1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright(c) 2015 - 2016 Intel Deutschland GmbH 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/jiffies.h> 15 #include <linux/slab.h> 16 #include <linux/kernel.h> 17 #include <linux/skbuff.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/rcupdate.h> 21 #include <linux/export.h> 22 #include <linux/bitops.h> 23 #include <net/mac80211.h> 24 #include <net/ieee80211_radiotap.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "tkip.h" 34 #include "wme.h" 35 #include "rate.h" 36 37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 38 { 39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 40 41 u64_stats_update_begin(&tstats->syncp); 42 tstats->rx_packets++; 43 tstats->rx_bytes += len; 44 u64_stats_update_end(&tstats->syncp); 45 } 46 47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 48 enum nl80211_iftype type) 49 { 50 __le16 fc = hdr->frame_control; 51 52 if (ieee80211_is_data(fc)) { 53 if (len < 24) /* drop incorrect hdr len (data) */ 54 return NULL; 55 56 if (ieee80211_has_a4(fc)) 57 return NULL; 58 if (ieee80211_has_tods(fc)) 59 return hdr->addr1; 60 if (ieee80211_has_fromds(fc)) 61 return hdr->addr2; 62 63 return hdr->addr3; 64 } 65 66 if (ieee80211_is_mgmt(fc)) { 67 if (len < 24) /* drop incorrect hdr len (mgmt) */ 68 return NULL; 69 return hdr->addr3; 70 } 71 72 if (ieee80211_is_ctl(fc)) { 73 if (ieee80211_is_pspoll(fc)) 74 return hdr->addr1; 75 76 if (ieee80211_is_back_req(fc)) { 77 switch (type) { 78 case NL80211_IFTYPE_STATION: 79 return hdr->addr2; 80 case NL80211_IFTYPE_AP: 81 case NL80211_IFTYPE_AP_VLAN: 82 return hdr->addr1; 83 default: 84 break; /* fall through to the return */ 85 } 86 } 87 } 88 89 return NULL; 90 } 91 92 /* 93 * monitor mode reception 94 * 95 * This function cleans up the SKB, i.e. it removes all the stuff 96 * only useful for monitoring. 97 */ 98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 99 struct sk_buff *skb, 100 unsigned int rtap_vendor_space) 101 { 102 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 103 if (likely(skb->len > FCS_LEN)) 104 __pskb_trim(skb, skb->len - FCS_LEN); 105 else { 106 /* driver bug */ 107 WARN_ON(1); 108 dev_kfree_skb(skb); 109 return NULL; 110 } 111 } 112 113 __pskb_pull(skb, rtap_vendor_space); 114 115 return skb; 116 } 117 118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 119 unsigned int rtap_vendor_space) 120 { 121 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 122 struct ieee80211_hdr *hdr; 123 124 hdr = (void *)(skb->data + rtap_vendor_space); 125 126 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 127 RX_FLAG_FAILED_PLCP_CRC | 128 RX_FLAG_ONLY_MONITOR)) 129 return true; 130 131 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) 132 return true; 133 134 if (ieee80211_is_ctl(hdr->frame_control) && 135 !ieee80211_is_pspoll(hdr->frame_control) && 136 !ieee80211_is_back_req(hdr->frame_control)) 137 return true; 138 139 return false; 140 } 141 142 static int 143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 144 struct ieee80211_rx_status *status, 145 struct sk_buff *skb) 146 { 147 int len; 148 149 /* always present fields */ 150 len = sizeof(struct ieee80211_radiotap_header) + 8; 151 152 /* allocate extra bitmaps */ 153 if (status->chains) 154 len += 4 * hweight8(status->chains); 155 156 if (ieee80211_have_rx_timestamp(status)) { 157 len = ALIGN(len, 8); 158 len += 8; 159 } 160 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 161 len += 1; 162 163 /* antenna field, if we don't have per-chain info */ 164 if (!status->chains) 165 len += 1; 166 167 /* padding for RX_FLAGS if necessary */ 168 len = ALIGN(len, 2); 169 170 if (status->flag & RX_FLAG_HT) /* HT info */ 171 len += 3; 172 173 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 174 len = ALIGN(len, 4); 175 len += 8; 176 } 177 178 if (status->flag & RX_FLAG_VHT) { 179 len = ALIGN(len, 2); 180 len += 12; 181 } 182 183 if (local->hw.radiotap_timestamp.units_pos >= 0) { 184 len = ALIGN(len, 8); 185 len += 12; 186 } 187 188 if (status->chains) { 189 /* antenna and antenna signal fields */ 190 len += 2 * hweight8(status->chains); 191 } 192 193 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 194 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 195 196 /* vendor presence bitmap */ 197 len += 4; 198 /* alignment for fixed 6-byte vendor data header */ 199 len = ALIGN(len, 2); 200 /* vendor data header */ 201 len += 6; 202 if (WARN_ON(rtap->align == 0)) 203 rtap->align = 1; 204 len = ALIGN(len, rtap->align); 205 len += rtap->len + rtap->pad; 206 } 207 208 return len; 209 } 210 211 /* 212 * ieee80211_add_rx_radiotap_header - add radiotap header 213 * 214 * add a radiotap header containing all the fields which the hardware provided. 215 */ 216 static void 217 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 218 struct sk_buff *skb, 219 struct ieee80211_rate *rate, 220 int rtap_len, bool has_fcs) 221 { 222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 223 struct ieee80211_radiotap_header *rthdr; 224 unsigned char *pos; 225 __le32 *it_present; 226 u32 it_present_val; 227 u16 rx_flags = 0; 228 u16 channel_flags = 0; 229 int mpdulen, chain; 230 unsigned long chains = status->chains; 231 struct ieee80211_vendor_radiotap rtap = {}; 232 233 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 234 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 235 /* rtap.len and rtap.pad are undone immediately */ 236 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 237 } 238 239 mpdulen = skb->len; 240 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 241 mpdulen += FCS_LEN; 242 243 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 244 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 245 it_present = &rthdr->it_present; 246 247 /* radiotap header, set always present flags */ 248 rthdr->it_len = cpu_to_le16(rtap_len); 249 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 250 BIT(IEEE80211_RADIOTAP_CHANNEL) | 251 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 252 253 if (!status->chains) 254 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 255 256 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 257 it_present_val |= 258 BIT(IEEE80211_RADIOTAP_EXT) | 259 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 260 put_unaligned_le32(it_present_val, it_present); 261 it_present++; 262 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 263 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 264 } 265 266 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 267 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 268 BIT(IEEE80211_RADIOTAP_EXT); 269 put_unaligned_le32(it_present_val, it_present); 270 it_present++; 271 it_present_val = rtap.present; 272 } 273 274 put_unaligned_le32(it_present_val, it_present); 275 276 pos = (void *)(it_present + 1); 277 278 /* the order of the following fields is important */ 279 280 /* IEEE80211_RADIOTAP_TSFT */ 281 if (ieee80211_have_rx_timestamp(status)) { 282 /* padding */ 283 while ((pos - (u8 *)rthdr) & 7) 284 *pos++ = 0; 285 put_unaligned_le64( 286 ieee80211_calculate_rx_timestamp(local, status, 287 mpdulen, 0), 288 pos); 289 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 290 pos += 8; 291 } 292 293 /* IEEE80211_RADIOTAP_FLAGS */ 294 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 295 *pos |= IEEE80211_RADIOTAP_F_FCS; 296 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 297 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 298 if (status->flag & RX_FLAG_SHORTPRE) 299 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 300 pos++; 301 302 /* IEEE80211_RADIOTAP_RATE */ 303 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 304 /* 305 * Without rate information don't add it. If we have, 306 * MCS information is a separate field in radiotap, 307 * added below. The byte here is needed as padding 308 * for the channel though, so initialise it to 0. 309 */ 310 *pos = 0; 311 } else { 312 int shift = 0; 313 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 314 if (status->flag & RX_FLAG_10MHZ) 315 shift = 1; 316 else if (status->flag & RX_FLAG_5MHZ) 317 shift = 2; 318 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 319 } 320 pos++; 321 322 /* IEEE80211_RADIOTAP_CHANNEL */ 323 put_unaligned_le16(status->freq, pos); 324 pos += 2; 325 if (status->flag & RX_FLAG_10MHZ) 326 channel_flags |= IEEE80211_CHAN_HALF; 327 else if (status->flag & RX_FLAG_5MHZ) 328 channel_flags |= IEEE80211_CHAN_QUARTER; 329 330 if (status->band == NL80211_BAND_5GHZ) 331 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 332 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 333 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 334 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 335 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 336 else if (rate) 337 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 338 else 339 channel_flags |= IEEE80211_CHAN_2GHZ; 340 put_unaligned_le16(channel_flags, pos); 341 pos += 2; 342 343 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 344 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 345 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 346 *pos = status->signal; 347 rthdr->it_present |= 348 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 349 pos++; 350 } 351 352 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 353 354 if (!status->chains) { 355 /* IEEE80211_RADIOTAP_ANTENNA */ 356 *pos = status->antenna; 357 pos++; 358 } 359 360 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 361 362 /* IEEE80211_RADIOTAP_RX_FLAGS */ 363 /* ensure 2 byte alignment for the 2 byte field as required */ 364 if ((pos - (u8 *)rthdr) & 1) 365 *pos++ = 0; 366 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 367 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 368 put_unaligned_le16(rx_flags, pos); 369 pos += 2; 370 371 if (status->flag & RX_FLAG_HT) { 372 unsigned int stbc; 373 374 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 375 *pos++ = local->hw.radiotap_mcs_details; 376 *pos = 0; 377 if (status->flag & RX_FLAG_SHORT_GI) 378 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 379 if (status->flag & RX_FLAG_40MHZ) 380 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 381 if (status->flag & RX_FLAG_HT_GF) 382 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 383 if (status->flag & RX_FLAG_LDPC) 384 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 385 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 386 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 387 pos++; 388 *pos++ = status->rate_idx; 389 } 390 391 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 392 u16 flags = 0; 393 394 /* ensure 4 byte alignment */ 395 while ((pos - (u8 *)rthdr) & 3) 396 pos++; 397 rthdr->it_present |= 398 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 399 put_unaligned_le32(status->ampdu_reference, pos); 400 pos += 4; 401 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 402 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 403 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 404 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 405 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 406 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 407 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 408 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 409 put_unaligned_le16(flags, pos); 410 pos += 2; 411 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 412 *pos++ = status->ampdu_delimiter_crc; 413 else 414 *pos++ = 0; 415 *pos++ = 0; 416 } 417 418 if (status->flag & RX_FLAG_VHT) { 419 u16 known = local->hw.radiotap_vht_details; 420 421 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 422 put_unaligned_le16(known, pos); 423 pos += 2; 424 /* flags */ 425 if (status->flag & RX_FLAG_SHORT_GI) 426 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 427 /* in VHT, STBC is binary */ 428 if (status->flag & RX_FLAG_STBC_MASK) 429 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 430 if (status->vht_flag & RX_VHT_FLAG_BF) 431 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 432 pos++; 433 /* bandwidth */ 434 if (status->vht_flag & RX_VHT_FLAG_80MHZ) 435 *pos++ = 4; 436 else if (status->vht_flag & RX_VHT_FLAG_160MHZ) 437 *pos++ = 11; 438 else if (status->flag & RX_FLAG_40MHZ) 439 *pos++ = 1; 440 else /* 20 MHz */ 441 *pos++ = 0; 442 /* MCS/NSS */ 443 *pos = (status->rate_idx << 4) | status->vht_nss; 444 pos += 4; 445 /* coding field */ 446 if (status->flag & RX_FLAG_LDPC) 447 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 448 pos++; 449 /* group ID */ 450 pos++; 451 /* partial_aid */ 452 pos += 2; 453 } 454 455 if (local->hw.radiotap_timestamp.units_pos >= 0) { 456 u16 accuracy = 0; 457 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 458 459 rthdr->it_present |= 460 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 461 462 /* ensure 8 byte alignment */ 463 while ((pos - (u8 *)rthdr) & 7) 464 pos++; 465 466 put_unaligned_le64(status->device_timestamp, pos); 467 pos += sizeof(u64); 468 469 if (local->hw.radiotap_timestamp.accuracy >= 0) { 470 accuracy = local->hw.radiotap_timestamp.accuracy; 471 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 472 } 473 put_unaligned_le16(accuracy, pos); 474 pos += sizeof(u16); 475 476 *pos++ = local->hw.radiotap_timestamp.units_pos; 477 *pos++ = flags; 478 } 479 480 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 481 *pos++ = status->chain_signal[chain]; 482 *pos++ = chain; 483 } 484 485 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 486 /* ensure 2 byte alignment for the vendor field as required */ 487 if ((pos - (u8 *)rthdr) & 1) 488 *pos++ = 0; 489 *pos++ = rtap.oui[0]; 490 *pos++ = rtap.oui[1]; 491 *pos++ = rtap.oui[2]; 492 *pos++ = rtap.subns; 493 put_unaligned_le16(rtap.len, pos); 494 pos += 2; 495 /* align the actual payload as requested */ 496 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 497 *pos++ = 0; 498 /* data (and possible padding) already follows */ 499 } 500 } 501 502 /* 503 * This function copies a received frame to all monitor interfaces and 504 * returns a cleaned-up SKB that no longer includes the FCS nor the 505 * radiotap header the driver might have added. 506 */ 507 static struct sk_buff * 508 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 509 struct ieee80211_rate *rate) 510 { 511 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 512 struct ieee80211_sub_if_data *sdata; 513 int rt_hdrlen, needed_headroom; 514 struct sk_buff *skb, *skb2; 515 struct net_device *prev_dev = NULL; 516 int present_fcs_len = 0; 517 unsigned int rtap_vendor_space = 0; 518 struct ieee80211_mgmt *mgmt; 519 struct ieee80211_sub_if_data *monitor_sdata = 520 rcu_dereference(local->monitor_sdata); 521 522 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 523 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 524 525 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; 526 } 527 528 /* 529 * First, we may need to make a copy of the skb because 530 * (1) we need to modify it for radiotap (if not present), and 531 * (2) the other RX handlers will modify the skb we got. 532 * 533 * We don't need to, of course, if we aren't going to return 534 * the SKB because it has a bad FCS/PLCP checksum. 535 */ 536 537 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 538 present_fcs_len = FCS_LEN; 539 540 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 541 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { 542 dev_kfree_skb(origskb); 543 return NULL; 544 } 545 546 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 547 if (should_drop_frame(origskb, present_fcs_len, 548 rtap_vendor_space)) { 549 dev_kfree_skb(origskb); 550 return NULL; 551 } 552 553 return remove_monitor_info(local, origskb, rtap_vendor_space); 554 } 555 556 /* room for the radiotap header based on driver features */ 557 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb); 558 needed_headroom = rt_hdrlen - rtap_vendor_space; 559 560 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) { 561 /* only need to expand headroom if necessary */ 562 skb = origskb; 563 origskb = NULL; 564 565 /* 566 * This shouldn't trigger often because most devices have an 567 * RX header they pull before we get here, and that should 568 * be big enough for our radiotap information. We should 569 * probably export the length to drivers so that we can have 570 * them allocate enough headroom to start with. 571 */ 572 if (skb_headroom(skb) < needed_headroom && 573 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 574 dev_kfree_skb(skb); 575 return NULL; 576 } 577 } else { 578 /* 579 * Need to make a copy and possibly remove radiotap header 580 * and FCS from the original. 