1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <net/mac80211.h> 20 #include <net/ieee80211_radiotap.h> 21 22 #include "ieee80211_i.h" 23 #include "driver-ops.h" 24 #include "led.h" 25 #include "mesh.h" 26 #include "wep.h" 27 #include "wpa.h" 28 #include "tkip.h" 29 #include "wme.h" 30 31 /* 32 * monitor mode reception 33 * 34 * This function cleans up the SKB, i.e. it removes all the stuff 35 * only useful for monitoring. 36 */ 37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 38 struct sk_buff *skb) 39 { 40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 41 if (likely(skb->len > FCS_LEN)) 42 __pskb_trim(skb, skb->len - FCS_LEN); 43 else { 44 /* driver bug */ 45 WARN_ON(1); 46 dev_kfree_skb(skb); 47 skb = NULL; 48 } 49 } 50 51 return skb; 52 } 53 54 static inline int should_drop_frame(struct sk_buff *skb, 55 int present_fcs_len) 56 { 57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 59 60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 61 return 1; 62 if (unlikely(skb->len < 16 + present_fcs_len)) 63 return 1; 64 if (ieee80211_is_ctl(hdr->frame_control) && 65 !ieee80211_is_pspoll(hdr->frame_control) && 66 !ieee80211_is_back_req(hdr->frame_control)) 67 return 1; 68 return 0; 69 } 70 71 static int 72 ieee80211_rx_radiotap_len(struct ieee80211_local *local, 73 struct ieee80211_rx_status *status) 74 { 75 int len; 76 77 /* always present fields */ 78 len = sizeof(struct ieee80211_radiotap_header) + 9; 79 80 if (status->flag & RX_FLAG_MACTIME_MPDU) 81 len += 8; 82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 83 len += 1; 84 85 if (len & 1) /* padding for RX_FLAGS if necessary */ 86 len++; 87 88 if (status->flag & RX_FLAG_HT) /* HT info */ 89 len += 3; 90 91 return len; 92 } 93 94 /* 95 * ieee80211_add_rx_radiotap_header - add radiotap header 96 * 97 * add a radiotap header containing all the fields which the hardware provided. 98 */ 99 static void 100 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 101 struct sk_buff *skb, 102 struct ieee80211_rate *rate, 103 int rtap_len) 104 { 105 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 106 struct ieee80211_radiotap_header *rthdr; 107 unsigned char *pos; 108 u16 rx_flags = 0; 109 110 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 111 memset(rthdr, 0, rtap_len); 112 113 /* radiotap header, set always present flags */ 114 rthdr->it_present = 115 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 116 (1 << IEEE80211_RADIOTAP_CHANNEL) | 117 (1 << IEEE80211_RADIOTAP_ANTENNA) | 118 (1 << IEEE80211_RADIOTAP_RX_FLAGS)); 119 rthdr->it_len = cpu_to_le16(rtap_len); 120 121 pos = (unsigned char *)(rthdr+1); 122 123 /* the order of the following fields is important */ 124 125 /* IEEE80211_RADIOTAP_TSFT */ 126 if (status->flag & RX_FLAG_MACTIME_MPDU) { 127 put_unaligned_le64(status->mactime, pos); 128 rthdr->it_present |= 129 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 130 pos += 8; 131 } 132 133 /* IEEE80211_RADIOTAP_FLAGS */ 134 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 135 *pos |= IEEE80211_RADIOTAP_F_FCS; 136 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 137 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 138 if (status->flag & RX_FLAG_SHORTPRE) 139 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 140 pos++; 141 142 /* IEEE80211_RADIOTAP_RATE */ 143 if (status->flag & RX_FLAG_HT) { 144 /* 145 * MCS information is a separate field in radiotap, 146 * added below. The byte here is needed as padding 147 * for the channel though, so initialise it to 0. 148 */ 149 *pos = 0; 150 } else { 151 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 152 *pos = rate->bitrate / 5; 153 } 154 pos++; 155 156 /* IEEE80211_RADIOTAP_CHANNEL */ 157 put_unaligned_le16(status->freq, pos); 158 pos += 2; 159 if (status->band == IEEE80211_BAND_5GHZ) 160 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ, 161 pos); 162 else if (status->flag & RX_FLAG_HT) 163 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ, 164 pos); 165 else if (rate->flags & IEEE80211_RATE_ERP_G) 166 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ, 167 pos); 168 else 169 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ, 170 pos); 171 pos += 2; 172 173 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 174 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) { 175 *pos = status->signal; 176 rthdr->it_present |= 177 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 178 pos++; 179 } 180 181 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 182 183 /* IEEE80211_RADIOTAP_ANTENNA */ 184 *pos = status->antenna; 185 pos++; 186 187 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 188 189 /* IEEE80211_RADIOTAP_RX_FLAGS */ 190 /* ensure 2 byte alignment for the 2 byte field as required */ 191 if ((pos - (u8 *)rthdr) & 1) 192 pos++; 193 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 194 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 195 put_unaligned_le16(rx_flags, pos); 196 pos += 2; 197 198 if (status->flag & RX_FLAG_HT) { 199 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 200 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS | 201 IEEE80211_RADIOTAP_MCS_HAVE_GI | 202 IEEE80211_RADIOTAP_MCS_HAVE_BW; 203 *pos = 0; 204 if (status->flag & RX_FLAG_SHORT_GI) 205 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 206 if (status->flag & RX_FLAG_40MHZ) 207 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 208 pos++; 209 *pos++ = status->rate_idx; 210 } 211 } 212 213 /* 214 * This function copies a received frame to all monitor interfaces and 215 * returns a cleaned-up SKB that no longer includes the FCS nor the 216 * radiotap header the driver might have added. 217 */ 218 static struct sk_buff * 219 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 220 struct ieee80211_rate *rate) 221 { 222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 223 struct ieee80211_sub_if_data *sdata; 224 int needed_headroom = 0; 225 struct sk_buff *skb, *skb2; 226 struct net_device *prev_dev = NULL; 227 int present_fcs_len = 0; 228 229 /* 230 * First, we may need to make a copy of the skb because 231 * (1) we need to modify it for radiotap (if not present), and 232 * (2) the other RX handlers will modify the skb we got. 233 * 234 * We don't need to, of course, if we aren't going to return 235 * the SKB because it has a bad FCS/PLCP checksum. 236 */ 237 238 /* room for the radiotap header based on driver features */ 239 needed_headroom = ieee80211_rx_radiotap_len(local, status); 240 241 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 242 present_fcs_len = FCS_LEN; 243 244 /* make sure hdr->frame_control is on the linear part */ 245 if (!pskb_may_pull(origskb, 2)) { 246 dev_kfree_skb(origskb); 247 return NULL; 248 } 249 250 if (!local->monitors) { 251 if (should_drop_frame(origskb, present_fcs_len)) { 252 dev_kfree_skb(origskb); 253 return NULL; 254 } 255 256 return remove_monitor_info(local, origskb); 257 } 258 259 if (should_drop_frame(origskb, present_fcs_len)) { 260 /* only need to expand headroom if necessary */ 261 skb = origskb; 262 origskb = NULL; 263 264 /* 265 * This shouldn't trigger often because most devices have an 266 * RX header they pull before we get here, and that should 267 * be big enough for our radiotap information. We should 268 * probably export the length to drivers so that we can have 269 * them allocate enough headroom to start with. 270 */ 271 if (skb_headroom(skb) < needed_headroom && 272 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 273 dev_kfree_skb(skb); 274 return NULL; 275 } 276 } else { 277 /* 278 * Need to make a copy and possibly remove radiotap header 279 * and FCS from the original. 280 */ 281 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 282 283 origskb = remove_monitor_info(local, origskb); 284 285 if (!skb) 286 return origskb; 287 } 288 289 /* prepend radiotap information */ 290 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom); 291 292 skb_reset_mac_header(skb); 293 skb->ip_summed = CHECKSUM_UNNECESSARY; 294 skb->pkt_type = PACKET_OTHERHOST; 295 skb->protocol = htons(ETH_P_802_2); 296 297 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 298 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 299 continue; 300 301 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 302 continue; 303 304 if (!ieee80211_sdata_running(sdata)) 305 continue; 306 307 if (prev_dev) { 308 skb2 = skb_clone(skb, GFP_ATOMIC); 309 if (skb2) { 310 skb2->dev = prev_dev; 311 netif_receive_skb(skb2); 312 } 313 } 314 315 prev_dev = sdata->dev; 316 sdata->dev->stats.rx_packets++; 317 sdata->dev->stats.rx_bytes += skb->len; 318 } 319 320 if (prev_dev) { 321 skb->dev = prev_dev; 322 netif_receive_skb(skb); 323 } else 324 dev_kfree_skb(skb); 325 326 return origskb; 327 } 328 329 330 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 331 { 332 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 333 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 334 int tid; 335 336 /* does the frame have a qos control field? */ 337 if (ieee80211_is_data_qos(hdr->frame_control)) { 338 u8 *qc = ieee80211_get_qos_ctl(hdr); 339 /* frame has qos control */ 340 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 341 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT) 342 status->rx_flags |= IEEE80211_RX_AMSDU; 343 } else { 344 /* 345 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 346 * 347 * Sequence numbers for management frames, QoS data 348 * frames with a broadcast/multicast address in the 349 * Address 1 field, and all non-QoS data frames sent 350 * by QoS STAs are assigned using an additional single 351 * modulo-4096 counter, [...] 352 * 353 * We also use that counter for non-QoS STAs. 354 */ 355 tid = NUM_RX_DATA_QUEUES - 1; 356 } 357 358 rx->queue = tid; 359 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 360 * For now, set skb->priority to 0 for other cases. */ 361 rx->skb->priority = (tid > 7) ? 0 : tid; 362 } 363 364 /** 365 * DOC: Packet alignment 366 * 367 * Drivers always need to pass packets that are aligned to two-byte boundaries 368 * to the stack. 