return RX_QUEUED;
2950 	}
2951 
2952 	/*
2953 	 * After this point, we only want management frames,
2954 	 * so we can drop all remaining control frames to
2955 	 * cooked monitor interfaces.
2956 	 */
2957 	return RX_DROP_MONITOR;
2958 }
2959 
2960 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2961 					   struct ieee80211_mgmt *mgmt,
2962 					   size_t len)
2963 {
2964 	struct ieee80211_local *local = sdata->local;
2965 	struct sk_buff *skb;
2966 	struct ieee80211_mgmt *resp;
2967 
2968 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2969 		/* Not to own unicast address */
2970 		return;
2971 	}
2972 
2973 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2974 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2975 		/* Not from the current AP or not associated yet. */
2976 		return;
2977 	}
2978 
2979 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2980 		/* Too short SA Query request frame */
2981 		return;
2982 	}
2983 
2984 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2985 	if (skb == NULL)
2986 		return;
2987 
2988 	skb_reserve(skb, local->hw.extra_tx_headroom);
2989 	resp = skb_put_zero(skb, 24);
2990 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2991 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2992 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2993 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2994 					  IEEE80211_STYPE_ACTION);
2995 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2996 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2997 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2998 	memcpy(resp->u.action.u.sa_query.trans_id,
2999 	       mgmt->u.action.u.sa_query.trans_id,
3000 	       WLAN_SA_QUERY_TR_ID_LEN);
3001 
3002 	ieee80211_tx_skb(sdata, skb);
3003 }
3004 
3005 static ieee80211_rx_result debug_noinline
3006 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3007 {
3008 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3009 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3010 
3011 	/*
3012 	 * From here on, look only at management frames.
3013 	 * Data and control frames are already handled,
3014 	 * and unknown (reserved) frames are useless.
3015 	 */
3016 	if (rx->skb->len < 24)
3017 		return RX_DROP_MONITOR;
3018 
3019 	if (!ieee80211_is_mgmt(mgmt->frame_control))
3020 		return RX_DROP_MONITOR;
3021 
3022 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3023 	    ieee80211_is_beacon(mgmt->frame_control) &&
3024 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3025 		int sig = 0;
3026 
3027 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3028 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3029 			sig = status->signal;
3030 
3031 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
3032 					    rx->skb->data, rx->skb->len,
3033 					    status->freq, sig);
3034 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3035 	}
3036 
3037 	if (ieee80211_drop_unencrypted_mgmt(rx))
3038 		return RX_DROP_UNUSABLE;
3039 
3040 	return RX_CONTINUE;
3041 }
3042 
3043 static ieee80211_rx_result debug_noinline
3044 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3045 {
3046 	struct ieee80211_local *local = rx->local;
3047 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3048 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3049 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3050 	int len = rx->skb->len;
3051 
3052 	if (!ieee80211_is_action(mgmt->frame_control))
3053 		return RX_CONTINUE;
3054 
3055 	/* drop too small frames */
3056 	if (len < IEEE80211_MIN_ACTION_SIZE)
3057 		return RX_DROP_UNUSABLE;
3058 
3059 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3060 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3061 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3062 		return RX_DROP_UNUSABLE;
3063 
3064 	switch (mgmt->u.action.category) {
3065 	case WLAN_CATEGORY_HT:
3066 		/* reject HT action frames from stations not supporting HT */
3067 		if (!rx->sta->sta.ht_cap.ht_supported)
3068 			goto invalid;
3069 
3070 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3071 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3072 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3073 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3074 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3075 			break;
3076 
3077 		/* verify action & smps_control/chanwidth are present */
3078 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3079 			goto invalid;
3080 
3081 		switch (mgmt->u.action.u.ht_smps.action) {
3082 		case WLAN_HT_ACTION_SMPS: {
3083 			struct ieee80211_supported_band *sband;
3084 			enum ieee80211_smps_mode smps_mode;
3085 			struct sta_opmode_info sta_opmode = {};
3086 
3087 			/* convert to HT capability */
3088 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3089 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3090 				smps_mode = IEEE80211_SMPS_OFF;
3091 				break;
3092 			case WLAN_HT_SMPS_CONTROL_STATIC:
3093 				smps_mode = IEEE80211_SMPS_STATIC;
3094 				break;
3095 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3096 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3097 				break;
3098 			default:
3099 				goto invalid;
3100 			}
3101 
3102 			/* if no change do nothing */
3103 			if (rx->sta->sta.smps_mode == smps_mode)
3104 				goto handled;
3105 			rx->sta->sta.smps_mode = smps_mode;
3106 			sta_opmode.smps_mode =
3107 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3108 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3109 
3110 			sband = rx->local->hw.wiphy->bands[status->band];
3111 
3112 			rate_control_rate_update(local, sband, rx->sta,
3113 						 IEEE80211_RC_SMPS_CHANGED);
3114 			cfg80211_sta_opmode_change_notify(sdata->dev,
3115 							  rx->sta->addr,
3116 							  &sta_opmode,
3117 							  GFP_ATOMIC);
3118 			goto handled;
3119 		}
3120 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3121 			struct ieee80211_supported_band *sband;
3122 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3123 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3124 			struct sta_opmode_info sta_opmode = {};
3125 
3126 			/* If it doesn't support 40 MHz it can't change ... */
3127 			if (!(rx->sta->sta.ht_cap.cap &
3128 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3129 				goto handled;
3130 
3131 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3132 				max_bw = IEEE80211_STA_RX_BW_20;
3133 			else
3134 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3135 
3136 			/* set cur_max_bandwidth and recalc sta bw */
3137 			rx->sta->cur_max_bandwidth = max_bw;
3138 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3139 
3140 			if (rx->sta->sta.bandwidth == new_bw)
3141 				goto handled;
3142 
3143 			rx->sta->sta.bandwidth = new_bw;
3144 			sband = rx->local->hw.wiphy->bands[status->band];
3145 			sta_opmode.bw =
3146 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3147 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3148 
3149 			rate_control_rate_update(local, sband, rx->sta,
3150 						 IEEE80211_RC_BW_CHANGED);
3151 			cfg80211_sta_opmode_change_notify(sdata->dev,
3152 							  rx->sta->addr,
3153 							  &sta_opmode,
3154 							  GFP_ATOMIC);
3155 			goto handled;
3156 		}
3157 		default:
3158 			goto invalid;
3159 		}
3160 
3161 		break;
3162 	case WLAN_CATEGORY_PUBLIC:
3163 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3164 			goto invalid;
3165 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3166 			break;
3167 		if (!rx->sta)
3168 			break;
3169 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3170 			break;
