1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2022 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <net/mac80211.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <asm/unaligned.h> 25 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "tkip.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* 37 * monitor mode reception 38 * 39 * This function cleans up the SKB, i.e. it removes all the stuff 40 * only useful for monitoring. 41 */ 42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 43 unsigned int present_fcs_len, 44 unsigned int rtap_space) 45 { 46 struct ieee80211_hdr *hdr; 47 unsigned int hdrlen; 48 __le16 fc; 49 50 if (present_fcs_len) 51 __pskb_trim(skb, skb->len - present_fcs_len); 52 __pskb_pull(skb, rtap_space); 53 54 hdr = (void *)skb->data; 55 fc = hdr->frame_control; 56 57 /* 58 * Remove the HT-Control field (if present) on management 59 * frames after we've sent the frame to monitoring. We 60 * (currently) don't need it, and don't properly parse 61 * frames with it present, due to the assumption of a 62 * fixed management header length. 63 */ 64 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 65 return skb; 66 67 hdrlen = ieee80211_hdrlen(fc); 68 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 69 70 if (!pskb_may_pull(skb, hdrlen)) { 71 dev_kfree_skb(skb); 72 return NULL; 73 } 74 75 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 76 hdrlen - IEEE80211_HT_CTL_LEN); 77 __pskb_pull(skb, IEEE80211_HT_CTL_LEN); 78 79 return skb; 80 } 81 82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 83 unsigned int rtap_space) 84 { 85 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 86 struct ieee80211_hdr *hdr; 87 88 hdr = (void *)(skb->data + rtap_space); 89 90 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 91 RX_FLAG_FAILED_PLCP_CRC | 92 RX_FLAG_ONLY_MONITOR | 93 RX_FLAG_NO_PSDU)) 94 return true; 95 96 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 97 return true; 98 99 if (ieee80211_is_ctl(hdr->frame_control) && 100 !ieee80211_is_pspoll(hdr->frame_control) && 101 !ieee80211_is_back_req(hdr->frame_control)) 102 return true; 103 104 return false; 105 } 106 107 static int 108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 109 struct ieee80211_rx_status *status, 110 struct sk_buff *skb) 111 { 112 int len; 113 114 /* always present fields */ 115 len = sizeof(struct ieee80211_radiotap_header) + 8; 116 117 /* allocate extra bitmaps */ 118 if (status->chains) 119 len += 4 * hweight8(status->chains); 120 /* vendor presence bitmap */ 121 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 122 len += 4; 123 124 if (ieee80211_have_rx_timestamp(status)) { 125 len = ALIGN(len, 8); 126 len += 8; 127 } 128 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 129 len += 1; 130 131 /* antenna field, if we don't have per-chain info */ 132 if (!status->chains) 133 len += 1; 134 135 /* padding for RX_FLAGS if necessary */ 136 len = ALIGN(len, 2); 137 138 if (status->encoding == RX_ENC_HT) /* HT info */ 139 len += 3; 140 141 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 142 len = ALIGN(len, 4); 143 len += 8; 144 } 145 146 if (status->encoding == RX_ENC_VHT) { 147 len = ALIGN(len, 2); 148 len += 12; 149 } 150 151 if (local->hw.radiotap_timestamp.units_pos >= 0) { 152 len = ALIGN(len, 8); 153 len += 12; 154 } 155 156 if (status->encoding == RX_ENC_HE && 157 status->flag & RX_FLAG_RADIOTAP_HE) { 158 len = ALIGN(len, 2); 159 len += 12; 160 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 161 } 162 163 if (status->encoding == RX_ENC_HE && 164 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 165 len = ALIGN(len, 2); 166 len += 12; 167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 168 } 169 170 if (status->flag & RX_FLAG_NO_PSDU) 171 len += 1; 172 173 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 174 len = ALIGN(len, 2); 175 len += 4; 176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 177 } 178 179 if (status->chains) { 180 /* antenna and antenna signal fields */ 181 len += 2 * hweight8(status->chains); 182 } 183 184 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 185 struct ieee80211_vendor_radiotap *rtap; 186 int vendor_data_offset = 0; 187 188 /* 189 * The position to look at depends on the existence (or non- 190 * existence) of other elements, so take that into account... 191 */ 192 if (status->flag & RX_FLAG_RADIOTAP_HE) 193 vendor_data_offset += 194 sizeof(struct ieee80211_radiotap_he); 195 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 196 vendor_data_offset += 197 sizeof(struct ieee80211_radiotap_he_mu); 198 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 199 vendor_data_offset += 200 sizeof(struct ieee80211_radiotap_lsig); 201 202 rtap = (void *)&skb->data[vendor_data_offset]; 203 204 /* alignment for fixed 6-byte vendor data header */ 205 len = ALIGN(len, 2); 206 /* vendor data header */ 207 len += 6; 208 if (WARN_ON(rtap->align == 0)) 209 rtap->align = 1; 210 len = ALIGN(len, rtap->align); 211 len += rtap->len + rtap->pad; 212 } 213 214 return len; 215 } 216 217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 218 int link_id, 219 struct sta_info *sta, 220 struct sk_buff *skb) 221 { 222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 223 224 if (link_id >= 0) { 225 status->link_valid = 1; 226 status->link_id = link_id; 227 } else { 228 status->link_valid = 0; 229 } 230 231 skb_queue_tail(&sdata->skb_queue, skb); 232 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 233 if (sta) 234 sta->deflink.rx_stats.packets++; 235 } 236 237 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 238 int link_id, 239 struct sta_info *sta, 240 struct sk_buff *skb) 241 { 242 skb->protocol = 0; 243 __ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb); 244 } 245 246 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 247 struct sk_buff *skb, 248 int rtap_space) 249 { 250 struct { 251 struct ieee80211_hdr_3addr hdr; 252 u8 category; 253 u8 action_code; 254 } __packed __aligned(2) action; 255 256 if (!sdata) 257 return; 258 259 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 260 261 if (skb->len < rtap_space + sizeof(action) + 262 VHT_MUMIMO_GROUPS_DATA_LEN) 263 return; 264 265 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 266 return; 267 268 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 269 270 if (!ieee80211_is_action(action.hdr.frame_control)) 271 return; 272 273 if (action.category != WLAN_CATEGORY_VHT) 274 return; 275 276 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 277 return; 278 279 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 280 return; 281 282 skb = skb_copy(skb, GFP_ATOMIC); 283 if (!skb) 284 return; 285 286 ieee80211_queue_skb_to_iface(sdata, -1, NULL, skb); 287 } 288 289 /* 290 * ieee80211_add_rx_radiotap_header - add radiotap header 291 * 292 * add a radiotap header containing all the fields which the hardware provided. 293 */ 294 static void 295 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 296 struct sk_buff *skb, 297 struct ieee80211_rate *rate, 298 int rtap_len, bool has_fcs) 299 { 300 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 301 struct ieee80211_radiotap_header *rthdr; 302 unsigned char *pos; 303 __le32 *it_present; 304 u32 it_present_val; 305 u16 rx_flags = 0; 306 u16 channel_flags = 0; 307 int mpdulen, chain; 308 unsigned long chains = status->chains; 309 struct ieee80211_vendor_radiotap rtap = {}; 310 struct ieee80211_radiotap_he he = {}; 311 struct ieee80211_radiotap_he_mu he_mu = {}; 312 struct ieee80211_radiotap_lsig lsig = {}; 313 314 if (status->flag & RX_FLAG_RADIOTAP_HE) { 315 he = *(struct ieee80211_radiotap_he *)skb->data; 316 skb_pull(skb, sizeof(he)); 317 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 318 } 319 320 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 321 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 322 skb_pull(skb, sizeof(he_mu)); 323 } 324 325 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 326 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 327 skb_pull(skb, sizeof(lsig)); 328 } 329 330 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 331 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 332 /* rtap.len and rtap.pad are undone immediately */ 333 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 334 } 335 336 mpdulen = skb->len; 337 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 338 mpdulen += FCS_LEN; 339 340 rthdr = skb_push(skb, rtap_len); 341 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 342 it_present = &rthdr->it_present; 343 344 /* radiotap header, set always present flags */ 345 rthdr->it_len = cpu_to_le16(rtap_len); 346 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 347 BIT(IEEE80211_RADIOTAP_CHANNEL) | 348 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 349 350 if (!status->chains) 351 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 352 353 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 354 it_present_val |= 355 BIT(IEEE80211_RADIOTAP_EXT) | 356 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 357 put_unaligned_le32(it_present_val, it_present); 358 it_present++; 359 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 360 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 361 } 362 363 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 364 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 365 BIT(IEEE80211_RADIOTAP_EXT); 366 put_unaligned_le32(it_present_val, it_present); 367 it_present++; 368 it_present_val = rtap.present; 369 } 370 371 put_unaligned_le32(it_present_val, it_present); 372 373 /* This references through an offset into it_optional[] rather 374 * than via it_present otherwise later uses of pos will cause 375 * the compiler to think we have walked past the end of the 376 * struct member. 377 */ 378 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 379 380 /* the order of the following fields is important */ 381 382 /* IEEE80211_RADIOTAP_TSFT */ 383 if (ieee80211_have_rx_timestamp(status)) { 384 /* padding */ 385 while ((pos - (u8 *)rthdr) & 7) 386 *pos++ = 0; 387 put_unaligned_le64( 388 ieee80211_calculate_rx_timestamp(local, status, 389 mpdulen, 0), 390 pos); 391 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 392 pos += 8; 393 } 394 395 /* IEEE80211_RADIOTAP_FLAGS */ 396 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 397 *pos |= IEEE80211_RADIOTAP_F_FCS; 398 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 399 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 400 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 401 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 402 pos++; 403 404 /* IEEE80211_RADIOTAP_RATE */ 405 if (!rate || status->encoding != RX_ENC_LEGACY) { 406 /* 407 * Without rate information don't add it. If we have, 408 * MCS information is a separate field in radiotap, 409 * added below. The byte here is needed as padding 410 * for the channel though, so initialise it to 0. 411 */ 412 *pos = 0; 413 } else { 414 int shift = 0; 415 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 416 if (status->bw == RATE_INFO_BW_10) 417 shift = 1; 418 else if (status->bw == RATE_INFO_BW_5) 419 shift = 2; 420 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 421 } 422 pos++; 423 424 /* IEEE80211_RADIOTAP_CHANNEL */ 425 /* TODO: frequency offset in KHz */ 426 put_unaligned_le16(status->freq, pos); 427 pos += 2; 428 if (status->bw == RATE_INFO_BW_10) 429 channel_flags |= IEEE80211_CHAN_HALF; 430 else if (status->bw == RATE_INFO_BW_5) 431 channel_flags |= IEEE80211_CHAN_QUARTER; 432 433 if (status->band == NL80211_BAND_5GHZ || 434 status->band == NL80211_BAND_6GHZ) 435 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 436 else if (status->encoding != RX_ENC_LEGACY) 437 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 438 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 439 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 440 else if (rate) 441 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 442 else 443 channel_flags |= IEEE80211_CHAN_2GHZ; 444 put_unaligned_le16(channel_flags, pos); 445 pos += 2; 446 447 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 448 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 449 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 450 *pos = status->signal; 451 rthdr->it_present |= 452 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 453 pos++; 454 } 455 456 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 457 458 if (!status->chains) { 459 /* IEEE80211_RADIOTAP_ANTENNA */ 460 *pos = status->antenna; 461 pos++; 462 } 463 464 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 465 466 /* IEEE80211_RADIOTAP_RX_FLAGS */ 467 /* ensure 2 byte alignment for the 2 byte field as required */ 468 if ((pos - (u8 *)rthdr) & 1) 469 *pos++ = 0; 470 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 471 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 472 put_unaligned_le16(rx_flags, pos); 473 pos += 2; 474 475 if (status->encoding == RX_ENC_HT) { 476 unsigned int stbc; 477 478 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 479 *pos = local->hw.radiotap_mcs_details; 480 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 481 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; 482 if (status->enc_flags & RX_ENC_FLAG_LDPC) 483 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; 484 pos++; 485 *pos = 0; 486 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 487 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 488 if (status->bw == RATE_INFO_BW_40) 489 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 490 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 491 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 492 if (status->enc_flags & RX_ENC_FLAG_LDPC) 493 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 494 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 495 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 496 pos++; 497 *pos++ = status->rate_idx; 498 } 499 500 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 501 u16 flags = 0; 502 503 /* ensure 4 byte alignment */ 504 while ((pos - (u8 *)rthdr) & 3) 505 pos++; 506 rthdr->it_present |= 507 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 508 put_unaligned_le32(status->ampdu_reference, pos); 509 pos += 4; 510 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 511 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 512 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 513 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 514 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 515 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 516 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 517 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 518 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 519 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 520 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 521 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 522 put_unaligned_le16(flags, pos); 523 pos += 2; 524 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 525 *pos++ = status->ampdu_delimiter_crc; 526 else 527 *pos++ = 0; 528 *pos++ = 0; 529 } 530 531 if (status->encoding == RX_ENC_VHT) { 532 u16 known = local->hw.radiotap_vht_details; 533 534 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 535 put_unaligned_le16(known, pos); 536 pos += 2; 537 /* flags */ 538 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 539 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 540 /* in VHT, STBC is binary */ 541 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 542 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 543 if (status->enc_flags & RX_ENC_FLAG_BF) 544 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 545 pos++; 546 /* bandwidth */ 547 switch (status->bw) { 548 case RATE_INFO_BW_80: 549 *pos++ = 4; 550 break; 551 case RATE_INFO_BW_160: 552 *pos++ = 11; 553 break; 554 case RATE_INFO_BW_40: 555 *pos++ = 1; 556 break; 557 default: 558 *pos++ = 0; 559 } 560 /* MCS/NSS */ 561 *pos = (status->rate_idx << 4) | status->nss; 562 pos += 4; 563 /* coding field */ 564 if (status->enc_flags & RX_ENC_FLAG_LDPC) 565 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 566 pos++; 567 /* group ID */ 568 pos++; 569 /* partial_aid */ 570 pos += 2; 571 } 572 573 if (local->hw.radiotap_timestamp.units_pos >= 0) { 574 u16 accuracy = 0; 575 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 576 577 rthdr->it_present |= 578 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 579 580 /* ensure 8 byte alignment */ 581 while ((pos - (u8 *)rthdr) & 7) 582 pos++; 583 584 put_unaligned_le64(status->device_timestamp, pos); 585 pos += sizeof(u64); 586 587 if (local->hw.radiotap_timestamp.accuracy >= 0) { 588 accuracy = local->hw.radiotap_timestamp.accuracy; 589 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 590 } 591 put_unaligned_le16(accuracy, pos); 592 pos += sizeof(u16); 593 594 *pos++ = local->hw.radiotap_timestamp.units_pos; 595 *pos++ = flags; 596 } 597 598 if (status->encoding == RX_ENC_HE && 599 status->flag & RX_FLAG_RADIOTAP_HE) { 600 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 601 602 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 603 he.data6 |= HE_PREP(DATA6_NSTS, 604 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 605 status->enc_flags)); 606 he.data3 |= HE_PREP(DATA3_STBC, 1); 607 } else { 608 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 609 } 610 611 #define CHECK_GI(s) \ 612 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 613 (int)NL80211_RATE_INFO_HE_GI_##s) 614 615 CHECK_GI(0_8); 616 CHECK_GI(1_6); 617 CHECK_GI(3_2); 618 619 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 620 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 621 he.data3 |= HE_PREP(DATA3_CODING, 622 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 623 624 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 625 626 switch (status->bw) { 627 case RATE_INFO_BW_20: 628 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 629 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 630 break; 631 case RATE_INFO_BW_40: 632 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 633 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 634 break; 635 case RATE_INFO_BW_80: 636 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 637 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 638 break; 639 case RATE_INFO_BW_160: 640 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 641 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 642 break; 643 case RATE_INFO_BW_HE_RU: 644 #define CHECK_RU_ALLOC(s) \ 645 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 646 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 647 648 CHECK_RU_ALLOC(26); 649 CHECK_RU_ALLOC(52); 650 CHECK_RU_ALLOC(106); 651 CHECK_RU_ALLOC(242); 652 CHECK_RU_ALLOC(484); 653 CHECK_RU_ALLOC(996); 654 CHECK_RU_ALLOC(2x996); 655 656 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 657 status->he_ru + 4); 658 break; 659 default: 660 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 661 } 662 663 /* ensure 2 byte alignment */ 664 while ((pos - (u8 *)rthdr) & 1) 665 pos++; 666 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 667 memcpy(pos, &he, sizeof(he)); 668 pos += sizeof(he); 669 } 670 671 if (status->encoding == RX_ENC_HE && 672 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 673 /* ensure 2 byte alignment */ 674 while ((pos - (u8 *)rthdr) & 1) 675 pos++; 676 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 677 memcpy(pos, &he_mu, sizeof(he_mu)); 678 pos += sizeof(he_mu); 679 } 680 681 if (status->flag & RX_FLAG_NO_PSDU) { 682 rthdr->it_present |= 683 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 684 *pos++ = status->zero_length_psdu_type; 685 } 686 687 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 688 /* ensure 2 byte alignment */ 689 while ((pos - (u8 *)rthdr) & 1) 690 pos++; 691 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 692 memcpy(pos, &lsig, sizeof(lsig)); 693 pos += sizeof(lsig); 694 } 695 696 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 697 *pos++ = status->chain_signal[chain]; 698 *pos++ = chain; 699 } 700 701 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 702 /* ensure 2 byte alignment for the vendor field as required */ 703 if ((pos - (u8 *)rthdr) & 1) 704 *pos++ = 0; 705 *pos++ = rtap.oui[0]; 706 *pos++ = rtap.oui[1]; 707 *pos++ = rtap.oui[2]; 708 *pos++ = rtap.subns; 709 put_unaligned_le16(rtap.len, pos); 710 pos += 2; 711 /* align the actual payload as requested */ 712 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 713 *pos++ = 0; 714 /* data (and possible padding) already follows */ 715 } 716 } 717 718 static struct sk_buff * 719 ieee80211_make_monitor_skb(struct ieee80211_local *local, 720 struct sk_buff **origskb, 721 struct ieee80211_rate *rate, 722 int rtap_space, bool use_origskb) 723 { 724 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 725 int rt_hdrlen, needed_headroom; 726 struct sk_buff *skb; 727 728 /* room for the radiotap header based on driver features */ 729 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 730 needed_headroom = rt_hdrlen - rtap_space; 731 732 if (use_origskb) { 733 /* only need to expand headroom if necessary */ 734 skb = *origskb; 735 *origskb = NULL; 736 737 /* 738 * This shouldn't trigger often because most devices have an 739 * RX header they pull before we get here, and that should 740 * be big enough for our radiotap information. We should 741 * probably export the length to drivers so that we can have 742 * them allocate enough headroom to start with. 743 */ 744 if (skb_headroom(skb) < needed_headroom && 745 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 746 dev_kfree_skb(skb); 747 return NULL; 748 } 749 } else { 750 /* 751 * Need to make a copy and possibly remove radiotap header 752 * and FCS from the original. 