xref: /openbmc/linux/net/mac80211/rx.c (revision e8f6f3b4)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24 
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34 
35 /*
36  * monitor mode reception
37  *
38  * This function cleans up the SKB, i.e. it removes all the stuff
39  * only useful for monitoring.
40  */
41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
42 					   struct sk_buff *skb,
43 					   unsigned int rtap_vendor_space)
44 {
45 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 		if (likely(skb->len > FCS_LEN))
47 			__pskb_trim(skb, skb->len - FCS_LEN);
48 		else {
49 			/* driver bug */
50 			WARN_ON(1);
51 			dev_kfree_skb(skb);
52 			return NULL;
53 		}
54 	}
55 
56 	__pskb_pull(skb, rtap_vendor_space);
57 
58 	return skb;
59 }
60 
61 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
62 				     unsigned int rtap_vendor_space)
63 {
64 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 	struct ieee80211_hdr *hdr;
66 
67 	hdr = (void *)(skb->data + rtap_vendor_space);
68 
69 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 			    RX_FLAG_FAILED_PLCP_CRC |
71 			    RX_FLAG_AMPDU_IS_ZEROLEN))
72 		return true;
73 
74 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
75 		return true;
76 
77 	if (ieee80211_is_ctl(hdr->frame_control) &&
78 	    !ieee80211_is_pspoll(hdr->frame_control) &&
79 	    !ieee80211_is_back_req(hdr->frame_control))
80 		return true;
81 
82 	return false;
83 }
84 
85 static int
86 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
87 			     struct ieee80211_rx_status *status,
88 			     struct sk_buff *skb)
89 {
90 	int len;
91 
92 	/* always present fields */
93 	len = sizeof(struct ieee80211_radiotap_header) + 8;
94 
95 	/* allocate extra bitmaps */
96 	if (status->chains)
97 		len += 4 * hweight8(status->chains);
98 
99 	if (ieee80211_have_rx_timestamp(status)) {
100 		len = ALIGN(len, 8);
101 		len += 8;
102 	}
103 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
104 		len += 1;
105 
106 	/* antenna field, if we don't have per-chain info */
107 	if (!status->chains)
108 		len += 1;
109 
110 	/* padding for RX_FLAGS if necessary */
111 	len = ALIGN(len, 2);
112 
113 	if (status->flag & RX_FLAG_HT) /* HT info */
114 		len += 3;
115 
116 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
117 		len = ALIGN(len, 4);
118 		len += 8;
119 	}
120 
121 	if (status->flag & RX_FLAG_VHT) {
122 		len = ALIGN(len, 2);
123 		len += 12;
124 	}
125 
126 	if (status->chains) {
127 		/* antenna and antenna signal fields */
128 		len += 2 * hweight8(status->chains);
129 	}
130 
131 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
132 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
133 
134 		/* vendor presence bitmap */
135 		len += 4;
136 		/* alignment for fixed 6-byte vendor data header */
137 		len = ALIGN(len, 2);
138 		/* vendor data header */
139 		len += 6;
140 		if (WARN_ON(rtap->align == 0))
141 			rtap->align = 1;
142 		len = ALIGN(len, rtap->align);
143 		len += rtap->len + rtap->pad;
144 	}
145 
146 	return len;
147 }
148 
149 /*
150  * ieee80211_add_rx_radiotap_header - add radiotap header
151  *
152  * add a radiotap header containing all the fields which the hardware provided.
153  */
154 static void
155 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
156 				 struct sk_buff *skb,
157 				 struct ieee80211_rate *rate,
158 				 int rtap_len, bool has_fcs)
159 {
160 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
161 	struct ieee80211_radiotap_header *rthdr;
162 	unsigned char *pos;
163 	__le32 *it_present;
164 	u32 it_present_val;
165 	u16 rx_flags = 0;
166 	u16 channel_flags = 0;
167 	int mpdulen, chain;
168 	unsigned long chains = status->chains;
169 	struct ieee80211_vendor_radiotap rtap = {};
170 
171 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
172 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
173 		/* rtap.len and rtap.pad are undone immediately */
174 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
175 	}
176 
177 	mpdulen = skb->len;
178 	if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
179 		mpdulen += FCS_LEN;
180 
181 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
182 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
183 	it_present = &rthdr->it_present;
184 
185 	/* radiotap header, set always present flags */
186 	rthdr->it_len = cpu_to_le16(rtap_len);
187 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
188 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
189 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
190 
191 	if (!status->chains)
192 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
193 
194 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
195 		it_present_val |=
196 			BIT(IEEE80211_RADIOTAP_EXT) |
197 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
198 		put_unaligned_le32(it_present_val, it_present);
199 		it_present++;
200 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
201 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
202 	}
203 
204 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
205 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
206 				  BIT(IEEE80211_RADIOTAP_EXT);
207 		put_unaligned_le32(it_present_val, it_present);
208 		it_present++;
209 		it_present_val = rtap.present;
210 	}
211 
212 	put_unaligned_le32(it_present_val, it_present);
213 
214 	pos = (void *)(it_present + 1);
215 
216 	/* the order of the following fields is important */
217 
218 	/* IEEE80211_RADIOTAP_TSFT */
219 	if (ieee80211_have_rx_timestamp(status)) {
220 		/* padding */
221 		while ((pos - (u8 *)rthdr) & 7)
222 			*pos++ = 0;
223 		put_unaligned_le64(
224 			ieee80211_calculate_rx_timestamp(local, status,
225 							 mpdulen, 0),
226 			pos);
227 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
228 		pos += 8;
229 	}
230 
231 	/* IEEE80211_RADIOTAP_FLAGS */
232 	if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
233 		*pos |= IEEE80211_RADIOTAP_F_FCS;
234 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
235 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
236 	if (status->flag & RX_FLAG_SHORTPRE)
237 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
238 	pos++;
239 
240 	/* IEEE80211_RADIOTAP_RATE */
241 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
242 		/*
243 		 * Without rate information don't add it. If we have,
244 		 * MCS information is a separate field in radiotap,
245 		 * added below. The byte here is needed as padding
246 		 * for the channel though, so initialise it to 0.
247 		 */
248 		*pos = 0;
249 	} else {
250 		int shift = 0;
251 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
252 		if (status->flag & RX_FLAG_10MHZ)
253 			shift = 1;
254 		else if (status->flag & RX_FLAG_5MHZ)
255 			shift = 2;
256 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
257 	}
258 	pos++;
259 
260 	/* IEEE80211_RADIOTAP_CHANNEL */
261 	put_unaligned_le16(status->freq, pos);
262 	pos += 2;
263 	if (status->flag & RX_FLAG_10MHZ)
264 		channel_flags |= IEEE80211_CHAN_HALF;
265 	else if (status->flag & RX_FLAG_5MHZ)
266 		channel_flags |= IEEE80211_CHAN_QUARTER;
267 
268 	if (status->band == IEEE80211_BAND_5GHZ)
269 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
270 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
271 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
272 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
273 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
274 	else if (rate)
275 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
276 	else
277 		channel_flags |= IEEE80211_CHAN_2GHZ;
278 	put_unaligned_le16(channel_flags, pos);
279 	pos += 2;
280 
281 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
282 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
283 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
284 		*pos = status->signal;
285 		rthdr->it_present |=
286 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
287 		pos++;
288 	}
289 
290 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
291 
292 	if (!status->chains) {
293 		/* IEEE80211_RADIOTAP_ANTENNA */
294 		*pos = status->antenna;
295 		pos++;
296 	}
297 
298 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
299 
300 	/* IEEE80211_RADIOTAP_RX_FLAGS */
301 	/* ensure 2 byte alignment for the 2 byte field as required */
302 	if ((pos - (u8 *)rthdr) & 1)
303 		*pos++ = 0;
304 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
305 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
306 	put_unaligned_le16(rx_flags, pos);
307 	pos += 2;
308 
309 	if (status->flag & RX_FLAG_HT) {
310 		unsigned int stbc;
311 
312 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
313 		*pos++ = local->hw.radiotap_mcs_details;
314 		*pos = 0;
315 		if (status->flag & RX_FLAG_SHORT_GI)
316 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
317 		if (status->flag & RX_FLAG_40MHZ)
318 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
319 		if (status->flag & RX_FLAG_HT_GF)
320 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
321 		if (status->flag & RX_FLAG_LDPC)
322 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
323 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
324 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
325 		pos++;
326 		*pos++ = status->rate_idx;
327 	}
328 
329 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
330 		u16 flags = 0;
331 
332 		/* ensure 4 byte alignment */
333 		while ((pos - (u8 *)rthdr) & 3)
334 			pos++;
335 		rthdr->it_present |=
336 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
337 		put_unaligned_le32(status->ampdu_reference, pos);
338 		pos += 4;
339 		if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
340 			flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
341 		if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
342 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
343 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
344 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
345 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
346 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
347 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
348 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
349 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
350 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
351 		put_unaligned_le16(flags, pos);
352 		pos += 2;
353 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
354 			*pos++ = status->ampdu_delimiter_crc;
355 		else
356 			*pos++ = 0;
357 		*pos++ = 0;
358 	}
359 
360 	if (status->flag & RX_FLAG_VHT) {
361 		u16 known = local->hw.radiotap_vht_details;
362 
363 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
364 		/* known field - how to handle 80+80? */
365 		if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
366 			known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
367 		put_unaligned_le16(known, pos);
368 		pos += 2;
369 		/* flags */
370 		if (status->flag & RX_FLAG_SHORT_GI)
371 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
372 		/* in VHT, STBC is binary */
373 		if (status->flag & RX_FLAG_STBC_MASK)
374 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
375 		if (status->vht_flag & RX_VHT_FLAG_BF)
376 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
377 		pos++;
378 		/* bandwidth */
379 		if (status->vht_flag & RX_VHT_FLAG_80MHZ)
380 			*pos++ = 4;
381 		else if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
382 			*pos++ = 0; /* marked not known above */
383 		else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
384 			*pos++ = 11;
385 		else if (status->flag & RX_FLAG_40MHZ)
386 			*pos++ = 1;
387 		else /* 20 MHz */
388 			*pos++ = 0;
389 		/* MCS/NSS */
390 		*pos = (status->rate_idx << 4) | status->vht_nss;
391 		pos += 4;
392 		/* coding field */
393 		if (status->flag & RX_FLAG_LDPC)
394 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
395 		pos++;
396 		/* group ID */
397 		pos++;
398 		/* partial_aid */
399 		pos += 2;
400 	}
401 
402 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
403 		*pos++ = status->chain_signal[chain];
404 		*pos++ = chain;
405 	}
406 
407 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
408 		/* ensure 2 byte alignment for the vendor field as required */
409 		if ((pos - (u8 *)rthdr) & 1)
410 			*pos++ = 0;
411 		*pos++ = rtap.oui[0];
412 		*pos++ = rtap.oui[1];
413 		*pos++ = rtap.oui[2];
414 		*pos++ = rtap.subns;
415 		put_unaligned_le16(rtap.len, pos);
416 		pos += 2;
417 		/* align the actual payload as requested */
418 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
419 			*pos++ = 0;
420 		/* data (and possible padding) already follows */
421 	}
422 }
423 
424 /*
425  * This function copies a received frame to all monitor interfaces and
426  * returns a cleaned-up SKB that no longer includes the FCS nor the
427  * radiotap header the driver might have added.
428  */
429 static struct sk_buff *
430 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
431 		     struct ieee80211_rate *rate)
432 {
433 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
434 	struct ieee80211_sub_if_data *sdata;
435 	int rt_hdrlen, needed_headroom;
436 	struct sk_buff *skb, *skb2;
437 	struct net_device *prev_dev = NULL;
438 	int present_fcs_len = 0;
439 	unsigned int rtap_vendor_space = 0;
440 
441 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
442 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
443 
444 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
445 	}
446 
447 	/*
448 	 * First, we may need to make a copy of the skb because
449 	 *  (1) we need to modify it for radiotap (if not present), and
450 	 *  (2) the other RX handlers will modify the skb we got.
451 	 *
452 	 * We don't need to, of course, if we aren't going to return
453 	 * the SKB because it has a bad FCS/PLCP checksum.
454 	 */
455 
456 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
457 		present_fcs_len = FCS_LEN;
458 
459 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
460 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
461 		dev_kfree_skb(origskb);
462 		return NULL;
463 	}
464 
465 	if (!local->monitors) {
466 		if (should_drop_frame(origskb, present_fcs_len,
467 				      rtap_vendor_space)) {
468 			dev_kfree_skb(origskb);
469 			return NULL;
470 		}
471 
472 		return remove_monitor_info(local, origskb, rtap_vendor_space);
473 	}
474 
475 	/* room for the radiotap header based on driver features */
476 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
477 	needed_headroom = rt_hdrlen - rtap_vendor_space;
478 
479 	if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
480 		/* only need to expand headroom if necessary */
481 		skb = origskb;
482 		origskb = NULL;
483 
484 		/*
485 		 * This shouldn't trigger often because most devices have an
486 		 * RX header they pull before we get here, and that should
487 		 * be big enough for our radiotap information. We should
488 		 * probably export the length to drivers so that we can have
489 		 * them allocate enough headroom to start with.
490 		 */
491 		if (skb_headroom(skb) < needed_headroom &&
492 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
493 			dev_kfree_skb(skb);
494 			return NULL;
495 		}
496 	} else {
497 		/*
498 		 * Need to make a copy and possibly remove radiotap header
499 		 * and FCS from the original.