3171 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3172 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3173 			break;
3174 		if (len < offsetof(struct ieee80211_mgmt,
3175 				   u.action.u.ext_chan_switch.variable))
3176 			goto invalid;
3177 		goto queue;
3178 	case WLAN_CATEGORY_VHT:
3179 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3180 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3181 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3182 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3183 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3184 			break;
3185 
3186 		/* verify action code is present */
3187 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3188 			goto invalid;
3189 
3190 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3191 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3192 			/* verify opmode is present */
3193 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3194 				goto invalid;
3195 			goto queue;
3196 		}
3197 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3198 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3199 				goto invalid;
3200 			goto queue;
3201 		}
3202 		default:
3203 			break;
3204 		}
3205 		break;
3206 	case WLAN_CATEGORY_BACK:
3207 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3208 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3209 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3210 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3211 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3212 			break;
3213 
3214 		/* verify action_code is present */
3215 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3216 			break;
3217 
3218 		switch (mgmt->u.action.u.addba_req.action_code) {
3219 		case WLAN_ACTION_ADDBA_REQ:
3220 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3221 				   sizeof(mgmt->u.action.u.addba_req)))
3222 				goto invalid;
3223 			break;
3224 		case WLAN_ACTION_ADDBA_RESP:
3225 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3226 				   sizeof(mgmt->u.action.u.addba_resp)))
3227 				goto invalid;
3228 			break;
3229 		case WLAN_ACTION_DELBA:
3230 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3231 				   sizeof(mgmt->u.action.u.delba)))
3232 				goto invalid;
3233 			break;
3234 		default:
3235 			goto invalid;
3236 		}
3237 
3238 		goto queue;
3239 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3240 		/* verify action_code is present */
3241 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3242 			break;
3243 
3244 		switch (mgmt->u.action.u.measurement.action_code) {
3245 		case WLAN_ACTION_SPCT_MSR_REQ:
3246 			if (status->band != NL80211_BAND_5GHZ)
3247 				break;
3248 
3249 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3250 				   sizeof(mgmt->u.action.u.measurement)))
3251 				break;
3252 
3253 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3254 				break;
3255 
3256 			ieee80211_process_measurement_req(sdata, mgmt, len);
3257 			goto handled;
3258 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3259 			u8 *bssid;
3260 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3261 				   sizeof(mgmt->u.action.u.chan_switch)))
3262 				break;
3263 
3264 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3265 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3266 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3267 				break;
3268 
3269 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3270 				bssid = sdata->u.mgd.bssid;
3271 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3272 				bssid = sdata->u.ibss.bssid;
3273 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3274 				bssid = mgmt->sa;
3275 			else
3276 				break;
3277 
3278 			if (!ether_addr_equal(mgmt->bssid, bssid))
3279 				break;
3280 
3281 			goto queue;
3282 			}
3283 		}
3284 		break;
3285 	case WLAN_CATEGORY_SA_QUERY:
3286 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3287 			   sizeof(mgmt->u.action.u.sa_query)))
3288 			break;
3289 
3290 		switch (mgmt->u.action.u.sa_query.action) {
3291 		case WLAN_ACTION_SA_QUERY_REQUEST:
3292 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3293 				break;
3294 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3295 			goto handled;
3296 		}
3297 		break;
3298 	case WLAN_CATEGORY_SELF_PROTECTED:
3299 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3300 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3301 			break;
3302 
3303 		switch (mgmt->u.action.u.self_prot.action_code) {
3304 		case WLAN_SP_MESH_PEERING_OPEN:
3305 		case WLAN_SP_MESH_PEERING_CLOSE:
3306 		case WLAN_SP_MESH_PEERING_CONFIRM:
3307 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3308 				goto invalid;
3309 			if (sdata->u.mesh.user_mpm)
3310 				/* userspace handles this frame */
3311 				break;
3312 			goto queue;
3313 		case WLAN_SP_MGK_INFORM:
3314 		case WLAN_SP_MGK_ACK:
3315 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3316 				goto invalid;
3317 			break;
3318 		}
3319 		break;
3320 	case WLAN_CATEGORY_MESH_ACTION:
3321 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3322 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3323 			break;
3324 
3325 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3326 			break;
3327 		if (mesh_action_is_path_sel(mgmt) &&
3328 		    !mesh_path_sel_is_hwmp(sdata))
3329 			break;
3330 		goto queue;
3331 	}
3332 
3333 	return RX_CONTINUE;
3334 
3335  invalid:
3336 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3337 	/* will return in the next handlers */
3338 	return RX_CONTINUE;
3339 
3340  handled:
3341 	if (rx->sta)
3342 		rx->sta->rx_stats.packets++;
3343 	dev_kfree_skb(rx->skb);
3344 	return RX_QUEUED;
3345 
3346  queue:
3347 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3348 	ieee80211_queue_work(&local->hw, &sdata->work);
3349 	if (rx->sta)
3350 		rx->sta->rx_stats.packets++;
3351 	return RX_QUEUED;
3352 }
3353 
3354 static ieee80211_rx_result debug_noinline
3355 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3356 {
3357 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3358 	int sig = 0;
3359 
3360 	/* skip known-bad action frames and return them in the next handler */
3361 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3362 		return RX_CONTINUE;
3363 
3364 	/*
3365 	 * Getting here means the kernel doesn't know how to handle
3366 	 * it, but maybe userspace does ... include returned frames
3367 	 * so userspace can register for those to know whether ones
3368 	 * it transmitted were processed or returned.
3369 	 */
3370 
3371 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3372 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3373 		sig = status->signal;
3374 
3375 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3376 			     rx->skb->data, rx->skb->len, 0)) {
3377 		if (rx->sta)
3378 			rx->sta->rx_stats.packets++;
3379 		dev_kfree_skb(rx->skb);
3380 		return RX_QUEUED;
3381 	}
3382 
3383 	return RX_CONTINUE;
3384 }
3385 
3386 static ieee80211_rx_result debug_noinline
3387 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3388 {
3389 	struct ieee80211_local *local = rx->local;
3390 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3391 	struct sk_buff *nskb;
3392 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3393 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3394 
3395 	if (!ieee80211_is_action(mgmt->frame_control))
3396 		return RX_CONTINUE;
3397 
3398 	/*
3399 	 * For AP mode, hostapd is responsible for handling any action
3400 	 * frames that we didn't handle, including returning unknown
3401 	 * ones. For all other modes we will return them to the sender,
3402 	 * setting the 0x80 bit in the action category, as required by
3403 	 * 802.11-2012 9.24.4.