581 */ 582 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 583 584 origskb = remove_monitor_info(local, origskb, 585 rtap_vendor_space); 586 587 if (!skb) 588 return origskb; 589 } 590 591 /* prepend radiotap information */ 592 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 593 594 skb_reset_mac_header(skb); 595 skb->ip_summed = CHECKSUM_UNNECESSARY; 596 skb->pkt_type = PACKET_OTHERHOST; 597 skb->protocol = htons(ETH_P_802_2); 598 599 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 600 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 601 continue; 602 603 if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES) 604 continue; 605 606 if (!ieee80211_sdata_running(sdata)) 607 continue; 608 609 if (prev_dev) { 610 skb2 = skb_clone(skb, GFP_ATOMIC); 611 if (skb2) { 612 skb2->dev = prev_dev; 613 netif_receive_skb(skb2); 614 } 615 } 616 617 prev_dev = sdata->dev; 618 ieee80211_rx_stats(sdata->dev, skb->len); 619 } 620 621 mgmt = (void *)skb->data; 622 if (monitor_sdata && 623 skb->len >= IEEE80211_MIN_ACTION_SIZE + 1 + VHT_MUMIMO_GROUPS_DATA_LEN && 624 ieee80211_is_action(mgmt->frame_control) && 625 mgmt->u.action.category == WLAN_CATEGORY_VHT && 626 mgmt->u.action.u.vht_group_notif.action_code == WLAN_VHT_ACTION_GROUPID_MGMT && 627 is_valid_ether_addr(monitor_sdata->u.mntr.mu_follow_addr) && 628 ether_addr_equal(mgmt->da, monitor_sdata->u.mntr.mu_follow_addr)) { 629 struct sk_buff *mu_skb = skb_copy(skb, GFP_ATOMIC); 630 631 if (mu_skb) { 632 mu_skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 633 skb_queue_tail(&monitor_sdata->skb_queue, mu_skb); 634 ieee80211_queue_work(&local->hw, &monitor_sdata->work); 635 } 636 } 637 638 if (prev_dev) { 639 skb->dev = prev_dev; 640 netif_receive_skb(skb); 641 } else 642 dev_kfree_skb(skb); 643 644 return origskb; 645 } 646 647 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 648 { 649 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 650 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 651 int tid, seqno_idx, security_idx; 652 653 /* does the frame have a qos control field? */ 654 if (ieee80211_is_data_qos(hdr->frame_control)) { 655 u8 *qc = ieee80211_get_qos_ctl(hdr); 656 /* frame has qos control */ 657 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 658 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 659 status->rx_flags |= IEEE80211_RX_AMSDU; 660 661 seqno_idx = tid; 662 security_idx = tid; 663 } else { 664 /* 665 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 666 * 667 * Sequence numbers for management frames, QoS data 668 * frames with a broadcast/multicast address in the 669 * Address 1 field, and all non-QoS data frames sent 670 * by QoS STAs are assigned using an additional single 671 * modulo-4096 counter, [...] 672 * 673 * We also use that counter for non-QoS STAs. 674 */ 675 seqno_idx = IEEE80211_NUM_TIDS; 676 security_idx = 0; 677 if (ieee80211_is_mgmt(hdr->frame_control)) 678 security_idx = IEEE80211_NUM_TIDS; 679 tid = 0; 680 } 681 682 rx->seqno_idx = seqno_idx; 683 rx->security_idx = security_idx; 684 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 685 * For now, set skb->priority to 0 for other cases. */ 686 rx->skb->priority = (tid > 7) ? 0 : tid; 687 } 688 689 /** 690 * DOC: Packet alignment 691 * 692 * Drivers always need to pass packets that are aligned to two-byte boundaries 693 * to the stack. 694 * 695 * Additionally, should, if possible, align the payload data in a way that 696 * guarantees that the contained IP header is aligned to a four-byte 697 * boundary. In the case of regular frames, this simply means aligning the 698 * payload to a four-byte boundary (because either the IP header is directly 699 * contained, or IV/RFC1042 headers that have a length divisible by four are 700 * in front of it). If the payload data is not properly aligned and the 701 * architecture doesn't support efficient unaligned operations, mac80211 702 * will align the data. 703 * 704 * With A-MSDU frames, however, the payload data address must yield two modulo 705 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 706 * push the IP header further back to a multiple of four again. Thankfully, the 707 * specs were sane enough this time around to require padding each A-MSDU 708 * subframe to a length that is a multiple of four. 709 * 710 * Padding like Atheros hardware adds which is between the 802.11 header and 711 * the payload is not supported, the driver is required to move the 802.11 712 * header to be directly in front of the payload in that case. 713 */ 714 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 715 { 716 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 717 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 718 #endif 719 } 720 721 722 /* rx handlers */ 723 724 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 725 { 726 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 727 728 if (is_multicast_ether_addr(hdr->addr1)) 729 return 0; 730 731 return ieee80211_is_robust_mgmt_frame(skb); 732 } 733 734 735 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 736 { 737 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 738 739 if (!is_multicast_ether_addr(hdr->addr1)) 740 return 0; 741 742 return ieee80211_is_robust_mgmt_frame(skb); 743 } 744 745 746 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 747 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 748 { 749 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 750 struct ieee80211_mmie *mmie; 751 struct ieee80211_mmie_16 *mmie16; 752 753 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 754 return -1; 755 756 if (!ieee80211_is_robust_mgmt_frame(skb)) 757 return -1; /* not a robust management frame */ 758 759 mmie = (struct ieee80211_mmie *) 760 (skb->data + skb->len - sizeof(*mmie)); 761 if (mmie->element_id == WLAN_EID_MMIE && 762 mmie->length == sizeof(*mmie) - 2) 763 return le16_to_cpu(mmie->key_id); 764 765 mmie16 = (struct ieee80211_mmie_16 *) 766 (skb->data + skb->len - sizeof(*mmie16)); 767 if (skb->len >= 24 + sizeof(*mmie16) && 768 mmie16->element_id == WLAN_EID_MMIE && 769 mmie16->length == sizeof(*mmie16) - 2) 770 return le16_to_cpu(mmie16->key_id); 771 772 return -1; 773 } 774 775 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 776 struct sk_buff *skb) 777 { 778 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 779 __le16 fc; 780 int hdrlen; 781 u8 keyid; 782 783 fc = hdr->frame_control; 784 hdrlen = ieee80211_hdrlen(fc); 785 786 if (skb->len < hdrlen + cs->hdr_len) 787 return -EINVAL; 788 789 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 790 keyid &= cs->key_idx_mask; 791 keyid >>= cs->key_idx_shift; 792 793 return keyid; 794 } 795 796 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 797 { 798 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 799 char *dev_addr = rx->sdata->vif.addr; 800 801 if (ieee80211_is_data(hdr->frame_control)) { 802 if (is_multicast_ether_addr(hdr->addr1)) { 803 if (ieee80211_has_tods(hdr->frame_control) || 804 !ieee80211_has_fromds(hdr->frame_control)) 805 return RX_DROP_MONITOR; 806 if (ether_addr_equal(hdr->addr3, dev_addr)) 807 return RX_DROP_MONITOR; 808 } else { 809 if (!ieee80211_has_a4(hdr->frame_control)) 810 return RX_DROP_MONITOR; 811 if (ether_addr_equal(hdr->addr4, dev_addr)) 812 return RX_DROP_MONITOR; 813 } 814 } 815 816 /* If there is not an established peer link and this is not a peer link 817 * establisment frame, beacon or probe, drop the frame. 818 */ 819 820 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 821 struct ieee80211_mgmt *mgmt; 822 823 if (!ieee80211_is_mgmt(hdr->frame_control)) 824 return RX_DROP_MONITOR; 825 826 if (ieee80211_is_action(hdr->frame_control)) { 827 u8 category; 828 829 /* make sure category field is present */ 830 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 831 return RX_DROP_MONITOR; 832 833 mgmt = (struct ieee80211_mgmt *)hdr; 834 category = mgmt->u.action.category; 835 if (category != WLAN_CATEGORY_MESH_ACTION && 836 category != WLAN_CATEGORY_SELF_PROTECTED) 837 return RX_DROP_MONITOR; 838 return RX_CONTINUE; 839 } 840 841 if (ieee80211_is_probe_req(hdr->frame_control) || 842 ieee80211_is_probe_resp(hdr->frame_control) || 843 ieee80211_is_beacon(hdr->frame_control) || 844 ieee80211_is_auth(hdr->frame_control)) 845 return RX_CONTINUE; 846 847 return RX_DROP_MONITOR; 848 } 849 850 return RX_CONTINUE; 851 } 852 853 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 854 int index) 855 { 856 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 857 struct sk_buff *tail = skb_peek_tail(frames); 858 struct ieee80211_rx_status *status; 859 860 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 861 return true; 862 863 if (!tail) 864 return false; 865 866 status = IEEE80211_SKB_RXCB(tail); 867 if (status->flag & RX_FLAG_AMSDU_MORE) 868 return false; 869 870 return true; 871 } 872 873 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 874 struct tid_ampdu_rx *tid_agg_rx, 875 int index, 876 struct sk_buff_head *frames) 877 { 878 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 879 struct sk_buff *skb; 880 struct ieee80211_rx_status *status; 881 882 lockdep_assert_held(&tid_agg_rx->reorder_lock); 883 884 if (skb_queue_empty(skb_list)) 885 goto no_frame; 886 887 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 888 __skb_queue_purge(skb_list); 889 goto no_frame; 890 } 891 892 /* release frames from the reorder ring buffer */ 893 tid_agg_rx->stored_mpdu_num--; 894 while ((skb = __skb_dequeue(skb_list))) { 895 status = IEEE80211_SKB_RXCB(skb); 896 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 897 __skb_queue_tail(frames, skb); 898 } 899 900 no_frame: 901 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 902 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 903 } 904 905 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 906 struct tid_ampdu_rx *tid_agg_rx, 907 u16 head_seq_num, 908 struct sk_buff_head *frames) 909 { 910 int index; 911 912 lockdep_assert_held(&tid_agg_rx->reorder_lock); 913 914 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 915 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 916 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 917 frames); 918 } 919 } 920 921 /* 922 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 923 * the skb was added to the buffer longer than this time ago, the earlier 924 * frames that have not yet been received are assumed to be lost and the skb 925 * can be released for processing. This may also release other skb's from the 926 * reorder buffer if there are no additional gaps between the frames. 927 * 928 * Callers must hold tid_agg_rx->reorder_lock. 929 */ 930 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 931 932 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 933 struct tid_ampdu_rx *tid_agg_rx, 934 struct sk_buff_head *frames) 935 { 936 int index, i, j; 937 938 lockdep_assert_held(&tid_agg_rx->reorder_lock); 939 940 /* release the buffer until next missing frame */ 941 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 942 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 943 tid_agg_rx->stored_mpdu_num) { 944 /* 945 * No buffers ready to be released, but check whether any 946 * frames in the reorder buffer have timed out. 947 */ 948 int skipped = 1; 949 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 950 j = (j + 1) % tid_agg_rx->buf_size) { 951 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 952 skipped++; 953 continue; 954 } 955 if (skipped && 956 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 957 HT_RX_REORDER_BUF_TIMEOUT)) 958 goto set_release_timer; 959 960 /* don't leave incomplete A-MSDUs around */ 961 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 962 i = (i + 1) % tid_agg_rx->buf_size) 963 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 964 965 ht_dbg_ratelimited(sdata, 966 "release an RX reorder frame due to timeout on earlier frames\n"); 967 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 968 frames); 969 970 /* 971 * Increment the head seq# also for the skipped slots. 972 */ 973 tid_agg_rx->head_seq_num = 974 (tid_agg_rx->head_seq_num + 975 skipped) & IEEE80211_SN_MASK; 976 skipped = 0; 977 } 978 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 979 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 980 frames); 981 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 982 } 983 984 if (tid_agg_rx->stored_mpdu_num) { 985 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 986 987 for (; j != (index - 1) % tid_agg_rx->buf_size; 988 j = (j + 1) % tid_agg_rx->buf_size) { 989 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 990 break; 991 } 992 993 set_release_timer: 994 995 if (!tid_agg_rx->removed) 996 mod_timer(&tid_agg_rx->reorder_timer, 997 tid_agg_rx->reorder_time[j] + 1 + 998 HT_RX_REORDER_BUF_TIMEOUT); 999 } else { 1000 del_timer(&tid_agg_rx->reorder_timer); 1001 } 1002 } 1003 1004 /* 1005 * As this function belongs to the RX path it must be under 1006 * rcu_read_lock protection. It returns false if the frame 1007 * can be processed immediately, true if it was consumed. 1008 */ 1009 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1010 struct tid_ampdu_rx *tid_agg_rx, 1011 struct sk_buff *skb, 1012 struct sk_buff_head *frames) 1013 { 1014 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1015 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1016 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1017 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1018 u16 head_seq_num, buf_size; 1019 int index; 1020 bool ret = true; 1021 1022 spin_lock(&tid_agg_rx->reorder_lock); 1023 1024 /* 1025 * Offloaded BA sessions have no known starting sequence number so pick 1026 * one from first Rxed frame for this tid after BA was started. 1027 */ 1028 if (unlikely(tid_agg_rx->auto_seq)) { 1029 tid_agg_rx->auto_seq = false; 1030 tid_agg_rx->ssn = mpdu_seq_num; 1031 tid_agg_rx->head_seq_num = mpdu_seq_num; 1032 } 1033 1034 buf_size = tid_agg_rx->buf_size; 1035 head_seq_num = tid_agg_rx->head_seq_num; 1036 1037 /* frame with out of date sequence number */ 1038 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1039 dev_kfree_skb(skb); 1040 goto out; 1041 } 1042 1043 /* 1044 * If frame the sequence number exceeds our buffering window 1045 * size release some previous frames to make room for this one. 1046 */ 1047 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1048 head_seq_num = ieee80211_sn_inc( 1049 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1050 /* release stored frames up to new head to stack */ 1051 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1052 head_seq_num, frames); 1053 } 1054 1055 /* Now the new frame is always in the range of the reordering buffer */ 1056 1057 index = mpdu_seq_num % tid_agg_rx->buf_size; 1058 1059 /* check if we already stored this frame */ 1060 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1061 dev_kfree_skb(skb); 1062 goto out; 1063 } 1064 1065 /* 1066 * If the current MPDU is in the right order and nothing else 1067 * is stored we can process it directly, no need to buffer it. 1068 * If it is first but there's something stored, we may be able 1069 * to release frames after this one. 1070 */ 1071 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1072 tid_agg_rx->stored_mpdu_num == 0) { 1073 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1074 tid_agg_rx->head_seq_num = 1075 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1076 ret = false; 1077 goto out; 1078 } 1079 1080 /* put the frame in the reordering buffer */ 1081 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1082 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1083 tid_agg_rx->reorder_time[index] = jiffies; 1084 tid_agg_rx->stored_mpdu_num++; 1085 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1086 } 1087 1088 out: 1089 spin_unlock(&tid_agg_rx->reorder_lock); 1090 return ret; 1091 } 1092 1093 /* 1094 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1095 * true if the MPDU was buffered, false if it should be processed. 