1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2020 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/bitops.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 /* 36 * monitor mode reception 37 * 38 * This function cleans up the SKB, i.e. it removes all the stuff 39 * only useful for monitoring. 40 */ 41 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 42 unsigned int present_fcs_len, 43 unsigned int rtap_space) 44 { 45 struct ieee80211_hdr *hdr; 46 unsigned int hdrlen; 47 __le16 fc; 48 49 if (present_fcs_len) 50 __pskb_trim(skb, skb->len - present_fcs_len); 51 __pskb_pull(skb, rtap_space); 52 53 hdr = (void *)skb->data; 54 fc = hdr->frame_control; 55 56 /* 57 * Remove the HT-Control field (if present) on management 58 * frames after we've sent the frame to monitoring. We 59 * (currently) don't need it, and don't properly parse 60 * frames with it present, due to the assumption of a 61 * fixed management header length. 62 */ 63 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 64 return skb; 65 66 hdrlen = ieee80211_hdrlen(fc); 67 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 68 69 if (!pskb_may_pull(skb, hdrlen)) { 70 dev_kfree_skb(skb); 71 return NULL; 72 } 73 74 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 75 hdrlen - IEEE80211_HT_CTL_LEN); 76 __pskb_pull(skb, IEEE80211_HT_CTL_LEN); 77 78 return skb; 79 } 80 81 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 82 unsigned int rtap_space) 83 { 84 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 85 struct ieee80211_hdr *hdr; 86 87 hdr = (void *)(skb->data + rtap_space); 88 89 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 90 RX_FLAG_FAILED_PLCP_CRC | 91 RX_FLAG_ONLY_MONITOR | 92 RX_FLAG_NO_PSDU)) 93 return true; 94 95 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 96 return true; 97 98 if (ieee80211_is_ctl(hdr->frame_control) && 99 !ieee80211_is_pspoll(hdr->frame_control) && 100 !ieee80211_is_back_req(hdr->frame_control)) 101 return true; 102 103 return false; 104 } 105 106 static int 107 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 108 struct ieee80211_rx_status *status, 109 struct sk_buff *skb) 110 { 111 int len; 112 113 /* always present fields */ 114 len = sizeof(struct ieee80211_radiotap_header) + 8; 115 116 /* allocate extra bitmaps */ 117 if (status->chains) 118 len += 4 * hweight8(status->chains); 119 /* vendor presence bitmap */ 120 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 121 len += 4; 122 123 if (ieee80211_have_rx_timestamp(status)) { 124 len = ALIGN(len, 8); 125 len += 8; 126 } 127 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 128 len += 1; 129 130 /* antenna field, if we don't have per-chain info */ 131 if (!status->chains) 132 len += 1; 133 134 /* padding for RX_FLAGS if necessary */ 135 len = ALIGN(len, 2); 136 137 if (status->encoding == RX_ENC_HT) /* HT info */ 138 len += 3; 139 140 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 141 len = ALIGN(len, 4); 142 len += 8; 143 } 144 145 if (status->encoding == RX_ENC_VHT) { 146 len = ALIGN(len, 2); 147 len += 12; 148 } 149 150 if (local->hw.radiotap_timestamp.units_pos >= 0) { 151 len = ALIGN(len, 8); 152 len += 12; 153 } 154 155 if (status->encoding == RX_ENC_HE && 156 status->flag & RX_FLAG_RADIOTAP_HE) { 157 len = ALIGN(len, 2); 158 len += 12; 159 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 160 } 161 162 if (status->encoding == RX_ENC_HE && 163 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 164 len = ALIGN(len, 2); 165 len += 12; 166 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 167 } 168 169 if (status->flag & RX_FLAG_NO_PSDU) 170 len += 1; 171 172 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 173 len = ALIGN(len, 2); 174 len += 4; 175 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 176 } 177 178 if (status->chains) { 179 /* antenna and antenna signal fields */ 180 len += 2 * hweight8(status->chains); 181 } 182 183 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 184 struct ieee80211_vendor_radiotap *rtap; 185 int vendor_data_offset = 0; 186 187 /* 188 * The position to look at depends on the existence (or non- 189 * existence) of other elements, so take that into account... 190 */ 191 if (status->flag & RX_FLAG_RADIOTAP_HE) 192 vendor_data_offset += 193 sizeof(struct ieee80211_radiotap_he); 194 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 195 vendor_data_offset += 196 sizeof(struct ieee80211_radiotap_he_mu); 197 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 198 vendor_data_offset += 199 sizeof(struct ieee80211_radiotap_lsig); 200 201 rtap = (void *)&skb->data[vendor_data_offset]; 202 203 /* alignment for fixed 6-byte vendor data header */ 204 len = ALIGN(len, 2); 205 /* vendor data header */ 206 len += 6; 207 if (WARN_ON(rtap->align == 0)) 208 rtap->align = 1; 209 len = ALIGN(len, rtap->align); 210 len += rtap->len + rtap->pad; 211 } 212 213 return len; 214 } 215 216 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 217 struct sk_buff *skb, 218 int rtap_space) 219 { 220 struct { 221 struct ieee80211_hdr_3addr hdr; 222 u8 category; 223 u8 action_code; 224 } __packed __aligned(2) action; 225 226 if (!sdata) 227 return; 228 229 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 230 231 if (skb->len < rtap_space + sizeof(action) + 232 VHT_MUMIMO_GROUPS_DATA_LEN) 233 return; 234 235 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 236 return; 237 238 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 239 240 if (!ieee80211_is_action(action.hdr.frame_control)) 241 return; 242 243 if (action.category != WLAN_CATEGORY_VHT) 244 return; 245 246 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 247 return; 248 249 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 250 return; 251 252 skb = skb_copy(skb, GFP_ATOMIC); 253 if (!skb) 254 return; 255 256 skb_queue_tail(&sdata->skb_queue, skb); 257 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 258 } 259 260 /* 261 * ieee80211_add_rx_radiotap_header - add radiotap header 262 * 263 * add a radiotap header containing all the fields which the hardware provided. 264 */ 265 static void 266 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 267 struct sk_buff *skb, 268 struct ieee80211_rate *rate, 269 int rtap_len, bool has_fcs) 270 { 271 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 272 struct ieee80211_radiotap_header *rthdr; 273 unsigned char *pos; 274 __le32 *it_present; 275 u32 it_present_val; 276 u16 rx_flags = 0; 277 u16 channel_flags = 0; 278 int mpdulen, chain; 279 unsigned long chains = status->chains; 280 struct ieee80211_vendor_radiotap rtap = {}; 281 struct ieee80211_radiotap_he he = {}; 282 struct ieee80211_radiotap_he_mu he_mu = {}; 283 struct ieee80211_radiotap_lsig lsig = {}; 284 285 if (status->flag & RX_FLAG_RADIOTAP_HE) { 286 he = *(struct ieee80211_radiotap_he *)skb->data; 287 skb_pull(skb, sizeof(he)); 288 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 289 } 290 291 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 292 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 293 skb_pull(skb, sizeof(he_mu)); 294 } 295 296 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 297 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 298 skb_pull(skb, sizeof(lsig)); 299 } 300 301 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 302 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 303 /* rtap.len and rtap.pad are undone immediately */ 304 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 305 } 306 307 mpdulen = skb->len; 308 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 309 mpdulen += FCS_LEN; 310 311 rthdr = skb_push(skb, rtap_len); 312 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 313 it_present = &rthdr->it_present; 314 315 /* radiotap header, set always present flags */ 316 rthdr->it_len = cpu_to_le16(rtap_len); 317 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 318 BIT(IEEE80211_RADIOTAP_CHANNEL) | 319 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 320 321 if (!status->chains) 322 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 323 324 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 325 it_present_val |= 326 BIT(IEEE80211_RADIOTAP_EXT) | 327 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 328 put_unaligned_le32(it_present_val, it_present); 329 it_present++; 330 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 331 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 332 } 333 334 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 335 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 336 BIT(IEEE80211_RADIOTAP_EXT); 337 put_unaligned_le32(it_present_val, it_present); 338 it_present++; 339 it_present_val = rtap.present; 340 } 341 342 put_unaligned_le32(it_present_val, it_present); 343 344 pos = (void *)(it_present + 1); 345 346 /* the order of the following fields is important */ 347 348 /* IEEE80211_RADIOTAP_TSFT */ 349 if (ieee80211_have_rx_timestamp(status)) { 350 /* padding */ 351 while ((pos - (u8 *)rthdr) & 7) 352 *pos++ = 0; 353 put_unaligned_le64( 354 ieee80211_calculate_rx_timestamp(local, status, 355 mpdulen, 0), 356 pos); 357 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 358 pos += 8; 359 } 360 361 /* IEEE80211_RADIOTAP_FLAGS */ 362 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 363 *pos |= IEEE80211_RADIOTAP_F_FCS; 364 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 365 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 366 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 367 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 368 pos++; 369 370 /* IEEE80211_RADIOTAP_RATE */ 371 if (!rate || status->encoding != RX_ENC_LEGACY) { 372 /* 373 * Without rate information don't add it. If we have, 374 * MCS information is a separate field in radiotap, 375 * added below. The byte here is needed as padding 376 * for the channel though, so initialise it to 0. 377 */ 378 *pos = 0; 379 } else { 380 int shift = 0; 381 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 382 if (status->bw == RATE_INFO_BW_10) 383 shift = 1; 384 else if (status->bw == RATE_INFO_BW_5) 385 shift = 2; 386 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 387 } 388 pos++; 389 390 /* IEEE80211_RADIOTAP_CHANNEL */ 391 /* TODO: frequency offset in KHz */ 392 put_unaligned_le16(status->freq, pos); 393 pos += 2; 394 if (status->bw == RATE_INFO_BW_10) 395 channel_flags |= IEEE80211_CHAN_HALF; 396 else if (status->bw == RATE_INFO_BW_5) 397 channel_flags |= IEEE80211_CHAN_QUARTER; 398 399 if (status->band == NL80211_BAND_5GHZ || 400 status->band == NL80211_BAND_6GHZ) 401 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 402 else if (status->encoding != RX_ENC_LEGACY) 403 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 404 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 405 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 406 else if (rate) 407 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 408 else 409 channel_flags |= IEEE80211_CHAN_2GHZ; 410 put_unaligned_le16(channel_flags, pos); 411 pos += 2; 412 413 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 414 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 415 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 416 *pos = status->signal; 417 rthdr->it_present |= 418 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 419 pos++; 420 } 421 422 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 423 424 if (!status->chains) { 425 /* IEEE80211_RADIOTAP_ANTENNA */ 426 *pos = status->antenna; 427 pos++; 428 } 429 430 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 431 432 /* IEEE80211_RADIOTAP_RX_FLAGS */ 433 /* ensure 2 byte alignment for the 2 byte field as required */ 434 if ((pos - (u8 *)rthdr) & 1) 435 *pos++ = 0; 436 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 437 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 438 put_unaligned_le16(rx_flags, pos); 439 pos += 2; 440 441 if (status->encoding == RX_ENC_HT) { 442 unsigned int stbc; 443 444 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 445 *pos++ = local->hw.radiotap_mcs_details; 446 *pos = 0; 447 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 448 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 449 if (status->bw == RATE_INFO_BW_40) 450 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 451 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 452 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 453 if (status->enc_flags & RX_ENC_FLAG_LDPC) 454 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 455 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 456 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 457 pos++; 458 *pos++ = status->rate_idx; 459 } 460 461 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 462 u16 flags = 0; 463 464 /* ensure 4 byte alignment */ 465 while ((pos - (u8 *)rthdr) & 3) 466 pos++; 467 rthdr->it_present |= 468 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 469 put_unaligned_le32(status->ampdu_reference, pos); 470 pos += 4; 471 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 472 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 473 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 474 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 475 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 476 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 477 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 478 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 479 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 480 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 481 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 482 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 483 put_unaligned_le16(flags, pos); 484 pos += 2; 485 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 486 *pos++ = status->ampdu_delimiter_crc; 487 else 488 *pos++ = 0; 489 *pos++ = 0; 490 } 491 492 if (status->encoding == RX_ENC_VHT) { 493 u16 known = local->hw.radiotap_vht_details; 494 495 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 496 put_unaligned_le16(known, pos); 497 pos += 2; 498 /* flags */ 499 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 500 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 501 /* in VHT, STBC is binary */ 502 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 503 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 504 if (status->enc_flags & RX_ENC_FLAG_BF) 505 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 506 pos++; 507 /* bandwidth */ 508 switch (status->bw) { 509 case RATE_INFO_BW_80: 510 *pos++ = 4; 511 break; 512 case RATE_INFO_BW_160: 513 *pos++ = 11; 514 break; 515 case RATE_INFO_BW_40: 516 *pos++ = 1; 517 break; 518 default: 519 *pos++ = 0; 520 } 521 /* MCS/NSS */ 522 *pos = (status->rate_idx << 4) | status->nss; 523 pos += 4; 524 /* coding field */ 525 if (status->enc_flags & RX_ENC_FLAG_LDPC) 526 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 527 pos++; 528 /* group ID */ 529 pos++; 530 /* partial_aid */ 531 pos += 2; 532 } 533 534 if (local->hw.radiotap_timestamp.units_pos >= 0) { 535 u16 accuracy = 0; 536 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 537 538 rthdr->it_present |= 539 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 540 541 /* ensure 8 byte alignment */ 542 while ((pos - (u8 *)rthdr) & 7) 543 pos++; 544 545 put_unaligned_le64(status->device_timestamp, pos); 546 pos += sizeof(u64); 547 548 if (local->hw.radiotap_timestamp.accuracy >= 0) { 549 accuracy = local->hw.radiotap_timestamp.accuracy; 550 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 551 } 552 put_unaligned_le16(accuracy, pos); 553 pos += sizeof(u16); 554 555 *pos++ = local->hw.radiotap_timestamp.units_pos; 556 *pos++ = flags; 557 } 558 559 if (status->encoding == RX_ENC_HE && 560 status->flag & RX_FLAG_RADIOTAP_HE) { 561 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 562 563 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 564 he.data6 |= HE_PREP(DATA6_NSTS, 565 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 566 status->enc_flags)); 567 he.data3 |= HE_PREP(DATA3_STBC, 1); 568 } else { 569 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 570 } 571 572 #define CHECK_GI(s) \ 573 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 574 (int)NL80211_RATE_INFO_HE_GI_##s) 575 576 CHECK_GI(0_8); 577 CHECK_GI(1_6); 578 CHECK_GI(3_2); 579 580 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 581 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 582 he.data3 |= HE_PREP(DATA3_CODING, 583 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 584 585 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 586 587 switch (status->bw) { 588 case RATE_INFO_BW_20: 589 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 590 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 591 break; 592 case RATE_INFO_BW_40: 593 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 594 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 595 break; 596 case RATE_INFO_BW_80: 597 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 598 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 599 break; 600 case RATE_INFO_BW_160: 601 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 602 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 603 break; 604 case RATE_INFO_BW_HE_RU: 605 #define CHECK_RU_ALLOC(s) \ 606 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 607 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 608 609 CHECK_RU_ALLOC(26); 610 CHECK_RU_ALLOC(52); 611 CHECK_RU_ALLOC(106); 612 CHECK_RU_ALLOC(242); 613 CHECK_RU_ALLOC(484); 614 CHECK_RU_ALLOC(996); 615 CHECK_RU_ALLOC(2x996); 616 617 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 618 status->he_ru + 4); 619 break; 620 default: 621 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 622 } 623 624 /* ensure 2 byte alignment */ 625 while ((pos - (u8 *)rthdr) & 1) 626 pos++; 627 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE); 628 memcpy(pos, &he, sizeof(he)); 629 pos += sizeof(he); 630 } 631 632 if (status->encoding == RX_ENC_HE && 633 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 634 /* ensure 2 byte alignment */ 635 while ((pos - (u8 *)rthdr) & 1) 636 pos++; 637 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU); 638 memcpy(pos, &he_mu, sizeof(he_mu)); 639 pos += sizeof(he_mu); 640 } 641 642 if (status->flag & RX_FLAG_NO_PSDU) { 643 rthdr->it_present |= 644 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU); 645 *pos++ = status->zero_length_psdu_type; 646 } 647 648 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 649 /* ensure 2 byte alignment */ 650 while ((pos - (u8 *)rthdr) & 1) 651 pos++; 652 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG); 653 memcpy(pos, &lsig, sizeof(lsig)); 654 pos += sizeof(lsig); 655 } 656 657 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 658 *pos++ = status->chain_signal[chain]; 659 *pos++ = chain; 660 } 661 662 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 663 /* ensure 2 byte alignment for the vendor field as required */ 664 if ((pos - (u8 *)rthdr) & 1) 665 *pos++ = 0; 666 *pos++ = rtap.oui[0]; 667 *pos++ = rtap.oui[1]; 668 *pos++ = rtap.oui[2]; 669 *pos++ = rtap.subns; 670 put_unaligned_le16(rtap.len, pos); 671 pos += 2; 672 /* align the actual payload as requested */ 673 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 674 *pos++ = 0; 675 /* data (and possible padding) already follows */ 676 } 677 } 678 679 static struct sk_buff * 680 ieee80211_make_monitor_skb(struct ieee80211_local *local, 681 struct sk_buff **origskb, 682 struct ieee80211_rate *rate, 683 int rtap_space, bool use_origskb) 684 { 685 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 686 int rt_hdrlen, needed_headroom; 687 struct sk_buff *skb; 688 689 /* room for the radiotap header based on driver features */ 690 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 691 needed_headroom = rt_hdrlen - rtap_space; 692 693 if (use_origskb) { 694 /* only need to expand headroom if necessary */ 695 skb = *origskb; 696 *origskb = NULL; 697 698 /* 699 * This shouldn't trigger often because most devices have an 700 * RX header they pull before we get here, and that should 701 * be big enough for our radiotap information. We should 702 * probably export the length to drivers so that we can have 703 * them allocate enough headroom to start with. 704 */ 705 if (skb_headroom(skb) < needed_headroom && 706 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 707 dev_kfree_skb(skb); 708 return NULL; 709 } 710 } else { 711 /* 712 * Need to make a copy and possibly remove radiotap header 713 * and FCS from the original. 714 */ 715 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 716 717 if (!skb) 718 return NULL; 719 } 720 721 /* prepend radiotap information */ 722 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 723 724 skb_reset_mac_header(skb); 725 skb->ip_summed = CHECKSUM_UNNECESSARY; 726 skb->pkt_type = PACKET_OTHERHOST; 727 skb->protocol = htons(ETH_P_802_2); 728 729 return skb; 730 } 731 732 /* 733 * This function copies a received frame to all monitor interfaces and 734 * returns a cleaned-up SKB that no longer includes the FCS nor the 735 * radiotap header the driver might have added. 736 */ 737 static struct sk_buff * 738 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 739 struct ieee80211_rate *rate) 740 { 741 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 742 struct ieee80211_sub_if_data *sdata; 743 struct sk_buff *monskb = NULL; 744 int present_fcs_len = 0; 745 unsigned int rtap_space = 0; 746 struct ieee80211_sub_if_data *monitor_sdata = 747 rcu_dereference(local->monitor_sdata); 748 bool only_monitor = false; 749 unsigned int min_head_len; 750 751 if (status->flag & RX_FLAG_RADIOTAP_HE) 752 rtap_space += sizeof(struct ieee80211_radiotap_he); 753 754 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 755 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 756 757 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 758 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 759 760 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 761 struct ieee80211_vendor_radiotap *rtap = 762 (void *)(origskb->data + rtap_space); 763 764 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 765 } 766 767 min_head_len = rtap_space; 768 769 /* 770 * First, we may need to make a copy of the skb because 771 * (1) we need to modify it for radiotap (if not present), and 772 * (2) the other RX handlers will modify the skb we got. 773 * 774 * We don't need to, of course, if we aren't going to return 775 * the SKB because it has a bad FCS/PLCP checksum. 776 */ 777 778 if (!(status->flag & RX_FLAG_NO_PSDU)) { 779 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 780 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 781 /* driver bug */ 782 WARN_ON(1); 783 dev_kfree_skb(origskb); 784 return NULL; 785 } 786 present_fcs_len = FCS_LEN; 787 } 788 789 /* also consider the hdr->frame_control */ 790 min_head_len += 2; 791 } 792 793 /* ensure that the expected data elements are in skb head */ 794 if (!pskb_may_pull(origskb, min_head_len)) { 795 dev_kfree_skb(origskb); 796 return NULL; 797 } 798 799 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 800 801 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 802 if (only_monitor) { 803 dev_kfree_skb(origskb); 804 return NULL; 805 } 806 807 return ieee80211_clean_skb(origskb, present_fcs_len, 808 rtap_space); 809 } 810 811 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 812 813 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 814 bool last_monitor = list_is_last(&sdata->u.mntr.list, 815 &local->mon_list); 816 817 if (!monskb) 818 monskb = ieee80211_make_monitor_skb(local, &origskb, 819 rate, rtap_space, 820 only_monitor && 821 last_monitor); 822 823 if (monskb) { 824 struct sk_buff *skb; 825 826 if (last_monitor) { 827 skb = monskb; 828 monskb = NULL; 829 } else { 830 skb = skb_clone(monskb, GFP_ATOMIC); 831 } 832 833 if (skb) { 834 skb->dev = sdata->dev; 835 dev_sw_netstats_rx_add(skb->dev, skb->len); 836 netif_receive_skb(skb); 837 } 838 } 839 840 if (last_monitor) 841 break; 842 } 843 844 /* this happens if last_monitor was erroneously false */ 845 dev_kfree_skb(monskb); 846 847 /* ditto */ 848 if (!origskb) 849 return NULL; 850 851 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 852 } 853 854 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 855 { 856 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 857 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 858 int tid, seqno_idx, security_idx; 859 860 /* does the frame have a qos control field? */ 861 if (ieee80211_is_data_qos(hdr->frame_control)) { 862 u8 *qc = ieee80211_get_qos_ctl(hdr); 863 /* frame has qos control */ 864 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 865 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 866 status->rx_flags |= IEEE80211_RX_AMSDU; 867 868 seqno_idx = tid; 869 security_idx = tid; 870 } else { 871 /* 872 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 873 * 874 * Sequence numbers for management frames, QoS data 875 * frames with a broadcast/multicast address in the 876 * Address 1 field, and all non-QoS data frames sent 877 * by QoS STAs are assigned using an additional single 878 * modulo-4096 counter, [...] 879 * 880 * We also use that counter for non-QoS STAs. 881 */ 882 seqno_idx = IEEE80211_NUM_TIDS; 883 security_idx = 0; 884 if (ieee80211_is_mgmt(hdr->frame_control)) 885 security_idx = IEEE80211_NUM_TIDS; 886 tid = 0; 887 } 888 889 rx->seqno_idx = seqno_idx; 890 rx->security_idx = security_idx; 891 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 892 * For now, set skb->priority to 0 for other cases. */ 893 rx->skb->priority = (tid > 7) ? 0 : tid; 894 } 895 896 /** 897 * DOC: Packet alignment 898 * 899 * Drivers always need to pass packets that are aligned to two-byte boundaries 900 * to the stack. 901 * 902 * Additionally, should, if possible, align the payload data in a way that 903 * guarantees that the contained IP header is aligned to a four-byte 904 * boundary. In the case of regular frames, this simply means aligning the 905 * payload to a four-byte boundary (because either the IP header is directly 906 * contained, or IV/RFC1042 headers that have a length divisible by four are 907 * in front of it). If the payload data is not properly aligned and the 908 * architecture doesn't support efficient unaligned operations, mac80211 909 * will align the data. 910 * 911 * With A-MSDU frames, however, the payload data address must yield two modulo 912 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 913 * push the IP header further back to a multiple of four again. Thankfully, the 914 * specs were sane enough this time around to require padding each A-MSDU 915 * subframe to a length that is a multiple of four. 916 * 917 * Padding like Atheros hardware adds which is between the 802.11 header and 918 * the payload is not supported, the driver is required to move the 802.11 919 * header to be directly in front of the payload in that case. 920 */ 921 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 922 { 923 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 924 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 925 #endif 926 } 927 928 929 /* rx handlers */ 930 931 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 932 { 933 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 934 935 if (is_multicast_ether_addr(hdr->addr1)) 936 return 0; 937 938 return ieee80211_is_robust_mgmt_frame(skb); 939 } 940 941 942 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 943 { 944 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 945 946 if (!is_multicast_ether_addr(hdr->addr1)) 947 return 0; 948 949 return ieee80211_is_robust_mgmt_frame(skb); 950 } 951 952 953 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 954 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 955 { 956 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 957 struct ieee80211_mmie *mmie; 958 struct ieee80211_mmie_16 *mmie16; 959 960 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 961 return -1; 962 963 if (!ieee80211_is_robust_mgmt_frame(skb) && 964 !ieee80211_is_beacon(hdr->frame_control)) 965 return -1; /* not a robust management frame */ 966 967 mmie = (struct ieee80211_mmie *) 968 (skb->data + skb->len - sizeof(*mmie)); 969 if (mmie->element_id == WLAN_EID_MMIE && 970 mmie->length == sizeof(*mmie) - 2) 971 return le16_to_cpu(mmie->key_id); 972 973 mmie16 = (struct ieee80211_mmie_16 *) 974 (skb->data + skb->len - sizeof(*mmie16)); 975 if (skb->len >= 24 + sizeof(*mmie16) && 976 mmie16->element_id == WLAN_EID_MMIE && 977 mmie16->length == sizeof(*mmie16) - 2) 978 return le16_to_cpu(mmie16->key_id); 979 980 return -1; 981 } 982 983 static int ieee80211_get_keyid(struct sk_buff *skb, 984 const struct ieee80211_cipher_scheme *cs) 985 { 986 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 987 __le16 fc; 988 int hdrlen; 989 int minlen; 990 u8 key_idx_off; 991 u8 key_idx_shift; 992 u8 keyid; 993 994 fc = hdr->frame_control; 995 hdrlen = ieee80211_hdrlen(fc); 996 997 if (cs) { 998 minlen = hdrlen + cs->hdr_len; 999 key_idx_off = hdrlen + cs->key_idx_off; 1000 key_idx_shift = cs->key_idx_shift; 1001 } else { 1002 /* WEP, TKIP, CCMP and GCMP */ 1003 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1004 key_idx_off = hdrlen + 3; 1005 key_idx_shift = 6; 1006 } 1007 1008 if (unlikely(skb->len < minlen)) 1009 return -EINVAL; 1010 1011 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1012 1013 if (cs) 1014 keyid &= cs->key_idx_mask; 1015 keyid >>= key_idx_shift; 1016 1017 /* cs could use more than the usual two bits for the keyid */ 1018 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1019 return -EINVAL; 1020 1021 return keyid; 1022 } 1023 1024 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1025 { 1026 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1027 char *dev_addr = rx->sdata->vif.addr; 1028 1029 if (ieee80211_is_data(hdr->frame_control)) { 1030 if (is_multicast_ether_addr(hdr->addr1)) { 1031 if (ieee80211_has_tods(hdr->frame_control) || 1032 !ieee80211_has_fromds(hdr->frame_control)) 1033 return RX_DROP_MONITOR; 1034 if (ether_addr_equal(hdr->addr3, dev_addr)) 1035 return RX_DROP_MONITOR; 1036 } else { 1037 if (!ieee80211_has_a4(hdr->frame_control)) 1038 return RX_DROP_MONITOR; 1039 if (ether_addr_equal(hdr->addr4, dev_addr)) 1040 return RX_DROP_MONITOR; 1041 } 1042 } 1043 1044 /* If there is not an established peer link and this is not a peer link 1045 * establisment frame, beacon or probe, drop the frame. 