753 */ 754 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 755 0, GFP_ATOMIC); 756 757 if (!skb) 758 return NULL; 759 } 760 761 /* prepend radiotap information */ 762 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 763 764 skb_reset_mac_header(skb); 765 skb->ip_summed = CHECKSUM_UNNECESSARY; 766 skb->pkt_type = PACKET_OTHERHOST; 767 skb->protocol = htons(ETH_P_802_2); 768 769 return skb; 770 } 771 772 /* 773 * This function copies a received frame to all monitor interfaces and 774 * returns a cleaned-up SKB that no longer includes the FCS nor the 775 * radiotap header the driver might have added. 776 */ 777 static struct sk_buff * 778 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 779 struct ieee80211_rate *rate) 780 { 781 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 782 struct ieee80211_sub_if_data *sdata; 783 struct sk_buff *monskb = NULL; 784 int present_fcs_len = 0; 785 unsigned int rtap_space = 0; 786 struct ieee80211_sub_if_data *monitor_sdata = 787 rcu_dereference(local->monitor_sdata); 788 bool only_monitor = false; 789 unsigned int min_head_len; 790 791 if (status->flag & RX_FLAG_RADIOTAP_HE) 792 rtap_space += sizeof(struct ieee80211_radiotap_he); 793 794 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 795 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 796 797 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 798 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 799 800 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 801 struct ieee80211_vendor_radiotap *rtap = 802 (void *)(origskb->data + rtap_space); 803 804 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 805 } 806 807 min_head_len = rtap_space; 808 809 /* 810 * First, we may need to make a copy of the skb because 811 * (1) we need to modify it for radiotap (if not present), and 812 * (2) the other RX handlers will modify the skb we got. 813 * 814 * We don't need to, of course, if we aren't going to return 815 * the SKB because it has a bad FCS/PLCP checksum. 816 */ 817 818 if (!(status->flag & RX_FLAG_NO_PSDU)) { 819 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 820 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 821 /* driver bug */ 822 WARN_ON(1); 823 dev_kfree_skb(origskb); 824 return NULL; 825 } 826 present_fcs_len = FCS_LEN; 827 } 828 829 /* also consider the hdr->frame_control */ 830 min_head_len += 2; 831 } 832 833 /* ensure that the expected data elements are in skb head */ 834 if (!pskb_may_pull(origskb, min_head_len)) { 835 dev_kfree_skb(origskb); 836 return NULL; 837 } 838 839 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 840 841 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 842 if (only_monitor) { 843 dev_kfree_skb(origskb); 844 return NULL; 845 } 846 847 return ieee80211_clean_skb(origskb, present_fcs_len, 848 rtap_space); 849 } 850 851 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 852 853 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 854 bool last_monitor = list_is_last(&sdata->u.mntr.list, 855 &local->mon_list); 856 857 if (!monskb) 858 monskb = ieee80211_make_monitor_skb(local, &origskb, 859 rate, rtap_space, 860 only_monitor && 861 last_monitor); 862 863 if (monskb) { 864 struct sk_buff *skb; 865 866 if (last_monitor) { 867 skb = monskb; 868 monskb = NULL; 869 } else { 870 skb = skb_clone(monskb, GFP_ATOMIC); 871 } 872 873 if (skb) { 874 skb->dev = sdata->dev; 875 dev_sw_netstats_rx_add(skb->dev, skb->len); 876 netif_receive_skb(skb); 877 } 878 } 879 880 if (last_monitor) 881 break; 882 } 883 884 /* this happens if last_monitor was erroneously false */ 885 dev_kfree_skb(monskb); 886 887 /* ditto */ 888 if (!origskb) 889 return NULL; 890 891 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 892 } 893 894 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 895 { 896 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 897 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 898 int tid, seqno_idx, security_idx; 899 900 /* does the frame have a qos control field? */ 901 if (ieee80211_is_data_qos(hdr->frame_control)) { 902 u8 *qc = ieee80211_get_qos_ctl(hdr); 903 /* frame has qos control */ 904 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 905 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 906 status->rx_flags |= IEEE80211_RX_AMSDU; 907 908 seqno_idx = tid; 909 security_idx = tid; 910 } else { 911 /* 912 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 913 * 914 * Sequence numbers for management frames, QoS data 915 * frames with a broadcast/multicast address in the 916 * Address 1 field, and all non-QoS data frames sent 917 * by QoS STAs are assigned using an additional single 918 * modulo-4096 counter, [...] 919 * 920 * We also use that counter for non-QoS STAs. 921 */ 922 seqno_idx = IEEE80211_NUM_TIDS; 923 security_idx = 0; 924 if (ieee80211_is_mgmt(hdr->frame_control)) 925 security_idx = IEEE80211_NUM_TIDS; 926 tid = 0; 927 } 928 929 rx->seqno_idx = seqno_idx; 930 rx->security_idx = security_idx; 931 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 932 * For now, set skb->priority to 0 for other cases. */ 933 rx->skb->priority = (tid > 7) ? 0 : tid; 934 } 935 936 /** 937 * DOC: Packet alignment 938 * 939 * Drivers always need to pass packets that are aligned to two-byte boundaries 940 * to the stack. 941 * 942 * Additionally, should, if possible, align the payload data in a way that 943 * guarantees that the contained IP header is aligned to a four-byte 944 * boundary. In the case of regular frames, this simply means aligning the 945 * payload to a four-byte boundary (because either the IP header is directly 946 * contained, or IV/RFC1042 headers that have a length divisible by four are 947 * in front of it). If the payload data is not properly aligned and the 948 * architecture doesn't support efficient unaligned operations, mac80211 949 * will align the data. 950 * 951 * With A-MSDU frames, however, the payload data address must yield two modulo 952 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 953 * push the IP header further back to a multiple of four again. Thankfully, the 954 * specs were sane enough this time around to require padding each A-MSDU 955 * subframe to a length that is a multiple of four. 956 * 957 * Padding like Atheros hardware adds which is between the 802.11 header and 958 * the payload is not supported, the driver is required to move the 802.11 959 * header to be directly in front of the payload in that case. 960 */ 961 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 962 { 963 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 964 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 965 #endif 966 } 967 968 969 /* rx handlers */ 970 971 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 972 { 973 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 974 975 if (is_multicast_ether_addr(hdr->addr1)) 976 return 0; 977 978 return ieee80211_is_robust_mgmt_frame(skb); 979 } 980 981 982 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 983 { 984 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 985 986 if (!is_multicast_ether_addr(hdr->addr1)) 987 return 0; 988 989 return ieee80211_is_robust_mgmt_frame(skb); 990 } 991 992 993 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 994 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 995 { 996 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 997 struct ieee80211_mmie *mmie; 998 struct ieee80211_mmie_16 *mmie16; 999 1000 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 1001 return -1; 1002 1003 if (!ieee80211_is_robust_mgmt_frame(skb) && 1004 !ieee80211_is_beacon(hdr->frame_control)) 1005 return -1; /* not a robust management frame */ 1006 1007 mmie = (struct ieee80211_mmie *) 1008 (skb->data + skb->len - sizeof(*mmie)); 1009 if (mmie->element_id == WLAN_EID_MMIE && 1010 mmie->length == sizeof(*mmie) - 2) 1011 return le16_to_cpu(mmie->key_id); 1012 1013 mmie16 = (struct ieee80211_mmie_16 *) 1014 (skb->data + skb->len - sizeof(*mmie16)); 1015 if (skb->len >= 24 + sizeof(*mmie16) && 1016 mmie16->element_id == WLAN_EID_MMIE && 1017 mmie16->length == sizeof(*mmie16) - 2) 1018 return le16_to_cpu(mmie16->key_id); 1019 1020 return -1; 1021 } 1022 1023 static int ieee80211_get_keyid(struct sk_buff *skb) 1024 { 1025 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1026 __le16 fc = hdr->frame_control; 1027 int hdrlen = ieee80211_hdrlen(fc); 1028 u8 keyid; 1029 1030 /* WEP, TKIP, CCMP and GCMP */ 1031 if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN)) 1032 return -EINVAL; 1033 1034 skb_copy_bits(skb, hdrlen + 3, &keyid, 1); 1035 1036 keyid >>= 6; 1037 1038 return keyid; 1039 } 1040 1041 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1042 { 1043 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1044 char *dev_addr = rx->sdata->vif.addr; 1045 1046 if (ieee80211_is_data(hdr->frame_control)) { 1047 if (is_multicast_ether_addr(hdr->addr1)) { 1048 if (ieee80211_has_tods(hdr->frame_control) || 1049 !ieee80211_has_fromds(hdr->frame_control)) 1050 return RX_DROP_MONITOR; 1051 if (ether_addr_equal(hdr->addr3, dev_addr)) 1052 return RX_DROP_MONITOR; 1053 } else { 1054 if (!ieee80211_has_a4(hdr->frame_control)) 1055 return RX_DROP_MONITOR; 1056 if (ether_addr_equal(hdr->addr4, dev_addr)) 1057 return RX_DROP_MONITOR; 1058 } 1059 } 1060 1061 /* If there is not an established peer link and this is not a peer link 1062 * establisment frame, beacon or probe, drop the frame. 1063 */ 1064 1065 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1066 struct ieee80211_mgmt *mgmt; 1067 1068 if (!ieee80211_is_mgmt(hdr->frame_control)) 1069 return RX_DROP_MONITOR; 1070 1071 if (ieee80211_is_action(hdr->frame_control)) { 1072 u8 category; 1073 1074 /* make sure category field is present */ 1075 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1076 return RX_DROP_MONITOR; 1077 1078 mgmt = (struct ieee80211_mgmt *)hdr; 1079 category = mgmt->u.action.category; 1080 if (category != WLAN_CATEGORY_MESH_ACTION && 1081 category != WLAN_CATEGORY_SELF_PROTECTED) 1082 return RX_DROP_MONITOR; 1083 return RX_CONTINUE; 1084 } 1085 1086 if (ieee80211_is_probe_req(hdr->frame_control) || 1087 ieee80211_is_probe_resp(hdr->frame_control) || 1088 ieee80211_is_beacon(hdr->frame_control) || 1089 ieee80211_is_auth(hdr->frame_control)) 1090 return RX_CONTINUE; 1091 1092 return RX_DROP_MONITOR; 1093 } 1094 1095 return RX_CONTINUE; 1096 } 1097 1098 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1099 int index) 1100 { 1101 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1102 struct sk_buff *tail = skb_peek_tail(frames); 1103 struct ieee80211_rx_status *status; 1104 1105 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1106 return true; 1107 1108 if (!tail) 1109 return false; 1110 1111 status = IEEE80211_SKB_RXCB(tail); 1112 if (status->flag & RX_FLAG_AMSDU_MORE) 1113 return false; 1114 1115 return true; 1116 } 1117 1118 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1119 struct tid_ampdu_rx *tid_agg_rx, 1120 int index, 1121 struct sk_buff_head *frames) 1122 { 1123 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1124 struct sk_buff *skb; 1125 struct ieee80211_rx_status *status; 1126 1127 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1128 1129 if (skb_queue_empty(skb_list)) 1130 goto no_frame; 1131 1132 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1133 __skb_queue_purge(skb_list); 1134 goto no_frame; 1135 } 1136 1137 /* release frames from the reorder ring buffer */ 1138 tid_agg_rx->stored_mpdu_num--; 1139 while ((skb = __skb_dequeue(skb_list))) { 1140 status = IEEE80211_SKB_RXCB(skb); 1141 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1142 __skb_queue_tail(frames, skb); 1143 } 1144 1145 no_frame: 1146 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1147 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1148 } 1149 1150 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1151 struct tid_ampdu_rx *tid_agg_rx, 1152 u16 head_seq_num, 1153 struct sk_buff_head *frames) 1154 { 1155 int index; 1156 1157 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1158 1159 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1160 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1161 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1162 frames); 1163 } 1164 } 1165 1166 /* 1167 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1168 * the skb was added to the buffer longer than this time ago, the earlier 1169 * frames that have not yet been received are assumed to be lost and the skb 1170 * can be released for processing. This may also release other skb's from the 1171 * reorder buffer if there are no additional gaps between the frames. 1172 * 1173 * Callers must hold tid_agg_rx->reorder_lock. 1174 */ 1175 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1176 1177 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1178 struct tid_ampdu_rx *tid_agg_rx, 1179 struct sk_buff_head *frames) 1180 { 1181 int index, i, j; 1182 1183 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1184 1185 /* release the buffer until next missing frame */ 1186 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1187 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1188 tid_agg_rx->stored_mpdu_num) { 1189 /* 1190 * No buffers ready to be released, but check whether any 1191 * frames in the reorder buffer have timed out. 1192 */ 1193 int skipped = 1; 1194 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1195 j = (j + 1) % tid_agg_rx->buf_size) { 1196 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1197 skipped++; 1198 continue; 1199 } 1200 if (skipped && 1201 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1202 HT_RX_REORDER_BUF_TIMEOUT)) 1203 goto set_release_timer; 1204 1205 /* don't leave incomplete A-MSDUs around */ 1206 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1207 i = (i + 1) % tid_agg_rx->buf_size) 1208 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1209 1210 ht_dbg_ratelimited(sdata, 1211 "release an RX reorder frame due to timeout on earlier frames\n"); 1212 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1213 frames); 1214 1215 /* 1216 * Increment the head seq# also for the skipped slots. 1217 */ 1218 tid_agg_rx->head_seq_num = 1219 (tid_agg_rx->head_seq_num + 1220 skipped) & IEEE80211_SN_MASK; 1221 skipped = 0; 1222 } 1223 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1224 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1225 frames); 1226 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1227 } 1228 1229 if (tid_agg_rx->stored_mpdu_num) { 1230 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1231 1232 for (; j != (index - 1) % tid_agg_rx->buf_size; 1233 j = (j + 1) % tid_agg_rx->buf_size) { 1234 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1235 break; 1236 } 1237 1238 set_release_timer: 1239 1240 if (!tid_agg_rx->removed) 1241 mod_timer(&tid_agg_rx->reorder_timer, 1242 tid_agg_rx->reorder_time[j] + 1 + 1243 HT_RX_REORDER_BUF_TIMEOUT); 1244 } else { 1245 del_timer(&tid_agg_rx->reorder_timer); 1246 } 1247 } 1248 1249 /* 1250 * As this function belongs to the RX path it must be under 1251 * rcu_read_lock protection. It returns false if the frame 1252 * can be processed immediately, true if it was consumed. 1253 */ 1254 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1255 struct tid_ampdu_rx *tid_agg_rx, 1256 struct sk_buff *skb, 1257 struct sk_buff_head *frames) 1258 { 1259 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1260 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1261 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1262 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1263 u16 head_seq_num, buf_size; 1264 int index; 1265 bool ret = true; 1266 1267 spin_lock(&tid_agg_rx->reorder_lock); 1268 1269 /* 1270 * Offloaded BA sessions have no known starting sequence number so pick 1271 * one from first Rxed frame for this tid after BA was started. 1272 */ 1273 if (unlikely(tid_agg_rx->auto_seq)) { 1274 tid_agg_rx->auto_seq = false; 1275 tid_agg_rx->ssn = mpdu_seq_num; 1276 tid_agg_rx->head_seq_num = mpdu_seq_num; 1277 } 1278 1279 buf_size = tid_agg_rx->buf_size; 1280 head_seq_num = tid_agg_rx->head_seq_num; 1281 1282 /* 1283 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1284 * be reordered. 1285 */ 1286 if (unlikely(!tid_agg_rx->started)) { 1287 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1288 ret = false; 1289 goto out; 1290 } 1291 tid_agg_rx->started = true; 1292 } 1293 1294 /* frame with out of date sequence number */ 1295 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1296 dev_kfree_skb(skb); 1297 goto out; 1298 } 1299 1300 /* 1301 * If frame the sequence number exceeds our buffering window 1302 * size release some previous frames to make room for this one. 1303 */ 1304 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1305 head_seq_num = ieee80211_sn_inc( 1306 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1307 /* release stored frames up to new head to stack */ 1308 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1309 head_seq_num, frames); 1310 } 1311 1312 /* Now the new frame is always in the range of the reordering buffer */ 1313 1314 index = mpdu_seq_num % tid_agg_rx->buf_size; 1315 1316 /* check if we already stored this frame */ 1317 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1318 dev_kfree_skb(skb); 1319 goto out; 1320 } 1321 1322 /* 1323 * If the current MPDU is in the right order and nothing else 1324 * is stored we can process it directly, no need to buffer it. 1325 * If it is first but there's something stored, we may be able 1326 * to release frames after this one. 1327 */ 1328 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1329 tid_agg_rx->stored_mpdu_num == 0) { 1330 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1331 tid_agg_rx->head_seq_num = 1332 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1333 ret = false; 1334 goto out; 1335 } 1336 1337 /* put the frame in the reordering buffer */ 1338 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1339 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1340 tid_agg_rx->reorder_time[index] = jiffies; 1341 tid_agg_rx->stored_mpdu_num++; 1342 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1343 } 1344 1345 out: 1346 spin_unlock(&tid_agg_rx->reorder_lock); 1347 return ret; 1348 } 1349 1350 /* 1351 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1352 * true if the MPDU was buffered, false if it should be processed. 