500 		 */
501 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
502 
503 		origskb = remove_monitor_info(local, origskb,
504 					      rtap_vendor_space);
505 
506 		if (!skb)
507 			return origskb;
508 	}
509 
510 	/* prepend radiotap information */
511 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
512 
513 	skb_reset_mac_header(skb);
514 	skb->ip_summed = CHECKSUM_UNNECESSARY;
515 	skb->pkt_type = PACKET_OTHERHOST;
516 	skb->protocol = htons(ETH_P_802_2);
517 
518 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
519 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
520 			continue;
521 
522 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
523 			continue;
524 
525 		if (!ieee80211_sdata_running(sdata))
526 			continue;
527 
528 		if (prev_dev) {
529 			skb2 = skb_clone(skb, GFP_ATOMIC);
530 			if (skb2) {
531 				skb2->dev = prev_dev;
532 				netif_receive_skb(skb2);
533 			}
534 		}
535 
536 		prev_dev = sdata->dev;
537 		sdata->dev->stats.rx_packets++;
538 		sdata->dev->stats.rx_bytes += skb->len;
539 	}
540 
541 	if (prev_dev) {
542 		skb->dev = prev_dev;
543 		netif_receive_skb(skb);
544 	} else
545 		dev_kfree_skb(skb);
546 
547 	return origskb;
548 }
549 
550 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
551 {
552 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
553 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
554 	int tid, seqno_idx, security_idx;
555 
556 	/* does the frame have a qos control field? */
557 	if (ieee80211_is_data_qos(hdr->frame_control)) {
558 		u8 *qc = ieee80211_get_qos_ctl(hdr);
559 		/* frame has qos control */
560 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
561 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
562 			status->rx_flags |= IEEE80211_RX_AMSDU;
563 
564 		seqno_idx = tid;
565 		security_idx = tid;
566 	} else {
567 		/*
568 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
569 		 *
570 		 *	Sequence numbers for management frames, QoS data
571 		 *	frames with a broadcast/multicast address in the
572 		 *	Address 1 field, and all non-QoS data frames sent
573 		 *	by QoS STAs are assigned using an additional single
574 		 *	modulo-4096 counter, [...]
575 		 *
576 		 * We also use that counter for non-QoS STAs.
577 		 */
578 		seqno_idx = IEEE80211_NUM_TIDS;
579 		security_idx = 0;
580 		if (ieee80211_is_mgmt(hdr->frame_control))
581 			security_idx = IEEE80211_NUM_TIDS;
582 		tid = 0;
583 	}
584 
585 	rx->seqno_idx = seqno_idx;
586 	rx->security_idx = security_idx;
587 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
588 	 * For now, set skb->priority to 0 for other cases. */
589 	rx->skb->priority = (tid > 7) ? 0 : tid;
590 }
591 
592 /**
593  * DOC: Packet alignment
594  *
595  * Drivers always need to pass packets that are aligned to two-byte boundaries
596  * to the stack.
597  *
598  * Additionally, should, if possible, align the payload data in a way that
599  * guarantees that the contained IP header is aligned to a four-byte
600  * boundary. In the case of regular frames, this simply means aligning the
601  * payload to a four-byte boundary (because either the IP header is directly
602  * contained, or IV/RFC1042 headers that have a length divisible by four are
603  * in front of it).  If the payload data is not properly aligned and the
604  * architecture doesn't support efficient unaligned operations, mac80211
605  * will align the data.
606  *
607  * With A-MSDU frames, however, the payload data address must yield two modulo
608  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
609  * push the IP header further back to a multiple of four again. Thankfully, the
610  * specs were sane enough this time around to require padding each A-MSDU
611  * subframe to a length that is a multiple of four.
612  *
613  * Padding like Atheros hardware adds which is between the 802.11 header and
614  * the payload is not supported, the driver is required to move the 802.11
615  * header to be directly in front of the payload in that case.
616  */
617 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
618 {
619 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
620 	WARN_ONCE((unsigned long)rx->skb->data & 1,
621 		  "unaligned packet at 0x%p\n", rx->skb->data);
622 #endif
623 }
624 
625 
626 /* rx handlers */
627 
628 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
629 {
630 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
631 
632 	if (is_multicast_ether_addr(hdr->addr1))
633 		return 0;
634 
635 	return ieee80211_is_robust_mgmt_frame(skb);
636 }
637 
638 
639 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
640 {
641 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
642 
643 	if (!is_multicast_ether_addr(hdr->addr1))
644 		return 0;
645 
646 	return ieee80211_is_robust_mgmt_frame(skb);
647 }
648 
649 
650 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
651 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
652 {
653 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
654 	struct ieee80211_mmie *mmie;
655 
656 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
657 		return -1;
658 
659 	if (!ieee80211_is_robust_mgmt_frame(skb))
660 		return -1; /* not a robust management frame */
661 
662 	mmie = (struct ieee80211_mmie *)
663 		(skb->data + skb->len - sizeof(*mmie));
664 	if (mmie->element_id != WLAN_EID_MMIE ||
665 	    mmie->length != sizeof(*mmie) - 2)
666 		return -1;
667 
668 	return le16_to_cpu(mmie->key_id);
669 }
670 
671 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
672 				 struct sk_buff *skb)
673 {
674 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
675 	__le16 fc;
676 	int hdrlen;
677 	u8 keyid;
678 
679 	fc = hdr->frame_control;
680 	hdrlen = ieee80211_hdrlen(fc);
681 
682 	if (skb->len < hdrlen + cs->hdr_len)
683 		return -EINVAL;
684 
685 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
686 	keyid &= cs->key_idx_mask;
687 	keyid >>= cs->key_idx_shift;
688 
689 	return keyid;
690 }
691 
692 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
693 {
694 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
695 	char *dev_addr = rx->sdata->vif.addr;
696 
697 	if (ieee80211_is_data(hdr->frame_control)) {
698 		if (is_multicast_ether_addr(hdr->addr1)) {
699 			if (ieee80211_has_tods(hdr->frame_control) ||
700 			    !ieee80211_has_fromds(hdr->frame_control))
701 				return RX_DROP_MONITOR;
702 			if (ether_addr_equal(hdr->addr3, dev_addr))
703 				return RX_DROP_MONITOR;
704 		} else {
705 			if (!ieee80211_has_a4(hdr->frame_control))
706 				return RX_DROP_MONITOR;
707 			if (ether_addr_equal(hdr->addr4, dev_addr))
708 				return RX_DROP_MONITOR;
709 		}
710 	}
711 
712 	/* If there is not an established peer link and this is not a peer link
713 	 * establisment frame, beacon or probe, drop the frame.
714 	 */
715 
716 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
717 		struct ieee80211_mgmt *mgmt;
718 
719 		if (!ieee80211_is_mgmt(hdr->frame_control))
720 			return RX_DROP_MONITOR;
721 
722 		if (ieee80211_is_action(hdr->frame_control)) {
723 			u8 category;
724 
725 			/* make sure category field is present */
726 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
727 				return RX_DROP_MONITOR;
728 
729 			mgmt = (struct ieee80211_mgmt *)hdr;
730 			category = mgmt->u.action.category;
731 			if (category != WLAN_CATEGORY_MESH_ACTION &&
732 			    category != WLAN_CATEGORY_SELF_PROTECTED)
733 				return RX_DROP_MONITOR;
734 			return RX_CONTINUE;
735 		}
736 
737 		if (ieee80211_is_probe_req(hdr->frame_control) ||
738 		    ieee80211_is_probe_resp(hdr->frame_control) ||
739 		    ieee80211_is_beacon(hdr->frame_control) ||
740 		    ieee80211_is_auth(hdr->frame_control))
741 			return RX_CONTINUE;
742 
743 		return RX_DROP_MONITOR;
744 	}
745 
746 	return RX_CONTINUE;
747 }
748 
749 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
750 					    struct tid_ampdu_rx *tid_agg_rx,
751 					    int index,
752 					    struct sk_buff_head *frames)
753 {
754 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
755 	struct sk_buff *skb;
756 	struct ieee80211_rx_status *status;
757 
758 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
759 
760 	if (skb_queue_empty(skb_list))
761 		goto no_frame;
762 
763 	if (!ieee80211_rx_reorder_ready(skb_list)) {
764 		__skb_queue_purge(skb_list);
765 		goto no_frame;
766 	}
767 
768 	/* release frames from the reorder ring buffer */
769 	tid_agg_rx->stored_mpdu_num--;
770 	while ((skb = __skb_dequeue(skb_list))) {
771 		status = IEEE80211_SKB_RXCB(skb);
772 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
773 		__skb_queue_tail(frames, skb);
774 	}
775 
776 no_frame:
777 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
778 }
779 
780 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
781 					     struct tid_ampdu_rx *tid_agg_rx,
782 					     u16 head_seq_num,
783 					     struct sk_buff_head *frames)
784 {
785 	int index;
786 
787 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
788 
789 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
790 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
791 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
792 						frames);
793 	}
794 }
795 
796 /*
797  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
798  * the skb was added to the buffer longer than this time ago, the earlier
799  * frames that have not yet been received are assumed to be lost and the skb
800  * can be released for processing. This may also release other skb's from the
801  * reorder buffer if there are no additional gaps between the frames.
802  *
803  * Callers must hold tid_agg_rx->reorder_lock.
804  */
805 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
806 
807 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
808 					  struct tid_ampdu_rx *tid_agg_rx,
809 					  struct sk_buff_head *frames)
810 {
811 	int index, i, j;
812 
813 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
814 
815 	/* release the buffer until next missing frame */
816 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
817 	if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
818 	    tid_agg_rx->stored_mpdu_num) {
819 		/*
820 		 * No buffers ready to be released, but check whether any
821 		 * frames in the reorder buffer have timed out.
822 		 */
823 		int skipped = 1;
824 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
825 		     j = (j + 1) % tid_agg_rx->buf_size) {
826 			if (!ieee80211_rx_reorder_ready(
827 					&tid_agg_rx->reorder_buf[j])) {
828 				skipped++;
829 				continue;
830 			}
831 			if (skipped &&
832 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
833 					HT_RX_REORDER_BUF_TIMEOUT))
834 				goto set_release_timer;
835 
836 			/* don't leave incomplete A-MSDUs around */
837 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
838 			     i = (i + 1) % tid_agg_rx->buf_size)
839 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
840 
841 			ht_dbg_ratelimited(sdata,
842 					   "release an RX reorder frame due to timeout on earlier frames\n");
843 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
844 							frames);
845 
846 			/*
847 			 * Increment the head seq# also for the skipped slots.
848 			 */
849 			tid_agg_rx->head_seq_num =
850 				(tid_agg_rx->head_seq_num +
851 				 skipped) & IEEE80211_SN_MASK;
852 			skipped = 0;
853 		}
854 	} else while (ieee80211_rx_reorder_ready(
855 				&tid_agg_rx->reorder_buf[index])) {
856 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
857 						frames);
858 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
859 	}
860 
861 	if (tid_agg_rx->stored_mpdu_num) {
862 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
863 
864 		for (; j != (index - 1) % tid_agg_rx->buf_size;
865 		     j = (j + 1) % tid_agg_rx->buf_size) {
866 			if (ieee80211_rx_reorder_ready(
867 					&tid_agg_rx->reorder_buf[j]))
868 				break;
869 		}
870 
871  set_release_timer:
872 
873 		mod_timer(&tid_agg_rx->reorder_timer,
874 			  tid_agg_rx->reorder_time[j] + 1 +
875 			  HT_RX_REORDER_BUF_TIMEOUT);
876 	} else {
877 		del_timer(&tid_agg_rx->reorder_timer);
878 	}
879 }
880 
881 /*
882  * As this function belongs to the RX path it must be under
883  * rcu_read_lock protection. It returns false if the frame
884  * can be processed immediately, true if it was consumed.
885  */
886 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
887 					     struct tid_ampdu_rx *tid_agg_rx,
888 					     struct sk_buff *skb,
889 					     struct sk_buff_head *frames)
890 {
891 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
892 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
893 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
894 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
895 	u16 head_seq_num, buf_size;
896 	int index;
897 	bool ret = true;
898 
899 	spin_lock(&tid_agg_rx->reorder_lock);
900 
901 	/*
902 	 * Offloaded BA sessions have no known starting sequence number so pick
903 	 * one from first Rxed frame for this tid after BA was started.
904 	 */
905 	if (unlikely(tid_agg_rx->auto_seq)) {
906 		tid_agg_rx->auto_seq = false;
907 		tid_agg_rx->ssn = mpdu_seq_num;
908 		tid_agg_rx->head_seq_num = mpdu_seq_num;
909 	}
910 
911 	buf_size = tid_agg_rx->buf_size;
912 	head_seq_num = tid_agg_rx->head_seq_num;
913 
914 	/* frame with out of date sequence number */
915 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
916 		dev_kfree_skb(skb);
917 		goto out;
918 	}
919 
920 	/*
921 	 * If frame the sequence number exceeds our buffering window
922 	 * size release some previous frames to make room for this one.
923 	 */
924 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
925 		head_seq_num = ieee80211_sn_inc(
926 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
927 		/* release stored frames up to new head to stack */
928 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
929 						 head_seq_num, frames);
930 	}
931 
932 	/* Now the new frame is always in the range of the reordering buffer */
933 
934 	index = mpdu_seq_num % tid_agg_rx->buf_size;
935 
936 	/* check if we already stored this frame */
937 	if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
938 		dev_kfree_skb(skb);
939 		goto out;
940 	}
941 
942 	/*
943 	 * If the current MPDU is in the right order and nothing else
944 	 * is stored we can process it directly, no need to buffer it.