1096 */ 1097 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1098 struct sk_buff_head *frames) 1099 { 1100 struct sk_buff *skb = rx->skb; 1101 struct ieee80211_local *local = rx->local; 1102 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1103 struct sta_info *sta = rx->sta; 1104 struct tid_ampdu_rx *tid_agg_rx; 1105 u16 sc; 1106 u8 tid, ack_policy; 1107 1108 if (!ieee80211_is_data_qos(hdr->frame_control) || 1109 is_multicast_ether_addr(hdr->addr1)) 1110 goto dont_reorder; 1111 1112 /* 1113 * filter the QoS data rx stream according to 1114 * STA/TID and check if this STA/TID is on aggregation 1115 */ 1116 1117 if (!sta) 1118 goto dont_reorder; 1119 1120 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1121 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1122 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1123 1124 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1125 if (!tid_agg_rx) { 1126 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1127 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1128 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1129 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1130 WLAN_BACK_RECIPIENT, 1131 WLAN_REASON_QSTA_REQUIRE_SETUP); 1132 goto dont_reorder; 1133 } 1134 1135 /* qos null data frames are excluded */ 1136 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1137 goto dont_reorder; 1138 1139 /* not part of a BA session */ 1140 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1141 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1142 goto dont_reorder; 1143 1144 /* new, potentially un-ordered, ampdu frame - process it */ 1145 1146 /* reset session timer */ 1147 if (tid_agg_rx->timeout) 1148 tid_agg_rx->last_rx = jiffies; 1149 1150 /* if this mpdu is fragmented - terminate rx aggregation session */ 1151 sc = le16_to_cpu(hdr->seq_ctrl); 1152 if (sc & IEEE80211_SCTL_FRAG) { 1153 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 1154 skb_queue_tail(&rx->sdata->skb_queue, skb); 1155 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1156 return; 1157 } 1158 1159 /* 1160 * No locking needed -- we will only ever process one 1161 * RX packet at a time, and thus own tid_agg_rx. All 1162 * other code manipulating it needs to (and does) make 1163 * sure that we cannot get to it any more before doing 1164 * anything with it. 1165 */ 1166 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1167 frames)) 1168 return; 1169 1170 dont_reorder: 1171 __skb_queue_tail(frames, skb); 1172 } 1173 1174 static ieee80211_rx_result debug_noinline 1175 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1176 { 1177 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1178 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1179 1180 if (status->flag & RX_FLAG_DUP_VALIDATED) 1181 return RX_CONTINUE; 1182 1183 /* 1184 * Drop duplicate 802.11 retransmissions 1185 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1186 */ 1187 1188 if (rx->skb->len < 24) 1189 return RX_CONTINUE; 1190 1191 if (ieee80211_is_ctl(hdr->frame_control) || 1192 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1193 is_multicast_ether_addr(hdr->addr1)) 1194 return RX_CONTINUE; 1195 1196 if (!rx->sta) 1197 return RX_CONTINUE; 1198 1199 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1200 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1201 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1202 rx->sta->rx_stats.num_duplicates++; 1203 return RX_DROP_UNUSABLE; 1204 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1205 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1206 } 1207 1208 return RX_CONTINUE; 1209 } 1210 1211 static ieee80211_rx_result debug_noinline 1212 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1213 { 1214 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1215 1216 /* Drop disallowed frame classes based on STA auth/assoc state; 1217 * IEEE 802.11, Chap 5.5. 1218 * 1219 * mac80211 filters only based on association state, i.e. it drops 1220 * Class 3 frames from not associated stations. hostapd sends 1221 * deauth/disassoc frames when needed. In addition, hostapd is 1222 * responsible for filtering on both auth and assoc states. 1223 */ 1224 1225 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1226 return ieee80211_rx_mesh_check(rx); 1227 1228 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1229 ieee80211_is_pspoll(hdr->frame_control)) && 1230 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1231 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1232 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1233 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1234 /* 1235 * accept port control frames from the AP even when it's not 1236 * yet marked ASSOC to prevent a race where we don't set the 1237 * assoc bit quickly enough before it sends the first frame 1238 */ 1239 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1240 ieee80211_is_data_present(hdr->frame_control)) { 1241 unsigned int hdrlen; 1242 __be16 ethertype; 1243 1244 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1245 1246 if (rx->skb->len < hdrlen + 8) 1247 return RX_DROP_MONITOR; 1248 1249 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1250 if (ethertype == rx->sdata->control_port_protocol) 1251 return RX_CONTINUE; 1252 } 1253 1254 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1255 cfg80211_rx_spurious_frame(rx->sdata->dev, 1256 hdr->addr2, 1257 GFP_ATOMIC)) 1258 return RX_DROP_UNUSABLE; 1259 1260 return RX_DROP_MONITOR; 1261 } 1262 1263 return RX_CONTINUE; 1264 } 1265 1266 1267 static ieee80211_rx_result debug_noinline 1268 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1269 { 1270 struct ieee80211_local *local; 1271 struct ieee80211_hdr *hdr; 1272 struct sk_buff *skb; 1273 1274 local = rx->local; 1275 skb = rx->skb; 1276 hdr = (struct ieee80211_hdr *) skb->data; 1277 1278 if (!local->pspolling) 1279 return RX_CONTINUE; 1280 1281 if (!ieee80211_has_fromds(hdr->frame_control)) 1282 /* this is not from AP */ 1283 return RX_CONTINUE; 1284 1285 if (!ieee80211_is_data(hdr->frame_control)) 1286 return RX_CONTINUE; 1287 1288 if (!ieee80211_has_moredata(hdr->frame_control)) { 1289 /* AP has no more frames buffered for us */ 1290 local->pspolling = false; 1291 return RX_CONTINUE; 1292 } 1293 1294 /* more data bit is set, let's request a new frame from the AP */ 1295 ieee80211_send_pspoll(local, rx->sdata); 1296 1297 return RX_CONTINUE; 1298 } 1299 1300 static void sta_ps_start(struct sta_info *sta) 1301 { 1302 struct ieee80211_sub_if_data *sdata = sta->sdata; 1303 struct ieee80211_local *local = sdata->local; 1304 struct ps_data *ps; 1305 int tid; 1306 1307 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1308 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1309 ps = &sdata->bss->ps; 1310 else 1311 return; 1312 1313 atomic_inc(&ps->num_sta_ps); 1314 set_sta_flag(sta, WLAN_STA_PS_STA); 1315 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1316 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1317 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1318 sta->sta.addr, sta->sta.aid); 1319 1320 ieee80211_clear_fast_xmit(sta); 1321 1322 if (!sta->sta.txq[0]) 1323 return; 1324 1325 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1326 if (txq_has_queue(sta->sta.txq[tid])) 1327 set_bit(tid, &sta->txq_buffered_tids); 1328 else 1329 clear_bit(tid, &sta->txq_buffered_tids); 1330 } 1331 } 1332 1333 static void sta_ps_end(struct sta_info *sta) 1334 { 1335 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1336 sta->sta.addr, sta->sta.aid); 1337 1338 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1339 /* 1340 * Clear the flag only if the other one is still set 1341 * so that the TX path won't start TX'ing new frames 1342 * directly ... In the case that the driver flag isn't 1343 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1344 */ 1345 clear_sta_flag(sta, WLAN_STA_PS_STA); 1346 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1347 sta->sta.addr, sta->sta.aid); 1348 return; 1349 } 1350 1351 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1352 clear_sta_flag(sta, WLAN_STA_PS_STA); 1353 ieee80211_sta_ps_deliver_wakeup(sta); 1354 } 1355 1356 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1357 { 1358 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1359 bool in_ps; 1360 1361 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1362 1363 /* Don't let the same PS state be set twice */ 1364 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1365 if ((start && in_ps) || (!start && !in_ps)) 1366 return -EINVAL; 1367 1368 if (start) 1369 sta_ps_start(sta); 1370 else 1371 sta_ps_end(sta); 1372 1373 return 0; 1374 } 1375 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1376 1377 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1378 { 1379 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1380 1381 if (test_sta_flag(sta, WLAN_STA_SP)) 1382 return; 1383 1384 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1385 ieee80211_sta_ps_deliver_poll_response(sta); 1386 else 1387 set_sta_flag(sta, WLAN_STA_PSPOLL); 1388 } 1389 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1390 1391 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1392 { 1393 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1394 u8 ac = ieee802_1d_to_ac[tid & 7]; 1395 1396 /* 1397 * If this AC is not trigger-enabled do nothing. 1398 * 1399 * NB: This could/should check a separate bitmap of trigger- 1400 * enabled queues, but for now we only implement uAPSD w/o 1401 * TSPEC changes to the ACs, so they're always the same. 1402 */ 1403 if (!(sta->sta.uapsd_queues & BIT(ac))) 1404 return; 1405 1406 /* if we are in a service period, do nothing */ 1407 if (test_sta_flag(sta, WLAN_STA_SP)) 1408 return; 1409 1410 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1411 ieee80211_sta_ps_deliver_uapsd(sta); 1412 else 1413 set_sta_flag(sta, WLAN_STA_UAPSD); 1414 } 1415 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1416 1417 static ieee80211_rx_result debug_noinline 1418 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1419 { 1420 struct ieee80211_sub_if_data *sdata = rx->sdata; 1421 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1422 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1423 1424 if (!rx->sta) 1425 return RX_CONTINUE; 1426 1427 if (sdata->vif.type != NL80211_IFTYPE_AP && 1428 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1429 return RX_CONTINUE; 1430 1431 /* 1432 * The device handles station powersave, so don't do anything about 1433 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1434 * it to mac80211 since they're handled.) 1435 */ 1436 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1437 return RX_CONTINUE; 1438 1439 /* 1440 * Don't do anything if the station isn't already asleep. In 1441 * the uAPSD case, the station will probably be marked asleep, 1442 * in the PS-Poll case the station must be confused ... 1443 */ 1444 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1445 return RX_CONTINUE; 1446 1447 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1448 ieee80211_sta_pspoll(&rx->sta->sta); 1449 1450 /* Free PS Poll skb here instead of returning RX_DROP that would 1451 * count as an dropped frame. */ 1452 dev_kfree_skb(rx->skb); 1453 1454 return RX_QUEUED; 1455 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1456 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1457 ieee80211_has_pm(hdr->frame_control) && 1458 (ieee80211_is_data_qos(hdr->frame_control) || 1459 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1460 u8 tid; 1461 1462 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1463 1464 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1465 } 1466 1467 return RX_CONTINUE; 1468 } 1469 1470 static ieee80211_rx_result debug_noinline 1471 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1472 { 1473 struct sta_info *sta = rx->sta; 1474 struct sk_buff *skb = rx->skb; 1475 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1476 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1477 int i; 1478 1479 if (!sta) 1480 return RX_CONTINUE; 1481 1482 /* 1483 * Update last_rx only for IBSS packets which are for the current 1484 * BSSID and for station already AUTHORIZED to avoid keeping the 1485 * current IBSS network alive in cases where other STAs start 1486 * using different BSSID. This will also give the station another 1487 * chance to restart the authentication/authorization in case 1488 * something went wrong the first time. 1489 */ 1490 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1491 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1492 NL80211_IFTYPE_ADHOC); 1493 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1494 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1495 sta->rx_stats.last_rx = jiffies; 1496 if (ieee80211_is_data(hdr->frame_control) && 1497 !is_multicast_ether_addr(hdr->addr1)) 1498 sta->rx_stats.last_rate = 1499 sta_stats_encode_rate(status); 1500 } 1501 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1502 sta->rx_stats.last_rx = jiffies; 1503 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1504 /* 1505 * Mesh beacons will update last_rx when if they are found to 1506 * match the current local configuration when processed. 1507 */ 1508 sta->rx_stats.last_rx = jiffies; 1509 if (ieee80211_is_data(hdr->frame_control)) 1510 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1511 } 1512 1513 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1514 ieee80211_sta_rx_notify(rx->sdata, hdr); 1515 1516 sta->rx_stats.fragments++; 1517 1518 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1519 sta->rx_stats.bytes += rx->skb->len; 1520 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1521 1522 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1523 sta->rx_stats.last_signal = status->signal; 1524 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1525 } 1526 1527 if (status->chains) { 1528 sta->rx_stats.chains = status->chains; 1529 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1530 int signal = status->chain_signal[i]; 1531 1532 if (!(status->chains & BIT(i))) 1533 continue; 1534 1535 sta->rx_stats.chain_signal_last[i] = signal; 1536 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1537 -signal); 1538 } 1539 } 1540 1541 /* 1542 * Change STA power saving mode only at the end of a frame 1543 * exchange sequence. 1544 */ 1545 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1546 !ieee80211_has_morefrags(hdr->frame_control) && 1547 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1548 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1549 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1550 /* PM bit is only checked in frames where it isn't reserved, 1551 * in AP mode it's reserved in non-bufferable management frames 1552 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) 1553 */ 1554 (!ieee80211_is_mgmt(hdr->frame_control) || 1555 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { 1556 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1557 if (!ieee80211_has_pm(hdr->frame_control)) 1558 sta_ps_end(sta); 1559 } else { 1560 if (ieee80211_has_pm(hdr->frame_control)) 1561 sta_ps_start(sta); 1562 } 1563 } 1564 1565 /* mesh power save support */ 1566 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1567 ieee80211_mps_rx_h_sta_process(sta, hdr); 1568 1569 /* 1570 * Drop (qos-)data::nullfunc frames silently, since they 1571 * are used only to control station power saving mode. 1572 */ 1573 if (ieee80211_is_nullfunc(hdr->frame_control) || 1574 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1575 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1576 1577 /* 1578 * If we receive a 4-addr nullfunc frame from a STA 1579 * that was not moved to a 4-addr STA vlan yet send 1580 * the event to userspace and for older hostapd drop 1581 * the frame to the monitor interface. 1582 */ 1583 if (ieee80211_has_a4(hdr->frame_control) && 1584 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1585 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1586 !rx->sdata->u.vlan.sta))) { 1587 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1588 cfg80211_rx_unexpected_4addr_frame( 1589 rx->sdata->dev, sta->sta.addr, 1590 GFP_ATOMIC); 1591 return RX_DROP_MONITOR; 1592 } 1593 /* 1594 * Update counter and free packet here to avoid 1595 * counting this as a dropped packed. 