1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/jiffies.h> 15 #include <linux/slab.h> 16 #include <linux/kernel.h> 17 #include <linux/skbuff.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/rcupdate.h> 21 #include <linux/export.h> 22 #include <linux/bitops.h> 23 #include <net/mac80211.h> 24 #include <net/ieee80211_radiotap.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "tkip.h" 34 #include "wme.h" 35 #include "rate.h" 36 37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 38 { 39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 40 41 u64_stats_update_begin(&tstats->syncp); 42 tstats->rx_packets++; 43 tstats->rx_bytes += len; 44 u64_stats_update_end(&tstats->syncp); 45 } 46 47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 48 enum nl80211_iftype type) 49 { 50 __le16 fc = hdr->frame_control; 51 52 if (ieee80211_is_data(fc)) { 53 if (len < 24) /* drop incorrect hdr len (data) */ 54 return NULL; 55 56 if (ieee80211_has_a4(fc)) 57 return NULL; 58 if (ieee80211_has_tods(fc)) 59 return hdr->addr1; 60 if (ieee80211_has_fromds(fc)) 61 return hdr->addr2; 62 63 return hdr->addr3; 64 } 65 66 if (ieee80211_is_mgmt(fc)) { 67 if (len < 24) /* drop incorrect hdr len (mgmt) */ 68 return NULL; 69 return hdr->addr3; 70 } 71 72 if (ieee80211_is_ctl(fc)) { 73 if (ieee80211_is_pspoll(fc)) 74 return hdr->addr1; 75 76 if (ieee80211_is_back_req(fc)) { 77 switch (type) { 78 case NL80211_IFTYPE_STATION: 79 return hdr->addr2; 80 case NL80211_IFTYPE_AP: 81 case NL80211_IFTYPE_AP_VLAN: 82 return hdr->addr1; 83 default: 84 break; /* fall through to the return */ 85 } 86 } 87 } 88 89 return NULL; 90 } 91 92 /* 93 * monitor mode reception 94 * 95 * This function cleans up the SKB, i.e. it removes all the stuff 96 * only useful for monitoring. 97 */ 98 static void remove_monitor_info(struct sk_buff *skb, 99 unsigned int present_fcs_len, 100 unsigned int rtap_vendor_space) 101 { 102 if (present_fcs_len) 103 __pskb_trim(skb, skb->len - present_fcs_len); 104 __pskb_pull(skb, rtap_vendor_space); 105 } 106 107 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 108 unsigned int rtap_vendor_space) 109 { 110 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 111 struct ieee80211_hdr *hdr; 112 113 hdr = (void *)(skb->data + rtap_vendor_space); 114 115 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 116 RX_FLAG_FAILED_PLCP_CRC | 117 RX_FLAG_ONLY_MONITOR)) 118 return true; 119 120 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) 121 return true; 122 123 if (ieee80211_is_ctl(hdr->frame_control) && 124 !ieee80211_is_pspoll(hdr->frame_control) && 125 !ieee80211_is_back_req(hdr->frame_control)) 126 return true; 127 128 return false; 129 } 130 131 static int 132 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 133 struct ieee80211_rx_status *status, 134 struct sk_buff *skb) 135 { 136 int len; 137 138 /* always present fields */ 139 len = sizeof(struct ieee80211_radiotap_header) + 8; 140 141 /* allocate extra bitmaps */ 142 if (status->chains) 143 len += 4 * hweight8(status->chains); 144 145 if (ieee80211_have_rx_timestamp(status)) { 146 len = ALIGN(len, 8); 147 len += 8; 148 } 149 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 150 len += 1; 151 152 /* antenna field, if we don't have per-chain info */ 153 if (!status->chains) 154 len += 1; 155 156 /* padding for RX_FLAGS if necessary */ 157 len = ALIGN(len, 2); 158 159 if (status->encoding == RX_ENC_HT) /* HT info */ 160 len += 3; 161 162 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 163 len = ALIGN(len, 4); 164 len += 8; 165 } 166 167 if (status->encoding == RX_ENC_VHT) { 168 len = ALIGN(len, 2); 169 len += 12; 170 } 171 172 if (local->hw.radiotap_timestamp.units_pos >= 0) { 173 len = ALIGN(len, 8); 174 len += 12; 175 } 176 177 if (status->chains) { 178 /* antenna and antenna signal fields */ 179 len += 2 * hweight8(status->chains); 180 } 181 182 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 183 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 184 185 /* vendor presence bitmap */ 186 len += 4; 187 /* alignment for fixed 6-byte vendor data header */ 188 len = ALIGN(len, 2); 189 /* vendor data header */ 190 len += 6; 191 if (WARN_ON(rtap->align == 0)) 192 rtap->align = 1; 193 len = ALIGN(len, rtap->align); 194 len += rtap->len + rtap->pad; 195 } 196 197 return len; 198 } 199 200 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 201 struct sk_buff *skb, 202 int rtap_vendor_space) 203 { 204 struct { 205 struct ieee80211_hdr_3addr hdr; 206 u8 category; 207 u8 action_code; 208 } __packed action; 209 210 if (!sdata) 211 return; 212 213 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 214 215 if (skb->len < rtap_vendor_space + sizeof(action) + 216 VHT_MUMIMO_GROUPS_DATA_LEN) 217 return; 218 219 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 220 return; 221 222 skb_copy_bits(skb, rtap_vendor_space, &action, sizeof(action)); 223 224 if (!ieee80211_is_action(action.hdr.frame_control)) 225 return; 226 227 if (action.category != WLAN_CATEGORY_VHT) 228 return; 229 230 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 231 return; 232 233 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 234 return; 235 236 skb = skb_copy(skb, GFP_ATOMIC); 237 if (!skb) 238 return; 239 240 skb_queue_tail(&sdata->skb_queue, skb); 241 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 242 } 243 244 /* 245 * ieee80211_add_rx_radiotap_header - add radiotap header 246 * 247 * add a radiotap header containing all the fields which the hardware provided. 248 */ 249 static void 250 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 251 struct sk_buff *skb, 252 struct ieee80211_rate *rate, 253 int rtap_len, bool has_fcs) 254 { 255 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 256 struct ieee80211_radiotap_header *rthdr; 257 unsigned char *pos; 258 __le32 *it_present; 259 u32 it_present_val; 260 u16 rx_flags = 0; 261 u16 channel_flags = 0; 262 int mpdulen, chain; 263 unsigned long chains = status->chains; 264 struct ieee80211_vendor_radiotap rtap = {}; 265 266 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 267 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 268 /* rtap.len and rtap.pad are undone immediately */ 269 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 270 } 271 272 mpdulen = skb->len; 273 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 274 mpdulen += FCS_LEN; 275 276 rthdr = skb_push(skb, rtap_len); 277 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 278 it_present = &rthdr->it_present; 279 280 /* radiotap header, set always present flags */ 281 rthdr->it_len = cpu_to_le16(rtap_len); 282 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 283 BIT(IEEE80211_RADIOTAP_CHANNEL) | 284 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 285 286 if (!status->chains) 287 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 288 289 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 290 it_present_val |= 291 BIT(IEEE80211_RADIOTAP_EXT) | 292 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 293 put_unaligned_le32(it_present_val, it_present); 294 it_present++; 295 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 296 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 297 } 298 299 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 300 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 301 BIT(IEEE80211_RADIOTAP_EXT); 302 put_unaligned_le32(it_present_val, it_present); 303 it_present++; 304 it_present_val = rtap.present; 305 } 306 307 put_unaligned_le32(it_present_val, it_present); 308 309 pos = (void *)(it_present + 1); 310 311 /* the order of the following fields is important */ 312 313 /* IEEE80211_RADIOTAP_TSFT */ 314 if (ieee80211_have_rx_timestamp(status)) { 315 /* padding */ 316 while ((pos - (u8 *)rthdr) & 7) 317 *pos++ = 0; 318 put_unaligned_le64( 319 ieee80211_calculate_rx_timestamp(local, status, 320 mpdulen, 0), 321 pos); 322 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 323 pos += 8; 324 } 325 326 /* IEEE80211_RADIOTAP_FLAGS */ 327 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 328 *pos |= IEEE80211_RADIOTAP_F_FCS; 329 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 330 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 331 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 332 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 333 pos++; 334 335 /* IEEE80211_RADIOTAP_RATE */ 336 if (!rate || status->encoding != RX_ENC_LEGACY) { 337 /* 338 * Without rate information don't add it. If we have, 339 * MCS information is a separate field in radiotap, 340 * added below. The byte here is needed as padding 341 * for the channel though, so initialise it to 0. 342 */ 343 *pos = 0; 344 } else { 345 int shift = 0; 346 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 347 if (status->bw == RATE_INFO_BW_10) 348 shift = 1; 349 else if (status->bw == RATE_INFO_BW_5) 350 shift = 2; 351 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 352 } 353 pos++; 354 355 /* IEEE80211_RADIOTAP_CHANNEL */ 356 put_unaligned_le16(status->freq, pos); 357 pos += 2; 358 if (status->bw == RATE_INFO_BW_10) 359 channel_flags |= IEEE80211_CHAN_HALF; 360 else if (status->bw == RATE_INFO_BW_5) 361 channel_flags |= IEEE80211_CHAN_QUARTER; 362 363 if (status->band == NL80211_BAND_5GHZ) 364 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 365 else if (status->encoding != RX_ENC_LEGACY) 366 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 367 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 368 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 369 else if (rate) 370 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 371 else 372 channel_flags |= IEEE80211_CHAN_2GHZ; 373 put_unaligned_le16(channel_flags, pos); 374 pos += 2; 375 376 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 377 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 378 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 379 *pos = status->signal; 380 rthdr->it_present |= 381 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 382 pos++; 383 } 384 385 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 386 387 if (!status->chains) { 388 /* IEEE80211_RADIOTAP_ANTENNA */ 389 *pos = status->antenna; 390 pos++; 391 } 392 393 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 394 395 /* IEEE80211_RADIOTAP_RX_FLAGS */ 396 /* ensure 2 byte alignment for the 2 byte field as required */ 397 if ((pos - (u8 *)rthdr) & 1) 398 *pos++ = 0; 399 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 400 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 401 put_unaligned_le16(rx_flags, pos); 402 pos += 2; 403 404 if (status->encoding == RX_ENC_HT) { 405 unsigned int stbc; 406 407 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 408 *pos++ = local->hw.radiotap_mcs_details; 409 *pos = 0; 410 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 411 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 412 if (status->bw == RATE_INFO_BW_40) 413 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 414 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 415 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 416 if (status->enc_flags & RX_ENC_FLAG_LDPC) 417 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 418 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 419 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 420 pos++; 421 *pos++ = status->rate_idx; 422 } 423 424 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 425 u16 flags = 0; 426 427 /* ensure 4 byte alignment */ 428 while ((pos - (u8 *)rthdr) & 3) 429 pos++; 430 rthdr->it_present |= 431 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 432 put_unaligned_le32(status->ampdu_reference, pos); 433 pos += 4; 434 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 435 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 436 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 437 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 438 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 439 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 440 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 441 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 442 put_unaligned_le16(flags, pos); 443 pos += 2; 444 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 445 *pos++ = status->ampdu_delimiter_crc; 446 else 447 *pos++ = 0; 448 *pos++ = 0; 449 } 450 451 if (status->encoding == RX_ENC_VHT) { 452 u16 known = local->hw.radiotap_vht_details; 453 454 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 455 put_unaligned_le16(known, pos); 456 pos += 2; 457 /* flags */ 458 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 459 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 460 /* in VHT, STBC is binary */ 461 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 462 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 463 if (status->enc_flags & RX_ENC_FLAG_BF) 464 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 465 pos++; 466 /* bandwidth */ 467 switch (status->bw) { 468 case RATE_INFO_BW_80: 469 *pos++ = 4; 470 break; 471 case RATE_INFO_BW_160: 472 *pos++ = 11; 473 break; 474 case RATE_INFO_BW_40: 475 *pos++ = 1; 476 break; 477 default: 478 *pos++ = 0; 479 } 480 /* MCS/NSS */ 481 *pos = (status->rate_idx << 4) | status->nss; 482 pos += 4; 483 /* coding field */ 484 if (status->enc_flags & RX_ENC_FLAG_LDPC) 485 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 486 pos++; 487 /* group ID */ 488 pos++; 489 /* partial_aid */ 490 pos += 2; 491 } 492 493 if (local->hw.radiotap_timestamp.units_pos >= 0) { 494 u16 accuracy = 0; 495 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 496 497 rthdr->it_present |= 498 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 499 500 /* ensure 8 byte alignment */ 501 while ((pos - (u8 *)rthdr) & 7) 502 pos++; 503 504 put_unaligned_le64(status->device_timestamp, pos); 505 pos += sizeof(u64); 506 507 if (local->hw.radiotap_timestamp.accuracy >= 0) { 508 accuracy = local->hw.radiotap_timestamp.accuracy; 509 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 510 } 511 put_unaligned_le16(accuracy, pos); 512 pos += sizeof(u16); 513 514 *pos++ = local->hw.radiotap_timestamp.units_pos; 515 *pos++ = flags; 516 } 517 518 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 519 *pos++ = status->chain_signal[chain]; 520 *pos++ = chain; 521 } 522 523 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 524 /* ensure 2 byte alignment for the vendor field as required */ 525 if ((pos - (u8 *)rthdr) & 1) 526 *pos++ = 0; 527 *pos++ = rtap.oui[0]; 528 *pos++ = rtap.oui[1]; 529 *pos++ = rtap.oui[2]; 530 *pos++ = rtap.subns; 531 put_unaligned_le16(rtap.len, pos); 532 pos += 2; 533 /* align the actual payload as requested */ 534 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 535 *pos++ = 0; 536 /* data (and possible padding) already follows */ 537 } 538 } 539 540 static struct sk_buff * 541 ieee80211_make_monitor_skb(struct ieee80211_local *local, 542 struct sk_buff **origskb, 543 struct ieee80211_rate *rate, 544 int rtap_vendor_space, bool use_origskb) 545 { 546 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 547 int rt_hdrlen, needed_headroom; 548 struct sk_buff *skb; 549 550 /* room for the radiotap header based on driver features */ 551 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 552 needed_headroom = rt_hdrlen - rtap_vendor_space; 553 554 if (use_origskb) { 555 /* only need to expand headroom if necessary */ 556 skb = *origskb; 557 *origskb = NULL; 558 559 /* 560 * This shouldn't trigger often because most devices have an 561 * RX header they pull before we get here, and that should 562 * be big enough for our radiotap information. We should 563 * probably export the length to drivers so that we can have 564 * them allocate enough headroom to start with. 565 */ 566 if (skb_headroom(skb) < needed_headroom && 567 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 568 dev_kfree_skb(skb); 569 return NULL; 570 } 571 } else { 572 /* 573 * Need to make a copy and possibly remove radiotap header 574 * and FCS from the original. 575 */ 576 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 577 578 if (!skb) 579 return NULL; 580 } 581 582 /* prepend radiotap information */ 583 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 584 585 skb_reset_mac_header(skb); 586 skb->ip_summed = CHECKSUM_UNNECESSARY; 587 skb->pkt_type = PACKET_OTHERHOST; 588 skb->protocol = htons(ETH_P_802_2); 589 590 return skb; 591 } 592 593 /* 594 * This function copies a received frame to all monitor interfaces and 595 * returns a cleaned-up SKB that no longer includes the FCS nor the 596 * radiotap header the driver might have added. 