1353 */ 1354 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1355 struct sk_buff_head *frames) 1356 { 1357 struct sk_buff *skb = rx->skb; 1358 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1359 struct sta_info *sta = rx->sta; 1360 struct tid_ampdu_rx *tid_agg_rx; 1361 u16 sc; 1362 u8 tid, ack_policy; 1363 1364 if (!ieee80211_is_data_qos(hdr->frame_control) || 1365 is_multicast_ether_addr(hdr->addr1)) 1366 goto dont_reorder; 1367 1368 /* 1369 * filter the QoS data rx stream according to 1370 * STA/TID and check if this STA/TID is on aggregation 1371 */ 1372 1373 if (!sta) 1374 goto dont_reorder; 1375 1376 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1377 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1378 tid = ieee80211_get_tid(hdr); 1379 1380 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1381 if (!tid_agg_rx) { 1382 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1383 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1384 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1385 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1386 WLAN_BACK_RECIPIENT, 1387 WLAN_REASON_QSTA_REQUIRE_SETUP); 1388 goto dont_reorder; 1389 } 1390 1391 /* qos null data frames are excluded */ 1392 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1393 goto dont_reorder; 1394 1395 /* not part of a BA session */ 1396 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) 1397 goto dont_reorder; 1398 1399 /* new, potentially un-ordered, ampdu frame - process it */ 1400 1401 /* reset session timer */ 1402 if (tid_agg_rx->timeout) 1403 tid_agg_rx->last_rx = jiffies; 1404 1405 /* if this mpdu is fragmented - terminate rx aggregation session */ 1406 sc = le16_to_cpu(hdr->seq_ctrl); 1407 if (sc & IEEE80211_SCTL_FRAG) { 1408 ieee80211_queue_skb_to_iface(rx->sdata, rx->link_id, NULL, skb); 1409 return; 1410 } 1411 1412 /* 1413 * No locking needed -- we will only ever process one 1414 * RX packet at a time, and thus own tid_agg_rx. All 1415 * other code manipulating it needs to (and does) make 1416 * sure that we cannot get to it any more before doing 1417 * anything with it. 1418 */ 1419 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1420 frames)) 1421 return; 1422 1423 dont_reorder: 1424 __skb_queue_tail(frames, skb); 1425 } 1426 1427 static ieee80211_rx_result debug_noinline 1428 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1429 { 1430 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1431 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1432 1433 if (status->flag & RX_FLAG_DUP_VALIDATED) 1434 return RX_CONTINUE; 1435 1436 /* 1437 * Drop duplicate 802.11 retransmissions 1438 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1439 */ 1440 1441 if (rx->skb->len < 24) 1442 return RX_CONTINUE; 1443 1444 if (ieee80211_is_ctl(hdr->frame_control) || 1445 ieee80211_is_any_nullfunc(hdr->frame_control) || 1446 is_multicast_ether_addr(hdr->addr1)) 1447 return RX_CONTINUE; 1448 1449 if (!rx->sta) 1450 return RX_CONTINUE; 1451 1452 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1453 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1454 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1455 rx->sta->deflink.rx_stats.num_duplicates++; 1456 return RX_DROP_UNUSABLE; 1457 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1458 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1459 } 1460 1461 return RX_CONTINUE; 1462 } 1463 1464 static ieee80211_rx_result debug_noinline 1465 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1466 { 1467 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1468 1469 /* Drop disallowed frame classes based on STA auth/assoc state; 1470 * IEEE 802.11, Chap 5.5. 1471 * 1472 * mac80211 filters only based on association state, i.e. it drops 1473 * Class 3 frames from not associated stations. hostapd sends 1474 * deauth/disassoc frames when needed. In addition, hostapd is 1475 * responsible for filtering on both auth and assoc states. 1476 */ 1477 1478 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1479 return ieee80211_rx_mesh_check(rx); 1480 1481 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1482 ieee80211_is_pspoll(hdr->frame_control)) && 1483 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1484 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1485 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1486 /* 1487 * accept port control frames from the AP even when it's not 1488 * yet marked ASSOC to prevent a race where we don't set the 1489 * assoc bit quickly enough before it sends the first frame 1490 */ 1491 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1492 ieee80211_is_data_present(hdr->frame_control)) { 1493 unsigned int hdrlen; 1494 __be16 ethertype; 1495 1496 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1497 1498 if (rx->skb->len < hdrlen + 8) 1499 return RX_DROP_MONITOR; 1500 1501 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1502 if (ethertype == rx->sdata->control_port_protocol) 1503 return RX_CONTINUE; 1504 } 1505 1506 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1507 cfg80211_rx_spurious_frame(rx->sdata->dev, 1508 hdr->addr2, 1509 GFP_ATOMIC)) 1510 return RX_DROP_UNUSABLE; 1511 1512 return RX_DROP_MONITOR; 1513 } 1514 1515 return RX_CONTINUE; 1516 } 1517 1518 1519 static ieee80211_rx_result debug_noinline 1520 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1521 { 1522 struct ieee80211_local *local; 1523 struct ieee80211_hdr *hdr; 1524 struct sk_buff *skb; 1525 1526 local = rx->local; 1527 skb = rx->skb; 1528 hdr = (struct ieee80211_hdr *) skb->data; 1529 1530 if (!local->pspolling) 1531 return RX_CONTINUE; 1532 1533 if (!ieee80211_has_fromds(hdr->frame_control)) 1534 /* this is not from AP */ 1535 return RX_CONTINUE; 1536 1537 if (!ieee80211_is_data(hdr->frame_control)) 1538 return RX_CONTINUE; 1539 1540 if (!ieee80211_has_moredata(hdr->frame_control)) { 1541 /* AP has no more frames buffered for us */ 1542 local->pspolling = false; 1543 return RX_CONTINUE; 1544 } 1545 1546 /* more data bit is set, let's request a new frame from the AP */ 1547 ieee80211_send_pspoll(local, rx->sdata); 1548 1549 return RX_CONTINUE; 1550 } 1551 1552 static void sta_ps_start(struct sta_info *sta) 1553 { 1554 struct ieee80211_sub_if_data *sdata = sta->sdata; 1555 struct ieee80211_local *local = sdata->local; 1556 struct ps_data *ps; 1557 int tid; 1558 1559 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1560 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1561 ps = &sdata->bss->ps; 1562 else 1563 return; 1564 1565 atomic_inc(&ps->num_sta_ps); 1566 set_sta_flag(sta, WLAN_STA_PS_STA); 1567 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1568 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1569 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1570 sta->sta.addr, sta->sta.aid); 1571 1572 ieee80211_clear_fast_xmit(sta); 1573 1574 if (!sta->sta.txq[0]) 1575 return; 1576 1577 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1578 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1579 struct txq_info *txqi = to_txq_info(txq); 1580 1581 spin_lock(&local->active_txq_lock[txq->ac]); 1582 if (!list_empty(&txqi->schedule_order)) 1583 list_del_init(&txqi->schedule_order); 1584 spin_unlock(&local->active_txq_lock[txq->ac]); 1585 1586 if (txq_has_queue(txq)) 1587 set_bit(tid, &sta->txq_buffered_tids); 1588 else 1589 clear_bit(tid, &sta->txq_buffered_tids); 1590 } 1591 } 1592 1593 static void sta_ps_end(struct sta_info *sta) 1594 { 1595 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1596 sta->sta.addr, sta->sta.aid); 1597 1598 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1599 /* 1600 * Clear the flag only if the other one is still set 1601 * so that the TX path won't start TX'ing new frames 1602 * directly ... In the case that the driver flag isn't 1603 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1604 */ 1605 clear_sta_flag(sta, WLAN_STA_PS_STA); 1606 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1607 sta->sta.addr, sta->sta.aid); 1608 return; 1609 } 1610 1611 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1612 clear_sta_flag(sta, WLAN_STA_PS_STA); 1613 ieee80211_sta_ps_deliver_wakeup(sta); 1614 } 1615 1616 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1617 { 1618 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1619 bool in_ps; 1620 1621 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1622 1623 /* Don't let the same PS state be set twice */ 1624 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1625 if ((start && in_ps) || (!start && !in_ps)) 1626 return -EINVAL; 1627 1628 if (start) 1629 sta_ps_start(sta); 1630 else 1631 sta_ps_end(sta); 1632 1633 return 0; 1634 } 1635 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1636 1637 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1638 { 1639 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1640 1641 if (test_sta_flag(sta, WLAN_STA_SP)) 1642 return; 1643 1644 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1645 ieee80211_sta_ps_deliver_poll_response(sta); 1646 else 1647 set_sta_flag(sta, WLAN_STA_PSPOLL); 1648 } 1649 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1650 1651 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1652 { 1653 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1654 int ac = ieee80211_ac_from_tid(tid); 1655 1656 /* 1657 * If this AC is not trigger-enabled do nothing unless the 1658 * driver is calling us after it already checked. 1659 * 1660 * NB: This could/should check a separate bitmap of trigger- 1661 * enabled queues, but for now we only implement uAPSD w/o 1662 * TSPEC changes to the ACs, so they're always the same. 1663 */ 1664 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1665 tid != IEEE80211_NUM_TIDS) 1666 return; 1667 1668 /* if we are in a service period, do nothing */ 1669 if (test_sta_flag(sta, WLAN_STA_SP)) 1670 return; 1671 1672 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1673 ieee80211_sta_ps_deliver_uapsd(sta); 1674 else 1675 set_sta_flag(sta, WLAN_STA_UAPSD); 1676 } 1677 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1678 1679 static ieee80211_rx_result debug_noinline 1680 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1681 { 1682 struct ieee80211_sub_if_data *sdata = rx->sdata; 1683 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1684 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1685 1686 if (!rx->sta) 1687 return RX_CONTINUE; 1688 1689 if (sdata->vif.type != NL80211_IFTYPE_AP && 1690 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1691 return RX_CONTINUE; 1692 1693 /* 1694 * The device handles station powersave, so don't do anything about 1695 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1696 * it to mac80211 since they're handled.) 1697 */ 1698 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1699 return RX_CONTINUE; 1700 1701 /* 1702 * Don't do anything if the station isn't already asleep. In 1703 * the uAPSD case, the station will probably be marked asleep, 1704 * in the PS-Poll case the station must be confused ... 1705 */ 1706 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1707 return RX_CONTINUE; 1708 1709 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1710 ieee80211_sta_pspoll(&rx->sta->sta); 1711 1712 /* Free PS Poll skb here instead of returning RX_DROP that would 1713 * count as an dropped frame. */ 1714 dev_kfree_skb(rx->skb); 1715 1716 return RX_QUEUED; 1717 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1718 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1719 ieee80211_has_pm(hdr->frame_control) && 1720 (ieee80211_is_data_qos(hdr->frame_control) || 1721 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1722 u8 tid = ieee80211_get_tid(hdr); 1723 1724 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1725 } 1726 1727 return RX_CONTINUE; 1728 } 1729 1730 static ieee80211_rx_result debug_noinline 1731 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1732 { 1733 struct sta_info *sta = rx->sta; 1734 struct sk_buff *skb = rx->skb; 1735 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1736 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1737 int i; 1738 1739 if (!sta) 1740 return RX_CONTINUE; 1741 1742 /* 1743 * Update last_rx only for IBSS packets which are for the current 1744 * BSSID and for station already AUTHORIZED to avoid keeping the 1745 * current IBSS network alive in cases where other STAs start 1746 * using different BSSID. This will also give the station another 1747 * chance to restart the authentication/authorization in case 1748 * something went wrong the first time. 1749 */ 1750 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1751 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1752 NL80211_IFTYPE_ADHOC); 1753 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1754 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1755 sta->deflink.rx_stats.last_rx = jiffies; 1756 if (ieee80211_is_data(hdr->frame_control) && 1757 !is_multicast_ether_addr(hdr->addr1)) 1758 sta->deflink.rx_stats.last_rate = 1759 sta_stats_encode_rate(status); 1760 } 1761 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1762 sta->deflink.rx_stats.last_rx = jiffies; 1763 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1764 !is_multicast_ether_addr(hdr->addr1)) { 1765 /* 1766 * Mesh beacons will update last_rx when if they are found to 1767 * match the current local configuration when processed. 1768 */ 1769 sta->deflink.rx_stats.last_rx = jiffies; 1770 if (ieee80211_is_data(hdr->frame_control)) 1771 sta->deflink.rx_stats.last_rate = sta_stats_encode_rate(status); 1772 } 1773 1774 sta->deflink.rx_stats.fragments++; 1775 1776 u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp); 1777 sta->deflink.rx_stats.bytes += rx->skb->len; 1778 u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp); 1779 1780 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1781 sta->deflink.rx_stats.last_signal = status->signal; 1782 ewma_signal_add(&sta->deflink.rx_stats_avg.signal, 1783 -status->signal); 1784 } 1785 1786 if (status->chains) { 1787 sta->deflink.rx_stats.chains = status->chains; 1788 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1789 int signal = status->chain_signal[i]; 1790 1791 if (!(status->chains & BIT(i))) 1792 continue; 1793 1794 sta->deflink.rx_stats.chain_signal_last[i] = signal; 1795 ewma_signal_add(&sta->deflink.rx_stats_avg.chain_signal[i], 1796 -signal); 1797 } 1798 } 1799 1800 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1801 return RX_CONTINUE; 1802 1803 /* 1804 * Change STA power saving mode only at the end of a frame 1805 * exchange sequence, and only for a data or management 1806 * frame as specified in IEEE 802.11-2016 11.2.3.2 1807 */ 1808 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1809 !ieee80211_has_morefrags(hdr->frame_control) && 1810 !is_multicast_ether_addr(hdr->addr1) && 1811 (ieee80211_is_mgmt(hdr->frame_control) || 1812 ieee80211_is_data(hdr->frame_control)) && 1813 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1814 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1815 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1816 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1817 if (!ieee80211_has_pm(hdr->frame_control)) 1818 sta_ps_end(sta); 1819 } else { 1820 if (ieee80211_has_pm(hdr->frame_control)) 1821 sta_ps_start(sta); 1822 } 1823 } 1824 1825 /* mesh power save support */ 1826 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1827 ieee80211_mps_rx_h_sta_process(sta, hdr); 1828 1829 /* 1830 * Drop (qos-)data::nullfunc frames silently, since they 1831 * are used only to control station power saving mode. 1832 */ 1833 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1834 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1835 1836 /* 1837 * If we receive a 4-addr nullfunc frame from a STA 1838 * that was not moved to a 4-addr STA vlan yet send 1839 * the event to userspace and for older hostapd drop 1840 * the frame to the monitor interface. 1841 */ 1842 if (ieee80211_has_a4(hdr->frame_control) && 1843 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1844 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1845 !rx->sdata->u.vlan.sta))) { 1846 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1847 cfg80211_rx_unexpected_4addr_frame( 1848 rx->sdata->dev, sta->sta.addr, 1849 GFP_ATOMIC); 1850 return RX_DROP_MONITOR; 1851 } 1852 /* 1853 * Update counter and free packet here to avoid 1854 * counting this as a dropped packed. 1855 */ 1856 sta->deflink.rx_stats.packets++; 1857 dev_kfree_skb(rx->skb); 1858 return RX_QUEUED; 1859 } 1860 1861 return RX_CONTINUE; 1862 } /* ieee80211_rx_h_sta_process */ 1863 1864 static struct ieee80211_key * 1865 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1866 { 1867 struct ieee80211_key *key = NULL; 1868 int idx2; 1869 1870 /* Make sure key gets set if either BIGTK key index is set so that 1871 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1872 * Beacon frames and Beacon frames that claim to use another BIGTK key 1873 * index (i.e., a key that we do not have). 1874 */ 1875 1876 if (idx < 0) { 1877 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1878 idx2 = idx + 1; 1879 } else { 1880 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1881 idx2 = idx + 1; 1882 else 1883 idx2 = idx - 1; 1884 } 1885 1886 if (rx->link_sta) 1887 key = rcu_dereference(rx->link_sta->gtk[idx]); 1888 if (!key) 1889 key = rcu_dereference(rx->link->gtk[idx]); 1890 if (!key && rx->link_sta) 1891 key = rcu_dereference(rx->link_sta->gtk[idx2]); 1892 if (!key) 1893 key = rcu_dereference(rx->link->gtk[idx2]); 1894 1895 return key; 1896 } 1897 1898 static ieee80211_rx_result debug_noinline 1899 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1900 { 1901 struct sk_buff *skb = rx->skb; 1902 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1903 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1904 int keyidx; 1905 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1906 struct ieee80211_key *sta_ptk = NULL; 1907 struct ieee80211_key *ptk_idx = NULL; 1908 int mmie_keyidx = -1; 1909 __le16 fc; 1910 1911 if (ieee80211_is_ext(hdr->frame_control)) 1912 return RX_CONTINUE; 1913 1914 /* 1915 * Key selection 101 1916 * 1917 * There are five types of keys: 1918 * - GTK (group keys) 1919 * - IGTK (group keys for management frames) 1920 * - BIGTK (group keys for Beacon frames) 1921 * - PTK (pairwise keys) 1922 * - STK (station-to-station pairwise keys) 1923 * 1924 * When selecting a key, we have to distinguish between multicast 1925 * (including broadcast) and unicast frames, the latter can only 1926 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1927 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1928 * then unicast frames can also use key indices like GTKs. Hence, if we 1929 * don't have a PTK/STK we check the key index for a WEP key. 1930 * 1931 * Note that in a regular BSS, multicast frames are sent by the 1932 * AP only, associated stations unicast the frame to the AP first 1933 * which then multicasts it on their behalf. 1934 * 1935 * There is also a slight problem in IBSS mode: GTKs are negotiated 1936 * with each station, that is something we don't currently handle. 1937 * The spec seems to expect that one negotiates the same key with 1938 * every station but there's no such requirement; VLANs could be 1939 * possible. 1940 */ 1941 1942 /* start without a key */ 1943 rx->key = NULL; 1944 fc = hdr->frame_control; 1945 1946 if (rx->sta) { 1947 int keyid = rx->sta->ptk_idx; 1948 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1949 1950 if (ieee80211_has_protected(fc) && 1951 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1952 keyid = ieee80211_get_keyid(rx->skb); 1953 1954 if (unlikely(keyid < 0)) 1955 return RX_DROP_UNUSABLE; 1956 1957 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1958 } 1959 } 1960 1961 if (!ieee80211_has_protected(fc)) 1962 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1963 1964 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1965 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1966 if ((status->flag & RX_FLAG_DECRYPTED) && 1967 (status->flag & RX_FLAG_IV_STRIPPED)) 1968 return RX_CONTINUE; 1969 /* Skip decryption if the frame is not protected. */ 1970 if (!ieee80211_has_protected(fc)) 1971 return RX_CONTINUE; 1972 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1973 /* Broadcast/multicast robust management frame / BIP */ 1974 if ((status->flag & RX_FLAG_DECRYPTED) && 1975 (status->flag & RX_FLAG_IV_STRIPPED)) 1976 return RX_CONTINUE; 1977 1978 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1979 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1980 NUM_DEFAULT_BEACON_KEYS) { 1981 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1982 skb->data, 1983 skb->len); 1984 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1985 } 1986 1987 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1988 if (!rx->key) 1989 return RX_CONTINUE; /* Beacon protection not in use */ 1990 } else if (mmie_keyidx >= 0) { 1991 /* Broadcast/multicast robust management frame / BIP */ 1992 if ((status->flag & RX_FLAG_DECRYPTED) && 1993 (status->flag & RX_FLAG_IV_STRIPPED)) 1994 return RX_CONTINUE; 1995 1996 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1997 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1998 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1999 if (rx->link_sta) { 2000 if (ieee80211_is_group_privacy_action(skb) && 2001 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2002 return RX_DROP_MONITOR; 2003 2004 rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]); 2005 } 2006 if (!rx->key) 2007 rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]); 2008 } else if (!ieee80211_has_protected(fc)) { 2009 /* 2010 * The frame was not protected, so skip decryption. However, we 2011 * need to set rx->key if there is a key that could have been 2012 * used so that the frame may be dropped if encryption would 2013 * have been expected. 