369 * 370 * Additionally, should, if possible, align the payload data in a way that 371 * guarantees that the contained IP header is aligned to a four-byte 372 * boundary. In the case of regular frames, this simply means aligning the 373 * payload to a four-byte boundary (because either the IP header is directly 374 * contained, or IV/RFC1042 headers that have a length divisible by four are 375 * in front of it). If the payload data is not properly aligned and the 376 * architecture doesn't support efficient unaligned operations, mac80211 377 * will align the data. 378 * 379 * With A-MSDU frames, however, the payload data address must yield two modulo 380 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 381 * push the IP header further back to a multiple of four again. Thankfully, the 382 * specs were sane enough this time around to require padding each A-MSDU 383 * subframe to a length that is a multiple of four. 384 * 385 * Padding like Atheros hardware adds which is between the 802.11 header and 386 * the payload is not supported, the driver is required to move the 802.11 387 * header to be directly in front of the payload in that case. 388 */ 389 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 390 { 391 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 392 WARN_ONCE((unsigned long)rx->skb->data & 1, 393 "unaligned packet at 0x%p\n", rx->skb->data); 394 #endif 395 } 396 397 398 /* rx handlers */ 399 400 static ieee80211_rx_result debug_noinline 401 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx) 402 { 403 struct ieee80211_local *local = rx->local; 404 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 405 struct sk_buff *skb = rx->skb; 406 407 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) && 408 !local->sched_scanning)) 409 return RX_CONTINUE; 410 411 if (test_bit(SCAN_HW_SCANNING, &local->scanning) || 412 test_bit(SCAN_SW_SCANNING, &local->scanning) || 413 local->sched_scanning) 414 return ieee80211_scan_rx(rx->sdata, skb); 415 416 /* scanning finished during invoking of handlers */ 417 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan); 418 return RX_DROP_UNUSABLE; 419 } 420 421 422 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 423 { 424 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 425 426 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1)) 427 return 0; 428 429 return ieee80211_is_robust_mgmt_frame(hdr); 430 } 431 432 433 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 434 { 435 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 436 437 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1)) 438 return 0; 439 440 return ieee80211_is_robust_mgmt_frame(hdr); 441 } 442 443 444 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 445 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 446 { 447 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 448 struct ieee80211_mmie *mmie; 449 450 if (skb->len < 24 + sizeof(*mmie) || 451 !is_multicast_ether_addr(hdr->da)) 452 return -1; 453 454 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr)) 455 return -1; /* not a robust management frame */ 456 457 mmie = (struct ieee80211_mmie *) 458 (skb->data + skb->len - sizeof(*mmie)); 459 if (mmie->element_id != WLAN_EID_MMIE || 460 mmie->length != sizeof(*mmie) - 2) 461 return -1; 462 463 return le16_to_cpu(mmie->key_id); 464 } 465 466 467 static ieee80211_rx_result 468 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 469 { 470 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 471 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 472 char *dev_addr = rx->sdata->vif.addr; 473 474 if (ieee80211_is_data(hdr->frame_control)) { 475 if (is_multicast_ether_addr(hdr->addr1)) { 476 if (ieee80211_has_tods(hdr->frame_control) || 477 !ieee80211_has_fromds(hdr->frame_control)) 478 return RX_DROP_MONITOR; 479 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0) 480 return RX_DROP_MONITOR; 481 } else { 482 if (!ieee80211_has_a4(hdr->frame_control)) 483 return RX_DROP_MONITOR; 484 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0) 485 return RX_DROP_MONITOR; 486 } 487 } 488 489 /* If there is not an established peer link and this is not a peer link 490 * establisment frame, beacon or probe, drop the frame. 491 */ 492 493 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 494 struct ieee80211_mgmt *mgmt; 495 496 if (!ieee80211_is_mgmt(hdr->frame_control)) 497 return RX_DROP_MONITOR; 498 499 if (ieee80211_is_action(hdr->frame_control)) { 500 u8 category; 501 mgmt = (struct ieee80211_mgmt *)hdr; 502 category = mgmt->u.action.category; 503 if (category != WLAN_CATEGORY_MESH_ACTION && 504 category != WLAN_CATEGORY_SELF_PROTECTED) 505 return RX_DROP_MONITOR; 506 return RX_CONTINUE; 507 } 508 509 if (ieee80211_is_probe_req(hdr->frame_control) || 510 ieee80211_is_probe_resp(hdr->frame_control) || 511 ieee80211_is_beacon(hdr->frame_control) || 512 ieee80211_is_auth(hdr->frame_control)) 513 return RX_CONTINUE; 514 515 return RX_DROP_MONITOR; 516 517 } 518 519 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l)) 520 521 if (ieee80211_is_data(hdr->frame_control) && 522 is_multicast_ether_addr(hdr->addr1) && 523 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata)) 524 return RX_DROP_MONITOR; 525 #undef msh_h_get 526 527 return RX_CONTINUE; 528 } 529 530 #define SEQ_MODULO 0x1000 531 #define SEQ_MASK 0xfff 532 533 static inline int seq_less(u16 sq1, u16 sq2) 534 { 535 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1); 536 } 537 538 static inline u16 seq_inc(u16 sq) 539 { 540 return (sq + 1) & SEQ_MASK; 541 } 542 543 static inline u16 seq_sub(u16 sq1, u16 sq2) 544 { 545 return (sq1 - sq2) & SEQ_MASK; 546 } 547 548 549 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw, 550 struct tid_ampdu_rx *tid_agg_rx, 551 int index) 552 { 553 struct ieee80211_local *local = hw_to_local(hw); 554 struct sk_buff *skb = tid_agg_rx->reorder_buf[index]; 555 struct ieee80211_rx_status *status; 556 557 lockdep_assert_held(&tid_agg_rx->reorder_lock); 558 559 if (!skb) 560 goto no_frame; 561 562 /* release the frame from the reorder ring buffer */ 563 tid_agg_rx->stored_mpdu_num--; 564 tid_agg_rx->reorder_buf[index] = NULL; 565 status = IEEE80211_SKB_RXCB(skb); 566 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 567 skb_queue_tail(&local->rx_skb_queue, skb); 568 569 no_frame: 570 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 571 } 572 573 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw, 574 struct tid_ampdu_rx *tid_agg_rx, 575 u16 head_seq_num) 576 { 577 int index; 578 579 lockdep_assert_held(&tid_agg_rx->reorder_lock); 580 581 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) { 582 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 583 tid_agg_rx->buf_size; 584 ieee80211_release_reorder_frame(hw, tid_agg_rx, index); 585 } 586 } 587 588 /* 589 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 590 * the skb was added to the buffer longer than this time ago, the earlier 591 * frames that have not yet been received are assumed to be lost and the skb 592 * can be released for processing. This may also release other skb's from the 593 * reorder buffer if there are no additional gaps between the frames. 594 * 595 * Callers must hold tid_agg_rx->reorder_lock. 596 */ 597 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 598 599 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw, 600 struct tid_ampdu_rx *tid_agg_rx) 601 { 602 int index, j; 603 604 lockdep_assert_held(&tid_agg_rx->reorder_lock); 605 606 /* release the buffer until next missing frame */ 607 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 608 tid_agg_rx->buf_size; 609 if (!tid_agg_rx->reorder_buf[index] && 610 tid_agg_rx->stored_mpdu_num > 1) { 611 /* 612 * No buffers ready to be released, but check whether any 613 * frames in the reorder buffer have timed out. 614 */ 615 int skipped = 1; 616 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 617 j = (j + 1) % tid_agg_rx->buf_size) { 618 if (!tid_agg_rx->reorder_buf[j]) { 619 skipped++; 620 continue; 621 } 622 if (skipped && 623 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 624 HT_RX_REORDER_BUF_TIMEOUT)) 625 goto set_release_timer; 626 627 #ifdef CONFIG_MAC80211_HT_DEBUG 628 if (net_ratelimit()) 629 wiphy_debug(hw->wiphy, 630 "release an RX reorder frame due to timeout on earlier frames\n"); 631 #endif 632 ieee80211_release_reorder_frame(hw, tid_agg_rx, j); 633 634 /* 635 * Increment the head seq# also for the skipped slots. 636 */ 637 tid_agg_rx->head_seq_num = 638 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK; 639 skipped = 0; 640 } 641 } else while (tid_agg_rx->reorder_buf[index]) { 642 ieee80211_release_reorder_frame(hw, tid_agg_rx, index); 643 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 644 tid_agg_rx->buf_size; 645 } 646 647 if (tid_agg_rx->stored_mpdu_num) { 648 j = index = seq_sub(tid_agg_rx->head_seq_num, 649 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 650 651 for (; j != (index - 1) % tid_agg_rx->buf_size; 652 j = (j + 1) % tid_agg_rx->buf_size) { 653 if (tid_agg_rx->reorder_buf[j]) 654 break; 655 } 656 657 set_release_timer: 658 659 mod_timer(&tid_agg_rx->reorder_timer, 660 tid_agg_rx->reorder_time[j] + 1 + 661 HT_RX_REORDER_BUF_TIMEOUT); 662 } else { 663 del_timer(&tid_agg_rx->reorder_timer); 664 } 665 } 666 667 /* 668 * As this function belongs to the RX path it must be under 669 * rcu_read_lock protection. It returns false if the frame 670 * can be processed immediately, true if it was consumed. 671 */ 672 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw, 673 struct tid_ampdu_rx *tid_agg_rx, 674 struct sk_buff *skb) 675 { 676 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 677 u16 sc = le16_to_cpu(hdr->seq_ctrl); 678 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 679 u16 head_seq_num, buf_size; 680 int index; 681 bool ret = true; 682 683 spin_lock(&tid_agg_rx->reorder_lock); 684 685 buf_size = tid_agg_rx->buf_size; 686 head_seq_num = tid_agg_rx->head_seq_num; 687 688 /* frame with out of date sequence number */ 689 if (seq_less(mpdu_seq_num, head_seq_num)) { 690 dev_kfree_skb(skb); 691 goto out; 692 } 693 694 /* 695 * If frame the sequence number exceeds our buffering window 696 * size release some previous frames to make room for this one. 697 */ 698 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) { 699 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size)); 700 /* release stored frames up to new head to stack */ 701 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num); 702 } 703 704 /* Now the new frame is always in the range of the reordering buffer */ 705 706 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size; 707 708 /* check if we already stored this frame */ 709 if (tid_agg_rx->reorder_buf[index]) { 710 dev_kfree_skb(skb); 711 goto out; 712 } 713 714 /* 715 * If the current MPDU is in the right order and nothing else 716 * is stored we can process it directly, no need to buffer it. 717 * If it is first but there's something stored, we may be able 718 * to release frames after this one. 719 */ 720 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 721 tid_agg_rx->stored_mpdu_num == 0) { 722 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 723 ret = false; 724 goto out; 725 } 726 727 /* put the frame in the reordering buffer */ 728 tid_agg_rx->reorder_buf[index] = skb; 729 tid_agg_rx->reorder_time[index] = jiffies; 730 tid_agg_rx->stored_mpdu_num++; 731 ieee80211_sta_reorder_release(hw, tid_agg_rx); 732 733 out: 734 spin_unlock(&tid_agg_rx->reorder_lock); 735 return ret; 736 } 737 738 /* 739 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 740 * true if the MPDU was buffered, false if it should be processed. 