3404 	 * Newer versions of hostapd shall also use the management frame
3405 	 * registration mechanisms, but older ones still use cooked
3406 	 * monitor interfaces so push all frames there.
3407 	 */
3408 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3409 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3410 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3411 		return RX_DROP_MONITOR;
3412 
3413 	if (is_multicast_ether_addr(mgmt->da))
3414 		return RX_DROP_MONITOR;
3415 
3416 	/* do not return rejected action frames */
3417 	if (mgmt->u.action.category & 0x80)
3418 		return RX_DROP_UNUSABLE;
3419 
3420 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3421 			       GFP_ATOMIC);
3422 	if (nskb) {
3423 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3424 
3425 		nmgmt->u.action.category |= 0x80;
3426 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3427 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3428 
3429 		memset(nskb->cb, 0, sizeof(nskb->cb));
3430 
3431 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3432 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3433 
3434 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3435 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3436 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3437 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3438 				info->hw_queue =
3439 					local->hw.offchannel_tx_hw_queue;
3440 		}
3441 
3442 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3443 					    status->band, 0);
3444 	}
3445 	dev_kfree_skb(rx->skb);
3446 	return RX_QUEUED;
3447 }
3448 
3449 static ieee80211_rx_result debug_noinline
3450 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3451 {
3452 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3453 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3454 	__le16 stype;
3455 
3456 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3457 
3458 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3459 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3460 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3461 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3462 		return RX_DROP_MONITOR;
3463 
3464 	switch (stype) {
3465 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3466 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3467 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3468 		/* process for all: mesh, mlme, ibss */
3469 		break;
3470 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3471 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3472 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3473 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3474 		if (is_multicast_ether_addr(mgmt->da) &&
3475 		    !is_broadcast_ether_addr(mgmt->da))
3476 			return RX_DROP_MONITOR;
3477 
3478 		/* process only for station */
3479 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3480 			return RX_DROP_MONITOR;
3481 		break;
3482 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3483 		/* process only for ibss and mesh */
3484 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3485 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3486 			return RX_DROP_MONITOR;
3487 		break;
3488 	default:
3489 		return RX_DROP_MONITOR;
3490 	}
3491 
3492 	/* queue up frame and kick off work to process it */
3493 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3494 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3495 	if (rx->sta)
3496 		rx->sta->rx_stats.packets++;
3497 
3498 	return RX_QUEUED;
3499 }
3500 
3501 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3502 					struct ieee80211_rate *rate)
3503 {
3504 	struct ieee80211_sub_if_data *sdata;
3505 	struct ieee80211_local *local = rx->local;
3506 	struct sk_buff *skb = rx->skb, *skb2;
3507 	struct net_device *prev_dev = NULL;
3508 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3509 	int needed_headroom;
3510 
3511 	/*
3512 	 * If cooked monitor has been processed already, then
3513 	 * don't do it again. If not, set the flag.
3514 	 */
3515 	if (rx->flags & IEEE80211_RX_CMNTR)
3516 		goto out_free_skb;
3517 	rx->flags |= IEEE80211_RX_CMNTR;
3518 
3519 	/* If there are no cooked monitor interfaces, just free the SKB */
3520 	if (!local->cooked_mntrs)
3521 		goto out_free_skb;
3522 
3523 	/* vendor data is long removed here */
3524 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3525 	/* room for the radiotap header based on driver features */
3526 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3527 
3528 	if (skb_headroom(skb) < needed_headroom &&
3529 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3530 		goto out_free_skb;
3531 
3532 	/* prepend radiotap information */
3533 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3534 					 false);
3535 
3536 	skb_reset_mac_header(skb);
3537 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3538 	skb->pkt_type = PACKET_OTHERHOST;
3539 	skb->protocol = htons(ETH_P_802_2);
3540 
3541 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3542 		if (!ieee80211_sdata_running(sdata))
3543 			continue;
3544 
3545 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3546 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3547 			continue;
3548 
3549 		if (prev_dev) {
3550 			skb2 = skb_clone(skb, GFP_ATOMIC);
3551 			if (skb2) {
3552 				skb2->dev = prev_dev;
3553 				netif_receive_skb(skb2);
3554 			}
3555 		}
3556 
3557 		prev_dev = sdata->dev;
3558 		ieee80211_rx_stats(sdata->dev, skb->len);
3559 	}
3560 
3561 	if (prev_dev) {
3562 		skb->dev = prev_dev;
3563 		netif_receive_skb(skb);
3564 		return;
3565 	}
3566 
3567  out_free_skb:
3568 	dev_kfree_skb(skb);
3569 }
3570 
3571 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3572 					 ieee80211_rx_result res)
3573 {
3574 	switch (res) {
3575 	case RX_DROP_MONITOR:
3576 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3577 		if (rx->sta)
3578 			rx->sta->rx_stats.dropped++;
3579 		/* fall through */
3580 	case RX_CONTINUE: {
3581 		struct ieee80211_rate *rate = NULL;
3582 		struct ieee80211_supported_band *sband;
3583 		struct ieee80211_rx_status *status;
3584 
3585 		status = IEEE80211_SKB_RXCB((rx->skb));
3586 
3587 		sband = rx->local->hw.wiphy->bands[status->band];
3588 		if (status->encoding == RX_ENC_LEGACY)
3589 			rate = &sband->bitrates[status->rate_idx];
3590 
3591 		ieee80211_rx_cooked_monitor(rx, rate);
3592 		break;
3593 		}
3594 	case RX_DROP_UNUSABLE:
3595 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3596 		if (rx->sta)
3597 			rx->sta->rx_stats.dropped++;
3598 		dev_kfree_skb(rx->skb);
3599 		break;
3600 	case RX_QUEUED:
3601 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3602 		break;
3603 	}
3604 }
3605 
3606 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3607 				  struct sk_buff_head *frames)
3608 {
3609 	ieee80211_rx_result res = RX_DROP_MONITOR;
3610 	struct sk_buff *skb;
3611 
3612 #define CALL_RXH(rxh)			\
3613 	do {				\
3614 		res = rxh(rx);		\
3615 		if (res != RX_CONTINUE)	\
3616 			goto rxh_next;  \
3617 	} while (0)
3618 
3619 	/* Lock here to avoid hitting all of the data used in the RX
3620 	 * path (e.g. key data, station data, ...) concurrently when
3621 	 * a frame is released from the reorder buffer due to timeout
3622 	 * from the timer, potentially concurrently with RX from the
3623 	 * driver.