945 	 * If it is first but there's something stored, we may be able
946 	 * to release frames after this one.
947 	 */
948 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
949 	    tid_agg_rx->stored_mpdu_num == 0) {
950 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
951 			tid_agg_rx->head_seq_num =
952 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
953 		ret = false;
954 		goto out;
955 	}
956 
957 	/* put the frame in the reordering buffer */
958 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
959 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
960 		tid_agg_rx->reorder_time[index] = jiffies;
961 		tid_agg_rx->stored_mpdu_num++;
962 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
963 	}
964 
965  out:
966 	spin_unlock(&tid_agg_rx->reorder_lock);
967 	return ret;
968 }
969 
970 /*
971  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
972  * true if the MPDU was buffered, false if it should be processed.
973  */
974 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
975 				       struct sk_buff_head *frames)
976 {
977 	struct sk_buff *skb = rx->skb;
978 	struct ieee80211_local *local = rx->local;
979 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
980 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
981 	struct sta_info *sta = rx->sta;
982 	struct tid_ampdu_rx *tid_agg_rx;
983 	u16 sc;
984 	u8 tid, ack_policy;
985 
986 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
987 	    is_multicast_ether_addr(hdr->addr1))
988 		goto dont_reorder;
989 
990 	/*
991 	 * filter the QoS data rx stream according to
992 	 * STA/TID and check if this STA/TID is on aggregation
993 	 */
994 
995 	if (!sta)
996 		goto dont_reorder;
997 
998 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
999 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1000 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1001 
1002 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1003 	if (!tid_agg_rx)
1004 		goto dont_reorder;
1005 
1006 	/* qos null data frames are excluded */
1007 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1008 		goto dont_reorder;
1009 
1010 	/* not part of a BA session */
1011 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1012 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1013 		goto dont_reorder;
1014 
1015 	/* not actually part of this BA session */
1016 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1017 		goto dont_reorder;
1018 
1019 	/* new, potentially un-ordered, ampdu frame - process it */
1020 
1021 	/* reset session timer */
1022 	if (tid_agg_rx->timeout)
1023 		tid_agg_rx->last_rx = jiffies;
1024 
1025 	/* if this mpdu is fragmented - terminate rx aggregation session */
1026 	sc = le16_to_cpu(hdr->seq_ctrl);
1027 	if (sc & IEEE80211_SCTL_FRAG) {
1028 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1029 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1030 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1031 		return;
1032 	}
1033 
1034 	/*
1035 	 * No locking needed -- we will only ever process one
1036 	 * RX packet at a time, and thus own tid_agg_rx. All
1037 	 * other code manipulating it needs to (and does) make
1038 	 * sure that we cannot get to it any more before doing
1039 	 * anything with it.
1040 	 */
1041 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1042 					     frames))
1043 		return;
1044 
1045  dont_reorder:
1046 	__skb_queue_tail(frames, skb);
1047 }
1048 
1049 static ieee80211_rx_result debug_noinline
1050 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1051 {
1052 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1053 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1054 
1055 	/*
1056 	 * Drop duplicate 802.11 retransmissions
1057 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1058 	 */
1059 
1060 	if (rx->skb->len < 24)
1061 		return RX_CONTINUE;
1062 
1063 	if (ieee80211_is_ctl(hdr->frame_control) ||
1064 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1065 	    is_multicast_ether_addr(hdr->addr1))
1066 		return RX_CONTINUE;
1067 
1068 	if (rx->sta) {
1069 		if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1070 			     rx->sta->last_seq_ctrl[rx->seqno_idx] ==
1071 			     hdr->seq_ctrl)) {
1072 			if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1073 				rx->local->dot11FrameDuplicateCount++;
1074 				rx->sta->num_duplicates++;
1075 			}
1076 			return RX_DROP_UNUSABLE;
1077 		} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1078 			rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1079 		}
1080 	}
1081 
1082 	return RX_CONTINUE;
1083 }
1084 
1085 static ieee80211_rx_result debug_noinline
1086 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1087 {
1088 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1089 
1090 	if (unlikely(rx->skb->len < 16)) {
1091 		I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1092 		return RX_DROP_MONITOR;
1093 	}
1094 
1095 	/* Drop disallowed frame classes based on STA auth/assoc state;
1096 	 * IEEE 802.11, Chap 5.5.
1097 	 *
1098 	 * mac80211 filters only based on association state, i.e. it drops
1099 	 * Class 3 frames from not associated stations. hostapd sends
1100 	 * deauth/disassoc frames when needed. In addition, hostapd is
1101 	 * responsible for filtering on both auth and assoc states.
1102 	 */
1103 
1104 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1105 		return ieee80211_rx_mesh_check(rx);
1106 
1107 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1108 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1109 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1110 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1111 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1112 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1113 		/*
1114 		 * accept port control frames from the AP even when it's not
1115 		 * yet marked ASSOC to prevent a race where we don't set the
1116 		 * assoc bit quickly enough before it sends the first frame
1117 		 */
1118 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1119 		    ieee80211_is_data_present(hdr->frame_control)) {
1120 			unsigned int hdrlen;
1121 			__be16 ethertype;
1122 
1123 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1124 
1125 			if (rx->skb->len < hdrlen + 8)
1126 				return RX_DROP_MONITOR;
1127 
1128 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1129 			if (ethertype == rx->sdata->control_port_protocol)
1130 				return RX_CONTINUE;
1131 		}
1132 
1133 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1134 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1135 					       hdr->addr2,
1136 					       GFP_ATOMIC))
1137 			return RX_DROP_UNUSABLE;
1138 
1139 		return RX_DROP_MONITOR;
1140 	}
1141 
1142 	return RX_CONTINUE;
1143 }
1144 
1145 
1146 static ieee80211_rx_result debug_noinline
1147 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1148 {
1149 	struct ieee80211_local *local;
1150 	struct ieee80211_hdr *hdr;
1151 	struct sk_buff *skb;
1152 
1153 	local = rx->local;
1154 	skb = rx->skb;
1155 	hdr = (struct ieee80211_hdr *) skb->data;
1156 
1157 	if (!local->pspolling)
1158 		return RX_CONTINUE;
1159 
1160 	if (!ieee80211_has_fromds(hdr->frame_control))
1161 		/* this is not from AP */
1162 		return RX_CONTINUE;
1163 
1164 	if (!ieee80211_is_data(hdr->frame_control))
1165 		return RX_CONTINUE;
1166 
1167 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1168 		/* AP has no more frames buffered for us */
1169 		local->pspolling = false;
1170 		return RX_CONTINUE;
1171 	}
1172 
1173 	/* more data bit is set, let's request a new frame from the AP */
1174 	ieee80211_send_pspoll(local, rx->sdata);
1175 
1176 	return RX_CONTINUE;
1177 }
1178 
1179 static void sta_ps_start(struct sta_info *sta)
1180 {
1181 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1182 	struct ieee80211_local *local = sdata->local;
1183 	struct ps_data *ps;
1184 
1185 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1186 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1187 		ps = &sdata->bss->ps;
1188 	else
1189 		return;
1190 
1191 	atomic_inc(&ps->num_sta_ps);
1192 	set_sta_flag(sta, WLAN_STA_PS_STA);
1193 	if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1194 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1195 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1196 	       sta->sta.addr, sta->sta.aid);
1197 }
1198 
1199 static void sta_ps_end(struct sta_info *sta)
1200 {
1201 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1202 	       sta->sta.addr, sta->sta.aid);
1203 
1204 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1205 		/*
1206 		 * Clear the flag only if the other one is still set
1207 		 * so that the TX path won't start TX'ing new frames
1208 		 * directly ... In the case that the driver flag isn't
1209 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1210 		 */
1211 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1212 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1213 		       sta->sta.addr, sta->sta.aid);
1214 		return;
1215 	}
1216 
1217 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1218 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1219 	ieee80211_sta_ps_deliver_wakeup(sta);
1220 }
1221 
1222 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1223 {
1224 	struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1225 	bool in_ps;
1226 
1227 	WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1228 
1229 	/* Don't let the same PS state be set twice */
1230 	in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1231 	if ((start && in_ps) || (!start && !in_ps))
1232 		return -EINVAL;
1233 
1234 	if (start)
1235 		sta_ps_start(sta_inf);
1236 	else
1237 		sta_ps_end(sta_inf);
1238 
1239 	return 0;
1240 }
1241 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1242 
1243 static ieee80211_rx_result debug_noinline
1244 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1245 {
1246 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1247 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1248 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1249 	int tid, ac;
1250 
1251 	if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1252 		return RX_CONTINUE;
1253 
1254 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1255 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1256 		return RX_CONTINUE;
1257 
1258 	/*
1259 	 * The device handles station powersave, so don't do anything about
1260 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1261 	 * it to mac80211 since they're handled.)
1262 	 */
1263 	if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1264 		return RX_CONTINUE;
1265 
1266 	/*
1267 	 * Don't do anything if the station isn't already asleep. In
1268 	 * the uAPSD case, the station will probably be marked asleep,
1269 	 * in the PS-Poll case the station must be confused ...
1270 	 */
1271 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1272 		return RX_CONTINUE;
1273 
1274 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1275 		if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1276 			if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1277 				ieee80211_sta_ps_deliver_poll_response(rx->sta);
1278 			else
1279 				set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1280 		}
1281 
1282 		/* Free PS Poll skb here instead of returning RX_DROP that would
1283 		 * count as an dropped frame. */
1284 		dev_kfree_skb(rx->skb);
1285 
1286 		return RX_QUEUED;
1287 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1288 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1289 		   ieee80211_has_pm(hdr->frame_control) &&
1290 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1291 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1292 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1293 		ac = ieee802_1d_to_ac[tid & 7];
1294 
1295 		/*
1296 		 * If this AC is not trigger-enabled do nothing.
1297 		 *
1298 		 * NB: This could/should check a separate bitmap of trigger-
1299 		 * enabled queues, but for now we only implement uAPSD w/o
1300 		 * TSPEC changes to the ACs, so they're always the same.
1301 		 */
1302 		if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1303 			return RX_CONTINUE;
1304 
1305 		/* if we are in a service period, do nothing */
1306 		if (test_sta_flag(rx->sta, WLAN_STA_SP))
1307 			return RX_CONTINUE;
1308 
1309 		if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1310 			ieee80211_sta_ps_deliver_uapsd(rx->sta);
1311 		else
1312 			set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1313 	}
1314 
1315 	return RX_CONTINUE;
1316 }
1317 
1318 static ieee80211_rx_result debug_noinline
1319 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1320 {
1321 	struct sta_info *sta = rx->sta;
1322 	struct sk_buff *skb = rx->skb;
1323 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1324 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1325 	int i;
1326 
1327 	if (!sta)
1328 		return RX_CONTINUE;
1329 
1330 	/*
1331 	 * Update last_rx only for IBSS packets which are for the current
1332 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1333 	 * current IBSS network alive in cases where other STAs start
1334 	 * using different BSSID. This will also give the station another
1335 	 * chance to restart the authentication/authorization in case
1336 	 * something went wrong the first time.
1337 	 */
1338 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1339 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1340 						NL80211_IFTYPE_ADHOC);
1341 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1342 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1343 			sta->last_rx = jiffies;
1344 			if (ieee80211_is_data(hdr->frame_control) &&
1345 			    !is_multicast_ether_addr(hdr->addr1)) {
1346 				sta->last_rx_rate_idx = status->rate_idx;
1347 				sta->last_rx_rate_flag = status->flag;
1348 				sta->last_rx_rate_vht_flag = status->vht_flag;
1349 				sta->last_rx_rate_vht_nss = status->vht_nss;
1350 			}
1351 		}
1352 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1353 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1354 						NL80211_IFTYPE_OCB);
1355 		/* OCB uses wild-card BSSID */
1356 		if (is_broadcast_ether_addr(bssid))
1357 			sta->last_rx = jiffies;
1358 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1359 		/*
1360 		 * Mesh beacons will update last_rx when if they are found to
1361 		 * match the current local configuration when processed.
1362 		 */
1363 		sta->last_rx = jiffies;
1364 		if (ieee80211_is_data(hdr->frame_control)) {
1365 			sta->last_rx_rate_idx = status->rate_idx;
1366 			sta->last_rx_rate_flag = status->flag;
1367 			sta->last_rx_rate_vht_flag = status->vht_flag;
1368 			sta->last_rx_rate_vht_nss = status->vht_nss;
1369 		}
1370 	}
1371 
1372 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1373 		return RX_CONTINUE;
1374 
1375 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1376 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1377 
1378 	sta->rx_fragments++;
1379 	sta->rx_bytes += rx->skb->len;
1380 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1381 		sta->last_signal = status->signal;
1382 		ewma_add(&sta->avg_signal, -status->signal);
1383 	}
1384 
1385 	if (status->chains) {
1386 		sta->chains = status->chains;
1387 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1388 			int signal = status->chain_signal[i];
1389 
1390 			if (!(status->chains & BIT(i)))
1391 				continue;
1392 
1393 			sta->chain_signal_last[i] = signal;
1394 			ewma_add(&sta->chain_signal_avg[i], -signal);
1395 		}
1396 	}
1397 
1398 	/*
1399 	 * Change STA power saving mode only at the end of a frame
1400 	 * exchange sequence.