741 */ 742 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx) 743 { 744 struct sk_buff *skb = rx->skb; 745 struct ieee80211_local *local = rx->local; 746 struct ieee80211_hw *hw = &local->hw; 747 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 748 struct sta_info *sta = rx->sta; 749 struct tid_ampdu_rx *tid_agg_rx; 750 u16 sc; 751 int tid; 752 753 if (!ieee80211_is_data_qos(hdr->frame_control)) 754 goto dont_reorder; 755 756 /* 757 * filter the QoS data rx stream according to 758 * STA/TID and check if this STA/TID is on aggregation 759 */ 760 761 if (!sta) 762 goto dont_reorder; 763 764 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 765 766 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 767 if (!tid_agg_rx) 768 goto dont_reorder; 769 770 /* qos null data frames are excluded */ 771 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 772 goto dont_reorder; 773 774 /* new, potentially un-ordered, ampdu frame - process it */ 775 776 /* reset session timer */ 777 if (tid_agg_rx->timeout) 778 mod_timer(&tid_agg_rx->session_timer, 779 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 780 781 /* if this mpdu is fragmented - terminate rx aggregation session */ 782 sc = le16_to_cpu(hdr->seq_ctrl); 783 if (sc & IEEE80211_SCTL_FRAG) { 784 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 785 skb_queue_tail(&rx->sdata->skb_queue, skb); 786 ieee80211_queue_work(&local->hw, &rx->sdata->work); 787 return; 788 } 789 790 /* 791 * No locking needed -- we will only ever process one 792 * RX packet at a time, and thus own tid_agg_rx. All 793 * other code manipulating it needs to (and does) make 794 * sure that we cannot get to it any more before doing 795 * anything with it. 796 */ 797 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb)) 798 return; 799 800 dont_reorder: 801 skb_queue_tail(&local->rx_skb_queue, skb); 802 } 803 804 static ieee80211_rx_result debug_noinline 805 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 806 { 807 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 808 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 809 810 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ 811 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) { 812 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 813 rx->sta->last_seq_ctrl[rx->queue] == 814 hdr->seq_ctrl)) { 815 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 816 rx->local->dot11FrameDuplicateCount++; 817 rx->sta->num_duplicates++; 818 } 819 return RX_DROP_UNUSABLE; 820 } else 821 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl; 822 } 823 824 if (unlikely(rx->skb->len < 16)) { 825 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 826 return RX_DROP_MONITOR; 827 } 828 829 /* Drop disallowed frame classes based on STA auth/assoc state; 830 * IEEE 802.11, Chap 5.5. 831 * 832 * mac80211 filters only based on association state, i.e. it drops 833 * Class 3 frames from not associated stations. hostapd sends 834 * deauth/disassoc frames when needed. In addition, hostapd is 835 * responsible for filtering on both auth and assoc states. 836 */ 837 838 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 839 return ieee80211_rx_mesh_check(rx); 840 841 if (unlikely((ieee80211_is_data(hdr->frame_control) || 842 ieee80211_is_pspoll(hdr->frame_control)) && 843 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 844 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 845 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) 846 return RX_DROP_MONITOR; 847 848 return RX_CONTINUE; 849 } 850 851 852 static ieee80211_rx_result debug_noinline 853 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 854 { 855 struct sk_buff *skb = rx->skb; 856 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 857 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 858 int keyidx; 859 int hdrlen; 860 ieee80211_rx_result result = RX_DROP_UNUSABLE; 861 struct ieee80211_key *sta_ptk = NULL; 862 int mmie_keyidx = -1; 863 __le16 fc; 864 865 /* 866 * Key selection 101 867 * 868 * There are four types of keys: 869 * - GTK (group keys) 870 * - IGTK (group keys for management frames) 871 * - PTK (pairwise keys) 872 * - STK (station-to-station pairwise keys) 873 * 874 * When selecting a key, we have to distinguish between multicast 875 * (including broadcast) and unicast frames, the latter can only 876 * use PTKs and STKs while the former always use GTKs and IGTKs. 877 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 878 * unicast frames can also use key indices like GTKs. Hence, if we 879 * don't have a PTK/STK we check the key index for a WEP key. 880 * 881 * Note that in a regular BSS, multicast frames are sent by the 882 * AP only, associated stations unicast the frame to the AP first 883 * which then multicasts it on their behalf. 884 * 885 * There is also a slight problem in IBSS mode: GTKs are negotiated 886 * with each station, that is something we don't currently handle. 887 * The spec seems to expect that one negotiates the same key with 888 * every station but there's no such requirement; VLANs could be 889 * possible. 890 */ 891 892 /* 893 * No point in finding a key and decrypting if the frame is neither 894 * addressed to us nor a multicast frame. 895 */ 896 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 897 return RX_CONTINUE; 898 899 /* start without a key */ 900 rx->key = NULL; 901 902 if (rx->sta) 903 sta_ptk = rcu_dereference(rx->sta->ptk); 904 905 fc = hdr->frame_control; 906 907 if (!ieee80211_has_protected(fc)) 908 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 909 910 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 911 rx->key = sta_ptk; 912 if ((status->flag & RX_FLAG_DECRYPTED) && 913 (status->flag & RX_FLAG_IV_STRIPPED)) 914 return RX_CONTINUE; 915 /* Skip decryption if the frame is not protected. */ 916 if (!ieee80211_has_protected(fc)) 917 return RX_CONTINUE; 918 } else if (mmie_keyidx >= 0) { 919 /* Broadcast/multicast robust management frame / BIP */ 920 if ((status->flag & RX_FLAG_DECRYPTED) && 921 (status->flag & RX_FLAG_IV_STRIPPED)) 922 return RX_CONTINUE; 923 924 if (mmie_keyidx < NUM_DEFAULT_KEYS || 925 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 926 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 927 if (rx->sta) 928 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 929 if (!rx->key) 930 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 931 } else if (!ieee80211_has_protected(fc)) { 932 /* 933 * The frame was not protected, so skip decryption. However, we 934 * need to set rx->key if there is a key that could have been 935 * used so that the frame may be dropped if encryption would 936 * have been expected. 937 */ 938 struct ieee80211_key *key = NULL; 939 struct ieee80211_sub_if_data *sdata = rx->sdata; 940 int i; 941 942 if (ieee80211_is_mgmt(fc) && 943 is_multicast_ether_addr(hdr->addr1) && 944 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 945 rx->key = key; 946 else { 947 if (rx->sta) { 948 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 949 key = rcu_dereference(rx->sta->gtk[i]); 950 if (key) 951 break; 952 } 953 } 954 if (!key) { 955 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 956 key = rcu_dereference(sdata->keys[i]); 957 if (key) 958 break; 959 } 960 } 961 if (key) 962 rx->key = key; 963 } 964 return RX_CONTINUE; 965 } else { 966 u8 keyid; 967 /* 968 * The device doesn't give us the IV so we won't be 969 * able to look up the key. That's ok though, we 970 * don't need to decrypt the frame, we just won't 971 * be able to keep statistics accurate. 972 * Except for key threshold notifications, should 973 * we somehow allow the driver to tell us which key 974 * the hardware used if this flag is set? 975 */ 976 if ((status->flag & RX_FLAG_DECRYPTED) && 977 (status->flag & RX_FLAG_IV_STRIPPED)) 978 return RX_CONTINUE; 979 980 hdrlen = ieee80211_hdrlen(fc); 981 982 if (rx->skb->len < 8 + hdrlen) 983 return RX_DROP_UNUSABLE; /* TODO: count this? */ 984 985 /* 986 * no need to call ieee80211_wep_get_keyidx, 987 * it verifies a bunch of things we've done already 988 */ 989 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 990 keyidx = keyid >> 6; 991 992 /* check per-station GTK first, if multicast packet */ 993 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 994 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 995 996 /* if not found, try default key */ 997 if (!rx->key) { 998 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 999 1000 /* 1001 * RSNA-protected unicast frames should always be 1002 * sent with pairwise or station-to-station keys, 1003 * but for WEP we allow using a key index as well. 1004 */ 1005 if (rx->key && 1006 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1007 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1008 !is_multicast_ether_addr(hdr->addr1)) 1009 rx->key = NULL; 1010 } 1011 } 1012 1013 if (rx->key) { 1014 rx->key->tx_rx_count++; 1015 /* TODO: add threshold stuff again */ 1016 } else { 1017 return RX_DROP_MONITOR; 1018 } 1019 1020 if (skb_linearize(rx->skb)) 1021 return RX_DROP_UNUSABLE; 1022 /* the hdr variable is invalid now! */ 1023 1024 switch (rx->key->conf.cipher) { 1025 case WLAN_CIPHER_SUITE_WEP40: 1026 case WLAN_CIPHER_SUITE_WEP104: 1027 /* Check for weak IVs if possible */ 1028 if (rx->sta && ieee80211_is_data(fc) && 1029 (!(status->flag & RX_FLAG_IV_STRIPPED) || 1030 !(status->flag & RX_FLAG_DECRYPTED)) && 1031 ieee80211_wep_is_weak_iv(rx->skb, rx->key)) 1032 rx->sta->wep_weak_iv_count++; 1033 1034 result = ieee80211_crypto_wep_decrypt(rx); 1035 break; 1036 case WLAN_CIPHER_SUITE_TKIP: 1037 result = ieee80211_crypto_tkip_decrypt(rx); 1038 break; 1039 case WLAN_CIPHER_SUITE_CCMP: 1040 result = ieee80211_crypto_ccmp_decrypt(rx); 1041 break; 1042 case WLAN_CIPHER_SUITE_AES_CMAC: 1043 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1044 break; 1045 default: 1046 /* 1047 * We can reach here only with HW-only algorithms 1048 * but why didn't it decrypt the frame?! 1049 */ 1050 return RX_DROP_UNUSABLE; 1051 } 1052 1053 /* either the frame has been decrypted or will be dropped */ 1054 status->flag |= RX_FLAG_DECRYPTED; 1055 1056 return result; 1057 } 1058 1059 static ieee80211_rx_result debug_noinline 1060 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1061 { 1062 struct ieee80211_local *local; 1063 struct ieee80211_hdr *hdr; 1064 struct sk_buff *skb; 1065 1066 local = rx->local; 1067 skb = rx->skb; 1068 hdr = (struct ieee80211_hdr *) skb->data; 1069 1070 if (!local->pspolling) 1071 return RX_CONTINUE; 1072 1073 if (!ieee80211_has_fromds(hdr->frame_control)) 1074 /* this is not from AP */ 1075 return RX_CONTINUE; 1076 1077 if (!ieee80211_is_data(hdr->frame_control)) 1078 return RX_CONTINUE; 1079 1080 if (!ieee80211_has_moredata(hdr->frame_control)) { 1081 /* AP has no more frames buffered for us */ 1082 local->pspolling = false; 1083 return RX_CONTINUE; 1084 } 1085 1086 /* more data bit is set, let's request a new frame from the AP */ 1087 ieee80211_send_pspoll(local, rx->sdata); 1088 1089 return RX_CONTINUE; 1090 } 1091 1092 static void ap_sta_ps_start(struct sta_info *sta) 1093 { 1094 struct ieee80211_sub_if_data *sdata = sta->sdata; 1095 struct ieee80211_local *local = sdata->local; 1096 1097 atomic_inc(&sdata->bss->num_sta_ps); 1098 set_sta_flags(sta, WLAN_STA_PS_STA); 1099 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1100 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1101 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1102 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n", 1103 sdata->name, sta->sta.addr, sta->sta.aid); 1104 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1105 } 1106 1107 static void ap_sta_ps_end(struct