1046 */ 1047 1048 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1049 struct ieee80211_mgmt *mgmt; 1050 1051 if (!ieee80211_is_mgmt(hdr->frame_control)) 1052 return RX_DROP_MONITOR; 1053 1054 if (ieee80211_is_action(hdr->frame_control)) { 1055 u8 category; 1056 1057 /* make sure category field is present */ 1058 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1059 return RX_DROP_MONITOR; 1060 1061 mgmt = (struct ieee80211_mgmt *)hdr; 1062 category = mgmt->u.action.category; 1063 if (category != WLAN_CATEGORY_MESH_ACTION && 1064 category != WLAN_CATEGORY_SELF_PROTECTED) 1065 return RX_DROP_MONITOR; 1066 return RX_CONTINUE; 1067 } 1068 1069 if (ieee80211_is_probe_req(hdr->frame_control) || 1070 ieee80211_is_probe_resp(hdr->frame_control) || 1071 ieee80211_is_beacon(hdr->frame_control) || 1072 ieee80211_is_auth(hdr->frame_control)) 1073 return RX_CONTINUE; 1074 1075 return RX_DROP_MONITOR; 1076 } 1077 1078 return RX_CONTINUE; 1079 } 1080 1081 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1082 int index) 1083 { 1084 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1085 struct sk_buff *tail = skb_peek_tail(frames); 1086 struct ieee80211_rx_status *status; 1087 1088 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1089 return true; 1090 1091 if (!tail) 1092 return false; 1093 1094 status = IEEE80211_SKB_RXCB(tail); 1095 if (status->flag & RX_FLAG_AMSDU_MORE) 1096 return false; 1097 1098 return true; 1099 } 1100 1101 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1102 struct tid_ampdu_rx *tid_agg_rx, 1103 int index, 1104 struct sk_buff_head *frames) 1105 { 1106 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1107 struct sk_buff *skb; 1108 struct ieee80211_rx_status *status; 1109 1110 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1111 1112 if (skb_queue_empty(skb_list)) 1113 goto no_frame; 1114 1115 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1116 __skb_queue_purge(skb_list); 1117 goto no_frame; 1118 } 1119 1120 /* release frames from the reorder ring buffer */ 1121 tid_agg_rx->stored_mpdu_num--; 1122 while ((skb = __skb_dequeue(skb_list))) { 1123 status = IEEE80211_SKB_RXCB(skb); 1124 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1125 __skb_queue_tail(frames, skb); 1126 } 1127 1128 no_frame: 1129 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1130 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1131 } 1132 1133 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1134 struct tid_ampdu_rx *tid_agg_rx, 1135 u16 head_seq_num, 1136 struct sk_buff_head *frames) 1137 { 1138 int index; 1139 1140 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1141 1142 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1143 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1144 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1145 frames); 1146 } 1147 } 1148 1149 /* 1150 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1151 * the skb was added to the buffer longer than this time ago, the earlier 1152 * frames that have not yet been received are assumed to be lost and the skb 1153 * can be released for processing. This may also release other skb's from the 1154 * reorder buffer if there are no additional gaps between the frames. 1155 * 1156 * Callers must hold tid_agg_rx->reorder_lock. 1157 */ 1158 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1159 1160 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1161 struct tid_ampdu_rx *tid_agg_rx, 1162 struct sk_buff_head *frames) 1163 { 1164 int index, i, j; 1165 1166 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1167 1168 /* release the buffer until next missing frame */ 1169 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1170 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1171 tid_agg_rx->stored_mpdu_num) { 1172 /* 1173 * No buffers ready to be released, but check whether any 1174 * frames in the reorder buffer have timed out. 1175 */ 1176 int skipped = 1; 1177 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1178 j = (j + 1) % tid_agg_rx->buf_size) { 1179 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1180 skipped++; 1181 continue; 1182 } 1183 if (skipped && 1184 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1185 HT_RX_REORDER_BUF_TIMEOUT)) 1186 goto set_release_timer; 1187 1188 /* don't leave incomplete A-MSDUs around */ 1189 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1190 i = (i + 1) % tid_agg_rx->buf_size) 1191 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1192 1193 ht_dbg_ratelimited(sdata, 1194 "release an RX reorder frame due to timeout on earlier frames\n"); 1195 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1196 frames); 1197 1198 /* 1199 * Increment the head seq# also for the skipped slots. 1200 */ 1201 tid_agg_rx->head_seq_num = 1202 (tid_agg_rx->head_seq_num + 1203 skipped) & IEEE80211_SN_MASK; 1204 skipped = 0; 1205 } 1206 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1207 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1208 frames); 1209 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1210 } 1211 1212 if (tid_agg_rx->stored_mpdu_num) { 1213 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1214 1215 for (; j != (index - 1) % tid_agg_rx->buf_size; 1216 j = (j + 1) % tid_agg_rx->buf_size) { 1217 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1218 break; 1219 } 1220 1221 set_release_timer: 1222 1223 if (!tid_agg_rx->removed) 1224 mod_timer(&tid_agg_rx->reorder_timer, 1225 tid_agg_rx->reorder_time[j] + 1 + 1226 HT_RX_REORDER_BUF_TIMEOUT); 1227 } else { 1228 del_timer(&tid_agg_rx->reorder_timer); 1229 } 1230 } 1231 1232 /* 1233 * As this function belongs to the RX path it must be under 1234 * rcu_read_lock protection. It returns false if the frame 1235 * can be processed immediately, true if it was consumed. 1236 */ 1237 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1238 struct tid_ampdu_rx *tid_agg_rx, 1239 struct sk_buff *skb, 1240 struct sk_buff_head *frames) 1241 { 1242 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1243 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1244 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1245 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1246 u16 head_seq_num, buf_size; 1247 int index; 1248 bool ret = true; 1249 1250 spin_lock(&tid_agg_rx->reorder_lock); 1251 1252 /* 1253 * Offloaded BA sessions have no known starting sequence number so pick 1254 * one from first Rxed frame for this tid after BA was started. 1255 */ 1256 if (unlikely(tid_agg_rx->auto_seq)) { 1257 tid_agg_rx->auto_seq = false; 1258 tid_agg_rx->ssn = mpdu_seq_num; 1259 tid_agg_rx->head_seq_num = mpdu_seq_num; 1260 } 1261 1262 buf_size = tid_agg_rx->buf_size; 1263 head_seq_num = tid_agg_rx->head_seq_num; 1264 1265 /* 1266 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1267 * be reordered. 1268 */ 1269 if (unlikely(!tid_agg_rx->started)) { 1270 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1271 ret = false; 1272 goto out; 1273 } 1274 tid_agg_rx->started = true; 1275 } 1276 1277 /* frame with out of date sequence number */ 1278 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1279 dev_kfree_skb(skb); 1280 goto out; 1281 } 1282 1283 /* 1284 * If frame the sequence number exceeds our buffering window 1285 * size release some previous frames to make room for this one. 1286 */ 1287 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1288 head_seq_num = ieee80211_sn_inc( 1289 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1290 /* release stored frames up to new head to stack */ 1291 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1292 head_seq_num, frames); 1293 } 1294 1295 /* Now the new frame is always in the range of the reordering buffer */ 1296 1297 index = mpdu_seq_num % tid_agg_rx->buf_size; 1298 1299 /* check if we already stored this frame */ 1300 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1301 dev_kfree_skb(skb); 1302 goto out; 1303 } 1304 1305 /* 1306 * If the current MPDU is in the right order and nothing else 1307 * is stored we can process it directly, no need to buffer it. 1308 * If it is first but there's something stored, we may be able 1309 * to release frames after this one. 1310 */ 1311 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1312 tid_agg_rx->stored_mpdu_num == 0) { 1313 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1314 tid_agg_rx->head_seq_num = 1315 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1316 ret = false; 1317 goto out; 1318 } 1319 1320 /* put the frame in the reordering buffer */ 1321 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1322 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1323 tid_agg_rx->reorder_time[index] = jiffies; 1324 tid_agg_rx->stored_mpdu_num++; 1325 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1326 } 1327 1328 out: 1329 spin_unlock(&tid_agg_rx->reorder_lock); 1330 return ret; 1331 } 1332 1333 /* 1334 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1335 * true if the MPDU was buffered, false if it should be processed. 1336 */ 1337 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1338 struct sk_buff_head *frames) 1339 { 1340 struct sk_buff *skb = rx->skb; 1341 struct ieee80211_local *local = rx->local; 1342 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1343 struct sta_info *sta = rx->sta; 1344 struct tid_ampdu_rx *tid_agg_rx; 1345 u16 sc; 1346 u8 tid, ack_policy; 1347 1348 if (!ieee80211_is_data_qos(hdr->frame_control) || 1349 is_multicast_ether_addr(hdr->addr1)) 1350 goto dont_reorder; 1351 1352 /* 1353 * filter the QoS data rx stream according to 1354 * STA/TID and check if this STA/TID is on aggregation 1355 */ 1356 1357 if (!sta) 1358 goto dont_reorder; 1359 1360 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1361 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1362 tid = ieee80211_get_tid(hdr); 1363 1364 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1365 if (!tid_agg_rx) { 1366 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1367 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1368 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1369 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1370 WLAN_BACK_RECIPIENT, 1371 WLAN_REASON_QSTA_REQUIRE_SETUP); 1372 goto dont_reorder; 1373 } 1374 1375 /* qos null data frames are excluded */ 1376 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1377 goto dont_reorder; 1378 1379 /* not part of a BA session */ 1380 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1381 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1382 goto dont_reorder; 1383 1384 /* new, potentially un-ordered, ampdu frame - process it */ 1385 1386 /* reset session timer */ 1387 if (tid_agg_rx->timeout) 1388 tid_agg_rx->last_rx = jiffies; 1389 1390 /* if this mpdu is fragmented - terminate rx aggregation session */ 1391 sc = le16_to_cpu(hdr->seq_ctrl); 1392 if (sc & IEEE80211_SCTL_FRAG) { 1393 skb_queue_tail(&rx->sdata->skb_queue, skb); 1394 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1395 return; 1396 } 1397 1398 /* 1399 * No locking needed -- we will only ever process one 1400 * RX packet at a time, and thus own tid_agg_rx. All 1401 * other code manipulating it needs to (and does) make 1402 * sure that we cannot get to it any more before doing 1403 * anything with it. 1404 */ 1405 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1406 frames)) 1407 return; 1408 1409 dont_reorder: 1410 __skb_queue_tail(frames, skb); 1411 } 1412 1413 static ieee80211_rx_result debug_noinline 1414 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1415 { 1416 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1417 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1418 1419 if (status->flag & RX_FLAG_DUP_VALIDATED) 1420 return RX_CONTINUE; 1421 1422 /* 1423 * Drop duplicate 802.11 retransmissions 1424 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1425 */ 1426 1427 if (rx->skb->len < 24) 1428 return RX_CONTINUE; 1429 1430 if (ieee80211_is_ctl(hdr->frame_control) || 1431 ieee80211_is_any_nullfunc(hdr->frame_control) || 1432 is_multicast_ether_addr(hdr->addr1)) 1433 return RX_CONTINUE; 1434 1435 if (!rx->sta) 1436 return RX_CONTINUE; 1437 1438 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1439 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1440 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1441 rx->sta->rx_stats.num_duplicates++; 1442 return RX_DROP_UNUSABLE; 1443 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1444 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1445 } 1446 1447 return RX_CONTINUE; 1448 } 1449 1450 static ieee80211_rx_result debug_noinline 1451 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1452 { 1453 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1454 1455 /* Drop disallowed frame classes based on STA auth/assoc state; 1456 * IEEE 802.11, Chap 5.5. 1457 * 1458 * mac80211 filters only based on association state, i.e. it drops 1459 * Class 3 frames from not associated stations. hostapd sends 1460 * deauth/disassoc frames when needed. In addition, hostapd is 1461 * responsible for filtering on both auth and assoc states. 1462 */ 1463 1464 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1465 return ieee80211_rx_mesh_check(rx); 1466 1467 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1468 ieee80211_is_pspoll(hdr->frame_control)) && 1469 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1470 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1471 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1472 /* 1473 * accept port control frames from the AP even when it's not 1474 * yet marked ASSOC to prevent a race where we don't set the 1475 * assoc bit quickly enough before it sends the first frame 1476 */ 1477 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1478 ieee80211_is_data_present(hdr->frame_control)) { 1479 unsigned int hdrlen; 1480 __be16 ethertype; 1481 1482 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1483 1484 if (rx->skb->len < hdrlen + 8) 1485 return RX_DROP_MONITOR; 1486 1487 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1488 if (ethertype == rx->sdata->control_port_protocol) 1489 return RX_CONTINUE; 1490 } 1491 1492 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1493 cfg80211_rx_spurious_frame(rx->sdata->dev, 1494 hdr->addr2, 1495 GFP_ATOMIC)) 1496 return RX_DROP_UNUSABLE; 1497 1498 return RX_DROP_MONITOR; 1499 } 1500 1501 return RX_CONTINUE; 1502 } 1503 1504 1505 static ieee80211_rx_result debug_noinline 1506 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1507 { 1508 struct ieee80211_local *local; 1509 struct ieee80211_hdr *hdr; 1510 struct sk_buff *skb; 1511 1512 local = rx->local; 1513 skb = rx->skb; 1514 hdr = (struct ieee80211_hdr *) skb->data; 1515 1516 if (!local->pspolling) 1517 return RX_CONTINUE; 1518 1519 if (!ieee80211_has_fromds(hdr->frame_control)) 1520 /* this is not from AP */ 1521 return RX_CONTINUE; 1522 1523 if (!ieee80211_is_data(hdr->frame_control)) 1524 return RX_CONTINUE; 1525 1526 if (!ieee80211_has_moredata(hdr->frame_control)) { 1527 /* AP has no more frames buffered for us */ 1528 local->pspolling = false; 1529 return RX_CONTINUE; 1530 } 1531 1532 /* more data bit is set, let's request a new frame from the AP */ 1533 ieee80211_send_pspoll(local, rx->sdata); 1534 1535 return RX_CONTINUE; 1536 } 1537 1538 static void sta_ps_start(struct sta_info *sta) 1539 { 1540 struct ieee80211_sub_if_data *sdata = sta->sdata; 1541 struct ieee80211_local *local = sdata->local; 1542 struct ps_data *ps; 1543 int tid; 1544 1545 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1546 