3624 	 */
3625 	spin_lock_bh(&rx->local->rx_path_lock);
3626 
3627 	while ((skb = __skb_dequeue(frames))) {
3628 		/*
3629 		 * all the other fields are valid across frames
3630 		 * that belong to an aMPDU since they are on the
3631 		 * same TID from the same station
3632 		 */
3633 		rx->skb = skb;
3634 
3635 		CALL_RXH(ieee80211_rx_h_check_more_data);
3636 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3637 		CALL_RXH(ieee80211_rx_h_sta_process);
3638 		CALL_RXH(ieee80211_rx_h_decrypt);
3639 		CALL_RXH(ieee80211_rx_h_defragment);
3640 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3641 		/* must be after MMIC verify so header is counted in MPDU mic */
3642 #ifdef CONFIG_MAC80211_MESH
3643 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3644 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3645 #endif
3646 		CALL_RXH(ieee80211_rx_h_amsdu);
3647 		CALL_RXH(ieee80211_rx_h_data);
3648 
3649 		/* special treatment -- needs the queue */
3650 		res = ieee80211_rx_h_ctrl(rx, frames);
3651 		if (res != RX_CONTINUE)
3652 			goto rxh_next;
3653 
3654 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3655 		CALL_RXH(ieee80211_rx_h_action);
3656 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3657 		CALL_RXH(ieee80211_rx_h_action_return);
3658 		CALL_RXH(ieee80211_rx_h_mgmt);
3659 
3660  rxh_next:
3661 		ieee80211_rx_handlers_result(rx, res);
3662 
3663 #undef CALL_RXH
3664 	}
3665 
3666 	spin_unlock_bh(&rx->local->rx_path_lock);
3667 }
3668 
3669 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3670 {
3671 	struct sk_buff_head reorder_release;
3672 	ieee80211_rx_result res = RX_DROP_MONITOR;
3673 
3674 	__skb_queue_head_init(&reorder_release);
3675 
3676 #define CALL_RXH(rxh)			\
3677 	do {				\
3678 		res = rxh(rx);		\
3679 		if (res != RX_CONTINUE)	\
3680 			goto rxh_next;  \
3681 	} while (0)
3682 
3683 	CALL_RXH(ieee80211_rx_h_check_dup);
3684 	CALL_RXH(ieee80211_rx_h_check);
3685 
3686 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3687 
3688 	ieee80211_rx_handlers(rx, &reorder_release);
3689 	return;
3690 
3691  rxh_next:
3692 	ieee80211_rx_handlers_result(rx, res);
3693 
3694 #undef CALL_RXH
3695 }
3696 
3697 /*
3698  * This function makes calls into the RX path, therefore
3699  * it has to be invoked under RCU read lock.
3700  */
3701 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3702 {
3703 	struct sk_buff_head frames;
3704 	struct ieee80211_rx_data rx = {
3705 		.sta = sta,
3706 		.sdata = sta->sdata,
3707 		.local = sta->local,
3708 		/* This is OK -- must be QoS data frame */
3709 		.security_idx = tid,
3710 		.seqno_idx = tid,
3711 		.napi = NULL, /* must be NULL to not have races */
3712 	};
3713 	struct tid_ampdu_rx *tid_agg_rx;
3714 
3715 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3716 	if (!tid_agg_rx)
3717 		return;
3718 
3719 	__skb_queue_head_init(&frames);
3720 
3721 	spin_lock(&tid_agg_rx->reorder_lock);
3722 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3723 	spin_unlock(&tid_agg_rx->reorder_lock);
3724 
3725 	if (!skb_queue_empty(&frames)) {
3726 		struct ieee80211_event event = {
3727 			.type = BA_FRAME_TIMEOUT,
3728 			.u.ba.tid = tid,
3729 			.u.ba.sta = &sta->sta,
3730 		};
3731 		drv_event_callback(rx.local, rx.sdata, &event);
3732 	}
3733 
3734 	ieee80211_rx_handlers(&rx, &frames);
3735 }
3736 
3737 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3738 					  u16 ssn, u64 filtered,
3739 					  u16 received_mpdus)
3740 {
3741 	struct sta_info *sta;
3742 	struct tid_ampdu_rx *tid_agg_rx;
3743 	struct sk_buff_head frames;
3744 	struct ieee80211_rx_data rx = {
3745 		/* This is OK -- must be QoS data frame */
3746 		.security_idx = tid,
3747 		.seqno_idx = tid,
3748 	};
3749 	int i, diff;
3750 
3751 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3752 		return;
3753 
3754 	__skb_queue_head_init(&frames);
3755 
3756 	sta = container_of(pubsta, struct sta_info, sta);
3757 
3758 	rx.sta = sta;
3759 	rx.sdata = sta->sdata;
3760 	rx.local = sta->local;
3761 
3762 	rcu_read_lock();
3763 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3764 	if (!tid_agg_rx)
3765 		goto out;
3766 
3767 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3768 
3769 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3770 		int release;
3771 
3772 		/* release all frames in the reorder buffer */
3773 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3774 			   IEEE80211_SN_MODULO;
3775 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3776 						 release, &frames);
3777 		/* update ssn to match received ssn */
3778 		tid_agg_rx->head_seq_num = ssn;
3779 	} else {
3780 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3781 						 &frames);
3782 	}
3783 
3784 	/* handle the case that received ssn is behind the mac ssn.