sta_info *sta) 1108 { 1109 struct ieee80211_sub_if_data *sdata = sta->sdata; 1110 1111 atomic_dec(&sdata->bss->num_sta_ps); 1112 1113 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1114 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n", 1115 sdata->name, sta->sta.addr, sta->sta.aid); 1116 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1117 1118 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) { 1119 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1120 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n", 1121 sdata->name, sta->sta.addr, sta->sta.aid); 1122 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1123 return; 1124 } 1125 1126 ieee80211_sta_ps_deliver_wakeup(sta); 1127 } 1128 1129 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1130 { 1131 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1132 bool in_ps; 1133 1134 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1135 1136 /* Don't let the same PS state be set twice */ 1137 in_ps = test_sta_flags(sta_inf, WLAN_STA_PS_STA); 1138 if ((start && in_ps) || (!start && !in_ps)) 1139 return -EINVAL; 1140 1141 if (start) 1142 ap_sta_ps_start(sta_inf); 1143 else 1144 ap_sta_ps_end(sta_inf); 1145 1146 return 0; 1147 } 1148 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1149 1150 static ieee80211_rx_result debug_noinline 1151 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1152 { 1153 struct sta_info *sta = rx->sta; 1154 struct sk_buff *skb = rx->skb; 1155 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1156 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1157 1158 if (!sta) 1159 return RX_CONTINUE; 1160 1161 /* 1162 * Update last_rx only for IBSS packets which are for the current 1163 * BSSID to avoid keeping the current IBSS network alive in cases 1164 * where other STAs start using different BSSID. 1165 */ 1166 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1167 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1168 NL80211_IFTYPE_ADHOC); 1169 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) { 1170 sta->last_rx = jiffies; 1171 if (ieee80211_is_data(hdr->frame_control)) { 1172 sta->last_rx_rate_idx = status->rate_idx; 1173 sta->last_rx_rate_flag = status->flag; 1174 } 1175 } 1176 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1177 /* 1178 * Mesh beacons will update last_rx when if they are found to 1179 * match the current local configuration when processed. 1180 */ 1181 sta->last_rx = jiffies; 1182 if (ieee80211_is_data(hdr->frame_control)) { 1183 sta->last_rx_rate_idx = status->rate_idx; 1184 sta->last_rx_rate_flag = status->flag; 1185 } 1186 } 1187 1188 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1189 return RX_CONTINUE; 1190 1191 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1192 ieee80211_sta_rx_notify(rx->sdata, hdr); 1193 1194 sta->rx_fragments++; 1195 sta->rx_bytes += rx->skb->len; 1196 sta->last_signal = status->signal; 1197 ewma_add(&sta->avg_signal, -status->signal); 1198 1199 /* 1200 * Change STA power saving mode only at the end of a frame 1201 * exchange sequence. 1202 */ 1203 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1204 !ieee80211_has_morefrags(hdr->frame_control) && 1205 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1206 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1207 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1208 if (test_sta_flags(sta, WLAN_STA_PS_STA)) { 1209 /* 1210 * Ignore doze->wake transitions that are 1211 * indicated by non-data frames, the standard 1212 * is unclear here, but for example going to 1213 * PS mode and then scanning would cause a 1214 * doze->wake transition for the probe request, 1215 * and that is clearly undesirable. 1216 */ 1217 if (ieee80211_is_data(hdr->frame_control) && 1218 !ieee80211_has_pm(hdr->frame_control)) 1219 ap_sta_ps_end(sta); 1220 } else { 1221 if (ieee80211_has_pm(hdr->frame_control)) 1222 ap_sta_ps_start(sta); 1223 } 1224 } 1225 1226 /* 1227 * Drop (qos-)data::nullfunc frames silently, since they 1228 * are used only to control station power saving mode. 1229 */ 1230 if (ieee80211_is_nullfunc(hdr->frame_control) || 1231 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1232 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1233 1234 /* 1235 * If we receive a 4-addr nullfunc frame from a STA 1236 * that was not moved to a 4-addr STA vlan yet, drop 1237 * the frame to the monitor interface, to make sure 1238 * that hostapd sees it 1239 */ 1240 if (ieee80211_has_a4(hdr->frame_control) && 1241 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1242 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1243 !rx->sdata->u.vlan.sta))) 1244 return RX_DROP_MONITOR; 1245 /* 1246 * Update counter and free packet here to avoid 1247 * counting this as a dropped packed. 1248 */ 1249 sta->rx_packets++; 1250 dev_kfree_skb(rx->skb); 1251 return RX_QUEUED; 1252 } 1253 1254 return RX_CONTINUE; 1255 } /* ieee80211_rx_h_sta_process */ 1256 1257 static inline struct ieee80211_fragment_entry * 1258 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1259 unsigned int frag, unsigned int seq, int rx_queue, 1260 struct sk_buff **skb) 1261 { 1262 struct ieee80211_fragment_entry *entry; 1263 int idx; 1264 1265 idx = sdata->fragment_next; 1266 entry = &sdata->fragments[sdata->fragment_next++]; 1267 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1268 sdata->fragment_next = 0; 1269 1270 if (!skb_queue_empty(&entry->skb_list)) { 1271 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1272 struct ieee80211_hdr *hdr = 1273 (struct ieee80211_hdr *) entry->skb_list.next->data; 1274 printk(KERN_DEBUG "%s: RX reassembly removed oldest " 1275 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d " 1276 "addr1=%pM addr2=%pM\n", 1277 sdata->name, idx, 1278 jiffies - entry->first_frag_time, entry->seq, 1279 entry->last_frag, hdr->addr1, hdr->addr2); 1280 #endif 1281 __skb_queue_purge(&entry->skb_list); 1282 } 1283 1284 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1285 *skb = NULL; 1286 entry->first_frag_time = jiffies; 1287 entry->seq = seq; 1288 entry->rx_queue = rx_queue; 1289 entry->last_frag = frag; 1290 entry->ccmp = 0; 1291 entry->extra_len = 0; 1292 1293 return entry; 1294 } 1295 1296 static inline struct ieee80211_fragment_entry * 1297 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1298 unsigned int frag, unsigned int seq, 1299 int rx_queue, struct ieee80211_hdr *hdr) 1300 { 1301 struct ieee80211_fragment_entry *entry; 1302 int i, idx; 1303 1304 idx = sdata->fragment_next; 1305 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1306 struct ieee80211_hdr *f_hdr; 1307 1308 idx--; 1309 if (idx < 0) 1310 idx = IEEE80211_FRAGMENT_MAX - 1; 1311 1312 entry = &sdata->fragments[idx]; 1313 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1314 entry->rx_queue != rx_queue || 1315 entry->last_frag + 1 != frag) 1316 continue; 1317 1318 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1319 1320 /* 1321 * Check ftype and addresses are equal, else check next fragment 1322 */ 1323 if (((hdr->frame_control ^ f_hdr->frame_control) & 1324 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1325 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 || 1326 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0) 1327 continue; 1328 1329 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1330 __skb_queue_purge(&entry->skb_list); 1331 continue; 1332 } 1333 return entry; 1334 } 1335 1336 return NULL; 1337 } 1338 1339 static ieee80211_rx_result debug_noinline 1340 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1341 { 1342 struct ieee80211_hdr *hdr; 1343 u16 sc; 1344 __le16 fc; 1345 unsigned int frag, seq; 1346 struct ieee80211_fragment_entry *entry; 1347 struct sk_buff *skb; 1348 struct ieee80211_rx_status *status; 1349 1350 hdr = (struct ieee80211_hdr *)rx->skb->data; 1351 fc = hdr->frame_control; 1352 sc = le16_to_cpu(hdr->seq_ctrl); 1353 frag = sc & IEEE80211_SCTL_FRAG; 1354 1355 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 1356 (rx->skb)->len < 24 || 1357 is_multicast_ether_addr(hdr->addr1))) { 1358 /* not fragmented */ 1359 goto out; 1360 } 1361 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1362 1363 if (skb_linearize(rx->skb)) 1364 return RX_DROP_UNUSABLE; 1365 1366 /* 1367 * skb_linearize() might change the skb->data and 1368 * previously cached variables (in this case, hdr) need to 1369 * be refreshed with the new data. 1370 */ 1371 hdr = (struct ieee80211_hdr *)rx->skb->data; 1372 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1373 1374 if (frag == 0) { 1375 /* This is the first fragment of a new frame. */ 1376 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1377 rx->queue, &(rx->skb)); 1378 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && 1379 ieee80211_has_protected(fc)) { 1380 int queue = ieee80211_is_mgmt(fc) ? 1381 NUM_RX_DATA_QUEUES : rx->queue; 1382 /* Store CCMP PN so that we can verify that the next 1383 * fragment has a sequential PN value. */ 1384 entry->ccmp = 1; 1385 memcpy(entry->last_pn, 1386 rx->key->u.ccmp.rx_pn[queue], 1387 CCMP_PN_LEN); 1388 } 1389 return RX_QUEUED; 1390 } 1391 1392 /* This is a fragment for a frame that should already be pending in 1393 * fragment cache. Add this fragment to the end of the pending entry. 1394 */ 1395 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr); 1396 if (!entry) { 1397 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1398 return RX_DROP_MONITOR; 1399 } 1400 1401 /* Verify that MPDUs within one MSDU have sequential PN values. 1402 * (IEEE 802.11i, 8.3.3.4.5) */ 1403 if (entry->ccmp) { 1404 int i; 1405 u8 pn[CCMP_PN_LEN], *rpn; 1406 int queue; 1407 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) 1408 return RX_DROP_UNUSABLE; 1409 memcpy(pn, entry->last_pn, CCMP_PN_LEN); 1410 for (i = CCMP_PN_LEN - 1; i >= 0; i--) { 1411 pn[i]++; 1412 if (pn[i]) 1413 break; 1414 } 1415 queue = ieee80211_is_mgmt(fc) ? 1416 NUM_RX_DATA_QUEUES : rx->queue; 1417 rpn = rx->key->u.ccmp.rx_pn[queue]; 1418 if (memcmp(pn, rpn, CCMP_PN_LEN)) 1419 return RX_DROP_UNUSABLE; 1420 memcpy(entry->last_pn, pn, CCMP_PN_LEN); 1421 } 1422 1423 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1424 __skb_queue_tail(&entry->skb_list, rx->skb); 1425 entry->last_frag = frag; 1426 entry->extra_len += rx->skb->len; 1427 if (ieee80211_has_morefrags(fc)) { 1428 rx->skb = NULL; 1429 return RX_QUEUED; 1430 } 1431 1432 rx->skb = __skb_dequeue(&entry->skb_list); 1433 if (skb_tailroom(rx->skb) < entry->extra_len) { 1434 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1435 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1436 GFP_ATOMIC))) { 1437 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1438 __skb_queue_purge(&entry->skb_list); 1439 return RX_DROP_UNUSABLE; 1440 } 1441 } 1442 while ((skb = __skb_dequeue(&entry->skb_list))) { 1443 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1444 dev_kfree_skb(skb); 1445 } 1446 1447 /* Complete frame has been reassembled - process it now */ 1448 status = IEEE80211_SKB_RXCB(rx->skb); 1449 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1450 1451 out: 1452 if (rx->sta) 1453 rx->sta->rx_packets++; 1454 if (is_multicast_ether_addr(hdr->addr1)) 1455 rx->local->dot11MulticastReceivedFrameCount++; 1456 else 1457 ieee80211_led_rx(rx->local); 1458 return RX_CONTINUE; 1459 } 1460 1461 static ieee80211_rx_result debug_noinline 1462 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx) 1463 { 1464 struct ieee80211_sub_if_data *sdata = rx->sdata; 1465 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control; 1466 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1467 1468 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) || 1469 !