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1547 ps = &sdata->bss->ps; 1548 else 1549 return; 1550 1551 atomic_inc(&ps->num_sta_ps); 1552 set_sta_flag(sta, WLAN_STA_PS_STA); 1553 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1554 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1555 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1556 sta->sta.addr, sta->sta.aid); 1557 1558 ieee80211_clear_fast_xmit(sta); 1559 1560 if (!sta->sta.txq[0]) 1561 return; 1562 1563 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1564 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1565 struct txq_info *txqi = to_txq_info(txq); 1566 1567 spin_lock(&local->active_txq_lock[txq->ac]); 1568 if (!list_empty(&txqi->schedule_order)) 1569 list_del_init(&txqi->schedule_order); 1570 spin_unlock(&local->active_txq_lock[txq->ac]); 1571 1572 if (txq_has_queue(txq)) 1573 set_bit(tid, &sta->txq_buffered_tids); 1574 else 1575 clear_bit(tid, &sta->txq_buffered_tids); 1576 } 1577 } 1578 1579 static void sta_ps_end(struct sta_info *sta) 1580 { 1581 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1582 sta->sta.addr, sta->sta.aid); 1583 1584 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1585 /* 1586 * Clear the flag only if the other one is still set 1587 * so that the TX path won't start TX'ing new frames 1588 * directly ... In the case that the driver flag isn't 1589 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1590 */ 1591 clear_sta_flag(sta, WLAN_STA_PS_STA); 1592 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1593 sta->sta.addr, sta->sta.aid); 1594 return; 1595 } 1596 1597 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1598 clear_sta_flag(sta, WLAN_STA_PS_STA); 1599 ieee80211_sta_ps_deliver_wakeup(sta); 1600 } 1601 1602 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1603 { 1604 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1605 bool in_ps; 1606 1607 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1608 1609 /* Don't let the same PS state be set twice */ 1610 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1611 if ((start && in_ps) || (!start && !in_ps)) 1612 return -EINVAL; 1613 1614 if (start) 1615 sta_ps_start(sta); 1616 else 1617 sta_ps_end(sta); 1618 1619 return 0; 1620 } 1621 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1622 1623 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1624 { 1625 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1626 1627 if (test_sta_flag(sta, WLAN_STA_SP)) 1628 return; 1629 1630 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1631 ieee80211_sta_ps_deliver_poll_response(sta); 1632 else 1633 set_sta_flag(sta, WLAN_STA_PSPOLL); 1634 } 1635 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1636 1637 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1638 { 1639 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1640 int ac = ieee80211_ac_from_tid(tid); 1641 1642 /* 1643 * If this AC is not trigger-enabled do nothing unless the 1644 * driver is calling us after it already checked. 1645 * 1646 * NB: This could/should check a separate bitmap of trigger- 1647 * enabled queues, but for now we only implement uAPSD w/o 1648 * TSPEC changes to the ACs, so they're always the same. 1649 */ 1650 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1651 tid != IEEE80211_NUM_TIDS) 1652 return; 1653 1654 /* if we are in a service period, do nothing */ 1655 if (test_sta_flag(sta, WLAN_STA_SP)) 1656 return; 1657 1658 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1659 ieee80211_sta_ps_deliver_uapsd(sta); 1660 else 1661 set_sta_flag(sta, WLAN_STA_UAPSD); 1662 } 1663 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1664 1665 static ieee80211_rx_result debug_noinline 1666 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1667 { 1668 struct ieee80211_sub_if_data *sdata = rx->sdata; 1669 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1670 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1671 1672 if (!rx->sta) 1673 return RX_CONTINUE; 1674 1675 if (sdata->vif.type != NL80211_IFTYPE_AP && 1676 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1677 return RX_CONTINUE; 1678 1679 /* 1680 * The device handles station powersave, so don't do anything about 1681 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1682 * it to mac80211 since they're handled.) 1683 */ 1684 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1685 return RX_CONTINUE; 1686 1687 /* 1688 * Don't do anything if the station isn't already asleep. In 1689 * the uAPSD case, the station will probably be marked asleep, 1690 * in the PS-Poll case the station must be confused ... 1691 */ 1692 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1693 return RX_CONTINUE; 1694 1695 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1696 ieee80211_sta_pspoll(&rx->sta->sta); 1697 1698 /* Free PS Poll skb here instead of returning RX_DROP that would 1699 * count as an dropped frame. */ 1700 dev_kfree_skb(rx->skb); 1701 1702 return RX_QUEUED; 1703 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1704 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1705 ieee80211_has_pm(hdr->frame_control) && 1706 (ieee80211_is_data_qos(hdr->frame_control) || 1707 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1708 u8 tid = ieee80211_get_tid(hdr); 1709 1710 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1711 } 1712 1713 return RX_CONTINUE; 1714 } 1715 1716 static ieee80211_rx_result debug_noinline 1717 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1718 { 1719 struct sta_info *sta = rx->sta; 1720 struct sk_buff *skb = rx->skb; 1721 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1722 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1723 int i; 1724 1725 if (!sta) 1726 return RX_CONTINUE; 1727 1728 /* 1729 * Update last_rx only for IBSS packets which are for the current 1730 * BSSID and for station already AUTHORIZED to avoid keeping the 1731 * current IBSS network alive in cases where other STAs start 1732 * using different BSSID. This will also give the station another 1733 * chance to restart the authentication/authorization in case 1734 * something went wrong the first time. 1735 */ 1736 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1737 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1738 NL80211_IFTYPE_ADHOC); 1739 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1740 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1741 sta->rx_stats.last_rx = jiffies; 1742 if (ieee80211_is_data(hdr->frame_control) && 1743 !is_multicast_ether_addr(hdr->addr1)) 1744 sta->rx_stats.last_rate = 1745 sta_stats_encode_rate(status); 1746 } 1747 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1748 sta->rx_stats.last_rx = jiffies; 1749 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1750 !is_multicast_ether_addr(hdr->addr1)) { 1751 /* 1752 * Mesh beacons will update last_rx when if they are found to 1753 * match the current local configuration when processed. 1754 */ 1755 sta->rx_stats.last_rx = jiffies; 1756 if (ieee80211_is_data(hdr->frame_control)) 1757 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1758 } 1759 1760 sta->rx_stats.fragments++; 1761 1762 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1763 sta->rx_stats.bytes += rx->skb->len; 1764 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1765 1766 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1767 sta->rx_stats.last_signal = status->signal; 1768 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1769 } 1770 1771 if (status->chains) { 1772 sta->rx_stats.chains = status->chains; 1773 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1774 int signal = status->chain_signal[i]; 1775 1776 if (!(status->chains & BIT(i))) 1777 continue; 1778 1779 sta->rx_stats.chain_signal_last[i] = signal; 1780 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1781 -signal); 1782 } 1783 } 1784 1785 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1786 return RX_CONTINUE; 1787 1788 /* 1789 * Change STA power saving mode only at the end of a frame 1790 * exchange sequence, and only for a data or management 1791 * frame as specified in IEEE 802.11-2016 11.2.3.2 1792 */ 1793 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1794 !ieee80211_has_morefrags(hdr->frame_control) && 1795 !is_multicast_ether_addr(hdr->addr1) && 1796 (ieee80211_is_mgmt(hdr->frame_control) || 1797 ieee80211_is_data(hdr->frame_control)) && 1798 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1799 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1800 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1801 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1802 if (!ieee80211_has_pm(hdr->frame_control)) 1803 sta_ps_end(sta); 1804 } else { 1805 if (ieee80211_has_pm(hdr->frame_control)) 1806 sta_ps_start(sta); 1807 } 1808 } 1809 1810 /* mesh power save support */ 1811 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1812 ieee80211_mps_rx_h_sta_process(sta, hdr); 1813 1814 /* 1815 * Drop (qos-)data::nullfunc frames silently, since they 1816 * are used only to control station power saving mode. 1817 */ 1818 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1819 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1820 1821 /* 1822 * If we receive a 4-addr nullfunc frame from a STA 1823 * that was not moved to a 4-addr STA vlan yet send 1824 * the event to userspace and for older hostapd drop 1825 * the frame to the monitor interface. 1826 */ 1827 if (ieee80211_has_a4(hdr->frame_control) && 1828 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1829 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1830 !rx->sdata->u.vlan.sta))) { 1831 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1832 cfg80211_rx_unexpected_4addr_frame( 1833 rx->sdata->dev, sta->sta.addr, 1834 GFP_ATOMIC); 1835 return RX_DROP_MONITOR; 1836 } 1837 /* 1838 * Update counter and free packet here to avoid 1839 * counting this as a dropped packed. 1840 */ 1841 sta->rx_stats.packets++; 1842 dev_kfree_skb(rx->skb); 1843 return RX_QUEUED; 1844 } 1845 1846 return RX_CONTINUE; 1847 } /* ieee80211_rx_h_sta_process */ 1848 1849 static struct ieee80211_key * 1850 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1851 { 1852 struct ieee80211_key *key = NULL; 1853 struct ieee80211_sub_if_data *sdata = rx->sdata; 1854 int idx2; 1855 1856 /* Make sure key gets set if either BIGTK key index is set so that 1857 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1858 * Beacon frames and Beacon frames that claim to use another BIGTK key 1859 * index (i.e., a key that we do not have). 1860 */ 1861 1862 if (idx < 0) { 1863 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1864 idx2 = idx + 1; 1865 } else { 1866 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1867 idx2 = idx + 1; 1868 else 1869 idx2 = idx - 1; 1870 } 1871 1872 if (rx->sta) 1873 key = rcu_dereference(rx->sta->gtk[idx]); 1874 if (!key) 1875 key = rcu_dereference(sdata->keys[idx]); 1876 if (!key && rx->sta) 1877 key = rcu_dereference(rx->sta->gtk[idx2]); 1878 if (!key) 1879 key = rcu_dereference(sdata->keys[idx2]); 1880 1881 return key; 1882 } 1883 1884 static ieee80211_rx_result debug_noinline 1885 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1886 { 1887 struct sk_buff *skb = rx->skb; 1888 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1889 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1890 int keyidx; 1891 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1892 struct ieee80211_key *sta_ptk = NULL; 1893 struct ieee80211_key *ptk_idx = NULL; 1894 int mmie_keyidx = -1; 1895 __le16 fc; 1896 const struct ieee80211_cipher_scheme *cs = NULL; 1897 1898 if (ieee80211_is_ext(hdr->frame_control)) 1899 return RX_CONTINUE; 1900 1901 /* 1902 * Key selection 101 1903 * 1904 * There are five types of keys: 1905 * - GTK (group keys) 1906 * - IGTK (group keys for management frames) 1907 * - BIGTK (group keys for Beacon frames) 1908 * - PTK (pairwise keys) 1909 * - STK (station-to-station pairwise keys) 1910 * 1911 * When selecting a key, we have to distinguish between multicast 1912 * (including broadcast) and unicast frames, the latter can only 1913 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1914 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1915 * then unicast frames can also use key indices like GTKs. Hence, if we 1916 * don't have a PTK/STK we check the key index for a WEP key. 1917 * 1918 * Note that in a regular BSS, multicast frames are sent by the 1919 * AP only, associated stations unicast the frame to the AP first 1920 * which then multicasts it on their behalf. 1921 * 1922 * There is also a slight problem in IBSS mode: GTKs are negotiated 1923 * with each station, that is something we don't currently handle. 1924 * The spec seems to expect that one negotiates the same key with 1925 * every station but there's no such requirement; VLANs could be 1926 * possible. 1927 */ 1928 1929 /* start without a key */ 1930 rx->key = NULL; 1931 fc = hdr->frame_control; 1932 1933 if (rx->sta) { 1934 int keyid = rx->sta->ptk_idx; 1935 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1936 1937 if (ieee80211_has_protected(fc)) { 1938 cs = rx->sta->cipher_scheme; 1939 keyid = ieee80211_get_keyid(rx->skb, cs); 1940 1941 if (unlikely(keyid < 0)) 1942 return RX_DROP_UNUSABLE; 1943 1944 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1945 } 1946 } 1947 1948 if (!ieee80211_has_protected(fc)) 1949 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1950 1951 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1952 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1953 if ((status->flag & RX_FLAG_DECRYPTED) && 1954 (status->flag & RX_FLAG_IV_STRIPPED)) 1955 return RX_CONTINUE; 1956 /* Skip decryption if the frame is not protected. */ 1957 if (!ieee80211_has_protected(fc)) 1958 return RX_CONTINUE; 1959 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1960 /* Broadcast/multicast robust management frame / BIP */ 1961 if ((status->flag & RX_FLAG_DECRYPTED) && 1962 (status->flag & RX_FLAG_IV_STRIPPED)) 1963 return RX_CONTINUE; 1964 1965 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1966 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1967 NUM_DEFAULT_BEACON_KEYS) { 1968 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1969 skb->data, 1970 skb->len); 1971 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1972 } 1973 1974 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1975 if (!rx->key) 1976 return RX_CONTINUE; /* Beacon protection not in use */ 1977 } else if (mmie_keyidx >= 0) { 1978 /* Broadcast/multicast robust management frame / BIP */ 1979 if ((status->flag & RX_FLAG_DECRYPTED) && 1980 (status->flag & RX_FLAG_IV_STRIPPED)) 1981 return RX_CONTINUE; 1982 1983 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1984 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1985 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1986 if (rx->sta) { 1987 if (ieee80211_is_group_privacy_action(skb) && 1988 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1989 return RX_DROP_MONITOR; 1990 1991 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1992 } 1993 if (!rx->key) 1994 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1995 } else if (!ieee80211_has_protected(fc)) { 1996 /* 1997 * The frame was not protected, so skip decryption. However, we 1998 * need to set rx->key if there is a key that could have been 1999 * used so that the frame may be dropped if encryption would 2000 * have been expected. 