1401 	 */
1402 	if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1403 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1404 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1405 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1406 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1407 	    /* PM bit is only checked in frames where it isn't reserved,
1408 	     * in AP mode it's reserved in non-bufferable management frames
1409 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1410 	     */
1411 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1412 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1413 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1414 			if (!ieee80211_has_pm(hdr->frame_control))
1415 				sta_ps_end(sta);
1416 		} else {
1417 			if (ieee80211_has_pm(hdr->frame_control))
1418 				sta_ps_start(sta);
1419 		}
1420 	}
1421 
1422 	/* mesh power save support */
1423 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1424 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1425 
1426 	/*
1427 	 * Drop (qos-)data::nullfunc frames silently, since they
1428 	 * are used only to control station power saving mode.
1429 	 */
1430 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1431 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1432 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1433 
1434 		/*
1435 		 * If we receive a 4-addr nullfunc frame from a STA
1436 		 * that was not moved to a 4-addr STA vlan yet send
1437 		 * the event to userspace and for older hostapd drop
1438 		 * the frame to the monitor interface.
1439 		 */
1440 		if (ieee80211_has_a4(hdr->frame_control) &&
1441 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1442 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1443 		      !rx->sdata->u.vlan.sta))) {
1444 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1445 				cfg80211_rx_unexpected_4addr_frame(
1446 					rx->sdata->dev, sta->sta.addr,
1447 					GFP_ATOMIC);
1448 			return RX_DROP_MONITOR;
1449 		}
1450 		/*
1451 		 * Update counter and free packet here to avoid
1452 		 * counting this as a dropped packed.
1453 		 */
1454 		sta->rx_packets++;
1455 		dev_kfree_skb(rx->skb);
1456 		return RX_QUEUED;
1457 	}
1458 
1459 	return RX_CONTINUE;
1460 } /* ieee80211_rx_h_sta_process */
1461 
1462 static ieee80211_rx_result debug_noinline
1463 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1464 {
1465 	struct sk_buff *skb = rx->skb;
1466 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1467 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1468 	int keyidx;
1469 	int hdrlen;
1470 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1471 	struct ieee80211_key *sta_ptk = NULL;
1472 	int mmie_keyidx = -1;
1473 	__le16 fc;
1474 	const struct ieee80211_cipher_scheme *cs = NULL;
1475 
1476 	/*
1477 	 * Key selection 101
1478 	 *
1479 	 * There are four types of keys:
1480 	 *  - GTK (group keys)
1481 	 *  - IGTK (group keys for management frames)
1482 	 *  - PTK (pairwise keys)
1483 	 *  - STK (station-to-station pairwise keys)
1484 	 *
1485 	 * When selecting a key, we have to distinguish between multicast
1486 	 * (including broadcast) and unicast frames, the latter can only
1487 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1488 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1489 	 * unicast frames can also use key indices like GTKs. Hence, if we
1490 	 * don't have a PTK/STK we check the key index for a WEP key.
1491 	 *
1492 	 * Note that in a regular BSS, multicast frames are sent by the
1493 	 * AP only, associated stations unicast the frame to the AP first
1494 	 * which then multicasts it on their behalf.
1495 	 *
1496 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1497 	 * with each station, that is something we don't currently handle.
1498 	 * The spec seems to expect that one negotiates the same key with
1499 	 * every station but there's no such requirement; VLANs could be
1500 	 * possible.
1501 	 */
1502 
1503 	/*
1504 	 * No point in finding a key and decrypting if the frame is neither
1505 	 * addressed to us nor a multicast frame.
1506 	 */
1507 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1508 		return RX_CONTINUE;
1509 
1510 	/* start without a key */
1511 	rx->key = NULL;
1512 	fc = hdr->frame_control;
1513 
1514 	if (rx->sta) {
1515 		int keyid = rx->sta->ptk_idx;
1516 
1517 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1518 			cs = rx->sta->cipher_scheme;
1519 			keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1520 			if (unlikely(keyid < 0))
1521 				return RX_DROP_UNUSABLE;
1522 		}
1523 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1524 	}
1525 
1526 	if (!ieee80211_has_protected(fc))
1527 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1528 
1529 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1530 		rx->key = sta_ptk;
1531 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1532 		    (status->flag & RX_FLAG_IV_STRIPPED))
1533 			return RX_CONTINUE;
1534 		/* Skip decryption if the frame is not protected. */
1535 		if (!ieee80211_has_protected(fc))
1536 			return RX_CONTINUE;
1537 	} else if (mmie_keyidx >= 0) {
1538 		/* Broadcast/multicast robust management frame / BIP */
1539 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1540 		    (status->flag & RX_FLAG_IV_STRIPPED))
1541 			return RX_CONTINUE;
1542 
1543 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1544 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1545 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1546 		if (rx->sta)
1547 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1548 		if (!rx->key)
1549 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1550 	} else if (!ieee80211_has_protected(fc)) {
1551 		/*
1552 		 * The frame was not protected, so skip decryption. However, we
1553 		 * need to set rx->key if there is a key that could have been
1554 		 * used so that the frame may be dropped if encryption would
1555 		 * have been expected.
1556 		 */
1557 		struct ieee80211_key *key = NULL;
1558 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1559 		int i;
1560 
1561 		if (ieee80211_is_mgmt(fc) &&
1562 		    is_multicast_ether_addr(hdr->addr1) &&
1563 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1564 			rx->key = key;
1565 		else {
1566 			if (rx->sta) {
1567 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1568 					key = rcu_dereference(rx->sta->gtk[i]);
1569 					if (key)
1570 						break;
1571 				}
1572 			}
1573 			if (!key) {
1574 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1575 					key = rcu_dereference(sdata->keys[i]);
1576 					if (key)
1577 						break;
1578 				}
1579 			}
1580 			if (key)
1581 				rx->key = key;
1582 		}
1583 		return RX_CONTINUE;
1584 	} else {
1585 		u8 keyid;
1586 
1587 		/*
1588 		 * The device doesn't give us the IV so we won't be
1589 		 * able to look up the key. That's ok though, we
1590 		 * don't need to decrypt the frame, we just won't
1591 		 * be able to keep statistics accurate.
1592 		 * Except for key threshold notifications, should
1593 		 * we somehow allow the driver to tell us which key
1594 		 * the hardware used if this flag is set?
1595 		 */
1596 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1597 		    (status->flag & RX_FLAG_IV_STRIPPED))
1598 			return RX_CONTINUE;
1599 
1600 		hdrlen = ieee80211_hdrlen(fc);
1601 
1602 		if (cs) {
1603 			keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1604 
1605 			if (unlikely(keyidx < 0))
1606 				return RX_DROP_UNUSABLE;
1607 		} else {
1608 			if (rx->skb->len < 8 + hdrlen)
1609 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1610 			/*
1611 			 * no need to call ieee80211_wep_get_keyidx,
1612 			 * it verifies a bunch of things we've done already
1613 			 */
1614 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1615 			keyidx = keyid >> 6;
1616 		}
1617 
1618 		/* check per-station GTK first, if multicast packet */
1619 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1620 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1621 
1622 		/* if not found, try default key */
1623 		if (!rx->key) {
1624 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1625 
1626 			/*
1627 			 * RSNA-protected unicast frames should always be
1628 			 * sent with pairwise or station-to-station keys,
1629 			 * but for WEP we allow using a key index as well.
1630 			 */
1631 			if (rx->key &&
1632 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1633 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1634 			    !is_multicast_ether_addr(hdr->addr1))
1635 				rx->key = NULL;
1636 		}
1637 	}
1638 
1639 	if (rx->key) {
1640 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1641 			return RX_DROP_MONITOR;
1642 
1643 		rx->key->tx_rx_count++;
1644 		/* TODO: add threshold stuff again */
1645 	} else {
1646 		return RX_DROP_MONITOR;
1647 	}
1648 
1649 	switch (rx->key->conf.cipher) {
1650 	case WLAN_CIPHER_SUITE_WEP40:
1651 	case WLAN_CIPHER_SUITE_WEP104:
1652 		result = ieee80211_crypto_wep_decrypt(rx);
1653 		break;
1654 	case WLAN_CIPHER_SUITE_TKIP:
1655 		result = ieee80211_crypto_tkip_decrypt(rx);
1656 		break;
1657 	case WLAN_CIPHER_SUITE_CCMP:
1658 		result = ieee80211_crypto_ccmp_decrypt(rx);
1659 		break;
1660 	case WLAN_CIPHER_SUITE_AES_CMAC:
1661 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1662 		break;
1663 	default:
1664 		result = ieee80211_crypto_hw_decrypt(rx);
1665 	}
1666 
1667 	/* the hdr variable is invalid after the decrypt handlers */
1668 
1669 	/* either the frame has been decrypted or will be dropped */
1670 	status->flag |= RX_FLAG_DECRYPTED;
1671 
1672 	return result;
1673 }
1674 
1675 static inline struct ieee80211_fragment_entry *
1676 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1677 			 unsigned int frag, unsigned int seq, int rx_queue,
1678 			 struct sk_buff **skb)
1679 {
1680 	struct ieee80211_fragment_entry *entry;
1681 
1682 	entry = &sdata->fragments[sdata->fragment_next++];
1683 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1684 		sdata->fragment_next = 0;
1685 
1686 	if (!skb_queue_empty(&entry->skb_list))
1687 		__skb_queue_purge(&entry->skb_list);
1688 
1689 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1690 	*skb = NULL;
1691 	entry->first_frag_time = jiffies;
1692 	entry->seq = seq;
1693 	entry->rx_queue = rx_queue;
1694 	entry->last_frag = frag;
1695 	entry->ccmp = 0;
1696 	entry->extra_len = 0;
1697 
1698 	return entry;
1699 }
1700 
1701 static inline struct ieee80211_fragment_entry *
1702 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1703 			  unsigned int frag, unsigned int seq,
1704 			  int rx_queue, struct ieee80211_hdr *hdr)
1705 {
1706 	struct ieee80211_fragment_entry *entry;
1707 	int i, idx;
1708 
1709 	idx = sdata->fragment_next;
1710 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1711 		struct ieee80211_hdr *f_hdr;
1712 
1713 		idx--;
1714 		if (idx < 0)
1715 			idx = IEEE80211_FRAGMENT_MAX - 1;
1716 
1717 		entry = &sdata->fragments[idx];
1718 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1719 		    entry->rx_queue != rx_queue ||
1720 		    entry->last_frag + 1 != frag)
1721 			continue;
1722 
1723 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1724 
1725 		/*
1726 		 * Check ftype and addresses are equal, else check next fragment
1727 		 */
1728 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1729 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1730 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1731 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1732 			continue;
1733 
1734 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1735 			__skb_queue_purge(&entry->skb_list);
1736 			continue;
1737 		}
1738 		return entry;
1739 	}
1740 
1741 	return NULL;
1742 }
1743 
1744 static ieee80211_rx_result debug_noinline
1745 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1746 {
1747 	struct ieee80211_hdr *hdr;
1748 	u16 sc;
1749 	__le16 fc;
1750 	unsigned int frag, seq;
1751 	struct ieee80211_fragment_entry *entry;
1752 	struct sk_buff *skb;
1753 	struct ieee80211_rx_status *status;
1754 
1755 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1756 	fc = hdr->frame_control;
1757 
1758 	if (ieee80211_is_ctl(fc))
1759 		return RX_CONTINUE;
1760 
1761 	sc = le16_to_cpu(hdr->seq_ctrl);
1762 	frag = sc & IEEE80211_SCTL_FRAG;
1763 
1764 	if (is_multicast_ether_addr(hdr->addr1)) {
1765 		rx->local->dot11MulticastReceivedFrameCount++;
1766 		goto out_no_led;
1767 	}
1768 
1769 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1770 		goto out;
1771 
1772 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1773 
1774 	if (skb_linearize(rx->skb))
1775 		return RX_DROP_UNUSABLE;
1776 
1777 	/*
1778 	 *  skb_linearize() might change the skb->data and
1779 	 *  previously cached variables (in this case, hdr) need to
1780 	 *  be refreshed with the new data.
1781 	 */
1782 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1783 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1784 
1785 	if (frag == 0) {
1786 		/* This is the first fragment of a new frame. */
1787 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1788 						 rx->seqno_idx, &(rx->skb));
1789 		if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1790 		    ieee80211_has_protected(fc)) {
1791 			int queue = rx->security_idx;
1792 			/* Store CCMP PN so that we can verify that the next
1793 			 * fragment has a sequential PN value. */
1794 			entry->ccmp = 1;
1795 			memcpy(entry->last_pn,
1796 			       rx->key->u.ccmp.rx_pn[queue],
1797 			       IEEE80211_CCMP_PN_LEN);
1798 		}
1799 		return RX_QUEUED;
1800 	}
1801 
1802 	/* This is a fragment for a frame that should already be pending in
1803 	 * fragment cache. Add this fragment to the end of the pending entry.
1804 	 */
1805 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1806 					  rx->seqno_idx, hdr);
1807 	if (!entry) {
1808 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1809 		return RX_DROP_MONITOR;
1810 	}
1811 
1812 	/* Verify that MPDUs within one MSDU have sequential PN values.
