xref: /openbmc/linux/net/mac80211/rx.c (revision e9839402)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2016 Intel Deutschland GmbH
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
26 
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
36 
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
38 {
39 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
40 
41 	u64_stats_update_begin(&tstats->syncp);
42 	tstats->rx_packets++;
43 	tstats->rx_bytes += len;
44 	u64_stats_update_end(&tstats->syncp);
45 }
46 
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 			       enum nl80211_iftype type)
49 {
50 	__le16 fc = hdr->frame_control;
51 
52 	if (ieee80211_is_data(fc)) {
53 		if (len < 24) /* drop incorrect hdr len (data) */
54 			return NULL;
55 
56 		if (ieee80211_has_a4(fc))
57 			return NULL;
58 		if (ieee80211_has_tods(fc))
59 			return hdr->addr1;
60 		if (ieee80211_has_fromds(fc))
61 			return hdr->addr2;
62 
63 		return hdr->addr3;
64 	}
65 
66 	if (ieee80211_is_mgmt(fc)) {
67 		if (len < 24) /* drop incorrect hdr len (mgmt) */
68 			return NULL;
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_ctl(fc)) {
73 		if (ieee80211_is_pspoll(fc))
74 			return hdr->addr1;
75 
76 		if (ieee80211_is_back_req(fc)) {
77 			switch (type) {
78 			case NL80211_IFTYPE_STATION:
79 				return hdr->addr2;
80 			case NL80211_IFTYPE_AP:
81 			case NL80211_IFTYPE_AP_VLAN:
82 				return hdr->addr1;
83 			default:
84 				break; /* fall through to the return */
85 			}
86 		}
87 	}
88 
89 	return NULL;
90 }
91 
92 /*
93  * monitor mode reception
94  *
95  * This function cleans up the SKB, i.e. it removes all the stuff
96  * only useful for monitoring.
97  */
98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
99 					   struct sk_buff *skb,
100 					   unsigned int rtap_vendor_space)
101 {
102 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
103 		if (likely(skb->len > FCS_LEN))
104 			__pskb_trim(skb, skb->len - FCS_LEN);
105 		else {
106 			/* driver bug */
107 			WARN_ON(1);
108 			dev_kfree_skb(skb);
109 			return NULL;
110 		}
111 	}
112 
113 	__pskb_pull(skb, rtap_vendor_space);
114 
115 	return skb;
116 }
117 
118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
119 				     unsigned int rtap_vendor_space)
120 {
121 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
122 	struct ieee80211_hdr *hdr;
123 
124 	hdr = (void *)(skb->data + rtap_vendor_space);
125 
126 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
127 			    RX_FLAG_FAILED_PLCP_CRC |
128 			    RX_FLAG_ONLY_MONITOR))
129 		return true;
130 
131 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
132 		return true;
133 
134 	if (ieee80211_is_ctl(hdr->frame_control) &&
135 	    !ieee80211_is_pspoll(hdr->frame_control) &&
136 	    !ieee80211_is_back_req(hdr->frame_control))
137 		return true;
138 
139 	return false;
140 }
141 
142 static int
143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
144 			     struct ieee80211_rx_status *status,
145 			     struct sk_buff *skb)
146 {
147 	int len;
148 
149 	/* always present fields */
150 	len = sizeof(struct ieee80211_radiotap_header) + 8;
151 
152 	/* allocate extra bitmaps */
153 	if (status->chains)
154 		len += 4 * hweight8(status->chains);
155 
156 	if (ieee80211_have_rx_timestamp(status)) {
157 		len = ALIGN(len, 8);
158 		len += 8;
159 	}
160 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
161 		len += 1;
162 
163 	/* antenna field, if we don't have per-chain info */
164 	if (!status->chains)
165 		len += 1;
166 
167 	/* padding for RX_FLAGS if necessary */
168 	len = ALIGN(len, 2);
169 
170 	if (status->flag & RX_FLAG_HT) /* HT info */
171 		len += 3;
172 
173 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
174 		len = ALIGN(len, 4);
175 		len += 8;
176 	}
177 
178 	if (status->flag & RX_FLAG_VHT) {
179 		len = ALIGN(len, 2);
180 		len += 12;
181 	}
182 
183 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
184 		len = ALIGN(len, 8);
185 		len += 12;
186 	}
187 
188 	if (status->chains) {
189 		/* antenna and antenna signal fields */
190 		len += 2 * hweight8(status->chains);
191 	}
192 
193 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
194 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
195 
196 		/* vendor presence bitmap */
197 		len += 4;
198 		/* alignment for fixed 6-byte vendor data header */
199 		len = ALIGN(len, 2);
200 		/* vendor data header */
201 		len += 6;
202 		if (WARN_ON(rtap->align == 0))
203 			rtap->align = 1;
204 		len = ALIGN(len, rtap->align);
205 		len += rtap->len + rtap->pad;
206 	}
207 
208 	return len;
209 }
210 
211 /*
212  * ieee80211_add_rx_radiotap_header - add radiotap header
213  *
214  * add a radiotap header containing all the fields which the hardware provided.
215  */
216 static void
217 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
218 				 struct sk_buff *skb,
219 				 struct ieee80211_rate *rate,
220 				 int rtap_len, bool has_fcs)
221 {
222 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
223 	struct ieee80211_radiotap_header *rthdr;
224 	unsigned char *pos;
225 	__le32 *it_present;
226 	u32 it_present_val;
227 	u16 rx_flags = 0;
228 	u16 channel_flags = 0;
229 	int mpdulen, chain;
230 	unsigned long chains = status->chains;
231 	struct ieee80211_vendor_radiotap rtap = {};
232 
233 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
234 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
235 		/* rtap.len and rtap.pad are undone immediately */
236 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
237 	}
238 
239 	mpdulen = skb->len;
240 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
241 		mpdulen += FCS_LEN;
242 
243 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
244 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
245 	it_present = &rthdr->it_present;
246 
247 	/* radiotap header, set always present flags */
248 	rthdr->it_len = cpu_to_le16(rtap_len);
249 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
250 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
251 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
252 
253 	if (!status->chains)
254 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
255 
256 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
257 		it_present_val |=
258 			BIT(IEEE80211_RADIOTAP_EXT) |
259 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
260 		put_unaligned_le32(it_present_val, it_present);
261 		it_present++;
262 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
263 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
264 	}
265 
266 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
267 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
268 				  BIT(IEEE80211_RADIOTAP_EXT);
269 		put_unaligned_le32(it_present_val, it_present);
270 		it_present++;
271 		it_present_val = rtap.present;
272 	}
273 
274 	put_unaligned_le32(it_present_val, it_present);
275 
276 	pos = (void *)(it_present + 1);
277 
278 	/* the order of the following fields is important */
279 
280 	/* IEEE80211_RADIOTAP_TSFT */
281 	if (ieee80211_have_rx_timestamp(status)) {
282 		/* padding */
283 		while ((pos - (u8 *)rthdr) & 7)
284 			*pos++ = 0;
285 		put_unaligned_le64(
286 			ieee80211_calculate_rx_timestamp(local, status,
287 							 mpdulen, 0),
288 			pos);
289 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
290 		pos += 8;
291 	}
292 
293 	/* IEEE80211_RADIOTAP_FLAGS */
294 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
295 		*pos |= IEEE80211_RADIOTAP_F_FCS;
296 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
297 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
298 	if (status->flag & RX_FLAG_SHORTPRE)
299 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
300 	pos++;
301 
302 	/* IEEE80211_RADIOTAP_RATE */
303 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
304 		/*
305 		 * Without rate information don't add it. If we have,
306 		 * MCS information is a separate field in radiotap,
307 		 * added below. The byte here is needed as padding
308 		 * for the channel though, so initialise it to 0.
309 		 */
310 		*pos = 0;
311 	} else {
312 		int shift = 0;
313 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
314 		if (status->flag & RX_FLAG_10MHZ)
315 			shift = 1;
316 		else if (status->flag & RX_FLAG_5MHZ)
317 			shift = 2;
318 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
319 	}
320 	pos++;
321 
322 	/* IEEE80211_RADIOTAP_CHANNEL */
323 	put_unaligned_le16(status->freq, pos);
324 	pos += 2;
325 	if (status->flag & RX_FLAG_10MHZ)
326 		channel_flags |= IEEE80211_CHAN_HALF;
327 	else if (status->flag & RX_FLAG_5MHZ)
328 		channel_flags |= IEEE80211_CHAN_QUARTER;
329 
330 	if (status->band == NL80211_BAND_5GHZ)
331 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
332 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
333 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
334 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
335 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
336 	else if (rate)
337 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
338 	else
339 		channel_flags |= IEEE80211_CHAN_2GHZ;
340 	put_unaligned_le16(channel_flags, pos);
341 	pos += 2;
342 
343 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
344 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
345 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
346 		*pos = status->signal;
347 		rthdr->it_present |=
348 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
349 		pos++;
350 	}
351 
352 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
353 
354 	if (!status->chains) {
355 		/* IEEE80211_RADIOTAP_ANTENNA */
356 		*pos = status->antenna;
357 		pos++;
358 	}
359 
360 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
361 
362 	/* IEEE80211_RADIOTAP_RX_FLAGS */
363 	/* ensure 2 byte alignment for the 2 byte field as required */
364 	if ((pos - (u8 *)rthdr) & 1)
365 		*pos++ = 0;
366 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
367 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
368 	put_unaligned_le16(rx_flags, pos);
369 	pos += 2;
370 
371 	if (status->flag & RX_FLAG_HT) {
372 		unsigned int stbc;
373 
374 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
375 		*pos++ = local->hw.radiotap_mcs_details;
376 		*pos = 0;
377 		if (status->flag & RX_FLAG_SHORT_GI)
378 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
379 		if (status->flag & RX_FLAG_40MHZ)
380 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
381 		if (status->flag & RX_FLAG_HT_GF)
382 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
383 		if (status->flag & RX_FLAG_LDPC)
384 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
385 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
386 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
387 		pos++;
388 		*pos++ = status->rate_idx;
389 	}
390 
391 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
392 		u16 flags = 0;
393 
394 		/* ensure 4 byte alignment */
395 		while ((pos - (u8 *)rthdr) & 3)
396 			pos++;
397 		rthdr->it_present |=
398 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
399 		put_unaligned_le32(status->ampdu_reference, pos);
400 		pos += 4;
401 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
402 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
403 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
404 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
405 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
406 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
407 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
408 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
409 		put_unaligned_le16(flags, pos);
410 		pos += 2;
411 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
412 			*pos++ = status->ampdu_delimiter_crc;
413 		else
414 			*pos++ = 0;
415 		*pos++ = 0;
416 	}
417 
418 	if (status->flag & RX_FLAG_VHT) {
419 		u16 known = local->hw.radiotap_vht_details;
420 
421 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
422 		put_unaligned_le16(known, pos);
423 		pos += 2;
424 		/* flags */
425 		if (status->flag & RX_FLAG_SHORT_GI)
426 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
427 		/* in VHT, STBC is binary */
428 		if (status->flag & RX_FLAG_STBC_MASK)
429 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
430 		if (status->vht_flag & RX_VHT_FLAG_BF)
431 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
432 		pos++;
433 		/* bandwidth */
434 		if (status->vht_flag & RX_VHT_FLAG_80MHZ)
435 			*pos++ = 4;
436 		else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
437 			*pos++ = 11;
438 		else if (status->flag & RX_FLAG_40MHZ)
439 			*pos++ = 1;
440 		else /* 20 MHz */
441 			*pos++ = 0;
442 		/* MCS/NSS */
443 		*pos = (status->rate_idx << 4) | status->vht_nss;
444 		pos += 4;
445 		/* coding field */
446 		if (status->flag & RX_FLAG_LDPC)
447 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
448 		pos++;
449 		/* group ID */
450 		pos++;
451 		/* partial_aid */
452 		pos += 2;
453 	}
454 
455 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
456 		u16 accuracy = 0;
457 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
458 
459 		rthdr->it_present |=
460 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
461 
462 		/* ensure 8 byte alignment */
463 		while ((pos - (u8 *)rthdr) & 7)
464 			pos++;
465 
466 		put_unaligned_le64(status->device_timestamp, pos);
467 		pos += sizeof(u64);
468 
469 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
470 			accuracy = local->hw.radiotap_timestamp.accuracy;
471 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
472 		}
473 		put_unaligned_le16(accuracy, pos);
474 		pos += sizeof(u16);
475 
476 		*pos++ = local->hw.radiotap_timestamp.units_pos;
477 		*pos++ = flags;
478 	}
479 
480 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
481 		*pos++ = status->chain_signal[chain];
482 		*pos++ = chain;
483 	}
484 
485 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
486 		/* ensure 2 byte alignment for the vendor field as required */
487 		if ((pos - (u8 *)rthdr) & 1)
488 			*pos++ = 0;
489 		*pos++ = rtap.oui[0];
490 		*pos++ = rtap.oui[1];
491 		*pos++ = rtap.oui[2];
492 		*pos++ = rtap.subns;
493 		put_unaligned_le16(rtap.len, pos);
494 		pos += 2;
495 		/* align the actual payload as requested */
496 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
497 			*pos++ = 0;
498 		/* data (and possible padding) already follows */
499 	}
500 }
501 
502 /*
503  * This function copies a received frame to all monitor interfaces and
504  * returns a cleaned-up SKB that no longer includes the FCS nor the
505  * radiotap header the driver might have added.
506  */
507 static struct sk_buff *
508 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
509 		     struct ieee80211_rate *rate)
510 {
511 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
512 	struct ieee80211_sub_if_data *sdata;
513 	int rt_hdrlen, needed_headroom;
514 	struct sk_buff *skb, *skb2;
515 	struct net_device *prev_dev = NULL;
516 	int present_fcs_len = 0;
517 	unsigned int rtap_vendor_space = 0;
518 	struct ieee80211_mgmt *mgmt;
519 	struct ieee80211_sub_if_data *monitor_sdata =
520 		rcu_dereference(local->monitor_sdata);
521 
522 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
523 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
524 
525 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
526 	}
527 
528 	/*
529 	 * First, we may need to make a copy of the skb because
530 	 *  (1) we need to modify it for radiotap (if not present), and
531 	 *  (2) the other RX handlers will modify the skb we got.
532 	 *
533 	 * We don't need to, of course, if we aren't going to return
534 	 * the SKB because it has a bad FCS/PLCP checksum.
535 	 */
536 
537 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
538 		present_fcs_len = FCS_LEN;
539 
540 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
541 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
542 		dev_kfree_skb(origskb);
543 		return NULL;
544 	}
545 
546 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
547 		if (should_drop_frame(origskb, present_fcs_len,
548 				      rtap_vendor_space)) {
549 			dev_kfree_skb(origskb);
550 			return NULL;
551 		}
552 
553 		return remove_monitor_info(local, origskb, rtap_vendor_space);
554 	}
555 
556 	/* room for the radiotap header based on driver features */
557 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
558 	needed_headroom = rt_hdrlen - rtap_vendor_space;
559 
560 	if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
561 		/* only need to expand headroom if necessary */
562 		skb = origskb;
563 		origskb = NULL;
564 
565 		/*
566 		 * This shouldn't trigger often because most devices have an
567 		 * RX header they pull before we get here, and that should
568 		 * be big enough for our radiotap information. We should
569 		 * probably export the length to drivers so that we can have
570 		 * them allocate enough headroom to start with.
571 		 */
572 		if (skb_headroom(skb) < needed_headroom &&
573 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
574 			dev_kfree_skb(skb);
575 			return NULL;
576 		}
577 	} else {
578 		/*
579 		 * Need to make a copy and possibly remove radiotap header
580 		 * and FCS from the original.