2001 */ 2002 struct ieee80211_key *key = NULL; 2003 struct ieee80211_sub_if_data *sdata = rx->sdata; 2004 int i; 2005 2006 if (ieee80211_is_beacon(fc)) { 2007 key = ieee80211_rx_get_bigtk(rx, -1); 2008 } else if (ieee80211_is_mgmt(fc) && 2009 is_multicast_ether_addr(hdr->addr1)) { 2010 key = rcu_dereference(rx->sdata->default_mgmt_key); 2011 } else { 2012 if (rx->sta) { 2013 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2014 key = rcu_dereference(rx->sta->gtk[i]); 2015 if (key) 2016 break; 2017 } 2018 } 2019 if (!key) { 2020 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2021 key = rcu_dereference(sdata->keys[i]); 2022 if (key) 2023 break; 2024 } 2025 } 2026 } 2027 if (key) 2028 rx->key = key; 2029 return RX_CONTINUE; 2030 } else { 2031 /* 2032 * The device doesn't give us the IV so we won't be 2033 * able to look up the key. That's ok though, we 2034 * don't need to decrypt the frame, we just won't 2035 * be able to keep statistics accurate. 2036 * Except for key threshold notifications, should 2037 * we somehow allow the driver to tell us which key 2038 * the hardware used if this flag is set? 2039 */ 2040 if ((status->flag & RX_FLAG_DECRYPTED) && 2041 (status->flag & RX_FLAG_IV_STRIPPED)) 2042 return RX_CONTINUE; 2043 2044 keyidx = ieee80211_get_keyid(rx->skb, cs); 2045 2046 if (unlikely(keyidx < 0)) 2047 return RX_DROP_UNUSABLE; 2048 2049 /* check per-station GTK first, if multicast packet */ 2050 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2051 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 2052 2053 /* if not found, try default key */ 2054 if (!rx->key) { 2055 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2056 2057 /* 2058 * RSNA-protected unicast frames should always be 2059 * sent with pairwise or station-to-station keys, 2060 * but for WEP we allow using a key index as well. 2061 */ 2062 if (rx->key && 2063 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2064 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2065 !is_multicast_ether_addr(hdr->addr1)) 2066 rx->key = NULL; 2067 } 2068 } 2069 2070 if (rx->key) { 2071 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2072 return RX_DROP_MONITOR; 2073 2074 /* TODO: add threshold stuff again */ 2075 } else { 2076 return RX_DROP_MONITOR; 2077 } 2078 2079 switch (rx->key->conf.cipher) { 2080 case WLAN_CIPHER_SUITE_WEP40: 2081 case WLAN_CIPHER_SUITE_WEP104: 2082 result = ieee80211_crypto_wep_decrypt(rx); 2083 break; 2084 case WLAN_CIPHER_SUITE_TKIP: 2085 result = ieee80211_crypto_tkip_decrypt(rx); 2086 break; 2087 case WLAN_CIPHER_SUITE_CCMP: 2088 result = ieee80211_crypto_ccmp_decrypt( 2089 rx, IEEE80211_CCMP_MIC_LEN); 2090 break; 2091 case WLAN_CIPHER_SUITE_CCMP_256: 2092 result = ieee80211_crypto_ccmp_decrypt( 2093 rx, IEEE80211_CCMP_256_MIC_LEN); 2094 break; 2095 case WLAN_CIPHER_SUITE_AES_CMAC: 2096 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2097 break; 2098 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2099 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2100 break; 2101 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2102 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2103 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2104 break; 2105 case WLAN_CIPHER_SUITE_GCMP: 2106 case WLAN_CIPHER_SUITE_GCMP_256: 2107 result = ieee80211_crypto_gcmp_decrypt(rx); 2108 break; 2109 default: 2110 result = ieee80211_crypto_hw_decrypt(rx); 2111 } 2112 2113 /* the hdr variable is invalid after the decrypt handlers */ 2114 2115 /* either the frame has been decrypted or will be dropped */ 2116 status->flag |= RX_FLAG_DECRYPTED; 2117 2118 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) 2119 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2120 skb->data, skb->len); 2121 2122 return result; 2123 } 2124 2125 static inline struct ieee80211_fragment_entry * 2126 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 2127 unsigned int frag, unsigned int seq, int rx_queue, 2128 struct sk_buff **skb) 2129 { 2130 struct ieee80211_fragment_entry *entry; 2131 2132 entry = &sdata->fragments[sdata->fragment_next++]; 2133 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 2134 sdata->fragment_next = 0; 2135 2136 if (!skb_queue_empty(&entry->skb_list)) 2137 __skb_queue_purge(&entry->skb_list); 2138 2139 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2140 *skb = NULL; 2141 entry->first_frag_time = jiffies; 2142 entry->seq = seq; 2143 entry->rx_queue = rx_queue; 2144 entry->last_frag = frag; 2145 entry->check_sequential_pn = false; 2146 entry->extra_len = 0; 2147 2148 return entry; 2149 } 2150 2151 static inline struct ieee80211_fragment_entry * 2152 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 2153 unsigned int frag, unsigned int seq, 2154 int rx_queue, struct ieee80211_hdr *hdr) 2155 { 2156 struct ieee80211_fragment_entry *entry; 2157 int i, idx; 2158 2159 idx = sdata->fragment_next; 2160 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2161 struct ieee80211_hdr *f_hdr; 2162 struct sk_buff *f_skb; 2163 2164 idx--; 2165 if (idx < 0) 2166 idx = IEEE80211_FRAGMENT_MAX - 1; 2167 2168 entry = &sdata->fragments[idx]; 2169 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2170 entry->rx_queue != rx_queue || 2171 entry->last_frag + 1 != frag) 2172 continue; 2173 2174 f_skb = __skb_peek(&entry->skb_list); 2175 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2176 2177 /* 2178 * Check ftype and addresses are equal, else check next fragment 2179 */ 2180 if (((hdr->frame_control ^ f_hdr->frame_control) & 2181 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2182 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2183 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2184 continue; 2185 2186 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2187 __skb_queue_purge(&entry->skb_list); 2188 continue; 2189 } 2190 return entry; 2191 } 2192 2193 return NULL; 2194 } 2195 2196 static ieee80211_rx_result debug_noinline 2197 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2198 { 2199 struct ieee80211_hdr *hdr; 2200 u16 sc; 2201 __le16 fc; 2202 unsigned int frag, seq; 2203 struct ieee80211_fragment_entry *entry; 2204 struct sk_buff *skb; 2205 2206 hdr = (struct ieee80211_hdr *)rx->skb->data; 2207 fc = hdr->frame_control; 2208 2209 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2210 return RX_CONTINUE; 2211 2212 sc = le16_to_cpu(hdr->seq_ctrl); 2213 frag = sc & IEEE80211_SCTL_FRAG; 2214 2215 if (is_multicast_ether_addr(hdr->addr1)) { 2216 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 2217 goto out_no_led; 2218 } 2219 2220 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2221 goto out; 2222 2223 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2224 2225 if (skb_linearize(rx->skb)) 2226 return RX_DROP_UNUSABLE; 2227 2228 /* 2229 * skb_linearize() might change the skb->data and 2230 * previously cached variables (in this case, hdr) need to 2231 * be refreshed with the new data. 2232 */ 2233 hdr = (struct ieee80211_hdr *)rx->skb->data; 2234 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2235 2236 if (frag == 0) { 2237 /* This is the first fragment of a new frame. */ 2238 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2239 rx->seqno_idx, &(rx->skb)); 2240 if (rx->key && 2241 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2242 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2243 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2244 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2245 ieee80211_has_protected(fc)) { 2246 int queue = rx->security_idx; 2247 2248 /* Store CCMP/GCMP PN so that we can verify that the 2249 * next fragment has a sequential PN value. 2250 */ 2251 entry->check_sequential_pn = true; 2252 memcpy(entry->last_pn, 2253 rx->key->u.ccmp.rx_pn[queue], 2254 IEEE80211_CCMP_PN_LEN); 2255 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2256 u.ccmp.rx_pn) != 2257 offsetof(struct ieee80211_key, 2258 u.gcmp.rx_pn)); 2259 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2260 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2261 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2262 IEEE80211_GCMP_PN_LEN); 2263 } 2264 return RX_QUEUED; 2265 } 2266 2267 /* This is a fragment for a frame that should already be pending in 2268 * fragment cache. Add this fragment to the end of the pending entry. 2269 */ 2270 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2271 rx->seqno_idx, hdr); 2272 if (!entry) { 2273 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2274 return RX_DROP_MONITOR; 2275 } 2276 2277 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2278 * MPDU PN values are not incrementing in steps of 1." 2279 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2280 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2281 */ 2282 if (entry->check_sequential_pn) { 2283 int i; 2284 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2285 int queue; 2286 2287 if (!rx->key || 2288 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2289 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2290 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2291 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2292 return RX_DROP_UNUSABLE; 2293 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2294 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2295 pn[i]++; 2296 if (pn[i]) 2297 break; 2298 } 2299 queue = rx->security_idx; 2300 rpn = rx->key->u.ccmp.rx_pn[queue]; 2301 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2302 return RX_DROP_UNUSABLE; 2303 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2304 } 2305 2306 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2307 __skb_queue_tail(&entry->skb_list, rx->skb); 2308 entry->last_frag = frag; 2309 entry->extra_len += rx->skb->len; 2310 if (ieee80211_has_morefrags(fc)) { 2311 rx->skb = NULL; 2312 return RX_QUEUED; 2313 } 2314 2315 rx->skb = __skb_dequeue(&entry->skb_list); 2316 if (skb_tailroom(rx->skb) < entry->extra_len) { 2317 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2318 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2319 GFP_ATOMIC))) { 2320 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2321 __skb_queue_purge(&entry->skb_list); 2322 return RX_DROP_UNUSABLE; 2323 } 2324 } 2325 while ((skb = __skb_dequeue(&entry->skb_list))) { 2326 skb_put_data(rx->skb, skb->data, skb->len); 2327 dev_kfree_skb(skb); 2328 } 2329 2330 out: 2331 ieee80211_led_rx(rx->local); 2332 out_no_led: 2333 if (rx->sta) 2334 rx->sta->rx_stats.packets++; 2335 return RX_CONTINUE; 2336 } 2337 2338 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2339 { 2340 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2341 return -EACCES; 2342 2343 return 0; 2344 } 2345 2346 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2347 { 2348 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 2349 struct sk_buff *skb = rx->skb; 2350 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2351 2352 /* 2353 * Pass through unencrypted frames if the hardware has 2354 * decrypted them already. 2355 */ 2356 if (status->flag & RX_FLAG_DECRYPTED) 2357 return 0; 2358 2359 /* check mesh EAPOL frames first */ 2360 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && 2361 ieee80211_is_data(fc))) { 2362 struct ieee80211s_hdr *mesh_hdr; 2363 u16 hdr_len = ieee80211_hdrlen(fc); 2364 u16 ethertype_offset; 2365 __be16 ethertype; 2366 2367 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) 2368 goto drop_check; 2369 2370 /* make sure fixed part of mesh header is there, also checks skb len */ 2371 if (!pskb_may_pull(rx->skb, hdr_len + 6)) 2372 goto drop_check; 2373 2374 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); 2375 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + 2376 sizeof(rfc1042_header); 2377 2378 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && 2379 ethertype == rx->sdata->control_port_protocol) 2380 return 0; 2381 } 2382 2383 drop_check: 2384 /* Drop unencrypted frames if key is set. */ 2385 if (unlikely(!ieee80211_has_protected(fc) && 2386 !ieee80211_is_any_nullfunc(fc) && 2387 ieee80211_is_data(fc) && rx->key)) 2388 return -EACCES; 2389 2390 return 0; 2391 } 2392 2393 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2394 { 2395 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2396 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2397 __le16 fc = hdr->frame_control; 2398 2399 /* 2400 * Pass through unencrypted frames if the hardware has 2401 * decrypted them already. 2402 */ 2403 if (status->flag & RX_FLAG_DECRYPTED) 2404 return 0; 2405 2406 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2407 if (unlikely(!ieee80211_has_protected(fc) && 2408 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2409 rx->key)) { 2410 if (ieee80211_is_deauth(fc) || 2411 ieee80211_is_disassoc(fc)) 2412 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2413 rx->skb->data, 2414 rx->skb->len); 2415 return -EACCES; 2416 } 2417 /* BIP does not use Protected field, so need to check MMIE */ 2418 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2419 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2420 if (ieee80211_is_deauth(fc) || 2421 ieee80211_is_disassoc(fc)) 2422 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2423 rx->skb->data, 2424 rx->skb->len); 2425 return -EACCES; 2426 } 2427 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2428 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2429 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2430 rx->skb->data, 2431 rx->skb->len); 2432 return -EACCES; 2433 } 2434 /* 2435 * When using MFP, Action frames are not allowed prior to 2436 * having configured keys. 2437 */ 2438 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2439 ieee80211_is_robust_mgmt_frame(rx->skb))) 2440 return -EACCES; 2441 } 2442 2443 return 0; 2444 } 2445 2446 static int 2447 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2448 { 2449 struct ieee80211_sub_if_data *sdata = rx->sdata; 2450 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2451 bool check_port_control = false; 2452 struct ethhdr *ehdr; 2453 int ret; 2454 2455 *port_control = false; 2456 if (ieee80211_has_a4(hdr->frame_control) && 2457 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2458 return -1; 2459 2460 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2461 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2462 2463 if (!sdata->u.mgd.use_4addr) 2464 return -1; 2465 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2466 check_port_control = true; 2467 } 2468 2469 if (is_multicast_ether_addr(hdr->addr1) && 2470 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2471 return -1; 2472 2473 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2474 if (ret < 0) 2475 return ret; 2476 2477 ehdr = (struct ethhdr *) rx->skb->data; 2478 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2479 *port_control = true; 2480 else if (check_port_control) 2481 return -1; 2482 2483 return 0; 2484 } 2485 2486 /* 2487 * requires that rx->skb is a frame with ethernet header 2488 */ 2489 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2490 { 2491 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2492 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2493 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2494 2495 /* 2496 * Allow EAPOL frames to us/the PAE group address regardless 2497 * of whether the frame was encrypted or not. 2498 */ 2499 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2500 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2501 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2502 return true; 2503 2504 if (ieee80211_802_1x_port_control(rx) || 2505 ieee80211_drop_unencrypted(rx, fc)) 2506 return false; 2507 2508 return true; 2509 } 2510 2511 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2512 struct ieee80211_rx_data *rx) 2513 { 2514 struct ieee80211_sub_if_data *sdata = rx->sdata; 2515 struct net_device *dev = sdata->dev; 2516 2517 if (unlikely((skb->protocol == sdata->control_port_protocol || 2518 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2519 !sdata->control_port_no_preauth)) && 2520 sdata->control_port_over_nl80211)) { 2521 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2522 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2523 2524 cfg80211_rx_control_port(dev, skb, noencrypt); 2525 dev_kfree_skb(skb); 2526 } else { 2527 memset(skb->cb, 0, sizeof(skb->cb)); 2528 2529 /* deliver to local stack */ 2530 if (rx->list) 2531 list_add_tail(&skb->list, rx->list); 2532 else 2533 netif_receive_skb(skb); 2534 } 2535 } 2536 2537 /* 2538 * requires that rx->skb is a frame with ethernet header 2539 */ 2540 static void 2541 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2542 { 2543 struct ieee80211_sub_if_data *sdata = rx->sdata; 2544 struct net_device *dev = sdata->dev; 2545 struct sk_buff *skb, *xmit_skb; 2546 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2547 struct sta_info *dsta; 2548 2549 skb = rx->skb; 2550 xmit_skb = NULL; 2551 2552 dev_sw_netstats_rx_add(dev, skb->len); 2553 2554 if (rx->sta) { 2555 /* The seqno index has the same property as needed 2556 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2557 * for non-QoS-data frames. Here we know it's a data 2558 * frame, so count MSDUs. 