597 */ 598 static struct sk_buff * 599 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 600 struct ieee80211_rate *rate) 601 { 602 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 603 struct ieee80211_sub_if_data *sdata; 604 struct sk_buff *monskb = NULL; 605 int present_fcs_len = 0; 606 unsigned int rtap_vendor_space = 0; 607 struct ieee80211_sub_if_data *monitor_sdata = 608 rcu_dereference(local->monitor_sdata); 609 bool only_monitor = false; 610 611 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 612 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 613 614 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; 615 } 616 617 /* 618 * First, we may need to make a copy of the skb because 619 * (1) we need to modify it for radiotap (if not present), and 620 * (2) the other RX handlers will modify the skb we got. 621 * 622 * We don't need to, of course, if we aren't going to return 623 * the SKB because it has a bad FCS/PLCP checksum. 624 */ 625 626 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 627 if (unlikely(origskb->len <= FCS_LEN)) { 628 /* driver bug */ 629 WARN_ON(1); 630 dev_kfree_skb(origskb); 631 return NULL; 632 } 633 present_fcs_len = FCS_LEN; 634 } 635 636 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 637 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { 638 dev_kfree_skb(origskb); 639 return NULL; 640 } 641 642 only_monitor = should_drop_frame(origskb, present_fcs_len, 643 rtap_vendor_space); 644 645 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 646 if (only_monitor) { 647 dev_kfree_skb(origskb); 648 return NULL; 649 } 650 651 remove_monitor_info(origskb, present_fcs_len, 652 rtap_vendor_space); 653 return origskb; 654 } 655 656 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_vendor_space); 657 658 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 659 bool last_monitor = list_is_last(&sdata->u.mntr.list, 660 &local->mon_list); 661 662 if (!monskb) 663 monskb = ieee80211_make_monitor_skb(local, &origskb, 664 rate, 665 rtap_vendor_space, 666 only_monitor && 667 last_monitor); 668 669 if (monskb) { 670 struct sk_buff *skb; 671 672 if (last_monitor) { 673 skb = monskb; 674 monskb = NULL; 675 } else { 676 skb = skb_clone(monskb, GFP_ATOMIC); 677 } 678 679 if (skb) { 680 skb->dev = sdata->dev; 681 ieee80211_rx_stats(skb->dev, skb->len); 682 netif_receive_skb(skb); 683 } 684 } 685 686 if (last_monitor) 687 break; 688 } 689 690 /* this happens if last_monitor was erroneously false */ 691 dev_kfree_skb(monskb); 692 693 /* ditto */ 694 if (!origskb) 695 return NULL; 696 697 remove_monitor_info(origskb, present_fcs_len, rtap_vendor_space); 698 return origskb; 699 } 700 701 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 702 { 703 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 704 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 705 int tid, seqno_idx, security_idx; 706 707 /* does the frame have a qos control field? */ 708 if (ieee80211_is_data_qos(hdr->frame_control)) { 709 u8 *qc = ieee80211_get_qos_ctl(hdr); 710 /* frame has qos control */ 711 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 712 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 713 status->rx_flags |= IEEE80211_RX_AMSDU; 714 715 seqno_idx = tid; 716 security_idx = tid; 717 } else { 718 /* 719 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 720 * 721 * Sequence numbers for management frames, QoS data 722 * frames with a broadcast/multicast address in the 723 * Address 1 field, and all non-QoS data frames sent 724 * by QoS STAs are assigned using an additional single 725 * modulo-4096 counter, [...] 726 * 727 * We also use that counter for non-QoS STAs. 728 */ 729 seqno_idx = IEEE80211_NUM_TIDS; 730 security_idx = 0; 731 if (ieee80211_is_mgmt(hdr->frame_control)) 732 security_idx = IEEE80211_NUM_TIDS; 733 tid = 0; 734 } 735 736 rx->seqno_idx = seqno_idx; 737 rx->security_idx = security_idx; 738 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 739 * For now, set skb->priority to 0 for other cases. */ 740 rx->skb->priority = (tid > 7) ? 0 : tid; 741 } 742 743 /** 744 * DOC: Packet alignment 745 * 746 * Drivers always need to pass packets that are aligned to two-byte boundaries 747 * to the stack. 748 * 749 * Additionally, should, if possible, align the payload data in a way that 750 * guarantees that the contained IP header is aligned to a four-byte 751 * boundary. In the case of regular frames, this simply means aligning the 752 * payload to a four-byte boundary (because either the IP header is directly 753 * contained, or IV/RFC1042 headers that have a length divisible by four are 754 * in front of it). If the payload data is not properly aligned and the 755 * architecture doesn't support efficient unaligned operations, mac80211 756 * will align the data. 757 * 758 * With A-MSDU frames, however, the payload data address must yield two modulo 759 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 760 * push the IP header further back to a multiple of four again. Thankfully, the 761 * specs were sane enough this time around to require padding each A-MSDU 762 * subframe to a length that is a multiple of four. 763 * 764 * Padding like Atheros hardware adds which is between the 802.11 header and 765 * the payload is not supported, the driver is required to move the 802.11 766 * header to be directly in front of the payload in that case. 767 */ 768 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 769 { 770 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 771 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 772 #endif 773 } 774 775 776 /* rx handlers */ 777 778 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 779 { 780 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 781 782 if (is_multicast_ether_addr(hdr->addr1)) 783 return 0; 784 785 return ieee80211_is_robust_mgmt_frame(skb); 786 } 787 788 789 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 790 { 791 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 792 793 if (!is_multicast_ether_addr(hdr->addr1)) 794 return 0; 795 796 return ieee80211_is_robust_mgmt_frame(skb); 797 } 798 799 800 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 801 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 802 { 803 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 804 struct ieee80211_mmie *mmie; 805 struct ieee80211_mmie_16 *mmie16; 806 807 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 808 return -1; 809 810 if (!ieee80211_is_robust_mgmt_frame(skb)) 811 return -1; /* not a robust management frame */ 812 813 mmie = (struct ieee80211_mmie *) 814 (skb->data + skb->len - sizeof(*mmie)); 815 if (mmie->element_id == WLAN_EID_MMIE && 816 mmie->length == sizeof(*mmie) - 2) 817 return le16_to_cpu(mmie->key_id); 818 819 mmie16 = (struct ieee80211_mmie_16 *) 820 (skb->data + skb->len - sizeof(*mmie16)); 821 if (skb->len >= 24 + sizeof(*mmie16) && 822 mmie16->element_id == WLAN_EID_MMIE && 823 mmie16->length == sizeof(*mmie16) - 2) 824 return le16_to_cpu(mmie16->key_id); 825 826 return -1; 827 } 828 829 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 830 struct sk_buff *skb) 831 { 832 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 833 __le16 fc; 834 int hdrlen; 835 u8 keyid; 836 837 fc = hdr->frame_control; 838 hdrlen = ieee80211_hdrlen(fc); 839 840 if (skb->len < hdrlen + cs->hdr_len) 841 return -EINVAL; 842 843 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 844 keyid &= cs->key_idx_mask; 845 keyid >>= cs->key_idx_shift; 846 847 return keyid; 848 } 849 850 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 851 { 852 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 853 char *dev_addr = rx->sdata->vif.addr; 854 855 if (ieee80211_is_data(hdr->frame_control)) { 856 if (is_multicast_ether_addr(hdr->addr1)) { 857 if (ieee80211_has_tods(hdr->frame_control) || 858 !ieee80211_has_fromds(hdr->frame_control)) 859 return RX_DROP_MONITOR; 860 if (ether_addr_equal(hdr->addr3, dev_addr)) 861 return RX_DROP_MONITOR; 862 } else { 863 if (!ieee80211_has_a4(hdr->frame_control)) 864 return RX_DROP_MONITOR; 865 if (ether_addr_equal(hdr->addr4, dev_addr)) 866 return RX_DROP_MONITOR; 867 } 868 } 869 870 /* If there is not an established peer link and this is not a peer link 871 * establisment frame, beacon or probe, drop the frame. 872 */ 873 874 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 875 struct ieee80211_mgmt *mgmt; 876 877 if (!ieee80211_is_mgmt(hdr->frame_control)) 878 return RX_DROP_MONITOR; 879 880 if (ieee80211_is_action(hdr->frame_control)) { 881 u8 category; 882 883 /* make sure category field is present */ 884 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 885 return RX_DROP_MONITOR; 886 887 mgmt = (struct ieee80211_mgmt *)hdr; 888 category = mgmt->u.action.category; 889 if (category != WLAN_CATEGORY_MESH_ACTION && 890 category != WLAN_CATEGORY_SELF_PROTECTED) 891 return RX_DROP_MONITOR; 892 return RX_CONTINUE; 893 } 894 895 if (ieee80211_is_probe_req(hdr->frame_control) || 896 ieee80211_is_probe_resp(hdr->frame_control) || 897 ieee80211_is_beacon(hdr->frame_control) || 898 ieee80211_is_auth(hdr->frame_control)) 899 return RX_CONTINUE; 900 901 return RX_DROP_MONITOR; 902 } 903 904 return RX_CONTINUE; 905 } 906 907 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 908 int index) 909 { 910 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 911 struct sk_buff *tail = skb_peek_tail(frames); 912 struct ieee80211_rx_status *status; 913 914 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 915 return true; 916 917 if (!tail) 918 return false; 919 920 status = IEEE80211_SKB_RXCB(tail); 921 if (status->flag & RX_FLAG_AMSDU_MORE) 922 return false; 923 924 return true; 925 } 926 927 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 928 struct tid_ampdu_rx *tid_agg_rx, 929 int index, 930 struct sk_buff_head *frames) 931 { 932 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 933 struct sk_buff *skb; 934 struct ieee80211_rx_status *status; 935 936 lockdep_assert_held(&tid_agg_rx->reorder_lock); 937 938 if (skb_queue_empty(skb_list)) 939 goto no_frame; 940 941 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 942 __skb_queue_purge(skb_list); 943 goto no_frame; 944 } 945 946 /* release frames from the reorder ring buffer */ 947 tid_agg_rx->stored_mpdu_num--; 948 while ((skb = __skb_dequeue(skb_list))) { 949 status = IEEE80211_SKB_RXCB(skb); 950 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 951 __skb_queue_tail(frames, skb); 952 } 953 954 no_frame: 955 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 956 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 957 } 958 959 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 960 struct tid_ampdu_rx *tid_agg_rx, 961 u16 head_seq_num, 962 struct sk_buff_head *frames) 963 { 964 int index; 965 966 lockdep_assert_held(&tid_agg_rx->reorder_lock); 967 968 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 969 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 970 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 971 frames); 972 } 973 } 974 975 /* 976 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 977 * the skb was added to the buffer longer than this time ago, the earlier 978 * frames that have not yet been received are assumed to be lost and the skb 979 * can be released for processing. This may also release other skb's from the 980 * reorder buffer if there are no additional gaps between the frames. 981 * 982 * Callers must hold tid_agg_rx->reorder_lock. 983 */ 984 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 985 986 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 987 struct tid_ampdu_rx *tid_agg_rx, 988 struct sk_buff_head *frames) 989 { 990 int index, i, j; 991 992 lockdep_assert_held(&tid_agg_rx->reorder_lock); 993 994 /* release the buffer until next missing frame */ 995 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 996 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 997 tid_agg_rx->stored_mpdu_num) { 998 /* 999 * No buffers ready to be released, but check whether any 1000 * frames in the reorder buffer have timed out. 1001 */ 1002 int skipped = 1; 1003 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1004 j = (j + 1) % tid_agg_rx->buf_size) { 1005 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1006 skipped++; 1007 continue; 1008 } 1009 if (skipped && 1010 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1011 HT_RX_REORDER_BUF_TIMEOUT)) 1012 goto set_release_timer; 1013 1014 /* don't leave incomplete A-MSDUs around */ 1015 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1016 i = (i + 1) % tid_agg_rx->buf_size) 1017 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1018 1019 ht_dbg_ratelimited(sdata, 1020 "release an RX reorder frame due to timeout on earlier frames\n"); 1021 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1022 frames); 1023 1024 /* 1025 * Increment the head seq# also for the skipped slots. 1026 */ 1027 tid_agg_rx->head_seq_num = 1028 (tid_agg_rx->head_seq_num + 1029 skipped) & IEEE80211_SN_MASK; 1030 skipped = 0; 1031 } 1032 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1033 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1034 frames); 1035 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1036 } 1037 1038 if (tid_agg_rx->stored_mpdu_num) { 1039 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1040 1041 for (; j != (index - 1) % tid_agg_rx->buf_size; 1042 j = (j + 1) % tid_agg_rx->buf_size) { 1043 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1044 break; 1045 } 1046 1047 set_release_timer: 1048 1049 if (!tid_agg_rx->removed) 1050 mod_timer(&tid_agg_rx->reorder_timer, 1051 tid_agg_rx->reorder_time[j] + 1 + 1052 HT_RX_REORDER_BUF_TIMEOUT); 1053 } else { 1054 del_timer(&tid_agg_rx->reorder_timer); 1055 } 1056 } 1057 1058 /* 1059 * As this function belongs to the RX path it must be under 1060 * rcu_read_lock protection. It returns false if the frame 1061 * can be processed immediately, true if it was consumed. 1062 */ 1063 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1064 struct tid_ampdu_rx *tid_agg_rx, 1065 struct sk_buff *skb, 1066 struct sk_buff_head *frames) 1067 { 1068 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1069 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1070 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1071 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1072 u16 head_seq_num, buf_size; 1073 int index; 1074 bool ret = true; 1075 1076 spin_lock(&tid_agg_rx->reorder_lock); 1077 1078 /* 1079 * Offloaded BA sessions have no known starting sequence number so pick 1080 * one from first Rxed frame for this tid after BA was started. 1081 */ 1082 if (unlikely(tid_agg_rx->auto_seq)) { 1083 tid_agg_rx->auto_seq = false; 1084 tid_agg_rx->ssn = mpdu_seq_num; 1085 tid_agg_rx->head_seq_num = mpdu_seq_num; 1086 } 1087 1088 buf_size = tid_agg_rx->buf_size; 1089 head_seq_num = tid_agg_rx->head_seq_num; 1090 1091 /* 1092 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1093 * be reordered. 1094 */ 1095 if (unlikely(!tid_agg_rx->started)) { 1096 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1097 ret = false; 1098 goto out; 1099 } 1100 tid_agg_rx->started = true; 1101 } 1102 1103 /* frame with out of date sequence number */ 1104 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1105 dev_kfree_skb(skb); 1106 goto out; 1107 } 1108 1109 /* 1110 * If frame the sequence number exceeds our buffering window 1111 * size release some previous frames to make room for this one. 1112 */ 1113 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1114 head_seq_num = ieee80211_sn_inc( 1115 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1116 /* release stored frames up to new head to stack */ 1117 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1118 head_seq_num, frames); 1119 } 1120 1121 /* Now the new frame is always in the range of the reordering buffer */ 1122 1123 index = mpdu_seq_num % tid_agg_rx->buf_size; 1124 1125 /* check if we already stored this frame */ 1126 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1127 dev_kfree_skb(skb); 1128 goto out; 1129 } 1130 1131 /* 1132 * If the current MPDU is in the right order and nothing else 1133 * is stored we can process it directly, no need to buffer it. 1134 * If it is first but there's something stored, we may be able 1135 * to release frames after this one. 1136 */ 1137 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1138 tid_agg_rx->stored_mpdu_num == 0) { 1139 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1140 tid_agg_rx->head_seq_num = 1141 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1142 ret = false; 1143 goto out; 1144 } 1145 1146 /* put the frame in the reordering buffer */ 1147 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1148 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1149 tid_agg_rx->reorder_time[index] = jiffies; 1150 tid_agg_rx->stored_mpdu_num++; 1151 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1152 } 1153 1154 out: 1155 spin_unlock(&tid_agg_rx->reorder_lock); 1156 return ret; 1157 } 1158 1159 /* 1160 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1161 * true if the MPDU was buffered, false if it should be processed. 