(status->rx_flags & IEEE80211_RX_RA_MATCH))) 1470 return RX_CONTINUE; 1471 1472 if ((sdata->vif.type != NL80211_IFTYPE_AP) && 1473 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN)) 1474 return RX_DROP_UNUSABLE; 1475 1476 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER)) 1477 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1478 else 1479 set_sta_flags(rx->sta, WLAN_STA_PSPOLL); 1480 1481 /* Free PS Poll skb here instead of returning RX_DROP that would 1482 * count as an dropped frame. */ 1483 dev_kfree_skb(rx->skb); 1484 1485 return RX_QUEUED; 1486 } 1487 1488 static ieee80211_rx_result debug_noinline 1489 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx) 1490 { 1491 u8 *data = rx->skb->data; 1492 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data; 1493 1494 if (!ieee80211_is_data_qos(hdr->frame_control)) 1495 return RX_CONTINUE; 1496 1497 /* remove the qos control field, update frame type and meta-data */ 1498 memmove(data + IEEE80211_QOS_CTL_LEN, data, 1499 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN); 1500 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN); 1501 /* change frame type to non QOS */ 1502 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1503 1504 return RX_CONTINUE; 1505 } 1506 1507 static int 1508 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1509 { 1510 if (unlikely(!rx->sta || 1511 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED))) 1512 return -EACCES; 1513 1514 return 0; 1515 } 1516 1517 static int 1518 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1519 { 1520 struct sk_buff *skb = rx->skb; 1521 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1522 1523 /* 1524 * Pass through unencrypted frames if the hardware has 1525 * decrypted them already. 1526 */ 1527 if (status->flag & RX_FLAG_DECRYPTED) 1528 return 0; 1529 1530 /* Drop unencrypted frames if key is set. */ 1531 if (unlikely(!ieee80211_has_protected(fc) && 1532 !ieee80211_is_nullfunc(fc) && 1533 ieee80211_is_data(fc) && 1534 (rx->key || rx->sdata->drop_unencrypted))) 1535 return -EACCES; 1536 1537 return 0; 1538 } 1539 1540 static int 1541 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1542 { 1543 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1544 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1545 __le16 fc = hdr->frame_control; 1546 1547 /* 1548 * Pass through unencrypted frames if the hardware has 1549 * decrypted them already. 1550 */ 1551 if (status->flag & RX_FLAG_DECRYPTED) 1552 return 0; 1553 1554 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) { 1555 if (unlikely(!ieee80211_has_protected(fc) && 1556 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1557 rx->key)) { 1558 if (ieee80211_is_deauth(fc)) 1559 cfg80211_send_unprot_deauth(rx->sdata->dev, 1560 rx->skb->data, 1561 rx->skb->len); 1562 else if (ieee80211_is_disassoc(fc)) 1563 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1564 rx->skb->data, 1565 rx->skb->len); 1566 return -EACCES; 1567 } 1568 /* BIP does not use Protected field, so need to check MMIE */ 1569 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1570 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1571 if (ieee80211_is_deauth(fc)) 1572 cfg80211_send_unprot_deauth(rx->sdata->dev, 1573 rx->skb->data, 1574 rx->skb->len); 1575 else if (ieee80211_is_disassoc(fc)) 1576 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1577 rx->skb->data, 1578 rx->skb->len); 1579 return -EACCES; 1580 } 1581 /* 1582 * When using MFP, Action frames are not allowed prior to 1583 * having configured keys. 1584 */ 1585 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1586 ieee80211_is_robust_mgmt_frame( 1587 (struct ieee80211_hdr *) rx->skb->data))) 1588 return -EACCES; 1589 } 1590 1591 return 0; 1592 } 1593 1594 static int 1595 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1596 { 1597 struct ieee80211_sub_if_data *sdata = rx->sdata; 1598 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1599 bool check_port_control = false; 1600 struct ethhdr *ehdr; 1601 int ret; 1602 1603 *port_control = false; 1604 if (ieee80211_has_a4(hdr->frame_control) && 1605 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1606 return -1; 1607 1608 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1609 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1610 1611 if (!sdata->u.mgd.use_4addr) 1612 return -1; 1613 else 1614 check_port_control = true; 1615 } 1616 1617 if (is_multicast_ether_addr(hdr->addr1) && 1618 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1619 return -1; 1620 1621 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1622 if (ret < 0) 1623 return ret; 1624 1625 ehdr = (struct ethhdr *) rx->skb->data; 1626 if (ehdr->h_proto == rx->sdata->control_port_protocol) 1627 *port_control = true; 1628 else if (check_port_control) 1629 return -1; 1630 1631 return 0; 1632 } 1633 1634 /* 1635 * requires that rx->skb is a frame with ethernet header 1636 */ 1637 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1638 { 1639 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1640 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1641 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1642 1643 /* 1644 * Allow EAPOL frames to us/the PAE group address regardless 1645 * of whether the frame was encrypted or not. 1646 */ 1647 if (ehdr->h_proto == rx->sdata->control_port_protocol && 1648 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 || 1649 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0)) 1650 return true; 1651 1652 if (ieee80211_802_1x_port_control(rx) || 1653 ieee80211_drop_unencrypted(rx, fc)) 1654 return false; 1655 1656 return true; 1657 } 1658 1659 /* 1660 * requires that rx->skb is a frame with ethernet header 1661 */ 1662 static void 1663 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1664 { 1665 struct ieee80211_sub_if_data *sdata = rx->sdata; 1666 struct net_device *dev = sdata->dev; 1667 struct sk_buff *skb, *xmit_skb; 1668 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1669 struct sta_info *dsta; 1670 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1671 1672 skb = rx->skb; 1673 xmit_skb = NULL; 1674 1675 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1676 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1677 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1678 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 1679 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 1680 if (is_multicast_ether_addr(ehdr->h_dest)) { 1681 /* 1682 * send multicast frames both to higher layers in 1683 * local net stack and back to the wireless medium 1684 */ 1685 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1686 if (!xmit_skb && net_ratelimit()) 1687 printk(KERN_DEBUG "%s: failed to clone " 1688 "multicast frame\n", dev->name); 1689 } else { 1690 dsta = sta_info_get(sdata, skb->data); 1691 if (dsta) { 1692 /* 1693 * The destination station is associated to 1694 * this AP (in this VLAN), so send the frame 1695 * directly to it and do not pass it to local 1696 * net stack. 1697 */ 1698 xmit_skb = skb; 1699 skb = NULL; 1700 } 1701 } 1702 } 1703 1704 if (skb) { 1705 int align __maybe_unused; 1706 1707 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1708 /* 1709 * 'align' will only take the values 0 or 2 here 1710 * since all frames are required to be aligned 1711 * to 2-byte boundaries when being passed to 1712 * mac80211. That also explains the __skb_push() 1713 * below. 1714 */ 1715 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3; 1716 if (align) { 1717 if (WARN_ON(skb_headroom(skb) < 3)) { 1718 dev_kfree_skb(skb); 1719 skb = NULL; 1720 } else { 1721 u8 *data = skb->data; 1722 size_t len = skb_headlen(skb); 1723 skb->data -= align; 1724 memmove(skb->data, data, len); 1725 skb_set_tail_pointer(skb, len); 1726 } 1727 } 1728 #endif 1729 1730 if (skb) { 1731 /* deliver to local stack */ 1732 skb->protocol = eth_type_trans(skb, dev); 1733 memset(skb->cb, 0, sizeof(skb->cb)); 1734 netif_receive_skb(skb); 1735 } 1736 } 1737 1738 if (xmit_skb) { 1739 /* send to wireless media */ 1740 xmit_skb->protocol = htons(ETH_P_802_3); 1741 skb_reset_network_header(xmit_skb); 1742 skb_reset_mac_header(xmit_skb); 1743 dev_queue_xmit(xmit_skb); 1744 } 1745 } 1746 1747 static ieee80211_rx_result debug_noinline 1748 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 1749 { 1750 struct net_device *dev = rx->sdata->dev; 1751 struct sk_buff *skb = rx->skb; 1752 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1753 __le16 fc = hdr->frame_control; 1754 struct sk_buff_head frame_list; 1755 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1756 1757 if (unlikely(!ieee80211_is_data(fc))) 1758 return RX_CONTINUE; 1759 1760 if (unlikely(!ieee80211_is_data_present(fc))) 1761 return RX_DROP_MONITOR; 1762 1763 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 1764 return RX_CONTINUE; 1765 1766 if (ieee80211_has_a4(hdr->frame_control) && 1767 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1768 !rx->sdata->u.vlan.sta) 1769 return RX_DROP_UNUSABLE; 1770 1771 if (is_multicast_ether_addr(hdr->addr1) && 1772 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1773 rx->sdata->u.vlan.sta) || 1774 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1775 rx->sdata->u.mgd.use_4addr))) 1776 return RX_DROP_UNUSABLE; 1777 1778 skb->dev = dev; 1779 __skb_queue_head_init(&frame_list); 1780 1781 if (skb_linearize(skb)) 1782 return RX_DROP_UNUSABLE; 1783 1784 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 1785 rx->sdata->vif.type, 1786 rx->local->hw.extra_tx_headroom, true); 1787 1788 while (!skb_queue_empty(&frame_list)) { 1789 rx->skb = __skb_dequeue(&frame_list); 1790 1791 if (!ieee80211_frame_allowed(rx, fc)) { 1792 dev_kfree_skb(rx->skb); 1793 continue; 1794 } 1795 dev->stats.rx_packets++; 1796 dev->stats.rx_bytes += rx->skb->len; 1797 1798 ieee80211_deliver_skb(rx); 1799 } 1800 1801 return RX_QUEUED; 1802 } 1803 1804 #ifdef CONFIG_MAC80211_MESH 1805 static ieee80211_rx_result 1806 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 1807 { 1808 struct ieee80211_hdr *hdr; 1809 struct ieee80211s_hdr *mesh_hdr; 1810 unsigned int hdrlen; 1811 struct sk_buff *skb = rx->skb, *fwd_skb; 1812 struct ieee80211_local *local = rx->local; 1813 struct ieee80211_sub_if_data *sdata = rx->sdata; 1814 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1815 1816 hdr = (struct ieee80211_hdr *) skb->data; 1817 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1818 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 1819 1820 if (!ieee80211_is_data(hdr->frame_control)) 1821 return RX_CONTINUE; 1822 1823 if (!mesh_hdr->ttl) 1824 /* illegal