2559 */ 2560 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2561 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2562 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2563 } 2564 2565 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2566 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2567 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2568 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2569 if (is_multicast_ether_addr(ehdr->h_dest) && 2570 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2571 /* 2572 * send multicast frames both to higher layers in 2573 * local net stack and back to the wireless medium 2574 */ 2575 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2576 if (!xmit_skb) 2577 net_info_ratelimited("%s: failed to clone multicast frame\n", 2578 dev->name); 2579 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2580 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2581 dsta = sta_info_get(sdata, ehdr->h_dest); 2582 if (dsta) { 2583 /* 2584 * The destination station is associated to 2585 * this AP (in this VLAN), so send the frame 2586 * directly to it and do not pass it to local 2587 * net stack. 2588 */ 2589 xmit_skb = skb; 2590 skb = NULL; 2591 } 2592 } 2593 } 2594 2595 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2596 if (skb) { 2597 /* 'align' will only take the values 0 or 2 here since all 2598 * frames are required to be aligned to 2-byte boundaries 2599 * when being passed to mac80211; the code here works just 2600 * as well if that isn't true, but mac80211 assumes it can 2601 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2602 */ 2603 int align; 2604 2605 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2606 if (align) { 2607 if (WARN_ON(skb_headroom(skb) < 3)) { 2608 dev_kfree_skb(skb); 2609 skb = NULL; 2610 } else { 2611 u8 *data = skb->data; 2612 size_t len = skb_headlen(skb); 2613 skb->data -= align; 2614 memmove(skb->data, data, len); 2615 skb_set_tail_pointer(skb, len); 2616 } 2617 } 2618 } 2619 #endif 2620 2621 if (skb) { 2622 skb->protocol = eth_type_trans(skb, dev); 2623 ieee80211_deliver_skb_to_local_stack(skb, rx); 2624 } 2625 2626 if (xmit_skb) { 2627 /* 2628 * Send to wireless media and increase priority by 256 to 2629 * keep the received priority instead of reclassifying 2630 * the frame (see cfg80211_classify8021d). 2631 */ 2632 xmit_skb->priority += 256; 2633 xmit_skb->protocol = htons(ETH_P_802_3); 2634 skb_reset_network_header(xmit_skb); 2635 skb_reset_mac_header(xmit_skb); 2636 dev_queue_xmit(xmit_skb); 2637 } 2638 } 2639 2640 static ieee80211_rx_result debug_noinline 2641 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2642 { 2643 struct net_device *dev = rx->sdata->dev; 2644 struct sk_buff *skb = rx->skb; 2645 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2646 __le16 fc = hdr->frame_control; 2647 struct sk_buff_head frame_list; 2648 struct ethhdr ethhdr; 2649 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2650 2651 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2652 check_da = NULL; 2653 check_sa = NULL; 2654 } else switch (rx->sdata->vif.type) { 2655 case NL80211_IFTYPE_AP: 2656 case NL80211_IFTYPE_AP_VLAN: 2657 check_da = NULL; 2658 break; 2659 case NL80211_IFTYPE_STATION: 2660 if (!rx->sta || 2661 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2662 check_sa = NULL; 2663 break; 2664 case NL80211_IFTYPE_MESH_POINT: 2665 check_sa = NULL; 2666 break; 2667 default: 2668 break; 2669 } 2670 2671 skb->dev = dev; 2672 __skb_queue_head_init(&frame_list); 2673 2674 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2675 rx->sdata->vif.addr, 2676 rx->sdata->vif.type, 2677 data_offset)) 2678 return RX_DROP_UNUSABLE; 2679 2680 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2681 rx->sdata->vif.type, 2682 rx->local->hw.extra_tx_headroom, 2683 check_da, check_sa); 2684 2685 while (!skb_queue_empty(&frame_list)) { 2686 rx->skb = __skb_dequeue(&frame_list); 2687 2688 if (!ieee80211_frame_allowed(rx, fc)) { 2689 dev_kfree_skb(rx->skb); 2690 continue; 2691 } 2692 2693 ieee80211_deliver_skb(rx); 2694 } 2695 2696 return RX_QUEUED; 2697 } 2698 2699 static ieee80211_rx_result debug_noinline 2700 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2701 { 2702 struct sk_buff *skb = rx->skb; 2703 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2704 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2705 __le16 fc = hdr->frame_control; 2706 2707 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2708 return RX_CONTINUE; 2709 2710 if (unlikely(!ieee80211_is_data(fc))) 2711 return RX_CONTINUE; 2712 2713 if (unlikely(!ieee80211_is_data_present(fc))) 2714 return RX_DROP_MONITOR; 2715 2716 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2717 switch (rx->sdata->vif.type) { 2718 case NL80211_IFTYPE_AP_VLAN: 2719 if (!rx->sdata->u.vlan.sta) 2720 return RX_DROP_UNUSABLE; 2721 break; 2722 case NL80211_IFTYPE_STATION: 2723 if (!rx->sdata->u.mgd.use_4addr) 2724 return RX_DROP_UNUSABLE; 2725 break; 2726 default: 2727 return RX_DROP_UNUSABLE; 2728 } 2729 } 2730 2731 if (is_multicast_ether_addr(hdr->addr1)) 2732 return RX_DROP_UNUSABLE; 2733 2734 return __ieee80211_rx_h_amsdu(rx, 0); 2735 } 2736 2737 #ifdef CONFIG_MAC80211_MESH 2738 static ieee80211_rx_result 2739 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2740 { 2741 struct ieee80211_hdr *fwd_hdr, *hdr; 2742 struct ieee80211_tx_info *info; 2743 struct ieee80211s_hdr *mesh_hdr; 2744 struct sk_buff *skb = rx->skb, *fwd_skb; 2745 struct ieee80211_local *local = rx->local; 2746 struct ieee80211_sub_if_data *sdata = rx->sdata; 2747 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2748 u16 ac, q, hdrlen; 2749 int tailroom = 0; 2750 2751 hdr = (struct ieee80211_hdr *) skb->data; 2752 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2753 2754 /* make sure fixed part of mesh header is there, also checks skb len */ 2755 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2756 return RX_DROP_MONITOR; 2757 2758 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2759 2760 /* make sure full mesh header is there, also checks skb len */ 2761 if (!pskb_may_pull(rx->skb, 2762 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2763 return RX_DROP_MONITOR; 2764 2765 /* reload pointers */ 2766 hdr = (struct ieee80211_hdr *) skb->data; 2767 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2768 2769 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2770 return RX_DROP_MONITOR; 2771 2772 /* frame is in RMC, don't forward */ 2773 if (ieee80211_is_data(hdr->frame_control) && 2774 is_multicast_ether_addr(hdr->addr1) && 2775 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2776 return RX_DROP_MONITOR; 2777 2778 if (!ieee80211_is_data(hdr->frame_control)) 2779 return RX_CONTINUE; 2780 2781 if (!mesh_hdr->ttl) 2782 return RX_DROP_MONITOR; 2783 2784 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2785 struct mesh_path *mppath; 2786 char *proxied_addr; 2787 char *mpp_addr; 2788 2789 if (is_multicast_ether_addr(hdr->addr1)) { 2790 mpp_addr = hdr->addr3; 2791 proxied_addr = mesh_hdr->eaddr1; 2792 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2793 MESH_FLAGS_AE_A5_A6) { 2794 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2795 mpp_addr = hdr->addr4; 2796 proxied_addr = mesh_hdr->eaddr2; 2797 } else { 2798 return RX_DROP_MONITOR; 2799 } 2800 2801 rcu_read_lock(); 2802 mppath = mpp_path_lookup(sdata, proxied_addr); 2803 if (!mppath) { 2804 mpp_path_add(sdata, proxied_addr, mpp_addr); 2805 } else { 2806 spin_lock_bh(&mppath->state_lock); 2807 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2808 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2809 mppath->exp_time = jiffies; 2810 spin_unlock_bh(&mppath->state_lock); 2811 } 2812 rcu_read_unlock(); 2813 } 2814 2815 /* Frame has reached destination. Don't forward */ 2816 if (!is_multicast_ether_addr(hdr->addr1) && 2817 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2818 return RX_CONTINUE; 2819 2820 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2821 q = sdata->vif.hw_queue[ac]; 2822 if (ieee80211_queue_stopped(&local->hw, q)) { 2823 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2824 return RX_DROP_MONITOR; 2825 } 2826 skb_set_queue_mapping(skb, q); 2827 2828 if (!--mesh_hdr->ttl) { 2829 if (!is_multicast_ether_addr(hdr->addr1)) 2830 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2831 dropped_frames_ttl); 2832 goto out; 2833 } 2834 2835 if (!ifmsh->mshcfg.dot11MeshForwarding) 2836 goto out; 2837 2838 if (sdata->crypto_tx_tailroom_needed_cnt) 2839 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2840 2841 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2842 sdata->encrypt_headroom, 2843 tailroom, GFP_ATOMIC); 2844 if (!fwd_skb) 2845 goto out; 2846 2847 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2848 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2849 info = IEEE80211_SKB_CB(fwd_skb); 2850 memset(info, 0, sizeof(*info)); 2851 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2852 info->control.vif = &rx->sdata->vif; 2853 info->control.jiffies = jiffies; 2854 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2855 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2856 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2857 /* update power mode indication when forwarding */ 2858 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2859 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2860 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2861 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2862 } else { 2863 /* unable to resolve next hop */ 2864 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2865 fwd_hdr->addr3, 0, 2866 WLAN_REASON_MESH_PATH_NOFORWARD, 2867 fwd_hdr->addr2); 2868 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2869 kfree_skb(fwd_skb); 2870 return RX_DROP_MONITOR; 2871 } 2872 2873 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2874 ieee80211_add_pending_skb(local, fwd_skb); 2875 out: 2876 if (is_multicast_ether_addr(hdr->addr1)) 2877 return RX_CONTINUE; 2878 return RX_DROP_MONITOR; 2879 } 2880 #endif 2881 2882 static ieee80211_rx_result debug_noinline 2883 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2884 { 2885 struct ieee80211_sub_if_data *sdata = rx->sdata; 2886 struct ieee80211_local *local = rx->local; 2887 struct net_device *dev = sdata->dev; 2888 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2889 __le16 fc = hdr->frame_control; 2890 bool port_control; 2891 int err; 2892 2893 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2894 return RX_CONTINUE; 2895 2896 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2897 return RX_DROP_MONITOR; 2898 2899 /* 2900 * Send unexpected-4addr-frame event to hostapd. For older versions, 2901 * also drop the frame to cooked monitor interfaces. 2902 */ 2903 if (ieee80211_has_a4(hdr->frame_control) && 2904 sdata->vif.type == NL80211_IFTYPE_AP) { 2905 if (rx->sta && 2906 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2907 cfg80211_rx_unexpected_4addr_frame( 2908 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2909 return RX_DROP_MONITOR; 2910 } 2911 2912 err = __ieee80211_data_to_8023(rx, &port_control); 2913 if (unlikely(err)) 2914 return RX_DROP_UNUSABLE; 2915 2916 if (!ieee80211_frame_allowed(rx, fc)) 2917 return RX_DROP_MONITOR; 2918 2919 /* directly handle TDLS channel switch requests/responses */ 2920 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2921 cpu_to_be16(ETH_P_TDLS))) { 2922 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2923 2924 if (pskb_may_pull(rx->skb, 2925 offsetof(struct ieee80211_tdls_data, u)) && 2926 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2927 tf->category == WLAN_CATEGORY_TDLS && 2928 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2929 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2930 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2931 schedule_work(&local->tdls_chsw_work); 2932 if (rx->sta) 2933 rx->sta->rx_stats.packets++; 2934 2935 return RX_QUEUED; 2936 } 2937 } 2938 2939 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2940 unlikely(port_control) && sdata->bss) { 2941 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2942 u.ap); 2943 dev = sdata->dev; 2944 rx->sdata = sdata; 2945 } 2946 2947 rx->skb->dev = dev; 2948 2949 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2950 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2951 !is_multicast_ether_addr( 2952 ((struct ethhdr *)rx->skb->data)->h_dest) && 2953 (!local->scanning && 2954 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2955 mod_timer(&local->dynamic_ps_timer, jiffies + 2956 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2957 2958 ieee80211_deliver_skb(rx); 2959 2960 return RX_QUEUED; 2961 } 2962 2963 static ieee80211_rx_result debug_noinline 2964 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2965 { 2966 struct sk_buff *skb = rx->skb; 2967 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2968 struct tid_ampdu_rx *tid_agg_rx; 2969 u16 start_seq_num; 2970 u16 tid; 2971 2972 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2973 return RX_CONTINUE; 2974 2975 if (ieee80211_is_back_req(bar->frame_control)) { 2976 struct { 2977 __le16 control, start_seq_num; 2978 } __packed bar_data; 2979 struct ieee80211_event event = { 2980 .type = BAR_RX_EVENT, 2981 }; 2982 2983 if (!rx->sta) 2984 return RX_DROP_MONITOR; 2985 2986 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2987 &bar_data, sizeof(bar_data))) 2988 return RX_DROP_MONITOR; 2989 2990 tid = le16_to_cpu(bar_data.control) >> 12; 2991 2992 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2993 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2994 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2995 WLAN_BACK_RECIPIENT, 2996 WLAN_REASON_QSTA_REQUIRE_SETUP); 2997 2998 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2999 if (!tid_agg_rx) 3000 return RX_DROP_MONITOR; 3001 3002 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3003 event.u.ba.tid = tid; 3004 event.u.ba.ssn = start_seq_num; 3005 event.u.ba.sta = &rx->sta->sta; 3006 3007 /* reset session timer */ 3008 if (tid_agg_rx->timeout) 3009 mod_timer(&tid_agg_rx->session_timer, 3010 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3011 3012 spin_lock(&tid_agg_rx->reorder_lock); 3013 /* release stored frames up to start of BAR */ 3014 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3015 start_seq_num, frames); 3016 spin_unlock(&tid_agg_rx->reorder_lock); 3017 3018 drv_event_callback(rx->local, rx->sdata, &event); 3019 3020 kfree_skb(skb); 3021 return RX_QUEUED; 3022 } 3023 3024 /* 3025 * After this point, we only want management frames, 3026 * so we can drop all remaining control frames to 3027 * cooked monitor interfaces. 