1813 	 * (IEEE 802.11i, 8.3.3.4.5) */
1814 	if (entry->ccmp) {
1815 		int i;
1816 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1817 		int queue;
1818 		if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1819 			return RX_DROP_UNUSABLE;
1820 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1821 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1822 			pn[i]++;
1823 			if (pn[i])
1824 				break;
1825 		}
1826 		queue = rx->security_idx;
1827 		rpn = rx->key->u.ccmp.rx_pn[queue];
1828 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1829 			return RX_DROP_UNUSABLE;
1830 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1831 	}
1832 
1833 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1834 	__skb_queue_tail(&entry->skb_list, rx->skb);
1835 	entry->last_frag = frag;
1836 	entry->extra_len += rx->skb->len;
1837 	if (ieee80211_has_morefrags(fc)) {
1838 		rx->skb = NULL;
1839 		return RX_QUEUED;
1840 	}
1841 
1842 	rx->skb = __skb_dequeue(&entry->skb_list);
1843 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1844 		I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1845 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1846 					      GFP_ATOMIC))) {
1847 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1848 			__skb_queue_purge(&entry->skb_list);
1849 			return RX_DROP_UNUSABLE;
1850 		}
1851 	}
1852 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1853 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1854 		dev_kfree_skb(skb);
1855 	}
1856 
1857 	/* Complete frame has been reassembled - process it now */
1858 	status = IEEE80211_SKB_RXCB(rx->skb);
1859 	status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1860 
1861  out:
1862 	ieee80211_led_rx(rx->local);
1863  out_no_led:
1864 	if (rx->sta)
1865 		rx->sta->rx_packets++;
1866 	return RX_CONTINUE;
1867 }
1868 
1869 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1870 {
1871 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1872 		return -EACCES;
1873 
1874 	return 0;
1875 }
1876 
1877 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1878 {
1879 	struct sk_buff *skb = rx->skb;
1880 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1881 
1882 	/*
1883 	 * Pass through unencrypted frames if the hardware has
1884 	 * decrypted them already.
1885 	 */
1886 	if (status->flag & RX_FLAG_DECRYPTED)
1887 		return 0;
1888 
1889 	/* Drop unencrypted frames if key is set. */
1890 	if (unlikely(!ieee80211_has_protected(fc) &&
1891 		     !ieee80211_is_nullfunc(fc) &&
1892 		     ieee80211_is_data(fc) &&
1893 		     (rx->key || rx->sdata->drop_unencrypted)))
1894 		return -EACCES;
1895 
1896 	return 0;
1897 }
1898 
1899 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1900 {
1901 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1902 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1903 	__le16 fc = hdr->frame_control;
1904 
1905 	/*
1906 	 * Pass through unencrypted frames if the hardware has
1907 	 * decrypted them already.
1908 	 */
1909 	if (status->flag & RX_FLAG_DECRYPTED)
1910 		return 0;
1911 
1912 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1913 		if (unlikely(!ieee80211_has_protected(fc) &&
1914 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1915 			     rx->key)) {
1916 			if (ieee80211_is_deauth(fc) ||
1917 			    ieee80211_is_disassoc(fc))
1918 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1919 							     rx->skb->data,
1920 							     rx->skb->len);
1921 			return -EACCES;
1922 		}
1923 		/* BIP does not use Protected field, so need to check MMIE */
1924 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1925 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1926 			if (ieee80211_is_deauth(fc) ||
1927 			    ieee80211_is_disassoc(fc))
1928 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1929 							     rx->skb->data,
1930 							     rx->skb->len);
1931 			return -EACCES;
1932 		}
1933 		/*
1934 		 * When using MFP, Action frames are not allowed prior to
1935 		 * having configured keys.
1936 		 */
1937 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1938 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
1939 			return -EACCES;
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 static int
1946 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1947 {
1948 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1949 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1950 	bool check_port_control = false;
1951 	struct ethhdr *ehdr;
1952 	int ret;
1953 
1954 	*port_control = false;
1955 	if (ieee80211_has_a4(hdr->frame_control) &&
1956 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1957 		return -1;
1958 
1959 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1960 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1961 
1962 		if (!sdata->u.mgd.use_4addr)
1963 			return -1;
1964 		else
1965 			check_port_control = true;
1966 	}
1967 
1968 	if (is_multicast_ether_addr(hdr->addr1) &&
1969 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1970 		return -1;
1971 
1972 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1973 	if (ret < 0)
1974 		return ret;
1975 
1976 	ehdr = (struct ethhdr *) rx->skb->data;
1977 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
1978 		*port_control = true;
1979 	else if (check_port_control)
1980 		return -1;
1981 
1982 	return 0;
1983 }
1984 
1985 /*
1986  * requires that rx->skb is a frame with ethernet header
1987  */
1988 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1989 {
1990 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1991 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1992 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1993 
1994 	/*
1995 	 * Allow EAPOL frames to us/the PAE group address regardless
1996 	 * of whether the frame was encrypted or not.
1997 	 */
1998 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1999 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2000 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2001 		return true;
2002 
2003 	if (ieee80211_802_1x_port_control(rx) ||
2004 	    ieee80211_drop_unencrypted(rx, fc))
2005 		return false;
2006 
2007 	return true;
2008 }
2009 
2010 /*
2011  * requires that rx->skb is a frame with ethernet header
2012  */
2013 static void
2014 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2015 {
2016 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2017 	struct net_device *dev = sdata->dev;
2018 	struct sk_buff *skb, *xmit_skb;
2019 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2020 	struct sta_info *dsta;
2021 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2022 
2023 	skb = rx->skb;
2024 	xmit_skb = NULL;
2025 
2026 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2027 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2028 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2029 	    (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
2030 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2031 		if (is_multicast_ether_addr(ehdr->h_dest)) {
2032 			/*
2033 			 * send multicast frames both to higher layers in
2034 			 * local net stack and back to the wireless medium
2035 			 */
2036 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2037 			if (!xmit_skb)
2038 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2039 						    dev->name);
2040 		} else {
2041 			dsta = sta_info_get(sdata, skb->data);
2042 			if (dsta) {
2043 				/*
2044 				 * The destination station is associated to
2045 				 * this AP (in this VLAN), so send the frame
2046 				 * directly to it and do not pass it to local
2047 				 * net stack.
2048 				 */
2049 				xmit_skb = skb;
2050 				skb = NULL;
2051 			}
2052 		}
2053 	}
2054 
2055 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2056 	if (skb) {
2057 		/* 'align' will only take the values 0 or 2 here since all
2058 		 * frames are required to be aligned to 2-byte boundaries
2059 		 * when being passed to mac80211; the code here works just
2060 		 * as well if that isn't true, but mac80211 assumes it can
2061 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2062 		 */
2063 		int align;
2064 
2065 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2066 		if (align) {
2067 			if (WARN_ON(skb_headroom(skb) < 3)) {
2068 				dev_kfree_skb(skb);
2069 				skb = NULL;
2070 			} else {
2071 				u8 *data = skb->data;
2072 				size_t len = skb_headlen(skb);
2073 				skb->data -= align;
2074 				memmove(skb->data, data, len);
2075 				skb_set_tail_pointer(skb, len);
2076 			}
2077 		}
2078 	}
2079 #endif
2080 
2081 	if (skb) {
2082 		/* deliver to local stack */
2083 		skb->protocol = eth_type_trans(skb, dev);
2084 		memset(skb->cb, 0, sizeof(skb->cb));
2085 		if (rx->local->napi)
2086 			napi_gro_receive(rx->local->napi, skb);
2087 		else
2088 			netif_receive_skb(skb);
2089 	}
2090 
2091 	if (xmit_skb) {
2092 		/*
2093 		 * Send to wireless media and increase priority by 256 to
2094 		 * keep the received priority instead of reclassifying
2095 		 * the frame (see cfg80211_classify8021d).
2096 		 */
2097 		xmit_skb->priority += 256;
2098 		xmit_skb->protocol = htons(ETH_P_802_3);
2099 		skb_reset_network_header(xmit_skb);
2100 		skb_reset_mac_header(xmit_skb);
2101 		dev_queue_xmit(xmit_skb);
2102 	}
2103 }
2104 
2105 static ieee80211_rx_result debug_noinline
2106 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2107 {
2108 	struct net_device *dev = rx->sdata->dev;
2109 	struct sk_buff *skb = rx->skb;
2110 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2111 	__le16 fc = hdr->frame_control;
2112 	struct sk_buff_head frame_list;
2113 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2114 
2115 	if (unlikely(!ieee80211_is_data(fc)))
2116 		return RX_CONTINUE;
2117 
2118 	if (unlikely(!ieee80211_is_data_present(fc)))
2119 		return RX_DROP_MONITOR;
2120 
2121 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2122 		return RX_CONTINUE;
2123 
2124 	if (ieee80211_has_a4(hdr->frame_control) &&
2125 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2126 	    !rx->sdata->u.vlan.sta)
2127 		return RX_DROP_UNUSABLE;
2128 
2129 	if (is_multicast_ether_addr(hdr->addr1) &&
2130 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2131 	      rx->sdata->u.vlan.sta) ||
2132 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2133 	      rx->sdata->u.mgd.use_4addr)))
2134 		return RX_DROP_UNUSABLE;
2135 
2136 	skb->dev = dev;
2137 	__skb_queue_head_init(&frame_list);
2138 
2139 	if (skb_linearize(skb))
2140 		return RX_DROP_UNUSABLE;
2141 
2142 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2143 				 rx->sdata->vif.type,
2144 				 rx->local->hw.extra_tx_headroom, true);
2145 
2146 	while (!skb_queue_empty(&frame_list)) {
2147 		rx->skb = __skb_dequeue(&frame_list);
2148 
2149 		if (!ieee80211_frame_allowed(rx, fc)) {
2150 			dev_kfree_skb(rx->skb);
2151 			continue;
2152 		}
2153 		dev->stats.rx_packets++;
2154 		dev->stats.rx_bytes += rx->skb->len;
2155 
2156 		ieee80211_deliver_skb(rx);
2157 	}
2158 
2159 	return RX_QUEUED;
2160 }
2161 
2162 #ifdef CONFIG_MAC80211_MESH
2163 static ieee80211_rx_result
2164 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2165 {
2166 	struct ieee80211_hdr *fwd_hdr, *hdr;
2167 	struct ieee80211_tx_info *info;
2168 	struct ieee80211s_hdr *mesh_hdr;
2169 	struct sk_buff *skb = rx->skb, *fwd_skb;
2170 	struct ieee80211_local *local = rx->local;
2171 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2172 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2173 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2174 	u16 q, hdrlen;
2175 
2176 	hdr = (struct ieee80211_hdr *) skb->data;
2177 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2178 
2179 	/* make sure fixed part of mesh header is there, also checks skb len */
2180 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2181 		return RX_DROP_MONITOR;
2182 
2183 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2184 
2185 	/* make sure full mesh header is there, also checks skb len */
2186 	if (!pskb_may_pull(rx->skb,
2187 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2188 		return RX_DROP_MONITOR;
2189 
2190 	/* reload pointers */
2191 	hdr = (struct ieee80211_hdr *) skb->data;
2192 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2193 
2194 	/* frame is in RMC, don't forward */
2195 	if (ieee80211_is_data(hdr->frame_control) &&
2196 	    is_multicast_ether_addr(hdr->addr1) &&
2197 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2198 		return RX_DROP_MONITOR;
2199 
2200 	if (!ieee80211_is_data(hdr->frame_control) ||
2201 	    !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2202 		return RX_CONTINUE;
2203 
2204 	if (!mesh_hdr->ttl)
2205 		return RX_DROP_MONITOR;
2206 
2207 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2208 		struct mesh_path *mppath;
2209 		char *proxied_addr;
2210 		char *mpp_addr;
2211 
2212 		if (is_multicast_ether_addr(hdr->addr1)) {
2213 			mpp_addr = hdr->addr3;
2214 			proxied_addr = mesh_hdr->eaddr1;
2215 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2216 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2217 			mpp_addr = hdr->addr4;
2218 			proxied_addr = mesh_hdr->eaddr2;
2219 		} else {
2220 			return RX_DROP_MONITOR;
2221 		}
2222 
2223 		rcu_read_lock();
2224 		mppath = mpp_path_lookup(sdata, proxied_addr);
2225 		if (!mppath) {
2226 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2227 		} else {
2228 			spin_lock_bh(&mppath->state_lock);
2229 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2230 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2231 			spin_unlock_bh(&mppath->state_lock);
2232 		}
2233 		rcu_read_unlock();
2234 	}
2235 
2236 	/* Frame has reached destination.  Don't forward */
2237 	if (!is_multicast_ether_addr(hdr->addr1) &&
2238 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2239 		return RX_CONTINUE;
2240 
2241 	q = ieee80211_select_queue_80211(sdata, skb, hdr);
2242 	if (ieee80211_queue_stopped(&local->hw, q)) {
2243 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2244 		return RX_DROP_MONITOR;
2245 	}
2246 	skb_set_queue_mapping(skb, q);
2247 
2248 	if (!--mesh_hdr->ttl) {
2249 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2250 		goto out;
2251 	}
2252 
2253 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2254 		goto out;
2255 
2256 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
2257 	if (!fwd_skb) {
2258 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2259 				    sdata->name);
2260 		goto out;
2261 	}
2262 
2263 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2264 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2265 	info = IEEE80211_SKB_CB(fwd_skb);
2266 	memset(info, 0, sizeof(*info));
2267 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2268 	info->control.vif = &rx->sdata->vif;
2269 	info->control.jiffies = jiffies;
2270 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2271 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2272 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2273 		/* update power mode indication when forwarding */
2274 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2275 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2276 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2277 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2278 	} else {
2279 		/* unable to resolve next hop */
2280 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2281 				   fwd_hdr->addr3, 0,
2282 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2283 				   fwd_hdr->addr2);
2284 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2285 		kfree_skb(fwd_skb);
2286 		return RX_DROP_MONITOR;
2287 	}
2288 
2289 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2290 	ieee80211_add_pending_skb(local, fwd_skb);
2291  out:
2292 	if (is_multicast_ether_addr(hdr->addr1) ||
2293 	    sdata->dev->flags & IFF_PROMISC)
2294 		return RX_CONTINUE;
2295 	else
2296 		return RX_DROP_MONITOR;
2297 }
2298 #endif
2299 
2300 static ieee80211_rx_result debug_noinline
2301 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2302 {
2303 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2304 	struct ieee80211_local *local = rx->local;
2305 	struct net_device *dev = sdata->dev;
2306 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2307 	__le16 fc = hdr->frame_control;
2308 	bool port_control;
2309 	int err;
2310 
2311 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2312 		return RX_CONTINUE;
2313 
2314 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2315 		return RX_DROP_MONITOR;
2316 
2317 	/*
2318 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2319 	 * also drop the frame to cooked monitor interfaces.