1596 */ 1597 sta->rx_stats.packets++; 1598 dev_kfree_skb(rx->skb); 1599 return RX_QUEUED; 1600 } 1601 1602 return RX_CONTINUE; 1603 } /* ieee80211_rx_h_sta_process */ 1604 1605 static ieee80211_rx_result debug_noinline 1606 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1607 { 1608 struct sk_buff *skb = rx->skb; 1609 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1610 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1611 int keyidx; 1612 int hdrlen; 1613 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1614 struct ieee80211_key *sta_ptk = NULL; 1615 int mmie_keyidx = -1; 1616 __le16 fc; 1617 const struct ieee80211_cipher_scheme *cs = NULL; 1618 1619 /* 1620 * Key selection 101 1621 * 1622 * There are four types of keys: 1623 * - GTK (group keys) 1624 * - IGTK (group keys for management frames) 1625 * - PTK (pairwise keys) 1626 * - STK (station-to-station pairwise keys) 1627 * 1628 * When selecting a key, we have to distinguish between multicast 1629 * (including broadcast) and unicast frames, the latter can only 1630 * use PTKs and STKs while the former always use GTKs and IGTKs. 1631 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1632 * unicast frames can also use key indices like GTKs. Hence, if we 1633 * don't have a PTK/STK we check the key index for a WEP key. 1634 * 1635 * Note that in a regular BSS, multicast frames are sent by the 1636 * AP only, associated stations unicast the frame to the AP first 1637 * which then multicasts it on their behalf. 1638 * 1639 * There is also a slight problem in IBSS mode: GTKs are negotiated 1640 * with each station, that is something we don't currently handle. 1641 * The spec seems to expect that one negotiates the same key with 1642 * every station but there's no such requirement; VLANs could be 1643 * possible. 1644 */ 1645 1646 /* start without a key */ 1647 rx->key = NULL; 1648 fc = hdr->frame_control; 1649 1650 if (rx->sta) { 1651 int keyid = rx->sta->ptk_idx; 1652 1653 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1654 cs = rx->sta->cipher_scheme; 1655 keyid = ieee80211_get_cs_keyid(cs, rx->skb); 1656 if (unlikely(keyid < 0)) 1657 return RX_DROP_UNUSABLE; 1658 } 1659 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1660 } 1661 1662 if (!ieee80211_has_protected(fc)) 1663 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1664 1665 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1666 rx->key = sta_ptk; 1667 if ((status->flag & RX_FLAG_DECRYPTED) && 1668 (status->flag & RX_FLAG_IV_STRIPPED)) 1669 return RX_CONTINUE; 1670 /* Skip decryption if the frame is not protected. */ 1671 if (!ieee80211_has_protected(fc)) 1672 return RX_CONTINUE; 1673 } else if (mmie_keyidx >= 0) { 1674 /* Broadcast/multicast robust management frame / BIP */ 1675 if ((status->flag & RX_FLAG_DECRYPTED) && 1676 (status->flag & RX_FLAG_IV_STRIPPED)) 1677 return RX_CONTINUE; 1678 1679 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1680 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1681 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1682 if (rx->sta) { 1683 if (ieee80211_is_group_privacy_action(skb) && 1684 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1685 return RX_DROP_MONITOR; 1686 1687 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1688 } 1689 if (!rx->key) 1690 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1691 } else if (!ieee80211_has_protected(fc)) { 1692 /* 1693 * The frame was not protected, so skip decryption. However, we 1694 * need to set rx->key if there is a key that could have been 1695 * used so that the frame may be dropped if encryption would 1696 * have been expected. 1697 */ 1698 struct ieee80211_key *key = NULL; 1699 struct ieee80211_sub_if_data *sdata = rx->sdata; 1700 int i; 1701 1702 if (ieee80211_is_mgmt(fc) && 1703 is_multicast_ether_addr(hdr->addr1) && 1704 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1705 rx->key = key; 1706 else { 1707 if (rx->sta) { 1708 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1709 key = rcu_dereference(rx->sta->gtk[i]); 1710 if (key) 1711 break; 1712 } 1713 } 1714 if (!key) { 1715 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1716 key = rcu_dereference(sdata->keys[i]); 1717 if (key) 1718 break; 1719 } 1720 } 1721 if (key) 1722 rx->key = key; 1723 } 1724 return RX_CONTINUE; 1725 } else { 1726 u8 keyid; 1727 1728 /* 1729 * The device doesn't give us the IV so we won't be 1730 * able to look up the key. That's ok though, we 1731 * don't need to decrypt the frame, we just won't 1732 * be able to keep statistics accurate. 1733 * Except for key threshold notifications, should 1734 * we somehow allow the driver to tell us which key 1735 * the hardware used if this flag is set? 1736 */ 1737 if ((status->flag & RX_FLAG_DECRYPTED) && 1738 (status->flag & RX_FLAG_IV_STRIPPED)) 1739 return RX_CONTINUE; 1740 1741 hdrlen = ieee80211_hdrlen(fc); 1742 1743 if (cs) { 1744 keyidx = ieee80211_get_cs_keyid(cs, rx->skb); 1745 1746 if (unlikely(keyidx < 0)) 1747 return RX_DROP_UNUSABLE; 1748 } else { 1749 if (rx->skb->len < 8 + hdrlen) 1750 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1751 /* 1752 * no need to call ieee80211_wep_get_keyidx, 1753 * it verifies a bunch of things we've done already 1754 */ 1755 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1756 keyidx = keyid >> 6; 1757 } 1758 1759 /* check per-station GTK first, if multicast packet */ 1760 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1761 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1762 1763 /* if not found, try default key */ 1764 if (!rx->key) { 1765 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1766 1767 /* 1768 * RSNA-protected unicast frames should always be 1769 * sent with pairwise or station-to-station keys, 1770 * but for WEP we allow using a key index as well. 1771 */ 1772 if (rx->key && 1773 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1774 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1775 !is_multicast_ether_addr(hdr->addr1)) 1776 rx->key = NULL; 1777 } 1778 } 1779 1780 if (rx->key) { 1781 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1782 return RX_DROP_MONITOR; 1783 1784 /* TODO: add threshold stuff again */ 1785 } else { 1786 return RX_DROP_MONITOR; 1787 } 1788 1789 switch (rx->key->conf.cipher) { 1790 case WLAN_CIPHER_SUITE_WEP40: 1791 case WLAN_CIPHER_SUITE_WEP104: 1792 result = ieee80211_crypto_wep_decrypt(rx); 1793 break; 1794 case WLAN_CIPHER_SUITE_TKIP: 1795 result = ieee80211_crypto_tkip_decrypt(rx); 1796 break; 1797 case WLAN_CIPHER_SUITE_CCMP: 1798 result = ieee80211_crypto_ccmp_decrypt( 1799 rx, IEEE80211_CCMP_MIC_LEN); 1800 break; 1801 case WLAN_CIPHER_SUITE_CCMP_256: 1802 result = ieee80211_crypto_ccmp_decrypt( 1803 rx, IEEE80211_CCMP_256_MIC_LEN); 1804 break; 1805 case WLAN_CIPHER_SUITE_AES_CMAC: 1806 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1807 break; 1808 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1809 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 1810 break; 1811 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1812 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1813 result = ieee80211_crypto_aes_gmac_decrypt(rx); 1814 break; 1815 case WLAN_CIPHER_SUITE_GCMP: 1816 case WLAN_CIPHER_SUITE_GCMP_256: 1817 result = ieee80211_crypto_gcmp_decrypt(rx); 1818 break; 1819 default: 1820 result = ieee80211_crypto_hw_decrypt(rx); 1821 } 1822 1823 /* the hdr variable is invalid after the decrypt handlers */ 1824 1825 /* either the frame has been decrypted or will be dropped */ 1826 status->flag |= RX_FLAG_DECRYPTED; 1827 1828 return result; 1829 } 1830 1831 static inline struct ieee80211_fragment_entry * 1832 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1833 unsigned int frag, unsigned int seq, int rx_queue, 1834 struct sk_buff **skb) 1835 { 1836 struct ieee80211_fragment_entry *entry; 1837 1838 entry = &sdata->fragments[sdata->fragment_next++]; 1839 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1840 sdata->fragment_next = 0; 1841 1842 if (!skb_queue_empty(&entry->skb_list)) 1843 __skb_queue_purge(&entry->skb_list); 1844 1845 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1846 *skb = NULL; 1847 entry->first_frag_time = jiffies; 1848 entry->seq = seq; 1849 entry->rx_queue = rx_queue; 1850 entry->last_frag = frag; 1851 entry->check_sequential_pn = false; 1852 entry->extra_len = 0; 1853 1854 return entry; 1855 } 1856 1857 static inline struct ieee80211_fragment_entry * 1858 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1859 unsigned int frag, unsigned int seq, 1860 int rx_queue, struct ieee80211_hdr *hdr) 1861 { 1862 struct ieee80211_fragment_entry *entry; 1863 int i, idx; 1864 1865 idx = sdata->fragment_next; 1866 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1867 struct ieee80211_hdr *f_hdr; 1868 1869 idx--; 1870 if (idx < 0) 1871 idx = IEEE80211_FRAGMENT_MAX - 1; 1872 1873 entry = &sdata->fragments[idx]; 1874 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1875 entry->rx_queue != rx_queue || 1876 entry->last_frag + 1 != frag) 1877 continue; 1878 1879 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1880 1881 /* 1882 * Check ftype and addresses are equal, else check next fragment 1883 */ 1884 if (((hdr->frame_control ^ f_hdr->frame_control) & 1885 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1886 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1887 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1888 continue; 1889 1890 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1891 __skb_queue_purge(&entry->skb_list); 1892 continue; 1893 } 1894 return entry; 1895 } 1896 1897 return NULL; 1898 } 1899 1900 static ieee80211_rx_result debug_noinline 1901 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1902 { 1903 struct ieee80211_hdr *hdr; 1904 u16 sc; 1905 __le16 fc; 1906 unsigned int frag, seq; 1907 struct ieee80211_fragment_entry *entry; 1908 struct sk_buff *skb; 1909 struct ieee80211_rx_status *status; 1910 1911 hdr = (struct ieee80211_hdr *)rx->skb->data; 1912 fc = hdr->frame_control; 1913 1914 if (ieee80211_is_ctl(fc)) 1915 return RX_CONTINUE; 1916 1917 sc = le16_to_cpu(hdr->seq_ctrl); 1918 frag = sc & IEEE80211_SCTL_FRAG; 1919 1920 if (is_multicast_ether_addr(hdr->addr1)) { 1921 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 1922 goto out_no_led; 1923 } 1924 1925 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1926 goto out; 1927 1928 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1929 1930 if (skb_linearize(rx->skb)) 1931 return RX_DROP_UNUSABLE; 1932 1933 /* 1934 * skb_linearize() might change the skb->data and 1935 * previously cached variables (in this case, hdr) need to 1936 * be refreshed with the new data. 1937 */ 1938 hdr = (struct ieee80211_hdr *)rx->skb->data; 1939 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1940 1941 if (frag == 0) { 1942 /* This is the first fragment of a new frame. */ 1943 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1944 rx->seqno_idx, &(rx->skb)); 1945 if (rx->key && 1946 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 1947 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 1948 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 1949 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 1950 ieee80211_has_protected(fc)) { 1951 int queue = rx->security_idx; 1952 1953 /* Store CCMP/GCMP PN so that we can verify that the 1954 * next fragment has a sequential PN value. 1955 */ 1956 entry->check_sequential_pn = true; 1957 memcpy(entry->last_pn, 1958 rx->key->u.ccmp.rx_pn[queue], 1959 IEEE80211_CCMP_PN_LEN); 1960 BUILD_BUG_ON(offsetof(struct ieee80211_key, 1961 u.ccmp.rx_pn) != 1962 offsetof(struct ieee80211_key, 1963 u.gcmp.rx_pn)); 1964 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 1965 sizeof(rx->key->u.gcmp.rx_pn[queue])); 1966 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 1967 IEEE80211_GCMP_PN_LEN); 1968 } 1969 return RX_QUEUED; 1970 } 1971 1972 /* This is a fragment for a frame that should already be pending in 1973 * fragment cache. Add this fragment to the end of the pending entry. 1974 */ 1975 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1976 rx->seqno_idx, hdr); 1977 if (!entry) { 1978 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1979 return RX_DROP_MONITOR; 1980 } 1981 1982 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 1983 * MPDU PN values are not incrementing in steps of 1." 1984 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 1985 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 1986 */ 1987 if (entry->check_sequential_pn) { 1988 int i; 1989 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1990 int queue; 1991 1992 if (!rx->key || 1993 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 1994 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 1995 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 1996 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 1997 return RX_DROP_UNUSABLE; 1998 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 1999 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2000 pn[i]++; 2001 if (pn[i]) 2002 break; 2003 } 2004 queue = rx->security_idx; 2005 rpn = rx->key->u.ccmp.rx_pn[queue]; 2006 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2007 return RX_DROP_UNUSABLE; 2008 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2009 } 2010 2011 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2012 __skb_queue_tail(&entry->skb_list, rx->skb); 2013 entry->last_frag = frag; 2014 entry->extra_len += rx->skb->len; 2015 if (ieee80211_has_morefrags(fc)) { 2016 rx->skb = NULL; 2017 return RX_QUEUED; 2018 } 2019 2020 rx->skb = __skb_dequeue(&entry->skb_list); 2021 if (skb_tailroom(rx->skb) < entry->extra_len) { 2022 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2023 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2024 GFP_ATOMIC))) { 2025 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2026 __skb_queue_purge(&entry->skb_list); 2027 return RX_DROP_UNUSABLE; 2028 } 2029 } 2030 while ((skb = __skb_dequeue(&entry->skb_list))) { 2031 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 2032 dev_kfree_skb(skb); 2033 } 2034 2035 /* Complete frame has been reassembled - process it now */ 2036 status = IEEE80211_SKB_RXCB(rx->skb); 2037 2038 out: 2039 ieee80211_led_rx(rx->local); 2040 out_no_led: 2041 if (rx->sta) 2042 rx->sta->rx_stats.packets++; 2043 return RX_CONTINUE; 2044 } 2045 2046 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2047 { 2048 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2049 return -EACCES; 2050 2051 return 0; 2052 } 2053 2054 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2055 { 2056 struct sk_buff *skb = rx->skb; 2057 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2058 2059 /* 2060 * Pass through unencrypted frames if the hardware has 2061 * decrypted them already. 2062 */ 2063 if (status->flag & RX_FLAG_DECRYPTED) 2064 return 0; 2065 2066 /* Drop unencrypted frames if key is set. */ 2067 if (unlikely(!ieee80211_has_protected(fc) && 2068 !ieee80211_is_nullfunc(fc) && 2069 ieee80211_is_data(fc) && rx->key)) 2070 return -EACCES; 2071 2072 return 0; 2073 } 2074 2075 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2076 { 2077 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2078 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2079 __le16 fc = hdr->frame_control; 2080 2081 /* 2082 * Pass through unencrypted frames if the hardware has 2083 * decrypted them already. 