581 		 */
582 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
583 
584 		origskb = remove_monitor_info(local, origskb,
585 					      rtap_vendor_space);
586 
587 		if (!skb)
588 			return origskb;
589 	}
590 
591 	/* prepend radiotap information */
592 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
593 
594 	skb_reset_mac_header(skb);
595 	skb->ip_summed = CHECKSUM_UNNECESSARY;
596 	skb->pkt_type = PACKET_OTHERHOST;
597 	skb->protocol = htons(ETH_P_802_2);
598 
599 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
600 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
601 			continue;
602 
603 		if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)
604 			continue;
605 
606 		if (!ieee80211_sdata_running(sdata))
607 			continue;
608 
609 		if (prev_dev) {
610 			skb2 = skb_clone(skb, GFP_ATOMIC);
611 			if (skb2) {
612 				skb2->dev = prev_dev;
613 				netif_receive_skb(skb2);
614 			}
615 		}
616 
617 		prev_dev = sdata->dev;
618 		ieee80211_rx_stats(sdata->dev, skb->len);
619 	}
620 
621 	mgmt = (void *)skb->data;
622 	if (monitor_sdata &&
623 	    skb->len >= IEEE80211_MIN_ACTION_SIZE + 1 + VHT_MUMIMO_GROUPS_DATA_LEN &&
624 	    ieee80211_is_action(mgmt->frame_control) &&
625 	    mgmt->u.action.category == WLAN_CATEGORY_VHT &&
626 	    mgmt->u.action.u.vht_group_notif.action_code == WLAN_VHT_ACTION_GROUPID_MGMT &&
627 	    is_valid_ether_addr(monitor_sdata->u.mntr.mu_follow_addr) &&
628 	    ether_addr_equal(mgmt->da, monitor_sdata->u.mntr.mu_follow_addr)) {
629 		struct sk_buff *mu_skb = skb_copy(skb, GFP_ATOMIC);
630 
631 		if (mu_skb) {
632 			mu_skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
633 			skb_queue_tail(&monitor_sdata->skb_queue, mu_skb);
634 			ieee80211_queue_work(&local->hw, &monitor_sdata->work);
635 		}
636 	}
637 
638 	if (prev_dev) {
639 		skb->dev = prev_dev;
640 		netif_receive_skb(skb);
641 	} else
642 		dev_kfree_skb(skb);
643 
644 	return origskb;
645 }
646 
647 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
648 {
649 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
650 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
651 	int tid, seqno_idx, security_idx;
652 
653 	/* does the frame have a qos control field? */
654 	if (ieee80211_is_data_qos(hdr->frame_control)) {
655 		u8 *qc = ieee80211_get_qos_ctl(hdr);
656 		/* frame has qos control */
657 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
658 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
659 			status->rx_flags |= IEEE80211_RX_AMSDU;
660 
661 		seqno_idx = tid;
662 		security_idx = tid;
663 	} else {
664 		/*
665 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
666 		 *
667 		 *	Sequence numbers for management frames, QoS data
668 		 *	frames with a broadcast/multicast address in the
669 		 *	Address 1 field, and all non-QoS data frames sent
670 		 *	by QoS STAs are assigned using an additional single
671 		 *	modulo-4096 counter, [...]
672 		 *
673 		 * We also use that counter for non-QoS STAs.
674 		 */
675 		seqno_idx = IEEE80211_NUM_TIDS;
676 		security_idx = 0;
677 		if (ieee80211_is_mgmt(hdr->frame_control))
678 			security_idx = IEEE80211_NUM_TIDS;
679 		tid = 0;
680 	}
681 
682 	rx->seqno_idx = seqno_idx;
683 	rx->security_idx = security_idx;
684 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
685 	 * For now, set skb->priority to 0 for other cases. */
686 	rx->skb->priority = (tid > 7) ? 0 : tid;
687 }
688 
689 /**
690  * DOC: Packet alignment
691  *
692  * Drivers always need to pass packets that are aligned to two-byte boundaries
693  * to the stack.
694  *
695  * Additionally, should, if possible, align the payload data in a way that
696  * guarantees that the contained IP header is aligned to a four-byte
697  * boundary. In the case of regular frames, this simply means aligning the
698  * payload to a four-byte boundary (because either the IP header is directly
699  * contained, or IV/RFC1042 headers that have a length divisible by four are
700  * in front of it).  If the payload data is not properly aligned and the
701  * architecture doesn't support efficient unaligned operations, mac80211
702  * will align the data.
703  *
704  * With A-MSDU frames, however, the payload data address must yield two modulo
705  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
706  * push the IP header further back to a multiple of four again. Thankfully, the
707  * specs were sane enough this time around to require padding each A-MSDU
708  * subframe to a length that is a multiple of four.
709  *
710  * Padding like Atheros hardware adds which is between the 802.11 header and
711  * the payload is not supported, the driver is required to move the 802.11
712  * header to be directly in front of the payload in that case.
713  */
714 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
715 {
716 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
717 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
718 #endif
719 }
720 
721 
722 /* rx handlers */
723 
724 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
725 {
726 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
727 
728 	if (is_multicast_ether_addr(hdr->addr1))
729 		return 0;
730 
731 	return ieee80211_is_robust_mgmt_frame(skb);
732 }
733 
734 
735 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
736 {
737 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
738 
739 	if (!is_multicast_ether_addr(hdr->addr1))
740 		return 0;
741 
742 	return ieee80211_is_robust_mgmt_frame(skb);
743 }
744 
745 
746 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
747 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
748 {
749 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
750 	struct ieee80211_mmie *mmie;
751 	struct ieee80211_mmie_16 *mmie16;
752 
753 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
754 		return -1;
755 
756 	if (!ieee80211_is_robust_mgmt_frame(skb))
757 		return -1; /* not a robust management frame */
758 
759 	mmie = (struct ieee80211_mmie *)
760 		(skb->data + skb->len - sizeof(*mmie));
761 	if (mmie->element_id == WLAN_EID_MMIE &&
762 	    mmie->length == sizeof(*mmie) - 2)
763 		return le16_to_cpu(mmie->key_id);
764 
765 	mmie16 = (struct ieee80211_mmie_16 *)
766 		(skb->data + skb->len - sizeof(*mmie16));
767 	if (skb->len >= 24 + sizeof(*mmie16) &&
768 	    mmie16->element_id == WLAN_EID_MMIE &&
769 	    mmie16->length == sizeof(*mmie16) - 2)
770 		return le16_to_cpu(mmie16->key_id);
771 
772 	return -1;
773 }
774 
775 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
776 				  struct sk_buff *skb)
777 {
778 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
779 	__le16 fc;
780 	int hdrlen;
781 	u8 keyid;
782 
783 	fc = hdr->frame_control;
784 	hdrlen = ieee80211_hdrlen(fc);
785 
786 	if (skb->len < hdrlen + cs->hdr_len)
787 		return -EINVAL;
788 
789 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
790 	keyid &= cs->key_idx_mask;
791 	keyid >>= cs->key_idx_shift;
792 
793 	return keyid;
794 }
795 
796 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
797 {
798 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
799 	char *dev_addr = rx->sdata->vif.addr;
800 
801 	if (ieee80211_is_data(hdr->frame_control)) {
802 		if (is_multicast_ether_addr(hdr->addr1)) {
803 			if (ieee80211_has_tods(hdr->frame_control) ||
804 			    !ieee80211_has_fromds(hdr->frame_control))
805 				return RX_DROP_MONITOR;
806 			if (ether_addr_equal(hdr->addr3, dev_addr))
807 				return RX_DROP_MONITOR;
808 		} else {
809 			if (!ieee80211_has_a4(hdr->frame_control))
810 				return RX_DROP_MONITOR;
811 			if (ether_addr_equal(hdr->addr4, dev_addr))
812 				return RX_DROP_MONITOR;
813 		}
814 	}
815 
816 	/* If there is not an established peer link and this is not a peer link
817 	 * establisment frame, beacon or probe, drop the frame.
818 	 */
819 
820 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
821 		struct ieee80211_mgmt *mgmt;
822 
823 		if (!ieee80211_is_mgmt(hdr->frame_control))
824 			return RX_DROP_MONITOR;
825 
826 		if (ieee80211_is_action(hdr->frame_control)) {
827 			u8 category;
828 
829 			/* make sure category field is present */
830 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
831 				return RX_DROP_MONITOR;
832 
833 			mgmt = (struct ieee80211_mgmt *)hdr;
834 			category = mgmt->u.action.category;
835 			if (category != WLAN_CATEGORY_MESH_ACTION &&
836 			    category != WLAN_CATEGORY_SELF_PROTECTED)
837 				return RX_DROP_MONITOR;
838 			return RX_CONTINUE;
839 		}
840 
841 		if (ieee80211_is_probe_req(hdr->frame_control) ||
842 		    ieee80211_is_probe_resp(hdr->frame_control) ||
843 		    ieee80211_is_beacon(hdr->frame_control) ||
844 		    ieee80211_is_auth(hdr->frame_control))
845 			return RX_CONTINUE;
846 
847 		return RX_DROP_MONITOR;
848 	}
849 
850 	return RX_CONTINUE;
851 }
852 
853 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
854 					      int index)
855 {
856 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
857 	struct sk_buff *tail = skb_peek_tail(frames);
858 	struct ieee80211_rx_status *status;
859 
860 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
861 		return true;
862 
863 	if (!tail)
864 		return false;
865 
866 	status = IEEE80211_SKB_RXCB(tail);
867 	if (status->flag & RX_FLAG_AMSDU_MORE)
868 		return false;
869 
870 	return true;
871 }
872 
873 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
874 					    struct tid_ampdu_rx *tid_agg_rx,
875 					    int index,
876 					    struct sk_buff_head *frames)
877 {
878 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
879 	struct sk_buff *skb;
880 	struct ieee80211_rx_status *status;
881 
882 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
883 
884 	if (skb_queue_empty(skb_list))
885 		goto no_frame;
886 
887 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
888 		__skb_queue_purge(skb_list);
889 		goto no_frame;
890 	}
891 
892 	/* release frames from the reorder ring buffer */
893 	tid_agg_rx->stored_mpdu_num--;
894 	while ((skb = __skb_dequeue(skb_list))) {
895 		status = IEEE80211_SKB_RXCB(skb);
896 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
897 		__skb_queue_tail(frames, skb);
898 	}
899 
900 no_frame:
901 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
902 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
903 }
904 
905 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
906 					     struct tid_ampdu_rx *tid_agg_rx,
907 					     u16 head_seq_num,
908 					     struct sk_buff_head *frames)
909 {
910 	int index;
911 
912 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
913 
914 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
915 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
916 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
917 						frames);
918 	}
919 }
920 
921 /*
922  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
923  * the skb was added to the buffer longer than this time ago, the earlier
924  * frames that have not yet been received are assumed to be lost and the skb
925  * can be released for processing. This may also release other skb's from the
926  * reorder buffer if there are no additional gaps between the frames.
927  *
928  * Callers must hold tid_agg_rx->reorder_lock.
929  */
930 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
931 
932 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
933 					  struct tid_ampdu_rx *tid_agg_rx,
934 					  struct sk_buff_head *frames)
935 {
936 	int index, i, j;
937 
938 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
939 
940 	/* release the buffer until next missing frame */
941 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
942 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
943 	    tid_agg_rx->stored_mpdu_num) {
944 		/*
945 		 * No buffers ready to be released, but check whether any
946 		 * frames in the reorder buffer have timed out.
947 		 */
948 		int skipped = 1;
949 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
950 		     j = (j + 1) % tid_agg_rx->buf_size) {
951 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
952 				skipped++;
953 				continue;
954 			}
955 			if (skipped &&
956 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
957 					HT_RX_REORDER_BUF_TIMEOUT))
958 				goto set_release_timer;
959 
960 			/* don't leave incomplete A-MSDUs around */
961 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
962 			     i = (i + 1) % tid_agg_rx->buf_size)
963 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
964 
965 			ht_dbg_ratelimited(sdata,
966 					   "release an RX reorder frame due to timeout on earlier frames\n");
967 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
968 							frames);
969 
970 			/*
971 			 * Increment the head seq# also for the skipped slots.
972 			 */
973 			tid_agg_rx->head_seq_num =
974 				(tid_agg_rx->head_seq_num +
975 				 skipped) & IEEE80211_SN_MASK;
976 			skipped = 0;
977 		}
978 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
979 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
980 						frames);
981 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
982 	}
983 
984 	if (tid_agg_rx->stored_mpdu_num) {
985 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
986 
987 		for (; j != (index - 1) % tid_agg_rx->buf_size;
988 		     j = (j + 1) % tid_agg_rx->buf_size) {
989 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
990 				break;
991 		}
992 
993  set_release_timer:
994 
995 		if (!tid_agg_rx->removed)
996 			mod_timer(&tid_agg_rx->reorder_timer,
997 				  tid_agg_rx->reorder_time[j] + 1 +
998 				  HT_RX_REORDER_BUF_TIMEOUT);
999 	} else {
1000 		del_timer(&tid_agg_rx->reorder_timer);
1001 	}
1002 }
1003 
1004 /*
1005  * As this function belongs to the RX path it must be under
1006  * rcu_read_lock protection. It returns false if the frame
1007  * can be processed immediately, true if it was consumed.
1008  */
1009 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1010 					     struct tid_ampdu_rx *tid_agg_rx,
1011 					     struct sk_buff *skb,
1012 					     struct sk_buff_head *frames)
1013 {
1014 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1015 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1016 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1017 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1018 	u16 head_seq_num, buf_size;
1019 	int index;
1020 	bool ret = true;
1021 
1022 	spin_lock(&tid_agg_rx->reorder_lock);
1023 
1024 	/*
1025 	 * Offloaded BA sessions have no known starting sequence number so pick
1026 	 * one from first Rxed frame for this tid after BA was started.
1027 	 */
1028 	if (unlikely(tid_agg_rx->auto_seq)) {
1029 		tid_agg_rx->auto_seq = false;
1030 		tid_agg_rx->ssn = mpdu_seq_num;
1031 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1032 	}
1033 
1034 	buf_size = tid_agg_rx->buf_size;
1035 	head_seq_num = tid_agg_rx->head_seq_num;
1036 
1037 	/* frame with out of date sequence number */
1038 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1039 		dev_kfree_skb(skb);
1040 		goto out;
1041 	}
1042 
1043 	/*
1044 	 * If frame the sequence number exceeds our buffering window
1045 	 * size release some previous frames to make room for this one.
1046 	 */
1047 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1048 		head_seq_num = ieee80211_sn_inc(
1049 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1050 		/* release stored frames up to new head to stack */
1051 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1052 						 head_seq_num, frames);
1053 	}
1054 
1055 	/* Now the new frame is always in the range of the reordering buffer */
1056 
1057 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1058 
1059 	/* check if we already stored this frame */
1060 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1061 		dev_kfree_skb(skb);
1062 		goto out;
1063 	}
1064 
1065 	/*
1066 	 * If the current MPDU is in the right order and nothing else
1067 	 * is stored we can process it directly, no need to buffer it.
1068 	 * If it is first but there's something stored, we may be able
1069 	 * to release frames after this one.
1070 	 */
1071 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1072 	    tid_agg_rx->stored_mpdu_num == 0) {
1073 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1074 			tid_agg_rx->head_seq_num =
1075 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1076 		ret = false;
1077 		goto out;
1078 	}
1079 
1080 	/* put the frame in the reordering buffer */
1081 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1082 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1083 		tid_agg_rx->reorder_time[index] = jiffies;
1084 		tid_agg_rx->stored_mpdu_num++;
1085 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1086 	}
1087 
1088  out:
1089 	spin_unlock(&tid_agg_rx->reorder_lock);
1090 	return ret;
1091 }
1092 
1093 /*
1094  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1095  * true if the MPDU was buffered, false if it should be processed.