2320 	 */
2321 	if (ieee80211_has_a4(hdr->frame_control) &&
2322 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2323 		if (rx->sta &&
2324 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2325 			cfg80211_rx_unexpected_4addr_frame(
2326 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2327 		return RX_DROP_MONITOR;
2328 	}
2329 
2330 	err = __ieee80211_data_to_8023(rx, &port_control);
2331 	if (unlikely(err))
2332 		return RX_DROP_UNUSABLE;
2333 
2334 	if (!ieee80211_frame_allowed(rx, fc))
2335 		return RX_DROP_MONITOR;
2336 
2337 	/* directly handle TDLS channel switch requests/responses */
2338 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2339 						cpu_to_be16(ETH_P_TDLS))) {
2340 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2341 
2342 		if (pskb_may_pull(rx->skb,
2343 				  offsetof(struct ieee80211_tdls_data, u)) &&
2344 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2345 		    tf->category == WLAN_CATEGORY_TDLS &&
2346 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2347 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2348 			rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TDLS_CHSW;
2349 			skb_queue_tail(&sdata->skb_queue, rx->skb);
2350 			ieee80211_queue_work(&rx->local->hw, &sdata->work);
2351 			if (rx->sta)
2352 				rx->sta->rx_packets++;
2353 
2354 			return RX_QUEUED;
2355 		}
2356 	}
2357 
2358 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2359 	    unlikely(port_control) && sdata->bss) {
2360 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2361 				     u.ap);
2362 		dev = sdata->dev;
2363 		rx->sdata = sdata;
2364 	}
2365 
2366 	rx->skb->dev = dev;
2367 
2368 	dev->stats.rx_packets++;
2369 	dev->stats.rx_bytes += rx->skb->len;
2370 
2371 	if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2372 	    !is_multicast_ether_addr(
2373 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2374 	    (!local->scanning &&
2375 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2376 			mod_timer(&local->dynamic_ps_timer, jiffies +
2377 			 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2378 	}
2379 
2380 	ieee80211_deliver_skb(rx);
2381 
2382 	return RX_QUEUED;
2383 }
2384 
2385 static ieee80211_rx_result debug_noinline
2386 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2387 {
2388 	struct sk_buff *skb = rx->skb;
2389 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2390 	struct tid_ampdu_rx *tid_agg_rx;
2391 	u16 start_seq_num;
2392 	u16 tid;
2393 
2394 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2395 		return RX_CONTINUE;
2396 
2397 	if (ieee80211_is_back_req(bar->frame_control)) {
2398 		struct {
2399 			__le16 control, start_seq_num;
2400 		} __packed bar_data;
2401 
2402 		if (!rx->sta)
2403 			return RX_DROP_MONITOR;
2404 
2405 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2406 				  &bar_data, sizeof(bar_data)))
2407 			return RX_DROP_MONITOR;
2408 
2409 		tid = le16_to_cpu(bar_data.control) >> 12;
2410 
2411 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2412 		if (!tid_agg_rx)
2413 			return RX_DROP_MONITOR;
2414 
2415 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2416 
2417 		/* reset session timer */
2418 		if (tid_agg_rx->timeout)
2419 			mod_timer(&tid_agg_rx->session_timer,
2420 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2421 
2422 		spin_lock(&tid_agg_rx->reorder_lock);
2423 		/* release stored frames up to start of BAR */
2424 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2425 						 start_seq_num, frames);
2426 		spin_unlock(&tid_agg_rx->reorder_lock);
2427 
2428 		kfree_skb(skb);
2429 		return RX_QUEUED;
2430 	}
2431 
2432 	/*
2433 	 * After this point, we only want management frames,
2434 	 * so we can drop all remaining control frames to
2435 	 * cooked monitor interfaces.
2436 	 */
2437 	return RX_DROP_MONITOR;
2438 }
2439 
2440 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2441 					   struct ieee80211_mgmt *mgmt,
2442 					   size_t len)
2443 {
2444 	struct ieee80211_local *local = sdata->local;
2445 	struct sk_buff *skb;
2446 	struct ieee80211_mgmt *resp;
2447 
2448 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2449 		/* Not to own unicast address */
2450 		return;
2451 	}
2452 
2453 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2454 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2455 		/* Not from the current AP or not associated yet. */
2456 		return;
2457 	}
2458 
2459 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2460 		/* Too short SA Query request frame */
2461 		return;
2462 	}
2463 
2464 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2465 	if (skb == NULL)
2466 		return;
2467 
2468 	skb_reserve(skb, local->hw.extra_tx_headroom);
2469 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2470 	memset(resp, 0, 24);
2471 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2472 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2473 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2474 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2475 					  IEEE80211_STYPE_ACTION);
2476 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2477 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2478 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2479 	memcpy(resp->u.action.u.sa_query.trans_id,
2480 	       mgmt->u.action.u.sa_query.trans_id,
2481 	       WLAN_SA_QUERY_TR_ID_LEN);
2482 
2483 	ieee80211_tx_skb(sdata, skb);
2484 }
2485 
2486 static ieee80211_rx_result debug_noinline
2487 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2488 {
2489 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2490 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2491 
2492 	/*
2493 	 * From here on, look only at management frames.
2494 	 * Data and control frames are already handled,
2495 	 * and unknown (reserved) frames are useless.
2496 	 */
2497 	if (rx->skb->len < 24)
2498 		return RX_DROP_MONITOR;
2499 
2500 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2501 		return RX_DROP_MONITOR;
2502 
2503 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2504 	    ieee80211_is_beacon(mgmt->frame_control) &&
2505 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2506 		int sig = 0;
2507 
2508 		if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2509 			sig = status->signal;
2510 
2511 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2512 					    rx->skb->data, rx->skb->len,
2513 					    status->freq, sig);
2514 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2515 	}
2516 
2517 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2518 		return RX_DROP_MONITOR;
2519 
2520 	if (ieee80211_drop_unencrypted_mgmt(rx))
2521 		return RX_DROP_UNUSABLE;
2522 
2523 	return RX_CONTINUE;
2524 }
2525 
2526 static ieee80211_rx_result debug_noinline
2527 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2528 {
2529 	struct ieee80211_local *local = rx->local;
2530 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2531 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2532 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2533 	int len = rx->skb->len;
2534 
2535 	if (!ieee80211_is_action(mgmt->frame_control))
2536 		return RX_CONTINUE;
2537 
2538 	/* drop too small frames */
2539 	if (len < IEEE80211_MIN_ACTION_SIZE)
2540 		return RX_DROP_UNUSABLE;
2541 
2542 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2543 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2544 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2545 		return RX_DROP_UNUSABLE;
2546 
2547 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2548 		return RX_DROP_UNUSABLE;
2549 
2550 	switch (mgmt->u.action.category) {
2551 	case WLAN_CATEGORY_HT:
2552 		/* reject HT action frames from stations not supporting HT */
2553 		if (!rx->sta->sta.ht_cap.ht_supported)
2554 			goto invalid;
2555 
2556 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2557 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2558 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2559 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2560 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2561 			break;
2562 
2563 		/* verify action & smps_control/chanwidth are present */
2564 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2565 			goto invalid;
2566 
2567 		switch (mgmt->u.action.u.ht_smps.action) {
2568 		case WLAN_HT_ACTION_SMPS: {
2569 			struct ieee80211_supported_band *sband;
2570 			enum ieee80211_smps_mode smps_mode;
2571 
2572 			/* convert to HT capability */
2573 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2574 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2575 				smps_mode = IEEE80211_SMPS_OFF;
2576 				break;
2577 			case WLAN_HT_SMPS_CONTROL_STATIC:
2578 				smps_mode = IEEE80211_SMPS_STATIC;
2579 				break;
2580 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2581 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2582 				break;
2583 			default:
2584 				goto invalid;
2585 			}
2586 
2587 			/* if no change do nothing */
2588 			if (rx->sta->sta.smps_mode == smps_mode)
2589 				goto handled;
2590 			rx->sta->sta.smps_mode = smps_mode;
2591 
2592 			sband = rx->local->hw.wiphy->bands[status->band];
2593 
2594 			rate_control_rate_update(local, sband, rx->sta,
2595 						 IEEE80211_RC_SMPS_CHANGED);
2596 			goto handled;
2597 		}
2598 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2599 			struct ieee80211_supported_band *sband;
2600 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2601 			enum ieee80211_sta_rx_bandwidth new_bw;
2602 
2603 			/* If it doesn't support 40 MHz it can't change ... */
2604 			if (!(rx->sta->sta.ht_cap.cap &
2605 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2606 				goto handled;
2607 
2608 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2609 				new_bw = IEEE80211_STA_RX_BW_20;
2610 			else
2611 				new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2612 
2613 			if (rx->sta->sta.bandwidth == new_bw)
2614 				goto handled;
2615 
2616 			sband = rx->local->hw.wiphy->bands[status->band];
2617 
2618 			rate_control_rate_update(local, sband, rx->sta,
2619 						 IEEE80211_RC_BW_CHANGED);
2620 			goto handled;
2621 		}
2622 		default:
2623 			goto invalid;
2624 		}
2625 
2626 		break;
2627 	case WLAN_CATEGORY_PUBLIC:
2628 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2629 			goto invalid;
2630 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2631 			break;
2632 		if (!rx->sta)
2633 			break;
2634 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2635 			break;
2636 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2637 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2638 			break;
2639 		if (len < offsetof(struct ieee80211_mgmt,
2640 				   u.action.u.ext_chan_switch.variable))
2641 			goto invalid;
2642 		goto queue;
2643 	case WLAN_CATEGORY_VHT:
2644 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2645 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2646 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2647 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2648 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2649 			break;
2650 
2651 		/* verify action code is present */
2652 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2653 			goto invalid;
2654 
2655 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2656 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2657 			u8 opmode;
2658 
2659 			/* verify opmode is present */
2660 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2661 				goto invalid;
2662 
2663 			opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2664 
2665 			ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2666 						    opmode, status->band,
2667 						    false);
2668 			goto handled;
2669 		}
2670 		default:
2671 			break;
2672 		}
2673 		break;
2674 	case WLAN_CATEGORY_BACK:
2675 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2676 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2677 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2678 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2679 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2680 			break;
2681 
2682 		/* verify action_code is present */
2683 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2684 			break;
2685 
2686 		switch (mgmt->u.action.u.addba_req.action_code) {
2687 		case WLAN_ACTION_ADDBA_REQ:
2688 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2689 				   sizeof(mgmt->u.action.u.addba_req)))
2690 				goto invalid;
2691 			break;
2692 		case WLAN_ACTION_ADDBA_RESP:
2693 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2694 				   sizeof(mgmt->u.action.u.addba_resp)))
2695 				goto invalid;
2696 			break;
2697 		case WLAN_ACTION_DELBA:
2698 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2699 				   sizeof(mgmt->u.action.u.delba)))
2700 				goto invalid;
2701 			break;
2702 		default:
2703 			goto invalid;
2704 		}
2705 
2706 		goto queue;
2707 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2708 		/* verify action_code is present */
2709 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2710 			break;
2711 
2712 		switch (mgmt->u.action.u.measurement.action_code) {
2713 		case WLAN_ACTION_SPCT_MSR_REQ:
2714 			if (status->band != IEEE80211_BAND_5GHZ)
2715 				break;
2716 
2717 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2718 				   sizeof(mgmt->u.action.u.measurement)))
2719 				break;
2720 
2721 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2722 				break;
2723 
2724 			ieee80211_process_measurement_req(sdata, mgmt, len);
2725 			goto handled;
2726 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2727 			u8 *bssid;
2728 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2729 				   sizeof(mgmt->u.action.u.chan_switch)))
2730 				break;
2731 
2732 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2733 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2734 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2735 				break;
2736 
2737 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2738 				bssid = sdata->u.mgd.bssid;
2739 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2740 				bssid = sdata->u.ibss.bssid;
2741 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2742 				bssid = mgmt->sa;
2743 			else
2744 				break;
2745 
2746 			if (!ether_addr_equal(mgmt->bssid, bssid))
2747 				break;
2748 
2749 			goto queue;
2750 			}
2751 		}
2752 		break;
2753 	case WLAN_CATEGORY_SA_QUERY:
2754 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2755 			   sizeof(mgmt->u.action.u.sa_query)))
2756 			break;
2757 
2758 		switch (mgmt->u.action.u.sa_query.action) {
2759 		case WLAN_ACTION_SA_QUERY_REQUEST:
2760 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2761 				break;
2762 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2763 			goto handled;
2764 		}
2765 		break;
2766 	case WLAN_CATEGORY_SELF_PROTECTED:
2767 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2768 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2769 			break;
2770 
2771 		switch (mgmt->u.action.u.self_prot.action_code) {
2772 		case WLAN_SP_MESH_PEERING_OPEN:
2773 		case WLAN_SP_MESH_PEERING_CLOSE:
2774 		case WLAN_SP_MESH_PEERING_CONFIRM:
2775 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2776 				goto invalid;
2777 			if (sdata->u.mesh.user_mpm)
2778 				/* userspace handles this frame */
2779 				break;
2780 			goto queue;
2781 		case WLAN_SP_MGK_INFORM:
2782 		case WLAN_SP_MGK_ACK:
2783 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2784 				goto invalid;
2785 			break;
2786 		}
2787 		break;
2788 	case WLAN_CATEGORY_MESH_ACTION:
2789 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2790 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
2791 			break;
2792 
2793 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2794 			break;
2795 		if (mesh_action_is_path_sel(mgmt) &&
2796 		    !mesh_path_sel_is_hwmp(sdata))
2797 			break;
2798 		goto queue;
2799 	}
2800 
2801 	return RX_CONTINUE;
2802 
2803  invalid:
2804 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2805 	/* will return in the next handlers */
2806 	return RX_CONTINUE;
2807 
2808  handled:
2809 	if (rx->sta)
2810 		rx->sta->rx_packets++;
2811 	dev_kfree_skb(rx->skb);
2812 	return RX_QUEUED;
2813 
2814  queue:
2815 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2816 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2817 	ieee80211_queue_work(&local->hw, &sdata->work);
2818 	if (rx->sta)
2819 		rx->sta->rx_packets++;
2820 	return RX_QUEUED;
2821 }
2822 
2823 static ieee80211_rx_result debug_noinline
2824 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2825 {
2826 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2827 	int sig = 0;
2828 
2829 	/* skip known-bad action frames and return them in the next handler */
2830 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2831 		return RX_CONTINUE;
2832 
2833 	/*
2834 	 * Getting here means the kernel doesn't know how to handle
2835 	 * it, but maybe userspace does ... include returned frames
2836 	 * so userspace can register for those to know whether ones
2837 	 * it transmitted were processed or returned.