frame */ 1825 return RX_DROP_MONITOR; 1826 1827 if (mesh_hdr->flags & MESH_FLAGS_AE) { 1828 struct mesh_path *mppath; 1829 char *proxied_addr; 1830 char *mpp_addr; 1831 1832 if (is_multicast_ether_addr(hdr->addr1)) { 1833 mpp_addr = hdr->addr3; 1834 proxied_addr = mesh_hdr->eaddr1; 1835 } else { 1836 mpp_addr = hdr->addr4; 1837 proxied_addr = mesh_hdr->eaddr2; 1838 } 1839 1840 rcu_read_lock(); 1841 mppath = mpp_path_lookup(proxied_addr, sdata); 1842 if (!mppath) { 1843 mpp_path_add(proxied_addr, mpp_addr, sdata); 1844 } else { 1845 spin_lock_bh(&mppath->state_lock); 1846 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0) 1847 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 1848 spin_unlock_bh(&mppath->state_lock); 1849 } 1850 rcu_read_unlock(); 1851 } 1852 1853 /* Frame has reached destination. Don't forward */ 1854 if (!is_multicast_ether_addr(hdr->addr1) && 1855 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0) 1856 return RX_CONTINUE; 1857 1858 mesh_hdr->ttl--; 1859 1860 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 1861 if (!mesh_hdr->ttl) 1862 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh, 1863 dropped_frames_ttl); 1864 else { 1865 struct ieee80211_hdr *fwd_hdr; 1866 struct ieee80211_tx_info *info; 1867 1868 fwd_skb = skb_copy(skb, GFP_ATOMIC); 1869 1870 if (!fwd_skb && net_ratelimit()) 1871 printk(KERN_DEBUG "%s: failed to clone mesh frame\n", 1872 sdata->name); 1873 if (!fwd_skb) 1874 goto out; 1875 1876 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 1877 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 1878 info = IEEE80211_SKB_CB(fwd_skb); 1879 memset(info, 0, sizeof(*info)); 1880 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1881 info->control.vif = &rx->sdata->vif; 1882 skb_set_queue_mapping(skb, 1883 ieee80211_select_queue(rx->sdata, fwd_skb)); 1884 ieee80211_set_qos_hdr(local, skb); 1885 if (is_multicast_ether_addr(fwd_hdr->addr1)) 1886 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh, 1887 fwded_mcast); 1888 else { 1889 int err; 1890 /* 1891 * Save TA to addr1 to send TA a path error if a 1892 * suitable next hop is not found 1893 */ 1894 memcpy(fwd_hdr->addr1, fwd_hdr->addr2, 1895 ETH_ALEN); 1896 err = mesh_nexthop_lookup(fwd_skb, sdata); 1897 /* Failed to immediately resolve next hop: 1898 * fwded frame was dropped or will be added 1899 * later to the pending skb queue. */ 1900 if (err) 1901 return RX_DROP_MONITOR; 1902 1903 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh, 1904 fwded_unicast); 1905 } 1906 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh, 1907 fwded_frames); 1908 ieee80211_add_pending_skb(local, fwd_skb); 1909 } 1910 } 1911 1912 out: 1913 if (is_multicast_ether_addr(hdr->addr1) || 1914 sdata->dev->flags & IFF_PROMISC) 1915 return RX_CONTINUE; 1916 else 1917 return RX_DROP_MONITOR; 1918 } 1919 #endif 1920 1921 static ieee80211_rx_result debug_noinline 1922 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 1923 { 1924 struct ieee80211_sub_if_data *sdata = rx->sdata; 1925 struct ieee80211_local *local = rx->local; 1926 struct net_device *dev = sdata->dev; 1927 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1928 __le16 fc = hdr->frame_control; 1929 bool port_control; 1930 int err; 1931 1932 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 1933 return RX_CONTINUE; 1934 1935 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 1936 return RX_DROP_MONITOR; 1937 1938 /* 1939 * Allow the cooked monitor interface of an AP to see 4-addr frames so 1940 * that a 4-addr station can be detected and moved into a separate VLAN 1941 */ 1942 if (ieee80211_has_a4(hdr->frame_control) && 1943 sdata->vif.type == NL80211_IFTYPE_AP) 1944 return RX_DROP_MONITOR; 1945 1946 err = __ieee80211_data_to_8023(rx, &port_control); 1947 if (unlikely(err)) 1948 return RX_DROP_UNUSABLE; 1949 1950 if (!ieee80211_frame_allowed(rx, fc)) 1951 return RX_DROP_MONITOR; 1952 1953 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1954 unlikely(port_control) && sdata->bss) { 1955 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1956 u.ap); 1957 dev = sdata->dev; 1958 rx->sdata = sdata; 1959 } 1960 1961 rx->skb->dev = dev; 1962 1963 dev->stats.rx_packets++; 1964 dev->stats.rx_bytes += rx->skb->len; 1965 1966 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 1967 !is_multicast_ether_addr( 1968 ((struct ethhdr *)rx->skb->data)->h_dest) && 1969 (!local->scanning && 1970 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 1971 mod_timer(&local->dynamic_ps_timer, jiffies + 1972 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 1973 } 1974 1975 ieee80211_deliver_skb(rx); 1976 1977 return RX_QUEUED; 1978 } 1979 1980 static ieee80211_rx_result debug_noinline 1981 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx) 1982 { 1983 struct ieee80211_local *local = rx->local; 1984 struct ieee80211_hw *hw = &local->hw; 1985 struct sk_buff *skb = rx->skb; 1986 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 1987 struct tid_ampdu_rx *tid_agg_rx; 1988 u16 start_seq_num; 1989 u16 tid; 1990 1991 if (likely(!ieee80211_is_ctl(bar->frame_control))) 1992 return RX_CONTINUE; 1993 1994 if (ieee80211_is_back_req(bar->frame_control)) { 1995 struct { 1996 __le16 control, start_seq_num; 1997 } __packed bar_data; 1998 1999 if (!rx->sta) 2000 return RX_DROP_MONITOR; 2001 2002 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2003 &bar_data, sizeof(bar_data))) 2004 return RX_DROP_MONITOR; 2005 2006 tid = le16_to_cpu(bar_data.control) >> 12; 2007 2008 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2009 if (!tid_agg_rx) 2010 return RX_DROP_MONITOR; 2011 2012 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2013 2014 /* reset session timer */ 2015 if (tid_agg_rx->timeout) 2016 mod_timer(&tid_agg_rx->session_timer, 2017 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2018 2019 spin_lock(&tid_agg_rx->reorder_lock); 2020 /* release stored frames up to start of BAR */ 2021 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num); 2022 spin_unlock(&tid_agg_rx->reorder_lock); 2023 2024 kfree_skb(skb); 2025 return RX_QUEUED; 2026 } 2027 2028 /* 2029 * After this point, we only want management frames, 2030 * so we can drop all remaining control frames to 2031 * cooked monitor interfaces. 2032 */ 2033 return RX_DROP_MONITOR; 2034 } 2035 2036 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2037 struct ieee80211_mgmt *mgmt, 2038 size_t len) 2039 { 2040 struct ieee80211_local *local = sdata->local; 2041 struct sk_buff *skb; 2042 struct ieee80211_mgmt *resp; 2043 2044 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) { 2045 /* Not to own unicast address */ 2046 return; 2047 } 2048 2049 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 || 2050 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) { 2051 /* Not from the current AP or not associated yet. */ 2052 return; 2053 } 2054 2055 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2056 /* Too short SA Query request frame */ 2057 return; 2058 } 2059 2060 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2061 if (skb == NULL) 2062 return; 2063 2064 skb_reserve(skb, local->hw.extra_tx_headroom); 2065 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2066 memset(resp, 0, 24); 2067 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2068 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2069 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2070 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2071 IEEE80211_STYPE_ACTION); 2072 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2073 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2074 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2075 memcpy(resp->u.action.u.sa_query.trans_id, 2076 mgmt->u.action.u.sa_query.trans_id, 2077 WLAN_SA_QUERY_TR_ID_LEN); 2078 2079 ieee80211_tx_skb(sdata, skb); 2080 } 2081 2082 static ieee80211_rx_result debug_noinline 2083 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2084 { 2085 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2086 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2087 2088 /* 2089 * From here on, look only at management frames. 2090 * Data and control frames are already handled, 2091 * and unknown (reserved) frames are useless. 2092 */ 2093 if (rx->skb->len < 24) 2094 return RX_DROP_MONITOR; 2095 2096 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2097 return RX_DROP_MONITOR; 2098 2099 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2100 return RX_DROP_MONITOR; 2101 2102 if (ieee80211_drop_unencrypted_mgmt(rx)) 2103 return RX_DROP_UNUSABLE; 2104 2105 return RX_CONTINUE; 2106 } 2107 2108 static ieee80211_rx_result debug_noinline 2109 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2110 { 2111 struct ieee80211_local *local = rx->local; 2112 struct ieee80211_sub_if_data *sdata = rx->sdata; 2113 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2114 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2115 int len = rx->skb->len; 2116 2117 if (!ieee80211_is_action(mgmt->frame_control)) 2118 return RX_CONTINUE; 2119 2120 /* drop too small frames */ 2121 if (len < IEEE80211_MIN_ACTION_SIZE) 2122 return RX_DROP_UNUSABLE; 2123 2124 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC) 2125 return RX_DROP_UNUSABLE; 2126 2127 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2128 return RX_DROP_UNUSABLE; 2129 2130 switch (mgmt->u.action.category) { 2131 case WLAN_CATEGORY_BACK: 2132 /* 2133 * The aggregation code is not prepared to handle 2134 * anything but STA/AP due to the BSSID handling; 2135 * IBSS could work in the code but isn't supported 2136 * by drivers or the standard. 