1096  */
1097 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1098 				       struct sk_buff_head *frames)
1099 {
1100 	struct sk_buff *skb = rx->skb;
1101 	struct ieee80211_local *local = rx->local;
1102 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1103 	struct sta_info *sta = rx->sta;
1104 	struct tid_ampdu_rx *tid_agg_rx;
1105 	u16 sc;
1106 	u8 tid, ack_policy;
1107 
1108 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1109 	    is_multicast_ether_addr(hdr->addr1))
1110 		goto dont_reorder;
1111 
1112 	/*
1113 	 * filter the QoS data rx stream according to
1114 	 * STA/TID and check if this STA/TID is on aggregation
1115 	 */
1116 
1117 	if (!sta)
1118 		goto dont_reorder;
1119 
1120 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1121 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1122 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1123 
1124 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1125 	if (!tid_agg_rx) {
1126 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1127 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1128 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1129 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1130 					     WLAN_BACK_RECIPIENT,
1131 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1132 		goto dont_reorder;
1133 	}
1134 
1135 	/* qos null data frames are excluded */
1136 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1137 		goto dont_reorder;
1138 
1139 	/* not part of a BA session */
1140 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1141 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1142 		goto dont_reorder;
1143 
1144 	/* new, potentially un-ordered, ampdu frame - process it */
1145 
1146 	/* reset session timer */
1147 	if (tid_agg_rx->timeout)
1148 		tid_agg_rx->last_rx = jiffies;
1149 
1150 	/* if this mpdu is fragmented - terminate rx aggregation session */
1151 	sc = le16_to_cpu(hdr->seq_ctrl);
1152 	if (sc & IEEE80211_SCTL_FRAG) {
1153 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1154 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1155 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1156 		return;
1157 	}
1158 
1159 	/*
1160 	 * No locking needed -- we will only ever process one
1161 	 * RX packet at a time, and thus own tid_agg_rx. All
1162 	 * other code manipulating it needs to (and does) make
1163 	 * sure that we cannot get to it any more before doing
1164 	 * anything with it.
1165 	 */
1166 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1167 					     frames))
1168 		return;
1169 
1170  dont_reorder:
1171 	__skb_queue_tail(frames, skb);
1172 }
1173 
1174 static ieee80211_rx_result debug_noinline
1175 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1176 {
1177 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1178 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1179 
1180 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1181 		return RX_CONTINUE;
1182 
1183 	/*
1184 	 * Drop duplicate 802.11 retransmissions
1185 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1186 	 */
1187 
1188 	if (rx->skb->len < 24)
1189 		return RX_CONTINUE;
1190 
1191 	if (ieee80211_is_ctl(hdr->frame_control) ||
1192 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1193 	    is_multicast_ether_addr(hdr->addr1))
1194 		return RX_CONTINUE;
1195 
1196 	if (!rx->sta)
1197 		return RX_CONTINUE;
1198 
1199 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1200 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1201 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1202 		rx->sta->rx_stats.num_duplicates++;
1203 		return RX_DROP_UNUSABLE;
1204 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1205 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1206 	}
1207 
1208 	return RX_CONTINUE;
1209 }
1210 
1211 static ieee80211_rx_result debug_noinline
1212 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1213 {
1214 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1215 
1216 	/* Drop disallowed frame classes based on STA auth/assoc state;
1217 	 * IEEE 802.11, Chap 5.5.
1218 	 *
1219 	 * mac80211 filters only based on association state, i.e. it drops
1220 	 * Class 3 frames from not associated stations. hostapd sends
1221 	 * deauth/disassoc frames when needed. In addition, hostapd is
1222 	 * responsible for filtering on both auth and assoc states.
1223 	 */
1224 
1225 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1226 		return ieee80211_rx_mesh_check(rx);
1227 
1228 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1229 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1230 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1231 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1232 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1233 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1234 		/*
1235 		 * accept port control frames from the AP even when it's not
1236 		 * yet marked ASSOC to prevent a race where we don't set the
1237 		 * assoc bit quickly enough before it sends the first frame
1238 		 */
1239 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1240 		    ieee80211_is_data_present(hdr->frame_control)) {
1241 			unsigned int hdrlen;
1242 			__be16 ethertype;
1243 
1244 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1245 
1246 			if (rx->skb->len < hdrlen + 8)
1247 				return RX_DROP_MONITOR;
1248 
1249 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1250 			if (ethertype == rx->sdata->control_port_protocol)
1251 				return RX_CONTINUE;
1252 		}
1253 
1254 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1255 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1256 					       hdr->addr2,
1257 					       GFP_ATOMIC))
1258 			return RX_DROP_UNUSABLE;
1259 
1260 		return RX_DROP_MONITOR;
1261 	}
1262 
1263 	return RX_CONTINUE;
1264 }
1265 
1266 
1267 static ieee80211_rx_result debug_noinline
1268 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1269 {
1270 	struct ieee80211_local *local;
1271 	struct ieee80211_hdr *hdr;
1272 	struct sk_buff *skb;
1273 
1274 	local = rx->local;
1275 	skb = rx->skb;
1276 	hdr = (struct ieee80211_hdr *) skb->data;
1277 
1278 	if (!local->pspolling)
1279 		return RX_CONTINUE;
1280 
1281 	if (!ieee80211_has_fromds(hdr->frame_control))
1282 		/* this is not from AP */
1283 		return RX_CONTINUE;
1284 
1285 	if (!ieee80211_is_data(hdr->frame_control))
1286 		return RX_CONTINUE;
1287 
1288 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1289 		/* AP has no more frames buffered for us */
1290 		local->pspolling = false;
1291 		return RX_CONTINUE;
1292 	}
1293 
1294 	/* more data bit is set, let's request a new frame from the AP */
1295 	ieee80211_send_pspoll(local, rx->sdata);
1296 
1297 	return RX_CONTINUE;
1298 }
1299 
1300 static void sta_ps_start(struct sta_info *sta)
1301 {
1302 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1303 	struct ieee80211_local *local = sdata->local;
1304 	struct ps_data *ps;
1305 	int tid;
1306 
1307 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1308 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1309 		ps = &sdata->bss->ps;
1310 	else
1311 		return;
1312 
1313 	atomic_inc(&ps->num_sta_ps);
1314 	set_sta_flag(sta, WLAN_STA_PS_STA);
1315 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1316 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1317 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1318 	       sta->sta.addr, sta->sta.aid);
1319 
1320 	ieee80211_clear_fast_xmit(sta);
1321 
1322 	if (!sta->sta.txq[0])
1323 		return;
1324 
1325 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1326 		if (txq_has_queue(sta->sta.txq[tid]))
1327 			set_bit(tid, &sta->txq_buffered_tids);
1328 		else
1329 			clear_bit(tid, &sta->txq_buffered_tids);
1330 	}
1331 }
1332 
1333 static void sta_ps_end(struct sta_info *sta)
1334 {
1335 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1336 	       sta->sta.addr, sta->sta.aid);
1337 
1338 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1339 		/*
1340 		 * Clear the flag only if the other one is still set
1341 		 * so that the TX path won't start TX'ing new frames
1342 		 * directly ... In the case that the driver flag isn't
1343 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1344 		 */
1345 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1346 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1347 		       sta->sta.addr, sta->sta.aid);
1348 		return;
1349 	}
1350 
1351 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1352 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1353 	ieee80211_sta_ps_deliver_wakeup(sta);
1354 }
1355 
1356 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1357 {
1358 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1359 	bool in_ps;
1360 
1361 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1362 
1363 	/* Don't let the same PS state be set twice */
1364 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1365 	if ((start && in_ps) || (!start && !in_ps))
1366 		return -EINVAL;
1367 
1368 	if (start)
1369 		sta_ps_start(sta);
1370 	else
1371 		sta_ps_end(sta);
1372 
1373 	return 0;
1374 }
1375 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1376 
1377 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1378 {
1379 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1380 
1381 	if (test_sta_flag(sta, WLAN_STA_SP))
1382 		return;
1383 
1384 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1385 		ieee80211_sta_ps_deliver_poll_response(sta);
1386 	else
1387 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1388 }
1389 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1390 
1391 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1392 {
1393 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1394 	u8 ac = ieee802_1d_to_ac[tid & 7];
1395 
1396 	/*
1397 	 * If this AC is not trigger-enabled do nothing.
1398 	 *
1399 	 * NB: This could/should check a separate bitmap of trigger-
1400 	 * enabled queues, but for now we only implement uAPSD w/o
1401 	 * TSPEC changes to the ACs, so they're always the same.
1402 	 */
1403 	if (!(sta->sta.uapsd_queues & BIT(ac)))
1404 		return;
1405 
1406 	/* if we are in a service period, do nothing */
1407 	if (test_sta_flag(sta, WLAN_STA_SP))
1408 		return;
1409 
1410 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1411 		ieee80211_sta_ps_deliver_uapsd(sta);
1412 	else
1413 		set_sta_flag(sta, WLAN_STA_UAPSD);
1414 }
1415 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1416 
1417 static ieee80211_rx_result debug_noinline
1418 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1419 {
1420 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1421 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1422 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1423 
1424 	if (!rx->sta)
1425 		return RX_CONTINUE;
1426 
1427 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1428 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1429 		return RX_CONTINUE;
1430 
1431 	/*
1432 	 * The device handles station powersave, so don't do anything about
1433 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1434 	 * it to mac80211 since they're handled.)
1435 	 */
1436 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1437 		return RX_CONTINUE;
1438 
1439 	/*
1440 	 * Don't do anything if the station isn't already asleep. In
1441 	 * the uAPSD case, the station will probably be marked asleep,
1442 	 * in the PS-Poll case the station must be confused ...
1443 	 */
1444 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1445 		return RX_CONTINUE;
1446 
1447 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1448 		ieee80211_sta_pspoll(&rx->sta->sta);
1449 
1450 		/* Free PS Poll skb here instead of returning RX_DROP that would
1451 		 * count as an dropped frame. */
1452 		dev_kfree_skb(rx->skb);
1453 
1454 		return RX_QUEUED;
1455 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1456 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1457 		   ieee80211_has_pm(hdr->frame_control) &&
1458 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1459 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1460 		u8 tid;
1461 
1462 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1463 
1464 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1465 	}
1466 
1467 	return RX_CONTINUE;
1468 }
1469 
1470 static ieee80211_rx_result debug_noinline
1471 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1472 {
1473 	struct sta_info *sta = rx->sta;
1474 	struct sk_buff *skb = rx->skb;
1475 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1476 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1477 	int i;
1478 
1479 	if (!sta)
1480 		return RX_CONTINUE;
1481 
1482 	/*
1483 	 * Update last_rx only for IBSS packets which are for the current
1484 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1485 	 * current IBSS network alive in cases where other STAs start
1486 	 * using different BSSID. This will also give the station another
1487 	 * chance to restart the authentication/authorization in case
1488 	 * something went wrong the first time.
1489 	 */
1490 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1491 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1492 						NL80211_IFTYPE_ADHOC);
1493 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1494 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1495 			sta->rx_stats.last_rx = jiffies;
1496 			if (ieee80211_is_data(hdr->frame_control) &&
1497 			    !is_multicast_ether_addr(hdr->addr1))
1498 				sta->rx_stats.last_rate =
1499 					sta_stats_encode_rate(status);
1500 		}
1501 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1502 		sta->rx_stats.last_rx = jiffies;
1503 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1504 		/*
1505 		 * Mesh beacons will update last_rx when if they are found to
1506 		 * match the current local configuration when processed.
1507 		 */
1508 		sta->rx_stats.last_rx = jiffies;
1509 		if (ieee80211_is_data(hdr->frame_control))
1510 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1511 	}
1512 
1513 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1514 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1515 
1516 	sta->rx_stats.fragments++;
1517 
1518 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1519 	sta->rx_stats.bytes += rx->skb->len;
1520 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1521 
1522 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1523 		sta->rx_stats.last_signal = status->signal;
1524 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1525 	}
1526 
1527 	if (status->chains) {
1528 		sta->rx_stats.chains = status->chains;
1529 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1530 			int signal = status->chain_signal[i];
1531 
1532 			if (!(status->chains & BIT(i)))
1533 				continue;
1534 
1535 			sta->rx_stats.chain_signal_last[i] = signal;
1536 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1537 					-signal);
1538 		}
1539 	}
1540 
1541 	/*
1542 	 * Change STA power saving mode only at the end of a frame
1543 	 * exchange sequence.
1544 	 */
1545 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1546 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1547 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1548 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1549 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1550 	    /* PM bit is only checked in frames where it isn't reserved,
1551 	     * in AP mode it's reserved in non-bufferable management frames
1552 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1553 	     */
1554 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1555 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1556 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1557 			if (!ieee80211_has_pm(hdr->frame_control))
1558 				sta_ps_end(sta);
1559 		} else {
1560 			if (ieee80211_has_pm(hdr->frame_control))
1561 				sta_ps_start(sta);
1562 		}
1563 	}
1564 
1565 	/* mesh power save support */
1566 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1567 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1568 
1569 	/*
1570 	 * Drop (qos-)data::nullfunc frames silently, since they
1571 	 * are used only to control station power saving mode.
1572 	 */
1573 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1574 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1575 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1576 
1577 		/*
1578 		 * If we receive a 4-addr nullfunc frame from a STA
1579 		 * that was not moved to a 4-addr STA vlan yet send
1580 		 * the event to userspace and for older hostapd drop
1581 		 * the frame to the monitor interface.
1582 		 */
1583 		if (ieee80211_has_a4(hdr->frame_control) &&
1584 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1585 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1586 		      !rx->sdata->u.vlan.sta))) {
1587 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1588 				cfg80211_rx_unexpected_4addr_frame(
1589 					rx->sdata->dev, sta->sta.addr,
1590 					GFP_ATOMIC);
1591 			return RX_DROP_MONITOR;
1592 		}
1593 		/*
1594 		 * Update counter and free packet here to avoid
1595 		 * counting this as a dropped packed.
1596 		 */
1597 		sta->rx_stats.packets++;
1598 		dev_kfree_skb(rx->skb);
1599 		return RX_QUEUED;
1600 	}
1601 
1602 	return RX_CONTINUE;
1603 } /* ieee80211_rx_h_sta_process */
1604 
1605 static ieee80211_rx_result debug_noinline
1606 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1607 {
1608 	struct sk_buff *skb = rx->skb;
1609 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1610 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1611 	int keyidx;
1612 	int hdrlen;
1613 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1614 	struct ieee80211_key *sta_ptk = NULL;
1615 	int mmie_keyidx = -1;
1616 	__le16 fc;
1617 	const struct ieee80211_cipher_scheme *cs = NULL;
1618 
1619 	/*
1620 	 * Key selection 101
1621 	 *
1622 	 * There are four types of keys:
1623 	 *  - GTK (group keys)
1624 	 *  - IGTK (group keys for management frames)
1625 	 *  - PTK (pairwise keys)
1626 	 *  - STK (station-to-station pairwise keys)
1627 	 *
1628 	 * When selecting a key, we have to distinguish between multicast
1629 	 * (including broadcast) and unicast frames, the latter can only
1630 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1631 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1632 	 * unicast frames can also use key indices like GTKs. Hence, if we
1633 	 * don't have a PTK/STK we check the key index for a WEP key.