1162 */ 1163 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1164 struct sk_buff_head *frames) 1165 { 1166 struct sk_buff *skb = rx->skb; 1167 struct ieee80211_local *local = rx->local; 1168 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1169 struct sta_info *sta = rx->sta; 1170 struct tid_ampdu_rx *tid_agg_rx; 1171 u16 sc; 1172 u8 tid, ack_policy; 1173 1174 if (!ieee80211_is_data_qos(hdr->frame_control) || 1175 is_multicast_ether_addr(hdr->addr1)) 1176 goto dont_reorder; 1177 1178 /* 1179 * filter the QoS data rx stream according to 1180 * STA/TID and check if this STA/TID is on aggregation 1181 */ 1182 1183 if (!sta) 1184 goto dont_reorder; 1185 1186 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1187 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1188 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1189 1190 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1191 if (!tid_agg_rx) { 1192 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1193 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1194 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1195 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1196 WLAN_BACK_RECIPIENT, 1197 WLAN_REASON_QSTA_REQUIRE_SETUP); 1198 goto dont_reorder; 1199 } 1200 1201 /* qos null data frames are excluded */ 1202 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1203 goto dont_reorder; 1204 1205 /* not part of a BA session */ 1206 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1207 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1208 goto dont_reorder; 1209 1210 /* new, potentially un-ordered, ampdu frame - process it */ 1211 1212 /* reset session timer */ 1213 if (tid_agg_rx->timeout) 1214 tid_agg_rx->last_rx = jiffies; 1215 1216 /* if this mpdu is fragmented - terminate rx aggregation session */ 1217 sc = le16_to_cpu(hdr->seq_ctrl); 1218 if (sc & IEEE80211_SCTL_FRAG) { 1219 skb_queue_tail(&rx->sdata->skb_queue, skb); 1220 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1221 return; 1222 } 1223 1224 /* 1225 * No locking needed -- we will only ever process one 1226 * RX packet at a time, and thus own tid_agg_rx. All 1227 * other code manipulating it needs to (and does) make 1228 * sure that we cannot get to it any more before doing 1229 * anything with it. 1230 */ 1231 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1232 frames)) 1233 return; 1234 1235 dont_reorder: 1236 __skb_queue_tail(frames, skb); 1237 } 1238 1239 static ieee80211_rx_result debug_noinline 1240 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1241 { 1242 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1243 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1244 1245 if (status->flag & RX_FLAG_DUP_VALIDATED) 1246 return RX_CONTINUE; 1247 1248 /* 1249 * Drop duplicate 802.11 retransmissions 1250 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1251 */ 1252 1253 if (rx->skb->len < 24) 1254 return RX_CONTINUE; 1255 1256 if (ieee80211_is_ctl(hdr->frame_control) || 1257 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1258 is_multicast_ether_addr(hdr->addr1)) 1259 return RX_CONTINUE; 1260 1261 if (!rx->sta) 1262 return RX_CONTINUE; 1263 1264 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1265 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1266 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1267 rx->sta->rx_stats.num_duplicates++; 1268 return RX_DROP_UNUSABLE; 1269 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1270 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1271 } 1272 1273 return RX_CONTINUE; 1274 } 1275 1276 static ieee80211_rx_result debug_noinline 1277 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1278 { 1279 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1280 1281 /* Drop disallowed frame classes based on STA auth/assoc state; 1282 * IEEE 802.11, Chap 5.5. 1283 * 1284 * mac80211 filters only based on association state, i.e. it drops 1285 * Class 3 frames from not associated stations. hostapd sends 1286 * deauth/disassoc frames when needed. In addition, hostapd is 1287 * responsible for filtering on both auth and assoc states. 1288 */ 1289 1290 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1291 return ieee80211_rx_mesh_check(rx); 1292 1293 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1294 ieee80211_is_pspoll(hdr->frame_control)) && 1295 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1296 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1297 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1298 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1299 /* 1300 * accept port control frames from the AP even when it's not 1301 * yet marked ASSOC to prevent a race where we don't set the 1302 * assoc bit quickly enough before it sends the first frame 1303 */ 1304 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1305 ieee80211_is_data_present(hdr->frame_control)) { 1306 unsigned int hdrlen; 1307 __be16 ethertype; 1308 1309 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1310 1311 if (rx->skb->len < hdrlen + 8) 1312 return RX_DROP_MONITOR; 1313 1314 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1315 if (ethertype == rx->sdata->control_port_protocol) 1316 return RX_CONTINUE; 1317 } 1318 1319 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1320 cfg80211_rx_spurious_frame(rx->sdata->dev, 1321 hdr->addr2, 1322 GFP_ATOMIC)) 1323 return RX_DROP_UNUSABLE; 1324 1325 return RX_DROP_MONITOR; 1326 } 1327 1328 return RX_CONTINUE; 1329 } 1330 1331 1332 static ieee80211_rx_result debug_noinline 1333 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1334 { 1335 struct ieee80211_local *local; 1336 struct ieee80211_hdr *hdr; 1337 struct sk_buff *skb; 1338 1339 local = rx->local; 1340 skb = rx->skb; 1341 hdr = (struct ieee80211_hdr *) skb->data; 1342 1343 if (!local->pspolling) 1344 return RX_CONTINUE; 1345 1346 if (!ieee80211_has_fromds(hdr->frame_control)) 1347 /* this is not from AP */ 1348 return RX_CONTINUE; 1349 1350 if (!ieee80211_is_data(hdr->frame_control)) 1351 return RX_CONTINUE; 1352 1353 if (!ieee80211_has_moredata(hdr->frame_control)) { 1354 /* AP has no more frames buffered for us */ 1355 local->pspolling = false; 1356 return RX_CONTINUE; 1357 } 1358 1359 /* more data bit is set, let's request a new frame from the AP */ 1360 ieee80211_send_pspoll(local, rx->sdata); 1361 1362 return RX_CONTINUE; 1363 } 1364 1365 static void sta_ps_start(struct sta_info *sta) 1366 { 1367 struct ieee80211_sub_if_data *sdata = sta->sdata; 1368 struct ieee80211_local *local = sdata->local; 1369 struct ps_data *ps; 1370 int tid; 1371 1372 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1373 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1374 ps = &sdata->bss->ps; 1375 else 1376 return; 1377 1378 atomic_inc(&ps->num_sta_ps); 1379 set_sta_flag(sta, WLAN_STA_PS_STA); 1380 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1381 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1382 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1383 sta->sta.addr, sta->sta.aid); 1384 1385 ieee80211_clear_fast_xmit(sta); 1386 1387 if (!sta->sta.txq[0]) 1388 return; 1389 1390 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1391 if (txq_has_queue(sta->sta.txq[tid])) 1392 set_bit(tid, &sta->txq_buffered_tids); 1393 else 1394 clear_bit(tid, &sta->txq_buffered_tids); 1395 } 1396 } 1397 1398 static void sta_ps_end(struct sta_info *sta) 1399 { 1400 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1401 sta->sta.addr, sta->sta.aid); 1402 1403 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1404 /* 1405 * Clear the flag only if the other one is still set 1406 * so that the TX path won't start TX'ing new frames 1407 * directly ... In the case that the driver flag isn't 1408 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1409 */ 1410 clear_sta_flag(sta, WLAN_STA_PS_STA); 1411 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1412 sta->sta.addr, sta->sta.aid); 1413 return; 1414 } 1415 1416 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1417 clear_sta_flag(sta, WLAN_STA_PS_STA); 1418 ieee80211_sta_ps_deliver_wakeup(sta); 1419 } 1420 1421 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1422 { 1423 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1424 bool in_ps; 1425 1426 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1427 1428 /* Don't let the same PS state be set twice */ 1429 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1430 if ((start && in_ps) || (!start && !in_ps)) 1431 return -EINVAL; 1432 1433 if (start) 1434 sta_ps_start(sta); 1435 else 1436 sta_ps_end(sta); 1437 1438 return 0; 1439 } 1440 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1441 1442 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1443 { 1444 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1445 1446 if (test_sta_flag(sta, WLAN_STA_SP)) 1447 return; 1448 1449 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1450 ieee80211_sta_ps_deliver_poll_response(sta); 1451 else 1452 set_sta_flag(sta, WLAN_STA_PSPOLL); 1453 } 1454 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1455 1456 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1457 { 1458 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1459 int ac = ieee80211_ac_from_tid(tid); 1460 1461 /* 1462 * If this AC is not trigger-enabled do nothing unless the 1463 * driver is calling us after it already checked. 1464 * 1465 * NB: This could/should check a separate bitmap of trigger- 1466 * enabled queues, but for now we only implement uAPSD w/o 1467 * TSPEC changes to the ACs, so they're always the same. 1468 */ 1469 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1470 tid != IEEE80211_NUM_TIDS) 1471 return; 1472 1473 /* if we are in a service period, do nothing */ 1474 if (test_sta_flag(sta, WLAN_STA_SP)) 1475 return; 1476 1477 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1478 ieee80211_sta_ps_deliver_uapsd(sta); 1479 else 1480 set_sta_flag(sta, WLAN_STA_UAPSD); 1481 } 1482 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1483 1484 static ieee80211_rx_result debug_noinline 1485 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1486 { 1487 struct ieee80211_sub_if_data *sdata = rx->sdata; 1488 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1489 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1490 1491 if (!rx->sta) 1492 return RX_CONTINUE; 1493 1494 if (sdata->vif.type != NL80211_IFTYPE_AP && 1495 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1496 return RX_CONTINUE; 1497 1498 /* 1499 * The device handles station powersave, so don't do anything about 1500 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1501 * it to mac80211 since they're handled.) 1502 */ 1503 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1504 return RX_CONTINUE; 1505 1506 /* 1507 * Don't do anything if the station isn't already asleep. In 1508 * the uAPSD case, the station will probably be marked asleep, 1509 * in the PS-Poll case the station must be confused ... 1510 */ 1511 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1512 return RX_CONTINUE; 1513 1514 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1515 ieee80211_sta_pspoll(&rx->sta->sta); 1516 1517 /* Free PS Poll skb here instead of returning RX_DROP that would 1518 * count as an dropped frame. */ 1519 dev_kfree_skb(rx->skb); 1520 1521 return RX_QUEUED; 1522 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1523 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1524 ieee80211_has_pm(hdr->frame_control) && 1525 (ieee80211_is_data_qos(hdr->frame_control) || 1526 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1527 u8 tid; 1528 1529 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1530 1531 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1532 } 1533 1534 return RX_CONTINUE; 1535 } 1536 1537 static ieee80211_rx_result debug_noinline 1538 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1539 { 1540 struct sta_info *sta = rx->sta; 1541 struct sk_buff *skb = rx->skb; 1542 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1543 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1544 int i; 1545 1546 if (!sta) 1547 return RX_CONTINUE; 1548 1549 /* 1550 * Update last_rx only for IBSS packets which are for the current 1551 * BSSID and for station already AUTHORIZED to avoid keeping the 1552 * current IBSS network alive in cases where other STAs start 1553 * using different BSSID. This will also give the station another 1554 * chance to restart the authentication/authorization in case 1555 * something went wrong the first time. 1556 */ 1557 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1558 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1559 NL80211_IFTYPE_ADHOC); 1560 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1561 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1562 sta->rx_stats.last_rx = jiffies; 1563 if (ieee80211_is_data(hdr->frame_control) && 1564 !is_multicast_ether_addr(hdr->addr1)) 1565 sta->rx_stats.last_rate = 1566 sta_stats_encode_rate(status); 1567 } 1568 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1569 sta->rx_stats.last_rx = jiffies; 1570 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1571 /* 1572 * Mesh beacons will update last_rx when if they are found to 1573 * match the current local configuration when processed. 1574 */ 1575 sta->rx_stats.last_rx = jiffies; 1576 if (ieee80211_is_data(hdr->frame_control)) 1577 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1578 } 1579 1580 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1581 ieee80211_sta_rx_notify(rx->sdata, hdr); 1582 1583 sta->rx_stats.fragments++; 1584 1585 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1586 sta->rx_stats.bytes += rx->skb->len; 1587 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1588 1589 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1590 sta->rx_stats.last_signal = status->signal; 1591 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1592 } 1593 1594 if (status->chains) { 1595 sta->rx_stats.chains = status->chains; 1596 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1597 int signal = status->chain_signal[i]; 1598 1599 if (!(status->chains & BIT(i))) 1600 continue; 1601 1602 sta->rx_stats.chain_signal_last[i] = signal; 1603 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1604 -signal); 1605 } 1606 } 1607 1608 /* 1609 * Change STA power saving mode only at the end of a frame 1610 * exchange sequence, and only for a data or management 1611 * frame as specified in IEEE 802.11-2016 11.2.3.2 1612 */ 1613 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1614 !ieee80211_has_morefrags(hdr->frame_control) && 1615 (ieee80211_is_mgmt(hdr->frame_control) || 1616 ieee80211_is_data(hdr->frame_control)) && 1617 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1618 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1619 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1620 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1621 if (!ieee80211_has_pm(hdr->frame_control)) 1622 sta_ps_end(sta); 1623 } else { 1624 if (ieee80211_has_pm(hdr->frame_control)) 1625 sta_ps_start(sta); 1626 } 1627 } 1628 1629 /* mesh power save support */ 1630 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1631 ieee80211_mps_rx_h_sta_process(sta, hdr); 1632 1633 /* 1634 * Drop (qos-)data::nullfunc frames silently, since they 1635 * are used only to control station power saving mode. 1636 */ 1637 if (ieee80211_is_nullfunc(hdr->frame_control) || 1638 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1639 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1640 1641 /* 1642 * If we receive a 4-addr nullfunc frame from a STA 1643 * that was not moved to a 4-addr STA vlan yet send 1644 * the event to userspace and for older hostapd drop 1645 * the frame to the monitor interface. 1646 */ 1647 if (ieee80211_has_a4(hdr->frame_control) && 1648 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1649 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1650 !rx->sdata->u.vlan.sta))) { 1651 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1652 cfg80211_rx_unexpected_4addr_frame( 1653 rx->sdata->dev, sta->sta.addr, 1654 GFP_ATOMIC); 1655 return RX_DROP_MONITOR; 1656 } 1657 /* 1658 * Update counter and free packet here to avoid 1659 * counting this as a dropped packed. 