2014 */ 2015 struct ieee80211_key *key = NULL; 2016 int i; 2017 2018 if (ieee80211_is_beacon(fc)) { 2019 key = ieee80211_rx_get_bigtk(rx, -1); 2020 } else if (ieee80211_is_mgmt(fc) && 2021 is_multicast_ether_addr(hdr->addr1)) { 2022 key = rcu_dereference(rx->link->default_mgmt_key); 2023 } else { 2024 if (rx->link_sta) { 2025 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2026 key = rcu_dereference(rx->link_sta->gtk[i]); 2027 if (key) 2028 break; 2029 } 2030 } 2031 if (!key) { 2032 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2033 key = rcu_dereference(rx->link->gtk[i]); 2034 if (key) 2035 break; 2036 } 2037 } 2038 } 2039 if (key) 2040 rx->key = key; 2041 return RX_CONTINUE; 2042 } else { 2043 /* 2044 * The device doesn't give us the IV so we won't be 2045 * able to look up the key. That's ok though, we 2046 * don't need to decrypt the frame, we just won't 2047 * be able to keep statistics accurate. 2048 * Except for key threshold notifications, should 2049 * we somehow allow the driver to tell us which key 2050 * the hardware used if this flag is set? 2051 */ 2052 if ((status->flag & RX_FLAG_DECRYPTED) && 2053 (status->flag & RX_FLAG_IV_STRIPPED)) 2054 return RX_CONTINUE; 2055 2056 keyidx = ieee80211_get_keyid(rx->skb); 2057 2058 if (unlikely(keyidx < 0)) 2059 return RX_DROP_UNUSABLE; 2060 2061 /* check per-station GTK first, if multicast packet */ 2062 if (is_multicast_ether_addr(hdr->addr1) && rx->link_sta) 2063 rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]); 2064 2065 /* if not found, try default key */ 2066 if (!rx->key) { 2067 if (is_multicast_ether_addr(hdr->addr1)) 2068 rx->key = rcu_dereference(rx->link->gtk[keyidx]); 2069 if (!rx->key) 2070 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2071 2072 /* 2073 * RSNA-protected unicast frames should always be 2074 * sent with pairwise or station-to-station keys, 2075 * but for WEP we allow using a key index as well. 2076 */ 2077 if (rx->key && 2078 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2079 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2080 !is_multicast_ether_addr(hdr->addr1)) 2081 rx->key = NULL; 2082 } 2083 } 2084 2085 if (rx->key) { 2086 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2087 return RX_DROP_MONITOR; 2088 2089 /* TODO: add threshold stuff again */ 2090 } else { 2091 return RX_DROP_MONITOR; 2092 } 2093 2094 switch (rx->key->conf.cipher) { 2095 case WLAN_CIPHER_SUITE_WEP40: 2096 case WLAN_CIPHER_SUITE_WEP104: 2097 result = ieee80211_crypto_wep_decrypt(rx); 2098 break; 2099 case WLAN_CIPHER_SUITE_TKIP: 2100 result = ieee80211_crypto_tkip_decrypt(rx); 2101 break; 2102 case WLAN_CIPHER_SUITE_CCMP: 2103 result = ieee80211_crypto_ccmp_decrypt( 2104 rx, IEEE80211_CCMP_MIC_LEN); 2105 break; 2106 case WLAN_CIPHER_SUITE_CCMP_256: 2107 result = ieee80211_crypto_ccmp_decrypt( 2108 rx, IEEE80211_CCMP_256_MIC_LEN); 2109 break; 2110 case WLAN_CIPHER_SUITE_AES_CMAC: 2111 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2112 break; 2113 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2114 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2115 break; 2116 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2117 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2118 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2119 break; 2120 case WLAN_CIPHER_SUITE_GCMP: 2121 case WLAN_CIPHER_SUITE_GCMP_256: 2122 result = ieee80211_crypto_gcmp_decrypt(rx); 2123 break; 2124 default: 2125 result = RX_DROP_UNUSABLE; 2126 } 2127 2128 /* the hdr variable is invalid after the decrypt handlers */ 2129 2130 /* either the frame has been decrypted or will be dropped */ 2131 status->flag |= RX_FLAG_DECRYPTED; 2132 2133 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) 2134 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2135 skb->data, skb->len); 2136 2137 return result; 2138 } 2139 2140 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2141 { 2142 int i; 2143 2144 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2145 skb_queue_head_init(&cache->entries[i].skb_list); 2146 } 2147 2148 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2149 { 2150 int i; 2151 2152 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2153 __skb_queue_purge(&cache->entries[i].skb_list); 2154 } 2155 2156 static inline struct ieee80211_fragment_entry * 2157 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2158 unsigned int frag, unsigned int seq, int rx_queue, 2159 struct sk_buff **skb) 2160 { 2161 struct ieee80211_fragment_entry *entry; 2162 2163 entry = &cache->entries[cache->next++]; 2164 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2165 cache->next = 0; 2166 2167 __skb_queue_purge(&entry->skb_list); 2168 2169 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2170 *skb = NULL; 2171 entry->first_frag_time = jiffies; 2172 entry->seq = seq; 2173 entry->rx_queue = rx_queue; 2174 entry->last_frag = frag; 2175 entry->check_sequential_pn = false; 2176 entry->extra_len = 0; 2177 2178 return entry; 2179 } 2180 2181 static inline struct ieee80211_fragment_entry * 2182 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2183 unsigned int frag, unsigned int seq, 2184 int rx_queue, struct ieee80211_hdr *hdr) 2185 { 2186 struct ieee80211_fragment_entry *entry; 2187 int i, idx; 2188 2189 idx = cache->next; 2190 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2191 struct ieee80211_hdr *f_hdr; 2192 struct sk_buff *f_skb; 2193 2194 idx--; 2195 if (idx < 0) 2196 idx = IEEE80211_FRAGMENT_MAX - 1; 2197 2198 entry = &cache->entries[idx]; 2199 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2200 entry->rx_queue != rx_queue || 2201 entry->last_frag + 1 != frag) 2202 continue; 2203 2204 f_skb = __skb_peek(&entry->skb_list); 2205 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2206 2207 /* 2208 * Check ftype and addresses are equal, else check next fragment 2209 */ 2210 if (((hdr->frame_control ^ f_hdr->frame_control) & 2211 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2212 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2213 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2214 continue; 2215 2216 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2217 __skb_queue_purge(&entry->skb_list); 2218 continue; 2219 } 2220 return entry; 2221 } 2222 2223 return NULL; 2224 } 2225 2226 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2227 { 2228 return rx->key && 2229 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2230 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2231 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2232 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2233 ieee80211_has_protected(fc); 2234 } 2235 2236 static ieee80211_rx_result debug_noinline 2237 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2238 { 2239 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2240 struct ieee80211_hdr *hdr; 2241 u16 sc; 2242 __le16 fc; 2243 unsigned int frag, seq; 2244 struct ieee80211_fragment_entry *entry; 2245 struct sk_buff *skb; 2246 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2247 2248 hdr = (struct ieee80211_hdr *)rx->skb->data; 2249 fc = hdr->frame_control; 2250 2251 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2252 return RX_CONTINUE; 2253 2254 sc = le16_to_cpu(hdr->seq_ctrl); 2255 frag = sc & IEEE80211_SCTL_FRAG; 2256 2257 if (rx->sta) 2258 cache = &rx->sta->frags; 2259 2260 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2261 goto out; 2262 2263 if (is_multicast_ether_addr(hdr->addr1)) 2264 return RX_DROP_MONITOR; 2265 2266 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2267 2268 if (skb_linearize(rx->skb)) 2269 return RX_DROP_UNUSABLE; 2270 2271 /* 2272 * skb_linearize() might change the skb->data and 2273 * previously cached variables (in this case, hdr) need to 2274 * be refreshed with the new data. 2275 */ 2276 hdr = (struct ieee80211_hdr *)rx->skb->data; 2277 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2278 2279 if (frag == 0) { 2280 /* This is the first fragment of a new frame. */ 2281 entry = ieee80211_reassemble_add(cache, frag, seq, 2282 rx->seqno_idx, &(rx->skb)); 2283 if (requires_sequential_pn(rx, fc)) { 2284 int queue = rx->security_idx; 2285 2286 /* Store CCMP/GCMP PN so that we can verify that the 2287 * next fragment has a sequential PN value. 2288 */ 2289 entry->check_sequential_pn = true; 2290 entry->is_protected = true; 2291 entry->key_color = rx->key->color; 2292 memcpy(entry->last_pn, 2293 rx->key->u.ccmp.rx_pn[queue], 2294 IEEE80211_CCMP_PN_LEN); 2295 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2296 u.ccmp.rx_pn) != 2297 offsetof(struct ieee80211_key, 2298 u.gcmp.rx_pn)); 2299 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2300 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2301 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2302 IEEE80211_GCMP_PN_LEN); 2303 } else if (rx->key && 2304 (ieee80211_has_protected(fc) || 2305 (status->flag & RX_FLAG_DECRYPTED))) { 2306 entry->is_protected = true; 2307 entry->key_color = rx->key->color; 2308 } 2309 return RX_QUEUED; 2310 } 2311 2312 /* This is a fragment for a frame that should already be pending in 2313 * fragment cache. Add this fragment to the end of the pending entry. 2314 */ 2315 entry = ieee80211_reassemble_find(cache, frag, seq, 2316 rx->seqno_idx, hdr); 2317 if (!entry) { 2318 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2319 return RX_DROP_MONITOR; 2320 } 2321 2322 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2323 * MPDU PN values are not incrementing in steps of 1." 2324 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2325 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2326 */ 2327 if (entry->check_sequential_pn) { 2328 int i; 2329 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2330 2331 if (!requires_sequential_pn(rx, fc)) 2332 return RX_DROP_UNUSABLE; 2333 2334 /* Prevent mixed key and fragment cache attacks */ 2335 if (entry->key_color != rx->key->color) 2336 return RX_DROP_UNUSABLE; 2337 2338 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2339 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2340 pn[i]++; 2341 if (pn[i]) 2342 break; 2343 } 2344 2345 rpn = rx->ccm_gcm.pn; 2346 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2347 return RX_DROP_UNUSABLE; 2348 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2349 } else if (entry->is_protected && 2350 (!rx->key || 2351 (!ieee80211_has_protected(fc) && 2352 !(status->flag & RX_FLAG_DECRYPTED)) || 2353 rx->key->color != entry->key_color)) { 2354 /* Drop this as a mixed key or fragment cache attack, even 2355 * if for TKIP Michael MIC should protect us, and WEP is a 2356 * lost cause anyway. 2357 */ 2358 return RX_DROP_UNUSABLE; 2359 } else if (entry->is_protected && rx->key && 2360 entry->key_color != rx->key->color && 2361 (status->flag & RX_FLAG_DECRYPTED)) { 2362 return RX_DROP_UNUSABLE; 2363 } 2364 2365 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2366 __skb_queue_tail(&entry->skb_list, rx->skb); 2367 entry->last_frag = frag; 2368 entry->extra_len += rx->skb->len; 2369 if (ieee80211_has_morefrags(fc)) { 2370 rx->skb = NULL; 2371 return RX_QUEUED; 2372 } 2373 2374 rx->skb = __skb_dequeue(&entry->skb_list); 2375 if (skb_tailroom(rx->skb) < entry->extra_len) { 2376 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2377 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2378 GFP_ATOMIC))) { 2379 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2380 __skb_queue_purge(&entry->skb_list); 2381 return RX_DROP_UNUSABLE; 2382 } 2383 } 2384 while ((skb = __skb_dequeue(&entry->skb_list))) { 2385 skb_put_data(rx->skb, skb->data, skb->len); 2386 dev_kfree_skb(skb); 2387 } 2388 2389 out: 2390 ieee80211_led_rx(rx->local); 2391 if (rx->sta) 2392 rx->sta->deflink.rx_stats.packets++; 2393 return RX_CONTINUE; 2394 } 2395 2396 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2397 { 2398 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2399 return -EACCES; 2400 2401 return 0; 2402 } 2403 2404 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2405 { 2406 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 2407 struct sk_buff *skb = rx->skb; 2408 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2409 2410 /* 2411 * Pass through unencrypted frames if the hardware has 2412 * decrypted them already. 2413 */ 2414 if (status->flag & RX_FLAG_DECRYPTED) 2415 return 0; 2416 2417 /* check mesh EAPOL frames first */ 2418 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && 2419 ieee80211_is_data(fc))) { 2420 struct ieee80211s_hdr *mesh_hdr; 2421 u16 hdr_len = ieee80211_hdrlen(fc); 2422 u16 ethertype_offset; 2423 __be16 ethertype; 2424 2425 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) 2426 goto drop_check; 2427 2428 /* make sure fixed part of mesh header is there, also checks skb len */ 2429 if (!pskb_may_pull(rx->skb, hdr_len + 6)) 2430 goto drop_check; 2431 2432 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); 2433 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + 2434 sizeof(rfc1042_header); 2435 2436 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && 2437 ethertype == rx->sdata->control_port_protocol) 2438 return 0; 2439 } 2440 2441 drop_check: 2442 /* Drop unencrypted frames if key is set. */ 2443 if (unlikely(!ieee80211_has_protected(fc) && 2444 !ieee80211_is_any_nullfunc(fc) && 2445 ieee80211_is_data(fc) && rx->key)) 2446 return -EACCES; 2447 2448 return 0; 2449 } 2450 2451 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2452 { 2453 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2454 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2455 __le16 fc = hdr->frame_control; 2456 2457 /* 2458 * Pass through unencrypted frames if the hardware has 2459 * decrypted them already. 2460 */ 2461 if (status->flag & RX_FLAG_DECRYPTED) 2462 return 0; 2463 2464 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2465 if (unlikely(!ieee80211_has_protected(fc) && 2466 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2467 rx->key)) { 2468 if (ieee80211_is_deauth(fc) || 2469 ieee80211_is_disassoc(fc)) 2470 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2471 rx->skb->data, 2472 rx->skb->len); 2473 return -EACCES; 2474 } 2475 /* BIP does not use Protected field, so need to check MMIE */ 2476 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2477 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2478 if (ieee80211_is_deauth(fc) || 2479 ieee80211_is_disassoc(fc)) 2480 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2481 rx->skb->data, 2482 rx->skb->len); 2483 return -EACCES; 2484 } 2485 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2486 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2487 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2488 rx->skb->data, 2489 rx->skb->len); 2490 return -EACCES; 2491 } 2492 /* 2493 * When using MFP, Action frames are not allowed prior to 2494 * having configured keys. 2495 */ 2496 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2497 ieee80211_is_robust_mgmt_frame(rx->skb))) 2498 return -EACCES; 2499 } 2500 2501 return 0; 2502 } 2503 2504 static int 2505 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2506 { 2507 struct ieee80211_sub_if_data *sdata = rx->sdata; 2508 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2509 bool check_port_control = false; 2510 struct ethhdr *ehdr; 2511 int ret; 2512 2513 *port_control = false; 2514 if (ieee80211_has_a4(hdr->frame_control) && 2515 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2516 return -1; 2517 2518 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2519 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2520 2521 if (!sdata->u.mgd.use_4addr) 2522 return -1; 2523 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2524 check_port_control = true; 2525 } 2526 2527 if (is_multicast_ether_addr(hdr->addr1) && 2528 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2529 return -1; 2530 2531 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2532 if (ret < 0) 2533 return ret; 2534 2535 ehdr = (struct ethhdr *) rx->skb->data; 2536 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2537 *port_control = true; 2538 else if (check_port_control) 2539 return -1; 2540 2541 return 0; 2542 } 2543 2544 bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata, 2545 const u8 *addr, int *out_link_id) 2546 { 2547 unsigned int link_id; 2548 2549 /* non-MLO, or MLD address replaced by hardware */ 2550 if (ether_addr_equal(sdata->vif.addr, addr)) 2551 return true; 2552 2553 if (!sdata->vif.valid_links) 2554 return false; 2555 2556 for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { 2557 struct ieee80211_bss_conf *conf; 2558 2559 conf = rcu_dereference(sdata->vif.link_conf[link_id]); 2560 2561 if (!conf) 2562 continue; 2563 if (ether_addr_equal(conf->addr, addr)) { 2564 if (out_link_id) 2565 *out_link_id = link_id; 2566 return true; 2567 } 2568 } 2569 2570 return false; 2571 } 2572 2573 /* 2574 * requires that rx->skb is a frame with ethernet header 2575 */ 2576 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2577 { 2578 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2579 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2580 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2581 2582 /* 2583 * Allow EAPOL frames to us/the PAE group address regardless of 2584 * whether the frame was encrypted or not, and always disallow 2585 * all other destination addresses for them. 2586 */ 2587 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2588 return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) || 2589 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2590 2591 if (ieee80211_802_1x_port_control(rx) || 2592 ieee80211_drop_unencrypted(rx, fc)) 2593 return false; 2594 2595 return true; 2596 } 2597 2598 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2599 struct ieee80211_rx_data *rx) 2600 { 2601 struct ieee80211_sub_if_data *sdata = rx->sdata; 2602 struct net_device *dev = sdata->dev; 2603 2604 if (unlikely((skb->protocol == sdata->control_port_protocol || 2605 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2606 !sdata->control_port_no_preauth)) && 2607 sdata->control_port_over_nl80211)) { 2608 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2609 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2610 2611 cfg80211_rx_control_port(dev, skb, noencrypt); 2612 dev_kfree_skb(skb); 2613 } else { 2614 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2615 2616 memset(skb->cb, 0, sizeof(skb->cb)); 2617 2618 /* 2619 * 802.1X over 802.11 requires that the authenticator address 2620 * be used for EAPOL frames. However, 802.1X allows the use of 2621 * the PAE group address instead. If the interface is part of 2622 * a bridge and we pass the frame with the PAE group address, 2623 * then the bridge will forward it to the network (even if the 2624 * client was not associated yet), which isn't supposed to 2625 * happen. 