3785 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3786 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3787 	if (diff >= tid_agg_rx->buf_size) {
3788 		tid_agg_rx->reorder_buf_filtered = 0;
3789 		goto release;
3790 	}
3791 	filtered = filtered >> diff;
3792 	ssn += diff;
3793 
3794 	/* update bitmap */
3795 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3796 		int index = (ssn + i) % tid_agg_rx->buf_size;
3797 
3798 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3799 		if (filtered & BIT_ULL(i))
3800 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3801 	}
3802 
3803 	/* now process also frames that the filter marking released */
3804 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3805 
3806 release:
3807 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3808 
3809 	ieee80211_rx_handlers(&rx, &frames);
3810 
3811  out:
3812 	rcu_read_unlock();
3813 }
3814 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3815 
3816 /* main receive path */
3817 
3818 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3819 {
3820 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3821 	struct sk_buff *skb = rx->skb;
3822 	struct ieee80211_hdr *hdr = (void *)skb->data;
3823 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3824 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3825 	bool multicast = is_multicast_ether_addr(hdr->addr1);
3826 
3827 	switch (sdata->vif.type) {
3828 	case NL80211_IFTYPE_STATION:
3829 		if (!bssid && !sdata->u.mgd.use_4addr)
3830 			return false;
3831 		if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
3832 			return false;
3833 		if (multicast)
3834 			return true;
3835 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3836 	case NL80211_IFTYPE_ADHOC:
3837 		if (!bssid)
3838 			return false;
3839 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3840 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3841 			return false;
3842 		if (ieee80211_is_beacon(hdr->frame_control))
3843 			return true;
3844 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3845 			return false;
3846 		if (!multicast &&
3847 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3848 			return false;
3849 		if (!rx->sta) {
3850 			int rate_idx;
3851 			if (status->encoding != RX_ENC_LEGACY)
3852 				rate_idx = 0; /* TODO: HT/VHT rates */
3853 			else
3854 				rate_idx = status->rate_idx;
3855 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3856 						 BIT(rate_idx));
3857 		}
3858 		return true;
3859 	case NL80211_IFTYPE_OCB:
3860 		if (!bssid)
3861 			return false;
3862 		if (!ieee80211_is_data_present(hdr->frame_control))
3863 			return false;
3864 		if (!is_broadcast_ether_addr(bssid))
3865 			return false;
3866 		if (!multicast &&
3867 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3868 			return false;
3869 		if (!rx->sta) {
3870 			int rate_idx;
3871 			if (status->encoding != RX_ENC_LEGACY)
3872 				rate_idx = 0; /* TODO: HT rates */
3873 			else
3874 				rate_idx = status->rate_idx;
3875 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3876 						BIT(rate_idx));
3877 		}
3878 		return true;
3879 	case NL80211_IFTYPE_MESH_POINT:
3880 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3881 			return false;
3882 		if (multicast)
3883 			return true;
3884 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3885 	case NL80211_IFTYPE_AP_VLAN:
3886 	case NL80211_IFTYPE_AP:
3887 		if (!bssid)
3888 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3889 
3890 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3891 			/*
3892 			 * Accept public action frames even when the
3893 			 * BSSID doesn't match, this is used for P2P
3894 			 * and location updates. Note that mac80211
3895 			 * itself never looks at these frames.
3896 			 */
3897 			if (!multicast &&
3898 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3899 				return false;
3900 			if (ieee80211_is_public_action(hdr, skb->len))
3901 				return true;
3902 			return ieee80211_is_beacon(hdr->frame_control);
3903 		}
3904 
3905 		if (!ieee80211_has_tods(hdr->frame_control)) {
3906 			/* ignore data frames to TDLS-peers */
3907 			if (ieee80211_is_data(hdr->frame_control))
3908 				return false;
3909 			/* ignore action frames to TDLS-peers */
3910 			if (ieee80211_is_action(hdr->frame_control) &&
3911 			    !is_broadcast_ether_addr(bssid) &&
3912 			    !ether_addr_equal(bssid, hdr->addr1))
3913 				return false;
3914 		}
3915 
3916 		/*
3917 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3918 		 * the BSSID - we've checked that already but may have accepted
3919 		 * the wildcard (ff:ff:ff:ff:ff:ff).
3920 		 *
3921 		 * It also says:
3922 		 *	The BSSID of the Data frame is determined as follows:
3923 		 *	a) If the STA is contained within an AP or is associated
3924 		 *	   with an AP, the BSSID is the address currently in use
3925 		 *	   by the STA contained in the AP.
3926 		 *
3927 		 * So we should not accept data frames with an address that's
3928 		 * multicast.
3929 		 *
3930 		 * Accepting it also opens a security problem because stations
3931 		 * could encrypt it with the GTK and inject traffic that way.
3932 		 */
3933 		if (ieee80211_is_data(hdr->frame_control) && multicast)
3934 			return false;
3935 
3936 		return true;
3937 	case NL80211_IFTYPE_WDS:
3938 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3939 			return false;
3940 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3941 	case NL80211_IFTYPE_P2P_DEVICE:
3942 		return ieee80211_is_public_action(hdr, skb->len) ||
3943 		       ieee80211_is_probe_req(hdr->frame_control) ||
3944 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3945 		       ieee80211_is_beacon(hdr->frame_control);
3946 	case NL80211_IFTYPE_NAN:
3947 		/* Currently no frames on NAN interface are allowed */
3948 		return false;
3949 	default:
3950 		break;
3951 	}
3952 
3953 	WARN_ON_ONCE(1);
3954 	return false;
3955 }
3956 
3957 void ieee80211_check_fast_rx(struct sta_info *sta)
3958 {
3959 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3960 	struct ieee80211_local *local = sdata->local;
3961 	struct ieee80211_key *key;
3962 	struct ieee80211_fast_rx fastrx = {
3963 		.dev = sdata->dev,
3964 		.vif_type = sdata->vif.type,
3965 		.control_port_protocol = sdata->control_port_protocol,
3966 	}, *old, *new = NULL;
3967 	bool assign = false;
3968 
3969 	/* use sparse to check that we don't return without updating */
3970 	__acquire(check_fast_rx);
3971 
3972 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3973 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3974 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3975 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3976 
3977 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3978 
3979 	/* fast-rx doesn't do reordering */
3980 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3981 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3982 		goto clear;
3983 
3984 	switch (sdata->vif.type) {
3985 	case NL80211_IFTYPE_STATION:
3986 		if (sta->sta.tdls) {
3987 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3988 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3989 			fastrx.expected_ds_bits = 0;
3990 		} else {
3991 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3992 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3993 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3994 			fastrx.expected_ds_bits =
3995 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3996 		}
3997 
3998 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
3999 			fastrx.expected_ds_bits |=
4000 				cpu_to_le16(IEEE80211_FCTL_TODS);
4001 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4002 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4003 		}
4004 
4005 		if (!sdata->u.mgd.powersave)
4006 			break;
4007 
4008 		/* software powersave is a huge mess, avoid all of it */
4009 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4010 			goto clear;
4011 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4012 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4013 			goto clear;
4014 		break;
4015 	case NL80211_IFTYPE_AP_VLAN:
4016 	case NL80211_IFTYPE_AP:
4017 		/* parallel-rx requires this, at least with calls to
4018 		 * ieee80211_sta_ps_transition()
4019 		 */
4020 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4021 			goto clear;
4022 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4023 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4024 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4025 
4026 		fastrx.internal_forward =
4027 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4028 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4029 			 !sdata->u.vlan.sta);
4030 
4031 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4032 		    sdata->u.vlan.sta) {
4033 			fastrx.expected_ds_bits |=
4034 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4035 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4036 			fastrx.internal_forward = 0;
4037 		}
4038 
4039 		break;
4040 	default:
4041 		goto clear;
4042 	}
4043 
4044 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4045 		goto clear;
4046 
4047 	rcu_read_lock();
4048 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4049 	if (key) {
4050 		switch (key->conf.cipher) {
4051 		case WLAN_CIPHER_SUITE_TKIP:
4052 			/* we don't want to deal with MMIC in fast-rx */
4053 			goto clear_rcu;
4054 		case WLAN_CIPHER_SUITE_CCMP:
4055 		case WLAN_CIPHER_SUITE_CCMP_256:
4056 		case WLAN_CIPHER_SUITE_GCMP:
4057 		case WLAN_CIPHER_SUITE_GCMP_256:
4058 			break;
4059 		default:
4060 			/* We also don't want to deal with
4061 			 * WEP or cipher scheme.