1660 */ 1661 sta->rx_stats.packets++; 1662 dev_kfree_skb(rx->skb); 1663 return RX_QUEUED; 1664 } 1665 1666 return RX_CONTINUE; 1667 } /* ieee80211_rx_h_sta_process */ 1668 1669 static ieee80211_rx_result debug_noinline 1670 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1671 { 1672 struct sk_buff *skb = rx->skb; 1673 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1674 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1675 int keyidx; 1676 int hdrlen; 1677 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1678 struct ieee80211_key *sta_ptk = NULL; 1679 int mmie_keyidx = -1; 1680 __le16 fc; 1681 const struct ieee80211_cipher_scheme *cs = NULL; 1682 1683 /* 1684 * Key selection 101 1685 * 1686 * There are four types of keys: 1687 * - GTK (group keys) 1688 * - IGTK (group keys for management frames) 1689 * - PTK (pairwise keys) 1690 * - STK (station-to-station pairwise keys) 1691 * 1692 * When selecting a key, we have to distinguish between multicast 1693 * (including broadcast) and unicast frames, the latter can only 1694 * use PTKs and STKs while the former always use GTKs and IGTKs. 1695 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1696 * unicast frames can also use key indices like GTKs. Hence, if we 1697 * don't have a PTK/STK we check the key index for a WEP key. 1698 * 1699 * Note that in a regular BSS, multicast frames are sent by the 1700 * AP only, associated stations unicast the frame to the AP first 1701 * which then multicasts it on their behalf. 1702 * 1703 * There is also a slight problem in IBSS mode: GTKs are negotiated 1704 * with each station, that is something we don't currently handle. 1705 * The spec seems to expect that one negotiates the same key with 1706 * every station but there's no such requirement; VLANs could be 1707 * possible. 1708 */ 1709 1710 /* start without a key */ 1711 rx->key = NULL; 1712 fc = hdr->frame_control; 1713 1714 if (rx->sta) { 1715 int keyid = rx->sta->ptk_idx; 1716 1717 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1718 cs = rx->sta->cipher_scheme; 1719 keyid = ieee80211_get_cs_keyid(cs, rx->skb); 1720 if (unlikely(keyid < 0)) 1721 return RX_DROP_UNUSABLE; 1722 } 1723 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1724 } 1725 1726 if (!ieee80211_has_protected(fc)) 1727 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1728 1729 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1730 rx->key = sta_ptk; 1731 if ((status->flag & RX_FLAG_DECRYPTED) && 1732 (status->flag & RX_FLAG_IV_STRIPPED)) 1733 return RX_CONTINUE; 1734 /* Skip decryption if the frame is not protected. */ 1735 if (!ieee80211_has_protected(fc)) 1736 return RX_CONTINUE; 1737 } else if (mmie_keyidx >= 0) { 1738 /* Broadcast/multicast robust management frame / BIP */ 1739 if ((status->flag & RX_FLAG_DECRYPTED) && 1740 (status->flag & RX_FLAG_IV_STRIPPED)) 1741 return RX_CONTINUE; 1742 1743 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1744 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1745 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1746 if (rx->sta) { 1747 if (ieee80211_is_group_privacy_action(skb) && 1748 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1749 return RX_DROP_MONITOR; 1750 1751 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1752 } 1753 if (!rx->key) 1754 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1755 } else if (!ieee80211_has_protected(fc)) { 1756 /* 1757 * The frame was not protected, so skip decryption. However, we 1758 * need to set rx->key if there is a key that could have been 1759 * used so that the frame may be dropped if encryption would 1760 * have been expected. 1761 */ 1762 struct ieee80211_key *key = NULL; 1763 struct ieee80211_sub_if_data *sdata = rx->sdata; 1764 int i; 1765 1766 if (ieee80211_is_mgmt(fc) && 1767 is_multicast_ether_addr(hdr->addr1) && 1768 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1769 rx->key = key; 1770 else { 1771 if (rx->sta) { 1772 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1773 key = rcu_dereference(rx->sta->gtk[i]); 1774 if (key) 1775 break; 1776 } 1777 } 1778 if (!key) { 1779 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1780 key = rcu_dereference(sdata->keys[i]); 1781 if (key) 1782 break; 1783 } 1784 } 1785 if (key) 1786 rx->key = key; 1787 } 1788 return RX_CONTINUE; 1789 } else { 1790 u8 keyid; 1791 1792 /* 1793 * The device doesn't give us the IV so we won't be 1794 * able to look up the key. That's ok though, we 1795 * don't need to decrypt the frame, we just won't 1796 * be able to keep statistics accurate. 1797 * Except for key threshold notifications, should 1798 * we somehow allow the driver to tell us which key 1799 * the hardware used if this flag is set? 1800 */ 1801 if ((status->flag & RX_FLAG_DECRYPTED) && 1802 (status->flag & RX_FLAG_IV_STRIPPED)) 1803 return RX_CONTINUE; 1804 1805 hdrlen = ieee80211_hdrlen(fc); 1806 1807 if (cs) { 1808 keyidx = ieee80211_get_cs_keyid(cs, rx->skb); 1809 1810 if (unlikely(keyidx < 0)) 1811 return RX_DROP_UNUSABLE; 1812 } else { 1813 if (rx->skb->len < 8 + hdrlen) 1814 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1815 /* 1816 * no need to call ieee80211_wep_get_keyidx, 1817 * it verifies a bunch of things we've done already 1818 */ 1819 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1820 keyidx = keyid >> 6; 1821 } 1822 1823 /* check per-station GTK first, if multicast packet */ 1824 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1825 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1826 1827 /* if not found, try default key */ 1828 if (!rx->key) { 1829 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1830 1831 /* 1832 * RSNA-protected unicast frames should always be 1833 * sent with pairwise or station-to-station keys, 1834 * but for WEP we allow using a key index as well. 1835 */ 1836 if (rx->key && 1837 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1838 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1839 !is_multicast_ether_addr(hdr->addr1)) 1840 rx->key = NULL; 1841 } 1842 } 1843 1844 if (rx->key) { 1845 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1846 return RX_DROP_MONITOR; 1847 1848 /* TODO: add threshold stuff again */ 1849 } else { 1850 return RX_DROP_MONITOR; 1851 } 1852 1853 switch (rx->key->conf.cipher) { 1854 case WLAN_CIPHER_SUITE_WEP40: 1855 case WLAN_CIPHER_SUITE_WEP104: 1856 result = ieee80211_crypto_wep_decrypt(rx); 1857 break; 1858 case WLAN_CIPHER_SUITE_TKIP: 1859 result = ieee80211_crypto_tkip_decrypt(rx); 1860 break; 1861 case WLAN_CIPHER_SUITE_CCMP: 1862 result = ieee80211_crypto_ccmp_decrypt( 1863 rx, IEEE80211_CCMP_MIC_LEN); 1864 break; 1865 case WLAN_CIPHER_SUITE_CCMP_256: 1866 result = ieee80211_crypto_ccmp_decrypt( 1867 rx, IEEE80211_CCMP_256_MIC_LEN); 1868 break; 1869 case WLAN_CIPHER_SUITE_AES_CMAC: 1870 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1871 break; 1872 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1873 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 1874 break; 1875 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1876 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1877 result = ieee80211_crypto_aes_gmac_decrypt(rx); 1878 break; 1879 case WLAN_CIPHER_SUITE_GCMP: 1880 case WLAN_CIPHER_SUITE_GCMP_256: 1881 result = ieee80211_crypto_gcmp_decrypt(rx); 1882 break; 1883 default: 1884 result = ieee80211_crypto_hw_decrypt(rx); 1885 } 1886 1887 /* the hdr variable is invalid after the decrypt handlers */ 1888 1889 /* either the frame has been decrypted or will be dropped */ 1890 status->flag |= RX_FLAG_DECRYPTED; 1891 1892 return result; 1893 } 1894 1895 static inline struct ieee80211_fragment_entry * 1896 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1897 unsigned int frag, unsigned int seq, int rx_queue, 1898 struct sk_buff **skb) 1899 { 1900 struct ieee80211_fragment_entry *entry; 1901 1902 entry = &sdata->fragments[sdata->fragment_next++]; 1903 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1904 sdata->fragment_next = 0; 1905 1906 if (!skb_queue_empty(&entry->skb_list)) 1907 __skb_queue_purge(&entry->skb_list); 1908 1909 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1910 *skb = NULL; 1911 entry->first_frag_time = jiffies; 1912 entry->seq = seq; 1913 entry->rx_queue = rx_queue; 1914 entry->last_frag = frag; 1915 entry->check_sequential_pn = false; 1916 entry->extra_len = 0; 1917 1918 return entry; 1919 } 1920 1921 static inline struct ieee80211_fragment_entry * 1922 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1923 unsigned int frag, unsigned int seq, 1924 int rx_queue, struct ieee80211_hdr *hdr) 1925 { 1926 struct ieee80211_fragment_entry *entry; 1927 int i, idx; 1928 1929 idx = sdata->fragment_next; 1930 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1931 struct ieee80211_hdr *f_hdr; 1932 1933 idx--; 1934 if (idx < 0) 1935 idx = IEEE80211_FRAGMENT_MAX - 1; 1936 1937 entry = &sdata->fragments[idx]; 1938 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1939 entry->rx_queue != rx_queue || 1940 entry->last_frag + 1 != frag) 1941 continue; 1942 1943 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1944 1945 /* 1946 * Check ftype and addresses are equal, else check next fragment 1947 */ 1948 if (((hdr->frame_control ^ f_hdr->frame_control) & 1949 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1950 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1951 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1952 continue; 1953 1954 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1955 __skb_queue_purge(&entry->skb_list); 1956 continue; 1957 } 1958 return entry; 1959 } 1960 1961 return NULL; 1962 } 1963 1964 static ieee80211_rx_result debug_noinline 1965 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1966 { 1967 struct ieee80211_hdr *hdr; 1968 u16 sc; 1969 __le16 fc; 1970 unsigned int frag, seq; 1971 struct ieee80211_fragment_entry *entry; 1972 struct sk_buff *skb; 1973 1974 hdr = (struct ieee80211_hdr *)rx->skb->data; 1975 fc = hdr->frame_control; 1976 1977 if (ieee80211_is_ctl(fc)) 1978 return RX_CONTINUE; 1979 1980 sc = le16_to_cpu(hdr->seq_ctrl); 1981 frag = sc & IEEE80211_SCTL_FRAG; 1982 1983 if (is_multicast_ether_addr(hdr->addr1)) { 1984 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 1985 goto out_no_led; 1986 } 1987 1988 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1989 goto out; 1990 1991 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1992 1993 if (skb_linearize(rx->skb)) 1994 return RX_DROP_UNUSABLE; 1995 1996 /* 1997 * skb_linearize() might change the skb->data and 1998 * previously cached variables (in this case, hdr) need to 1999 * be refreshed with the new data. 2000 */ 2001 hdr = (struct ieee80211_hdr *)rx->skb->data; 2002 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2003 2004 if (frag == 0) { 2005 /* This is the first fragment of a new frame. */ 2006 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2007 rx->seqno_idx, &(rx->skb)); 2008 if (rx->key && 2009 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2010 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2011 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2012 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2013 ieee80211_has_protected(fc)) { 2014 int queue = rx->security_idx; 2015 2016 /* Store CCMP/GCMP PN so that we can verify that the 2017 * next fragment has a sequential PN value. 2018 */ 2019 entry->check_sequential_pn = true; 2020 memcpy(entry->last_pn, 2021 rx->key->u.ccmp.rx_pn[queue], 2022 IEEE80211_CCMP_PN_LEN); 2023 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2024 u.ccmp.rx_pn) != 2025 offsetof(struct ieee80211_key, 2026 u.gcmp.rx_pn)); 2027 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2028 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2029 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2030 IEEE80211_GCMP_PN_LEN); 2031 } 2032 return RX_QUEUED; 2033 } 2034 2035 /* This is a fragment for a frame that should already be pending in 2036 * fragment cache. Add this fragment to the end of the pending entry. 2037 */ 2038 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2039 rx->seqno_idx, hdr); 2040 if (!entry) { 2041 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2042 return RX_DROP_MONITOR; 2043 } 2044 2045 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2046 * MPDU PN values are not incrementing in steps of 1." 2047 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2048 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2049 */ 2050 if (entry->check_sequential_pn) { 2051 int i; 2052 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2053 int queue; 2054 2055 if (!rx->key || 2056 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2057 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2058 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2059 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2060 return RX_DROP_UNUSABLE; 2061 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2062 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2063 pn[i]++; 2064 if (pn[i]) 2065 break; 2066 } 2067 queue = rx->security_idx; 2068 rpn = rx->key->u.ccmp.rx_pn[queue]; 2069 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2070 return RX_DROP_UNUSABLE; 2071 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2072 } 2073 2074 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2075 __skb_queue_tail(&entry->skb_list, rx->skb); 2076 entry->last_frag = frag; 2077 entry->extra_len += rx->skb->len; 2078 if (ieee80211_has_morefrags(fc)) { 2079 rx->skb = NULL; 2080 return RX_QUEUED; 2081 } 2082 2083 rx->skb = __skb_dequeue(&entry->skb_list); 2084 if (skb_tailroom(rx->skb) < entry->extra_len) { 2085 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2086 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2087 GFP_ATOMIC))) { 2088 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2089 __skb_queue_purge(&entry->skb_list); 2090 return RX_DROP_UNUSABLE; 2091 } 2092 } 2093 while ((skb = __skb_dequeue(&entry->skb_list))) { 2094 skb_put_data(rx->skb, skb->data, skb->len); 2095 dev_kfree_skb(skb); 2096 } 2097 2098 out: 2099 ieee80211_led_rx(rx->local); 2100 out_no_led: 2101 if (rx->sta) 2102 rx->sta->rx_stats.packets++; 2103 return RX_CONTINUE; 2104 } 2105 2106 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2107 { 2108 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2109 return -EACCES; 2110 2111 return 0; 2112 } 2113 2114 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2115 { 2116 struct sk_buff *skb = rx->skb; 2117 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2118 2119 /* 2120 * Pass through unencrypted frames if the hardware has 2121 * decrypted them already. 2122 */ 2123 if (status->flag & RX_FLAG_DECRYPTED) 2124 return 0; 2125 2126 /* Drop unencrypted frames if key is set. */ 2127 if (unlikely(!ieee80211_has_protected(fc) && 2128 !ieee80211_is_nullfunc(fc) && 2129 ieee80211_is_data(fc) && rx->key)) 2130 return -EACCES; 2131 2132 return 0; 2133 } 2134 2135 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2136 { 2137 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2138 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2139 __le16 fc = hdr->frame_control; 2140 2141 /* 2142 * Pass through unencrypted frames if the hardware has 2143 * decrypted them already. 