2626 * To avoid that, rewrite the destination address to our own 2627 * address, so that the authenticator (e.g. hostapd) will see 2628 * the frame, but bridge won't forward it anywhere else. Note 2629 * that due to earlier filtering, the only other address can 2630 * be the PAE group address, unless the hardware allowed them 2631 * through in 802.3 offloaded mode. 2632 */ 2633 if (unlikely(skb->protocol == sdata->control_port_protocol && 2634 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2635 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2636 2637 /* deliver to local stack */ 2638 if (rx->list) 2639 list_add_tail(&skb->list, rx->list); 2640 else 2641 netif_receive_skb(skb); 2642 } 2643 } 2644 2645 /* 2646 * requires that rx->skb is a frame with ethernet header 2647 */ 2648 static void 2649 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2650 { 2651 struct ieee80211_sub_if_data *sdata = rx->sdata; 2652 struct net_device *dev = sdata->dev; 2653 struct sk_buff *skb, *xmit_skb; 2654 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2655 struct sta_info *dsta; 2656 2657 skb = rx->skb; 2658 xmit_skb = NULL; 2659 2660 dev_sw_netstats_rx_add(dev, skb->len); 2661 2662 if (rx->sta) { 2663 /* The seqno index has the same property as needed 2664 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2665 * for non-QoS-data frames. Here we know it's a data 2666 * frame, so count MSDUs. 2667 */ 2668 u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp); 2669 rx->sta->deflink.rx_stats.msdu[rx->seqno_idx]++; 2670 u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp); 2671 } 2672 2673 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2674 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2675 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2676 ehdr->h_proto != rx->sdata->control_port_protocol && 2677 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2678 if (is_multicast_ether_addr(ehdr->h_dest) && 2679 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2680 /* 2681 * send multicast frames both to higher layers in 2682 * local net stack and back to the wireless medium 2683 */ 2684 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2685 if (!xmit_skb) 2686 net_info_ratelimited("%s: failed to clone multicast frame\n", 2687 dev->name); 2688 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2689 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2690 dsta = sta_info_get(sdata, ehdr->h_dest); 2691 if (dsta) { 2692 /* 2693 * The destination station is associated to 2694 * this AP (in this VLAN), so send the frame 2695 * directly to it and do not pass it to local 2696 * net stack. 2697 */ 2698 xmit_skb = skb; 2699 skb = NULL; 2700 } 2701 } 2702 } 2703 2704 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2705 if (skb) { 2706 /* 'align' will only take the values 0 or 2 here since all 2707 * frames are required to be aligned to 2-byte boundaries 2708 * when being passed to mac80211; the code here works just 2709 * as well if that isn't true, but mac80211 assumes it can 2710 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2711 */ 2712 int align; 2713 2714 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2715 if (align) { 2716 if (WARN_ON(skb_headroom(skb) < 3)) { 2717 dev_kfree_skb(skb); 2718 skb = NULL; 2719 } else { 2720 u8 *data = skb->data; 2721 size_t len = skb_headlen(skb); 2722 skb->data -= align; 2723 memmove(skb->data, data, len); 2724 skb_set_tail_pointer(skb, len); 2725 } 2726 } 2727 } 2728 #endif 2729 2730 if (skb) { 2731 skb->protocol = eth_type_trans(skb, dev); 2732 ieee80211_deliver_skb_to_local_stack(skb, rx); 2733 } 2734 2735 if (xmit_skb) { 2736 /* 2737 * Send to wireless media and increase priority by 256 to 2738 * keep the received priority instead of reclassifying 2739 * the frame (see cfg80211_classify8021d). 2740 */ 2741 xmit_skb->priority += 256; 2742 xmit_skb->protocol = htons(ETH_P_802_3); 2743 skb_reset_network_header(xmit_skb); 2744 skb_reset_mac_header(xmit_skb); 2745 dev_queue_xmit(xmit_skb); 2746 } 2747 } 2748 2749 static ieee80211_rx_result debug_noinline 2750 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2751 { 2752 struct net_device *dev = rx->sdata->dev; 2753 struct sk_buff *skb = rx->skb; 2754 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2755 __le16 fc = hdr->frame_control; 2756 struct sk_buff_head frame_list; 2757 struct ethhdr ethhdr; 2758 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2759 2760 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2761 check_da = NULL; 2762 check_sa = NULL; 2763 } else switch (rx->sdata->vif.type) { 2764 case NL80211_IFTYPE_AP: 2765 case NL80211_IFTYPE_AP_VLAN: 2766 check_da = NULL; 2767 break; 2768 case NL80211_IFTYPE_STATION: 2769 if (!rx->sta || 2770 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2771 check_sa = NULL; 2772 break; 2773 case NL80211_IFTYPE_MESH_POINT: 2774 check_sa = NULL; 2775 break; 2776 default: 2777 break; 2778 } 2779 2780 skb->dev = dev; 2781 __skb_queue_head_init(&frame_list); 2782 2783 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2784 rx->sdata->vif.addr, 2785 rx->sdata->vif.type, 2786 data_offset, true)) 2787 return RX_DROP_UNUSABLE; 2788 2789 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2790 rx->sdata->vif.type, 2791 rx->local->hw.extra_tx_headroom, 2792 check_da, check_sa); 2793 2794 while (!skb_queue_empty(&frame_list)) { 2795 rx->skb = __skb_dequeue(&frame_list); 2796 2797 if (!ieee80211_frame_allowed(rx, fc)) { 2798 dev_kfree_skb(rx->skb); 2799 continue; 2800 } 2801 2802 ieee80211_deliver_skb(rx); 2803 } 2804 2805 return RX_QUEUED; 2806 } 2807 2808 static ieee80211_rx_result debug_noinline 2809 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2810 { 2811 struct sk_buff *skb = rx->skb; 2812 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2813 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2814 __le16 fc = hdr->frame_control; 2815 2816 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2817 return RX_CONTINUE; 2818 2819 if (unlikely(!ieee80211_is_data(fc))) 2820 return RX_CONTINUE; 2821 2822 if (unlikely(!ieee80211_is_data_present(fc))) 2823 return RX_DROP_MONITOR; 2824 2825 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2826 switch (rx->sdata->vif.type) { 2827 case NL80211_IFTYPE_AP_VLAN: 2828 if (!rx->sdata->u.vlan.sta) 2829 return RX_DROP_UNUSABLE; 2830 break; 2831 case NL80211_IFTYPE_STATION: 2832 if (!rx->sdata->u.mgd.use_4addr) 2833 return RX_DROP_UNUSABLE; 2834 break; 2835 default: 2836 return RX_DROP_UNUSABLE; 2837 } 2838 } 2839 2840 if (is_multicast_ether_addr(hdr->addr1)) 2841 return RX_DROP_UNUSABLE; 2842 2843 if (rx->key) { 2844 /* 2845 * We should not receive A-MSDUs on pre-HT connections, 2846 * and HT connections cannot use old ciphers. Thus drop 2847 * them, as in those cases we couldn't even have SPP 2848 * A-MSDUs or such. 2849 */ 2850 switch (rx->key->conf.cipher) { 2851 case WLAN_CIPHER_SUITE_WEP40: 2852 case WLAN_CIPHER_SUITE_WEP104: 2853 case WLAN_CIPHER_SUITE_TKIP: 2854 return RX_DROP_UNUSABLE; 2855 default: 2856 break; 2857 } 2858 } 2859 2860 return __ieee80211_rx_h_amsdu(rx, 0); 2861 } 2862 2863 #ifdef CONFIG_MAC80211_MESH 2864 static ieee80211_rx_result 2865 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2866 { 2867 struct ieee80211_hdr *fwd_hdr, *hdr; 2868 struct ieee80211_tx_info *info; 2869 struct ieee80211s_hdr *mesh_hdr; 2870 struct sk_buff *skb = rx->skb, *fwd_skb; 2871 struct ieee80211_local *local = rx->local; 2872 struct ieee80211_sub_if_data *sdata = rx->sdata; 2873 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2874 u16 ac, q, hdrlen; 2875 int tailroom = 0; 2876 2877 hdr = (struct ieee80211_hdr *) skb->data; 2878 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2879 2880 /* make sure fixed part of mesh header is there, also checks skb len */ 2881 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2882 return RX_DROP_MONITOR; 2883 2884 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2885 2886 /* make sure full mesh header is there, also checks skb len */ 2887 if (!pskb_may_pull(rx->skb, 2888 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2889 return RX_DROP_MONITOR; 2890 2891 /* reload pointers */ 2892 hdr = (struct ieee80211_hdr *) skb->data; 2893 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2894 2895 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2896 return RX_DROP_MONITOR; 2897 2898 /* frame is in RMC, don't forward */ 2899 if (ieee80211_is_data(hdr->frame_control) && 2900 is_multicast_ether_addr(hdr->addr1) && 2901 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2902 return RX_DROP_MONITOR; 2903 2904 if (!ieee80211_is_data(hdr->frame_control)) 2905 return RX_CONTINUE; 2906 2907 if (!mesh_hdr->ttl) 2908 return RX_DROP_MONITOR; 2909 2910 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2911 struct mesh_path *mppath; 2912 char *proxied_addr; 2913 char *mpp_addr; 2914 2915 if (is_multicast_ether_addr(hdr->addr1)) { 2916 mpp_addr = hdr->addr3; 2917 proxied_addr = mesh_hdr->eaddr1; 2918 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2919 MESH_FLAGS_AE_A5_A6) { 2920 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2921 mpp_addr = hdr->addr4; 2922 proxied_addr = mesh_hdr->eaddr2; 2923 } else { 2924 return RX_DROP_MONITOR; 2925 } 2926 2927 rcu_read_lock(); 2928 mppath = mpp_path_lookup(sdata, proxied_addr); 2929 if (!mppath) { 2930 mpp_path_add(sdata, proxied_addr, mpp_addr); 2931 } else { 2932 spin_lock_bh(&mppath->state_lock); 2933 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2934 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2935 mppath->exp_time = jiffies; 2936 spin_unlock_bh(&mppath->state_lock); 2937 } 2938 rcu_read_unlock(); 2939 } 2940 2941 /* Frame has reached destination. Don't forward */ 2942 if (!is_multicast_ether_addr(hdr->addr1) && 2943 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2944 return RX_CONTINUE; 2945 2946 ac = ieee802_1d_to_ac[skb->priority]; 2947 q = sdata->vif.hw_queue[ac]; 2948 if (ieee80211_queue_stopped(&local->hw, q)) { 2949 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2950 return RX_DROP_MONITOR; 2951 } 2952 skb_set_queue_mapping(skb, ac); 2953 2954 if (!--mesh_hdr->ttl) { 2955 if (!is_multicast_ether_addr(hdr->addr1)) 2956 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2957 dropped_frames_ttl); 2958 goto out; 2959 } 2960 2961 if (!ifmsh->mshcfg.dot11MeshForwarding) 2962 goto out; 2963 2964 if (sdata->crypto_tx_tailroom_needed_cnt) 2965 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2966 2967 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2968 IEEE80211_ENCRYPT_HEADROOM, 2969 tailroom, GFP_ATOMIC); 2970 if (!fwd_skb) 2971 goto out; 2972 2973 fwd_skb->dev = sdata->dev; 2974 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2975 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2976 info = IEEE80211_SKB_CB(fwd_skb); 2977 memset(info, 0, sizeof(*info)); 2978 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2979 info->control.vif = &rx->sdata->vif; 2980 info->control.jiffies = jiffies; 2981 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2982 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2983 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2984 /* update power mode indication when forwarding */ 2985 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2986 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2987 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2988 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2989 } else { 2990 /* unable to resolve next hop */ 2991 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2992 fwd_hdr->addr3, 0, 2993 WLAN_REASON_MESH_PATH_NOFORWARD, 2994 fwd_hdr->addr2); 2995 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2996 kfree_skb(fwd_skb); 2997 return RX_DROP_MONITOR; 2998 } 2999 3000 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 3001 ieee80211_add_pending_skb(local, fwd_skb); 3002 out: 3003 if (is_multicast_ether_addr(hdr->addr1)) 3004 return RX_CONTINUE; 3005 return RX_DROP_MONITOR; 3006 } 3007 #endif 3008 3009 static ieee80211_rx_result debug_noinline 3010 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 3011 { 3012 struct ieee80211_sub_if_data *sdata = rx->sdata; 3013 struct ieee80211_local *local = rx->local; 3014 struct net_device *dev = sdata->dev; 3015 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 3016 __le16 fc = hdr->frame_control; 3017 bool port_control; 3018 int err; 3019 3020 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 3021 return RX_CONTINUE; 3022 3023 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3024 return RX_DROP_MONITOR; 3025 3026 /* 3027 * Send unexpected-4addr-frame event to hostapd. For older versions, 3028 * also drop the frame to cooked monitor interfaces. 3029 */ 3030 if (ieee80211_has_a4(hdr->frame_control) && 3031 sdata->vif.type == NL80211_IFTYPE_AP) { 3032 if (rx->sta && 3033 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3034 cfg80211_rx_unexpected_4addr_frame( 3035 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3036 return RX_DROP_MONITOR; 3037 } 3038 3039 err = __ieee80211_data_to_8023(rx, &port_control); 3040 if (unlikely(err)) 3041 return RX_DROP_UNUSABLE; 3042 3043 if (!ieee80211_frame_allowed(rx, fc)) 3044 return RX_DROP_MONITOR; 3045 3046 /* directly handle TDLS channel switch requests/responses */ 3047 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3048 cpu_to_be16(ETH_P_TDLS))) { 3049 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3050 3051 if (pskb_may_pull(rx->skb, 3052 offsetof(struct ieee80211_tdls_data, u)) && 3053 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3054 tf->category == WLAN_CATEGORY_TDLS && 3055 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3056 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3057 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3058 __ieee80211_queue_skb_to_iface(sdata, rx->link_id, 3059 rx->sta, rx->skb); 3060 return RX_QUEUED; 3061 } 3062 } 3063 3064 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3065 unlikely(port_control) && sdata->bss) { 3066 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3067 u.ap); 3068 dev = sdata->dev; 3069 rx->sdata = sdata; 3070 } 3071 3072 rx->skb->dev = dev; 3073 3074 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3075 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3076 !is_multicast_ether_addr( 3077 ((struct ethhdr *)rx->skb->data)->h_dest) && 3078 (!local->scanning && 3079 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3080 mod_timer(&local->dynamic_ps_timer, jiffies + 3081 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3082 3083 ieee80211_deliver_skb(rx); 3084 3085 return RX_QUEUED; 3086 } 3087 3088 static ieee80211_rx_result debug_noinline 3089 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3090 { 3091 struct sk_buff *skb = rx->skb; 3092 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3093 struct tid_ampdu_rx *tid_agg_rx; 3094 u16 start_seq_num; 3095 u16 tid; 3096 3097 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3098 return RX_CONTINUE; 3099 3100 if (ieee80211_is_back_req(bar->frame_control)) { 3101 struct { 3102 __le16 control, start_seq_num; 3103 } __packed bar_data; 3104 struct ieee80211_event event = { 3105 .type = BAR_RX_EVENT, 3106 }; 3107 3108 if (!rx->sta) 3109 return RX_DROP_MONITOR; 3110 3111 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3112 &bar_data, sizeof(bar_data))) 3113 return RX_DROP_MONITOR; 3114 3115 tid = le16_to_cpu(bar_data.control) >> 12; 3116 3117 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3118 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3119 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3120 WLAN_BACK_RECIPIENT, 3121 WLAN_REASON_QSTA_REQUIRE_SETUP); 3122 3123 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3124 if (!tid_agg_rx) 3125 return RX_DROP_MONITOR; 3126 3127 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3128 event.u.ba.tid = tid; 3129 event.u.ba.ssn = start_seq_num; 3130 event.u.ba.sta = &rx->sta->sta; 3131 3132 /* reset session timer */ 3133 if (tid_agg_rx->timeout) 3134 mod_timer(&tid_agg_rx->session_timer, 3135 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3136 3137 spin_lock(&tid_agg_rx->reorder_lock); 3138 /* release stored frames up to start of BAR */ 3139 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3140 start_seq_num, frames); 3141 spin_unlock(&tid_agg_rx->reorder_lock); 3142 3143 drv_event_callback(rx->local, rx->sdata, &event); 3144 3145 kfree_skb(skb); 3146 return RX_QUEUED; 3147 } 3148 3149 /* 3150 * After this point, we only want management frames, 3151 * so we can drop all remaining control frames to 3152 * cooked monitor interfaces. 3153 */ 3154 return RX_DROP_MONITOR; 3155 } 3156 3157 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3158 struct ieee80211_mgmt *mgmt, 3159 size_t len) 3160 { 3161 struct ieee80211_local *local = sdata->local; 3162 struct sk_buff *skb; 3163 struct ieee80211_mgmt *resp; 3164 3165 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3166 /* Not to own unicast address */ 3167 return; 3168 } 3169 3170 if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) || 3171 !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) { 3172 /* Not from the current AP or not associated yet. */ 3173 return; 3174 } 3175 3176 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3177 /* Too short SA Query request frame */ 3178 return; 3179 } 3180 3181 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3182 if (skb == NULL) 3183 return; 3184 3185 skb_reserve(skb, local->hw.extra_tx_headroom); 3186 resp = skb_put_zero(skb, 24); 3187 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3188 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3189 memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); 3190 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3191 IEEE80211_STYPE_ACTION); 3192 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3193 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3194 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3195 memcpy(resp->u.action.u.sa_query.trans_id, 3196 mgmt->u.action.u.sa_query.trans_id, 3197 WLAN_SA_QUERY_TR_ID_LEN); 3198 3199 ieee80211_tx_skb(sdata, skb); 3200 } 3201 3202 static void 3203 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx) 3204 { 3205 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3206 const struct element *ie; 3207 size_t baselen; 3208 3209 if (!wiphy_ext_feature_isset(rx->local->hw.wiphy, 3210 NL80211_EXT_FEATURE_BSS_COLOR)) 3211 return; 3212 3213 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION)) 3214 return; 3215 3216 if (rx->sdata->vif.bss_conf.csa_active) 3217 return; 3218 3219 baselen = mgmt->u.beacon.variable - rx->skb->data; 3220 if (baselen > rx->skb->len) 3221 return; 3222 3223 ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 3224 mgmt->u.beacon.variable, 3225 rx->skb->len - baselen); 3226 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) && 3227 ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) { 3228 struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf; 3229 const struct ieee80211_he_operation *he_oper; 3230 u8 color; 3231 3232 he_oper = (void *)(ie->data + 1); 3233 if (le32_get_bits(he_oper->he_oper_params, 3234 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED)) 3235 return; 3236 3237 color = le32_get_bits(he_oper->he_oper_params, 3238 IEEE80211_HE_OPERATION_BSS_COLOR_MASK); 3239 if (color == bss_conf->he_bss_color.color) 3240 ieeee80211_obss_color_collision_notify(&rx->sdata->vif, 3241 BIT_ULL(color), 3242 GFP_ATOMIC); 3243 } 3244 } 3245 3246 static ieee80211_rx_result debug_noinline 3247 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3248 { 3249 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3250 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3251 3252 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3253 return RX_CONTINUE; 3254 3255 /* 3256 * From here on, look only at management frames. 3257 * Data and control frames are already handled, 3258 * and unknown (reserved) frames are useless. 