1634 	 *
1635 	 * Note that in a regular BSS, multicast frames are sent by the
1636 	 * AP only, associated stations unicast the frame to the AP first
1637 	 * which then multicasts it on their behalf.
1638 	 *
1639 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1640 	 * with each station, that is something we don't currently handle.
1641 	 * The spec seems to expect that one negotiates the same key with
1642 	 * every station but there's no such requirement; VLANs could be
1643 	 * possible.
1644 	 */
1645 
1646 	/* start without a key */
1647 	rx->key = NULL;
1648 	fc = hdr->frame_control;
1649 
1650 	if (rx->sta) {
1651 		int keyid = rx->sta->ptk_idx;
1652 
1653 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1654 			cs = rx->sta->cipher_scheme;
1655 			keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1656 			if (unlikely(keyid < 0))
1657 				return RX_DROP_UNUSABLE;
1658 		}
1659 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1660 	}
1661 
1662 	if (!ieee80211_has_protected(fc))
1663 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1664 
1665 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1666 		rx->key = sta_ptk;
1667 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1668 		    (status->flag & RX_FLAG_IV_STRIPPED))
1669 			return RX_CONTINUE;
1670 		/* Skip decryption if the frame is not protected. */
1671 		if (!ieee80211_has_protected(fc))
1672 			return RX_CONTINUE;
1673 	} else if (mmie_keyidx >= 0) {
1674 		/* Broadcast/multicast robust management frame / BIP */
1675 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1676 		    (status->flag & RX_FLAG_IV_STRIPPED))
1677 			return RX_CONTINUE;
1678 
1679 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1680 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1681 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1682 		if (rx->sta) {
1683 			if (ieee80211_is_group_privacy_action(skb) &&
1684 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1685 				return RX_DROP_MONITOR;
1686 
1687 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1688 		}
1689 		if (!rx->key)
1690 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1691 	} else if (!ieee80211_has_protected(fc)) {
1692 		/*
1693 		 * The frame was not protected, so skip decryption. However, we
1694 		 * need to set rx->key if there is a key that could have been
1695 		 * used so that the frame may be dropped if encryption would
1696 		 * have been expected.
1697 		 */
1698 		struct ieee80211_key *key = NULL;
1699 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1700 		int i;
1701 
1702 		if (ieee80211_is_mgmt(fc) &&
1703 		    is_multicast_ether_addr(hdr->addr1) &&
1704 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1705 			rx->key = key;
1706 		else {
1707 			if (rx->sta) {
1708 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1709 					key = rcu_dereference(rx->sta->gtk[i]);
1710 					if (key)
1711 						break;
1712 				}
1713 			}
1714 			if (!key) {
1715 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1716 					key = rcu_dereference(sdata->keys[i]);
1717 					if (key)
1718 						break;
1719 				}
1720 			}
1721 			if (key)
1722 				rx->key = key;
1723 		}
1724 		return RX_CONTINUE;
1725 	} else {
1726 		u8 keyid;
1727 
1728 		/*
1729 		 * The device doesn't give us the IV so we won't be
1730 		 * able to look up the key. That's ok though, we
1731 		 * don't need to decrypt the frame, we just won't
1732 		 * be able to keep statistics accurate.
1733 		 * Except for key threshold notifications, should
1734 		 * we somehow allow the driver to tell us which key
1735 		 * the hardware used if this flag is set?
1736 		 */
1737 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1738 		    (status->flag & RX_FLAG_IV_STRIPPED))
1739 			return RX_CONTINUE;
1740 
1741 		hdrlen = ieee80211_hdrlen(fc);
1742 
1743 		if (cs) {
1744 			keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1745 
1746 			if (unlikely(keyidx < 0))
1747 				return RX_DROP_UNUSABLE;
1748 		} else {
1749 			if (rx->skb->len < 8 + hdrlen)
1750 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1751 			/*
1752 			 * no need to call ieee80211_wep_get_keyidx,
1753 			 * it verifies a bunch of things we've done already
1754 			 */
1755 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1756 			keyidx = keyid >> 6;
1757 		}
1758 
1759 		/* check per-station GTK first, if multicast packet */
1760 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1761 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1762 
1763 		/* if not found, try default key */
1764 		if (!rx->key) {
1765 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1766 
1767 			/*
1768 			 * RSNA-protected unicast frames should always be
1769 			 * sent with pairwise or station-to-station keys,
1770 			 * but for WEP we allow using a key index as well.
1771 			 */
1772 			if (rx->key &&
1773 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1774 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1775 			    !is_multicast_ether_addr(hdr->addr1))
1776 				rx->key = NULL;
1777 		}
1778 	}
1779 
1780 	if (rx->key) {
1781 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1782 			return RX_DROP_MONITOR;
1783 
1784 		/* TODO: add threshold stuff again */
1785 	} else {
1786 		return RX_DROP_MONITOR;
1787 	}
1788 
1789 	switch (rx->key->conf.cipher) {
1790 	case WLAN_CIPHER_SUITE_WEP40:
1791 	case WLAN_CIPHER_SUITE_WEP104:
1792 		result = ieee80211_crypto_wep_decrypt(rx);
1793 		break;
1794 	case WLAN_CIPHER_SUITE_TKIP:
1795 		result = ieee80211_crypto_tkip_decrypt(rx);
1796 		break;
1797 	case WLAN_CIPHER_SUITE_CCMP:
1798 		result = ieee80211_crypto_ccmp_decrypt(
1799 			rx, IEEE80211_CCMP_MIC_LEN);
1800 		break;
1801 	case WLAN_CIPHER_SUITE_CCMP_256:
1802 		result = ieee80211_crypto_ccmp_decrypt(
1803 			rx, IEEE80211_CCMP_256_MIC_LEN);
1804 		break;
1805 	case WLAN_CIPHER_SUITE_AES_CMAC:
1806 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1807 		break;
1808 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1809 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1810 		break;
1811 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1812 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1813 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1814 		break;
1815 	case WLAN_CIPHER_SUITE_GCMP:
1816 	case WLAN_CIPHER_SUITE_GCMP_256:
1817 		result = ieee80211_crypto_gcmp_decrypt(rx);
1818 		break;
1819 	default:
1820 		result = ieee80211_crypto_hw_decrypt(rx);
1821 	}
1822 
1823 	/* the hdr variable is invalid after the decrypt handlers */
1824 
1825 	/* either the frame has been decrypted or will be dropped */
1826 	status->flag |= RX_FLAG_DECRYPTED;
1827 
1828 	return result;
1829 }
1830 
1831 static inline struct ieee80211_fragment_entry *
1832 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1833 			 unsigned int frag, unsigned int seq, int rx_queue,
1834 			 struct sk_buff **skb)
1835 {
1836 	struct ieee80211_fragment_entry *entry;
1837 
1838 	entry = &sdata->fragments[sdata->fragment_next++];
1839 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1840 		sdata->fragment_next = 0;
1841 
1842 	if (!skb_queue_empty(&entry->skb_list))
1843 		__skb_queue_purge(&entry->skb_list);
1844 
1845 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1846 	*skb = NULL;
1847 	entry->first_frag_time = jiffies;
1848 	entry->seq = seq;
1849 	entry->rx_queue = rx_queue;
1850 	entry->last_frag = frag;
1851 	entry->check_sequential_pn = false;
1852 	entry->extra_len = 0;
1853 
1854 	return entry;
1855 }
1856 
1857 static inline struct ieee80211_fragment_entry *
1858 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1859 			  unsigned int frag, unsigned int seq,
1860 			  int rx_queue, struct ieee80211_hdr *hdr)
1861 {
1862 	struct ieee80211_fragment_entry *entry;
1863 	int i, idx;
1864 
1865 	idx = sdata->fragment_next;
1866 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1867 		struct ieee80211_hdr *f_hdr;
1868 
1869 		idx--;
1870 		if (idx < 0)
1871 			idx = IEEE80211_FRAGMENT_MAX - 1;
1872 
1873 		entry = &sdata->fragments[idx];
1874 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1875 		    entry->rx_queue != rx_queue ||
1876 		    entry->last_frag + 1 != frag)
1877 			continue;
1878 
1879 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1880 
1881 		/*
1882 		 * Check ftype and addresses are equal, else check next fragment
1883 		 */
1884 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1885 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1886 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1887 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1888 			continue;
1889 
1890 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1891 			__skb_queue_purge(&entry->skb_list);
1892 			continue;
1893 		}
1894 		return entry;
1895 	}
1896 
1897 	return NULL;
1898 }
1899 
1900 static ieee80211_rx_result debug_noinline
1901 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1902 {
1903 	struct ieee80211_hdr *hdr;
1904 	u16 sc;
1905 	__le16 fc;
1906 	unsigned int frag, seq;
1907 	struct ieee80211_fragment_entry *entry;
1908 	struct sk_buff *skb;
1909 	struct ieee80211_rx_status *status;
1910 
1911 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1912 	fc = hdr->frame_control;
1913 
1914 	if (ieee80211_is_ctl(fc))
1915 		return RX_CONTINUE;
1916 
1917 	sc = le16_to_cpu(hdr->seq_ctrl);
1918 	frag = sc & IEEE80211_SCTL_FRAG;
1919 
1920 	if (is_multicast_ether_addr(hdr->addr1)) {
1921 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1922 		goto out_no_led;
1923 	}
1924 
1925 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1926 		goto out;
1927 
1928 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1929 
1930 	if (skb_linearize(rx->skb))
1931 		return RX_DROP_UNUSABLE;
1932 
1933 	/*
1934 	 *  skb_linearize() might change the skb->data and
1935 	 *  previously cached variables (in this case, hdr) need to
1936 	 *  be refreshed with the new data.
1937 	 */
1938 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1939 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1940 
1941 	if (frag == 0) {
1942 		/* This is the first fragment of a new frame. */
1943 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1944 						 rx->seqno_idx, &(rx->skb));
1945 		if (rx->key &&
1946 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1947 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1948 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1949 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1950 		    ieee80211_has_protected(fc)) {
1951 			int queue = rx->security_idx;
1952 
1953 			/* Store CCMP/GCMP PN so that we can verify that the
1954 			 * next fragment has a sequential PN value.
1955 			 */
1956 			entry->check_sequential_pn = true;
1957 			memcpy(entry->last_pn,
1958 			       rx->key->u.ccmp.rx_pn[queue],
1959 			       IEEE80211_CCMP_PN_LEN);
1960 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
1961 					      u.ccmp.rx_pn) !=
1962 				     offsetof(struct ieee80211_key,
1963 					      u.gcmp.rx_pn));
1964 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
1965 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
1966 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
1967 				     IEEE80211_GCMP_PN_LEN);
1968 		}
1969 		return RX_QUEUED;
1970 	}
1971 
1972 	/* This is a fragment for a frame that should already be pending in
1973 	 * fragment cache. Add this fragment to the end of the pending entry.
1974 	 */
1975 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1976 					  rx->seqno_idx, hdr);
1977 	if (!entry) {
1978 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1979 		return RX_DROP_MONITOR;
1980 	}
1981 
1982 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
1983 	 *  MPDU PN values are not incrementing in steps of 1."
1984 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
1985 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
1986 	 */
1987 	if (entry->check_sequential_pn) {
1988 		int i;
1989 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1990 		int queue;
1991 
1992 		if (!rx->key ||
1993 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1994 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
1995 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
1996 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
1997 			return RX_DROP_UNUSABLE;
1998 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1999 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2000 			pn[i]++;
2001 			if (pn[i])
2002 				break;
2003 		}
2004 		queue = rx->security_idx;
2005 		rpn = rx->key->u.ccmp.rx_pn[queue];
2006 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2007 			return RX_DROP_UNUSABLE;
2008 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2009 	}
2010 
2011 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2012 	__skb_queue_tail(&entry->skb_list, rx->skb);
2013 	entry->last_frag = frag;
2014 	entry->extra_len += rx->skb->len;
2015 	if (ieee80211_has_morefrags(fc)) {
2016 		rx->skb = NULL;
2017 		return RX_QUEUED;
2018 	}
2019 
2020 	rx->skb = __skb_dequeue(&entry->skb_list);
2021 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2022 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2023 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2024 					      GFP_ATOMIC))) {
2025 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2026 			__skb_queue_purge(&entry->skb_list);
2027 			return RX_DROP_UNUSABLE;
2028 		}
2029 	}
2030 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2031 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
2032 		dev_kfree_skb(skb);
2033 	}
2034 
2035 	/* Complete frame has been reassembled - process it now */
2036 	status = IEEE80211_SKB_RXCB(rx->skb);
2037 
2038  out:
2039 	ieee80211_led_rx(rx->local);
2040  out_no_led:
2041 	if (rx->sta)
2042 		rx->sta->rx_stats.packets++;
2043 	return RX_CONTINUE;
2044 }
2045 
2046 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2047 {
2048 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2049 		return -EACCES;
2050 
2051 	return 0;
2052 }
2053 
2054 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2055 {
2056 	struct sk_buff *skb = rx->skb;
2057 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2058 
2059 	/*
2060 	 * Pass through unencrypted frames if the hardware has
2061 	 * decrypted them already.
2062 	 */
2063 	if (status->flag & RX_FLAG_DECRYPTED)
2064 		return 0;
2065 
2066 	/* Drop unencrypted frames if key is set. */
2067 	if (unlikely(!ieee80211_has_protected(fc) &&
2068 		     !ieee80211_is_nullfunc(fc) &&
2069 		     ieee80211_is_data(fc) && rx->key))
2070 		return -EACCES;
2071 
2072 	return 0;
2073 }
2074 
2075 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2076 {
2077 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2078 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2079 	__le16 fc = hdr->frame_control;
2080 
2081 	/*
2082 	 * Pass through unencrypted frames if the hardware has
2083 	 * decrypted them already.
2084 	 */
2085 	if (status->flag & RX_FLAG_DECRYPTED)
2086 		return 0;
2087 
2088 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2089 		if (unlikely(!ieee80211_has_protected(fc) &&
2090 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2091 			     rx->key)) {
2092 			if (ieee80211_is_deauth(fc) ||
2093 			    ieee80211_is_disassoc(fc))
2094 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2095 							     rx->skb->data,
2096 							     rx->skb->len);
2097 			return -EACCES;
2098 		}
2099 		/* BIP does not use Protected field, so need to check MMIE */
2100 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2101 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2102 			if (ieee80211_is_deauth(fc) ||
2103 			    ieee80211_is_disassoc(fc))
2104 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2105 							     rx->skb->data,
2106 							     rx->skb->len);
2107 			return -EACCES;
2108 		}
2109 		/*
2110 		 * When using MFP, Action frames are not allowed prior to
2111 		 * having configured keys.
2112 		 */
2113 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2114 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2115 			return -EACCES;
2116 	}
2117 
2118 	return 0;
2119 }
2120 
2121 static int
2122 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2123 {
2124 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2125 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2126 	bool check_port_control = false;
2127 	struct ethhdr *ehdr;
2128 	int ret;
2129 
2130 	*port_control = false;
2131 	if (ieee80211_has_a4(hdr->frame_control) &&
2132 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2133 		return -1;
2134 
2135 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2136 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2137 
2138 		if (!sdata->u.mgd.use_4addr)
2139 			return -1;
2140 		else
2141 			check_port_control = true;
2142 	}
2143 
2144 	if (is_multicast_ether_addr(hdr->addr1) &&
2145 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2146 		return -1;
2147 
2148 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2149 	if (ret < 0)
2150 		return ret;
2151 
2152 	ehdr = (struct ethhdr *) rx->skb->data;
2153 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2154 		*port_control = true;
2155 	else if (check_port_control)
2156 		return -1;
2157 
2158 	return 0;
2159 }
2160 
2161 /*
2162  * requires that rx->skb is a frame with ethernet header
2163  */
2164 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2165 {
2166 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2167 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2168 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2169 
2170 	/*
2171 	 * Allow EAPOL frames to us/the PAE group address regardless
2172 	 * of whether the frame was encrypted or not.