2084 */ 2085 if (status->flag & RX_FLAG_DECRYPTED) 2086 return 0; 2087 2088 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2089 if (unlikely(!ieee80211_has_protected(fc) && 2090 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2091 rx->key)) { 2092 if (ieee80211_is_deauth(fc) || 2093 ieee80211_is_disassoc(fc)) 2094 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2095 rx->skb->data, 2096 rx->skb->len); 2097 return -EACCES; 2098 } 2099 /* BIP does not use Protected field, so need to check MMIE */ 2100 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2101 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2102 if (ieee80211_is_deauth(fc) || 2103 ieee80211_is_disassoc(fc)) 2104 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2105 rx->skb->data, 2106 rx->skb->len); 2107 return -EACCES; 2108 } 2109 /* 2110 * When using MFP, Action frames are not allowed prior to 2111 * having configured keys. 2112 */ 2113 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2114 ieee80211_is_robust_mgmt_frame(rx->skb))) 2115 return -EACCES; 2116 } 2117 2118 return 0; 2119 } 2120 2121 static int 2122 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2123 { 2124 struct ieee80211_sub_if_data *sdata = rx->sdata; 2125 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2126 bool check_port_control = false; 2127 struct ethhdr *ehdr; 2128 int ret; 2129 2130 *port_control = false; 2131 if (ieee80211_has_a4(hdr->frame_control) && 2132 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2133 return -1; 2134 2135 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2136 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2137 2138 if (!sdata->u.mgd.use_4addr) 2139 return -1; 2140 else 2141 check_port_control = true; 2142 } 2143 2144 if (is_multicast_ether_addr(hdr->addr1) && 2145 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2146 return -1; 2147 2148 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2149 if (ret < 0) 2150 return ret; 2151 2152 ehdr = (struct ethhdr *) rx->skb->data; 2153 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2154 *port_control = true; 2155 else if (check_port_control) 2156 return -1; 2157 2158 return 0; 2159 } 2160 2161 /* 2162 * requires that rx->skb is a frame with ethernet header 2163 */ 2164 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2165 { 2166 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2167 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2168 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2169 2170 /* 2171 * Allow EAPOL frames to us/the PAE group address regardless 2172 * of whether the frame was encrypted or not. 2173 */ 2174 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2175 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2176 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2177 return true; 2178 2179 if (ieee80211_802_1x_port_control(rx) || 2180 ieee80211_drop_unencrypted(rx, fc)) 2181 return false; 2182 2183 return true; 2184 } 2185 2186 /* 2187 * requires that rx->skb is a frame with ethernet header 2188 */ 2189 static void 2190 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2191 { 2192 struct ieee80211_sub_if_data *sdata = rx->sdata; 2193 struct net_device *dev = sdata->dev; 2194 struct sk_buff *skb, *xmit_skb; 2195 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2196 struct sta_info *dsta; 2197 2198 skb = rx->skb; 2199 xmit_skb = NULL; 2200 2201 ieee80211_rx_stats(dev, skb->len); 2202 2203 if (rx->sta) { 2204 /* The seqno index has the same property as needed 2205 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2206 * for non-QoS-data frames. Here we know it's a data 2207 * frame, so count MSDUs. 2208 */ 2209 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2210 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2211 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2212 } 2213 2214 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2215 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2216 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2217 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2218 if (is_multicast_ether_addr(ehdr->h_dest)) { 2219 /* 2220 * send multicast frames both to higher layers in 2221 * local net stack and back to the wireless medium 2222 */ 2223 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2224 if (!xmit_skb) 2225 net_info_ratelimited("%s: failed to clone multicast frame\n", 2226 dev->name); 2227 } else { 2228 dsta = sta_info_get(sdata, skb->data); 2229 if (dsta) { 2230 /* 2231 * The destination station is associated to 2232 * this AP (in this VLAN), so send the frame 2233 * directly to it and do not pass it to local 2234 * net stack. 2235 */ 2236 xmit_skb = skb; 2237 skb = NULL; 2238 } 2239 } 2240 } 2241 2242 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2243 if (skb) { 2244 /* 'align' will only take the values 0 or 2 here since all 2245 * frames are required to be aligned to 2-byte boundaries 2246 * when being passed to mac80211; the code here works just 2247 * as well if that isn't true, but mac80211 assumes it can 2248 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2249 */ 2250 int align; 2251 2252 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2253 if (align) { 2254 if (WARN_ON(skb_headroom(skb) < 3)) { 2255 dev_kfree_skb(skb); 2256 skb = NULL; 2257 } else { 2258 u8 *data = skb->data; 2259 size_t len = skb_headlen(skb); 2260 skb->data -= align; 2261 memmove(skb->data, data, len); 2262 skb_set_tail_pointer(skb, len); 2263 } 2264 } 2265 } 2266 #endif 2267 2268 if (skb) { 2269 /* deliver to local stack */ 2270 skb->protocol = eth_type_trans(skb, dev); 2271 memset(skb->cb, 0, sizeof(skb->cb)); 2272 if (rx->napi) 2273 napi_gro_receive(rx->napi, skb); 2274 else 2275 netif_receive_skb(skb); 2276 } 2277 2278 if (xmit_skb) { 2279 /* 2280 * Send to wireless media and increase priority by 256 to 2281 * keep the received priority instead of reclassifying 2282 * the frame (see cfg80211_classify8021d). 2283 */ 2284 xmit_skb->priority += 256; 2285 xmit_skb->protocol = htons(ETH_P_802_3); 2286 skb_reset_network_header(xmit_skb); 2287 skb_reset_mac_header(xmit_skb); 2288 dev_queue_xmit(xmit_skb); 2289 } 2290 } 2291 2292 static ieee80211_rx_result debug_noinline 2293 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2294 { 2295 struct net_device *dev = rx->sdata->dev; 2296 struct sk_buff *skb = rx->skb; 2297 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2298 __le16 fc = hdr->frame_control; 2299 struct sk_buff_head frame_list; 2300 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2301 2302 if (unlikely(!ieee80211_is_data(fc))) 2303 return RX_CONTINUE; 2304 2305 if (unlikely(!ieee80211_is_data_present(fc))) 2306 return RX_DROP_MONITOR; 2307 2308 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2309 return RX_CONTINUE; 2310 2311 if (ieee80211_has_a4(hdr->frame_control) && 2312 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2313 !rx->sdata->u.vlan.sta) 2314 return RX_DROP_UNUSABLE; 2315 2316 if (is_multicast_ether_addr(hdr->addr1) && 2317 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2318 rx->sdata->u.vlan.sta) || 2319 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 2320 rx->sdata->u.mgd.use_4addr))) 2321 return RX_DROP_UNUSABLE; 2322 2323 skb->dev = dev; 2324 __skb_queue_head_init(&frame_list); 2325 2326 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2327 rx->sdata->vif.type, 2328 rx->local->hw.extra_tx_headroom, true); 2329 2330 while (!skb_queue_empty(&frame_list)) { 2331 rx->skb = __skb_dequeue(&frame_list); 2332 2333 if (!ieee80211_frame_allowed(rx, fc)) { 2334 dev_kfree_skb(rx->skb); 2335 continue; 2336 } 2337 2338 ieee80211_deliver_skb(rx); 2339 } 2340 2341 return RX_QUEUED; 2342 } 2343 2344 #ifdef CONFIG_MAC80211_MESH 2345 static ieee80211_rx_result 2346 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2347 { 2348 struct ieee80211_hdr *fwd_hdr, *hdr; 2349 struct ieee80211_tx_info *info; 2350 struct ieee80211s_hdr *mesh_hdr; 2351 struct sk_buff *skb = rx->skb, *fwd_skb; 2352 struct ieee80211_local *local = rx->local; 2353 struct ieee80211_sub_if_data *sdata = rx->sdata; 2354 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2355 u16 ac, q, hdrlen; 2356 2357 hdr = (struct ieee80211_hdr *) skb->data; 2358 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2359 2360 /* make sure fixed part of mesh header is there, also checks skb len */ 2361 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2362 return RX_DROP_MONITOR; 2363 2364 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2365 2366 /* make sure full mesh header is there, also checks skb len */ 2367 if (!pskb_may_pull(rx->skb, 2368 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2369 return RX_DROP_MONITOR; 2370 2371 /* reload pointers */ 2372 hdr = (struct ieee80211_hdr *) skb->data; 2373 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2374 2375 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2376 return RX_DROP_MONITOR; 2377 2378 /* frame is in RMC, don't forward */ 2379 if (ieee80211_is_data(hdr->frame_control) && 2380 is_multicast_ether_addr(hdr->addr1) && 2381 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2382 return RX_DROP_MONITOR; 2383 2384 if (!ieee80211_is_data(hdr->frame_control)) 2385 return RX_CONTINUE; 2386 2387 if (!mesh_hdr->ttl) 2388 return RX_DROP_MONITOR; 2389 2390 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2391 struct mesh_path *mppath; 2392 char *proxied_addr; 2393 char *mpp_addr; 2394 2395 if (is_multicast_ether_addr(hdr->addr1)) { 2396 mpp_addr = hdr->addr3; 2397 proxied_addr = mesh_hdr->eaddr1; 2398 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2399 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2400 mpp_addr = hdr->addr4; 2401 proxied_addr = mesh_hdr->eaddr2; 2402 } else { 2403 return RX_DROP_MONITOR; 2404 } 2405 2406 rcu_read_lock(); 2407 mppath = mpp_path_lookup(sdata, proxied_addr); 2408 if (!mppath) { 2409 mpp_path_add(sdata, proxied_addr, mpp_addr); 2410 } else { 2411 spin_lock_bh(&mppath->state_lock); 2412 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2413 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2414 mppath->exp_time = jiffies; 2415 spin_unlock_bh(&mppath->state_lock); 2416 } 2417 rcu_read_unlock(); 2418 } 2419 2420 /* Frame has reached destination. Don't forward */ 2421 if (!is_multicast_ether_addr(hdr->addr1) && 2422 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2423 return RX_CONTINUE; 2424 2425 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2426 q = sdata->vif.hw_queue[ac]; 2427 if (ieee80211_queue_stopped(&local->hw, q)) { 2428 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2429 return RX_DROP_MONITOR; 2430 } 2431 skb_set_queue_mapping(skb, q); 2432 2433 if (!--mesh_hdr->ttl) { 2434 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2435 goto out; 2436 } 2437 2438 if (!ifmsh->mshcfg.dot11MeshForwarding) 2439 goto out; 2440 2441 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2442 if (!fwd_skb) { 2443 net_info_ratelimited("%s: failed to clone mesh frame\n", 2444 sdata->name); 2445 goto out; 2446 } 2447 2448 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2449 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2450 info = IEEE80211_SKB_CB(fwd_skb); 2451 memset(info, 0, sizeof(*info)); 2452 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2453 info->control.vif = &rx->sdata->vif; 2454 info->control.jiffies = jiffies; 2455 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2456 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2457 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2458 /* update power mode indication when forwarding */ 2459 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2460 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2461 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2462 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2463 } else { 2464 /* unable to resolve next hop */ 2465 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2466 fwd_hdr->addr3, 0, 2467 WLAN_REASON_MESH_PATH_NOFORWARD, 2468 fwd_hdr->addr2); 2469 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2470 kfree_skb(fwd_skb); 2471 return RX_DROP_MONITOR; 2472 } 2473 2474 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2475 ieee80211_add_pending_skb(local, fwd_skb); 2476 out: 2477 if (is_multicast_ether_addr(hdr->addr1)) 2478 return RX_CONTINUE; 2479 return RX_DROP_MONITOR; 2480 } 2481 #endif 2482 2483 static ieee80211_rx_result debug_noinline 2484 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2485 { 2486 struct ieee80211_sub_if_data *sdata = rx->sdata; 2487 struct ieee80211_local *local = rx->local; 2488 struct net_device *dev = sdata->dev; 2489 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2490 __le16 fc = hdr->frame_control; 2491 bool port_control; 2492 int err; 2493 2494 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2495 return RX_CONTINUE; 2496 2497 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2498 return RX_DROP_MONITOR; 2499 2500 /* 2501 * Send unexpected-4addr-frame event to hostapd. For older versions, 2502 * also drop the frame to cooked monitor interfaces. 2503 */ 2504 if (ieee80211_has_a4(hdr->frame_control) && 2505 sdata->vif.type == NL80211_IFTYPE_AP) { 2506 if (rx->sta && 2507 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2508 cfg80211_rx_unexpected_4addr_frame( 2509 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2510 return RX_DROP_MONITOR; 2511 } 2512 2513 err = __ieee80211_data_to_8023(rx, &port_control); 2514 if (unlikely(err)) 2515 return RX_DROP_UNUSABLE; 2516 2517 if (!ieee80211_frame_allowed(rx, fc)) 2518 return RX_DROP_MONITOR; 2519 2520 /* directly handle TDLS channel switch requests/responses */ 2521 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2522 cpu_to_be16(ETH_P_TDLS))) { 2523 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2524 2525 if (pskb_may_pull(rx->skb, 2526 offsetof(struct ieee80211_tdls_data, u)) && 2527 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2528 tf->category == WLAN_CATEGORY_TDLS && 2529 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2530 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2531 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2532 schedule_work(&local->tdls_chsw_work); 2533 if (rx->sta) 2534 rx->sta->rx_stats.packets++; 2535 2536 return RX_QUEUED; 2537 } 2538 } 2539 2540 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2541 unlikely(port_control) && sdata->bss) { 2542 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2543 u.ap); 2544 dev = sdata->dev; 2545 rx->sdata = sdata; 2546 } 2547 2548 rx->skb->dev = dev; 2549 2550 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2551 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2552 !is_multicast_ether_addr( 2553 ((struct ethhdr *)rx->skb->data)->h_dest) && 2554 (!local->scanning && 2555 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2556 mod_timer(&local->dynamic_ps_timer, jiffies + 2557 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2558 2559 ieee80211_deliver_skb(rx); 2560 2561 return RX_QUEUED; 2562 } 2563 2564 static ieee80211_rx_result debug_noinline 2565 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2566 { 2567 struct sk_buff *skb = rx->skb; 2568 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2569 struct tid_ampdu_rx *tid_agg_rx; 2570 u16 start_seq_num; 2571 u16 tid; 2572 2573 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2574 return RX_CONTINUE; 2575 2576 if (ieee80211_is_back_req(bar->frame_control)) { 2577 struct { 2578 __le16 control, start_seq_num; 2579 } __packed bar_data; 2580 struct ieee80211_event event = { 2581 .type = BAR_RX_EVENT, 2582 }; 2583 2584 if (!rx->sta) 2585 return RX_DROP_MONITOR; 2586 2587 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2588 &bar_data, sizeof(bar_data))) 2589 return RX_DROP_MONITOR; 2590 2591 tid = le16_to_cpu(bar_data.control) >> 12; 2592 2593 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2594 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2595 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2596 WLAN_BACK_RECIPIENT, 2597 WLAN_REASON_QSTA_REQUIRE_SETUP); 2598 2599 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2600 if (!tid_agg_rx) 2601 return RX_DROP_MONITOR; 2602 2603 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2604 event.u.ba.tid = tid; 2605 event.u.ba.ssn = start_seq_num; 2606 event.u.ba.sta = &rx->sta->sta; 2607 2608 /* reset session timer */ 2609 if (tid_agg_rx->timeout) 2610 mod_timer(&tid_agg_rx->session_timer, 2611 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2612 2613 spin_lock(&tid_agg_rx->reorder_lock); 2614 /* release stored frames up to start of BAR */ 2615 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2616 start_seq_num, frames); 2617 spin_unlock(&tid_agg_rx->reorder_lock); 2618 2619 drv_event_callback(rx->local, rx->sdata, &event); 2620 2621 kfree_skb(skb); 2622 return RX_QUEUED; 2623 } 2624 2625 /* 2626 * After this point, we only want management frames, 2627 * so we can drop all remaining control frames to 2628 * cooked monitor interfaces. 