3259 */ 3260 if (rx->skb->len < 24) 3261 return RX_DROP_MONITOR; 3262 3263 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3264 return RX_DROP_MONITOR; 3265 3266 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3267 ieee80211_is_beacon(mgmt->frame_control) && 3268 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3269 int sig = 0; 3270 3271 /* sw bss color collision detection */ 3272 ieee80211_rx_check_bss_color_collision(rx); 3273 3274 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3275 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3276 sig = status->signal; 3277 3278 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3279 rx->skb->data, rx->skb->len, 3280 ieee80211_rx_status_to_khz(status), 3281 sig); 3282 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3283 } 3284 3285 if (ieee80211_drop_unencrypted_mgmt(rx)) 3286 return RX_DROP_UNUSABLE; 3287 3288 return RX_CONTINUE; 3289 } 3290 3291 static bool 3292 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3293 { 3294 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3295 struct ieee80211_sub_if_data *sdata = rx->sdata; 3296 3297 /* TWT actions are only supported in AP for the moment */ 3298 if (sdata->vif.type != NL80211_IFTYPE_AP) 3299 return false; 3300 3301 if (!rx->local->ops->add_twt_setup) 3302 return false; 3303 3304 if (!sdata->vif.bss_conf.twt_responder) 3305 return false; 3306 3307 if (!rx->sta) 3308 return false; 3309 3310 switch (mgmt->u.action.u.s1g.action_code) { 3311 case WLAN_S1G_TWT_SETUP: { 3312 struct ieee80211_twt_setup *twt; 3313 3314 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3315 1 + /* action code */ 3316 sizeof(struct ieee80211_twt_setup) + 3317 2 /* TWT req_type agrt */) 3318 break; 3319 3320 twt = (void *)mgmt->u.action.u.s1g.variable; 3321 if (twt->element_id != WLAN_EID_S1G_TWT) 3322 break; 3323 3324 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3325 4 + /* action code + token + tlv */ 3326 twt->length) 3327 break; 3328 3329 return true; /* queue the frame */ 3330 } 3331 case WLAN_S1G_TWT_TEARDOWN: 3332 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3333 break; 3334 3335 return true; /* queue the frame */ 3336 default: 3337 break; 3338 } 3339 3340 return false; 3341 } 3342 3343 static ieee80211_rx_result debug_noinline 3344 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3345 { 3346 struct ieee80211_local *local = rx->local; 3347 struct ieee80211_sub_if_data *sdata = rx->sdata; 3348 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3349 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3350 int len = rx->skb->len; 3351 3352 if (!ieee80211_is_action(mgmt->frame_control)) 3353 return RX_CONTINUE; 3354 3355 /* drop too small frames */ 3356 if (len < IEEE80211_MIN_ACTION_SIZE) 3357 return RX_DROP_UNUSABLE; 3358 3359 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3360 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3361 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3362 return RX_DROP_UNUSABLE; 3363 3364 switch (mgmt->u.action.category) { 3365 case WLAN_CATEGORY_HT: 3366 /* reject HT action frames from stations not supporting HT */ 3367 if (!rx->sta->sta.deflink.ht_cap.ht_supported) 3368 goto invalid; 3369 3370 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3371 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3372 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3373 sdata->vif.type != NL80211_IFTYPE_AP && 3374 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3375 break; 3376 3377 /* verify action & smps_control/chanwidth are present */ 3378 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3379 goto invalid; 3380 3381 switch (mgmt->u.action.u.ht_smps.action) { 3382 case WLAN_HT_ACTION_SMPS: { 3383 struct ieee80211_supported_band *sband; 3384 enum ieee80211_smps_mode smps_mode; 3385 struct sta_opmode_info sta_opmode = {}; 3386 3387 if (sdata->vif.type != NL80211_IFTYPE_AP && 3388 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3389 goto handled; 3390 3391 /* convert to HT capability */ 3392 switch (mgmt->u.action.u.ht_smps.smps_control) { 3393 case WLAN_HT_SMPS_CONTROL_DISABLED: 3394 smps_mode = IEEE80211_SMPS_OFF; 3395 break; 3396 case WLAN_HT_SMPS_CONTROL_STATIC: 3397 smps_mode = IEEE80211_SMPS_STATIC; 3398 break; 3399 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3400 smps_mode = IEEE80211_SMPS_DYNAMIC; 3401 break; 3402 default: 3403 goto invalid; 3404 } 3405 3406 /* if no change do nothing */ 3407 if (rx->sta->sta.smps_mode == smps_mode) 3408 goto handled; 3409 rx->sta->sta.smps_mode = smps_mode; 3410 sta_opmode.smps_mode = 3411 ieee80211_smps_mode_to_smps_mode(smps_mode); 3412 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3413 3414 sband = rx->local->hw.wiphy->bands[status->band]; 3415 3416 rate_control_rate_update(local, sband, rx->sta, 0, 3417 IEEE80211_RC_SMPS_CHANGED); 3418 cfg80211_sta_opmode_change_notify(sdata->dev, 3419 rx->sta->addr, 3420 &sta_opmode, 3421 GFP_ATOMIC); 3422 goto handled; 3423 } 3424 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3425 struct ieee80211_supported_band *sband; 3426 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3427 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3428 struct sta_opmode_info sta_opmode = {}; 3429 3430 /* If it doesn't support 40 MHz it can't change ... */ 3431 if (!(rx->sta->sta.deflink.ht_cap.cap & 3432 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3433 goto handled; 3434 3435 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3436 max_bw = IEEE80211_STA_RX_BW_20; 3437 else 3438 max_bw = ieee80211_sta_cap_rx_bw(&rx->sta->deflink); 3439 3440 /* set cur_max_bandwidth and recalc sta bw */ 3441 rx->sta->deflink.cur_max_bandwidth = max_bw; 3442 new_bw = ieee80211_sta_cur_vht_bw(&rx->sta->deflink); 3443 3444 if (rx->sta->sta.deflink.bandwidth == new_bw) 3445 goto handled; 3446 3447 rx->sta->sta.deflink.bandwidth = new_bw; 3448 sband = rx->local->hw.wiphy->bands[status->band]; 3449 sta_opmode.bw = 3450 ieee80211_sta_rx_bw_to_chan_width(&rx->sta->deflink); 3451 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3452 3453 rate_control_rate_update(local, sband, rx->sta, 0, 3454 IEEE80211_RC_BW_CHANGED); 3455 cfg80211_sta_opmode_change_notify(sdata->dev, 3456 rx->sta->addr, 3457 &sta_opmode, 3458 GFP_ATOMIC); 3459 goto handled; 3460 } 3461 default: 3462 goto invalid; 3463 } 3464 3465 break; 3466 case WLAN_CATEGORY_PUBLIC: 3467 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3468 goto invalid; 3469 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3470 break; 3471 if (!rx->sta) 3472 break; 3473 if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) 3474 break; 3475 if (mgmt->u.action.u.ext_chan_switch.action_code != 3476 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3477 break; 3478 if (len < offsetof(struct ieee80211_mgmt, 3479 u.action.u.ext_chan_switch.variable)) 3480 goto invalid; 3481 goto queue; 3482 case WLAN_CATEGORY_VHT: 3483 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3484 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3485 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3486 sdata->vif.type != NL80211_IFTYPE_AP && 3487 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3488 break; 3489 3490 /* verify action code is present */ 3491 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3492 goto invalid; 3493 3494 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3495 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3496 /* verify opmode is present */ 3497 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3498 goto invalid; 3499 goto queue; 3500 } 3501 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3502 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3503 goto invalid; 3504 goto queue; 3505 } 3506 default: 3507 break; 3508 } 3509 break; 3510 case WLAN_CATEGORY_BACK: 3511 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3512 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3513 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3514 sdata->vif.type != NL80211_IFTYPE_AP && 3515 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3516 break; 3517 3518 /* verify action_code is present */ 3519 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3520 break; 3521 3522 switch (mgmt->u.action.u.addba_req.action_code) { 3523 case WLAN_ACTION_ADDBA_REQ: 3524 if (len < (IEEE80211_MIN_ACTION_SIZE + 3525 sizeof(mgmt->u.action.u.addba_req))) 3526 goto invalid; 3527 break; 3528 case WLAN_ACTION_ADDBA_RESP: 3529 if (len < (IEEE80211_MIN_ACTION_SIZE + 3530 sizeof(mgmt->u.action.u.addba_resp))) 3531 goto invalid; 3532 break; 3533 case WLAN_ACTION_DELBA: 3534 if (len < (IEEE80211_MIN_ACTION_SIZE + 3535 sizeof(mgmt->u.action.u.delba))) 3536 goto invalid; 3537 break; 3538 default: 3539 goto invalid; 3540 } 3541 3542 goto queue; 3543 case WLAN_CATEGORY_SPECTRUM_MGMT: 3544 /* verify action_code is present */ 3545 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3546 break; 3547 3548 switch (mgmt->u.action.u.measurement.action_code) { 3549 case WLAN_ACTION_SPCT_MSR_REQ: 3550 if (status->band != NL80211_BAND_5GHZ) 3551 break; 3552 3553 if (len < (IEEE80211_MIN_ACTION_SIZE + 3554 sizeof(mgmt->u.action.u.measurement))) 3555 break; 3556 3557 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3558 break; 3559 3560 ieee80211_process_measurement_req(sdata, mgmt, len); 3561 goto handled; 3562 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3563 u8 *bssid; 3564 if (len < (IEEE80211_MIN_ACTION_SIZE + 3565 sizeof(mgmt->u.action.u.chan_switch))) 3566 break; 3567 3568 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3569 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3570 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3571 break; 3572 3573 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3574 bssid = sdata->deflink.u.mgd.bssid; 3575 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3576 bssid = sdata->u.ibss.bssid; 3577 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3578 bssid = mgmt->sa; 3579 else 3580 break; 3581 3582 if (!ether_addr_equal(mgmt->bssid, bssid)) 3583 break; 3584 3585 goto queue; 3586 } 3587 } 3588 break; 3589 case WLAN_CATEGORY_SELF_PROTECTED: 3590 if (len < (IEEE80211_MIN_ACTION_SIZE + 3591 sizeof(mgmt->u.action.u.self_prot.action_code))) 3592 break; 3593 3594 switch (mgmt->u.action.u.self_prot.action_code) { 3595 case WLAN_SP_MESH_PEERING_OPEN: 3596 case WLAN_SP_MESH_PEERING_CLOSE: 3597 case WLAN_SP_MESH_PEERING_CONFIRM: 3598 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3599 goto invalid; 3600 if (sdata->u.mesh.user_mpm) 3601 /* userspace handles this frame */ 3602 break; 3603 goto queue; 3604 case WLAN_SP_MGK_INFORM: 3605 case WLAN_SP_MGK_ACK: 3606 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3607 goto invalid; 3608 break; 3609 } 3610 break; 3611 case WLAN_CATEGORY_MESH_ACTION: 3612 if (len < (IEEE80211_MIN_ACTION_SIZE + 3613 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3614 break; 3615 3616 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3617 break; 3618 if (mesh_action_is_path_sel(mgmt) && 3619 !mesh_path_sel_is_hwmp(sdata)) 3620 break; 3621 goto queue; 3622 case WLAN_CATEGORY_S1G: 3623 switch (mgmt->u.action.u.s1g.action_code) { 3624 case WLAN_S1G_TWT_SETUP: 3625 case WLAN_S1G_TWT_TEARDOWN: 3626 if (ieee80211_process_rx_twt_action(rx)) 3627 goto queue; 3628 break; 3629 default: 3630 break; 3631 } 3632 break; 3633 } 3634 3635 return RX_CONTINUE; 3636 3637 invalid: 3638 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3639 /* will return in the next handlers */ 3640 return RX_CONTINUE; 3641 3642 handled: 3643 if (rx->sta) 3644 rx->sta->deflink.rx_stats.packets++; 3645 dev_kfree_skb(rx->skb); 3646 return RX_QUEUED; 3647 3648 queue: 3649 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3650 return RX_QUEUED; 3651 } 3652 3653 static ieee80211_rx_result debug_noinline 3654 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3655 { 3656 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3657 struct cfg80211_rx_info info = { 3658 .freq = ieee80211_rx_status_to_khz(status), 3659 .buf = rx->skb->data, 3660 .len = rx->skb->len, 3661 .link_id = rx->link_id, 3662 .have_link_id = rx->link_id >= 0, 3663 }; 3664 3665 /* skip known-bad action frames and return them in the next handler */ 3666 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3667 return RX_CONTINUE; 3668 3669 /* 3670 * Getting here means the kernel doesn't know how to handle 3671 * it, but maybe userspace does ... include returned frames 3672 * so userspace can register for those to know whether ones 3673 * it transmitted were processed or returned. 3674 */ 3675 3676 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3677 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3678 info.sig_dbm = status->signal; 3679 3680 if (ieee80211_is_timing_measurement(rx->skb) || 3681 ieee80211_is_ftm(rx->skb)) { 3682 info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp); 3683 info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp); 3684 } 3685 3686 if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) { 3687 if (rx->sta) 3688 rx->sta->deflink.rx_stats.packets++; 3689 dev_kfree_skb(rx->skb); 3690 return RX_QUEUED; 3691 } 3692 3693 return RX_CONTINUE; 3694 } 3695 3696 static ieee80211_rx_result debug_noinline 3697 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3698 { 3699 struct ieee80211_sub_if_data *sdata = rx->sdata; 3700 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3701 int len = rx->skb->len; 3702 3703 if (!ieee80211_is_action(mgmt->frame_control)) 3704 return RX_CONTINUE; 3705 3706 switch (mgmt->u.action.category) { 3707 case WLAN_CATEGORY_SA_QUERY: 3708 if (len < (IEEE80211_MIN_ACTION_SIZE + 3709 sizeof(mgmt->u.action.u.sa_query))) 3710 break; 3711 3712 switch (mgmt->u.action.u.sa_query.action) { 3713 case WLAN_ACTION_SA_QUERY_REQUEST: 3714 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3715 break; 3716 ieee80211_process_sa_query_req(sdata, mgmt, len); 3717 goto handled; 3718 } 3719 break; 3720 } 3721 3722 return RX_CONTINUE; 3723 3724 handled: 3725 if (rx->sta) 3726 rx->sta->deflink.rx_stats.packets++; 3727 dev_kfree_skb(rx->skb); 3728 return RX_QUEUED; 3729 } 3730 3731 static ieee80211_rx_result debug_noinline 3732 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3733 { 3734 struct ieee80211_local *local = rx->local; 3735 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3736 struct sk_buff *nskb; 3737 struct ieee80211_sub_if_data *sdata = rx->sdata; 3738 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3739 3740 if (!ieee80211_is_action(mgmt->frame_control)) 3741 return RX_CONTINUE; 3742 3743 /* 3744 * For AP mode, hostapd is responsible for handling any action 3745 * frames that we didn't handle, including returning unknown 3746 * ones. For all other modes we will return them to the sender, 3747 * setting the 0x80 bit in the action category, as required by 3748 * 802.11-2012 9.24.4. 3749 * Newer versions of hostapd shall also use the management frame 3750 * registration mechanisms, but older ones still use cooked 3751 * monitor interfaces so push all frames there. 3752 */ 3753 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3754 (sdata->vif.type == NL80211_IFTYPE_AP || 3755 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3756 return RX_DROP_MONITOR; 3757 3758 if (is_multicast_ether_addr(mgmt->da)) 3759 return RX_DROP_MONITOR; 3760 3761 /* do not return rejected action frames */ 3762 if (mgmt->u.action.category & 0x80) 3763 return RX_DROP_UNUSABLE; 3764 3765 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3766 GFP_ATOMIC); 3767 if (nskb) { 3768 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3769 3770 nmgmt->u.action.category |= 0x80; 3771 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3772 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3773 3774 memset(nskb->cb, 0, sizeof(nskb->cb)); 3775 3776 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3777 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3778 3779 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3780 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3781 IEEE80211_TX_CTL_NO_CCK_RATE; 3782 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3783 info->hw_queue = 3784 local->hw.offchannel_tx_hw_queue; 3785 } 3786 3787 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1, 3788 status->band); 3789 } 3790 dev_kfree_skb(rx->skb); 3791 return RX_QUEUED; 3792 } 3793 3794 static ieee80211_rx_result debug_noinline 3795 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3796 { 3797 struct ieee80211_sub_if_data *sdata = rx->sdata; 3798 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3799 3800 if (!ieee80211_is_ext(hdr->frame_control)) 3801 return RX_CONTINUE; 3802 3803 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3804 return RX_DROP_MONITOR; 3805 3806 /* for now only beacons are ext, so queue them */ 3807 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3808 3809 return RX_QUEUED; 3810 } 3811 3812 static ieee80211_rx_result debug_noinline 3813 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3814 { 3815 struct ieee80211_sub_if_data *sdata = rx->sdata; 3816 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3817 __le16 stype; 3818 3819 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3820 3821 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3822 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3823 sdata->vif.type != NL80211_IFTYPE_OCB && 3824 sdata->vif.type != NL80211_IFTYPE_STATION) 3825 return RX_DROP_MONITOR; 3826 3827 switch (stype) { 3828 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3829 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3830 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3831 /* process for all: mesh, mlme, ibss */ 3832 break; 3833 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3834 if (is_multicast_ether_addr(mgmt->da) && 3835 !is_broadcast_ether_addr(mgmt->da)) 3836 return RX_DROP_MONITOR; 3837 3838 /* process only for station/IBSS */ 3839 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3840 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3841 return RX_DROP_MONITOR; 3842 break; 3843 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3844 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3845 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3846 if (is_multicast_ether_addr(mgmt->da) && 3847 !is_broadcast_ether_addr(mgmt->da)) 3848 return RX_DROP_MONITOR; 3849 3850 /* process only for station */ 3851 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3852 return RX_DROP_MONITOR; 3853 break; 3854 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3855 /* process only for ibss and mesh */ 3856 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3857 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3858 return RX_DROP_MONITOR; 3859 break; 3860 default: 3861 return RX_DROP_MONITOR; 3862 } 3863 3864 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3865 3866 return RX_QUEUED; 3867 } 3868 3869 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3870 struct ieee80211_rate *rate) 3871 { 3872 struct ieee80211_sub_if_data *sdata; 3873 struct ieee80211_local *local = rx->local; 3874 struct sk_buff *skb = rx->skb, *skb2; 3875 struct net_device *prev_dev = NULL; 3876 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3877 int needed_headroom; 3878 3879 /* 3880 * If cooked monitor has been processed already, then 3881 * don't do it again. If not, set the flag. 3882 */ 3883 if (rx->flags & IEEE80211_RX_CMNTR) 3884 goto out_free_skb; 3885 rx->flags |= IEEE80211_RX_CMNTR; 3886 3887 /* If there are no cooked monitor interfaces, just free the SKB */ 3888 if (!local->cooked_mntrs) 3889 goto out_free_skb; 3890 3891 /* vendor data is long removed here */ 3892 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3893 /* room for the radiotap header based on driver features */ 3894 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3895 3896 if (skb_headroom(skb) < needed_headroom && 3897 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3898 goto out_free_skb; 3899 3900 /* prepend radiotap information */ 3901 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3902 false); 3903 3904 skb_reset_mac_header(skb); 3905 skb->ip_summed = CHECKSUM_UNNECESSARY; 3906 skb->pkt_type = PACKET_OTHERHOST; 3907 skb->protocol = htons(ETH_P_802_2); 3908 3909 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3910 if (!ieee80211_sdata_running(sdata)) 3911 continue; 3912 3913 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3914 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3915 continue; 3916 3917 if (prev_dev) { 3918 skb2 = skb_clone(skb, GFP_ATOMIC); 3919 if (skb2) { 3920 skb2->dev = prev_dev; 3921 netif_receive_skb(skb2); 3922 } 3923 } 3924 3925 prev_dev = sdata->dev; 3926 dev_sw_netstats_rx_add(sdata->dev, skb->len); 3927 } 3928 3929 if (prev_dev) { 3930 skb->dev = prev_dev; 3931 netif_receive_skb(skb); 3932 return; 3933 } 3934 3935 out_free_skb: 3936 dev_kfree_skb(skb); 3937 } 3938 3939 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3940 ieee80211_rx_result res) 3941 { 3942 switch (res) { 3943 case RX_DROP_MONITOR: 3944 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3945 if (rx->sta) 3946 rx->sta->deflink.rx_stats.dropped++; 3947 fallthrough; 3948 case RX_CONTINUE: { 3949 struct ieee80211_rate *rate = NULL; 3950 struct ieee80211_supported_band *sband; 3951 struct ieee80211_rx_status *status; 3952 3953 status = IEEE80211_SKB_RXCB((rx->skb)); 3954 3955 sband = rx->local->hw.wiphy->bands[status->band]; 3956 if (status->encoding == RX_ENC_LEGACY) 3957 rate = &sband->bitrates[status->rate_idx]; 3958 3959 ieee80211_rx_cooked_monitor(rx, rate); 3960 break; 3961 } 3962 case RX_DROP_UNUSABLE: 3963 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3964 if (rx->sta) 3965 rx->sta->deflink.rx_stats.dropped++; 3966 dev_kfree_skb(rx->skb); 3967 break; 3968 case RX_QUEUED: 3969 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3970 break; 3971 } 3972 } 3973 3974 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3975 struct sk_buff_head *frames) 3976 { 3977 ieee80211_rx_result res = RX_DROP_MONITOR; 3978 struct sk_buff *skb; 3979 3980 #define CALL_RXH(rxh) \ 3981 do { \ 3982 res = rxh(rx); \ 3983 if (res != RX_CONTINUE) \ 3984 goto rxh_next; \ 3985 } while (0) 3986 3987 /* Lock here to avoid hitting all of the data used in the RX 3988 * path (e.g. key data, station data, ...) concurrently when 3989 * a frame is released from the reorder buffer due to timeout 3990 * from the timer, potentially concurrently with RX from the 3991 * driver. 