2173 	 */
2174 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2175 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2176 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2177 		return true;
2178 
2179 	if (ieee80211_802_1x_port_control(rx) ||
2180 	    ieee80211_drop_unencrypted(rx, fc))
2181 		return false;
2182 
2183 	return true;
2184 }
2185 
2186 /*
2187  * requires that rx->skb is a frame with ethernet header
2188  */
2189 static void
2190 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2191 {
2192 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2193 	struct net_device *dev = sdata->dev;
2194 	struct sk_buff *skb, *xmit_skb;
2195 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2196 	struct sta_info *dsta;
2197 
2198 	skb = rx->skb;
2199 	xmit_skb = NULL;
2200 
2201 	ieee80211_rx_stats(dev, skb->len);
2202 
2203 	if (rx->sta) {
2204 		/* The seqno index has the same property as needed
2205 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2206 		 * for non-QoS-data frames. Here we know it's a data
2207 		 * frame, so count MSDUs.
2208 		 */
2209 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2210 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2211 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2212 	}
2213 
2214 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2215 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2216 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2217 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2218 		if (is_multicast_ether_addr(ehdr->h_dest)) {
2219 			/*
2220 			 * send multicast frames both to higher layers in
2221 			 * local net stack and back to the wireless medium
2222 			 */
2223 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2224 			if (!xmit_skb)
2225 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2226 						    dev->name);
2227 		} else {
2228 			dsta = sta_info_get(sdata, skb->data);
2229 			if (dsta) {
2230 				/*
2231 				 * The destination station is associated to
2232 				 * this AP (in this VLAN), so send the frame
2233 				 * directly to it and do not pass it to local
2234 				 * net stack.
2235 				 */
2236 				xmit_skb = skb;
2237 				skb = NULL;
2238 			}
2239 		}
2240 	}
2241 
2242 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2243 	if (skb) {
2244 		/* 'align' will only take the values 0 or 2 here since all
2245 		 * frames are required to be aligned to 2-byte boundaries
2246 		 * when being passed to mac80211; the code here works just
2247 		 * as well if that isn't true, but mac80211 assumes it can
2248 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2249 		 */
2250 		int align;
2251 
2252 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2253 		if (align) {
2254 			if (WARN_ON(skb_headroom(skb) < 3)) {
2255 				dev_kfree_skb(skb);
2256 				skb = NULL;
2257 			} else {
2258 				u8 *data = skb->data;
2259 				size_t len = skb_headlen(skb);
2260 				skb->data -= align;
2261 				memmove(skb->data, data, len);
2262 				skb_set_tail_pointer(skb, len);
2263 			}
2264 		}
2265 	}
2266 #endif
2267 
2268 	if (skb) {
2269 		/* deliver to local stack */
2270 		skb->protocol = eth_type_trans(skb, dev);
2271 		memset(skb->cb, 0, sizeof(skb->cb));
2272 		if (rx->napi)
2273 			napi_gro_receive(rx->napi, skb);
2274 		else
2275 			netif_receive_skb(skb);
2276 	}
2277 
2278 	if (xmit_skb) {
2279 		/*
2280 		 * Send to wireless media and increase priority by 256 to
2281 		 * keep the received priority instead of reclassifying
2282 		 * the frame (see cfg80211_classify8021d).
2283 		 */
2284 		xmit_skb->priority += 256;
2285 		xmit_skb->protocol = htons(ETH_P_802_3);
2286 		skb_reset_network_header(xmit_skb);
2287 		skb_reset_mac_header(xmit_skb);
2288 		dev_queue_xmit(xmit_skb);
2289 	}
2290 }
2291 
2292 static ieee80211_rx_result debug_noinline
2293 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2294 {
2295 	struct net_device *dev = rx->sdata->dev;
2296 	struct sk_buff *skb = rx->skb;
2297 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2298 	__le16 fc = hdr->frame_control;
2299 	struct sk_buff_head frame_list;
2300 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2301 
2302 	if (unlikely(!ieee80211_is_data(fc)))
2303 		return RX_CONTINUE;
2304 
2305 	if (unlikely(!ieee80211_is_data_present(fc)))
2306 		return RX_DROP_MONITOR;
2307 
2308 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2309 		return RX_CONTINUE;
2310 
2311 	if (ieee80211_has_a4(hdr->frame_control) &&
2312 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2313 	    !rx->sdata->u.vlan.sta)
2314 		return RX_DROP_UNUSABLE;
2315 
2316 	if (is_multicast_ether_addr(hdr->addr1) &&
2317 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2318 	      rx->sdata->u.vlan.sta) ||
2319 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2320 	      rx->sdata->u.mgd.use_4addr)))
2321 		return RX_DROP_UNUSABLE;
2322 
2323 	skb->dev = dev;
2324 	__skb_queue_head_init(&frame_list);
2325 
2326 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2327 				 rx->sdata->vif.type,
2328 				 rx->local->hw.extra_tx_headroom, true);
2329 
2330 	while (!skb_queue_empty(&frame_list)) {
2331 		rx->skb = __skb_dequeue(&frame_list);
2332 
2333 		if (!ieee80211_frame_allowed(rx, fc)) {
2334 			dev_kfree_skb(rx->skb);
2335 			continue;
2336 		}
2337 
2338 		ieee80211_deliver_skb(rx);
2339 	}
2340 
2341 	return RX_QUEUED;
2342 }
2343 
2344 #ifdef CONFIG_MAC80211_MESH
2345 static ieee80211_rx_result
2346 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2347 {
2348 	struct ieee80211_hdr *fwd_hdr, *hdr;
2349 	struct ieee80211_tx_info *info;
2350 	struct ieee80211s_hdr *mesh_hdr;
2351 	struct sk_buff *skb = rx->skb, *fwd_skb;
2352 	struct ieee80211_local *local = rx->local;
2353 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2354 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2355 	u16 ac, q, hdrlen;
2356 
2357 	hdr = (struct ieee80211_hdr *) skb->data;
2358 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2359 
2360 	/* make sure fixed part of mesh header is there, also checks skb len */
2361 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2362 		return RX_DROP_MONITOR;
2363 
2364 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2365 
2366 	/* make sure full mesh header is there, also checks skb len */
2367 	if (!pskb_may_pull(rx->skb,
2368 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2369 		return RX_DROP_MONITOR;
2370 
2371 	/* reload pointers */
2372 	hdr = (struct ieee80211_hdr *) skb->data;
2373 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2374 
2375 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2376 		return RX_DROP_MONITOR;
2377 
2378 	/* frame is in RMC, don't forward */
2379 	if (ieee80211_is_data(hdr->frame_control) &&
2380 	    is_multicast_ether_addr(hdr->addr1) &&
2381 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2382 		return RX_DROP_MONITOR;
2383 
2384 	if (!ieee80211_is_data(hdr->frame_control))
2385 		return RX_CONTINUE;
2386 
2387 	if (!mesh_hdr->ttl)
2388 		return RX_DROP_MONITOR;
2389 
2390 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2391 		struct mesh_path *mppath;
2392 		char *proxied_addr;
2393 		char *mpp_addr;
2394 
2395 		if (is_multicast_ether_addr(hdr->addr1)) {
2396 			mpp_addr = hdr->addr3;
2397 			proxied_addr = mesh_hdr->eaddr1;
2398 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2399 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2400 			mpp_addr = hdr->addr4;
2401 			proxied_addr = mesh_hdr->eaddr2;
2402 		} else {
2403 			return RX_DROP_MONITOR;
2404 		}
2405 
2406 		rcu_read_lock();
2407 		mppath = mpp_path_lookup(sdata, proxied_addr);
2408 		if (!mppath) {
2409 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2410 		} else {
2411 			spin_lock_bh(&mppath->state_lock);
2412 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2413 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2414 			mppath->exp_time = jiffies;
2415 			spin_unlock_bh(&mppath->state_lock);
2416 		}
2417 		rcu_read_unlock();
2418 	}
2419 
2420 	/* Frame has reached destination.  Don't forward */
2421 	if (!is_multicast_ether_addr(hdr->addr1) &&
2422 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2423 		return RX_CONTINUE;
2424 
2425 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2426 	q = sdata->vif.hw_queue[ac];
2427 	if (ieee80211_queue_stopped(&local->hw, q)) {
2428 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2429 		return RX_DROP_MONITOR;
2430 	}
2431 	skb_set_queue_mapping(skb, q);
2432 
2433 	if (!--mesh_hdr->ttl) {
2434 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2435 		goto out;
2436 	}
2437 
2438 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2439 		goto out;
2440 
2441 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
2442 	if (!fwd_skb) {
2443 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2444 				    sdata->name);
2445 		goto out;
2446 	}
2447 
2448 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2449 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2450 	info = IEEE80211_SKB_CB(fwd_skb);
2451 	memset(info, 0, sizeof(*info));
2452 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2453 	info->control.vif = &rx->sdata->vif;
2454 	info->control.jiffies = jiffies;
2455 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2456 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2457 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2458 		/* update power mode indication when forwarding */
2459 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2460 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2461 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2462 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2463 	} else {
2464 		/* unable to resolve next hop */
2465 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2466 				   fwd_hdr->addr3, 0,
2467 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2468 				   fwd_hdr->addr2);
2469 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2470 		kfree_skb(fwd_skb);
2471 		return RX_DROP_MONITOR;
2472 	}
2473 
2474 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2475 	ieee80211_add_pending_skb(local, fwd_skb);
2476  out:
2477 	if (is_multicast_ether_addr(hdr->addr1))
2478 		return RX_CONTINUE;
2479 	return RX_DROP_MONITOR;
2480 }
2481 #endif
2482 
2483 static ieee80211_rx_result debug_noinline
2484 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2485 {
2486 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2487 	struct ieee80211_local *local = rx->local;
2488 	struct net_device *dev = sdata->dev;
2489 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2490 	__le16 fc = hdr->frame_control;
2491 	bool port_control;
2492 	int err;
2493 
2494 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2495 		return RX_CONTINUE;
2496 
2497 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2498 		return RX_DROP_MONITOR;
2499 
2500 	/*
2501 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2502 	 * also drop the frame to cooked monitor interfaces.
2503 	 */
2504 	if (ieee80211_has_a4(hdr->frame_control) &&
2505 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2506 		if (rx->sta &&
2507 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2508 			cfg80211_rx_unexpected_4addr_frame(
2509 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2510 		return RX_DROP_MONITOR;
2511 	}
2512 
2513 	err = __ieee80211_data_to_8023(rx, &port_control);
2514 	if (unlikely(err))
2515 		return RX_DROP_UNUSABLE;
2516 
2517 	if (!ieee80211_frame_allowed(rx, fc))
2518 		return RX_DROP_MONITOR;
2519 
2520 	/* directly handle TDLS channel switch requests/responses */
2521 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2522 						cpu_to_be16(ETH_P_TDLS))) {
2523 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2524 
2525 		if (pskb_may_pull(rx->skb,
2526 				  offsetof(struct ieee80211_tdls_data, u)) &&
2527 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2528 		    tf->category == WLAN_CATEGORY_TDLS &&
2529 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2530 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2531 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2532 			schedule_work(&local->tdls_chsw_work);
2533 			if (rx->sta)
2534 				rx->sta->rx_stats.packets++;
2535 
2536 			return RX_QUEUED;
2537 		}
2538 	}
2539 
2540 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2541 	    unlikely(port_control) && sdata->bss) {
2542 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2543 				     u.ap);
2544 		dev = sdata->dev;
2545 		rx->sdata = sdata;
2546 	}
2547 
2548 	rx->skb->dev = dev;
2549 
2550 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2551 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2552 	    !is_multicast_ether_addr(
2553 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2554 	    (!local->scanning &&
2555 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2556 		mod_timer(&local->dynamic_ps_timer, jiffies +
2557 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2558 
2559 	ieee80211_deliver_skb(rx);
2560 
2561 	return RX_QUEUED;
2562 }
2563 
2564 static ieee80211_rx_result debug_noinline
2565 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2566 {
2567 	struct sk_buff *skb = rx->skb;
2568 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2569 	struct tid_ampdu_rx *tid_agg_rx;
2570 	u16 start_seq_num;
2571 	u16 tid;
2572 
2573 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2574 		return RX_CONTINUE;
2575 
2576 	if (ieee80211_is_back_req(bar->frame_control)) {
2577 		struct {
2578 			__le16 control, start_seq_num;
2579 		} __packed bar_data;
2580 		struct ieee80211_event event = {
2581 			.type = BAR_RX_EVENT,
2582 		};
2583 
2584 		if (!rx->sta)
2585 			return RX_DROP_MONITOR;
2586 
2587 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2588 				  &bar_data, sizeof(bar_data)))
2589 			return RX_DROP_MONITOR;
2590 
2591 		tid = le16_to_cpu(bar_data.control) >> 12;
2592 
2593 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2594 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2595 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2596 					     WLAN_BACK_RECIPIENT,
2597 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2598 
2599 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2600 		if (!tid_agg_rx)
2601 			return RX_DROP_MONITOR;
2602 
2603 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2604 		event.u.ba.tid = tid;
2605 		event.u.ba.ssn = start_seq_num;
2606 		event.u.ba.sta = &rx->sta->sta;
2607 
2608 		/* reset session timer */
2609 		if (tid_agg_rx->timeout)
2610 			mod_timer(&tid_agg_rx->session_timer,
2611 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2612 
2613 		spin_lock(&tid_agg_rx->reorder_lock);
2614 		/* release stored frames up to start of BAR */
2615 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2616 						 start_seq_num, frames);
2617 		spin_unlock(&tid_agg_rx->reorder_lock);
2618 
2619 		drv_event_callback(rx->local, rx->sdata, &event);
2620 
2621 		kfree_skb(skb);
2622 		return RX_QUEUED;
2623 	}
2624 
2625 	/*
2626 	 * After this point, we only want management frames,
2627 	 * so we can drop all remaining control frames to
2628 	 * cooked monitor interfaces.
2629 	 */
2630 	return RX_DROP_MONITOR;
2631 }
2632 
2633 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2634 					   struct ieee80211_mgmt *mgmt,
2635 					   size_t len)
2636 {
2637 	struct ieee80211_local *local = sdata->local;
2638 	struct sk_buff *skb;
2639 	struct ieee80211_mgmt *resp;
2640 
2641 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2642 		/* Not to own unicast address */
2643 		return;
2644 	}
2645 
2646 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2647 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2648 		/* Not from the current AP or not associated yet. */
2649 		return;
2650 	}
2651 
2652 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2653 		/* Too short SA Query request frame */
2654 		return;
2655 	}
2656 
2657 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2658 	if (skb == NULL)
2659 		return;
2660 
2661 	skb_reserve(skb, local->hw.extra_tx_headroom);
2662 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2663 	memset(resp, 0, 24);
2664 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2665 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2666 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2667 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2668 					  IEEE80211_STYPE_ACTION);
2669 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2670 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2671 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2672 	memcpy(resp->u.action.u.sa_query.trans_id,
2673 	       mgmt->u.action.u.sa_query.trans_id,
2674 	       WLAN_SA_QUERY_TR_ID_LEN);
2675 
2676 	ieee80211_tx_skb(sdata, skb);
2677 }
2678 
2679 static ieee80211_rx_result debug_noinline
2680 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2681 {
2682 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2683 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2684 
2685 	/*
2686 	 * From here on, look only at management frames.