2838 	 */
2839 
2840 	if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2841 		sig = status->signal;
2842 
2843 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2844 			     rx->skb->data, rx->skb->len, 0)) {
2845 		if (rx->sta)
2846 			rx->sta->rx_packets++;
2847 		dev_kfree_skb(rx->skb);
2848 		return RX_QUEUED;
2849 	}
2850 
2851 	return RX_CONTINUE;
2852 }
2853 
2854 static ieee80211_rx_result debug_noinline
2855 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2856 {
2857 	struct ieee80211_local *local = rx->local;
2858 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2859 	struct sk_buff *nskb;
2860 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2861 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2862 
2863 	if (!ieee80211_is_action(mgmt->frame_control))
2864 		return RX_CONTINUE;
2865 
2866 	/*
2867 	 * For AP mode, hostapd is responsible for handling any action
2868 	 * frames that we didn't handle, including returning unknown
2869 	 * ones. For all other modes we will return them to the sender,
2870 	 * setting the 0x80 bit in the action category, as required by
2871 	 * 802.11-2012 9.24.4.
2872 	 * Newer versions of hostapd shall also use the management frame
2873 	 * registration mechanisms, but older ones still use cooked
2874 	 * monitor interfaces so push all frames there.
2875 	 */
2876 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2877 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
2878 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2879 		return RX_DROP_MONITOR;
2880 
2881 	if (is_multicast_ether_addr(mgmt->da))
2882 		return RX_DROP_MONITOR;
2883 
2884 	/* do not return rejected action frames */
2885 	if (mgmt->u.action.category & 0x80)
2886 		return RX_DROP_UNUSABLE;
2887 
2888 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2889 			       GFP_ATOMIC);
2890 	if (nskb) {
2891 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2892 
2893 		nmgmt->u.action.category |= 0x80;
2894 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2895 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2896 
2897 		memset(nskb->cb, 0, sizeof(nskb->cb));
2898 
2899 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2900 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2901 
2902 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2903 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2904 				      IEEE80211_TX_CTL_NO_CCK_RATE;
2905 			if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2906 				info->hw_queue =
2907 					local->hw.offchannel_tx_hw_queue;
2908 		}
2909 
2910 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2911 					    status->band);
2912 	}
2913 	dev_kfree_skb(rx->skb);
2914 	return RX_QUEUED;
2915 }
2916 
2917 static ieee80211_rx_result debug_noinline
2918 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2919 {
2920 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2921 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2922 	__le16 stype;
2923 
2924 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2925 
2926 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2927 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2928 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
2929 	    sdata->vif.type != NL80211_IFTYPE_STATION)
2930 		return RX_DROP_MONITOR;
2931 
2932 	switch (stype) {
2933 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
2934 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
2935 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2936 		/* process for all: mesh, mlme, ibss */
2937 		break;
2938 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2939 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2940 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2941 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2942 		if (is_multicast_ether_addr(mgmt->da) &&
2943 		    !is_broadcast_ether_addr(mgmt->da))
2944 			return RX_DROP_MONITOR;
2945 
2946 		/* process only for station */
2947 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2948 			return RX_DROP_MONITOR;
2949 		break;
2950 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2951 		/* process only for ibss and mesh */
2952 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2953 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2954 			return RX_DROP_MONITOR;
2955 		break;
2956 	default:
2957 		return RX_DROP_MONITOR;
2958 	}
2959 
2960 	/* queue up frame and kick off work to process it */
2961 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2962 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2963 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
2964 	if (rx->sta)
2965 		rx->sta->rx_packets++;
2966 
2967 	return RX_QUEUED;
2968 }
2969 
2970 /* TODO: use IEEE80211_RX_FRAGMENTED */
2971 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2972 					struct ieee80211_rate *rate)
2973 {
2974 	struct ieee80211_sub_if_data *sdata;
2975 	struct ieee80211_local *local = rx->local;
2976 	struct sk_buff *skb = rx->skb, *skb2;
2977 	struct net_device *prev_dev = NULL;
2978 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2979 	int needed_headroom;
2980 
2981 	/*
2982 	 * If cooked monitor has been processed already, then
2983 	 * don't do it again. If not, set the flag.
2984 	 */
2985 	if (rx->flags & IEEE80211_RX_CMNTR)
2986 		goto out_free_skb;
2987 	rx->flags |= IEEE80211_RX_CMNTR;
2988 
2989 	/* If there are no cooked monitor interfaces, just free the SKB */
2990 	if (!local->cooked_mntrs)
2991 		goto out_free_skb;
2992 
2993 	/* vendor data is long removed here */
2994 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
2995 	/* room for the radiotap header based on driver features */
2996 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
2997 
2998 	if (skb_headroom(skb) < needed_headroom &&
2999 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3000 		goto out_free_skb;
3001 
3002 	/* prepend radiotap information */
3003 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3004 					 false);
3005 
3006 	skb_set_mac_header(skb, 0);
3007 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3008 	skb->pkt_type = PACKET_OTHERHOST;
3009 	skb->protocol = htons(ETH_P_802_2);
3010 
3011 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3012 		if (!ieee80211_sdata_running(sdata))
3013 			continue;
3014 
3015 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3016 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3017 			continue;
3018 
3019 		if (prev_dev) {
3020 			skb2 = skb_clone(skb, GFP_ATOMIC);
3021 			if (skb2) {
3022 				skb2->dev = prev_dev;
3023 				netif_receive_skb(skb2);
3024 			}
3025 		}
3026 
3027 		prev_dev = sdata->dev;
3028 		sdata->dev->stats.rx_packets++;
3029 		sdata->dev->stats.rx_bytes += skb->len;
3030 	}
3031 
3032 	if (prev_dev) {
3033 		skb->dev = prev_dev;
3034 		netif_receive_skb(skb);
3035 		return;
3036 	}
3037 
3038  out_free_skb:
3039 	dev_kfree_skb(skb);
3040 }
3041 
3042 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3043 					 ieee80211_rx_result res)
3044 {
3045 	switch (res) {
3046 	case RX_DROP_MONITOR:
3047 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3048 		if (rx->sta)
3049 			rx->sta->rx_dropped++;
3050 		/* fall through */
3051 	case RX_CONTINUE: {
3052 		struct ieee80211_rate *rate = NULL;
3053 		struct ieee80211_supported_band *sband;
3054 		struct ieee80211_rx_status *status;
3055 
3056 		status = IEEE80211_SKB_RXCB((rx->skb));
3057 
3058 		sband = rx->local->hw.wiphy->bands[status->band];
3059 		if (!(status->flag & RX_FLAG_HT) &&
3060 		    !(status->flag & RX_FLAG_VHT))
3061 			rate = &sband->bitrates[status->rate_idx];
3062 
3063 		ieee80211_rx_cooked_monitor(rx, rate);
3064 		break;
3065 		}
3066 	case RX_DROP_UNUSABLE:
3067 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3068 		if (rx->sta)
3069 			rx->sta->rx_dropped++;
3070 		dev_kfree_skb(rx->skb);
3071 		break;
3072 	case RX_QUEUED:
3073 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3074 		break;
3075 	}
3076 }
3077 
3078 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3079 				  struct sk_buff_head *frames)
3080 {
3081 	ieee80211_rx_result res = RX_DROP_MONITOR;
3082 	struct sk_buff *skb;
3083 
3084 #define CALL_RXH(rxh)			\
3085 	do {				\
3086 		res = rxh(rx);		\
3087 		if (res != RX_CONTINUE)	\
3088 			goto rxh_next;  \
3089 	} while (0);
3090 
3091 	spin_lock_bh(&rx->local->rx_path_lock);
3092 
3093 	while ((skb = __skb_dequeue(frames))) {
3094 		/*
3095 		 * all the other fields are valid across frames
3096 		 * that belong to an aMPDU since they are on the
3097 		 * same TID from the same station
3098 		 */
3099 		rx->skb = skb;
3100 
3101 		CALL_RXH(ieee80211_rx_h_check_more_data)
3102 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3103 		CALL_RXH(ieee80211_rx_h_sta_process)
3104 		CALL_RXH(ieee80211_rx_h_decrypt)
3105 		CALL_RXH(ieee80211_rx_h_defragment)
3106 		CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3107 		/* must be after MMIC verify so header is counted in MPDU mic */
3108 #ifdef CONFIG_MAC80211_MESH
3109 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3110 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3111 #endif
3112 		CALL_RXH(ieee80211_rx_h_amsdu)
3113 		CALL_RXH(ieee80211_rx_h_data)
3114 
3115 		/* special treatment -- needs the queue */
3116 		res = ieee80211_rx_h_ctrl(rx, frames);
3117 		if (res != RX_CONTINUE)
3118 			goto rxh_next;
3119 
3120 		CALL_RXH(ieee80211_rx_h_mgmt_check)
3121 		CALL_RXH(ieee80211_rx_h_action)
3122 		CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3123 		CALL_RXH(ieee80211_rx_h_action_return)
3124 		CALL_RXH(ieee80211_rx_h_mgmt)
3125 
3126  rxh_next:
3127 		ieee80211_rx_handlers_result(rx, res);
3128 
3129 #undef CALL_RXH
3130 	}
3131 
3132 	spin_unlock_bh(&rx->local->rx_path_lock);
3133 }
3134 
3135 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3136 {
3137 	struct sk_buff_head reorder_release;
3138 	ieee80211_rx_result res = RX_DROP_MONITOR;
3139 
3140 	__skb_queue_head_init(&reorder_release);
3141 
3142 #define CALL_RXH(rxh)			\
3143 	do {				\
3144 		res = rxh(rx);		\
3145 		if (res != RX_CONTINUE)	\
3146 			goto rxh_next;  \
3147 	} while (0);
3148 
3149 	CALL_RXH(ieee80211_rx_h_check_dup)
3150 	CALL_RXH(ieee80211_rx_h_check)
3151 
3152 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3153 
3154 	ieee80211_rx_handlers(rx, &reorder_release);
3155 	return;
3156 
3157  rxh_next:
3158 	ieee80211_rx_handlers_result(rx, res);
3159 
3160 #undef CALL_RXH
3161 }
3162 
3163 /*
3164  * This function makes calls into the RX path, therefore
3165  * it has to be invoked under RCU read lock.