2144 */ 2145 if (status->flag & RX_FLAG_DECRYPTED) 2146 return 0; 2147 2148 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2149 if (unlikely(!ieee80211_has_protected(fc) && 2150 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2151 rx->key)) { 2152 if (ieee80211_is_deauth(fc) || 2153 ieee80211_is_disassoc(fc)) 2154 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2155 rx->skb->data, 2156 rx->skb->len); 2157 return -EACCES; 2158 } 2159 /* BIP does not use Protected field, so need to check MMIE */ 2160 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2161 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2162 if (ieee80211_is_deauth(fc) || 2163 ieee80211_is_disassoc(fc)) 2164 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2165 rx->skb->data, 2166 rx->skb->len); 2167 return -EACCES; 2168 } 2169 /* 2170 * When using MFP, Action frames are not allowed prior to 2171 * having configured keys. 2172 */ 2173 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2174 ieee80211_is_robust_mgmt_frame(rx->skb))) 2175 return -EACCES; 2176 } 2177 2178 return 0; 2179 } 2180 2181 static int 2182 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2183 { 2184 struct ieee80211_sub_if_data *sdata = rx->sdata; 2185 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2186 bool check_port_control = false; 2187 struct ethhdr *ehdr; 2188 int ret; 2189 2190 *port_control = false; 2191 if (ieee80211_has_a4(hdr->frame_control) && 2192 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2193 return -1; 2194 2195 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2196 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2197 2198 if (!sdata->u.mgd.use_4addr) 2199 return -1; 2200 else 2201 check_port_control = true; 2202 } 2203 2204 if (is_multicast_ether_addr(hdr->addr1) && 2205 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2206 return -1; 2207 2208 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2209 if (ret < 0) 2210 return ret; 2211 2212 ehdr = (struct ethhdr *) rx->skb->data; 2213 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2214 *port_control = true; 2215 else if (check_port_control) 2216 return -1; 2217 2218 return 0; 2219 } 2220 2221 /* 2222 * requires that rx->skb is a frame with ethernet header 2223 */ 2224 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2225 { 2226 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2227 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2228 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2229 2230 /* 2231 * Allow EAPOL frames to us/the PAE group address regardless 2232 * of whether the frame was encrypted or not. 2233 */ 2234 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2235 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2236 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2237 return true; 2238 2239 if (ieee80211_802_1x_port_control(rx) || 2240 ieee80211_drop_unencrypted(rx, fc)) 2241 return false; 2242 2243 return true; 2244 } 2245 2246 /* 2247 * requires that rx->skb is a frame with ethernet header 2248 */ 2249 static void 2250 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2251 { 2252 struct ieee80211_sub_if_data *sdata = rx->sdata; 2253 struct net_device *dev = sdata->dev; 2254 struct sk_buff *skb, *xmit_skb; 2255 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2256 struct sta_info *dsta; 2257 2258 skb = rx->skb; 2259 xmit_skb = NULL; 2260 2261 ieee80211_rx_stats(dev, skb->len); 2262 2263 if (rx->sta) { 2264 /* The seqno index has the same property as needed 2265 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2266 * for non-QoS-data frames. Here we know it's a data 2267 * frame, so count MSDUs. 2268 */ 2269 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2270 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2271 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2272 } 2273 2274 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2275 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2276 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2277 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2278 if (is_multicast_ether_addr(ehdr->h_dest) && 2279 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2280 /* 2281 * send multicast frames both to higher layers in 2282 * local net stack and back to the wireless medium 2283 */ 2284 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2285 if (!xmit_skb) 2286 net_info_ratelimited("%s: failed to clone multicast frame\n", 2287 dev->name); 2288 } else if (!is_multicast_ether_addr(ehdr->h_dest)) { 2289 dsta = sta_info_get(sdata, skb->data); 2290 if (dsta) { 2291 /* 2292 * The destination station is associated to 2293 * this AP (in this VLAN), so send the frame 2294 * directly to it and do not pass it to local 2295 * net stack. 2296 */ 2297 xmit_skb = skb; 2298 skb = NULL; 2299 } 2300 } 2301 } 2302 2303 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2304 if (skb) { 2305 /* 'align' will only take the values 0 or 2 here since all 2306 * frames are required to be aligned to 2-byte boundaries 2307 * when being passed to mac80211; the code here works just 2308 * as well if that isn't true, but mac80211 assumes it can 2309 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2310 */ 2311 int align; 2312 2313 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2314 if (align) { 2315 if (WARN_ON(skb_headroom(skb) < 3)) { 2316 dev_kfree_skb(skb); 2317 skb = NULL; 2318 } else { 2319 u8 *data = skb->data; 2320 size_t len = skb_headlen(skb); 2321 skb->data -= align; 2322 memmove(skb->data, data, len); 2323 skb_set_tail_pointer(skb, len); 2324 } 2325 } 2326 } 2327 #endif 2328 2329 if (skb) { 2330 /* deliver to local stack */ 2331 skb->protocol = eth_type_trans(skb, dev); 2332 memset(skb->cb, 0, sizeof(skb->cb)); 2333 if (rx->napi) 2334 napi_gro_receive(rx->napi, skb); 2335 else 2336 netif_receive_skb(skb); 2337 } 2338 2339 if (xmit_skb) { 2340 /* 2341 * Send to wireless media and increase priority by 256 to 2342 * keep the received priority instead of reclassifying 2343 * the frame (see cfg80211_classify8021d). 2344 */ 2345 xmit_skb->priority += 256; 2346 xmit_skb->protocol = htons(ETH_P_802_3); 2347 skb_reset_network_header(xmit_skb); 2348 skb_reset_mac_header(xmit_skb); 2349 dev_queue_xmit(xmit_skb); 2350 } 2351 } 2352 2353 static ieee80211_rx_result debug_noinline 2354 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2355 { 2356 struct net_device *dev = rx->sdata->dev; 2357 struct sk_buff *skb = rx->skb; 2358 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2359 __le16 fc = hdr->frame_control; 2360 struct sk_buff_head frame_list; 2361 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2362 struct ethhdr ethhdr; 2363 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2364 2365 if (unlikely(!ieee80211_is_data(fc))) 2366 return RX_CONTINUE; 2367 2368 if (unlikely(!ieee80211_is_data_present(fc))) 2369 return RX_DROP_MONITOR; 2370 2371 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2372 return RX_CONTINUE; 2373 2374 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2375 switch (rx->sdata->vif.type) { 2376 case NL80211_IFTYPE_AP_VLAN: 2377 if (!rx->sdata->u.vlan.sta) 2378 return RX_DROP_UNUSABLE; 2379 break; 2380 case NL80211_IFTYPE_STATION: 2381 if (!rx->sdata->u.mgd.use_4addr) 2382 return RX_DROP_UNUSABLE; 2383 break; 2384 default: 2385 return RX_DROP_UNUSABLE; 2386 } 2387 check_da = NULL; 2388 check_sa = NULL; 2389 } else switch (rx->sdata->vif.type) { 2390 case NL80211_IFTYPE_AP: 2391 case NL80211_IFTYPE_AP_VLAN: 2392 check_da = NULL; 2393 break; 2394 case NL80211_IFTYPE_STATION: 2395 if (!rx->sta || 2396 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2397 check_sa = NULL; 2398 break; 2399 case NL80211_IFTYPE_MESH_POINT: 2400 check_sa = NULL; 2401 break; 2402 default: 2403 break; 2404 } 2405 2406 if (is_multicast_ether_addr(hdr->addr1)) 2407 return RX_DROP_UNUSABLE; 2408 2409 skb->dev = dev; 2410 __skb_queue_head_init(&frame_list); 2411 2412 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2413 rx->sdata->vif.addr, 2414 rx->sdata->vif.type)) 2415 return RX_DROP_UNUSABLE; 2416 2417 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2418 rx->sdata->vif.type, 2419 rx->local->hw.extra_tx_headroom, 2420 check_da, check_sa); 2421 2422 while (!skb_queue_empty(&frame_list)) { 2423 rx->skb = __skb_dequeue(&frame_list); 2424 2425 if (!ieee80211_frame_allowed(rx, fc)) { 2426 dev_kfree_skb(rx->skb); 2427 continue; 2428 } 2429 2430 ieee80211_deliver_skb(rx); 2431 } 2432 2433 return RX_QUEUED; 2434 } 2435 2436 #ifdef CONFIG_MAC80211_MESH 2437 static ieee80211_rx_result 2438 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2439 { 2440 struct ieee80211_hdr *fwd_hdr, *hdr; 2441 struct ieee80211_tx_info *info; 2442 struct ieee80211s_hdr *mesh_hdr; 2443 struct sk_buff *skb = rx->skb, *fwd_skb; 2444 struct ieee80211_local *local = rx->local; 2445 struct ieee80211_sub_if_data *sdata = rx->sdata; 2446 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2447 u16 ac, q, hdrlen; 2448 2449 hdr = (struct ieee80211_hdr *) skb->data; 2450 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2451 2452 /* make sure fixed part of mesh header is there, also checks skb len */ 2453 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2454 return RX_DROP_MONITOR; 2455 2456 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2457 2458 /* make sure full mesh header is there, also checks skb len */ 2459 if (!pskb_may_pull(rx->skb, 2460 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2461 return RX_DROP_MONITOR; 2462 2463 /* reload pointers */ 2464 hdr = (struct ieee80211_hdr *) skb->data; 2465 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2466 2467 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2468 return RX_DROP_MONITOR; 2469 2470 /* frame is in RMC, don't forward */ 2471 if (ieee80211_is_data(hdr->frame_control) && 2472 is_multicast_ether_addr(hdr->addr1) && 2473 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2474 return RX_DROP_MONITOR; 2475 2476 if (!ieee80211_is_data(hdr->frame_control)) 2477 return RX_CONTINUE; 2478 2479 if (!mesh_hdr->ttl) 2480 return RX_DROP_MONITOR; 2481 2482 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2483 struct mesh_path *mppath; 2484 char *proxied_addr; 2485 char *mpp_addr; 2486 2487 if (is_multicast_ether_addr(hdr->addr1)) { 2488 mpp_addr = hdr->addr3; 2489 proxied_addr = mesh_hdr->eaddr1; 2490 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2491 MESH_FLAGS_AE_A5_A6) { 2492 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2493 mpp_addr = hdr->addr4; 2494 proxied_addr = mesh_hdr->eaddr2; 2495 } else { 2496 return RX_DROP_MONITOR; 2497 } 2498 2499 rcu_read_lock(); 2500 mppath = mpp_path_lookup(sdata, proxied_addr); 2501 if (!mppath) { 2502 mpp_path_add(sdata, proxied_addr, mpp_addr); 2503 } else { 2504 spin_lock_bh(&mppath->state_lock); 2505 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2506 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2507 mppath->exp_time = jiffies; 2508 spin_unlock_bh(&mppath->state_lock); 2509 } 2510 rcu_read_unlock(); 2511 } 2512 2513 /* Frame has reached destination. Don't forward */ 2514 if (!is_multicast_ether_addr(hdr->addr1) && 2515 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2516 return RX_CONTINUE; 2517 2518 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2519 q = sdata->vif.hw_queue[ac]; 2520 if (ieee80211_queue_stopped(&local->hw, q)) { 2521 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2522 return RX_DROP_MONITOR; 2523 } 2524 skb_set_queue_mapping(skb, q); 2525 2526 if (!--mesh_hdr->ttl) { 2527 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2528 goto out; 2529 } 2530 2531 if (!ifmsh->mshcfg.dot11MeshForwarding) 2532 goto out; 2533 2534 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2535 sdata->encrypt_headroom, 0, GFP_ATOMIC); 2536 if (!fwd_skb) { 2537 net_info_ratelimited("%s: failed to clone mesh frame\n", 2538 sdata->name); 2539 goto out; 2540 } 2541 2542 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2543 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2544 info = IEEE80211_SKB_CB(fwd_skb); 2545 memset(info, 0, sizeof(*info)); 2546 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2547 info->control.vif = &rx->sdata->vif; 2548 info->control.jiffies = jiffies; 2549 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2550 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2551 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2552 /* update power mode indication when forwarding */ 2553 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2554 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2555 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2556 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2557 } else { 2558 /* unable to resolve next hop */ 2559 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2560 fwd_hdr->addr3, 0, 2561 WLAN_REASON_MESH_PATH_NOFORWARD, 2562 fwd_hdr->addr2); 2563 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2564 kfree_skb(fwd_skb); 2565 return RX_DROP_MONITOR; 2566 } 2567 2568 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2569 ieee80211_add_pending_skb(local, fwd_skb); 2570 out: 2571 if (is_multicast_ether_addr(hdr->addr1)) 2572 return RX_CONTINUE; 2573 return RX_DROP_MONITOR; 2574 } 2575 #endif 2576 2577 static ieee80211_rx_result debug_noinline 2578 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2579 { 2580 struct ieee80211_sub_if_data *sdata = rx->sdata; 2581 struct ieee80211_local *local = rx->local; 2582 struct net_device *dev = sdata->dev; 2583 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2584 __le16 fc = hdr->frame_control; 2585 bool port_control; 2586 int err; 2587 2588 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2589 return RX_CONTINUE; 2590 2591 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2592 return RX_DROP_MONITOR; 2593 2594 /* 2595 * Send unexpected-4addr-frame event to hostapd. For older versions, 2596 * also drop the frame to cooked monitor interfaces. 2597 */ 2598 if (ieee80211_has_a4(hdr->frame_control) && 2599 sdata->vif.type == NL80211_IFTYPE_AP) { 2600 if (rx->sta && 2601 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2602 cfg80211_rx_unexpected_4addr_frame( 2603 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2604 return RX_DROP_MONITOR; 2605 } 2606 2607 err = __ieee80211_data_to_8023(rx, &port_control); 2608 if (unlikely(err)) 2609 return RX_DROP_UNUSABLE; 2610 2611 if (!ieee80211_frame_allowed(rx, fc)) 2612 return RX_DROP_MONITOR; 2613 2614 /* directly handle TDLS channel switch requests/responses */ 2615 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2616 cpu_to_be16(ETH_P_TDLS))) { 2617 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2618 2619 if (pskb_may_pull(rx->skb, 2620 offsetof(struct ieee80211_tdls_data, u)) && 2621 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2622 tf->category == WLAN_CATEGORY_TDLS && 2623 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2624 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2625 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2626 schedule_work(&local->tdls_chsw_work); 2627 if (rx->sta) 2628 rx->sta->rx_stats.packets++; 2629 2630 return RX_QUEUED; 2631 } 2632 } 2633 2634 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2635 unlikely(port_control) && sdata->bss) { 2636 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2637 u.ap); 2638 dev = sdata->dev; 2639 rx->sdata = sdata; 2640 } 2641 2642 rx->skb->dev = dev; 2643 2644 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2645 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2646 !is_multicast_ether_addr( 2647 ((struct ethhdr *)rx->skb->data)->h_dest) && 2648 (!local->scanning && 2649 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2650 mod_timer(&local->dynamic_ps_timer, jiffies + 2651 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2652 2653 ieee80211_deliver_skb(rx); 2654 2655 return RX_QUEUED; 2656 } 2657 2658 static ieee80211_rx_result debug_noinline 2659 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2660 { 2661 struct sk_buff *skb = rx->skb; 2662 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2663 struct tid_ampdu_rx *tid_agg_rx; 2664 u16 start_seq_num; 2665 u16 tid; 2666 2667 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2668 return RX_CONTINUE; 2669 2670 if (ieee80211_is_back_req(bar->frame_control)) { 2671 struct { 2672 __le16 control, start_seq_num; 2673 } __packed bar_data; 2674 struct ieee80211_event event = { 2675 .type = BAR_RX_EVENT, 2676 }; 2677 2678 if (!rx->sta) 2679 return RX_DROP_MONITOR; 2680 2681 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2682 &bar_data, sizeof(bar_data))) 2683 return RX_DROP_MONITOR; 2684 2685 tid = le16_to_cpu(bar_data.control) >> 12; 2686 2687 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2688 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2689 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2690 WLAN_BACK_RECIPIENT, 2691 WLAN_REASON_QSTA_REQUIRE_SETUP); 2692 2693 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2694 if (!tid_agg_rx) 2695 return RX_DROP_MONITOR; 2696 2697 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2698 event.u.ba.tid = tid; 2699 event.u.ba.ssn = start_seq_num; 2700 event.u.ba.sta = &rx->sta->sta; 2701 2702 /* reset session timer */ 2703 if (tid_agg_rx->timeout) 2704 mod_timer(&tid_agg_rx->session_timer, 2705 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2706 2707 spin_lock(&tid_agg_rx->reorder_lock); 2708 /* release stored frames up to start of BAR */ 2709 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2710 start_seq_num, frames); 2711 spin_unlock(&tid_agg_rx->reorder_lock); 2712 2713 drv_event_callback(rx->local, rx->sdata, &event); 2714 2715 kfree_skb(skb); 2716 return RX_QUEUED; 2717 } 2718 2719 /* 2720 * After this point, we only want management frames, 2721 * so we can drop all remaining control frames to 2722 * cooked monitor interfaces. 