2687 	 * Data and control frames are already handled,
2688 	 * and unknown (reserved) frames are useless.
2689 	 */
2690 	if (rx->skb->len < 24)
2691 		return RX_DROP_MONITOR;
2692 
2693 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2694 		return RX_DROP_MONITOR;
2695 
2696 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2697 	    ieee80211_is_beacon(mgmt->frame_control) &&
2698 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2699 		int sig = 0;
2700 
2701 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2702 			sig = status->signal;
2703 
2704 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2705 					    rx->skb->data, rx->skb->len,
2706 					    status->freq, sig);
2707 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2708 	}
2709 
2710 	if (ieee80211_drop_unencrypted_mgmt(rx))
2711 		return RX_DROP_UNUSABLE;
2712 
2713 	return RX_CONTINUE;
2714 }
2715 
2716 static ieee80211_rx_result debug_noinline
2717 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2718 {
2719 	struct ieee80211_local *local = rx->local;
2720 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2721 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2722 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2723 	int len = rx->skb->len;
2724 
2725 	if (!ieee80211_is_action(mgmt->frame_control))
2726 		return RX_CONTINUE;
2727 
2728 	/* drop too small frames */
2729 	if (len < IEEE80211_MIN_ACTION_SIZE)
2730 		return RX_DROP_UNUSABLE;
2731 
2732 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2733 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2734 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2735 		return RX_DROP_UNUSABLE;
2736 
2737 	switch (mgmt->u.action.category) {
2738 	case WLAN_CATEGORY_HT:
2739 		/* reject HT action frames from stations not supporting HT */
2740 		if (!rx->sta->sta.ht_cap.ht_supported)
2741 			goto invalid;
2742 
2743 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2744 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2745 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2746 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2747 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2748 			break;
2749 
2750 		/* verify action & smps_control/chanwidth are present */
2751 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2752 			goto invalid;
2753 
2754 		switch (mgmt->u.action.u.ht_smps.action) {
2755 		case WLAN_HT_ACTION_SMPS: {
2756 			struct ieee80211_supported_band *sband;
2757 			enum ieee80211_smps_mode smps_mode;
2758 
2759 			/* convert to HT capability */
2760 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2761 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2762 				smps_mode = IEEE80211_SMPS_OFF;
2763 				break;
2764 			case WLAN_HT_SMPS_CONTROL_STATIC:
2765 				smps_mode = IEEE80211_SMPS_STATIC;
2766 				break;
2767 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2768 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2769 				break;
2770 			default:
2771 				goto invalid;
2772 			}
2773 
2774 			/* if no change do nothing */
2775 			if (rx->sta->sta.smps_mode == smps_mode)
2776 				goto handled;
2777 			rx->sta->sta.smps_mode = smps_mode;
2778 
2779 			sband = rx->local->hw.wiphy->bands[status->band];
2780 
2781 			rate_control_rate_update(local, sband, rx->sta,
2782 						 IEEE80211_RC_SMPS_CHANGED);
2783 			goto handled;
2784 		}
2785 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2786 			struct ieee80211_supported_band *sband;
2787 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2788 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2789 
2790 			/* If it doesn't support 40 MHz it can't change ... */
2791 			if (!(rx->sta->sta.ht_cap.cap &
2792 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2793 				goto handled;
2794 
2795 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2796 				max_bw = IEEE80211_STA_RX_BW_20;
2797 			else
2798 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2799 
2800 			/* set cur_max_bandwidth and recalc sta bw */
2801 			rx->sta->cur_max_bandwidth = max_bw;
2802 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2803 
2804 			if (rx->sta->sta.bandwidth == new_bw)
2805 				goto handled;
2806 
2807 			rx->sta->sta.bandwidth = new_bw;
2808 			sband = rx->local->hw.wiphy->bands[status->band];
2809 
2810 			rate_control_rate_update(local, sband, rx->sta,
2811 						 IEEE80211_RC_BW_CHANGED);
2812 			goto handled;
2813 		}
2814 		default:
2815 			goto invalid;
2816 		}
2817 
2818 		break;
2819 	case WLAN_CATEGORY_PUBLIC:
2820 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2821 			goto invalid;
2822 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2823 			break;
2824 		if (!rx->sta)
2825 			break;
2826 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2827 			break;
2828 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2829 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2830 			break;
2831 		if (len < offsetof(struct ieee80211_mgmt,
2832 				   u.action.u.ext_chan_switch.variable))
2833 			goto invalid;
2834 		goto queue;
2835 	case WLAN_CATEGORY_VHT:
2836 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2837 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2838 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2839 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2840 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2841 			break;
2842 
2843 		/* verify action code is present */
2844 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2845 			goto invalid;
2846 
2847 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2848 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2849 			u8 opmode;
2850 
2851 			/* verify opmode is present */
2852 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2853 				goto invalid;
2854 
2855 			opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2856 
2857 			ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2858 						    opmode, status->band);
2859 			goto handled;
2860 		}
2861 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
2862 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2863 				goto invalid;
2864 			goto queue;
2865 		}
2866 		default:
2867 			break;
2868 		}
2869 		break;
2870 	case WLAN_CATEGORY_BACK:
2871 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2872 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2873 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2874 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2875 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2876 			break;
2877 
2878 		/* verify action_code is present */
2879 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2880 			break;
2881 
2882 		switch (mgmt->u.action.u.addba_req.action_code) {
2883 		case WLAN_ACTION_ADDBA_REQ:
2884 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2885 				   sizeof(mgmt->u.action.u.addba_req)))
2886 				goto invalid;
2887 			break;
2888 		case WLAN_ACTION_ADDBA_RESP:
2889 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2890 				   sizeof(mgmt->u.action.u.addba_resp)))
2891 				goto invalid;
2892 			break;
2893 		case WLAN_ACTION_DELBA:
2894 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2895 				   sizeof(mgmt->u.action.u.delba)))
2896 				goto invalid;
2897 			break;
2898 		default:
2899 			goto invalid;
2900 		}
2901 
2902 		goto queue;
2903 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2904 		/* verify action_code is present */
2905 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2906 			break;
2907 
2908 		switch (mgmt->u.action.u.measurement.action_code) {
2909 		case WLAN_ACTION_SPCT_MSR_REQ:
2910 			if (status->band != NL80211_BAND_5GHZ)
2911 				break;
2912 
2913 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2914 				   sizeof(mgmt->u.action.u.measurement)))
2915 				break;
2916 
2917 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2918 				break;
2919 
2920 			ieee80211_process_measurement_req(sdata, mgmt, len);
2921 			goto handled;
2922 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2923 			u8 *bssid;
2924 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2925 				   sizeof(mgmt->u.action.u.chan_switch)))
2926 				break;
2927 
2928 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2929 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2930 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2931 				break;
2932 
2933 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2934 				bssid = sdata->u.mgd.bssid;
2935 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2936 				bssid = sdata->u.ibss.bssid;
2937 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2938 				bssid = mgmt->sa;
2939 			else
2940 				break;
2941 
2942 			if (!ether_addr_equal(mgmt->bssid, bssid))
2943 				break;
2944 
2945 			goto queue;
2946 			}
2947 		}
2948 		break;
2949 	case WLAN_CATEGORY_SA_QUERY:
2950 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2951 			   sizeof(mgmt->u.action.u.sa_query)))
2952 			break;
2953 
2954 		switch (mgmt->u.action.u.sa_query.action) {
2955 		case WLAN_ACTION_SA_QUERY_REQUEST:
2956 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2957 				break;
2958 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2959 			goto handled;
2960 		}
2961 		break;
2962 	case WLAN_CATEGORY_SELF_PROTECTED:
2963 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2964 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2965 			break;
2966 
2967 		switch (mgmt->u.action.u.self_prot.action_code) {
2968 		case WLAN_SP_MESH_PEERING_OPEN:
2969 		case WLAN_SP_MESH_PEERING_CLOSE:
2970 		case WLAN_SP_MESH_PEERING_CONFIRM:
2971 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2972 				goto invalid;
2973 			if (sdata->u.mesh.user_mpm)
2974 				/* userspace handles this frame */
2975 				break;
2976 			goto queue;
2977 		case WLAN_SP_MGK_INFORM:
2978 		case WLAN_SP_MGK_ACK:
2979 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2980 				goto invalid;
2981 			break;
2982 		}
2983 		break;
2984 	case WLAN_CATEGORY_MESH_ACTION:
2985 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2986 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
2987 			break;
2988 
2989 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2990 			break;
2991 		if (mesh_action_is_path_sel(mgmt) &&
2992 		    !mesh_path_sel_is_hwmp(sdata))
2993 			break;
2994 		goto queue;
2995 	}
2996 
2997 	return RX_CONTINUE;
2998 
2999  invalid:
3000 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3001 	/* will return in the next handlers */
3002 	return RX_CONTINUE;
3003 
3004  handled:
3005 	if (rx->sta)
3006 		rx->sta->rx_stats.packets++;
3007 	dev_kfree_skb(rx->skb);
3008 	return RX_QUEUED;
3009 
3010  queue:
3011 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3012 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3013 	ieee80211_queue_work(&local->hw, &sdata->work);
3014 	if (rx->sta)
3015 		rx->sta->rx_stats.packets++;
3016 	return RX_QUEUED;
3017 }
3018 
3019 static ieee80211_rx_result debug_noinline
3020 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3021 {
3022 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3023 	int sig = 0;
3024 
3025 	/* skip known-bad action frames and return them in the next handler */
3026 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3027 		return RX_CONTINUE;
3028 
3029 	/*
3030 	 * Getting here means the kernel doesn't know how to handle
3031 	 * it, but maybe userspace does ... include returned frames
3032 	 * so userspace can register for those to know whether ones
3033 	 * it transmitted were processed or returned.
3034 	 */
3035 
3036 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
3037 		sig = status->signal;
3038 
3039 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3040 			     rx->skb->data, rx->skb->len, 0)) {
3041 		if (rx->sta)
3042 			rx->sta->rx_stats.packets++;
3043 		dev_kfree_skb(rx->skb);
3044 		return RX_QUEUED;
3045 	}
3046 
3047 	return RX_CONTINUE;
3048 }
3049 
3050 static ieee80211_rx_result debug_noinline
3051 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3052 {
3053 	struct ieee80211_local *local = rx->local;
3054 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3055 	struct sk_buff *nskb;
3056 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3057 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3058 
3059 	if (!ieee80211_is_action(mgmt->frame_control))
3060 		return RX_CONTINUE;
3061 
3062 	/*
3063 	 * For AP mode, hostapd is responsible for handling any action
3064 	 * frames that we didn't handle, including returning unknown
3065 	 * ones. For all other modes we will return them to the sender,
3066 	 * setting the 0x80 bit in the action category, as required by
3067 	 * 802.11-2012 9.24.4.
3068 	 * Newer versions of hostapd shall also use the management frame
3069 	 * registration mechanisms, but older ones still use cooked
3070 	 * monitor interfaces so push all frames there.
3071 	 */
3072 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3073 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3074 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3075 		return RX_DROP_MONITOR;
3076 
3077 	if (is_multicast_ether_addr(mgmt->da))
3078 		return RX_DROP_MONITOR;
3079 
3080 	/* do not return rejected action frames */
3081 	if (mgmt->u.action.category & 0x80)
3082 		return RX_DROP_UNUSABLE;
3083 
3084 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3085 			       GFP_ATOMIC);
3086 	if (nskb) {
3087 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3088 
3089 		nmgmt->u.action.category |= 0x80;
3090 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3091 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3092 
3093 		memset(nskb->cb, 0, sizeof(nskb->cb));
3094 
3095 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3096 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3097 
3098 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3099 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3100 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3101 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3102 				info->hw_queue =
3103 					local->hw.offchannel_tx_hw_queue;
3104 		}
3105 
3106 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3107 					    status->band);
3108 	}
3109 	dev_kfree_skb(rx->skb);
3110 	return RX_QUEUED;
3111 }
3112 
3113 static ieee80211_rx_result debug_noinline
3114 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3115 {
3116 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3117 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3118 	__le16 stype;
3119 
3120 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3121 
3122 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3123 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3124 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3125 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3126 		return RX_DROP_MONITOR;
3127 
3128 	switch (stype) {
3129 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3130 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3131 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3132 		/* process for all: mesh, mlme, ibss */
3133 		break;
3134 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3135 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3136 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3137 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3138 		if (is_multicast_ether_addr(mgmt->da) &&
3139 		    !is_broadcast_ether_addr(mgmt->da))
3140 			return RX_DROP_MONITOR;
3141 
3142 		/* process only for station */
3143 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3144 			return RX_DROP_MONITOR;
3145 		break;
3146 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3147 		/* process only for ibss and mesh */
3148 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3149 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3150 			return RX_DROP_MONITOR;
3151 		break;
3152 	default:
3153 		return RX_DROP_MONITOR;
3154 	}
3155 
3156 	/* queue up frame and kick off work to process it */
3157 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3158 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3159 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3160 	if (rx->sta)
3161 		rx->sta->rx_stats.packets++;
3162 
3163 	return RX_QUEUED;
3164 }
3165 
3166 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3167 					struct ieee80211_rate *rate)
3168 {
3169 	struct ieee80211_sub_if_data *sdata;
3170 	struct ieee80211_local *local = rx->local;
3171 	struct sk_buff *skb = rx->skb, *skb2;
3172 	struct net_device *prev_dev = NULL;
3173 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3174 	int needed_headroom;
3175 
3176 	/*
3177 	 * If cooked monitor has been processed already, then
3178 	 * don't do it again. If not, set the flag.
3179 	 */
3180 	if (rx->flags & IEEE80211_RX_CMNTR)
3181 		goto out_free_skb;
3182 	rx->flags |= IEEE80211_RX_CMNTR;
3183 
3184 	/* If there are no cooked monitor interfaces, just free the SKB */
3185 	if (!local->cooked_mntrs)
3186 		goto out_free_skb;
3187 
3188 	/* vendor data is long removed here */
3189 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3190 	/* room for the radiotap header based on driver features */
3191 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3192 
3193 	if (skb_headroom(skb) < needed_headroom &&
3194 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3195 		goto out_free_skb;
3196 
3197 	/* prepend radiotap information */
3198 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3199 					 false);
3200 
3201 	skb_reset_mac_header(skb);
3202 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3203 	skb->pkt_type = PACKET_OTHERHOST;
3204 	skb->protocol = htons(ETH_P_802_2);
3205 
3206 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3207 		if (!ieee80211_sdata_running(sdata))
3208 			continue;
3209 
3210 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3211 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3212 			continue;
3213 
3214 		if (prev_dev) {
3215 			skb2 = skb_clone(skb, GFP_ATOMIC);
3216 			if (skb2) {
3217 				skb2->dev = prev_dev;
3218 				netif_receive_skb(skb2);
3219 			}
3220 		}
3221 
3222 		prev_dev = sdata->dev;
3223 		ieee80211_rx_stats(sdata->dev, skb->len);
3224 	}
3225 
3226 	if (prev_dev) {
3227 		skb->dev = prev_dev;
3228 		netif_receive_skb(skb);
3229 		return;
3230 	}
3231 
3232  out_free_skb:
3233 	dev_kfree_skb(skb);
3234 }
3235 
3236 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3237 					 ieee80211_rx_result res)
3238 {
3239 	switch (res) {
3240 	case RX_DROP_MONITOR:
3241 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3242 		if (rx->sta)
3243 			rx->sta->rx_stats.dropped++;
3244 		/* fall through */
3245 	case RX_CONTINUE: {
3246 		struct ieee80211_rate *rate = NULL;
3247 		struct ieee80211_supported_band *sband;
3248 		struct ieee80211_rx_status *status;
3249 
3250 		status = IEEE80211_SKB_RXCB((rx->skb));
3251 
3252 		sband = rx->local->hw.wiphy->bands[status->band];
3253 		if (!(status->flag & RX_FLAG_HT) &&
3254 		    !(status->flag & RX_FLAG_VHT))
3255 			rate = &sband->bitrates[status->rate_idx];
3256 
3257 		ieee80211_rx_cooked_monitor(rx, rate);
3258 		break;
3259 		}
3260 	case RX_DROP_UNUSABLE:
3261 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3262 		if (rx->sta)
3263 			rx->sta->rx_stats.dropped++;
3264 		dev_kfree_skb(rx->skb);
3265 		break;
3266 	case RX_QUEUED:
3267 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3268 		break;
3269 	}
3270 }
3271 
3272 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3273 				  struct sk_buff_head *frames)
3274 {
3275 	ieee80211_rx_result res = RX_DROP_MONITOR;
3276 	struct sk_buff *skb;
3277 
3278 #define CALL_RXH(rxh)			\
3279 	do {				\
3280 		res = rxh(rx);		\
3281 		if (res != RX_CONTINUE)	\
3282 			goto rxh_next;  \
3283 	} while (0)
3284 
3285 	/* Lock here to avoid hitting all of the data used in the RX
3286 	 * path (e.g. key data, station data, ...) concurrently when
3287 	 * a frame is released from the reorder buffer due to timeout
3288 	 * from the timer, potentially concurrently with RX from the
3289 	 * driver.