2629 */ 2630 return RX_DROP_MONITOR; 2631 } 2632 2633 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2634 struct ieee80211_mgmt *mgmt, 2635 size_t len) 2636 { 2637 struct ieee80211_local *local = sdata->local; 2638 struct sk_buff *skb; 2639 struct ieee80211_mgmt *resp; 2640 2641 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2642 /* Not to own unicast address */ 2643 return; 2644 } 2645 2646 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2647 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2648 /* Not from the current AP or not associated yet. */ 2649 return; 2650 } 2651 2652 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2653 /* Too short SA Query request frame */ 2654 return; 2655 } 2656 2657 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2658 if (skb == NULL) 2659 return; 2660 2661 skb_reserve(skb, local->hw.extra_tx_headroom); 2662 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2663 memset(resp, 0, 24); 2664 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2665 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2666 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2667 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2668 IEEE80211_STYPE_ACTION); 2669 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2670 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2671 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2672 memcpy(resp->u.action.u.sa_query.trans_id, 2673 mgmt->u.action.u.sa_query.trans_id, 2674 WLAN_SA_QUERY_TR_ID_LEN); 2675 2676 ieee80211_tx_skb(sdata, skb); 2677 } 2678 2679 static ieee80211_rx_result debug_noinline 2680 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2681 { 2682 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2683 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2684 2685 /* 2686 * From here on, look only at management frames. 2687 * Data and control frames are already handled, 2688 * and unknown (reserved) frames are useless. 2689 */ 2690 if (rx->skb->len < 24) 2691 return RX_DROP_MONITOR; 2692 2693 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2694 return RX_DROP_MONITOR; 2695 2696 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2697 ieee80211_is_beacon(mgmt->frame_control) && 2698 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2699 int sig = 0; 2700 2701 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 2702 sig = status->signal; 2703 2704 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2705 rx->skb->data, rx->skb->len, 2706 status->freq, sig); 2707 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2708 } 2709 2710 if (ieee80211_drop_unencrypted_mgmt(rx)) 2711 return RX_DROP_UNUSABLE; 2712 2713 return RX_CONTINUE; 2714 } 2715 2716 static ieee80211_rx_result debug_noinline 2717 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2718 { 2719 struct ieee80211_local *local = rx->local; 2720 struct ieee80211_sub_if_data *sdata = rx->sdata; 2721 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2722 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2723 int len = rx->skb->len; 2724 2725 if (!ieee80211_is_action(mgmt->frame_control)) 2726 return RX_CONTINUE; 2727 2728 /* drop too small frames */ 2729 if (len < IEEE80211_MIN_ACTION_SIZE) 2730 return RX_DROP_UNUSABLE; 2731 2732 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2733 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2734 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2735 return RX_DROP_UNUSABLE; 2736 2737 switch (mgmt->u.action.category) { 2738 case WLAN_CATEGORY_HT: 2739 /* reject HT action frames from stations not supporting HT */ 2740 if (!rx->sta->sta.ht_cap.ht_supported) 2741 goto invalid; 2742 2743 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2744 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2745 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2746 sdata->vif.type != NL80211_IFTYPE_AP && 2747 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2748 break; 2749 2750 /* verify action & smps_control/chanwidth are present */ 2751 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2752 goto invalid; 2753 2754 switch (mgmt->u.action.u.ht_smps.action) { 2755 case WLAN_HT_ACTION_SMPS: { 2756 struct ieee80211_supported_band *sband; 2757 enum ieee80211_smps_mode smps_mode; 2758 2759 /* convert to HT capability */ 2760 switch (mgmt->u.action.u.ht_smps.smps_control) { 2761 case WLAN_HT_SMPS_CONTROL_DISABLED: 2762 smps_mode = IEEE80211_SMPS_OFF; 2763 break; 2764 case WLAN_HT_SMPS_CONTROL_STATIC: 2765 smps_mode = IEEE80211_SMPS_STATIC; 2766 break; 2767 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2768 smps_mode = IEEE80211_SMPS_DYNAMIC; 2769 break; 2770 default: 2771 goto invalid; 2772 } 2773 2774 /* if no change do nothing */ 2775 if (rx->sta->sta.smps_mode == smps_mode) 2776 goto handled; 2777 rx->sta->sta.smps_mode = smps_mode; 2778 2779 sband = rx->local->hw.wiphy->bands[status->band]; 2780 2781 rate_control_rate_update(local, sband, rx->sta, 2782 IEEE80211_RC_SMPS_CHANGED); 2783 goto handled; 2784 } 2785 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2786 struct ieee80211_supported_band *sband; 2787 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2788 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 2789 2790 /* If it doesn't support 40 MHz it can't change ... */ 2791 if (!(rx->sta->sta.ht_cap.cap & 2792 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2793 goto handled; 2794 2795 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2796 max_bw = IEEE80211_STA_RX_BW_20; 2797 else 2798 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 2799 2800 /* set cur_max_bandwidth and recalc sta bw */ 2801 rx->sta->cur_max_bandwidth = max_bw; 2802 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2803 2804 if (rx->sta->sta.bandwidth == new_bw) 2805 goto handled; 2806 2807 rx->sta->sta.bandwidth = new_bw; 2808 sband = rx->local->hw.wiphy->bands[status->band]; 2809 2810 rate_control_rate_update(local, sband, rx->sta, 2811 IEEE80211_RC_BW_CHANGED); 2812 goto handled; 2813 } 2814 default: 2815 goto invalid; 2816 } 2817 2818 break; 2819 case WLAN_CATEGORY_PUBLIC: 2820 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2821 goto invalid; 2822 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2823 break; 2824 if (!rx->sta) 2825 break; 2826 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2827 break; 2828 if (mgmt->u.action.u.ext_chan_switch.action_code != 2829 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2830 break; 2831 if (len < offsetof(struct ieee80211_mgmt, 2832 u.action.u.ext_chan_switch.variable)) 2833 goto invalid; 2834 goto queue; 2835 case WLAN_CATEGORY_VHT: 2836 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2837 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2838 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2839 sdata->vif.type != NL80211_IFTYPE_AP && 2840 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2841 break; 2842 2843 /* verify action code is present */ 2844 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2845 goto invalid; 2846 2847 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2848 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2849 u8 opmode; 2850 2851 /* verify opmode is present */ 2852 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2853 goto invalid; 2854 2855 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2856 2857 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2858 opmode, status->band); 2859 goto handled; 2860 } 2861 case WLAN_VHT_ACTION_GROUPID_MGMT: { 2862 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 2863 goto invalid; 2864 goto queue; 2865 } 2866 default: 2867 break; 2868 } 2869 break; 2870 case WLAN_CATEGORY_BACK: 2871 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2872 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2873 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2874 sdata->vif.type != NL80211_IFTYPE_AP && 2875 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2876 break; 2877 2878 /* verify action_code is present */ 2879 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2880 break; 2881 2882 switch (mgmt->u.action.u.addba_req.action_code) { 2883 case WLAN_ACTION_ADDBA_REQ: 2884 if (len < (IEEE80211_MIN_ACTION_SIZE + 2885 sizeof(mgmt->u.action.u.addba_req))) 2886 goto invalid; 2887 break; 2888 case WLAN_ACTION_ADDBA_RESP: 2889 if (len < (IEEE80211_MIN_ACTION_SIZE + 2890 sizeof(mgmt->u.action.u.addba_resp))) 2891 goto invalid; 2892 break; 2893 case WLAN_ACTION_DELBA: 2894 if (len < (IEEE80211_MIN_ACTION_SIZE + 2895 sizeof(mgmt->u.action.u.delba))) 2896 goto invalid; 2897 break; 2898 default: 2899 goto invalid; 2900 } 2901 2902 goto queue; 2903 case WLAN_CATEGORY_SPECTRUM_MGMT: 2904 /* verify action_code is present */ 2905 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2906 break; 2907 2908 switch (mgmt->u.action.u.measurement.action_code) { 2909 case WLAN_ACTION_SPCT_MSR_REQ: 2910 if (status->band != NL80211_BAND_5GHZ) 2911 break; 2912 2913 if (len < (IEEE80211_MIN_ACTION_SIZE + 2914 sizeof(mgmt->u.action.u.measurement))) 2915 break; 2916 2917 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2918 break; 2919 2920 ieee80211_process_measurement_req(sdata, mgmt, len); 2921 goto handled; 2922 case WLAN_ACTION_SPCT_CHL_SWITCH: { 2923 u8 *bssid; 2924 if (len < (IEEE80211_MIN_ACTION_SIZE + 2925 sizeof(mgmt->u.action.u.chan_switch))) 2926 break; 2927 2928 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2929 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2930 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2931 break; 2932 2933 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2934 bssid = sdata->u.mgd.bssid; 2935 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2936 bssid = sdata->u.ibss.bssid; 2937 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 2938 bssid = mgmt->sa; 2939 else 2940 break; 2941 2942 if (!ether_addr_equal(mgmt->bssid, bssid)) 2943 break; 2944 2945 goto queue; 2946 } 2947 } 2948 break; 2949 case WLAN_CATEGORY_SA_QUERY: 2950 if (len < (IEEE80211_MIN_ACTION_SIZE + 2951 sizeof(mgmt->u.action.u.sa_query))) 2952 break; 2953 2954 switch (mgmt->u.action.u.sa_query.action) { 2955 case WLAN_ACTION_SA_QUERY_REQUEST: 2956 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2957 break; 2958 ieee80211_process_sa_query_req(sdata, mgmt, len); 2959 goto handled; 2960 } 2961 break; 2962 case WLAN_CATEGORY_SELF_PROTECTED: 2963 if (len < (IEEE80211_MIN_ACTION_SIZE + 2964 sizeof(mgmt->u.action.u.self_prot.action_code))) 2965 break; 2966 2967 switch (mgmt->u.action.u.self_prot.action_code) { 2968 case WLAN_SP_MESH_PEERING_OPEN: 2969 case WLAN_SP_MESH_PEERING_CLOSE: 2970 case WLAN_SP_MESH_PEERING_CONFIRM: 2971 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2972 goto invalid; 2973 if (sdata->u.mesh.user_mpm) 2974 /* userspace handles this frame */ 2975 break; 2976 goto queue; 2977 case WLAN_SP_MGK_INFORM: 2978 case WLAN_SP_MGK_ACK: 2979 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2980 goto invalid; 2981 break; 2982 } 2983 break; 2984 case WLAN_CATEGORY_MESH_ACTION: 2985 if (len < (IEEE80211_MIN_ACTION_SIZE + 2986 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2987 break; 2988 2989 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2990 break; 2991 if (mesh_action_is_path_sel(mgmt) && 2992 !mesh_path_sel_is_hwmp(sdata)) 2993 break; 2994 goto queue; 2995 } 2996 2997 return RX_CONTINUE; 2998 2999 invalid: 3000 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3001 /* will return in the next handlers */ 3002 return RX_CONTINUE; 3003 3004 handled: 3005 if (rx->sta) 3006 rx->sta->rx_stats.packets++; 3007 dev_kfree_skb(rx->skb); 3008 return RX_QUEUED; 3009 3010 queue: 3011 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 3012 skb_queue_tail(&sdata->skb_queue, rx->skb); 3013 ieee80211_queue_work(&local->hw, &sdata->work); 3014 if (rx->sta) 3015 rx->sta->rx_stats.packets++; 3016 return RX_QUEUED; 3017 } 3018 3019 static ieee80211_rx_result debug_noinline 3020 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3021 { 3022 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3023 int sig = 0; 3024 3025 /* skip known-bad action frames and return them in the next handler */ 3026 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3027 return RX_CONTINUE; 3028 3029 /* 3030 * Getting here means the kernel doesn't know how to handle 3031 * it, but maybe userspace does ... include returned frames 3032 * so userspace can register for those to know whether ones 3033 * it transmitted were processed or returned. 3034 */ 3035 3036 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 3037 sig = status->signal; 3038 3039 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 3040 rx->skb->data, rx->skb->len, 0)) { 3041 if (rx->sta) 3042 rx->sta->rx_stats.packets++; 3043 dev_kfree_skb(rx->skb); 3044 return RX_QUEUED; 3045 } 3046 3047 return RX_CONTINUE; 3048 } 3049 3050 static ieee80211_rx_result debug_noinline 3051 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3052 { 3053 struct ieee80211_local *local = rx->local; 3054 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3055 struct sk_buff *nskb; 3056 struct ieee80211_sub_if_data *sdata = rx->sdata; 3057 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3058 3059 if (!ieee80211_is_action(mgmt->frame_control)) 3060 return RX_CONTINUE; 3061 3062 /* 3063 * For AP mode, hostapd is responsible for handling any action 3064 * frames that we didn't handle, including returning unknown 3065 * ones. For all other modes we will return them to the sender, 3066 * setting the 0x80 bit in the action category, as required by 3067 * 802.11-2012 9.24.4. 3068 * Newer versions of hostapd shall also use the management frame 3069 * registration mechanisms, but older ones still use cooked 3070 * monitor interfaces so push all frames there. 3071 */ 3072 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3073 (sdata->vif.type == NL80211_IFTYPE_AP || 3074 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3075 return RX_DROP_MONITOR; 3076 3077 if (is_multicast_ether_addr(mgmt->da)) 3078 return RX_DROP_MONITOR; 3079 3080 /* do not return rejected action frames */ 3081 if (mgmt->u.action.category & 0x80) 3082 return RX_DROP_UNUSABLE; 3083 3084 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3085 GFP_ATOMIC); 3086 if (nskb) { 3087 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3088 3089 nmgmt->u.action.category |= 0x80; 3090 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3091 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3092 3093 memset(nskb->cb, 0, sizeof(nskb->cb)); 3094 3095 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3096 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3097 3098 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3099 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3100 IEEE80211_TX_CTL_NO_CCK_RATE; 3101 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3102 info->hw_queue = 3103 local->hw.offchannel_tx_hw_queue; 3104 } 3105 3106 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3107 status->band); 3108 } 3109 dev_kfree_skb(rx->skb); 3110 return RX_QUEUED; 3111 } 3112 3113 static ieee80211_rx_result debug_noinline 3114 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3115 { 3116 struct ieee80211_sub_if_data *sdata = rx->sdata; 3117 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3118 __le16 stype; 3119 3120 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3121 3122 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3123 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3124 sdata->vif.type != NL80211_IFTYPE_OCB && 3125 sdata->vif.type != NL80211_IFTYPE_STATION) 3126 return RX_DROP_MONITOR; 3127 3128 switch (stype) { 3129 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3130 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3131 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3132 /* process for all: mesh, mlme, ibss */ 3133 break; 3134 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3135 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3136 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3137 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3138 if (is_multicast_ether_addr(mgmt->da) && 3139 !is_broadcast_ether_addr(mgmt->da)) 3140 return RX_DROP_MONITOR; 3141 3142 /* process only for station */ 3143 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3144 return RX_DROP_MONITOR; 3145 break; 3146 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3147 /* process only for ibss and mesh */ 3148 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3149 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3150 return RX_DROP_MONITOR; 3151 break; 3152 default: 3153 return RX_DROP_MONITOR; 3154 } 3155 3156 /* queue up frame and kick off work to process it */ 3157 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 3158 skb_queue_tail(&sdata->skb_queue, rx->skb); 3159 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3160 if (rx->sta) 3161 rx->sta->rx_stats.packets++; 3162 3163 return RX_QUEUED; 3164 } 3165 3166 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3167 struct ieee80211_rate *rate) 3168 { 3169 struct ieee80211_sub_if_data *sdata; 3170 struct ieee80211_local *local = rx->local; 3171 struct sk_buff *skb = rx->skb, *skb2; 3172 struct net_device *prev_dev = NULL; 3173 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3174 int needed_headroom; 3175 3176 /* 3177 * If cooked monitor has been processed already, then 3178 * don't do it again. If not, set the flag. 3179 */ 3180 if (rx->flags & IEEE80211_RX_CMNTR) 3181 goto out_free_skb; 3182 rx->flags |= IEEE80211_RX_CMNTR; 3183 3184 /* If there are no cooked monitor interfaces, just free the SKB */ 3185 if (!local->cooked_mntrs) 3186 goto out_free_skb; 3187 3188 /* vendor data is long removed here */ 3189 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3190 /* room for the radiotap header based on driver features */ 3191 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3192 3193 if (skb_headroom(skb) < needed_headroom && 3194 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3195 goto out_free_skb; 3196 3197 /* prepend radiotap information */ 3198 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3199 false); 3200 3201 skb_reset_mac_header(skb); 3202 skb->ip_summed = CHECKSUM_UNNECESSARY; 3203 skb->pkt_type = PACKET_OTHERHOST; 3204 skb->protocol = htons(ETH_P_802_2); 3205 3206 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3207 if (!ieee80211_sdata_running(sdata)) 3208 continue; 3209 3210 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3211 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3212 continue; 3213 3214 if (prev_dev) { 3215 skb2 = skb_clone(skb, GFP_ATOMIC); 3216 if (skb2) { 3217 skb2->dev = prev_dev; 3218 netif_receive_skb(skb2); 3219 } 3220 } 3221 3222 prev_dev = sdata->dev; 3223 ieee80211_rx_stats(sdata->dev, skb->len); 3224 } 3225 3226 if (prev_dev) { 3227 skb->dev = prev_dev; 3228 netif_receive_skb(skb); 3229 return; 3230 } 3231 3232 out_free_skb: 3233 dev_kfree_skb(skb); 3234 } 3235 3236 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3237 ieee80211_rx_result res) 3238 { 3239 switch (res) { 3240 case RX_DROP_MONITOR: 3241 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3242 if (rx->sta) 3243 rx->sta->rx_stats.dropped++; 3244 /* fall through */ 3245 case RX_CONTINUE: { 3246 struct ieee80211_rate *rate = NULL; 3247 struct ieee80211_supported_band *sband; 3248 struct ieee80211_rx_status *status; 3249 3250 status = IEEE80211_SKB_RXCB((rx->skb)); 3251 3252 sband = rx->local->hw.wiphy->bands[status->band]; 3253 if (!(status->flag & RX_FLAG_HT) && 3254 !(status->flag & RX_FLAG_VHT)) 3255 rate = &sband->bitrates[status->rate_idx]; 3256 3257 ieee80211_rx_cooked_monitor(rx, rate); 3258 break; 3259 } 3260 case RX_DROP_UNUSABLE: 3261 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3262 if (rx->sta) 3263 rx->sta->rx_stats.dropped++; 3264 dev_kfree_skb(rx->skb); 3265 break; 3266 case RX_QUEUED: 3267 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3268 break; 3269 } 3270 } 3271 3272 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3273 struct sk_buff_head *frames) 3274 { 3275 ieee80211_rx_result res = RX_DROP_MONITOR; 3276 struct sk_buff *skb; 3277 3278 #define CALL_RXH(rxh) \ 3279 do { \ 3280 res = rxh(rx); \ 3281 if (res != RX_CONTINUE) \ 3282 goto rxh_next; \ 3283 } while (0) 3284 3285 /* Lock here to avoid hitting all of the data used in the RX 3286 * path (e.g. key data, station data, ...) concurrently when 3287 * a frame is released from the reorder buffer due to timeout 3288 * from the timer, potentially concurrently with RX from the 3289 * driver. 3290 */ 3291 spin_lock_bh(&rx->local->rx_path_lock); 3292 3293 while ((skb = __skb_dequeue(frames))) { 3294 /* 3295 * all the other fields are valid across frames 3296 * that belong to an aMPDU since they are on the 3297 * same TID from the same station 3298 */ 3299 rx->skb = skb; 3300 3301 CALL_RXH(ieee80211_rx_h_check_more_data); 3302 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3303 CALL_RXH(ieee80211_rx_h_sta_process); 3304 CALL_RXH(ieee80211_rx_h_decrypt); 3305 CALL_RXH(ieee80211_rx_h_defragment); 3306 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3307 /* must be after MMIC verify so header is counted in MPDU mic */ 3308 #ifdef CONFIG_MAC80211_MESH 3309 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3310 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3311 #endif 3312 CALL_RXH(ieee80211_rx_h_amsdu); 3313 CALL_RXH(ieee80211_rx_h_data); 3314 3315 /* special treatment -- needs the queue */ 3316 res = ieee80211_rx_h_ctrl(rx, frames); 3317 if (res != RX_CONTINUE) 3318 goto rxh_next; 3319 3320 CALL_RXH(ieee80211_rx_h_mgmt_check); 3321 CALL_RXH(ieee80211_rx_h_action); 3322 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3323 CALL_RXH(ieee80211_rx_h_action_return); 3324 CALL_RXH(ieee80211_rx_h_mgmt); 3325 3326 rxh_next: 3327 ieee80211_rx_handlers_result(rx, res); 3328 3329 #undef CALL_RXH 3330 } 3331 3332 spin_unlock_bh(&rx->local->rx_path_lock); 3333 } 3334 3335 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3336 { 3337 struct sk_buff_head reorder_release; 3338 ieee80211_rx_result res = RX_DROP_MONITOR; 3339 3340 __skb_queue_head_init(&reorder_release); 3341 3342 #define CALL_RXH(rxh) \ 3343 do { \ 3344 res = rxh(rx); \ 3345 if (res != RX_CONTINUE) \ 3346 goto rxh_next; \ 3347 } while (0) 3348 3349 CALL_RXH(ieee80211_rx_h_check_dup); 3350 CALL_RXH(ieee80211_rx_h_check); 3351 3352 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3353 3354 ieee80211_rx_handlers(rx, &reorder_release); 3355 return; 3356 3357 rxh_next: 3358 ieee80211_rx_handlers_result(rx, res); 3359 3360 #undef CALL_RXH 3361 } 3362 3363 /* 3364 * This function makes calls into the RX path, therefore 3365 * it has to be invoked under RCU read lock. 3366 */ 3367 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3368 { 3369 struct sk_buff_head frames; 3370 struct ieee80211_rx_data rx = { 3371 .sta = sta, 3372 .sdata = sta->sdata, 3373 .local = sta->local, 3374 /* This is OK -- must be QoS data frame */ 3375 .security_idx = tid, 3376 .seqno_idx = tid, 3377 .napi = NULL, /* must be NULL to not have races */ 3378 }; 3379 struct tid_ampdu_rx *tid_agg_rx; 3380 3381 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3382 if (!tid_agg_rx) 3383 return; 3384 3385 __skb_queue_head_init(&frames); 3386 3387 spin_lock(&tid_agg_rx->reorder_lock); 3388 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3389 spin_unlock(&tid_agg_rx->reorder_lock); 3390 3391 if (!skb_queue_empty(&frames)) { 3392 struct ieee80211_event event = { 3393 .type = BA_FRAME_TIMEOUT, 3394 .u.ba.tid = tid, 3395 .u.ba.sta = &sta->sta, 3396 }; 3397 drv_event_callback(rx.local, rx.sdata, &event); 3398 } 3399 3400 ieee80211_rx_handlers(&rx, &frames); 3401 } 3402 3403 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3404 u16 ssn, u64 filtered, 3405 u16 received_mpdus) 3406 { 3407 struct sta_info *sta; 3408 struct tid_ampdu_rx *tid_agg_rx; 3409 struct sk_buff_head frames; 3410 struct ieee80211_rx_data rx = { 3411 /* This is OK -- must be QoS data frame */ 3412 .security_idx = tid, 3413 .seqno_idx = tid, 3414 }; 3415 int i, diff; 3416 3417 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3418 return; 3419 3420 __skb_queue_head_init(&frames); 3421 3422 sta = container_of(pubsta, struct sta_info, sta); 3423 3424 rx.sta = sta; 3425 rx.sdata = sta->sdata; 3426 rx.local = sta->local; 3427 3428 rcu_read_lock(); 3429 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3430 if (!tid_agg_rx) 3431 goto out; 3432 3433 spin_lock_bh(&tid_agg_rx->reorder_lock); 3434 3435 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3436 int release; 3437 3438 /* release all frames in the reorder buffer */ 3439 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3440 IEEE80211_SN_MODULO; 3441 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3442 release, &frames); 3443 /* update ssn to match received ssn */ 3444 tid_agg_rx->head_seq_num = ssn; 3445 } else { 3446 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3447 &frames); 3448 } 3449 3450 /* handle the case that received ssn is behind the mac ssn. 3451 * it can be tid_agg_rx->buf_size behind and still be valid */ 3452 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3453 if (diff >= tid_agg_rx->buf_size) { 3454 tid_agg_rx->reorder_buf_filtered = 0; 3455 goto release; 3456 } 3457 filtered = filtered >> diff; 3458 ssn += diff; 3459 3460 /* update bitmap */ 3461 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3462 int index = (ssn + i) % tid_agg_rx->buf_size; 3463 3464 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3465 if (filtered & BIT_ULL(i)) 3466 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3467 } 3468 3469 /* now process also frames that the filter marking released */ 3470 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3471 3472 release: 3473 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3474 3475 ieee80211_rx_handlers(&rx, &frames); 3476 3477 out: 3478 rcu_read_unlock(); 3479 } 3480 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3481 3482 /* main receive path */ 3483 3484 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3485 { 3486 struct ieee80211_sub_if_data *sdata = rx->sdata; 3487 struct sk_buff *skb = rx->skb; 3488 struct ieee80211_hdr *hdr = (void *)skb->data; 3489 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3490 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3491 int multicast = is_multicast_ether_addr(hdr->addr1); 3492 3493 switch (sdata->vif.type) { 3494 case NL80211_IFTYPE_STATION: 3495 if (!bssid && !sdata->u.mgd.use_4addr) 3496 return false; 3497 if (multicast) 3498 return true; 3499 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3500 case NL80211_IFTYPE_ADHOC: 3501 if (!bssid) 3502 return false; 3503 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3504 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3505 return false; 3506 if (ieee80211_is_beacon(hdr->frame_control)) 3507 return true; 3508 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3509 return false; 3510 if (!multicast && 3511 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3512 return false; 3513 if (!rx->sta) { 3514 int rate_idx; 3515 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3516 rate_idx = 0; /* TODO: HT/VHT rates */ 3517 else 3518 rate_idx = status->rate_idx; 3519 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3520 BIT(rate_idx)); 3521 } 3522 return true; 3523 case NL80211_IFTYPE_OCB: 3524 if (!bssid) 3525 return false; 3526 if (!ieee80211_is_data_present(hdr->frame_control)) 3527 return false; 3528 if (!is_broadcast_ether_addr(bssid)) 3529 return false; 3530 if (!multicast && 3531 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3532 return false; 3533 if (!rx->sta) { 3534 int rate_idx; 3535 if (status->flag & RX_FLAG_HT) 3536 rate_idx = 0; /* TODO: HT rates */ 3537 else 3538 rate_idx = status->rate_idx; 3539 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3540 BIT(rate_idx)); 3541 } 3542 return true; 3543 case NL80211_IFTYPE_MESH_POINT: 3544 if (multicast) 3545 return true; 3546 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3547 case NL80211_IFTYPE_AP_VLAN: 3548 case NL80211_IFTYPE_AP: 3549 if (!bssid) 3550 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3551 3552 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3553 /* 3554 * Accept public action frames even when the 3555 * BSSID doesn't match, this is used for P2P 3556 * and location updates. Note that mac80211 3557 * itself never looks at these frames. 3558 */ 3559 if (!multicast && 3560 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3561 return false; 3562 if (ieee80211_is_public_action(hdr, skb->len)) 3563 return true; 3564 return ieee80211_is_beacon(hdr->frame_control); 3565 } 3566 3567 if (!ieee80211_has_tods(hdr->frame_control)) { 3568 /* ignore data frames to TDLS-peers */ 3569 if (ieee80211_is_data(hdr->frame_control)) 3570 return false; 3571 /* ignore action frames to TDLS-peers */ 3572 if (ieee80211_is_action(hdr->frame_control) && 3573 !is_broadcast_ether_addr(bssid) && 3574 !ether_addr_equal(bssid, hdr->addr1)) 3575 return false; 3576 } 3577 return true; 3578 case NL80211_IFTYPE_WDS: 3579 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3580 return false; 3581 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 3582 case NL80211_IFTYPE_P2P_DEVICE: 3583 return ieee80211_is_public_action(hdr, skb->len) || 3584 ieee80211_is_probe_req(hdr->frame_control) || 3585 ieee80211_is_probe_resp(hdr->frame_control) || 3586 ieee80211_is_beacon(hdr->frame_control); 3587 case NL80211_IFTYPE_NAN: 3588 /* Currently no frames on NAN interface are allowed */ 3589 return false; 3590 default: 3591 break; 3592 } 3593 3594 WARN_ON_ONCE(1); 3595 return false; 3596 } 3597 3598 void ieee80211_check_fast_rx(struct sta_info *sta) 3599 { 3600 struct ieee80211_sub_if_data *sdata = sta->sdata; 3601 struct ieee80211_local *local = sdata->local; 3602 struct ieee80211_key *key; 3603 struct ieee80211_fast_rx fastrx = { 3604 .dev = sdata->dev, 3605 .vif_type = sdata->vif.type, 3606 .control_port_protocol = sdata->control_port_protocol, 3607 }, *old, *new = NULL; 3608 bool assign = false; 3609 3610 /* use sparse to check that we don't return without updating */ 3611 __acquire(check_fast_rx); 3612 3613 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 3614 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 3615 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 3616 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 3617 3618 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 3619 3620 /* fast-rx doesn't do reordering */ 3621 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 3622 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 3623 goto clear; 3624 3625 switch (sdata->vif.type) { 3626 case NL80211_IFTYPE_STATION: 3627 /* 4-addr is harder to deal with, later maybe */ 3628 if (sdata->u.mgd.use_4addr) 3629 goto clear; 3630 /* software powersave is a huge mess, avoid all of it */ 3631 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 3632 goto clear; 3633 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 3634 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 3635 goto clear; 3636 if (sta->sta.tdls) { 3637 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3638 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3639 fastrx.expected_ds_bits = 0; 3640 } else { 3641 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 3642 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3643 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 3644 fastrx.expected_ds_bits = 3645 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3646 } 3647 break; 3648 case NL80211_IFTYPE_AP_VLAN: 3649 case NL80211_IFTYPE_AP: 3650 /* parallel-rx requires this, at least with calls to 3651 * ieee80211_sta_ps_transition() 3652 */ 3653 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 3654 goto clear; 3655 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3656 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3657 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 3658 3659 fastrx.internal_forward = 3660 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 3661 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 3662 !sdata->u.vlan.sta); 3663 break; 3664 default: 3665 goto clear; 3666 } 3667 3668 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 3669 goto clear; 3670 3671 rcu_read_lock(); 3672 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 3673 if (key) { 3674 switch (key->conf.cipher) { 3675 case WLAN_CIPHER_SUITE_TKIP: 3676 /* we don't want to deal with MMIC in fast-rx */ 3677 goto clear_rcu; 3678 case WLAN_CIPHER_SUITE_CCMP: 3679 case WLAN_CIPHER_SUITE_CCMP_256: 3680 case