4062 			 */
4063 			goto clear_rcu;
4064 		}
4065 
4066 		fastrx.key = true;
4067 		fastrx.icv_len = key->conf.icv_len;
4068 	}
4069 
4070 	assign = true;
4071  clear_rcu:
4072 	rcu_read_unlock();
4073  clear:
4074 	__release(check_fast_rx);
4075 
4076 	if (assign)
4077 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4078 
4079 	spin_lock_bh(&sta->lock);
4080 	old = rcu_dereference_protected(sta->fast_rx, true);
4081 	rcu_assign_pointer(sta->fast_rx, new);
4082 	spin_unlock_bh(&sta->lock);
4083 
4084 	if (old)
4085 		kfree_rcu(old, rcu_head);
4086 }
4087 
4088 void ieee80211_clear_fast_rx(struct sta_info *sta)
4089 {
4090 	struct ieee80211_fast_rx *old;
4091 
4092 	spin_lock_bh(&sta->lock);
4093 	old = rcu_dereference_protected(sta->fast_rx, true);
4094 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4095 	spin_unlock_bh(&sta->lock);
4096 
4097 	if (old)
4098 		kfree_rcu(old, rcu_head);
4099 }
4100 
4101 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4102 {
4103 	struct ieee80211_local *local = sdata->local;
4104 	struct sta_info *sta;
4105 
4106 	lockdep_assert_held(&local->sta_mtx);
4107 
4108 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
4109 		if (sdata != sta->sdata &&
4110 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4111 			continue;
4112 		ieee80211_check_fast_rx(sta);
4113 	}
4114 }
4115 
4116 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4117 {
4118 	struct ieee80211_local *local = sdata->local;
4119 
4120 	mutex_lock(&local->sta_mtx);
4121 	__ieee80211_check_fast_rx_iface(sdata);
4122 	mutex_unlock(&local->sta_mtx);
4123 }
4124 
4125 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4126 				     struct ieee80211_fast_rx *fast_rx)
4127 {
4128 	struct sk_buff *skb = rx->skb;
4129 	struct ieee80211_hdr *hdr = (void *)skb->data;
4130 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4131 	struct sta_info *sta = rx->sta;
4132 	int orig_len = skb->len;
4133 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4134 	int snap_offs = hdrlen;
4135 	struct {
4136 		u8 snap[sizeof(rfc1042_header)];
4137 		__be16 proto;
4138 	} *payload __aligned(2);
4139 	struct {
4140 		u8 da[ETH_ALEN];
4141 		u8 sa[ETH_ALEN];
4142 	} addrs __aligned(2);
4143 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4144 
4145 	if (fast_rx->uses_rss)
4146 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4147 
4148 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4149 	 * to a common data structure; drivers can implement that per queue
4150 	 * but we don't have that information in mac80211
4151 	 */
4152 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4153 		return false;
4154 
4155 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4156 
4157 	/* If using encryption, we also need to have:
4158 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4159 	 *  - DECRYPTED: necessary for PN_VALIDATED
4160 	 */
4161 	if (fast_rx->key &&
4162 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4163 		return false;
4164 
4165 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4166 		return false;
4167 
4168 	if (unlikely(ieee80211_is_frag(hdr)))
4169 		return false;
4170 
4171 	/* Since our interface address cannot be multicast, this
4172 	 * implicitly also rejects multicast frames without the
4173 	 * explicit check.
4174 	 *
4175 	 * We shouldn't get any *data* frames not addressed to us
4176 	 * (AP mode will accept multicast *management* frames), but
4177 	 * punting here will make it go through the full checks in
4178 	 * ieee80211_accept_frame().
4179 	 */
4180 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4181 		return false;
4182 
4183 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4184 					      IEEE80211_FCTL_TODS)) !=
4185 	    fast_rx->expected_ds_bits)
4186 		return false;
4187 
4188 	/* assign the key to drop unencrypted frames (later)
4189 	 * and strip the IV/MIC if necessary
4190 	 */
4191 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4192 		/* GCMP header length is the same */
4193 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4194 	}
4195 
4196 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4197 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4198 			goto drop;
4199 
4200 		payload = (void *)(skb->data + snap_offs);
4201 
4202 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4203 			return false;
4204 
4205 		/* Don't handle these here since they require special code.
4206 		 * Accept AARP and IPX even though they should come with a
4207 		 * bridge-tunnel header - but if we get them this way then
4208 		 * there's little point in discarding them.