3290 	 */
3291 	spin_lock_bh(&rx->local->rx_path_lock);
3292 
3293 	while ((skb = __skb_dequeue(frames))) {
3294 		/*
3295 		 * all the other fields are valid across frames
3296 		 * that belong to an aMPDU since they are on the
3297 		 * same TID from the same station
3298 		 */
3299 		rx->skb = skb;
3300 
3301 		CALL_RXH(ieee80211_rx_h_check_more_data);
3302 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3303 		CALL_RXH(ieee80211_rx_h_sta_process);
3304 		CALL_RXH(ieee80211_rx_h_decrypt);
3305 		CALL_RXH(ieee80211_rx_h_defragment);
3306 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3307 		/* must be after MMIC verify so header is counted in MPDU mic */
3308 #ifdef CONFIG_MAC80211_MESH
3309 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3310 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3311 #endif
3312 		CALL_RXH(ieee80211_rx_h_amsdu);
3313 		CALL_RXH(ieee80211_rx_h_data);
3314 
3315 		/* special treatment -- needs the queue */
3316 		res = ieee80211_rx_h_ctrl(rx, frames);
3317 		if (res != RX_CONTINUE)
3318 			goto rxh_next;
3319 
3320 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3321 		CALL_RXH(ieee80211_rx_h_action);
3322 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3323 		CALL_RXH(ieee80211_rx_h_action_return);
3324 		CALL_RXH(ieee80211_rx_h_mgmt);
3325 
3326  rxh_next:
3327 		ieee80211_rx_handlers_result(rx, res);
3328 
3329 #undef CALL_RXH
3330 	}
3331 
3332 	spin_unlock_bh(&rx->local->rx_path_lock);
3333 }
3334 
3335 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3336 {
3337 	struct sk_buff_head reorder_release;
3338 	ieee80211_rx_result res = RX_DROP_MONITOR;
3339 
3340 	__skb_queue_head_init(&reorder_release);
3341 
3342 #define CALL_RXH(rxh)			\
3343 	do {				\
3344 		res = rxh(rx);		\
3345 		if (res != RX_CONTINUE)	\
3346 			goto rxh_next;  \
3347 	} while (0)
3348 
3349 	CALL_RXH(ieee80211_rx_h_check_dup);
3350 	CALL_RXH(ieee80211_rx_h_check);
3351 
3352 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3353 
3354 	ieee80211_rx_handlers(rx, &reorder_release);
3355 	return;
3356 
3357  rxh_next:
3358 	ieee80211_rx_handlers_result(rx, res);
3359 
3360 #undef CALL_RXH
3361 }
3362 
3363 /*
3364  * This function makes calls into the RX path, therefore
3365  * it has to be invoked under RCU read lock.
3366  */
3367 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3368 {
3369 	struct sk_buff_head frames;
3370 	struct ieee80211_rx_data rx = {
3371 		.sta = sta,
3372 		.sdata = sta->sdata,
3373 		.local = sta->local,
3374 		/* This is OK -- must be QoS data frame */
3375 		.security_idx = tid,
3376 		.seqno_idx = tid,
3377 		.napi = NULL, /* must be NULL to not have races */
3378 	};
3379 	struct tid_ampdu_rx *tid_agg_rx;
3380 
3381 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3382 	if (!tid_agg_rx)
3383 		return;
3384 
3385 	__skb_queue_head_init(&frames);
3386 
3387 	spin_lock(&tid_agg_rx->reorder_lock);
3388 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3389 	spin_unlock(&tid_agg_rx->reorder_lock);
3390 
3391 	if (!skb_queue_empty(&frames)) {
3392 		struct ieee80211_event event = {
3393 			.type = BA_FRAME_TIMEOUT,
3394 			.u.ba.tid = tid,
3395 			.u.ba.sta = &sta->sta,
3396 		};
3397 		drv_event_callback(rx.local, rx.sdata, &event);
3398 	}
3399 
3400 	ieee80211_rx_handlers(&rx, &frames);
3401 }
3402 
3403 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3404 					  u16 ssn, u64 filtered,
3405 					  u16 received_mpdus)
3406 {
3407 	struct sta_info *sta;
3408 	struct tid_ampdu_rx *tid_agg_rx;
3409 	struct sk_buff_head frames;
3410 	struct ieee80211_rx_data rx = {
3411 		/* This is OK -- must be QoS data frame */
3412 		.security_idx = tid,
3413 		.seqno_idx = tid,
3414 	};
3415 	int i, diff;
3416 
3417 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3418 		return;
3419 
3420 	__skb_queue_head_init(&frames);
3421 
3422 	sta = container_of(pubsta, struct sta_info, sta);
3423 
3424 	rx.sta = sta;
3425 	rx.sdata = sta->sdata;
3426 	rx.local = sta->local;
3427 
3428 	rcu_read_lock();
3429 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3430 	if (!tid_agg_rx)
3431 		goto out;
3432 
3433 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3434 
3435 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3436 		int release;
3437 
3438 		/* release all frames in the reorder buffer */
3439 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3440 			   IEEE80211_SN_MODULO;
3441 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3442 						 release, &frames);
3443 		/* update ssn to match received ssn */
3444 		tid_agg_rx->head_seq_num = ssn;
3445 	} else {
3446 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3447 						 &frames);
3448 	}
3449 
3450 	/* handle the case that received ssn is behind the mac ssn.
3451 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3452 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3453 	if (diff >= tid_agg_rx->buf_size) {
3454 		tid_agg_rx->reorder_buf_filtered = 0;
3455 		goto release;
3456 	}
3457 	filtered = filtered >> diff;
3458 	ssn += diff;
3459 
3460 	/* update bitmap */
3461 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3462 		int index = (ssn + i) % tid_agg_rx->buf_size;
3463 
3464 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3465 		if (filtered & BIT_ULL(i))
3466 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3467 	}
3468 
3469 	/* now process also frames that the filter marking released */
3470 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3471 
3472 release:
3473 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3474 
3475 	ieee80211_rx_handlers(&rx, &frames);
3476 
3477  out:
3478 	rcu_read_unlock();
3479 }
3480 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3481 
3482 /* main receive path */
3483 
3484 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3485 {
3486 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3487 	struct sk_buff *skb = rx->skb;
3488 	struct ieee80211_hdr *hdr = (void *)skb->data;
3489 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3490 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3491 	int multicast = is_multicast_ether_addr(hdr->addr1);
3492 
3493 	switch (sdata->vif.type) {
3494 	case NL80211_IFTYPE_STATION:
3495 		if (!bssid && !sdata->u.mgd.use_4addr)
3496 			return false;
3497 		if (multicast)
3498 			return true;
3499 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3500 	case NL80211_IFTYPE_ADHOC:
3501 		if (!bssid)
3502 			return false;
3503 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3504 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3505 			return false;
3506 		if (ieee80211_is_beacon(hdr->frame_control))
3507 			return true;
3508 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3509 			return false;
3510 		if (!multicast &&
3511 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3512 			return false;
3513 		if (!rx->sta) {
3514 			int rate_idx;
3515 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3516 				rate_idx = 0; /* TODO: HT/VHT rates */
3517 			else
3518 				rate_idx = status->rate_idx;
3519 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3520 						 BIT(rate_idx));
3521 		}
3522 		return true;
3523 	case NL80211_IFTYPE_OCB:
3524 		if (!bssid)
3525 			return false;
3526 		if (!ieee80211_is_data_present(hdr->frame_control))
3527 			return false;
3528 		if (!is_broadcast_ether_addr(bssid))
3529 			return false;
3530 		if (!multicast &&
3531 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3532 			return false;
3533 		if (!rx->sta) {
3534 			int rate_idx;
3535 			if (status->flag & RX_FLAG_HT)
3536 				rate_idx = 0; /* TODO: HT rates */
3537 			else
3538 				rate_idx = status->rate_idx;
3539 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3540 						BIT(rate_idx));
3541 		}
3542 		return true;
3543 	case NL80211_IFTYPE_MESH_POINT:
3544 		if (multicast)
3545 			return true;
3546 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3547 	case NL80211_IFTYPE_AP_VLAN:
3548 	case NL80211_IFTYPE_AP:
3549 		if (!bssid)
3550 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3551 
3552 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3553 			/*
3554 			 * Accept public action frames even when the
3555 			 * BSSID doesn't match, this is used for P2P
3556 			 * and location updates. Note that mac80211
3557 			 * itself never looks at these frames.
3558 			 */
3559 			if (!multicast &&
3560 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3561 				return false;
3562 			if (ieee80211_is_public_action(hdr, skb->len))
3563 				return true;
3564 			return ieee80211_is_beacon(hdr->frame_control);
3565 		}
3566 
3567 		if (!ieee80211_has_tods(hdr->frame_control)) {
3568 			/* ignore data frames to TDLS-peers */
3569 			if (ieee80211_is_data(hdr->frame_control))
3570 				return false;
3571 			/* ignore action frames to TDLS-peers */
3572 			if (ieee80211_is_action(hdr->frame_control) &&
3573 			    !is_broadcast_ether_addr(bssid) &&
3574 			    !ether_addr_equal(bssid, hdr->addr1))
3575 				return false;
3576 		}
3577 		return true;
3578 	case NL80211_IFTYPE_WDS:
3579 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3580 			return false;
3581 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3582 	case NL80211_IFTYPE_P2P_DEVICE:
3583 		return ieee80211_is_public_action(hdr, skb->len) ||
3584 		       ieee80211_is_probe_req(hdr->frame_control) ||
3585 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3586 		       ieee80211_is_beacon(hdr->frame_control);
3587 	case NL80211_IFTYPE_NAN:
3588 		/* Currently no frames on NAN interface are allowed */
3589 		return false;
3590 	default:
3591 		break;
3592 	}
3593 
3594 	WARN_ON_ONCE(1);
3595 	return false;
3596 }
3597 
3598 void ieee80211_check_fast_rx(struct sta_info *sta)
3599 {
3600 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3601 	struct ieee80211_local *local = sdata->local;
3602 	struct ieee80211_key *key;
3603 	struct ieee80211_fast_rx fastrx = {
3604 		.dev = sdata->dev,
3605 		.vif_type = sdata->vif.type,
3606 		.control_port_protocol = sdata->control_port_protocol,
3607 	}, *old, *new = NULL;
3608 	bool assign = false;
3609 
3610 	/* use sparse to check that we don't return without updating */
3611 	__acquire(check_fast_rx);
3612 
3613 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3614 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3615 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3616 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3617 
3618 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3619 
3620 	/* fast-rx doesn't do reordering */
3621 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3622 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3623 		goto clear;
3624 
3625 	switch (sdata->vif.type) {
3626 	case NL80211_IFTYPE_STATION:
3627 		/* 4-addr is harder to deal with, later maybe */
3628 		if (sdata->u.mgd.use_4addr)
3629 			goto clear;
3630 		/* software powersave is a huge mess, avoid all of it */
3631 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3632 			goto clear;
3633 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3634 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3635 			goto clear;
3636 		if (sta->sta.tdls) {
3637 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3638 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3639 			fastrx.expected_ds_bits = 0;
3640 		} else {
3641 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3642 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3643 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3644 			fastrx.expected_ds_bits =
3645 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3646 		}
3647 		break;
3648 	case NL80211_IFTYPE_AP_VLAN:
3649 	case NL80211_IFTYPE_AP:
3650 		/* parallel-rx requires this, at least with calls to
3651 		 * ieee80211_sta_ps_transition()
3652 		 */
3653 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3654 			goto clear;
3655 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3656 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3657 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3658 
3659 		fastrx.internal_forward =
3660 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3661 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3662 			 !sdata->u.vlan.sta);
3663 		break;
3664 	default:
3665 		goto clear;
3666 	}
3667 
3668 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3669 		goto clear;
3670 
3671 	rcu_read_lock();
3672 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3673 	if (key) {
3674 		switch (key->conf.cipher) {
3675 		case WLAN_CIPHER_SUITE_TKIP:
3676 			/* we don't want to deal with MMIC in fast-rx */
3677 			goto clear_rcu;
3678 		case WLAN_CIPHER_SUITE_CCMP:
3679 		case WLAN_CIPHER_SUITE_CCMP_256:
3680 		case WLAN_CIPHER_SUITE_GCMP:
3681 		case WLAN_CIPHER_SUITE_GCMP_256:
3682 			break;
3683 		default:
3684 			/* we also don't want to deal with WEP or cipher scheme
3685 			 * since those require looking up the key idx in the
3686 			 * frame, rather than assuming the PTK is used
3687 			 * (we need to revisit this once we implement the real
3688 			 * PTK index, which is now valid in the spec, but we
3689 			 * haven't implemented that part yet)
3690 			 */
3691 			goto clear_rcu;
3692 		}
3693 
3694 		fastrx.key = true;
3695 		fastrx.icv_len = key->conf.icv_len;
3696 	}
3697 
3698 	assign = true;
3699  clear_rcu:
3700 	rcu_read_unlock();
3701  clear:
3702 	__release(check_fast_rx);
3703 
3704 	if (assign)
3705 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3706 
3707 	spin_lock_bh(&sta->lock);
3708 	old = rcu_dereference_protected(sta->fast_rx, true);
3709 	rcu_assign_pointer(sta->fast_rx, new);
3710 	spin_unlock_bh(&sta->lock);
3711 
3712 	if (old)
3713 		kfree_rcu(old, rcu_head);
3714 }
3715 
3716 void ieee80211_clear_fast_rx(struct sta_info *sta)
3717 {
3718 	struct ieee80211_fast_rx *old;
3719 
3720 	spin_lock_bh(&sta->lock);
3721 	old = rcu_dereference_protected(sta->fast_rx, true);
3722 	RCU_INIT_POINTER(sta->fast_rx, NULL);
3723 	spin_unlock_bh(&sta->lock);
3724 
3725 	if (old)
3726 		kfree_rcu(old, rcu_head);
3727 }
3728 
3729 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3730 {
3731 	struct ieee80211_local *local = sdata->local;
3732 	struct sta_info *sta;
3733 
3734 	lockdep_assert_held(&local->sta_mtx);
3735 
3736 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
3737 		if (sdata != sta->sdata &&
3738 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3739 			continue;
3740 		ieee80211_check_fast_rx(sta);
3741 	}
3742 }
3743 
3744 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3745 {
3746 	struct ieee80211_local *local = sdata->local;
3747 
3748 	mutex_lock(&local->sta_mtx);
3749 	__ieee80211_check_fast_rx_iface(sdata);
3750 	mutex_unlock(&local->sta_mtx);
3751 }
3752 
3753 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3754 				     struct ieee80211_fast_rx *fast_rx)
3755 {
3756 	struct sk_buff *skb = rx->skb;
3757 	struct ieee80211_hdr *hdr = (void *)skb->data;
3758 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3759 	struct sta_info *sta = rx->sta;
3760 	int orig_len = skb->len;
3761 	int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3762 	struct {
3763 		u8 snap[sizeof(rfc1042_header)];
3764 		__be16 proto;
3765 	} *payload __aligned(2);
3766 	struct {
3767 		u8 da[ETH_ALEN];
3768 		u8 sa[ETH_ALEN];
3769 	} addrs __aligned(2);
3770 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3771 
3772 	if (fast_rx->uses_rss)
3773 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
3774 
3775 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3776 	 * to a common data structure; drivers can implement that per queue
3777 	 * but we don't have that information in mac80211
3778 	 */
3779 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3780 		return false;
3781 
3782 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3783 
3784 	/* If using encryption, we also need to have:
3785 	 *  - PN_VALIDATED: similar, but the implementation is tricky
3786 	 *  - DECRYPTED: necessary for PN_VALIDATED
3787 	 */
3788 	if (fast_rx->key &&
3789 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3790 		return false;
3791 
3792 	/* we don't deal with A-MSDU deaggregation here */
3793 	if (status->rx_flags & IEEE80211_RX_AMSDU)
3794 		return false;
3795 
3796 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3797 		return false;
3798 
3799 	if (unlikely(ieee80211_is_frag(hdr)))
3800 		return false;
3801 
3802 	/* Since our interface address cannot be multicast, this
3803 	 * implicitly also rejects multicast frames without the
3804 	 * explicit check.