3992 */ 3993 spin_lock_bh(&rx->local->rx_path_lock); 3994 3995 while ((skb = __skb_dequeue(frames))) { 3996 /* 3997 * all the other fields are valid across frames 3998 * that belong to an aMPDU since they are on the 3999 * same TID from the same station 4000 */ 4001 rx->skb = skb; 4002 4003 if (WARN_ON_ONCE(!rx->link)) 4004 goto rxh_next; 4005 4006 CALL_RXH(ieee80211_rx_h_check_more_data); 4007 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 4008 CALL_RXH(ieee80211_rx_h_sta_process); 4009 CALL_RXH(ieee80211_rx_h_decrypt); 4010 CALL_RXH(ieee80211_rx_h_defragment); 4011 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 4012 /* must be after MMIC verify so header is counted in MPDU mic */ 4013 #ifdef CONFIG_MAC80211_MESH 4014 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 4015 CALL_RXH(ieee80211_rx_h_mesh_fwding); 4016 #endif 4017 CALL_RXH(ieee80211_rx_h_amsdu); 4018 CALL_RXH(ieee80211_rx_h_data); 4019 4020 /* special treatment -- needs the queue */ 4021 res = ieee80211_rx_h_ctrl(rx, frames); 4022 if (res != RX_CONTINUE) 4023 goto rxh_next; 4024 4025 CALL_RXH(ieee80211_rx_h_mgmt_check); 4026 CALL_RXH(ieee80211_rx_h_action); 4027 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 4028 CALL_RXH(ieee80211_rx_h_action_post_userspace); 4029 CALL_RXH(ieee80211_rx_h_action_return); 4030 CALL_RXH(ieee80211_rx_h_ext); 4031 CALL_RXH(ieee80211_rx_h_mgmt); 4032 4033 rxh_next: 4034 ieee80211_rx_handlers_result(rx, res); 4035 4036 #undef CALL_RXH 4037 } 4038 4039 spin_unlock_bh(&rx->local->rx_path_lock); 4040 } 4041 4042 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 4043 { 4044 struct sk_buff_head reorder_release; 4045 ieee80211_rx_result res = RX_DROP_MONITOR; 4046 4047 __skb_queue_head_init(&reorder_release); 4048 4049 #define CALL_RXH(rxh) \ 4050 do { \ 4051 res = rxh(rx); \ 4052 if (res != RX_CONTINUE) \ 4053 goto rxh_next; \ 4054 } while (0) 4055 4056 CALL_RXH(ieee80211_rx_h_check_dup); 4057 CALL_RXH(ieee80211_rx_h_check); 4058 4059 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 4060 4061 ieee80211_rx_handlers(rx, &reorder_release); 4062 return; 4063 4064 rxh_next: 4065 ieee80211_rx_handlers_result(rx, res); 4066 4067 #undef CALL_RXH 4068 } 4069 4070 /* 4071 * This function makes calls into the RX path, therefore 4072 * it has to be invoked under RCU read lock. 4073 */ 4074 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 4075 { 4076 struct sk_buff_head frames; 4077 struct ieee80211_rx_data rx = { 4078 .sta = sta, 4079 .sdata = sta->sdata, 4080 .local = sta->local, 4081 /* This is OK -- must be QoS data frame */ 4082 .security_idx = tid, 4083 .seqno_idx = tid, 4084 .link_id = -1, 4085 }; 4086 struct tid_ampdu_rx *tid_agg_rx; 4087 4088 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4089 if (!tid_agg_rx) 4090 return; 4091 4092 __skb_queue_head_init(&frames); 4093 4094 spin_lock(&tid_agg_rx->reorder_lock); 4095 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4096 spin_unlock(&tid_agg_rx->reorder_lock); 4097 4098 if (!skb_queue_empty(&frames)) { 4099 struct ieee80211_event event = { 4100 .type = BA_FRAME_TIMEOUT, 4101 .u.ba.tid = tid, 4102 .u.ba.sta = &sta->sta, 4103 }; 4104 drv_event_callback(rx.local, rx.sdata, &event); 4105 } 4106 4107 ieee80211_rx_handlers(&rx, &frames); 4108 } 4109 4110 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4111 u16 ssn, u64 filtered, 4112 u16 received_mpdus) 4113 { 4114 struct sta_info *sta; 4115 struct tid_ampdu_rx *tid_agg_rx; 4116 struct sk_buff_head frames; 4117 struct ieee80211_rx_data rx = { 4118 /* This is OK -- must be QoS data frame */ 4119 .security_idx = tid, 4120 .seqno_idx = tid, 4121 .link_id = -1, 4122 }; 4123 int i, diff; 4124 4125 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4126 return; 4127 4128 __skb_queue_head_init(&frames); 4129 4130 sta = container_of(pubsta, struct sta_info, sta); 4131 4132 rx.sta = sta; 4133 rx.sdata = sta->sdata; 4134 rx.link = &rx.sdata->deflink; 4135 rx.local = sta->local; 4136 4137 rcu_read_lock(); 4138 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4139 if (!tid_agg_rx) 4140 goto out; 4141 4142 spin_lock_bh(&tid_agg_rx->reorder_lock); 4143 4144 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4145 int release; 4146 4147 /* release all frames in the reorder buffer */ 4148 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4149 IEEE80211_SN_MODULO; 4150 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4151 release, &frames); 4152 /* update ssn to match received ssn */ 4153 tid_agg_rx->head_seq_num = ssn; 4154 } else { 4155 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4156 &frames); 4157 } 4158 4159 /* handle the case that received ssn is behind the mac ssn. 4160 * it can be tid_agg_rx->buf_size behind and still be valid */ 4161 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4162 if (diff >= tid_agg_rx->buf_size) { 4163 tid_agg_rx->reorder_buf_filtered = 0; 4164 goto release; 4165 } 4166 filtered = filtered >> diff; 4167 ssn += diff; 4168 4169 /* update bitmap */ 4170 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4171 int index = (ssn + i) % tid_agg_rx->buf_size; 4172 4173 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4174 if (filtered & BIT_ULL(i)) 4175 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4176 } 4177 4178 /* now process also frames that the filter marking released */ 4179 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4180 4181 release: 4182 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4183 4184 ieee80211_rx_handlers(&rx, &frames); 4185 4186 out: 4187 rcu_read_unlock(); 4188 } 4189 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4190 4191 /* main receive path */ 4192 4193 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) 4194 { 4195 return ether_addr_equal(raddr, addr) || 4196 is_broadcast_ether_addr(raddr); 4197 } 4198 4199 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4200 { 4201 struct ieee80211_sub_if_data *sdata = rx->sdata; 4202 struct sk_buff *skb = rx->skb; 4203 struct ieee80211_hdr *hdr = (void *)skb->data; 4204 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4205 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4206 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4207 ieee80211_is_s1g_beacon(hdr->frame_control); 4208 4209 switch (sdata->vif.type) { 4210 case NL80211_IFTYPE_STATION: 4211 if (!bssid && !sdata->u.mgd.use_4addr) 4212 return false; 4213 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4214 return false; 4215 if (multicast) 4216 return true; 4217 return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); 4218 case NL80211_IFTYPE_ADHOC: 4219 if (!bssid) 4220 return false; 4221 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4222 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4223 !is_valid_ether_addr(hdr->addr2)) 4224 return false; 4225 if (ieee80211_is_beacon(hdr->frame_control)) 4226 return true; 4227 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4228 return false; 4229 if (!multicast && 4230 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4231 return false; 4232 if (!rx->sta) { 4233 int rate_idx; 4234 if (status->encoding != RX_ENC_LEGACY) 4235 rate_idx = 0; /* TODO: HT/VHT rates */ 4236 else 4237 rate_idx = status->rate_idx; 4238 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4239 BIT(rate_idx)); 4240 } 4241 return true; 4242 case NL80211_IFTYPE_OCB: 4243 if (!bssid) 4244 return false; 4245 if (!ieee80211_is_data_present(hdr->frame_control)) 4246 return false; 4247 if (!is_broadcast_ether_addr(bssid)) 4248 return false; 4249 if (!multicast && 4250 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4251 return false; 4252 if (!rx->sta) { 4253 int rate_idx; 4254 if (status->encoding != RX_ENC_LEGACY) 4255 rate_idx = 0; /* TODO: HT rates */ 4256 else 4257 rate_idx = status->rate_idx; 4258 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4259 BIT(rate_idx)); 4260 } 4261 return true; 4262 case NL80211_IFTYPE_MESH_POINT: 4263 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4264 return false; 4265 if (multicast) 4266 return true; 4267 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4268 case NL80211_IFTYPE_AP_VLAN: 4269 case NL80211_IFTYPE_AP: 4270 if (!bssid) 4271 return ieee80211_is_our_addr(sdata, hdr->addr1, 4272 &rx->link_id); 4273 4274 if (!is_broadcast_ether_addr(bssid) && 4275 !ieee80211_is_our_addr(sdata, bssid, NULL)) { 4276 /* 4277 * Accept public action frames even when the 4278 * BSSID doesn't match, this is used for P2P 4279 * and location updates. Note that mac80211 4280 * itself never looks at these frames. 4281 */ 4282 if (!multicast && 4283 !ieee80211_is_our_addr(sdata, hdr->addr1, 4284 &rx->link_id)) 4285 return false; 4286 if (ieee80211_is_public_action(hdr, skb->len)) 4287 return true; 4288 return ieee80211_is_beacon(hdr->frame_control); 4289 } 4290 4291 if (!ieee80211_has_tods(hdr->frame_control)) { 4292 /* ignore data frames to TDLS-peers */ 4293 if (ieee80211_is_data(hdr->frame_control)) 4294 return false; 4295 /* ignore action frames to TDLS-peers */ 4296 if (ieee80211_is_action(hdr->frame_control) && 4297 !is_broadcast_ether_addr(bssid) && 4298 !ether_addr_equal(bssid, hdr->addr1)) 4299 return false; 4300 } 4301 4302 /* 4303 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4304 * the BSSID - we've checked that already but may have accepted 4305 * the wildcard (ff:ff:ff:ff:ff:ff). 4306 * 4307 * It also says: 4308 * The BSSID of the Data frame is determined as follows: 4309 * a) If the STA is contained within an AP or is associated 4310 * with an AP, the BSSID is the address currently in use 4311 * by the STA contained in the AP. 4312 * 4313 * So we should not accept data frames with an address that's 4314 * multicast. 4315 * 4316 * Accepting it also opens a security problem because stations 4317 * could encrypt it with the GTK and inject traffic that way. 4318 */ 4319 if (ieee80211_is_data(hdr->frame_control) && multicast) 4320 return false; 4321 4322 return true; 4323 case NL80211_IFTYPE_P2P_DEVICE: 4324 return ieee80211_is_public_action(hdr, skb->len) || 4325 ieee80211_is_probe_req(hdr->frame_control) || 4326 ieee80211_is_probe_resp(hdr->frame_control) || 4327 ieee80211_is_beacon(hdr->frame_control); 4328 case NL80211_IFTYPE_NAN: 4329 /* Currently no frames on NAN interface are allowed */ 4330 return false; 4331 default: 4332 break; 4333 } 4334 4335 WARN_ON_ONCE(1); 4336 return false; 4337 } 4338 4339 void ieee80211_check_fast_rx(struct sta_info *sta) 4340 { 4341 struct ieee80211_sub_if_data *sdata = sta->sdata; 4342 struct ieee80211_local *local = sdata->local; 4343 struct ieee80211_key *key; 4344 struct ieee80211_fast_rx fastrx = { 4345 .dev = sdata->dev, 4346 .vif_type = sdata->vif.type, 4347 .control_port_protocol = sdata->control_port_protocol, 4348 }, *old, *new = NULL; 4349 bool set_offload = false; 4350 bool assign = false; 4351 bool offload; 4352 4353 /* use sparse to check that we don't return without updating */ 4354 __acquire(check_fast_rx); 4355 4356 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4357 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4358 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4359 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4360 4361 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4362 4363 /* fast-rx doesn't do reordering */ 4364 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4365 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4366 goto clear; 4367 4368 switch (sdata->vif.type) { 4369 case NL80211_IFTYPE_STATION: 4370 if (sta->sta.tdls) { 4371 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4372 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4373 fastrx.expected_ds_bits = 0; 4374 } else { 4375 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4376 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4377 fastrx.expected_ds_bits = 4378 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4379 } 4380 4381 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4382 fastrx.expected_ds_bits |= 4383 cpu_to_le16(IEEE80211_FCTL_TODS); 4384 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4385 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4386 } 4387 4388 if (!sdata->u.mgd.powersave) 4389 break; 4390 4391 /* software powersave is a huge mess, avoid all of it */ 4392 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4393 goto clear; 4394 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4395 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4396 goto clear; 4397 break; 4398 case NL80211_IFTYPE_AP_VLAN: 4399 case NL80211_IFTYPE_AP: 4400 /* parallel-rx requires this, at least with calls to 4401 * ieee80211_sta_ps_transition() 4402 */ 4403 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4404 goto clear; 4405 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4406 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4407 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4408 4409 fastrx.internal_forward = 4410 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4411 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4412 !sdata->u.vlan.sta); 4413 4414 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4415 sdata->u.vlan.sta) { 4416 fastrx.expected_ds_bits |= 4417 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4418 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4419 fastrx.internal_forward = 0; 4420 } 4421 4422 break; 4423 default: 4424 goto clear; 4425 } 4426 4427 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4428 goto clear; 4429 4430 rcu_read_lock(); 4431 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4432 if (!key) 4433 key = rcu_dereference(sdata->default_unicast_key); 4434 if (key) { 4435 switch (key->conf.cipher) { 4436 case WLAN_CIPHER_SUITE_TKIP: 4437 /* we don't want to deal with MMIC in fast-rx */ 4438 goto clear_rcu; 4439 case WLAN_CIPHER_SUITE_CCMP: 4440 case WLAN_CIPHER_SUITE_CCMP_256: 4441 case WLAN_CIPHER_SUITE_GCMP: 4442 case WLAN_CIPHER_SUITE_GCMP_256: 4443 break; 4444 default: 4445 /* We also don't want to deal with 4446 * WEP or cipher scheme. 4447 */ 4448 goto clear_rcu; 4449 } 4450 4451 fastrx.key = true; 4452 fastrx.icv_len = key->conf.icv_len; 4453 } 4454 4455 assign = true; 4456 clear_rcu: 4457 rcu_read_unlock(); 4458 clear: 4459 __release(check_fast_rx); 4460 4461 if (assign) 4462 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4463 4464 offload = assign && 4465 (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED); 4466 4467 if (offload) 4468 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4469 else 4470 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4471 4472 if (set_offload) 4473 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4474 4475 spin_lock_bh(&sta->lock); 4476 old = rcu_dereference_protected(sta->fast_rx, true); 4477 rcu_assign_pointer(sta->fast_rx, new); 4478 spin_unlock_bh(&sta->lock); 4479 4480 if (old) 4481 kfree_rcu(old, rcu_head); 4482 } 4483 4484 void ieee80211_clear_fast_rx(struct sta_info *sta) 4485 { 4486 struct ieee80211_fast_rx *old; 4487 4488 spin_lock_bh(&sta->lock); 4489 old = rcu_dereference_protected(sta->fast_rx, true); 4490 RCU_INIT_POINTER(sta->fast_rx, NULL); 4491 spin_unlock_bh(&sta->lock); 4492 4493 if (old) 4494 kfree_rcu(old, rcu_head); 4495 } 4496 4497 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4498 { 4499 struct ieee80211_local *local = sdata->local; 4500 struct sta_info *sta; 4501 4502 lockdep_assert_held(&local->sta_mtx); 4503 4504 list_for_each_entry(sta, &local->sta_list, list) { 4505 if (sdata != sta->sdata && 4506 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4507 continue; 4508 ieee80211_check_fast_rx(sta); 4509 } 4510 } 4511 4512 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4513 { 4514 struct ieee80211_local *local = sdata->local; 4515 4516 mutex_lock(&local->sta_mtx); 4517 __ieee80211_check_fast_rx_iface(sdata); 4518 mutex_unlock(&local->sta_mtx); 4519 } 4520 4521 static bool 4522 ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id) 4523 { 4524 if (!sta->mlo) 4525 return false; 4526 4527 return !!(sta->valid_links & BIT(link_id)); 4528 } 4529 4530 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4531 struct ieee80211_fast_rx *fast_rx, 4532 int orig_len) 4533 { 4534 struct ieee80211_sta_rx_stats *stats; 4535 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4536 struct sta_info *sta = rx->sta; 4537 struct link_sta_info *link_sta; 4538 struct sk_buff *skb = rx->skb; 4539 void *sa = skb->data + ETH_ALEN; 4540 void *da = skb->data; 4541 4542 if (rx->link_id >= 0) { 4543 link_sta = rcu_dereference(sta->link[rx->link_id]); 4544 if (WARN_ON_ONCE(!link_sta)) { 4545 dev_kfree_skb(rx->skb); 4546 return; 4547 } 4548 } else { 4549 link_sta = &sta->deflink; 4550 } 4551 4552 stats = &link_sta->rx_stats; 4553 if (fast_rx->uses_rss) 4554 stats = this_cpu_ptr(link_sta->pcpu_rx_stats); 4555 4556 /* statistics part of ieee80211_rx_h_sta_process() */ 4557 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4558 stats->last_signal = status->signal; 4559 if (!fast_rx->uses_rss) 4560 ewma_signal_add(&link_sta->rx_stats_avg.signal, 4561 -status->signal); 4562 } 4563 4564 if (status->chains) { 4565 int i; 4566 4567 stats->chains = status->chains; 4568 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4569 int signal = status->chain_signal[i]; 4570 4571 if (!(status->chains & BIT(i))) 4572 continue; 4573 4574 stats->chain_signal_last[i] = signal; 4575 if (!fast_rx->uses_rss) 4576 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 4577 -signal); 4578 } 4579 } 4580 /* end of statistics */ 4581 4582 stats->last_rx = jiffies; 4583 stats->last_rate = sta_stats_encode_rate(status); 4584 4585 stats->fragments++; 4586 stats->packets++; 4587 4588 skb->dev = fast_rx->dev; 4589 4590 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4591 4592 /* The seqno index has the same property as needed 4593 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4594 * for non-QoS-data frames. Here we know it's a data 4595 * frame, so count MSDUs. 4596 */ 4597 u64_stats_update_begin(&stats->syncp); 4598 stats->msdu[rx->seqno_idx]++; 4599 stats->bytes += orig_len; 4600 u64_stats_update_end(&stats->syncp); 4601 4602 if (fast_rx->internal_forward) { 4603 struct sk_buff *xmit_skb = NULL; 4604 if (is_multicast_ether_addr(da)) { 4605 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4606 } else if (!ether_addr_equal(da, sa) && 4607 sta_info_get(rx->sdata, da)) { 4608 xmit_skb = skb; 4609 skb = NULL; 4610 } 4611 4612 if (xmit_skb) { 4613 /* 4614 * Send to wireless media and increase priority by 256 4615 * to keep the received priority instead of 4616 * reclassifying the frame (see cfg80211_classify8021d). 