4209 		 */
4210 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4211 			     payload->proto == fast_rx->control_port_protocol))
4212 			return false;
4213 	}
4214 
4215 	/* after this point, don't punt to the slowpath! */
4216 
4217 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4218 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4219 		goto drop;
4220 
4221 	if (unlikely(fast_rx->sta_notify)) {
4222 		ieee80211_sta_rx_notify(rx->sdata, hdr);
4223 		fast_rx->sta_notify = false;
4224 	}
4225 
4226 	/* statistics part of ieee80211_rx_h_sta_process() */
4227 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4228 		stats->last_signal = status->signal;
4229 		if (!fast_rx->uses_rss)
4230 			ewma_signal_add(&sta->rx_stats_avg.signal,
4231 					-status->signal);
4232 	}
4233 
4234 	if (status->chains) {
4235 		int i;
4236 
4237 		stats->chains = status->chains;
4238 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4239 			int signal = status->chain_signal[i];
4240 
4241 			if (!(status->chains & BIT(i)))
4242 				continue;
4243 
4244 			stats->chain_signal_last[i] = signal;
4245 			if (!fast_rx->uses_rss)
4246 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4247 						-signal);
4248 		}
4249 	}
4250 	/* end of statistics */
4251 
4252 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4253 		goto drop;
4254 
4255 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4256 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4257 		    RX_QUEUED)
4258 			goto drop;
4259 
4260 		return true;
4261 	}
4262 
4263 	stats->last_rx = jiffies;
4264 	stats->last_rate = sta_stats_encode_rate(status);
4265 
4266 	stats->fragments++;
4267 	stats->packets++;
4268 
4269 	/* do the header conversion - first grab the addresses */
4270 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4271 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4272 	/* remove the SNAP but leave the ethertype */
4273 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4274 	/* push the addresses in front */
4275 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4276 
4277 	skb->dev = fast_rx->dev;
4278 
4279 	ieee80211_rx_stats(fast_rx->dev, skb->len);
4280 
4281 	/* The seqno index has the same property as needed
4282 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4283 	 * for non-QoS-data frames. Here we know it's a data
4284 	 * frame, so count MSDUs.
4285 	 */
4286 	u64_stats_update_begin(&stats->syncp);
4287 	stats->msdu[rx->seqno_idx]++;
4288 	stats->bytes += orig_len;
4289 	u64_stats_update_end(&stats->syncp);
4290 
4291 	if (fast_rx->internal_forward) {
4292 		struct sk_buff *xmit_skb = NULL;
4293 		if (is_multicast_ether_addr(addrs.da)) {
4294 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4295 		} else if (!ether_addr_equal(addrs.da, addrs.sa) &&
4296 			   sta_info_get(rx->sdata, addrs.da)) {
4297 			xmit_skb = skb;
4298 			skb = NULL;
4299 		}
4300 
4301 		if (xmit_skb) {
4302 			/*
4303 			 * Send to wireless media and increase priority by 256
4304 			 * to keep the received priority instead of
4305 			 * reclassifying the frame (see cfg80211_classify8021d).
4306 			 */
4307 			xmit_skb->priority += 256;
4308 			xmit_skb->protocol = htons(ETH_P_802_3);
4309 			skb_reset_network_header(xmit_skb);
4310 			skb_reset_mac_header(xmit_skb);
4311 			dev_queue_xmit(xmit_skb);
4312 		}
4313 
4314 		if (!skb)
4315 			return true;
4316 	}
4317 
4318 	/* deliver to local stack */
4319 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4320 	memset(skb->cb, 0, sizeof(skb->cb));
4321 	if (rx->napi)
4322 		napi_gro_receive(rx->napi, skb);
4323 	else
4324 		netif_receive_skb(skb);
4325 
4326 	return true;
4327  drop:
4328 	dev_kfree_skb(skb);
4329 	stats->dropped++;
4330 	return true;
4331 }
4332 
4333 /*
4334  * This function returns whether or not the SKB
4335  * was destined for RX processing or not, which,
4336  * if consume is true, is equivalent to whether
4337  * or not the skb was consumed.
4338  */
4339 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4340 					    struct sk_buff *skb, bool consume)
4341 {
4342 	struct ieee80211_local *local = rx->local;
4343 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4344 
4345 	rx->skb = skb;
4346 
4347 	/* See if we can do fast-rx; if we have to copy we already lost,
4348 	 * so punt in that case. We should never have to deliver a data
4349 	 * frame to multiple interfaces anyway.
4350 	 *
4351 	 * We skip the ieee80211_accept_frame() call and do the necessary
4352 	 * checking inside ieee80211_invoke_fast_rx().
4353 	 */
4354 	if (consume && rx->sta) {
4355 		struct ieee80211_fast_rx *fast_rx;
4356 
4357 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4358 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4359 			return true;
4360 	}
4361 
4362 	if (!ieee80211_accept_frame(rx))
4363 		return false;
4364 
4365 	if (!consume) {
4366 		skb = skb_copy(skb, GFP_ATOMIC);
4367 		if (!skb) {
4368 			if (net_ratelimit())
4369 				wiphy_debug(local->hw.wiphy,
4370 					"failed to copy skb for %s\n",
4371 					sdata->name);
4372 			return true;
4373 		}
4374 
4375 		rx->skb = skb;
4376 	}
4377 
4378 	ieee80211_invoke_rx_handlers(rx);
4379 	return true;
4380 }
4381 
4382 /*
4383  * This is the actual Rx frames handler. as it belongs to Rx path it must
4384  * be called with rcu_read_lock protection.