3805 	 *
3806 	 * We shouldn't get any *data* frames not addressed to us
3807 	 * (AP mode will accept multicast *management* frames), but
3808 	 * punting here will make it go through the full checks in
3809 	 * ieee80211_accept_frame().
3810 	 */
3811 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3812 		return false;
3813 
3814 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3815 					      IEEE80211_FCTL_TODS)) !=
3816 	    fast_rx->expected_ds_bits)
3817 		goto drop;
3818 
3819 	/* assign the key to drop unencrypted frames (later)
3820 	 * and strip the IV/MIC if necessary
3821 	 */
3822 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3823 		/* GCMP header length is the same */
3824 		snap_offs += IEEE80211_CCMP_HDR_LEN;
3825 	}
3826 
3827 	if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3828 		goto drop;
3829 	payload = (void *)(skb->data + snap_offs);
3830 
3831 	if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3832 		return false;
3833 
3834 	/* Don't handle these here since they require special code.
3835 	 * Accept AARP and IPX even though they should come with a
3836 	 * bridge-tunnel header - but if we get them this way then
3837 	 * there's little point in discarding them.
3838 	 */
3839 	if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3840 		     payload->proto == fast_rx->control_port_protocol))
3841 		return false;
3842 
3843 	/* after this point, don't punt to the slowpath! */
3844 
3845 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3846 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
3847 		goto drop;
3848 
3849 	if (unlikely(fast_rx->sta_notify)) {
3850 		ieee80211_sta_rx_notify(rx->sdata, hdr);
3851 		fast_rx->sta_notify = false;
3852 	}
3853 
3854 	/* statistics part of ieee80211_rx_h_sta_process() */
3855 	stats->last_rx = jiffies;
3856 	stats->last_rate = sta_stats_encode_rate(status);
3857 
3858 	stats->fragments++;
3859 
3860 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3861 		stats->last_signal = status->signal;
3862 		if (!fast_rx->uses_rss)
3863 			ewma_signal_add(&sta->rx_stats_avg.signal,
3864 					-status->signal);
3865 	}
3866 
3867 	if (status->chains) {
3868 		int i;
3869 
3870 		stats->chains = status->chains;
3871 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3872 			int signal = status->chain_signal[i];
3873 
3874 			if (!(status->chains & BIT(i)))
3875 				continue;
3876 
3877 			stats->chain_signal_last[i] = signal;
3878 			if (!fast_rx->uses_rss)
3879 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3880 						-signal);
3881 		}
3882 	}
3883 	/* end of statistics */
3884 
3885 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3886 		goto drop;
3887 
3888 	/* do the header conversion - first grab the addresses */
3889 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
3890 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
3891 	/* remove the SNAP but leave the ethertype */
3892 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
3893 	/* push the addresses in front */
3894 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
3895 
3896 	skb->dev = fast_rx->dev;
3897 
3898 	ieee80211_rx_stats(fast_rx->dev, skb->len);
3899 
3900 	/* The seqno index has the same property as needed
3901 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
3902 	 * for non-QoS-data frames. Here we know it's a data
3903 	 * frame, so count MSDUs.
3904 	 */
3905 	u64_stats_update_begin(&stats->syncp);
3906 	stats->msdu[rx->seqno_idx]++;
3907 	stats->bytes += orig_len;
3908 	u64_stats_update_end(&stats->syncp);
3909 
3910 	if (fast_rx->internal_forward) {
3911 		struct sta_info *dsta = sta_info_get(rx->sdata, skb->data);
3912 
3913 		if (dsta) {
3914 			/*
3915 			 * Send to wireless media and increase priority by 256
3916 			 * to keep the received priority instead of
3917 			 * reclassifying the frame (see cfg80211_classify8021d).
3918 			 */
3919 			skb->priority += 256;
3920 			skb->protocol = htons(ETH_P_802_3);
3921 			skb_reset_network_header(skb);
3922 			skb_reset_mac_header(skb);
3923 			dev_queue_xmit(skb);
3924 			return true;
3925 		}
3926 	}
3927 
3928 	/* deliver to local stack */
3929 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
3930 	memset(skb->cb, 0, sizeof(skb->cb));
3931 	if (rx->napi)
3932 		napi_gro_receive(rx->napi, skb);
3933 	else
3934 		netif_receive_skb(skb);
3935 
3936 	return true;
3937  drop:
3938 	dev_kfree_skb(skb);
3939 	stats->dropped++;
3940 	return true;
3941 }
3942 
3943 /*
3944  * This function returns whether or not the SKB
3945  * was destined for RX processing or not, which,
3946  * if consume is true, is equivalent to whether
3947  * or not the skb was consumed.
3948  */
3949 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3950 					    struct sk_buff *skb, bool consume)
3951 {
3952 	struct ieee80211_local *local = rx->local;
3953 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3954 
3955 	rx->skb = skb;
3956 
3957 	/* See if we can do fast-rx; if we have to copy we already lost,
3958 	 * so punt in that case. We should never have to deliver a data
3959 	 * frame to multiple interfaces anyway.
3960 	 *
3961 	 * We skip the ieee80211_accept_frame() call and do the necessary
3962 	 * checking inside ieee80211_invoke_fast_rx().
3963 	 */
3964 	if (consume && rx->sta) {
3965 		struct ieee80211_fast_rx *fast_rx;
3966 
3967 		fast_rx = rcu_dereference(rx->sta->fast_rx);
3968 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
3969 			return true;
3970 	}
3971 
3972 	if (!ieee80211_accept_frame(rx))
3973 		return false;
3974 
3975 	if (!consume) {
3976 		skb = skb_copy(skb, GFP_ATOMIC);
3977 		if (!skb) {
3978 			if (net_ratelimit())
3979 				wiphy_debug(local->hw.wiphy,
3980 					"failed to copy skb for %s\n",
3981 					sdata->name);
3982 			return true;
3983 		}
3984 
3985 		rx->skb = skb;
3986 	}
3987 
3988 	ieee80211_invoke_rx_handlers(rx);
3989 	return true;
3990 }
3991 
3992 /*
3993  * This is the actual Rx frames handler. as it belongs to Rx path it must
3994  * be called with rcu_read_lock protection.
3995  */
3996 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3997 					 struct ieee80211_sta *pubsta,
3998 					 struct sk_buff *skb,
3999 					 struct napi_struct *napi)
4000 {
4001 	struct ieee80211_local *local = hw_to_local(hw);
4002 	struct ieee80211_sub_if_data *sdata;
4003 	struct ieee80211_hdr *hdr;
4004 	__le16 fc;
4005 	struct ieee80211_rx_data rx;
4006 	struct ieee80211_sub_if_data *prev;
4007 	struct rhlist_head *tmp;
4008 	int err = 0;
4009 
4010 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4011 	memset(&rx, 0, sizeof(rx));
4012 	rx.skb = skb;
4013 	rx.local = local;
4014 	rx.napi = napi;
4015 
4016 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4017 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4018 
4019 	if (ieee80211_is_mgmt(fc)) {
4020 		/* drop frame if too short for header */
4021 		if (skb->len < ieee80211_hdrlen(fc))
4022 			err = -ENOBUFS;
4023 		else
4024 			err = skb_linearize(skb);
4025 	} else {
4026 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4027 	}
4028 
4029 	if (err) {
4030 		dev_kfree_skb(skb);
4031 		return;
4032 	}
4033 
4034 	hdr = (struct ieee80211_hdr *)skb->data;
4035 	ieee80211_parse_qos(&rx);
4036 	ieee80211_verify_alignment(&rx);
4037 
4038 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4039 		     ieee80211_is_beacon(hdr->frame_control)))
4040 		ieee80211_scan_rx(local, skb);
4041 
4042 	if (pubsta) {
4043 		rx.sta = container_of(pubsta, struct sta_info, sta);
4044 		rx.sdata = rx.sta->sdata;
4045 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4046 			return;
4047 		goto out;
4048 	} else if (ieee80211_is_data(fc)) {
4049 		struct sta_info *sta, *prev_sta;
4050 
4051 		prev_sta = NULL;
4052 
4053 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4054 			if (!prev_sta) {
4055 				prev_sta = sta;
4056 				continue;
4057 			}
4058 
4059 			rx.sta = prev_sta;
4060 			rx.sdata = prev_sta->sdata;
4061 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4062 
4063 			prev_sta = sta;
4064 		}
4065 
4066 		if (prev_sta) {
4067 			rx.sta = prev_sta;
4068 			rx.sdata = prev_sta->sdata;
4069 
4070 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4071 				return;
4072 			goto out;
4073 		}
4074 	}
4075 
4076 	prev = NULL;
4077 
4078 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4079 		if (!ieee80211_sdata_running(sdata))
4080 			continue;
4081 
4082 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4083 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4084 			continue;
4085 
4086 		/*
4087 		 * frame is destined for this interface, but if it's
4088 		 * not also for the previous one we handle that after
4089 		 * the loop to avoid copying the SKB once too much
4090 		 */
4091 
4092 		if (!prev) {
4093 			prev = sdata;
4094 			continue;
4095 		}
4096 
4097 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4098 		rx.sdata = prev;
4099 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4100 
4101 		prev = sdata;
4102 	}
4103 
4104 	if (prev) {
4105 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4106 		rx.sdata = prev;
4107 
4108 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4109 			return;
4110 	}
4111 
4112  out:
4113 	dev_kfree_skb(skb);
4114 }
4115 
4116 /*
4117  * This is the receive path handler. It is called by a low level driver when an
4118  * 802.11 MPDU is received from the hardware.
4119  */
4120 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4121 		       struct sk_buff *skb, struct napi_struct *napi)
4122 {
4123 	struct ieee80211_local *local = hw_to_local(hw);
4124 	struct ieee80211_rate *rate = NULL;
4125 	struct ieee80211_supported_band *sband;
4126 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4127 
4128 	WARN_ON_ONCE(softirq_count() == 0);
4129 
4130 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4131 		goto drop;
4132 
4133 	sband = local->hw.wiphy->bands[status->band];
4134 	if (WARN_ON(!sband))
4135 		goto drop;
4136 
4137 	/*
4138 	 * If we're suspending, it is possible although not too likely
4139 	 * that we'd be receiving frames after having already partially
4140 	 * quiesced the stack. We can't process such frames then since
4141 	 * that might, for example, cause stations to be added or other
4142 	 * driver callbacks be invoked.
4143 	 */
4144 	if (unlikely(local->quiescing || local->suspended))
4145 		goto drop;
4146 
4147 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4148 	if (unlikely(local->in_reconfig))
4149 		goto drop;
4150 
4151 	/*
4152 	 * The same happens when we're not even started,
4153 	 * but that's worth a warning.
4154 	 */
4155 	if (WARN_ON(!local->started))
4156 		goto drop;
4157 
4158 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4159 		/*
4160 		 * Validate the rate, unless a PLCP error means that
4161 		 * we probably can't have a valid rate here anyway.
4162 		 */
4163 
4164 		if (status->flag & RX_FLAG_HT) {
4165 			/*
4166 			 * rate_idx is MCS index, which can be [0-76]
4167 			 * as documented on:
4168 			 *
4169 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4170 			 *
4171 			 * Anything else would be some sort of driver or
4172 			 * hardware error. The driver should catch hardware
4173 			 * errors.
4174 			 */
4175 			if (WARN(status->rate_idx > 76,
4176 				 "Rate marked as an HT rate but passed "
4177 				 "status->rate_idx is not "
4178 				 "an MCS index [0-76]: %d (0x%02x)\n",
4179 				 status->rate_idx,
4180 				 status->rate_idx))
4181 				goto drop;
4182 		} else if (status->flag & RX_FLAG_VHT) {
4183 			if (WARN_ONCE(status->rate_idx > 9 ||
4184 				      !status->vht_nss ||
4185 				      status->vht_nss > 8,
4186 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4187 				      status->rate_idx, status->vht_nss))
4188 				goto drop;
4189 		} else {
4190 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4191 				goto drop;
4192 			rate = &sband->bitrates[status->rate_idx];
4193 		}
4194 	}
4195 
4196 	status->rx_flags = 0;
4197 
4198 	/*
4199 	 * key references and virtual interfaces are protected using RCU
4200 	 * and this requires that we are in a read-side RCU section during
4201 	 * receive processing
4202 	 */
4203 	rcu_read_lock();
4204 
4205 	/*
4206 	 * Frames with failed FCS/PLCP checksum are not returned,
4207 	 * all other frames are returned without radiotap header
4208 	 * if it was previously present.
4209 	 * Also, frames with less than 16 bytes are dropped.
4210 	 */
4211 	skb = ieee80211_rx_monitor(local, skb, rate);
4212 	if (!skb) {
4213 		rcu_read_unlock();
4214 		return;
4215 	}
4216 
4217 	ieee80211_tpt_led_trig_rx(local,
4218 			((struct ieee80211_hdr *)skb->data)->frame_control,
4219 			skb->len);
4220 
4221 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4222 
4223 	rcu_read_unlock();
4224 
4225 	return;
4226  drop:
4227 	kfree_skb(skb);
4228 }
4229 EXPORT_SYMBOL(ieee80211_rx_napi);
4230 
4231 /* This is a version of the rx handler that can be called from hard irq
4232  * context. Post the skb on the queue and schedule the tasklet */
4233 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4234 {
4235 	struct ieee80211_local *local = hw_to_local(hw);
4236 
4237 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4238 
4239 	skb->pkt_type = IEEE80211_RX_MSG;
4240 	skb_queue_tail(&local->skb_queue, skb);
4241 	tasklet_schedule(&local->tasklet);
4242 }
4243 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4244