WLAN_CIPHER_SUITE_GCMP: 3681 case WLAN_CIPHER_SUITE_GCMP_256: 3682 break; 3683 default: 3684 /* we also don't want to deal with WEP or cipher scheme 3685 * since those require looking up the key idx in the 3686 * frame, rather than assuming the PTK is used 3687 * (we need to revisit this once we implement the real 3688 * PTK index, which is now valid in the spec, but we 3689 * haven't implemented that part yet) 3690 */ 3691 goto clear_rcu; 3692 } 3693 3694 fastrx.key = true; 3695 fastrx.icv_len = key->conf.icv_len; 3696 } 3697 3698 assign = true; 3699 clear_rcu: 3700 rcu_read_unlock(); 3701 clear: 3702 __release(check_fast_rx); 3703 3704 if (assign) 3705 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 3706 3707 spin_lock_bh(&sta->lock); 3708 old = rcu_dereference_protected(sta->fast_rx, true); 3709 rcu_assign_pointer(sta->fast_rx, new); 3710 spin_unlock_bh(&sta->lock); 3711 3712 if (old) 3713 kfree_rcu(old, rcu_head); 3714 } 3715 3716 void ieee80211_clear_fast_rx(struct sta_info *sta) 3717 { 3718 struct ieee80211_fast_rx *old; 3719 3720 spin_lock_bh(&sta->lock); 3721 old = rcu_dereference_protected(sta->fast_rx, true); 3722 RCU_INIT_POINTER(sta->fast_rx, NULL); 3723 spin_unlock_bh(&sta->lock); 3724 3725 if (old) 3726 kfree_rcu(old, rcu_head); 3727 } 3728 3729 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3730 { 3731 struct ieee80211_local *local = sdata->local; 3732 struct sta_info *sta; 3733 3734 lockdep_assert_held(&local->sta_mtx); 3735 3736 list_for_each_entry_rcu(sta, &local->sta_list, list) { 3737 if (sdata != sta->sdata && 3738 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 3739 continue; 3740 ieee80211_check_fast_rx(sta); 3741 } 3742 } 3743 3744 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3745 { 3746 struct ieee80211_local *local = sdata->local; 3747 3748 mutex_lock(&local->sta_mtx); 3749 __ieee80211_check_fast_rx_iface(sdata); 3750 mutex_unlock(&local->sta_mtx); 3751 } 3752 3753 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 3754 struct ieee80211_fast_rx *fast_rx) 3755 { 3756 struct sk_buff *skb = rx->skb; 3757 struct ieee80211_hdr *hdr = (void *)skb->data; 3758 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3759 struct sta_info *sta = rx->sta; 3760 int orig_len = skb->len; 3761 int snap_offs = ieee80211_hdrlen(hdr->frame_control); 3762 struct { 3763 u8 snap[sizeof(rfc1042_header)]; 3764 __be16 proto; 3765 } *payload __aligned(2); 3766 struct { 3767 u8 da[ETH_ALEN]; 3768 u8 sa[ETH_ALEN]; 3769 } addrs __aligned(2); 3770 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 3771 3772 if (fast_rx->uses_rss) 3773 stats = this_cpu_ptr(sta->pcpu_rx_stats); 3774 3775 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 3776 * to a common data structure; drivers can implement that per queue 3777 * but we don't have that information in mac80211 3778 */ 3779 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 3780 return false; 3781 3782 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 3783 3784 /* If using encryption, we also need to have: 3785 * - PN_VALIDATED: similar, but the implementation is tricky 3786 * - DECRYPTED: necessary for PN_VALIDATED 3787 */ 3788 if (fast_rx->key && 3789 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 3790 return false; 3791 3792 /* we don't deal with A-MSDU deaggregation here */ 3793 if (status->rx_flags & IEEE80211_RX_AMSDU) 3794 return false; 3795 3796 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3797 return false; 3798 3799 if (unlikely(ieee80211_is_frag(hdr))) 3800 return false; 3801 3802 /* Since our interface address cannot be multicast, this 3803 * implicitly also rejects multicast frames without the 3804 * explicit check. 3805 * 3806 * We shouldn't get any *data* frames not addressed to us 3807 * (AP mode will accept multicast *management* frames), but 3808 * punting here will make it go through the full checks in 3809 * ieee80211_accept_frame(). 3810 */ 3811 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 3812 return false; 3813 3814 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 3815 IEEE80211_FCTL_TODS)) != 3816 fast_rx->expected_ds_bits) 3817 goto drop; 3818 3819 /* assign the key to drop unencrypted frames (later) 3820 * and strip the IV/MIC if necessary 3821 */ 3822 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 3823 /* GCMP header length is the same */ 3824 snap_offs += IEEE80211_CCMP_HDR_LEN; 3825 } 3826 3827 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 3828 goto drop; 3829 payload = (void *)(skb->data + snap_offs); 3830 3831 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 3832 return false; 3833 3834 /* Don't handle these here since they require special code. 3835 * Accept AARP and IPX even though they should come with a 3836 * bridge-tunnel header - but if we get them this way then 3837 * there's little point in discarding them. 3838 */ 3839 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 3840 payload->proto == fast_rx->control_port_protocol)) 3841 return false; 3842 3843 /* after this point, don't punt to the slowpath! */ 3844 3845 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 3846 pskb_trim(skb, skb->len - fast_rx->icv_len)) 3847 goto drop; 3848 3849 if (unlikely(fast_rx->sta_notify)) { 3850 ieee80211_sta_rx_notify(rx->sdata, hdr); 3851 fast_rx->sta_notify = false; 3852 } 3853 3854 /* statistics part of ieee80211_rx_h_sta_process() */ 3855 stats->last_rx = jiffies; 3856 stats->last_rate = sta_stats_encode_rate(status); 3857 3858 stats->fragments++; 3859 3860 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 3861 stats->last_signal = status->signal; 3862 if (!fast_rx->uses_rss) 3863 ewma_signal_add(&sta->rx_stats_avg.signal, 3864 -status->signal); 3865 } 3866 3867 if (status->chains) { 3868 int i; 3869 3870 stats->chains = status->chains; 3871 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 3872 int signal = status->chain_signal[i]; 3873 3874 if (!(status->chains & BIT(i))) 3875 continue; 3876 3877 stats->chain_signal_last[i] = signal; 3878 if (!fast_rx->uses_rss) 3879 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 3880 -signal); 3881 } 3882 } 3883 /* end of statistics */ 3884 3885 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 3886 goto drop; 3887 3888 /* do the header conversion - first grab the addresses */ 3889 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 3890 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 3891 /* remove the SNAP but leave the ethertype */ 3892 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 3893 /* push the addresses in front */ 3894 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 3895 3896 skb->dev = fast_rx->dev; 3897 3898 ieee80211_rx_stats(fast_rx->dev, skb->len); 3899 3900 /* The seqno index has the same property as needed 3901 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 3902 * for non-QoS-data frames. Here we know it's a data 3903 * frame, so count MSDUs. 3904 */ 3905 u64_stats_update_begin(&stats->syncp); 3906 stats->msdu[rx->seqno_idx]++; 3907 stats->bytes += orig_len; 3908 u64_stats_update_end(&stats->syncp); 3909 3910 if (fast_rx->internal_forward) { 3911 struct sta_info *dsta = sta_info_get(rx->sdata, skb->data); 3912 3913 if (dsta) { 3914 /* 3915 * Send to wireless media and increase priority by 256 3916 * to keep the received priority instead of 3917 * reclassifying the frame (see cfg80211_classify8021d). 3918 */ 3919 skb->priority += 256; 3920 skb->protocol = htons(ETH_P_802_3); 3921 skb_reset_network_header(skb); 3922 skb_reset_mac_header(skb); 3923 dev_queue_xmit(skb); 3924 return true; 3925 } 3926 } 3927 3928 /* deliver to local stack */ 3929 skb->protocol = eth_type_trans(skb, fast_rx->dev); 3930 memset(skb->cb, 0, sizeof(skb->cb)); 3931 if (rx->napi) 3932 napi_gro_receive(rx->napi, skb); 3933 else 3934 netif_receive_skb(skb); 3935 3936 return true; 3937 drop: 3938 dev_kfree_skb(skb); 3939 stats->dropped++; 3940 return true; 3941 } 3942 3943 /* 3944 * This function returns whether or not the SKB 3945 * was destined for RX processing or not, which, 3946 * if consume is true, is equivalent to whether 3947 * or not the skb was consumed. 3948 */ 3949 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3950 struct sk_buff *skb, bool consume) 3951 { 3952 struct ieee80211_local *local = rx->local; 3953 struct ieee80211_sub_if_data *sdata = rx->sdata; 3954 3955 rx->skb = skb; 3956 3957 /* See if we can do fast-rx; if we have to copy we already lost, 3958 * so punt in that case. We should never have to deliver a data 3959 * frame to multiple interfaces anyway. 3960 * 3961 * We skip the ieee80211_accept_frame() call and do the necessary 3962 * checking inside ieee80211_invoke_fast_rx(). 3963 */ 3964 if (consume && rx->sta) { 3965 struct ieee80211_fast_rx *fast_rx; 3966 3967 fast_rx = rcu_dereference(rx->sta->fast_rx); 3968 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 3969 return true; 3970 } 3971 3972 if (!ieee80211_accept_frame(rx)) 3973 return false; 3974 3975 if (!consume) { 3976 skb = skb_copy(skb, GFP_ATOMIC); 3977 if (!skb) { 3978 if (net_ratelimit()) 3979 wiphy_debug(local->hw.wiphy, 3980 "failed to copy skb for %s\n", 3981 sdata->name); 3982 return true; 3983 } 3984 3985 rx->skb = skb; 3986 } 3987 3988 ieee80211_invoke_rx_handlers(rx); 3989 return true; 3990 } 3991 3992 /* 3993 * This is the actual Rx frames handler. as it belongs to Rx path it must 3994 * be called with rcu_read_lock protection. 3995 */ 3996 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3997 struct ieee80211_sta *pubsta, 3998 struct sk_buff *skb, 3999 struct napi_struct *napi) 4000 { 4001 struct ieee80211_local *local = hw_to_local(hw); 4002 struct ieee80211_sub_if_data *sdata; 4003 struct ieee80211_hdr *hdr; 4004 __le16 fc; 4005 struct ieee80211_rx_data rx; 4006 struct ieee80211_sub_if_data *prev; 4007 struct rhlist_head *tmp; 4008 int err = 0; 4009 4010 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4011 memset(&rx, 0, sizeof(rx)); 4012 rx.skb = skb; 4013 rx.local = local; 4014 rx.napi = napi; 4015 4016 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4017 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4018 4019 if (ieee80211_is_mgmt(fc)) { 4020 /* drop frame if too short for header */ 4021 if (skb->len < ieee80211_hdrlen(fc)) 4022 err = -ENOBUFS; 4023 else 4024 err = skb_linearize(skb); 4025 } else { 4026 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4027 } 4028 4029 if (err) { 4030 dev_kfree_skb(skb); 4031 return; 4032 } 4033 4034 hdr = (struct ieee80211_hdr *)skb->data; 4035 ieee80211_parse_qos(&rx); 4036 ieee80211_verify_alignment(&rx); 4037 4038 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4039 ieee80211_is_beacon(hdr->frame_control))) 4040 ieee80211_scan_rx(local, skb); 4041 4042 if (pubsta) { 4043 rx.sta = container_of(pubsta, struct sta_info, sta); 4044 rx.sdata = rx.sta->sdata; 4045 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4046 return; 4047 goto out; 4048 } else if (ieee80211_is_data(fc)) { 4049 struct sta_info *sta, *prev_sta; 4050 4051 prev_sta = NULL; 4052 4053 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4054 if (!prev_sta) { 4055 prev_sta = sta; 4056 continue; 4057 } 4058 4059 rx.sta = prev_sta; 4060 rx.sdata = prev_sta->sdata; 4061 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4062 4063 prev_sta = sta; 4064 } 4065 4066 if (prev_sta) { 4067 rx.sta = prev_sta; 4068 rx.sdata = prev_sta->sdata; 4069 4070 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4071 return; 4072 goto out; 4073 } 4074 } 4075 4076 prev = NULL; 4077 4078 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4079 if (!ieee80211_sdata_running(sdata)) 4080 continue; 4081 4082 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4083 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4084 continue; 4085 4086 /* 4087 * frame is destined for this interface, but if it's 4088 * not also for the previous one we handle that after 4089 * the loop to avoid copying the SKB once too much 4090 */ 4091 4092 if (!prev) { 4093 prev = sdata; 4094 continue; 4095 } 4096 4097 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4098 rx.sdata = prev; 4099 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4100 4101 prev = sdata; 4102 } 4103 4104 if (prev) { 4105 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4106 rx.sdata = prev; 4107 4108 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4109 return; 4110 } 4111 4112 out: 4113 dev_kfree_skb(skb); 4114 } 4115 4116 /* 4117 * This is the receive path handler. It is called by a low level driver when an 4118 * 802.11 MPDU is received from the hardware. 4119 */ 4120 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4121 struct sk_buff *skb, struct napi_struct *napi) 4122 { 4123 struct ieee80211_local *local = hw_to_local(hw); 4124 struct ieee80211_rate *rate = NULL; 4125 struct ieee80211_supported_band *sband; 4126 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4127 4128 WARN_ON_ONCE(softirq_count() == 0); 4129 4130 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4131 goto drop; 4132 4133 sband = local->hw.wiphy->bands[status->band]; 4134 if (WARN_ON(!sband)) 4135 goto drop; 4136 4137 /* 4138 * If we're suspending, it is possible although not too likely 4139 * that we'd be receiving frames after having already partially 4140 * quiesced the stack. We can't process such frames then since 4141 * that might, for example, cause stations to be added or other 4142 * driver callbacks be invoked. 4143 */ 4144 if (unlikely(local->quiescing || local->suspended)) 4145 goto drop; 4146 4147 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4148 if (unlikely(local->in_reconfig)) 4149 goto drop; 4150 4151 /* 4152 * The same happens when we're not even started, 4153 * but that's worth a warning. 4154 */ 4155 if (WARN_ON(!local->started)) 4156 goto drop; 4157 4158 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4159 /* 4160 * Validate the rate, unless a PLCP error means that 4161 * we probably can't have a valid rate here anyway. 4162 */ 4163 4164 if (status->flag & RX_FLAG_HT) { 4165 /* 4166 * rate_idx is MCS index, which can be [0-76] 4167 * as documented on: 4168 * 4169 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4170 * 4171 * Anything else would be some sort of driver or 4172 * hardware error. The driver should catch hardware 4173 * errors. 4174 */ 4175 if (WARN(status->rate_idx > 76, 4176 "Rate marked as an HT rate but passed " 4177 "status->rate_idx is not " 4178 "an MCS index [0-76]: %d (0x%02x)\n", 4179 status->rate_idx, 4180 status->rate_idx)) 4181 goto drop; 4182 } else if (status->flag & RX_FLAG_VHT) { 4183 if (WARN_ONCE(status->rate_idx > 9 || 4184 !status->vht_nss || 4185 status->vht_nss > 8, 4186 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4187 status->rate_idx, status->vht_nss)) 4188 goto drop; 4189 } else { 4190 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4191 goto drop; 4192 rate = &sband->bitrates[status->rate_idx]; 4193 } 4194 } 4195 4196 status->rx_flags = 0; 4197 4198 /* 4199 * key references and virtual interfaces are protected using RCU 4200 * and this requires that we are in a read-side RCU section during 4201 * receive processing 4202 */ 4203 rcu_read_lock(); 4204 4205 /* 4206 * Frames with failed FCS/PLCP checksum are not returned, 4207 * all other frames are returned without radiotap header 4208 * if it was previously present. 4209 * Also, frames with less than 16 bytes are dropped. 4210 */ 4211 skb = ieee80211_rx_monitor(local, skb, rate); 4212 if (!skb) { 4213 rcu_read_unlock(); 4214 return; 4215 } 4216 4217 ieee80211_tpt_led_trig_rx(local, 4218 ((struct ieee80211_hdr *)skb->data)->frame_control, 4219 skb->len); 4220 4221 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4222 4223 rcu_read_unlock(); 4224 4225 return; 4226 drop: 4227 kfree_skb(skb); 4228 } 4229 EXPORT_SYMBOL(ieee80211_rx_napi); 4230 4231 /* This is a version of the rx handler that can be called from hard irq 4232 * context. Post the skb on the queue and schedule the tasklet */ 4233 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4234 { 4235 struct ieee80211_local *local = hw_to_local(hw); 4236 4237 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4238 4239 skb->pkt_type = IEEE80211_RX_MSG; 4240 skb_queue_tail(&local->skb_queue, skb); 4241 tasklet_schedule(&local->tasklet); 4242 } 4243 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4244