2723 */ 2724 return RX_DROP_MONITOR; 2725 } 2726 2727 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2728 struct ieee80211_mgmt *mgmt, 2729 size_t len) 2730 { 2731 struct ieee80211_local *local = sdata->local; 2732 struct sk_buff *skb; 2733 struct ieee80211_mgmt *resp; 2734 2735 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2736 /* Not to own unicast address */ 2737 return; 2738 } 2739 2740 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2741 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2742 /* Not from the current AP or not associated yet. */ 2743 return; 2744 } 2745 2746 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2747 /* Too short SA Query request frame */ 2748 return; 2749 } 2750 2751 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2752 if (skb == NULL) 2753 return; 2754 2755 skb_reserve(skb, local->hw.extra_tx_headroom); 2756 resp = skb_put_zero(skb, 24); 2757 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2758 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2759 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2760 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2761 IEEE80211_STYPE_ACTION); 2762 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2763 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2764 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2765 memcpy(resp->u.action.u.sa_query.trans_id, 2766 mgmt->u.action.u.sa_query.trans_id, 2767 WLAN_SA_QUERY_TR_ID_LEN); 2768 2769 ieee80211_tx_skb(sdata, skb); 2770 } 2771 2772 static ieee80211_rx_result debug_noinline 2773 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2774 { 2775 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2776 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2777 2778 /* 2779 * From here on, look only at management frames. 2780 * Data and control frames are already handled, 2781 * and unknown (reserved) frames are useless. 2782 */ 2783 if (rx->skb->len < 24) 2784 return RX_DROP_MONITOR; 2785 2786 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2787 return RX_DROP_MONITOR; 2788 2789 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2790 ieee80211_is_beacon(mgmt->frame_control) && 2791 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2792 int sig = 0; 2793 2794 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 2795 sig = status->signal; 2796 2797 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2798 rx->skb->data, rx->skb->len, 2799 status->freq, sig); 2800 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2801 } 2802 2803 if (ieee80211_drop_unencrypted_mgmt(rx)) 2804 return RX_DROP_UNUSABLE; 2805 2806 return RX_CONTINUE; 2807 } 2808 2809 static ieee80211_rx_result debug_noinline 2810 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2811 { 2812 struct ieee80211_local *local = rx->local; 2813 struct ieee80211_sub_if_data *sdata = rx->sdata; 2814 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2815 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2816 int len = rx->skb->len; 2817 2818 if (!ieee80211_is_action(mgmt->frame_control)) 2819 return RX_CONTINUE; 2820 2821 /* drop too small frames */ 2822 if (len < IEEE80211_MIN_ACTION_SIZE) 2823 return RX_DROP_UNUSABLE; 2824 2825 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2826 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2827 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2828 return RX_DROP_UNUSABLE; 2829 2830 switch (mgmt->u.action.category) { 2831 case WLAN_CATEGORY_HT: 2832 /* reject HT action frames from stations not supporting HT */ 2833 if (!rx->sta->sta.ht_cap.ht_supported) 2834 goto invalid; 2835 2836 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2837 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2838 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2839 sdata->vif.type != NL80211_IFTYPE_AP && 2840 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2841 break; 2842 2843 /* verify action & smps_control/chanwidth are present */ 2844 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2845 goto invalid; 2846 2847 switch (mgmt->u.action.u.ht_smps.action) { 2848 case WLAN_HT_ACTION_SMPS: { 2849 struct ieee80211_supported_band *sband; 2850 enum ieee80211_smps_mode smps_mode; 2851 2852 /* convert to HT capability */ 2853 switch (mgmt->u.action.u.ht_smps.smps_control) { 2854 case WLAN_HT_SMPS_CONTROL_DISABLED: 2855 smps_mode = IEEE80211_SMPS_OFF; 2856 break; 2857 case WLAN_HT_SMPS_CONTROL_STATIC: 2858 smps_mode = IEEE80211_SMPS_STATIC; 2859 break; 2860 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2861 smps_mode = IEEE80211_SMPS_DYNAMIC; 2862 break; 2863 default: 2864 goto invalid; 2865 } 2866 2867 /* if no change do nothing */ 2868 if (rx->sta->sta.smps_mode == smps_mode) 2869 goto handled; 2870 rx->sta->sta.smps_mode = smps_mode; 2871 2872 sband = rx->local->hw.wiphy->bands[status->band]; 2873 2874 rate_control_rate_update(local, sband, rx->sta, 2875 IEEE80211_RC_SMPS_CHANGED); 2876 goto handled; 2877 } 2878 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2879 struct ieee80211_supported_band *sband; 2880 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2881 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 2882 2883 /* If it doesn't support 40 MHz it can't change ... */ 2884 if (!(rx->sta->sta.ht_cap.cap & 2885 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2886 goto handled; 2887 2888 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2889 max_bw = IEEE80211_STA_RX_BW_20; 2890 else 2891 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 2892 2893 /* set cur_max_bandwidth and recalc sta bw */ 2894 rx->sta->cur_max_bandwidth = max_bw; 2895 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2896 2897 if (rx->sta->sta.bandwidth == new_bw) 2898 goto handled; 2899 2900 rx->sta->sta.bandwidth = new_bw; 2901 sband = rx->local->hw.wiphy->bands[status->band]; 2902 2903 rate_control_rate_update(local, sband, rx->sta, 2904 IEEE80211_RC_BW_CHANGED); 2905 goto handled; 2906 } 2907 default: 2908 goto invalid; 2909 } 2910 2911 break; 2912 case WLAN_CATEGORY_PUBLIC: 2913 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2914 goto invalid; 2915 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2916 break; 2917 if (!rx->sta) 2918 break; 2919 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2920 break; 2921 if (mgmt->u.action.u.ext_chan_switch.action_code != 2922 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2923 break; 2924 if (len < offsetof(struct ieee80211_mgmt, 2925 u.action.u.ext_chan_switch.variable)) 2926 goto invalid; 2927 goto queue; 2928 case WLAN_CATEGORY_VHT: 2929 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2930 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2931 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2932 sdata->vif.type != NL80211_IFTYPE_AP && 2933 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2934 break; 2935 2936 /* verify action code is present */ 2937 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2938 goto invalid; 2939 2940 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2941 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2942 /* verify opmode is present */ 2943 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2944 goto invalid; 2945 goto queue; 2946 } 2947 case WLAN_VHT_ACTION_GROUPID_MGMT: { 2948 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 2949 goto invalid; 2950 goto queue; 2951 } 2952 default: 2953 break; 2954 } 2955 break; 2956 case WLAN_CATEGORY_BACK: 2957 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2958 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2959 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2960 sdata->vif.type != NL80211_IFTYPE_AP && 2961 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2962 break; 2963 2964 /* verify action_code is present */ 2965 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2966 break; 2967 2968 switch (mgmt->u.action.u.addba_req.action_code) { 2969 case WLAN_ACTION_ADDBA_REQ: 2970 if (len < (IEEE80211_MIN_ACTION_SIZE + 2971 sizeof(mgmt->u.action.u.addba_req))) 2972 goto invalid; 2973 break; 2974 case WLAN_ACTION_ADDBA_RESP: 2975 if (len < (IEEE80211_MIN_ACTION_SIZE + 2976 sizeof(mgmt->u.action.u.addba_resp))) 2977 goto invalid; 2978 break; 2979 case WLAN_ACTION_DELBA: 2980 if (len < (IEEE80211_MIN_ACTION_SIZE + 2981 sizeof(mgmt->u.action.u.delba))) 2982 goto invalid; 2983 break; 2984 default: 2985 goto invalid; 2986 } 2987 2988 goto queue; 2989 case WLAN_CATEGORY_SPECTRUM_MGMT: 2990 /* verify action_code is present */ 2991 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2992 break; 2993 2994 switch (mgmt->u.action.u.measurement.action_code) { 2995 case WLAN_ACTION_SPCT_MSR_REQ: 2996 if (status->band != NL80211_BAND_5GHZ) 2997 break; 2998 2999 if (len < (IEEE80211_MIN_ACTION_SIZE + 3000 sizeof(mgmt->u.action.u.measurement))) 3001 break; 3002 3003 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3004 break; 3005 3006 ieee80211_process_measurement_req(sdata, mgmt, len); 3007 goto handled; 3008 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3009 u8 *bssid; 3010 if (len < (IEEE80211_MIN_ACTION_SIZE + 3011 sizeof(mgmt->u.action.u.chan_switch))) 3012 break; 3013 3014 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3015 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3016 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3017 break; 3018 3019 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3020 bssid = sdata->u.mgd.bssid; 3021 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3022 bssid = sdata->u.ibss.bssid; 3023 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3024 bssid = mgmt->sa; 3025 else 3026 break; 3027 3028 if (!ether_addr_equal(mgmt->bssid, bssid)) 3029 break; 3030 3031 goto queue; 3032 } 3033 } 3034 break; 3035 case WLAN_CATEGORY_SA_QUERY: 3036 if (len < (IEEE80211_MIN_ACTION_SIZE + 3037 sizeof(mgmt->u.action.u.sa_query))) 3038 break; 3039 3040 switch (mgmt->u.action.u.sa_query.action) { 3041 case WLAN_ACTION_SA_QUERY_REQUEST: 3042 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3043 break; 3044 ieee80211_process_sa_query_req(sdata, mgmt, len); 3045 goto handled; 3046 } 3047 break; 3048 case WLAN_CATEGORY_SELF_PROTECTED: 3049 if (len < (IEEE80211_MIN_ACTION_SIZE + 3050 sizeof(mgmt->u.action.u.self_prot.action_code))) 3051 break; 3052 3053 switch (mgmt->u.action.u.self_prot.action_code) { 3054 case WLAN_SP_MESH_PEERING_OPEN: 3055 case WLAN_SP_MESH_PEERING_CLOSE: 3056 case WLAN_SP_MESH_PEERING_CONFIRM: 3057 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3058 goto invalid; 3059 if (sdata->u.mesh.user_mpm) 3060 /* userspace handles this frame */ 3061 break; 3062 goto queue; 3063 case WLAN_SP_MGK_INFORM: 3064 case WLAN_SP_MGK_ACK: 3065 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3066 goto invalid; 3067 break; 3068 } 3069 break; 3070 case WLAN_CATEGORY_MESH_ACTION: 3071 if (len < (IEEE80211_MIN_ACTION_SIZE + 3072 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3073 break; 3074 3075 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3076 break; 3077 if (mesh_action_is_path_sel(mgmt) && 3078 !mesh_path_sel_is_hwmp(sdata)) 3079 break; 3080 goto queue; 3081 } 3082 3083 return RX_CONTINUE; 3084 3085 invalid: 3086 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3087 /* will return in the next handlers */ 3088 return RX_CONTINUE; 3089 3090 handled: 3091 if (rx->sta) 3092 rx->sta->rx_stats.packets++; 3093 dev_kfree_skb(rx->skb); 3094 return RX_QUEUED; 3095 3096 queue: 3097 skb_queue_tail(&sdata->skb_queue, rx->skb); 3098 ieee80211_queue_work(&local->hw, &sdata->work); 3099 if (rx->sta) 3100 rx->sta->rx_stats.packets++; 3101 return RX_QUEUED; 3102 } 3103 3104 static ieee80211_rx_result debug_noinline 3105 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3106 { 3107 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3108 int sig = 0; 3109 3110 /* skip known-bad action frames and return them in the next handler */ 3111 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3112 return RX_CONTINUE; 3113 3114 /* 3115 * Getting here means the kernel doesn't know how to handle 3116 * it, but maybe userspace does ... include returned frames 3117 * so userspace can register for those to know whether ones 3118 * it transmitted were processed or returned. 3119 */ 3120 3121 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 3122 sig = status->signal; 3123 3124 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 3125 rx->skb->data, rx->skb->len, 0)) { 3126 if (rx->sta) 3127 rx->sta->rx_stats.packets++; 3128 dev_kfree_skb(rx->skb); 3129 return RX_QUEUED; 3130 } 3131 3132 return RX_CONTINUE; 3133 } 3134 3135 static ieee80211_rx_result debug_noinline 3136 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3137 { 3138 struct ieee80211_local *local = rx->local; 3139 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3140 struct sk_buff *nskb; 3141 struct ieee80211_sub_if_data *sdata = rx->sdata; 3142 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3143 3144 if (!ieee80211_is_action(mgmt->frame_control)) 3145 return RX_CONTINUE; 3146 3147 /* 3148 * For AP mode, hostapd is responsible for handling any action 3149 * frames that we didn't handle, including returning unknown 3150 * ones. For all other modes we will return them to the sender, 3151 * setting the 0x80 bit in the action category, as required by 3152 * 802.11-2012 9.24.4. 3153 * Newer versions of hostapd shall also use the management frame 3154 * registration mechanisms, but older ones still use cooked 3155 * monitor interfaces so push all frames there. 3156 */ 3157 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3158 (sdata->vif.type == NL80211_IFTYPE_AP || 3159 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3160 return RX_DROP_MONITOR; 3161 3162 if (is_multicast_ether_addr(mgmt->da)) 3163 return RX_DROP_MONITOR; 3164 3165 /* do not return rejected action frames */ 3166 if (mgmt->u.action.category & 0x80) 3167 return RX_DROP_UNUSABLE; 3168 3169 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3170 GFP_ATOMIC); 3171 if (nskb) { 3172 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3173 3174 nmgmt->u.action.category |= 0x80; 3175 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3176 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3177 3178 memset(nskb->cb, 0, sizeof(nskb->cb)); 3179 3180 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3181 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3182 3183 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3184 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3185 IEEE80211_TX_CTL_NO_CCK_RATE; 3186 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3187 info->hw_queue = 3188 local->hw.offchannel_tx_hw_queue; 3189 } 3190 3191 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3192 status->band); 3193 } 3194 dev_kfree_skb(rx->skb); 3195 return RX_QUEUED; 3196 } 3197 3198 static ieee80211_rx_result debug_noinline 3199 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3200 { 3201 struct ieee80211_sub_if_data *sdata = rx->sdata; 3202 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3203 __le16 stype; 3204 3205 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3206 3207 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3208 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3209 sdata->vif.type != NL80211_IFTYPE_OCB && 3210 sdata->vif.type != NL80211_IFTYPE_STATION) 3211 return RX_DROP_MONITOR; 3212 3213 switch (stype) { 3214 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3215 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3216 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3217 /* process for all: mesh, mlme, ibss */ 3218 break; 3219 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3220 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3221 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3222 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3223 if (is_multicast_ether_addr(mgmt->da) && 3224 !is_broadcast_ether_addr(mgmt->da)) 3225 return RX_DROP_MONITOR; 3226 3227 /* process only for station */ 3228 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3229 return RX_DROP_MONITOR; 3230 break; 3231 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3232 /* process only for ibss and mesh */ 3233 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3234 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3235 return RX_DROP_MONITOR; 3236 break; 3237 default: 3238 return RX_DROP_MONITOR; 3239 } 3240 3241 /* queue up frame and kick off work to process it */ 3242 skb_queue_tail(&sdata->skb_queue, rx->skb); 3243 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3244 if (rx->sta) 3245 rx->sta->rx_stats.packets++; 