2137 */ 2138 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2139 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2140 sdata->vif.type != NL80211_IFTYPE_AP) 2141 break; 2142 2143 /* verify action_code is present */ 2144 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2145 break; 2146 2147 switch (mgmt->u.action.u.addba_req.action_code) { 2148 case WLAN_ACTION_ADDBA_REQ: 2149 if (len < (IEEE80211_MIN_ACTION_SIZE + 2150 sizeof(mgmt->u.action.u.addba_req))) 2151 goto invalid; 2152 break; 2153 case WLAN_ACTION_ADDBA_RESP: 2154 if (len < (IEEE80211_MIN_ACTION_SIZE + 2155 sizeof(mgmt->u.action.u.addba_resp))) 2156 goto invalid; 2157 break; 2158 case WLAN_ACTION_DELBA: 2159 if (len < (IEEE80211_MIN_ACTION_SIZE + 2160 sizeof(mgmt->u.action.u.delba))) 2161 goto invalid; 2162 break; 2163 default: 2164 goto invalid; 2165 } 2166 2167 goto queue; 2168 case WLAN_CATEGORY_SPECTRUM_MGMT: 2169 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ) 2170 break; 2171 2172 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2173 break; 2174 2175 /* verify action_code is present */ 2176 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2177 break; 2178 2179 switch (mgmt->u.action.u.measurement.action_code) { 2180 case WLAN_ACTION_SPCT_MSR_REQ: 2181 if (len < (IEEE80211_MIN_ACTION_SIZE + 2182 sizeof(mgmt->u.action.u.measurement))) 2183 break; 2184 ieee80211_process_measurement_req(sdata, mgmt, len); 2185 goto handled; 2186 case WLAN_ACTION_SPCT_CHL_SWITCH: 2187 if (len < (IEEE80211_MIN_ACTION_SIZE + 2188 sizeof(mgmt->u.action.u.chan_switch))) 2189 break; 2190 2191 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2192 break; 2193 2194 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN)) 2195 break; 2196 2197 goto queue; 2198 } 2199 break; 2200 case WLAN_CATEGORY_SA_QUERY: 2201 if (len < (IEEE80211_MIN_ACTION_SIZE + 2202 sizeof(mgmt->u.action.u.sa_query))) 2203 break; 2204 2205 switch (mgmt->u.action.u.sa_query.action) { 2206 case WLAN_ACTION_SA_QUERY_REQUEST: 2207 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2208 break; 2209 ieee80211_process_sa_query_req(sdata, mgmt, len); 2210 goto handled; 2211 } 2212 break; 2213 case WLAN_CATEGORY_MESH_ACTION: 2214 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2215 break; 2216 goto queue; 2217 case WLAN_CATEGORY_MESH_PATH_SEL: 2218 if (!mesh_path_sel_is_hwmp(sdata)) 2219 break; 2220 goto queue; 2221 } 2222 2223 return RX_CONTINUE; 2224 2225 invalid: 2226 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2227 /* will return in the next handlers */ 2228 return RX_CONTINUE; 2229 2230 handled: 2231 if (rx->sta) 2232 rx->sta->rx_packets++; 2233 dev_kfree_skb(rx->skb); 2234 return RX_QUEUED; 2235 2236 queue: 2237 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2238 skb_queue_tail(&sdata->skb_queue, rx->skb); 2239 ieee80211_queue_work(&local->hw, &sdata->work); 2240 if (rx->sta) 2241 rx->sta->rx_packets++; 2242 return RX_QUEUED; 2243 } 2244 2245 static ieee80211_rx_result debug_noinline 2246 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2247 { 2248 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2249 2250 /* skip known-bad action frames and return them in the next handler */ 2251 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2252 return RX_CONTINUE; 2253 2254 /* 2255 * Getting here means the kernel doesn't know how to handle 2256 * it, but maybe userspace does ... include returned frames 2257 * so userspace can register for those to know whether ones 2258 * it transmitted were processed or returned. 2259 */ 2260 2261 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq, 2262 rx->skb->data, rx->skb->len, 2263 GFP_ATOMIC)) { 2264 if (rx->sta) 2265 rx->sta->rx_packets++; 2266 dev_kfree_skb(rx->skb); 2267 return RX_QUEUED; 2268 } 2269 2270 2271 return RX_CONTINUE; 2272 } 2273 2274 static ieee80211_rx_result debug_noinline 2275 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2276 { 2277 struct ieee80211_local *local = rx->local; 2278 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2279 struct sk_buff *nskb; 2280 struct ieee80211_sub_if_data *sdata = rx->sdata; 2281 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2282 2283 if (!ieee80211_is_action(mgmt->frame_control)) 2284 return RX_CONTINUE; 2285 2286 /* 2287 * For AP mode, hostapd is responsible for handling any action 2288 * frames that we didn't handle, including returning unknown 2289 * ones. For all other modes we will return them to the sender, 2290 * setting the 0x80 bit in the action category, as required by 2291 * 802.11-2007 7.3.1.11. 2292 * Newer versions of hostapd shall also use the management frame 2293 * registration mechanisms, but older ones still use cooked 2294 * monitor interfaces so push all frames there. 2295 */ 2296 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2297 (sdata->vif.type == NL80211_IFTYPE_AP || 2298 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2299 return RX_DROP_MONITOR; 2300 2301 /* do not return rejected action frames */ 2302 if (mgmt->u.action.category & 0x80) 2303 return RX_DROP_UNUSABLE; 2304 2305 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2306 GFP_ATOMIC); 2307 if (nskb) { 2308 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2309 2310 nmgmt->u.action.category |= 0x80; 2311 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2312 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2313 2314 memset(nskb->cb, 0, sizeof(nskb->cb)); 2315 2316 ieee80211_tx_skb(rx->sdata, nskb); 2317 } 2318 dev_kfree_skb(rx->skb); 2319 return RX_QUEUED; 2320 } 2321 2322 static ieee80211_rx_result debug_noinline 2323 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2324 { 2325 struct ieee80211_sub_if_data *sdata = rx->sdata; 2326 ieee80211_rx_result rxs; 2327 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2328 __le16 stype; 2329 2330 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb); 2331 if (rxs != RX_CONTINUE) 2332 return rxs; 2333 2334 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2335 2336 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2337 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2338 sdata->vif.type != NL80211_IFTYPE_STATION) 2339 return RX_DROP_MONITOR; 2340 2341 switch (stype) { 2342 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2343 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2344 /* process for all: mesh, mlme, ibss */ 2345 break; 2346 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2347 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2348 if (is_multicast_ether_addr(mgmt->da) && 2349 !is_broadcast_ether_addr(mgmt->da)) 2350 return RX_DROP_MONITOR; 2351 2352 /* process only for station */ 2353 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2354 return RX_DROP_MONITOR; 2355 break; 2356 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2357 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2358 /* process only for ibss */ 2359 if (sdata->vif.type != NL80211_IFTYPE_ADHOC) 2360 return RX_DROP_MONITOR; 2361 break; 2362 default: 2363 return RX_DROP_MONITOR; 2364 } 2365 2366 /* queue up frame and kick off work to process it */ 2367 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2368 skb_queue_tail(&sdata->skb_queue, rx->skb); 2369 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2370 if (rx->sta) 2371 rx->sta->rx_packets++; 2372 2373 return RX_QUEUED; 2374 } 2375 2376 /* TODO: use IEEE80211_RX_FRAGMENTED */ 2377 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2378 struct ieee80211_rate *rate) 2379 { 2380 struct ieee80211_sub_if_data *sdata; 2381 struct ieee80211_local *local = rx->local; 2382 struct ieee80211_rtap_hdr { 2383 struct ieee80211_radiotap_header hdr; 2384 u8 flags; 2385 u8 rate_or_pad; 2386 __le16 chan_freq; 2387 __le16 chan_flags; 2388 } __packed *rthdr; 2389 struct sk_buff *skb = rx->skb, *skb2; 2390 struct net_device *prev_dev = NULL; 2391 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2392 2393 /* 2394 * If cooked monitor has been processed already, then 2395 * don't do it again. If not, set the flag. 2396 */ 2397 if (rx->flags & IEEE80211_RX_CMNTR) 2398 goto out_free_skb; 2399 rx->flags |= IEEE80211_RX_CMNTR; 2400 2401 if (skb_headroom(skb) < sizeof(*rthdr) && 2402 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) 2403 goto out_free_skb; 2404 2405 rthdr = (void *)skb_push(skb, sizeof(*rthdr)); 2406 memset(rthdr, 0, sizeof(*rthdr)); 2407 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr)); 2408 rthdr->hdr.it_present = 2409 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 2410 (1 << IEEE80211_RADIOTAP_CHANNEL)); 2411 2412 if (rate) { 2413 rthdr->rate_or_pad = rate->bitrate / 5; 2414 rthdr->hdr.it_present |= 2415 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 2416 } 2417 rthdr->chan_freq = cpu_to_le16(status->freq); 2418 2419 if (status->band == IEEE80211_BAND_5GHZ) 2420 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM | 2421 IEEE80211_CHAN_5GHZ); 2422 else 2423 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN | 2424 IEEE80211_CHAN_2GHZ); 2425 2426 skb_set_mac_header(skb, 0); 2427 skb->ip_summed = CHECKSUM_UNNECESSARY; 2428 skb->pkt_type = PACKET_OTHERHOST; 2429 skb->protocol = htons(ETH_P_802_2); 2430 2431 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2432 if (!ieee80211_sdata_running(sdata)) 2433 continue; 2434 2435 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 2436 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 2437 continue; 2438 2439 if (prev_dev) { 2440 skb2 = skb_clone(skb, GFP_ATOMIC); 2441 if (skb2) { 2442 skb2->dev = prev_dev; 2443 netif_receive_skb(skb2); 2444 } 2445 } 2446 2447 prev_dev = sdata->dev; 2448 sdata->dev->stats.rx_packets++; 2449 sdata->dev->stats.rx_bytes += skb->len; 2450 } 2451 2452 if (prev_dev) { 2453 skb->dev = prev_dev; 2454 netif_receive_skb(skb); 2455 return; 2456 } 2457 2458 out_free_skb: 2459 dev_kfree_skb(skb); 2460 } 2461 2462 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 2463 ieee80211_rx_result res) 2464 { 2465 switch (res) { 2466 case RX_DROP_MONITOR: 2467 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2468 if (rx->sta) 2469 rx->sta->rx_dropped++; 2470 /* fall through */ 2471 case RX_CONTINUE: { 2472 struct ieee80211_rate *rate = NULL; 2473 struct ieee80211_supported_band *sband; 2474 struct ieee80211_rx_status *status; 2475 2476 status = IEEE80211_SKB_RXCB((rx->skb)); 2477 2478 sband = rx->local->hw.wiphy->bands[status->band]; 2479 if (!(status->flag & RX_FLAG_HT)) 2480 rate = &sband->bitrates[status->rate_idx]; 2481 2482 ieee80211_rx_cooked_monitor(rx, rate); 2483 break; 2484 } 2485 case RX_DROP_UNUSABLE: 2486 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2487 if (rx->sta) 2488 rx->sta->rx_dropped++; 2489 dev_kfree_skb(rx->skb); 2490 break; 2491 case RX_QUEUED: 2492 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 2493 break; 2494 } 2495 } 2496 2497 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx) 2498 { 2499 ieee80211_rx_result res = RX_DROP_MONITOR; 2500 struct sk_buff *skb; 2501 2502 #define CALL_RXH(rxh) \ 2503 do { \ 2504 res = rxh(rx); \ 2505 if (res != RX_CONTINUE) \ 2506 goto rxh_next; \ 2507 } while (0); 2508 2509 spin_lock(&rx->local->rx_skb_queue.lock); 2510 if (rx->local->running_rx_handler) 2511 goto unlock; 2512 2513 rx->local->running_rx_handler = true; 2514 2515 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) { 2516 spin_unlock(&rx->local->rx_skb_queue.lock); 2517 2518 /* 2519 * all the other fields are valid across frames 2520 * that belong to an aMPDU since they are on the 2521 * same TID from the same station 2522 */ 2523 rx->skb = skb; 2524 2525 CALL_RXH(ieee80211_rx_h_decrypt) 2526 CALL_RXH(ieee80211_rx_h_check_more_data) 2527 CALL_RXH(ieee80211_rx_h_sta_process) 2528 CALL_RXH(ieee80211_rx_h_defragment) 2529 CALL_RXH(ieee80211_rx_h_ps_poll) 2530 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 2531 /* must be after MMIC verify so header is counted in MPDU mic */ 2532 CALL_RXH(ieee80211_rx_h_remove_qos_control) 2533 CALL_RXH(ieee80211_rx_h_amsdu) 2534 #ifdef CONFIG_MAC80211_MESH 2535 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 2536 CALL_RXH(ieee80211_rx_h_mesh_fwding); 2537 #endif 2538 CALL_RXH(ieee80211_rx_h_data) 2539 CALL_RXH(ieee80211_rx_h_ctrl); 2540 CALL_RXH(ieee80211_rx_h_mgmt_check) 2541 CALL_RXH(ieee80211_rx_h_action) 2542 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 2543 CALL_RXH(ieee80211_rx_h_action_return) 2544 CALL_RXH(ieee80211_rx_h_mgmt) 2545 2546 rxh_next: 2547 ieee80211_rx_handlers_result(rx, res); 2548 spin_lock(&rx->local->rx_skb_queue.lock); 2549 #undef CALL_RXH 2550 } 2551 2552 rx->local->running_rx_handler = false; 2553 2554 unlock: 2555 spin_unlock(&rx->local->rx_skb_queue.lock); 2556 } 2557 2558 