3028 */ 3029 return RX_DROP_MONITOR; 3030 } 3031 3032 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3033 struct ieee80211_mgmt *mgmt, 3034 size_t len) 3035 { 3036 struct ieee80211_local *local = sdata->local; 3037 struct sk_buff *skb; 3038 struct ieee80211_mgmt *resp; 3039 3040 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3041 /* Not to own unicast address */ 3042 return; 3043 } 3044 3045 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 3046 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 3047 /* Not from the current AP or not associated yet. */ 3048 return; 3049 } 3050 3051 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3052 /* Too short SA Query request frame */ 3053 return; 3054 } 3055 3056 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3057 if (skb == NULL) 3058 return; 3059 3060 skb_reserve(skb, local->hw.extra_tx_headroom); 3061 resp = skb_put_zero(skb, 24); 3062 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3063 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3064 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 3065 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3066 IEEE80211_STYPE_ACTION); 3067 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3068 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3069 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3070 memcpy(resp->u.action.u.sa_query.trans_id, 3071 mgmt->u.action.u.sa_query.trans_id, 3072 WLAN_SA_QUERY_TR_ID_LEN); 3073 3074 ieee80211_tx_skb(sdata, skb); 3075 } 3076 3077 static ieee80211_rx_result debug_noinline 3078 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3079 { 3080 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3081 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3082 3083 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3084 return RX_CONTINUE; 3085 3086 /* 3087 * From here on, look only at management frames. 3088 * Data and control frames are already handled, 3089 * and unknown (reserved) frames are useless. 3090 */ 3091 if (rx->skb->len < 24) 3092 return RX_DROP_MONITOR; 3093 3094 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3095 return RX_DROP_MONITOR; 3096 3097 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3098 ieee80211_is_beacon(mgmt->frame_control) && 3099 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3100 int sig = 0; 3101 3102 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3103 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3104 sig = status->signal; 3105 3106 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3107 rx->skb->data, rx->skb->len, 3108 ieee80211_rx_status_to_khz(status), 3109 sig); 3110 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3111 } 3112 3113 if (ieee80211_drop_unencrypted_mgmt(rx)) 3114 return RX_DROP_UNUSABLE; 3115 3116 return RX_CONTINUE; 3117 } 3118 3119 static ieee80211_rx_result debug_noinline 3120 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3121 { 3122 struct ieee80211_local *local = rx->local; 3123 struct ieee80211_sub_if_data *sdata = rx->sdata; 3124 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3125 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3126 int len = rx->skb->len; 3127 3128 if (!ieee80211_is_action(mgmt->frame_control)) 3129 return RX_CONTINUE; 3130 3131 /* drop too small frames */ 3132 if (len < IEEE80211_MIN_ACTION_SIZE) 3133 return RX_DROP_UNUSABLE; 3134 3135 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3136 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3137 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3138 return RX_DROP_UNUSABLE; 3139 3140 switch (mgmt->u.action.category) { 3141 case WLAN_CATEGORY_HT: 3142 /* reject HT action frames from stations not supporting HT */ 3143 if (!rx->sta->sta.ht_cap.ht_supported) 3144 goto invalid; 3145 3146 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3147 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3148 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3149 sdata->vif.type != NL80211_IFTYPE_AP && 3150 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3151 break; 3152 3153 /* verify action & smps_control/chanwidth are present */ 3154 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3155 goto invalid; 3156 3157 switch (mgmt->u.action.u.ht_smps.action) { 3158 case WLAN_HT_ACTION_SMPS: { 3159 struct ieee80211_supported_band *sband; 3160 enum ieee80211_smps_mode smps_mode; 3161 struct sta_opmode_info sta_opmode = {}; 3162 3163 if (sdata->vif.type != NL80211_IFTYPE_AP && 3164 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3165 goto handled; 3166 3167 /* convert to HT capability */ 3168 switch (mgmt->u.action.u.ht_smps.smps_control) { 3169 case WLAN_HT_SMPS_CONTROL_DISABLED: 3170 smps_mode = IEEE80211_SMPS_OFF; 3171 break; 3172 case WLAN_HT_SMPS_CONTROL_STATIC: 3173 smps_mode = IEEE80211_SMPS_STATIC; 3174 break; 3175 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3176 smps_mode = IEEE80211_SMPS_DYNAMIC; 3177 break; 3178 default: 3179 goto invalid; 3180 } 3181 3182 /* if no change do nothing */ 3183 if (rx->sta->sta.smps_mode == smps_mode) 3184 goto handled; 3185 rx->sta->sta.smps_mode = smps_mode; 3186 sta_opmode.smps_mode = 3187 ieee80211_smps_mode_to_smps_mode(smps_mode); 3188 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3189 3190 sband = rx->local->hw.wiphy->bands[status->band]; 3191 3192 rate_control_rate_update(local, sband, rx->sta, 3193 IEEE80211_RC_SMPS_CHANGED); 3194 cfg80211_sta_opmode_change_notify(sdata->dev, 3195 rx->sta->addr, 3196 &sta_opmode, 3197 GFP_ATOMIC); 3198 goto handled; 3199 } 3200 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3201 struct ieee80211_supported_band *sband; 3202 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3203 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3204 struct sta_opmode_info sta_opmode = {}; 3205 3206 /* If it doesn't support 40 MHz it can't change ... */ 3207 if (!(rx->sta->sta.ht_cap.cap & 3208 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3209 goto handled; 3210 3211 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3212 max_bw = IEEE80211_STA_RX_BW_20; 3213 else 3214 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3215 3216 /* set cur_max_bandwidth and recalc sta bw */ 3217 rx->sta->cur_max_bandwidth = max_bw; 3218 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3219 3220 if (rx->sta->sta.bandwidth == new_bw) 3221 goto handled; 3222 3223 rx->sta->sta.bandwidth = new_bw; 3224 sband = rx->local->hw.wiphy->bands[status->band]; 3225 sta_opmode.bw = 3226 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3227 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3228 3229 rate_control_rate_update(local, sband, rx->sta, 3230 IEEE80211_RC_BW_CHANGED); 3231 cfg80211_sta_opmode_change_notify(sdata->dev, 3232 rx->sta->addr, 3233 &sta_opmode, 3234 GFP_ATOMIC); 3235 goto handled; 3236 } 3237 default: 3238 goto invalid; 3239 } 3240 3241 break; 3242 case WLAN_CATEGORY_PUBLIC: 3243 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3244 goto invalid; 3245 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3246 break; 3247 if (!rx->sta) 3248 break; 3249 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3250 break; 3251 if (mgmt->u.action.u.ext_chan_switch.action_code != 3252 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3253 break; 3254 if (len < offsetof(struct ieee80211_mgmt, 3255 u.action.u.ext_chan_switch.variable)) 3256 goto invalid; 3257 goto queue; 3258 case WLAN_CATEGORY_VHT: 3259 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3260 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3261 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3262 sdata->vif.type != NL80211_IFTYPE_AP && 3263 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3264 break; 3265 3266 /* verify action code is present */ 3267 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3268 goto invalid; 3269 3270 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3271 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3272 /* verify opmode is present */ 3273 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3274 goto invalid; 3275 goto queue; 3276 } 3277 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3278 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3279 goto invalid; 3280 goto queue; 3281 } 3282 default: 3283 break; 3284 } 3285 break; 3286 case WLAN_CATEGORY_BACK: 3287 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3288 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3289 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3290 sdata->vif.type != NL80211_IFTYPE_AP && 3291 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3292 break; 3293 3294 /* verify action_code is present */ 3295 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3296 break; 3297 3298 switch (mgmt->u.action.u.addba_req.action_code) { 3299 case WLAN_ACTION_ADDBA_REQ: 3300 if (len < (IEEE80211_MIN_ACTION_SIZE + 3301 sizeof(mgmt->u.action.u.addba_req))) 3302 goto invalid; 3303 break; 3304 case WLAN_ACTION_ADDBA_RESP: 3305 if (len < (IEEE80211_MIN_ACTION_SIZE + 3306 sizeof(mgmt->u.action.u.addba_resp))) 3307 goto invalid; 3308 break; 3309 case WLAN_ACTION_DELBA: 3310 if (len < (IEEE80211_MIN_ACTION_SIZE + 3311 sizeof(mgmt->u.action.u.delba))) 3312 goto invalid; 3313 break; 3314 default: 3315 goto invalid; 3316 } 3317 3318 goto queue; 3319 case WLAN_CATEGORY_SPECTRUM_MGMT: 3320 /* verify action_code is present */ 3321 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3322 break; 3323 3324 switch (mgmt->u.action.u.measurement.action_code) { 3325 case WLAN_ACTION_SPCT_MSR_REQ: 3326 if (status->band != NL80211_BAND_5GHZ) 3327 break; 3328 3329 if (len < (IEEE80211_MIN_ACTION_SIZE + 3330 sizeof(mgmt->u.action.u.measurement))) 3331 break; 3332 3333 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3334 break; 3335 3336 ieee80211_process_measurement_req(sdata, mgmt, len); 3337 goto handled; 3338 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3339 u8 *bssid; 3340 if (len < (IEEE80211_MIN_ACTION_SIZE + 3341 sizeof(mgmt->u.action.u.chan_switch))) 3342 break; 3343 3344 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3345 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3346 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3347 break; 3348 3349 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3350 bssid = sdata->u.mgd.bssid; 3351 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3352 bssid = sdata->u.ibss.bssid; 3353 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3354 bssid = mgmt->sa; 3355 else 3356 break; 3357 3358 if (!ether_addr_equal(mgmt->bssid, bssid)) 3359 break; 3360 3361 goto queue; 3362 } 3363 } 3364 break; 3365 case WLAN_CATEGORY_SELF_PROTECTED: 3366 if (len < (IEEE80211_MIN_ACTION_SIZE + 3367 sizeof(mgmt->u.action.u.self_prot.action_code))) 3368 break; 3369 3370 switch (mgmt->u.action.u.self_prot.action_code) { 3371 case WLAN_SP_MESH_PEERING_OPEN: 3372 case WLAN_SP_MESH_PEERING_CLOSE: 3373 case WLAN_SP_MESH_PEERING_CONFIRM: 3374 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3375 goto invalid; 3376 if (sdata->u.mesh.user_mpm) 3377 /* userspace handles this frame */ 3378 break; 3379 goto queue; 3380 case WLAN_SP_MGK_INFORM: 3381 case WLAN_SP_MGK_ACK: 3382 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3383 goto invalid; 3384 break; 3385 } 3386 break; 3387 case WLAN_CATEGORY_MESH_ACTION: 3388 if (len < (IEEE80211_MIN_ACTION_SIZE + 3389 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3390 break; 3391 3392 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3393 break; 3394 if (mesh_action_is_path_sel(mgmt) && 3395 !mesh_path_sel_is_hwmp(sdata)) 3396 break; 3397 goto queue; 3398 } 3399 3400 return RX_CONTINUE; 3401 3402 invalid: 3403 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3404 /* will return in the next handlers */ 3405 return RX_CONTINUE; 3406 3407 handled: 3408 if (rx->sta) 3409 rx->sta->rx_stats.packets++; 3410 dev_kfree_skb(rx->skb); 3411 return RX_QUEUED; 3412 3413 queue: 3414 skb_queue_tail(&sdata->skb_queue, rx->skb); 3415 ieee80211_queue_work(&local->hw, &sdata->work); 3416 if (rx->sta) 3417 rx->sta->rx_stats.packets++; 3418 return RX_QUEUED; 3419 } 3420 3421 static ieee80211_rx_result debug_noinline 3422 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3423 { 3424 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3425 int sig = 0; 3426 3427 /* skip known-bad action frames and return them in the next handler */ 3428 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3429 return RX_CONTINUE; 3430 3431 /* 3432 * Getting here means the kernel doesn't know how to handle 3433 * it, but maybe userspace does ... include returned frames 3434 * so userspace can register for those to know whether ones 3435 * it transmitted were processed or returned. 3436 */ 3437 3438 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3439 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3440 sig = status->signal; 3441 3442 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev, 3443 ieee80211_rx_status_to_khz(status), sig, 3444 rx->skb->data, rx->skb->len, 0)) { 3445 if (rx->sta) 3446 rx->sta->rx_stats.packets++; 3447 dev_kfree_skb(rx->skb); 3448 return RX_QUEUED; 3449 } 3450 3451 return RX_CONTINUE; 3452 } 3453 3454 static ieee80211_rx_result debug_noinline 3455 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3456 { 3457 struct ieee80211_sub_if_data *sdata = rx->sdata; 3458 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3459 int len = rx->skb->len; 3460 3461 if (!ieee80211_is_action(mgmt->frame_control)) 3462 return RX_CONTINUE; 3463 3464 switch (mgmt->u.action.category) { 3465 case WLAN_CATEGORY_SA_QUERY: 3466 if (len < (IEEE80211_MIN_ACTION_SIZE + 3467 sizeof(mgmt->u.action.u.sa_query))) 3468 break; 3469 3470 switch (mgmt->u.action.u.sa_query.action) { 3471 case WLAN_ACTION_SA_QUERY_REQUEST: 3472 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3473 break; 3474 ieee80211_process_sa_query_req(sdata, mgmt, len); 3475 goto handled; 3476 } 3477 break; 3478 } 3479 3480 return RX_CONTINUE; 3481 3482 handled: 3483 if (rx->sta) 3484 rx->sta->rx_stats.packets++; 3485 dev_kfree_skb(rx->skb); 3486 return RX_QUEUED; 3487 } 3488 3489 static ieee80211_rx_result debug_noinline 3490 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3491 { 3492 struct ieee80211_local *local = rx->local; 3493 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3494 struct sk_buff *nskb; 3495 struct ieee80211_sub_if_data *sdata = rx->sdata; 3496 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3497 3498 if (!ieee80211_is_action(mgmt->frame_control)) 3499 return RX_CONTINUE; 3500 3501 /* 3502 * For AP mode, hostapd is responsible for handling any action 3503 * frames that we didn't handle, including returning unknown 3504 * ones. For all other modes we will return them to the sender, 3505 * setting the 0x80 bit in the action category, as required by 3506 * 802.11-2012 9.24.4. 