3246 3247 return RX_QUEUED; 3248 } 3249 3250 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3251 struct ieee80211_rate *rate) 3252 { 3253 struct ieee80211_sub_if_data *sdata; 3254 struct ieee80211_local *local = rx->local; 3255 struct sk_buff *skb = rx->skb, *skb2; 3256 struct net_device *prev_dev = NULL; 3257 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3258 int needed_headroom; 3259 3260 /* 3261 * If cooked monitor has been processed already, then 3262 * don't do it again. If not, set the flag. 3263 */ 3264 if (rx->flags & IEEE80211_RX_CMNTR) 3265 goto out_free_skb; 3266 rx->flags |= IEEE80211_RX_CMNTR; 3267 3268 /* If there are no cooked monitor interfaces, just free the SKB */ 3269 if (!local->cooked_mntrs) 3270 goto out_free_skb; 3271 3272 /* vendor data is long removed here */ 3273 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3274 /* room for the radiotap header based on driver features */ 3275 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3276 3277 if (skb_headroom(skb) < needed_headroom && 3278 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3279 goto out_free_skb; 3280 3281 /* prepend radiotap information */ 3282 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3283 false); 3284 3285 skb_reset_mac_header(skb); 3286 skb->ip_summed = CHECKSUM_UNNECESSARY; 3287 skb->pkt_type = PACKET_OTHERHOST; 3288 skb->protocol = htons(ETH_P_802_2); 3289 3290 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3291 if (!ieee80211_sdata_running(sdata)) 3292 continue; 3293 3294 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3295 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3296 continue; 3297 3298 if (prev_dev) { 3299 skb2 = skb_clone(skb, GFP_ATOMIC); 3300 if (skb2) { 3301 skb2->dev = prev_dev; 3302 netif_receive_skb(skb2); 3303 } 3304 } 3305 3306 prev_dev = sdata->dev; 3307 ieee80211_rx_stats(sdata->dev, skb->len); 3308 } 3309 3310 if (prev_dev) { 3311 skb->dev = prev_dev; 3312 netif_receive_skb(skb); 3313 return; 3314 } 3315 3316 out_free_skb: 3317 dev_kfree_skb(skb); 3318 } 3319 3320 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3321 ieee80211_rx_result res) 3322 { 3323 switch (res) { 3324 case RX_DROP_MONITOR: 3325 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3326 if (rx->sta) 3327 rx->sta->rx_stats.dropped++; 3328 /* fall through */ 3329 case RX_CONTINUE: { 3330 struct ieee80211_rate *rate = NULL; 3331 struct ieee80211_supported_band *sband; 3332 struct ieee80211_rx_status *status; 3333 3334 status = IEEE80211_SKB_RXCB((rx->skb)); 3335 3336 sband = rx->local->hw.wiphy->bands[status->band]; 3337 if (!(status->encoding == RX_ENC_HT) && 3338 !(status->encoding == RX_ENC_VHT)) 3339 rate = &sband->bitrates[status->rate_idx]; 3340 3341 ieee80211_rx_cooked_monitor(rx, rate); 3342 break; 3343 } 3344 case RX_DROP_UNUSABLE: 3345 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3346 if (rx->sta) 3347 rx->sta->rx_stats.dropped++; 3348 dev_kfree_skb(rx->skb); 3349 break; 3350 case RX_QUEUED: 3351 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3352 break; 3353 } 3354 } 3355 3356 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3357 struct sk_buff_head *frames) 3358 { 3359 ieee80211_rx_result res = RX_DROP_MONITOR; 3360 struct sk_buff *skb; 3361 3362 #define CALL_RXH(rxh) \ 3363 do { \ 3364 res = rxh(rx); \ 3365 if (res != RX_CONTINUE) \ 3366 goto rxh_next; \ 3367 } while (0) 3368 3369 /* Lock here to avoid hitting all of the data used in the RX 3370 * path (e.g. key data, station data, ...) concurrently when 3371 * a frame is released from the reorder buffer due to timeout 3372 * from the timer, potentially concurrently with RX from the 3373 * driver. 3374 */ 3375 spin_lock_bh(&rx->local->rx_path_lock); 3376 3377 while ((skb = __skb_dequeue(frames))) { 3378 /* 3379 * all the other fields are valid across frames 3380 * that belong to an aMPDU since they are on the 3381 * same TID from the same station 3382 */ 3383 rx->skb = skb; 3384 3385 CALL_RXH(ieee80211_rx_h_check_more_data); 3386 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3387 CALL_RXH(ieee80211_rx_h_sta_process); 3388 CALL_RXH(ieee80211_rx_h_decrypt); 3389 CALL_RXH(ieee80211_rx_h_defragment); 3390 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3391 /* must be after MMIC verify so header is counted in MPDU mic */ 3392 #ifdef CONFIG_MAC80211_MESH 3393 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3394 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3395 #endif 3396 CALL_RXH(ieee80211_rx_h_amsdu); 3397 CALL_RXH(ieee80211_rx_h_data); 3398 3399 /* special treatment -- needs the queue */ 3400 res = ieee80211_rx_h_ctrl(rx, frames); 3401 if (res != RX_CONTINUE) 3402 goto rxh_next; 3403 3404 CALL_RXH(ieee80211_rx_h_mgmt_check); 3405 CALL_RXH(ieee80211_rx_h_action); 3406 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3407 CALL_RXH(ieee80211_rx_h_action_return); 3408 CALL_RXH(ieee80211_rx_h_mgmt); 3409 3410 rxh_next: 3411 ieee80211_rx_handlers_result(rx, res); 3412 3413 #undef CALL_RXH 3414 } 3415 3416 spin_unlock_bh(&rx->local->rx_path_lock); 3417 } 3418 3419 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3420 { 3421 struct sk_buff_head reorder_release; 3422 ieee80211_rx_result res = RX_DROP_MONITOR; 3423 3424 __skb_queue_head_init(&reorder_release); 3425 3426 #define CALL_RXH(rxh) \ 3427 do { \ 3428 res = rxh(rx); \ 3429 if (res != RX_CONTINUE) \ 3430 goto rxh_next; \ 3431 } while (0) 3432 3433 CALL_RXH(ieee80211_rx_h_check_dup); 3434 CALL_RXH(ieee80211_rx_h_check); 3435 3436 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3437 3438 ieee80211_rx_handlers(rx, &reorder_release); 3439 return; 3440 3441 rxh_next: 3442 ieee80211_rx_handlers_result(rx, res); 3443 3444 #undef CALL_RXH 3445 } 3446 3447 /* 3448 * This function makes calls into the RX path, therefore 3449 * it has to be invoked under RCU read lock. 3450 */ 3451 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3452 { 3453 struct sk_buff_head frames; 3454 struct ieee80211_rx_data rx = { 3455 .sta = sta, 3456 .sdata = sta->sdata, 3457 .local = sta->local, 3458 /* This is OK -- must be QoS data frame */ 3459 .security_idx = tid, 3460 .seqno_idx = tid, 3461 .napi = NULL, /* must be NULL to not have races */ 3462 }; 3463 struct tid_ampdu_rx *tid_agg_rx; 3464 3465 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3466 if (!tid_agg_rx) 3467 return; 3468 3469 __skb_queue_head_init(&frames); 3470 3471 spin_lock(&tid_agg_rx->reorder_lock); 3472 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3473 spin_unlock(&tid_agg_rx->reorder_lock); 3474 3475 if (!skb_queue_empty(&frames)) { 3476 struct ieee80211_event event = { 3477 .type = BA_FRAME_TIMEOUT, 3478 .u.ba.tid = tid, 3479 .u.ba.sta = &sta->sta, 3480 }; 3481 drv_event_callback(rx.local, rx.sdata, &event); 3482 } 3483 3484 ieee80211_rx_handlers(&rx, &frames); 3485 } 3486 3487 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3488 u16 ssn, u64 filtered, 3489 u16 received_mpdus) 3490 { 3491 struct sta_info *sta; 3492 struct tid_ampdu_rx *tid_agg_rx; 3493 struct sk_buff_head frames; 3494 struct ieee80211_rx_data rx = { 3495 /* This is OK -- must be QoS data frame */ 3496 .security_idx = tid, 3497 .seqno_idx = tid, 3498 }; 3499 int i, diff; 3500 3501 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3502 return; 3503 3504 __skb_queue_head_init(&frames); 3505 3506 sta = container_of(pubsta, struct sta_info, sta); 3507 3508 rx.sta = sta; 3509 rx.sdata = sta->sdata; 3510 rx.local = sta->local; 3511 3512 rcu_read_lock(); 3513 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3514 if (!tid_agg_rx) 3515 goto out; 3516 3517 spin_lock_bh(&tid_agg_rx->reorder_lock); 3518 3519 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3520 int release; 3521 3522 /* release all frames in the reorder buffer */ 3523 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3524 IEEE80211_SN_MODULO; 3525 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3526 release, &frames); 3527 /* update ssn to match received ssn */ 3528 tid_agg_rx->head_seq_num = ssn; 3529 } else { 3530 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3531 &frames); 3532 } 3533 3534 /* handle the case that received ssn is behind the mac ssn. 3535 * it can be tid_agg_rx->buf_size behind and still be valid */ 3536 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3537 if (diff >= tid_agg_rx->buf_size) { 3538 tid_agg_rx->reorder_buf_filtered = 0; 3539 goto release; 3540 } 3541 filtered = filtered >> diff; 3542 ssn += diff; 3543 3544 /* update bitmap */ 3545 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3546 int index = (ssn + i) % tid_agg_rx->buf_size; 3547 3548 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3549 if (filtered & BIT_ULL(i)) 3550 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3551 } 3552 3553 /* now process also frames that the filter marking released */ 3554 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3555 3556 release: 3557 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3558 3559 ieee80211_rx_handlers(&rx, &frames); 3560 3561 out: 3562 rcu_read_unlock(); 3563 } 3564 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3565 3566 /* main receive path */ 3567 3568 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3569 { 3570 struct ieee80211_sub_if_data *sdata = rx->sdata; 3571 struct sk_buff *skb = rx->skb; 3572 struct ieee80211_hdr *hdr = (void *)skb->data; 3573 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3574 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3575 bool multicast = is_multicast_ether_addr(hdr->addr1); 3576 3577 switch (sdata->vif.type) { 3578 case NL80211_IFTYPE_STATION: 3579 if (!bssid && !sdata->u.mgd.use_4addr) 3580 return false; 3581 if (multicast) 3582 return true; 3583 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3584 case NL80211_IFTYPE_ADHOC: 3585 if (!bssid) 3586 return false; 3587 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3588 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3589 return false; 3590 if (ieee80211_is_beacon(hdr->frame_control)) 3591 return true; 3592 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3593 return false; 3594 if (!multicast && 3595 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3596 return false; 3597 if (!rx->sta) { 3598 int rate_idx; 3599 if (status->encoding != RX_ENC_LEGACY) 3600 rate_idx = 0; /* TODO: HT/VHT rates */ 3601 else 3602 rate_idx = status->rate_idx; 3603 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3604 BIT(rate_idx)); 3605 } 3606 return true; 3607 case NL80211_IFTYPE_OCB: 3608 if (!bssid) 3609 return false; 3610 if (!ieee80211_is_data_present(hdr->frame_control)) 3611 return false; 3612 if (!is_broadcast_ether_addr(bssid)) 3613 return false; 3614 if (!multicast && 3615 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3616 return false; 3617 if (!rx->sta) { 3618 int rate_idx; 3619 if (status->encoding != RX_ENC_LEGACY) 3620 rate_idx = 0; /* TODO: HT rates */ 3621 else 3622 rate_idx = status->rate_idx; 3623 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3624 BIT(rate_idx)); 3625 } 3626 return true; 3627 case NL80211_IFTYPE_MESH_POINT: 3628 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 3629 return false; 3630 if (multicast) 3631 return true; 3632 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3633 case NL80211_IFTYPE_AP_VLAN: 3634 case NL80211_IFTYPE_AP: 3635 if (!bssid) 3636 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3637 3638 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3639 /* 3640 * Accept public action frames even when the 3641 * BSSID doesn't match, this is used for P2P 3642 * and location updates. Note that mac80211 3643 * itself never looks at these frames. 3644 */ 3645 if (!multicast && 3646 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3647 return false; 3648 if (ieee80211_is_public_action(hdr, skb->len)) 3649 return true; 3650 return ieee80211_is_beacon(hdr->frame_control); 3651 } 3652 3653 if (!ieee80211_has_tods(hdr->frame_control)) { 3654 /* ignore data frames to TDLS-peers */ 3655 if (ieee80211_is_data(hdr->frame_control)) 3656 return false; 3657 /* ignore action frames to TDLS-peers */ 3658 if (ieee80211_is_action(hdr->frame_control) && 3659 !is_broadcast_ether_addr(bssid) && 3660 !ether_addr_equal(bssid, hdr->addr1)) 3661 return false; 3662 } 3663 3664 /* 3665 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 3666 * the BSSID - we've checked that already but may have accepted 3667 * the wildcard (ff:ff:ff:ff:ff:ff). 3668 * 3669 * It also says: 3670 * The BSSID of the Data frame is determined as follows: 3671 * a) If the STA is contained within an AP or is associated 3672 * with an AP, the BSSID is the address currently in use 3673 * by the STA contained in the AP. 3674 * 3675 * So we should not accept data frames with an address that's 3676 * multicast. 3677 * 3678 * Accepting it also opens a security problem because stations 3679 * could encrypt it with the GTK and inject traffic that way. 3680 */ 3681 if (ieee80211_is_data(hdr->frame_control) && multicast) 3682 return false; 3683 3684 return true; 3685 case NL80211_IFTYPE_WDS: 3686 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3687 return false; 3688 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 3689 case NL80211_IFTYPE_P2P_DEVICE: 3690 return ieee80211_is_public_action(hdr, skb->len) || 3691 ieee80211_is_probe_req(hdr->frame_control) || 3692 ieee80211_is_probe_resp(hdr->frame_control) || 3693 ieee80211_is_beacon(hdr->frame_control); 3694 case NL80211_IFTYPE_NAN: 3695 /* Currently no frames on NAN interface are allowed */ 3696 return false; 3697 default: 3698 break; 3699 } 3700 3701 WARN_ON_ONCE(1); 3702 return false; 3703 } 3704 3705 void ieee80211_check_fast_rx(struct sta_info *sta) 3706 { 3707 struct ieee80211_sub_if_data *sdata = sta->sdata; 3708 struct ieee80211_local *local = sdata->local; 3709 struct ieee80211_key *key; 3710 struct ieee80211_fast_rx fastrx = { 3711 .dev = sdata->dev, 3712 .vif_type = sdata->vif.type, 3713 .control_port_protocol = sdata->control_port_protocol, 3714 }, *old, *new = NULL; 3715 bool assign = false; 3716 3717 /* use sparse to check that we don't return without updating */ 3718 __acquire(check_fast_rx); 3719 3720 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 3721 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 3722 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 3723 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 3724 3725 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 3726 3727 /* fast-rx doesn't do reordering */ 3728 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 3729 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 3730 goto clear; 3731 3732 switch (sdata->vif.type) { 3733 case NL80211_IFTYPE_STATION: 3734 /* 4-addr is harder to deal with, later maybe */ 3735 if (sdata->u.mgd.use_4addr) 3736 goto clear; 3737 /* software powersave is a huge mess, avoid all of it */ 3738 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 3739 goto clear; 3740 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 3741 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 3742 goto clear; 3743 if (sta->sta.tdls) { 3744 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3745 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3746 fastrx.expected_ds_bits = 0; 3747 } else { 3748 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 3749 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3750 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 3751 fastrx.expected_ds_bits = 3752 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3753 } 3754 break; 3755 case NL80211_IFTYPE_AP_VLAN: 3756 case NL80211_IFTYPE_AP: 3757 /* parallel-rx requires this, at least with calls to 3758 * ieee80211_sta_ps_transition() 3759 */ 3760 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 3761 goto clear; 3762 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3763 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3764 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 3765 3766 fastrx.internal_forward = 3767 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 3768 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 3769 !sdata->u.vlan.sta); 3770 break; 3771 default: 3772 goto clear; 3773 } 3774 3775 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 3776 goto clear; 3777 3778 rcu_read_lock(); 3779 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 3780 if (key) { 3781 switch (key->conf.cipher) { 3782 case WLAN_CIPHER_SUITE_TKIP: 3783 /* we don't want to deal with MMIC in fast-rx */ 3784 goto clear_rcu; 3785 case WLAN_CIPHER_SUITE_CCMP: 3786 case WLAN_CIPHER_SUITE_CCMP_256: 3787 case WLAN_CIPHER_SUITE_GCMP: 3788 case