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 2559 { 2560 ieee80211_rx_result res = RX_DROP_MONITOR; 2561 2562 #define CALL_RXH(rxh) \ 2563 do { \ 2564 res = rxh(rx); \ 2565 if (res != RX_CONTINUE) \ 2566 goto rxh_next; \ 2567 } while (0); 2568 2569 CALL_RXH(ieee80211_rx_h_passive_scan) 2570 CALL_RXH(ieee80211_rx_h_check) 2571 2572 ieee80211_rx_reorder_ampdu(rx); 2573 2574 ieee80211_rx_handlers(rx); 2575 return; 2576 2577 rxh_next: 2578 ieee80211_rx_handlers_result(rx, res); 2579 2580 #undef CALL_RXH 2581 } 2582 2583 /* 2584 * This function makes calls into the RX path, therefore 2585 * it has to be invoked under RCU read lock. 2586 */ 2587 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 2588 { 2589 struct ieee80211_rx_data rx = { 2590 .sta = sta, 2591 .sdata = sta->sdata, 2592 .local = sta->local, 2593 .queue = tid, 2594 .flags = 0, 2595 }; 2596 struct tid_ampdu_rx *tid_agg_rx; 2597 2598 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 2599 if (!tid_agg_rx) 2600 return; 2601 2602 spin_lock(&tid_agg_rx->reorder_lock); 2603 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx); 2604 spin_unlock(&tid_agg_rx->reorder_lock); 2605 2606 ieee80211_rx_handlers(&rx); 2607 } 2608 2609 /* main receive path */ 2610 2611 static int prepare_for_handlers(struct ieee80211_rx_data *rx, 2612 struct ieee80211_hdr *hdr) 2613 { 2614 struct ieee80211_sub_if_data *sdata = rx->sdata; 2615 struct sk_buff *skb = rx->skb; 2616 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2617 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 2618 int multicast = is_multicast_ether_addr(hdr->addr1); 2619 2620 switch (sdata->vif.type) { 2621 case NL80211_IFTYPE_STATION: 2622 if (!bssid && !sdata->u.mgd.use_4addr) 2623 return 0; 2624 if (!multicast && 2625 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) { 2626 if (!(sdata->dev->flags & IFF_PROMISC) || 2627 sdata->u.mgd.use_4addr) 2628 return 0; 2629 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2630 } 2631 break; 2632 case NL80211_IFTYPE_ADHOC: 2633 if (!bssid) 2634 return 0; 2635 if (ieee80211_is_beacon(hdr->frame_control)) { 2636 return 1; 2637 } 2638 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 2639 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN)) 2640 return 0; 2641 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2642 } else if (!multicast && 2643 compare_ether_addr(sdata->vif.addr, 2644 hdr->addr1) != 0) { 2645 if (!(sdata->dev->flags & IFF_PROMISC)) 2646 return 0; 2647 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2648 } else if (!rx->sta) { 2649 int rate_idx; 2650 if (status->flag & RX_FLAG_HT) 2651 rate_idx = 0; /* TODO: HT rates */ 2652 else 2653 rate_idx = status->rate_idx; 2654 rx->sta = ieee80211_ibss_add_sta(sdata, bssid, 2655 hdr->addr2, BIT(rate_idx), GFP_ATOMIC); 2656 } 2657 break; 2658 case NL80211_IFTYPE_MESH_POINT: 2659 if (!multicast && 2660 compare_ether_addr(sdata->vif.addr, 2661 hdr->addr1) != 0) { 2662 if (!(sdata->dev->flags & IFF_PROMISC)) 2663 return 0; 2664 2665 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2666 } 2667 break; 2668 case NL80211_IFTYPE_AP_VLAN: 2669 case NL80211_IFTYPE_AP: 2670 if (!bssid) { 2671 if (compare_ether_addr(sdata->vif.addr, 2672 hdr->addr1)) 2673 return 0; 2674 } else if (!ieee80211_bssid_match(bssid, 2675 sdata->vif.addr)) { 2676 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) && 2677 !ieee80211_is_beacon(hdr->frame_control)) 2678 return 0; 2679 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2680 } 2681 break; 2682 case NL80211_IFTYPE_WDS: 2683 if (bssid || !ieee80211_is_data(hdr->frame_control)) 2684 return 0; 2685 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2)) 2686 return 0; 2687 break; 2688 default: 2689 /* should never get here */ 2690 WARN_ON(1); 2691 break; 2692 } 2693 2694 return 1; 2695 } 2696 2697 /* 2698 * This function returns whether or not the SKB 2699 * was destined for RX processing or not, which, 2700 * if consume is true, is equivalent to whether 2701 * or not the skb was consumed. 2702 */ 2703 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 2704 struct sk_buff *skb, bool consume) 2705 { 2706 struct ieee80211_local *local = rx->local; 2707 struct ieee80211_sub_if_data *sdata = rx->sdata; 2708 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2709 struct ieee80211_hdr *hdr = (void *)skb->data; 2710 int prepares; 2711 2712 rx->skb = skb; 2713 status->rx_flags |= IEEE80211_RX_RA_MATCH; 2714 prepares = prepare_for_handlers(rx, hdr); 2715 2716 if (!prepares) 2717 return false; 2718 2719 if (!consume) { 2720 skb = skb_copy(skb, GFP_ATOMIC); 2721 if (!skb) { 2722 if (net_ratelimit()) 2723 wiphy_debug(local->hw.wiphy, 2724 "failed to copy skb for %s\n", 2725 sdata->name); 2726 return true; 2727 } 2728 2729 rx->skb = skb; 2730 } 2731 2732 ieee80211_invoke_rx_handlers(rx); 2733 return true; 2734 } 2735 2736 /* 2737 * This is the actual Rx frames handler. as it blongs to Rx path it must 2738 * be called with rcu_read_lock protection. 2739 */ 2740 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 2741 struct sk_buff *skb) 2742 { 2743 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2744 struct ieee80211_local *local = hw_to_local(hw); 2745 struct ieee80211_sub_if_data *sdata; 2746 struct ieee80211_hdr *hdr; 2747 __le16 fc; 2748 struct ieee80211_rx_data rx; 2749 struct ieee80211_sub_if_data *prev; 2750 struct sta_info *sta, *tmp, *prev_sta; 2751 int err = 0; 2752 2753 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 2754 memset(&rx, 0, sizeof(rx)); 2755 rx.skb = skb; 2756 rx.local = local; 2757 2758 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 2759 local->dot11ReceivedFragmentCount++; 2760 2761 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) || 2762 test_bit(SCAN_SW_SCANNING, &local->scanning))) 2763 status->rx_flags |= IEEE80211_RX_IN_SCAN; 2764 2765 if (ieee80211_is_mgmt(fc)) 2766 err = skb_linearize(skb); 2767 else 2768 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 2769 2770 if (err) { 2771 dev_kfree_skb(skb); 2772 return; 2773 } 2774 2775 hdr = (struct ieee80211_hdr *)skb->data; 2776 ieee80211_parse_qos(&rx); 2777 ieee80211_verify_alignment(&rx); 2778 2779 if (ieee80211_is_data(fc)) { 2780 prev_sta = NULL; 2781 2782 for_each_sta_info(local, hdr->addr2, sta, tmp) { 2783 if (!prev_sta) { 2784 prev_sta = sta; 2785 continue; 2786 } 2787 2788 rx.sta = prev_sta; 2789 rx.sdata = prev_sta->sdata; 2790 ieee80211_prepare_and_rx_handle(&rx, skb, false); 2791 2792 prev_sta = sta; 2793 } 2794 2795 if (prev_sta) { 2796 rx.sta = prev_sta; 2797 rx.sdata = prev_sta->sdata; 2798 2799 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 2800 return; 2801 goto out; 2802 } 2803 } 2804 2805 prev = NULL; 2806 2807 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2808 if (!ieee80211_sdata_running(sdata)) 2809 continue; 2810 2811 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 2812 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 2813 continue; 2814 2815 /* 2816 * frame is destined for this interface, but if it's 2817 * not also for the previous one we handle that after 2818 * the loop to avoid copying the SKB once too much 2819 */ 2820 2821 if (!prev) { 2822 prev = sdata; 2823 continue; 2824 } 2825 2826 rx.sta = sta_info_get_bss(prev, hdr->addr2); 2827 rx.sdata = prev; 2828 ieee80211_prepare_and_rx_handle(&rx, skb, false); 2829 2830 prev = sdata; 2831 } 2832 2833 if (prev) { 2834 rx.sta = sta_info_get_bss(prev, hdr->addr2); 2835 rx.sdata = prev; 2836 2837 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 2838 return; 2839 } 2840 2841 out: 2842 dev_kfree_skb(skb); 2843 } 2844 2845 /* 2846 * This is the receive path handler. It is called by a low level driver when an 2847 * 802.11 MPDU is received from the hardware. 2848 */ 2849 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 2850 { 2851 struct ieee80211_local *local = hw_to_local(hw); 2852 struct ieee80211_rate *rate = NULL; 2853 struct ieee80211_supported_band *sband; 2854 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2855 2856 WARN_ON_ONCE(softirq_count() == 0); 2857 2858 if (WARN_ON(status->band < 0 || 2859 status->band >= IEEE80211_NUM_BANDS)) 2860 goto drop; 2861 2862 sband = local->hw.wiphy->bands[status->band]; 2863 if (WARN_ON(!sband)) 2864 goto drop; 2865 2866 /* 2867 * If we're suspending, it is possible although not too likely 2868 * that we'd be receiving frames after having already partially 2869 * quiesced the stack. We can't process such frames then since 2870 * that might, for example, cause stations to be added or other 2871 * driver callbacks be invoked. 2872 */ 2873 if (unlikely(local->quiescing || local->suspended)) 2874 goto drop; 2875 2876 /* 2877 * The same happens when we're not even started, 2878 * but that's worth a warning. 2879 */ 2880 if (WARN_ON(!local->started)) 2881 goto drop; 2882 2883 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 2884 /* 2885 * Validate the rate, unless a PLCP error means that 2886 * we probably can't have a valid rate here anyway. 2887 */ 2888 2889 if (status->flag & RX_FLAG_HT) { 2890 /* 2891 * rate_idx is MCS index, which can be [0-76] 2892 * as documented on: 2893 * 2894 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 2895 * 2896 * Anything else would be some sort of driver or 2897 * hardware error. The driver should catch hardware 2898 * errors. 2899 */ 2900 if (WARN((status->rate_idx < 0 || 2901 status->rate_idx > 76), 2902 "Rate marked as an HT rate but passed " 2903 "status->rate_idx is not " 2904 "an MCS index [0-76]: %d (0x%02x)\n", 2905 status->rate_idx, 2906 status->rate_idx)) 2907 goto drop; 2908 } else { 2909 if (WARN_ON(status->rate_idx < 0 || 2910 status->rate_idx >= sband->n_bitrates)) 2911 goto drop; 2912 rate = &sband->bitrates[status->rate_idx]; 2913 } 2914 } 2915 2916 status->rx_flags = 0; 2917 2918 /* 2919 * key references and virtual interfaces are protected using RCU 2920 * and this requires that we are in a read-side RCU section during 2921 * receive processing 2922 */ 2923 rcu_read_lock(); 2924 2925 /* 2926 * Frames with failed FCS/PLCP checksum are not returned, 2927 * all other frames are returned without radiotap header 2928 * if it was previously present. 2929 * Also, frames with less than 16 bytes are dropped. 2930 */ 2931 skb = ieee80211_rx_monitor(local, skb, rate); 2932 if (!skb) { 2933 rcu_read_unlock(); 2934 return; 2935 } 2936 2937 ieee80211_tpt_led_trig_rx(local, 2938 ((struct ieee80211_hdr *)skb->data)->frame_control, 2939 skb->len); 2940 __ieee80211_rx_handle_packet(hw, skb); 2941 2942 rcu_read_unlock(); 2943 2944 return; 2945 drop: 2946 kfree_skb(skb); 2947 } 2948 EXPORT_SYMBOL(ieee80211_rx); 2949 2950 /* This is a version of the rx handler that can be called from hard irq 2951 * context. Post the skb on the queue and schedule the tasklet */ 2952 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 2953 { 2954 struct ieee80211_local *local = hw_to_local(hw); 2955 2956 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 2957 2958 skb->pkt_type = IEEE80211_RX_MSG; 2959 skb_queue_tail(&local->skb_queue, skb); 2960 tasklet_schedule(&local->tasklet); 2961 } 2962 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 2963