3166  */
3167 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3168 {
3169 	struct sk_buff_head frames;
3170 	struct ieee80211_rx_data rx = {
3171 		.sta = sta,
3172 		.sdata = sta->sdata,
3173 		.local = sta->local,
3174 		/* This is OK -- must be QoS data frame */
3175 		.security_idx = tid,
3176 		.seqno_idx = tid,
3177 		.flags = 0,
3178 	};
3179 	struct tid_ampdu_rx *tid_agg_rx;
3180 
3181 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3182 	if (!tid_agg_rx)
3183 		return;
3184 
3185 	__skb_queue_head_init(&frames);
3186 
3187 	spin_lock(&tid_agg_rx->reorder_lock);
3188 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3189 	spin_unlock(&tid_agg_rx->reorder_lock);
3190 
3191 	ieee80211_rx_handlers(&rx, &frames);
3192 }
3193 
3194 /* main receive path */
3195 
3196 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3197 				 struct ieee80211_hdr *hdr)
3198 {
3199 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3200 	struct sk_buff *skb = rx->skb;
3201 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3202 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3203 	int multicast = is_multicast_ether_addr(hdr->addr1);
3204 
3205 	switch (sdata->vif.type) {
3206 	case NL80211_IFTYPE_STATION:
3207 		if (!bssid && !sdata->u.mgd.use_4addr)
3208 			return false;
3209 		if (!multicast &&
3210 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3211 			if (!(sdata->dev->flags & IFF_PROMISC) ||
3212 			    sdata->u.mgd.use_4addr)
3213 				return false;
3214 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3215 		}
3216 		break;
3217 	case NL80211_IFTYPE_ADHOC:
3218 		if (!bssid)
3219 			return false;
3220 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3221 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3222 			return false;
3223 		if (ieee80211_is_beacon(hdr->frame_control)) {
3224 			return true;
3225 		} else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3226 			return false;
3227 		} else if (!multicast &&
3228 			   !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3229 			if (!(sdata->dev->flags & IFF_PROMISC))
3230 				return false;
3231 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3232 		} else if (!rx->sta) {
3233 			int rate_idx;
3234 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3235 				rate_idx = 0; /* TODO: HT/VHT rates */
3236 			else
3237 				rate_idx = status->rate_idx;
3238 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3239 						 BIT(rate_idx));
3240 		}
3241 		break;
3242 	case NL80211_IFTYPE_OCB:
3243 		if (!bssid)
3244 			return false;
3245 		if (ieee80211_is_beacon(hdr->frame_control)) {
3246 			return false;
3247 		} else if (!is_broadcast_ether_addr(bssid)) {
3248 			ocb_dbg(sdata, "BSSID mismatch in OCB mode!\n");
3249 			return false;
3250 		} else if (!multicast &&
3251 			   !ether_addr_equal(sdata->dev->dev_addr,
3252 					     hdr->addr1)) {
3253 			/* if we are in promisc mode we also accept
3254 			 * packets not destined for us
3255 			 */
3256 			if (!(sdata->dev->flags & IFF_PROMISC))
3257 				return false;
3258 			rx->flags &= ~IEEE80211_RX_RA_MATCH;
3259 		} else if (!rx->sta) {
3260 			int rate_idx;
3261 			if (status->flag & RX_FLAG_HT)
3262 				rate_idx = 0; /* TODO: HT rates */
3263 			else
3264 				rate_idx = status->rate_idx;
3265 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3266 						BIT(rate_idx));
3267 		}
3268 		break;
3269 	case NL80211_IFTYPE_MESH_POINT:
3270 		if (!multicast &&
3271 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3272 			if (!(sdata->dev->flags & IFF_PROMISC))
3273 				return false;
3274 
3275 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3276 		}
3277 		break;
3278 	case NL80211_IFTYPE_AP_VLAN:
3279 	case NL80211_IFTYPE_AP:
3280 		if (!bssid) {
3281 			if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3282 				return false;
3283 		} else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3284 			/*
3285 			 * Accept public action frames even when the
3286 			 * BSSID doesn't match, this is used for P2P
3287 			 * and location updates. Note that mac80211
3288 			 * itself never looks at these frames.
3289 			 */
3290 			if (!multicast &&
3291 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3292 				return false;
3293 			if (ieee80211_is_public_action(hdr, skb->len))
3294 				return true;
3295 			if (!ieee80211_is_beacon(hdr->frame_control))
3296 				return false;
3297 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3298 		} else if (!ieee80211_has_tods(hdr->frame_control)) {
3299 			/* ignore data frames to TDLS-peers */
3300 			if (ieee80211_is_data(hdr->frame_control))
3301 				return false;
3302 			/* ignore action frames to TDLS-peers */
3303 			if (ieee80211_is_action(hdr->frame_control) &&
3304 			    !ether_addr_equal(bssid, hdr->addr1))
3305 				return false;
3306 		}
3307 		break;
3308 	case NL80211_IFTYPE_WDS:
3309 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3310 			return false;
3311 		if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3312 			return false;
3313 		break;
3314 	case NL80211_IFTYPE_P2P_DEVICE:
3315 		if (!ieee80211_is_public_action(hdr, skb->len) &&
3316 		    !ieee80211_is_probe_req(hdr->frame_control) &&
3317 		    !ieee80211_is_probe_resp(hdr->frame_control) &&
3318 		    !ieee80211_is_beacon(hdr->frame_control))
3319 			return false;
3320 		if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3321 		    !multicast)
3322 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3323 		break;
3324 	default:
3325 		/* should never get here */
3326 		WARN_ON_ONCE(1);
3327 		break;
3328 	}
3329 
3330 	return true;
3331 }
3332 
3333 /*
3334  * This function returns whether or not the SKB
3335  * was destined for RX processing or not, which,
3336  * if consume is true, is equivalent to whether
3337  * or not the skb was consumed.
3338  */
3339 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3340 					    struct sk_buff *skb, bool consume)
3341 {
3342 	struct ieee80211_local *local = rx->local;
3343 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3344 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3345 	struct ieee80211_hdr *hdr = (void *)skb->data;
3346 
3347 	rx->skb = skb;
3348 	status->rx_flags |= IEEE80211_RX_RA_MATCH;
3349 
3350 	if (!prepare_for_handlers(rx, hdr))
3351 		return false;
3352 
3353 	if (!consume) {
3354 		skb = skb_copy(skb, GFP_ATOMIC);
3355 		if (!skb) {
3356 			if (net_ratelimit())
3357 				wiphy_debug(local->hw.wiphy,
3358 					"failed to copy skb for %s\n",
3359 					sdata->name);
3360 			return true;
3361 		}
3362 
3363 		rx->skb = skb;
3364 	}
3365 
3366 	ieee80211_invoke_rx_handlers(rx);
3367 	return true;
3368 }
3369 
3370 /*
3371  * This is the actual Rx frames handler. as it belongs to Rx path it must
3372  * be called with rcu_read_lock protection.
3373  */
3374 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3375 					 struct sk_buff *skb)
3376 {
3377 	struct ieee80211_local *local = hw_to_local(hw);
3378 	struct ieee80211_sub_if_data *sdata;
3379 	struct ieee80211_hdr *hdr;
3380 	__le16 fc;
3381 	struct ieee80211_rx_data rx;
3382 	struct ieee80211_sub_if_data *prev;
3383 	struct sta_info *sta, *tmp, *prev_sta;
3384 	int err = 0;
3385 
3386 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3387 	memset(&rx, 0, sizeof(rx));
3388 	rx.skb = skb;
3389 	rx.local = local;
3390 
3391 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3392 		local->dot11ReceivedFragmentCount++;
3393 
3394 	if (ieee80211_is_mgmt(fc)) {
3395 		/* drop frame if too short for header */
3396 		if (skb->len < ieee80211_hdrlen(fc))
3397 			err = -ENOBUFS;
3398 		else
3399 			err = skb_linearize(skb);
3400 	} else {
3401 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3402 	}
3403 
3404 	if (err) {
3405 		dev_kfree_skb(skb);
3406 		return;
3407 	}
3408 
3409 	hdr = (struct ieee80211_hdr *)skb->data;
3410 	ieee80211_parse_qos(&rx);
3411 	ieee80211_verify_alignment(&rx);
3412 
3413 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3414 		     ieee80211_is_beacon(hdr->frame_control)))
3415 		ieee80211_scan_rx(local, skb);
3416 
3417 	if (ieee80211_is_data(fc)) {
3418 		prev_sta = NULL;
3419 
3420 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
3421 			if (!prev_sta) {
3422 				prev_sta = sta;
3423 				continue;
3424 			}
3425 
3426 			rx.sta = prev_sta;
3427 			rx.sdata = prev_sta->sdata;
3428 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
3429 
3430 			prev_sta = sta;
3431 		}
3432 
3433 		if (prev_sta) {
3434 			rx.sta = prev_sta;
3435 			rx.sdata = prev_sta->sdata;
3436 
3437 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3438 				return;
3439 			goto out;
3440 		}
3441 	}
3442 
3443 	prev = NULL;
3444 
3445 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3446 		if (!ieee80211_sdata_running(sdata))
3447 			continue;
3448 
3449 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3450 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3451 			continue;
3452 
3453 		/*
3454 		 * frame is destined for this interface, but if it's
3455 		 * not also for the previous one we handle that after
3456 		 * the loop to avoid copying the SKB once too much
3457 		 */
3458 
3459 		if (!prev) {
3460 			prev = sdata;
3461 			continue;
3462 		}
3463 
3464 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3465 		rx.sdata = prev;
3466 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
3467 
3468 		prev = sdata;
3469 	}
3470 
3471 	if (prev) {
3472 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3473 		rx.sdata = prev;
3474 
3475 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3476 			return;
3477 	}
3478 
3479  out:
3480 	dev_kfree_skb(skb);
3481 }
3482 
3483 /*
3484  * This is the receive path handler. It is called by a low level driver when an
3485  * 802.11 MPDU is received from the hardware.
3486  */
3487 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3488 {
3489 	struct ieee80211_local *local = hw_to_local(hw);
3490 	struct ieee80211_rate *rate = NULL;
3491 	struct ieee80211_supported_band *sband;
3492 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3493 
3494 	WARN_ON_ONCE(softirq_count() == 0);
3495 
3496 	if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3497 		goto drop;
3498 
3499 	sband = local->hw.wiphy->bands[status->band];
3500 	if (WARN_ON(!sband))
3501 		goto drop;
3502 
3503 	/*
3504 	 * If we're suspending, it is possible although not too likely
3505 	 * that we'd be receiving frames after having already partially
3506 	 * quiesced the stack. We can't process such frames then since
3507 	 * that might, for example, cause stations to be added or other
3508 	 * driver callbacks be invoked.
3509 	 */
3510 	if (unlikely(local->quiescing || local->suspended))
3511 		goto drop;
3512 
3513 	/* We might be during a HW reconfig, prevent Rx for the same reason */
3514 	if (unlikely(local->in_reconfig))
3515 		goto drop;
3516 
3517 	/*
3518 	 * The same happens when we're not even started,
3519 	 * but that's worth a warning.
3520 	 */
3521 	if (WARN_ON(!local->started))
3522 		goto drop;
3523 
3524 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3525 		/*
3526 		 * Validate the rate, unless a PLCP error means that
3527 		 * we probably can't have a valid rate here anyway.
3528 		 */
3529 
3530 		if (status->flag & RX_FLAG_HT) {
3531 			/*
3532 			 * rate_idx is MCS index, which can be [0-76]
3533 			 * as documented on:
3534 			 *
3535 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3536 			 *
3537 			 * Anything else would be some sort of driver or
3538 			 * hardware error. The driver should catch hardware
3539 			 * errors.
3540 			 */
3541 			if (WARN(status->rate_idx > 76,
3542 				 "Rate marked as an HT rate but passed "
3543 				 "status->rate_idx is not "
3544 				 "an MCS index [0-76]: %d (0x%02x)\n",
3545 				 status->rate_idx,
3546 				 status->rate_idx))
3547 				goto drop;
3548 		} else if (status->flag & RX_FLAG_VHT) {
3549 			if (WARN_ONCE(status->rate_idx > 9 ||
3550 				      !status->vht_nss ||
3551 				      status->vht_nss > 8,
3552 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3553 				      status->rate_idx, status->vht_nss))
3554 				goto drop;
3555 		} else {
3556 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3557 				goto drop;
3558 			rate = &sband->bitrates[status->rate_idx];
3559 		}
3560 	}
3561 
3562 	status->rx_flags = 0;
3563 
3564 	/*
3565 	 * key references and virtual interfaces are protected using RCU
3566 	 * and this requires that we are in a read-side RCU section during
3567 	 * receive processing
3568 	 */
3569 	rcu_read_lock();
3570 
3571 	/*
3572 	 * Frames with failed FCS/PLCP checksum are not returned,
3573 	 * all other frames are returned without radiotap header
3574 	 * if it was previously present.
3575 	 * Also, frames with less than 16 bytes are dropped.
3576 	 */
3577 	skb = ieee80211_rx_monitor(local, skb, rate);
3578 	if (!skb) {
3579 		rcu_read_unlock();
3580 		return;
3581 	}
3582 
3583 	ieee80211_tpt_led_trig_rx(local,
3584 			((struct ieee80211_hdr *)skb->data)->frame_control,
3585 			skb->len);
3586 	__ieee80211_rx_handle_packet(hw, skb);
3587 
3588 	rcu_read_unlock();
3589 
3590 	return;
3591  drop:
3592 	kfree_skb(skb);
3593 }
3594 EXPORT_SYMBOL(ieee80211_rx);
3595 
3596 /* This is a version of the rx handler that can be called from hard irq
3597  * context. Post the skb on the queue and schedule the tasklet */
3598 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3599 {
3600 	struct ieee80211_local *local = hw_to_local(hw);
3601 
3602 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3603 
3604 	skb->pkt_type = IEEE80211_RX_MSG;
3605 	skb_queue_tail(&local->skb_queue, skb);
3606 	tasklet_schedule(&local->tasklet);
3607 }
3608 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
3609