WLAN_CIPHER_SUITE_GCMP_256: 3789 break; 3790 default: 3791 /* we also don't want to deal with WEP or cipher scheme 3792 * since those require looking up the key idx in the 3793 * frame, rather than assuming the PTK is used 3794 * (we need to revisit this once we implement the real 3795 * PTK index, which is now valid in the spec, but we 3796 * haven't implemented that part yet) 3797 */ 3798 goto clear_rcu; 3799 } 3800 3801 fastrx.key = true; 3802 fastrx.icv_len = key->conf.icv_len; 3803 } 3804 3805 assign = true; 3806 clear_rcu: 3807 rcu_read_unlock(); 3808 clear: 3809 __release(check_fast_rx); 3810 3811 if (assign) 3812 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 3813 3814 spin_lock_bh(&sta->lock); 3815 old = rcu_dereference_protected(sta->fast_rx, true); 3816 rcu_assign_pointer(sta->fast_rx, new); 3817 spin_unlock_bh(&sta->lock); 3818 3819 if (old) 3820 kfree_rcu(old, rcu_head); 3821 } 3822 3823 void ieee80211_clear_fast_rx(struct sta_info *sta) 3824 { 3825 struct ieee80211_fast_rx *old; 3826 3827 spin_lock_bh(&sta->lock); 3828 old = rcu_dereference_protected(sta->fast_rx, true); 3829 RCU_INIT_POINTER(sta->fast_rx, NULL); 3830 spin_unlock_bh(&sta->lock); 3831 3832 if (old) 3833 kfree_rcu(old, rcu_head); 3834 } 3835 3836 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3837 { 3838 struct ieee80211_local *local = sdata->local; 3839 struct sta_info *sta; 3840 3841 lockdep_assert_held(&local->sta_mtx); 3842 3843 list_for_each_entry_rcu(sta, &local->sta_list, list) { 3844 if (sdata != sta->sdata && 3845 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 3846 continue; 3847 ieee80211_check_fast_rx(sta); 3848 } 3849 } 3850 3851 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3852 { 3853 struct ieee80211_local *local = sdata->local; 3854 3855 mutex_lock(&local->sta_mtx); 3856 __ieee80211_check_fast_rx_iface(sdata); 3857 mutex_unlock(&local->sta_mtx); 3858 } 3859 3860 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 3861 struct ieee80211_fast_rx *fast_rx) 3862 { 3863 struct sk_buff *skb = rx->skb; 3864 struct ieee80211_hdr *hdr = (void *)skb->data; 3865 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3866 struct sta_info *sta = rx->sta; 3867 int orig_len = skb->len; 3868 int snap_offs = ieee80211_hdrlen(hdr->frame_control); 3869 struct { 3870 u8 snap[sizeof(rfc1042_header)]; 3871 __be16 proto; 3872 } *payload __aligned(2); 3873 struct { 3874 u8 da[ETH_ALEN]; 3875 u8 sa[ETH_ALEN]; 3876 } addrs __aligned(2); 3877 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 3878 3879 if (fast_rx->uses_rss) 3880 stats = this_cpu_ptr(sta->pcpu_rx_stats); 3881 3882 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 3883 * to a common data structure; drivers can implement that per queue 3884 * but we don't have that information in mac80211 3885 */ 3886 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 3887 return false; 3888 3889 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 3890 3891 /* If using encryption, we also need to have: 3892 * - PN_VALIDATED: similar, but the implementation is tricky 3893 * - DECRYPTED: necessary for PN_VALIDATED 3894 */ 3895 if (fast_rx->key && 3896 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 3897 return false; 3898 3899 /* we don't deal with A-MSDU deaggregation here */ 3900 if (status->rx_flags & IEEE80211_RX_AMSDU) 3901 return false; 3902 3903 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3904 return false; 3905 3906 if (unlikely(ieee80211_is_frag(hdr))) 3907 return false; 3908 3909 /* Since our interface address cannot be multicast, this 3910 * implicitly also rejects multicast frames without the 3911 * explicit check. 3912 * 3913 * We shouldn't get any *data* frames not addressed to us 3914 * (AP mode will accept multicast *management* frames), but 3915 * punting here will make it go through the full checks in 3916 * ieee80211_accept_frame(). 3917 */ 3918 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 3919 return false; 3920 3921 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 3922 IEEE80211_FCTL_TODS)) != 3923 fast_rx->expected_ds_bits) 3924 goto drop; 3925 3926 /* assign the key to drop unencrypted frames (later) 3927 * and strip the IV/MIC if necessary 3928 */ 3929 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 3930 /* GCMP header length is the same */ 3931 snap_offs += IEEE80211_CCMP_HDR_LEN; 3932 } 3933 3934 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 3935 goto drop; 3936 payload = (void *)(skb->data + snap_offs); 3937 3938 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 3939 return false; 3940 3941 /* Don't handle these here since they require special code. 3942 * Accept AARP and IPX even though they should come with a 3943 * bridge-tunnel header - but if we get them this way then 3944 * there's little point in discarding them. 3945 */ 3946 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 3947 payload->proto == fast_rx->control_port_protocol)) 3948 return false; 3949 3950 /* after this point, don't punt to the slowpath! */ 3951 3952 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 3953 pskb_trim(skb, skb->len - fast_rx->icv_len)) 3954 goto drop; 3955 3956 if (unlikely(fast_rx->sta_notify)) { 3957 ieee80211_sta_rx_notify(rx->sdata, hdr); 3958 fast_rx->sta_notify = false; 3959 } 3960 3961 /* statistics part of ieee80211_rx_h_sta_process() */ 3962 stats->last_rx = jiffies; 3963 stats->last_rate = sta_stats_encode_rate(status); 3964 3965 stats->fragments++; 3966 stats->packets++; 3967 3968 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 3969 stats->last_signal = status->signal; 3970 if (!fast_rx->uses_rss) 3971 ewma_signal_add(&sta->rx_stats_avg.signal, 3972 -status->signal); 3973 } 3974 3975 if (status->chains) { 3976 int i; 3977 3978 stats->chains = status->chains; 3979 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 3980 int signal = status->chain_signal[i]; 3981 3982 if (!(status->chains & BIT(i))) 3983 continue; 3984 3985 stats->chain_signal_last[i] = signal; 3986 if (!fast_rx->uses_rss) 3987 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 3988 -signal); 3989 } 3990 } 3991 /* end of statistics */ 3992 3993 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 3994 goto drop; 3995 3996 /* do the header conversion - first grab the addresses */ 3997 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 3998 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 3999 /* remove the SNAP but leave the ethertype */ 4000 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4001 /* push the addresses in front */ 4002 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4003 4004 skb->dev = fast_rx->dev; 4005 4006 ieee80211_rx_stats(fast_rx->dev, skb->len); 4007 4008 /* The seqno index has the same property as needed 4009 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4010 * for non-QoS-data frames. Here we know it's a data 4011 * frame, so count MSDUs. 4012 */ 4013 u64_stats_update_begin(&stats->syncp); 4014 stats->msdu[rx->seqno_idx]++; 4015 stats->bytes += orig_len; 4016 u64_stats_update_end(&stats->syncp); 4017 4018 if (fast_rx->internal_forward) { 4019 struct sk_buff *xmit_skb = NULL; 4020 bool multicast = is_multicast_ether_addr(skb->data); 4021 4022 if (multicast) { 4023 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4024 } else if (sta_info_get(rx->sdata, skb->data)) { 4025 xmit_skb = skb; 4026 skb = NULL; 4027 } 4028 4029 if (xmit_skb) { 4030 /* 4031 * Send to wireless media and increase priority by 256 4032 * to keep the received priority instead of 4033 * reclassifying the frame (see cfg80211_classify8021d). 4034 */ 4035 xmit_skb->priority += 256; 4036 xmit_skb->protocol = htons(ETH_P_802_3); 4037 skb_reset_network_header(xmit_skb); 4038 skb_reset_mac_header(xmit_skb); 4039 dev_queue_xmit(xmit_skb); 4040 } 4041 4042 if (!skb) 4043 return true; 4044 } 4045 4046 /* deliver to local stack */ 4047 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4048 memset(skb->cb, 0, sizeof(skb->cb)); 4049 if (rx->napi) 4050 napi_gro_receive(rx->napi, skb); 4051 else 4052 netif_receive_skb(skb); 4053 4054 return true; 4055 drop: 4056 dev_kfree_skb(skb); 4057 stats->dropped++; 4058 return true; 4059 } 4060 4061 /* 4062 * This function returns whether or not the SKB 4063 * was destined for RX processing or not, which, 4064 * if consume is true, is equivalent to whether 4065 * or not the skb was consumed. 4066 */ 4067 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4068 struct sk_buff *skb, bool consume) 4069 { 4070 struct ieee80211_local *local = rx->local; 4071 struct ieee80211_sub_if_data *sdata = rx->sdata; 4072 4073 rx->skb = skb; 4074 4075 /* See if we can do fast-rx; if we have to copy we already lost, 4076 * so punt in that case. We should never have to deliver a data 4077 * frame to multiple interfaces anyway. 4078 * 4079 * We skip the ieee80211_accept_frame() call and do the necessary 4080 * checking inside ieee80211_invoke_fast_rx(). 4081 */ 4082 if (consume && rx->sta) { 4083 struct ieee80211_fast_rx *fast_rx; 4084 4085 fast_rx = rcu_dereference(rx->sta->fast_rx); 4086 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4087 return true; 4088 } 4089 4090 if (!ieee80211_accept_frame(rx)) 4091 return false; 4092 4093 if (!consume) { 4094 skb = skb_copy(skb, GFP_ATOMIC); 4095 if (!skb) { 4096 if (net_ratelimit()) 4097 wiphy_debug(local->hw.wiphy, 4098 "failed to copy skb for %s\n", 4099 sdata->name); 4100 return true; 4101 } 4102 4103 rx->skb = skb; 4104 } 4105 4106 ieee80211_invoke_rx_handlers(rx); 4107 return true; 4108 } 4109 4110 /* 4111 * This is the actual Rx frames handler. as it belongs to Rx path it must 4112 * be called with rcu_read_lock protection. 4113 */ 4114 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4115 struct ieee80211_sta *pubsta, 4116 struct sk_buff *skb, 4117 struct napi_struct *napi) 4118 { 4119 struct ieee80211_local *local = hw_to_local(hw); 4120 struct ieee80211_sub_if_data *sdata; 4121 struct ieee80211_hdr *hdr; 4122 __le16 fc; 4123 struct ieee80211_rx_data rx; 4124 struct ieee80211_sub_if_data *prev; 4125 struct rhlist_head *tmp; 4126 int err = 0; 4127 4128 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4129 memset(&rx, 0, sizeof(rx)); 4130 rx.skb = skb; 4131 rx.local = local; 4132 rx.napi = napi; 4133 4134 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4135 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4136 4137 if (ieee80211_is_mgmt(fc)) { 4138 /* drop frame if too short for header */ 4139 if (skb->len < ieee80211_hdrlen(fc)) 4140 err = -ENOBUFS; 4141 else 4142 err = skb_linearize(skb); 4143 } else { 4144 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4145 } 4146 4147 if (err) { 4148 dev_kfree_skb(skb); 4149 return; 4150 } 4151 4152 hdr = (struct ieee80211_hdr *)skb->data; 4153 ieee80211_parse_qos(&rx); 4154 ieee80211_verify_alignment(&rx); 4155 4156 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4157 ieee80211_is_beacon(hdr->frame_control))) 4158 ieee80211_scan_rx(local, skb); 4159 4160 if (ieee80211_is_data(fc)) { 4161 struct sta_info *sta, *prev_sta; 4162 4163 if (pubsta) { 4164 rx.sta = container_of(pubsta, struct sta_info, sta); 4165 rx.sdata = rx.sta->sdata; 4166 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4167 return; 4168 goto out; 4169 } 4170 4171 prev_sta = NULL; 4172 4173 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4174 if (!prev_sta) { 4175 prev_sta = sta; 4176 continue; 4177 } 4178 4179 rx.sta = prev_sta; 4180 rx.sdata = prev_sta->sdata; 4181 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4182 4183 prev_sta = sta; 4184 } 4185 4186 if (prev_sta) { 4187 rx.sta = prev_sta; 4188 rx.sdata = prev_sta->sdata; 4189 4190 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4191 return; 4192 goto out; 4193 } 4194 } 4195 4196 prev = NULL; 4197 4198 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4199 if (!ieee80211_sdata_running(sdata)) 4200 continue; 4201 4202 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4203 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4204 continue; 4205 4206 /* 4207 * frame is destined for this interface, but if it's 4208 * not also for the previous one we handle that after 4209 * the loop to avoid copying the SKB once too much 4210 */ 4211 4212 if (!prev) { 4213 prev = sdata; 4214 continue; 4215 } 4216 4217 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4218 rx.sdata = prev; 4219 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4220 4221 prev = sdata; 4222 } 4223 4224 if (prev) { 4225 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4226 rx.sdata = prev; 4227 4228 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4229 return; 4230 } 4231 4232 out: 4233 dev_kfree_skb(skb); 4234 } 4235 4236 /* 4237 * This is the receive path handler. It is called by a low level driver when an 4238 * 802.11 MPDU is received from the hardware. 4239 */ 4240 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4241 struct sk_buff *skb, struct napi_struct *napi) 4242 { 4243 struct ieee80211_local *local = hw_to_local(hw); 4244 struct ieee80211_rate *rate = NULL; 4245 struct ieee80211_supported_band *sband; 4246 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4247 4248 WARN_ON_ONCE(softirq_count() == 0); 4249 4250 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4251 goto drop; 4252 4253 sband = local->hw.wiphy->bands[status->band]; 4254 if (WARN_ON(!sband)) 4255 goto drop; 4256 4257 /* 4258 * If we're suspending, it is possible although not too likely 4259 * that we'd be receiving frames after having already partially 4260 * quiesced the stack. We can't process such frames then since 4261 * that might, for example, cause stations to be added or other 4262 * driver callbacks be invoked. 4263 */ 4264 if (unlikely(local->quiescing || local->suspended)) 4265 goto drop; 4266 4267 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4268 if (unlikely(local->in_reconfig)) 4269 goto drop; 4270 4271 /* 4272 * The same happens when we're not even started, 4273 * but that's worth a warning. 4274 */ 4275 if (WARN_ON(!local->started)) 4276 goto drop; 4277 4278 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4279 /* 4280 * Validate the rate, unless a PLCP error means that 4281 * we probably can't have a valid rate here anyway. 4282 */ 4283 4284 switch (status->encoding) { 4285 case RX_ENC_HT: 4286 /* 4287 * rate_idx is MCS index, which can be [0-76] 4288 * as documented on: 4289 * 4290 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4291 * 4292 * Anything else would be some sort of driver or 4293 * hardware error. The driver should catch hardware 4294 * errors. 4295 */ 4296 if (WARN(status->rate_idx > 76, 4297 "Rate marked as an HT rate but passed " 4298 "status->rate_idx is not " 4299 "an MCS index [0-76]: %d (0x%02x)\n", 4300 status->rate_idx, 4301 status->rate_idx)) 4302 goto drop; 4303 break; 4304 case RX_ENC_VHT: 4305 if (WARN_ONCE(status->rate_idx > 9 || 4306 !status->nss || 4307 status->nss > 8, 4308 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4309 status->rate_idx, status->nss)) 4310 goto drop; 4311 break; 4312 default: 4313 WARN_ON_ONCE(1); 4314 /* fall through */ 4315 case RX_ENC_LEGACY: 4316 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4317 goto drop; 4318 rate = &sband->bitrates[status->rate_idx]; 4319 } 4320 } 4321 4322 status->rx_flags = 0; 4323 4324 /* 4325 * key references and virtual interfaces are protected using RCU 4326 * and this requires that we are in a read-side RCU section during 4327 * receive processing 4328 */ 4329 rcu_read_lock(); 4330 4331 /* 4332 * Frames with failed FCS/PLCP checksum are not returned, 4333 * all other frames are returned without radiotap header 4334 * if it was previously present. 4335 * Also, frames with less than 16 bytes are dropped. 4336 */ 4337 skb = ieee80211_rx_monitor(local, skb, rate); 4338 if (!skb) { 4339 rcu_read_unlock(); 4340 return; 4341 } 4342 4343 ieee80211_tpt_led_trig_rx(local, 4344 ((struct ieee80211_hdr *)skb->data)->frame_control, 4345 skb->len); 4346 4347 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4348 4349 rcu_read_unlock(); 4350 4351 return; 4352 drop: 4353 kfree_skb(skb); 4354 } 4355 EXPORT_SYMBOL(ieee80211_rx_napi); 4356 4357 /* This is a version of the rx handler that can be called from hard irq 4358 * context. Post the skb on the queue and schedule the tasklet */ 4359 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4360 { 4361 struct ieee80211_local *local = hw_to_local(hw); 4362 4363 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4364 4365 skb->pkt_type = IEEE80211_RX_MSG; 4366 skb_queue_tail(&local->skb_queue, skb); 4367 tasklet_schedule(&local->tasklet); 4368 } 4369 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4370