4617 */ 4618 xmit_skb->priority += 256; 4619 xmit_skb->protocol = htons(ETH_P_802_3); 4620 skb_reset_network_header(xmit_skb); 4621 skb_reset_mac_header(xmit_skb); 4622 dev_queue_xmit(xmit_skb); 4623 } 4624 4625 if (!skb) 4626 return; 4627 } 4628 4629 /* deliver to local stack */ 4630 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4631 ieee80211_deliver_skb_to_local_stack(skb, rx); 4632 } 4633 4634 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4635 struct ieee80211_fast_rx *fast_rx) 4636 { 4637 struct sk_buff *skb = rx->skb; 4638 struct ieee80211_hdr *hdr = (void *)skb->data; 4639 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4640 struct sta_info *sta = rx->sta; 4641 int orig_len = skb->len; 4642 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4643 int snap_offs = hdrlen; 4644 struct { 4645 u8 snap[sizeof(rfc1042_header)]; 4646 __be16 proto; 4647 } *payload __aligned(2); 4648 struct { 4649 u8 da[ETH_ALEN]; 4650 u8 sa[ETH_ALEN]; 4651 } addrs __aligned(2); 4652 struct link_sta_info *link_sta; 4653 struct ieee80211_sta_rx_stats *stats; 4654 4655 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4656 * to a common data structure; drivers can implement that per queue 4657 * but we don't have that information in mac80211 4658 */ 4659 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4660 return false; 4661 4662 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4663 4664 /* If using encryption, we also need to have: 4665 * - PN_VALIDATED: similar, but the implementation is tricky 4666 * - DECRYPTED: necessary for PN_VALIDATED 4667 */ 4668 if (fast_rx->key && 4669 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4670 return false; 4671 4672 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4673 return false; 4674 4675 if (unlikely(ieee80211_is_frag(hdr))) 4676 return false; 4677 4678 /* Since our interface address cannot be multicast, this 4679 * implicitly also rejects multicast frames without the 4680 * explicit check. 4681 * 4682 * We shouldn't get any *data* frames not addressed to us 4683 * (AP mode will accept multicast *management* frames), but 4684 * punting here will make it go through the full checks in 4685 * ieee80211_accept_frame(). 4686 */ 4687 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4688 return false; 4689 4690 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4691 IEEE80211_FCTL_TODS)) != 4692 fast_rx->expected_ds_bits) 4693 return false; 4694 4695 /* assign the key to drop unencrypted frames (later) 4696 * and strip the IV/MIC if necessary 4697 */ 4698 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4699 /* GCMP header length is the same */ 4700 snap_offs += IEEE80211_CCMP_HDR_LEN; 4701 } 4702 4703 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4704 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4705 goto drop; 4706 4707 payload = (void *)(skb->data + snap_offs); 4708 4709 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4710 return false; 4711 4712 /* Don't handle these here since they require special code. 4713 * Accept AARP and IPX even though they should come with a 4714 * bridge-tunnel header - but if we get them this way then 4715 * there's little point in discarding them. 4716 */ 4717 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4718 payload->proto == fast_rx->control_port_protocol)) 4719 return false; 4720 } 4721 4722 /* after this point, don't punt to the slowpath! */ 4723 4724 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4725 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4726 goto drop; 4727 4728 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4729 goto drop; 4730 4731 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4732 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4733 RX_QUEUED) 4734 goto drop; 4735 4736 return true; 4737 } 4738 4739 /* do the header conversion - first grab the addresses */ 4740 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4741 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4742 skb_postpull_rcsum(skb, skb->data + snap_offs, 4743 sizeof(rfc1042_header) + 2); 4744 /* remove the SNAP but leave the ethertype */ 4745 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4746 /* push the addresses in front */ 4747 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4748 4749 ieee80211_rx_8023(rx, fast_rx, orig_len); 4750 4751 return true; 4752 drop: 4753 dev_kfree_skb(skb); 4754 4755 if (rx->link_id >= 0) { 4756 link_sta = rcu_dereference(sta->link[rx->link_id]); 4757 if (!link_sta) 4758 return true; 4759 } else { 4760 link_sta = &sta->deflink; 4761 } 4762 4763 if (fast_rx->uses_rss) 4764 stats = this_cpu_ptr(link_sta->pcpu_rx_stats); 4765 else 4766 stats = &link_sta->rx_stats; 4767 4768 stats->dropped++; 4769 return true; 4770 } 4771 4772 /* 4773 * This function returns whether or not the SKB 4774 * was destined for RX processing or not, which, 4775 * if consume is true, is equivalent to whether 4776 * or not the skb was consumed. 4777 */ 4778 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4779 struct sk_buff *skb, bool consume) 4780 { 4781 struct ieee80211_local *local = rx->local; 4782 struct ieee80211_sub_if_data *sdata = rx->sdata; 4783 struct ieee80211_hdr *hdr = (void *)skb->data; 4784 struct link_sta_info *link_sta = NULL; 4785 struct ieee80211_link_data *link; 4786 4787 rx->skb = skb; 4788 4789 /* See if we can do fast-rx; if we have to copy we already lost, 4790 * so punt in that case. We should never have to deliver a data 4791 * frame to multiple interfaces anyway. 4792 * 4793 * We skip the ieee80211_accept_frame() call and do the necessary 4794 * checking inside ieee80211_invoke_fast_rx(). 4795 */ 4796 if (consume && rx->sta) { 4797 struct ieee80211_fast_rx *fast_rx; 4798 4799 fast_rx = rcu_dereference(rx->sta->fast_rx); 4800 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4801 return true; 4802 } 4803 4804 if (!ieee80211_accept_frame(rx)) 4805 return false; 4806 4807 if (rx->link_id >= 0) { 4808 link = rcu_dereference(rx->sdata->link[rx->link_id]); 4809 4810 /* we might race link removal */ 4811 if (!link) 4812 return true; 4813 rx->link = link; 4814 4815 if (rx->sta) { 4816 rx->link_sta = 4817 rcu_dereference(rx->sta->link[rx->link_id]); 4818 if (!rx->link_sta) 4819 return true; 4820 } 4821 } else { 4822 if (rx->sta) 4823 rx->link_sta = &rx->sta->deflink; 4824 4825 rx->link = &sdata->deflink; 4826 } 4827 4828 if (unlikely(!is_multicast_ether_addr(hdr->addr1) && 4829 rx->link_id >= 0 && rx->sta && rx->sta->sta.mlo)) { 4830 link_sta = rcu_dereference(rx->sta->link[rx->link_id]); 4831 4832 if (WARN_ON_ONCE(!link_sta)) 4833 return true; 4834 } 4835 4836 if (!consume) { 4837 struct skb_shared_hwtstamps *shwt; 4838 4839 rx->skb = skb_copy(skb, GFP_ATOMIC); 4840 if (!rx->skb) { 4841 if (net_ratelimit()) 4842 wiphy_debug(local->hw.wiphy, 4843 "failed to copy skb for %s\n", 4844 sdata->name); 4845 return true; 4846 } 4847 4848 /* skb_copy() does not copy the hw timestamps, so copy it 4849 * explicitly 4850 */ 4851 shwt = skb_hwtstamps(rx->skb); 4852 shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 4853 } 4854 4855 if (unlikely(link_sta)) { 4856 /* translate to MLD addresses */ 4857 if (ether_addr_equal(link->conf->addr, hdr->addr1)) 4858 ether_addr_copy(hdr->addr1, rx->sdata->vif.addr); 4859 if (ether_addr_equal(link_sta->addr, hdr->addr2)) 4860 ether_addr_copy(hdr->addr2, rx->sta->addr); 4861 /* translate A3 only if it's the BSSID */ 4862 if (!ieee80211_has_tods(hdr->frame_control) && 4863 !ieee80211_has_fromds(hdr->frame_control)) { 4864 if (ether_addr_equal(link_sta->addr, hdr->addr3)) 4865 ether_addr_copy(hdr->addr3, rx->sta->addr); 4866 else if (ether_addr_equal(link->conf->addr, hdr->addr3)) 4867 ether_addr_copy(hdr->addr3, rx->sdata->vif.addr); 4868 } 4869 /* not needed for A4 since it can only carry the SA */ 4870 } 4871 4872 ieee80211_invoke_rx_handlers(rx); 4873 return true; 4874 } 4875 4876 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 4877 struct ieee80211_sta *pubsta, 4878 struct sk_buff *skb, 4879 struct list_head *list) 4880 { 4881 struct ieee80211_local *local = hw_to_local(hw); 4882 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4883 struct ieee80211_fast_rx *fast_rx; 4884 struct ieee80211_rx_data rx; 4885 4886 memset(&rx, 0, sizeof(rx)); 4887 rx.skb = skb; 4888 rx.local = local; 4889 rx.list = list; 4890 rx.link_id = -1; 4891 4892 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4893 4894 /* drop frame if too short for header */ 4895 if (skb->len < sizeof(struct ethhdr)) 4896 goto drop; 4897 4898 if (!pubsta) 4899 goto drop; 4900 4901 rx.sta = container_of(pubsta, struct sta_info, sta); 4902 rx.sdata = rx.sta->sdata; 4903 4904 if (status->link_valid && 4905 !ieee80211_rx_is_valid_sta_link_id(pubsta, status->link_id)) 4906 goto drop; 4907 4908 /* 4909 * TODO: Should the frame be dropped if the right link_id is not 4910 * available? Or may be it is fine in the current form to proceed with 4911 * the frame processing because with frame being in 802.3 format, 4912 * link_id is used only for stats purpose and updating the stats on 4913 * the deflink is fine? 4914 */ 4915 if (status->link_valid) 4916 rx.link_id = status->link_id; 4917 4918 if (rx.link_id >= 0) { 4919 struct ieee80211_link_data *link; 4920 4921 link = rcu_dereference(rx.sdata->link[rx.link_id]); 4922 if (!link) 4923 goto drop; 4924 rx.link = link; 4925 } else { 4926 rx.link = &rx.sdata->deflink; 4927 } 4928 4929 fast_rx = rcu_dereference(rx.sta->fast_rx); 4930 if (!fast_rx) 4931 goto drop; 4932 4933 ieee80211_rx_8023(&rx, fast_rx, skb->len); 4934 return; 4935 4936 drop: 4937 dev_kfree_skb(skb); 4938 } 4939 4940 static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx, 4941 struct sk_buff *skb, bool consume) 4942 { 4943 struct link_sta_info *link_sta; 4944 struct ieee80211_hdr *hdr = (void *)skb->data; 4945 4946 /* 4947 * Look up link station first, in case there's a 4948 * chance that they might have a link address that 4949 * is identical to the MLD address, that way we'll 4950 * have the link information if needed. 4951 */ 4952 link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2); 4953 if (link_sta) { 4954 rx->sta = link_sta->sta; 4955 rx->link_id = link_sta->link_id; 4956 } else { 4957 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4958 4959 rx->sta = sta_info_get_bss(rx->sdata, hdr->addr2); 4960 if (rx->sta) { 4961 if (status->link_valid && 4962 !ieee80211_rx_is_valid_sta_link_id(&rx->sta->sta, 4963 status->link_id)) 4964 return false; 4965 4966 rx->link_id = status->link_valid ? status->link_id : -1; 4967 } else { 4968 rx->link_id = -1; 4969 } 4970 } 4971 4972 return ieee80211_prepare_and_rx_handle(rx, skb, consume); 4973 } 4974 4975 /* 4976 * This is the actual Rx frames handler. as it belongs to Rx path it must 4977 * be called with rcu_read_lock protection. 4978 */ 4979 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4980 struct ieee80211_sta *pubsta, 4981 struct sk_buff *skb, 4982 struct list_head *list) 4983 { 4984 struct ieee80211_local *local = hw_to_local(hw); 4985 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4986 struct ieee80211_sub_if_data *sdata; 4987 struct ieee80211_hdr *hdr; 4988 __le16 fc; 4989 struct ieee80211_rx_data rx; 4990 struct ieee80211_sub_if_data *prev; 4991 struct rhlist_head *tmp; 4992 int err = 0; 4993 4994 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4995 memset(&rx, 0, sizeof(rx)); 4996 rx.skb = skb; 4997 rx.local = local; 4998 rx.list = list; 4999 rx.link_id = -1; 5000 5001 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 5002 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5003 5004 if (ieee80211_is_mgmt(fc)) { 5005 /* drop frame if too short for header */ 5006 if (skb->len < ieee80211_hdrlen(fc)) 5007 err = -ENOBUFS; 5008 else 5009 err = skb_linearize(skb); 5010 } else { 5011 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 5012 } 5013 5014 if (err) { 5015 dev_kfree_skb(skb); 5016 return; 5017 } 5018 5019 hdr = (struct ieee80211_hdr *)skb->data; 5020 ieee80211_parse_qos(&rx); 5021 ieee80211_verify_alignment(&rx); 5022 5023 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 5024 ieee80211_is_beacon(hdr->frame_control) || 5025 ieee80211_is_s1g_beacon(hdr->frame_control))) 5026 ieee80211_scan_rx(local, skb); 5027 5028 if (ieee80211_is_data(fc)) { 5029 struct sta_info *sta, *prev_sta; 5030 u8 link_id = status->link_id; 5031 5032 if (pubsta) { 5033 rx.sta = container_of(pubsta, struct sta_info, sta); 5034 rx.sdata = rx.sta->sdata; 5035 5036 if (status->link_valid && 5037 !ieee80211_rx_is_valid_sta_link_id(pubsta, link_id)) 5038 goto out; 5039 5040 if (status->link_valid) 5041 rx.link_id = status->link_id; 5042 5043 /* 5044 * In MLO connection, fetch the link_id using addr2 5045 * when the driver does not pass link_id in status. 5046 * When the address translation is already performed by 5047 * driver/hw, the valid link_id must be passed in 5048 * status. 5049 */ 5050 5051 if (!status->link_valid && pubsta->mlo) { 5052 struct ieee80211_hdr *hdr = (void *)skb->data; 5053 struct link_sta_info *link_sta; 5054 5055 link_sta = link_sta_info_get_bss(rx.sdata, 5056 hdr->addr2); 5057 if (!link_sta) 5058 goto out; 5059 5060 rx.link_id = link_sta->link_id; 5061 } 5062 5063 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5064 return; 5065 goto out; 5066 } 5067 5068 prev_sta = NULL; 5069 5070 for_each_sta_info(local, hdr->addr2, sta, tmp) { 5071 if (!prev_sta) { 5072 prev_sta = sta; 5073 continue; 5074 } 5075 5076 if ((status->link_valid && 5077 !ieee80211_rx_is_valid_sta_link_id(&prev_sta->sta, 5078 link_id)) || 5079 (!status->link_valid && prev_sta->sta.mlo)) 5080 continue; 5081 5082 rx.link_id = status->link_valid ? link_id : -1; 5083 rx.sta = prev_sta; 5084 rx.sdata = prev_sta->sdata; 5085 ieee80211_prepare_and_rx_handle(&rx, skb, false); 5086 5087 prev_sta = sta; 5088 } 5089 5090 if (prev_sta) { 5091 if ((status->link_valid && 5092 !ieee80211_rx_is_valid_sta_link_id(&prev_sta->sta, 5093 link_id)) || 5094 (!status->link_valid && prev_sta->sta.mlo)) 5095 goto out; 5096 5097 rx.link_id = status->link_valid ? link_id : -1; 5098 rx.sta = prev_sta; 5099 rx.sdata = prev_sta->sdata; 5100 5101 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5102 return; 5103 goto out; 5104 } 5105 } 5106 5107 prev = NULL; 5108 5109 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 5110 if (!ieee80211_sdata_running(sdata)) 5111 continue; 5112 5113 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 5114 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 5115 continue; 5116 5117 /* 5118 * frame is destined for this interface, but if it's 5119 * not also for the previous one we handle that after 5120 * the loop to avoid copying the SKB once too much 5121 */ 5122 5123 if (!prev) { 5124 prev = sdata; 5125 continue; 5126 } 5127 5128 rx.sdata = prev; 5129 ieee80211_rx_for_interface(&rx, skb, false); 5130 5131 prev = sdata; 5132 } 5133 5134 if (prev) { 5135 rx.sdata = prev; 5136 5137 if (ieee80211_rx_for_interface(&rx, skb, true)) 5138 return; 5139 } 5140 5141 out: 5142 dev_kfree_skb(skb); 5143 } 5144 5145 /* 5146 * This is the receive path handler. It is called by a low level driver when an 5147 * 802.11 MPDU is received from the hardware. 5148 */ 5149 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5150 struct sk_buff *skb, struct list_head *list) 5151 { 5152 struct ieee80211_local *local = hw_to_local(hw); 5153 struct ieee80211_rate *rate = NULL; 5154 struct ieee80211_supported_band *sband; 5155 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5156 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 5157 5158 WARN_ON_ONCE(softirq_count() == 0); 5159 5160 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 5161 goto drop; 5162 5163 sband = local->hw.wiphy->bands[status->band]; 5164 if (WARN_ON(!sband)) 5165 goto drop; 5166 5167 /* 5168 * If we're suspending, it is possible although not too likely 5169 * that we'd be receiving frames after having already partially 5170 * quiesced the stack. We can't process such frames then since 5171 * that might, for example, cause stations to be added or other 5172 * driver callbacks be invoked. 5173 */ 5174 if (unlikely(local->quiescing || local->suspended)) 5175 goto drop; 5176 5177 /* We might be during a HW reconfig, prevent Rx for the same reason */ 5178 if (unlikely(local->in_reconfig)) 5179 goto drop; 5180 5181 /* 5182 * The same happens when we're not even started, 5183 * but that's worth a warning. 5184 */ 5185 if (WARN_ON(!local->started)) 5186 goto drop; 5187 5188 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 5189 /* 5190 * Validate the rate, unless a PLCP error means that 5191 * we probably can't have a valid rate here anyway. 5192 */ 5193 5194 switch (status->encoding) { 5195 case RX_ENC_HT: 5196 /* 5197 * rate_idx is MCS index, which can be [0-76] 5198 * as documented on: 5199 * 5200 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 5201 * 5202 * Anything else would be some sort of driver or 5203 * hardware error. The driver should catch hardware 5204 * errors. 5205 */ 5206 if (WARN(status->rate_idx > 76, 5207 "Rate marked as an HT rate but passed " 5208 "status->rate_idx is not " 5209 "an MCS index [0-76]: %d (0x%02x)\n", 5210 status->rate_idx, 5211 status->rate_idx)) 5212 goto drop; 5213 break; 5214 case RX_ENC_VHT: 5215 if (WARN_ONCE(status->rate_idx > 11 || 5216 !status->nss || 5217 status->nss > 8, 5218 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 5219 status->rate_idx, status->nss)) 5220 goto drop; 5221 break; 5222 case RX_ENC_HE: 5223 if (WARN_ONCE(status->rate_idx > 11 || 5224 !status->nss || 5225 status->nss > 8, 5226 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 5227 status->rate_idx, status->nss)) 5228 goto drop; 5229 break; 5230 default: 5231 WARN_ON_ONCE(1); 5232 fallthrough; 5233 case RX_ENC_LEGACY: 5234 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 5235 goto drop; 5236 rate = &sband->bitrates[status->rate_idx]; 5237 } 5238 } 5239 5240 if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED)) 5241 goto drop; 5242 5243 status->rx_flags = 0; 5244 5245 kcov_remote_start_common(skb_get_kcov_handle(skb)); 5246 5247 /* 5248 * Frames with failed FCS/PLCP checksum are not returned, 5249 * all other frames are returned without radiotap header 5250 * if it was previously present. 5251 * Also, frames with less than 16 bytes are dropped. 5252 */ 5253 if (!(status->flag & RX_FLAG_8023)) 5254 skb = ieee80211_rx_monitor(local, skb, rate); 5255 if (skb) { 5256 if ((status->flag & RX_FLAG_8023) || 5257 ieee80211_is_data_present(hdr->frame_control)) 5258 ieee80211_tpt_led_trig_rx(local, skb->len); 5259 5260 if (status->flag & RX_FLAG_8023) 5261 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 5262 else 5263 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 5264 } 5265 5266 kcov_remote_stop(); 5267 return; 5268 drop: 5269 kfree_skb(skb); 5270 } 5271 EXPORT_SYMBOL(ieee80211_rx_list); 5272 5273 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5274 struct sk_buff *skb, struct napi_struct *napi) 5275 { 5276 struct sk_buff *tmp; 5277 LIST_HEAD(list); 5278 5279 5280 /* 5281 * key references and virtual interfaces are protected using RCU 5282 * and this requires that we are in a read-side RCU section during 5283 * receive processing 5284 */ 5285 rcu_read_lock(); 5286 ieee80211_rx_list(hw, pubsta, skb, &list); 5287 rcu_read_unlock(); 5288 5289 if (!napi) { 5290 netif_receive_skb_list(&list); 5291 return; 5292 } 5293 5294 list_for_each_entry_safe(skb, tmp, &list, list) { 5295 skb_list_del_init(skb); 5296 napi_gro_receive(napi, skb); 5297 } 5298 } 5299 EXPORT_SYMBOL(ieee80211_rx_napi); 5300 5301 /* This is a version of the rx handler that can be called from hard irq 5302 * context. Post the skb on the queue and schedule the tasklet */ 5303 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5304 { 5305 struct ieee80211_local *local = hw_to_local(hw); 5306 5307 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5308 5309 skb->pkt_type = IEEE80211_RX_MSG; 5310 skb_queue_tail(&local->skb_queue, skb); 5311 tasklet_schedule(&local->tasklet); 5312 } 5313 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5314