4385  */
4386 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4387 					 struct ieee80211_sta *pubsta,
4388 					 struct sk_buff *skb,
4389 					 struct napi_struct *napi)
4390 {
4391 	struct ieee80211_local *local = hw_to_local(hw);
4392 	struct ieee80211_sub_if_data *sdata;
4393 	struct ieee80211_hdr *hdr;
4394 	__le16 fc;
4395 	struct ieee80211_rx_data rx;
4396 	struct ieee80211_sub_if_data *prev;
4397 	struct rhlist_head *tmp;
4398 	int err = 0;
4399 
4400 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4401 	memset(&rx, 0, sizeof(rx));
4402 	rx.skb = skb;
4403 	rx.local = local;
4404 	rx.napi = napi;
4405 
4406 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4407 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4408 
4409 	if (ieee80211_is_mgmt(fc)) {
4410 		/* drop frame if too short for header */
4411 		if (skb->len < ieee80211_hdrlen(fc))
4412 			err = -ENOBUFS;
4413 		else
4414 			err = skb_linearize(skb);
4415 	} else {
4416 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4417 	}
4418 
4419 	if (err) {
4420 		dev_kfree_skb(skb);
4421 		return;
4422 	}
4423 
4424 	hdr = (struct ieee80211_hdr *)skb->data;
4425 	ieee80211_parse_qos(&rx);
4426 	ieee80211_verify_alignment(&rx);
4427 
4428 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4429 		     ieee80211_is_beacon(hdr->frame_control)))
4430 		ieee80211_scan_rx(local, skb);
4431 
4432 	if (ieee80211_is_data(fc)) {
4433 		struct sta_info *sta, *prev_sta;
4434 
4435 		if (pubsta) {
4436 			rx.sta = container_of(pubsta, struct sta_info, sta);
4437 			rx.sdata = rx.sta->sdata;
4438 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4439 				return;
4440 			goto out;
4441 		}
4442 
4443 		prev_sta = NULL;
4444 
4445 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4446 			if (!prev_sta) {
4447 				prev_sta = sta;
4448 				continue;
4449 			}
4450 
4451 			rx.sta = prev_sta;
4452 			rx.sdata = prev_sta->sdata;
4453 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4454 
4455 			prev_sta = sta;
4456 		}
4457 
4458 		if (prev_sta) {
4459 			rx.sta = prev_sta;
4460 			rx.sdata = prev_sta->sdata;
4461 
4462 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4463 				return;
4464 			goto out;
4465 		}
4466 	}
4467 
4468 	prev = NULL;
4469 
4470 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4471 		if (!ieee80211_sdata_running(sdata))
4472 			continue;
4473 
4474 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4475 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4476 			continue;
4477 
4478 		/*
4479 		 * frame is destined for this interface, but if it's
4480 		 * not also for the previous one we handle that after
4481 		 * the loop to avoid copying the SKB once too much
4482 		 */
4483 
4484 		if (!prev) {
4485 			prev = sdata;
4486 			continue;
4487 		}
4488 
4489 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4490 		rx.sdata = prev;
4491 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4492 
4493 		prev = sdata;
4494 	}
4495 
4496 	if (prev) {
4497 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4498 		rx.sdata = prev;
4499 
4500 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4501 			return;
4502 	}
4503 
4504  out:
4505 	dev_kfree_skb(skb);
4506 }
4507 
4508 /*
4509  * This is the receive path handler. It is called by a low level driver when an
4510  * 802.11 MPDU is received from the hardware.
4511  */
4512 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4513 		       struct sk_buff *skb, struct napi_struct *napi)
4514 {
4515 	struct ieee80211_local *local = hw_to_local(hw);
4516 	struct ieee80211_rate *rate = NULL;
4517 	struct ieee80211_supported_band *sband;
4518 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4519 
4520 	WARN_ON_ONCE(softirq_count() == 0);
4521 
4522 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4523 		goto drop;
4524 
4525 	sband = local->hw.wiphy->bands[status->band];
4526 	if (WARN_ON(!sband))
4527 		goto drop;
4528 
4529 	/*
4530 	 * If we're suspending, it is possible although not too likely
4531 	 * that we'd be receiving frames after having already partially
4532 	 * quiesced the stack. We can't process such frames then since
4533 	 * that might, for example, cause stations to be added or other
4534 	 * driver callbacks be invoked.
4535 	 */
4536 	if (unlikely(local->quiescing || local->suspended))
4537 		goto drop;
4538 
4539 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4540 	if (unlikely(local->in_reconfig))
4541 		goto drop;
4542 
4543 	/*
4544 	 * The same happens when we're not even started,
4545 	 * but that's worth a warning.
4546 	 */
4547 	if (WARN_ON(!local->started))
4548 		goto drop;
4549 
4550 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4551 		/*
4552 		 * Validate the rate, unless a PLCP error means that
4553 		 * we probably can't have a valid rate here anyway.
4554 		 */
4555 
4556 		switch (status->encoding) {
4557 		case RX_ENC_HT:
4558 			/*
4559 			 * rate_idx is MCS index, which can be [0-76]
4560 			 * as documented on:
4561 			 *
4562 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4563 			 *
4564 			 * Anything else would be some sort of driver or
4565 			 * hardware error. The driver should catch hardware
4566 			 * errors.
4567 			 */
4568 			if (WARN(status->rate_idx > 76,
4569 				 "Rate marked as an HT rate but passed "
4570 				 "status->rate_idx is not "
4571 				 "an MCS index [0-76]: %d (0x%02x)\n",
4572 				 status->rate_idx,
4573 				 status->rate_idx))
4574 				goto drop;
4575 			break;
4576 		case RX_ENC_VHT:
4577 			if (WARN_ONCE(status->rate_idx > 9 ||
4578 				      !status->nss ||
4579 				      status->nss > 8,
4580 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4581 				      status->rate_idx, status->nss))
4582 				goto drop;
4583 			break;
4584 		case RX_ENC_HE:
4585 			if (WARN_ONCE(status->rate_idx > 11 ||
4586 				      !status->nss ||
4587 				      status->nss > 8,
4588 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4589 				      status->rate_idx, status->nss))
4590 				goto drop;
4591 			break;
4592 		default:
4593 			WARN_ON_ONCE(1);
4594 			/* fall through */
4595 		case RX_ENC_LEGACY:
4596 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4597 				goto drop;
4598 			rate = &sband->bitrates[status->rate_idx];
4599 		}
4600 	}
4601 
4602 	status->rx_flags = 0;
4603 
4604 	/*
4605 	 * key references and virtual interfaces are protected using RCU
4606 	 * and this requires that we are in a read-side RCU section during
4607 	 * receive processing
4608 	 */
4609 	rcu_read_lock();
4610 
4611 	/*
4612 	 * Frames with failed FCS/PLCP checksum are not returned,
4613 	 * all other frames are returned without radiotap header
4614 	 * if it was previously present.
4615 	 * Also, frames with less than 16 bytes are dropped.
4616 	 */
4617 	skb = ieee80211_rx_monitor(local, skb, rate);
4618 	if (!skb) {
4619 		rcu_read_unlock();
4620 		return;
4621 	}
4622 
4623 	ieee80211_tpt_led_trig_rx(local,
4624 			((struct ieee80211_hdr *)skb->data)->frame_control,
4625 			skb->len);
4626 
4627 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4628 
4629 	rcu_read_unlock();
4630 
4631 	return;
4632  drop:
4633 	kfree_skb(skb);
4634 }
4635 EXPORT_SYMBOL(ieee80211_rx_napi);
4636 
4637 /* This is a version of the rx handler that can be called from hard irq
4638  * context. Post the skb on the queue and schedule the tasklet */
4639 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4640 {
4641 	struct ieee80211_local *local = hw_to_local(hw);
4642 
4643 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4644 
4645 	skb->pkt_type = IEEE80211_RX_MSG;
4646 	skb_queue_tail(&local->skb_queue, skb);
4647 	tasklet_schedule(&local->tasklet);
4648 }
4649 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4650