3507 * Newer versions of hostapd shall also use the management frame 3508 * registration mechanisms, but older ones still use cooked 3509 * monitor interfaces so push all frames there. 3510 */ 3511 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3512 (sdata->vif.type == NL80211_IFTYPE_AP || 3513 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3514 return RX_DROP_MONITOR; 3515 3516 if (is_multicast_ether_addr(mgmt->da)) 3517 return RX_DROP_MONITOR; 3518 3519 /* do not return rejected action frames */ 3520 if (mgmt->u.action.category & 0x80) 3521 return RX_DROP_UNUSABLE; 3522 3523 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3524 GFP_ATOMIC); 3525 if (nskb) { 3526 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3527 3528 nmgmt->u.action.category |= 0x80; 3529 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3530 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3531 3532 memset(nskb->cb, 0, sizeof(nskb->cb)); 3533 3534 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3535 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3536 3537 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3538 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3539 IEEE80211_TX_CTL_NO_CCK_RATE; 3540 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3541 info->hw_queue = 3542 local->hw.offchannel_tx_hw_queue; 3543 } 3544 3545 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3546 status->band); 3547 } 3548 dev_kfree_skb(rx->skb); 3549 return RX_QUEUED; 3550 } 3551 3552 static ieee80211_rx_result debug_noinline 3553 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3554 { 3555 struct ieee80211_sub_if_data *sdata = rx->sdata; 3556 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3557 3558 if (!ieee80211_is_ext(hdr->frame_control)) 3559 return RX_CONTINUE; 3560 3561 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3562 return RX_DROP_MONITOR; 3563 3564 /* for now only beacons are ext, so queue them */ 3565 skb_queue_tail(&sdata->skb_queue, rx->skb); 3566 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3567 if (rx->sta) 3568 rx->sta->rx_stats.packets++; 3569 3570 return RX_QUEUED; 3571 } 3572 3573 static ieee80211_rx_result debug_noinline 3574 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3575 { 3576 struct ieee80211_sub_if_data *sdata = rx->sdata; 3577 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3578 __le16 stype; 3579 3580 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3581 3582 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3583 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3584 sdata->vif.type != NL80211_IFTYPE_OCB && 3585 sdata->vif.type != NL80211_IFTYPE_STATION) 3586 return RX_DROP_MONITOR; 3587 3588 switch (stype) { 3589 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3590 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3591 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3592 /* process for all: mesh, mlme, ibss */ 3593 break; 3594 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3595 if (is_multicast_ether_addr(mgmt->da) && 3596 !is_broadcast_ether_addr(mgmt->da)) 3597 return RX_DROP_MONITOR; 3598 3599 /* process only for station/IBSS */ 3600 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3601 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3602 return RX_DROP_MONITOR; 3603 break; 3604 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3605 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3606 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3607 if (is_multicast_ether_addr(mgmt->da) && 3608 !is_broadcast_ether_addr(mgmt->da)) 3609 return RX_DROP_MONITOR; 3610 3611 /* process only for station */ 3612 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3613 return RX_DROP_MONITOR; 3614 break; 3615 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3616 /* process only for ibss and mesh */ 3617 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3618 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3619 return RX_DROP_MONITOR; 3620 break; 3621 default: 3622 return RX_DROP_MONITOR; 3623 } 3624 3625 /* queue up frame and kick off work to process it */ 3626 skb_queue_tail(&sdata->skb_queue, rx->skb); 3627 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3628 if (rx->sta) 3629 rx->sta->rx_stats.packets++; 3630 3631 return RX_QUEUED; 3632 } 3633 3634 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3635 struct ieee80211_rate *rate) 3636 { 3637 struct ieee80211_sub_if_data *sdata; 3638 struct ieee80211_local *local = rx->local; 3639 struct sk_buff *skb = rx->skb, *skb2; 3640 struct net_device *prev_dev = NULL; 3641 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3642 int needed_headroom; 3643 3644 /* 3645 * If cooked monitor has been processed already, then 3646 * don't do it again. If not, set the flag. 3647 */ 3648 if (rx->flags & IEEE80211_RX_CMNTR) 3649 goto out_free_skb; 3650 rx->flags |= IEEE80211_RX_CMNTR; 3651 3652 /* If there are no cooked monitor interfaces, just free the SKB */ 3653 if (!local->cooked_mntrs) 3654 goto out_free_skb; 3655 3656 /* vendor data is long removed here */ 3657 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3658 /* room for the radiotap header based on driver features */ 3659 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3660 3661 if (skb_headroom(skb) < needed_headroom && 3662 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3663 goto out_free_skb; 3664 3665 /* prepend radiotap information */ 3666 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3667 false); 3668 3669 skb_reset_mac_header(skb); 3670 skb->ip_summed = CHECKSUM_UNNECESSARY; 3671 skb->pkt_type = PACKET_OTHERHOST; 3672 skb->protocol = htons(ETH_P_802_2); 3673 3674 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3675 if (!ieee80211_sdata_running(sdata)) 3676 continue; 3677 3678 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3679 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3680 continue; 3681 3682 if (prev_dev) { 3683 skb2 = skb_clone(skb, GFP_ATOMIC); 3684 if (skb2) { 3685 skb2->dev = prev_dev; 3686 netif_receive_skb(skb2); 3687 } 3688 } 3689 3690 prev_dev = sdata->dev; 3691 dev_sw_netstats_rx_add(sdata->dev, skb->len); 3692 } 3693 3694 if (prev_dev) { 3695 skb->dev = prev_dev; 3696 netif_receive_skb(skb); 3697 return; 3698 } 3699 3700 out_free_skb: 3701 dev_kfree_skb(skb); 3702 } 3703 3704 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3705 ieee80211_rx_result res) 3706 { 3707 switch (res) { 3708 case RX_DROP_MONITOR: 3709 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3710 if (rx->sta) 3711 rx->sta->rx_stats.dropped++; 3712 fallthrough; 3713 case RX_CONTINUE: { 3714 struct ieee80211_rate *rate = NULL; 3715 struct ieee80211_supported_band *sband; 3716 struct ieee80211_rx_status *status; 3717 3718 status = IEEE80211_SKB_RXCB((rx->skb)); 3719 3720 sband = rx->local->hw.wiphy->bands[status->band]; 3721 if (status->encoding == RX_ENC_LEGACY) 3722 rate = &sband->bitrates[status->rate_idx]; 3723 3724 ieee80211_rx_cooked_monitor(rx, rate); 3725 break; 3726 } 3727 case RX_DROP_UNUSABLE: 3728 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3729 if (rx->sta) 3730 rx->sta->rx_stats.dropped++; 3731 dev_kfree_skb(rx->skb); 3732 break; 3733 case RX_QUEUED: 3734 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3735 break; 3736 } 3737 } 3738 3739 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3740 struct sk_buff_head *frames) 3741 { 3742 ieee80211_rx_result res = RX_DROP_MONITOR; 3743 struct sk_buff *skb; 3744 3745 #define CALL_RXH(rxh) \ 3746 do { \ 3747 res = rxh(rx); \ 3748 if (res != RX_CONTINUE) \ 3749 goto rxh_next; \ 3750 } while (0) 3751 3752 /* Lock here to avoid hitting all of the data used in the RX 3753 * path (e.g. key data, station data, ...) concurrently when 3754 * a frame is released from the reorder buffer due to timeout 3755 * from the timer, potentially concurrently with RX from the 3756 * driver. 3757 */ 3758 spin_lock_bh(&rx->local->rx_path_lock); 3759 3760 while ((skb = __skb_dequeue(frames))) { 3761 /* 3762 * all the other fields are valid across frames 3763 * that belong to an aMPDU since they are on the 3764 * same TID from the same station 3765 */ 3766 rx->skb = skb; 3767 3768 CALL_RXH(ieee80211_rx_h_check_more_data); 3769 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3770 CALL_RXH(ieee80211_rx_h_sta_process); 3771 CALL_RXH(ieee80211_rx_h_decrypt); 3772 CALL_RXH(ieee80211_rx_h_defragment); 3773 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3774 /* must be after MMIC verify so header is counted in MPDU mic */ 3775 #ifdef CONFIG_MAC80211_MESH 3776 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3777 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3778 #endif 3779 CALL_RXH(ieee80211_rx_h_amsdu); 3780 CALL_RXH(ieee80211_rx_h_data); 3781 3782 /* special treatment -- needs the queue */ 3783 res = ieee80211_rx_h_ctrl(rx, frames); 3784 if (res != RX_CONTINUE) 3785 goto rxh_next; 3786 3787 CALL_RXH(ieee80211_rx_h_mgmt_check); 3788 CALL_RXH(ieee80211_rx_h_action); 3789 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3790 CALL_RXH(ieee80211_rx_h_action_post_userspace); 3791 CALL_RXH(ieee80211_rx_h_action_return); 3792 CALL_RXH(ieee80211_rx_h_ext); 3793 CALL_RXH(ieee80211_rx_h_mgmt); 3794 3795 rxh_next: 3796 ieee80211_rx_handlers_result(rx, res); 3797 3798 #undef CALL_RXH 3799 } 3800 3801 spin_unlock_bh(&rx->local->rx_path_lock); 3802 } 3803 3804 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3805 { 3806 struct sk_buff_head reorder_release; 3807 ieee80211_rx_result res = RX_DROP_MONITOR; 3808 3809 __skb_queue_head_init(&reorder_release); 3810 3811 #define CALL_RXH(rxh) \ 3812 do { \ 3813 res = rxh(rx); \ 3814 if (res != RX_CONTINUE) \ 3815 goto rxh_next; \ 3816 } while (0) 3817 3818 CALL_RXH(ieee80211_rx_h_check_dup); 3819 CALL_RXH(ieee80211_rx_h_check); 3820 3821 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3822 3823 ieee80211_rx_handlers(rx, &reorder_release); 3824 return; 3825 3826 rxh_next: 3827 ieee80211_rx_handlers_result(rx, res); 3828 3829 #undef CALL_RXH 3830 } 3831 3832 /* 3833 * This function makes calls into the RX path, therefore 3834 * it has to be invoked under RCU read lock. 3835 */ 3836 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3837 { 3838 struct sk_buff_head frames; 3839 struct ieee80211_rx_data rx = { 3840 .sta = sta, 3841 .sdata = sta->sdata, 3842 .local = sta->local, 3843 /* This is OK -- must be QoS data frame */ 3844 .security_idx = tid, 3845 .seqno_idx = tid, 3846 }; 3847 struct tid_ampdu_rx *tid_agg_rx; 3848 3849 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3850 if (!tid_agg_rx) 3851 return; 3852 3853 __skb_queue_head_init(&frames); 3854 3855 spin_lock(&tid_agg_rx->reorder_lock); 3856 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3857 spin_unlock(&tid_agg_rx->reorder_lock); 3858 3859 if (!skb_queue_empty(&frames)) { 3860 struct ieee80211_event event = { 3861 .type = BA_FRAME_TIMEOUT, 3862 .u.ba.tid = tid, 3863 .u.ba.sta = &sta->sta, 3864 }; 3865 drv_event_callback(rx.local, rx.sdata, &event); 3866 } 3867 3868 ieee80211_rx_handlers(&rx, &frames); 3869 } 3870 3871 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3872 u16 ssn, u64 filtered, 3873 u16 received_mpdus) 3874 { 3875 struct sta_info *sta; 3876 struct tid_ampdu_rx *tid_agg_rx; 3877 struct sk_buff_head frames; 3878 struct ieee80211_rx_data rx = { 3879 /* This is OK -- must be QoS data frame */ 3880 .security_idx = tid, 3881 .seqno_idx = tid, 3882 }; 3883 int i, diff; 3884 3885 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3886 return; 3887 3888 __skb_queue_head_init(&frames); 3889 3890 sta = container_of(pubsta, struct sta_info, sta); 3891 3892 rx.sta = sta; 3893 rx.sdata = sta->sdata; 3894 rx.local = sta->local; 3895 3896 rcu_read_lock(); 3897 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3898 if (!tid_agg_rx) 3899 goto out; 3900 3901 spin_lock_bh(&tid_agg_rx->reorder_lock); 3902 3903 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3904 int release; 3905 3906 /* release all frames in the reorder buffer */ 3907 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3908 IEEE80211_SN_MODULO; 3909 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3910 release, &frames); 3911 /* update ssn to match received ssn */ 3912 tid_agg_rx->head_seq_num = ssn; 3913 } else { 3914 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3915 &frames); 3916 } 3917 3918 /* handle the case that received ssn is behind the mac ssn. 3919 * it can be tid_agg_rx->buf_size behind and still be valid */ 3920 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3921 if (diff >= tid_agg_rx->buf_size) { 3922 tid_agg_rx->reorder_buf_filtered = 0; 3923 goto release; 3924 } 3925 filtered = filtered >> diff; 3926 ssn += diff; 3927 3928 /* update bitmap */ 3929 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3930 int index = (ssn + i) % tid_agg_rx->buf_size; 3931 3932 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3933 if (filtered & BIT_ULL(i)) 3934 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3935 } 3936 3937 /* now process also frames that the filter marking released */ 3938 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3939 3940 release: 3941 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3942 3943 ieee80211_rx_handlers(&rx, &frames); 3944 3945 out: 3946 rcu_read_unlock(); 3947 } 3948 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3949 3950 /* main receive path */ 3951 3952 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3953 { 3954 struct ieee80211_sub_if_data *sdata = rx->sdata; 3955 struct sk_buff *skb = rx->skb; 3956 struct ieee80211_hdr *hdr = (void *)skb->data; 3957 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3958 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3959 bool multicast = is_multicast_ether_addr(hdr->addr1) || 3960 ieee80211_is_s1g_beacon(hdr->frame_control); 3961 3962 switch (sdata->vif.type) { 3963 case NL80211_IFTYPE_STATION: 3964 if (!bssid && !sdata->u.mgd.use_4addr) 3965 return false; 3966 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 3967 return false; 3968 if (multicast) 3969 return true; 3970 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3971 case NL80211_IFTYPE_ADHOC: 3972 if (!bssid) 3973 return false; 3974 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3975 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3976 return false; 3977 if (ieee80211_is_beacon(hdr->frame_control)) 3978 return true; 3979 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3980 return false; 3981 if (!multicast && 3982 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3983 return false; 3984 if (!rx->sta) { 3985 int rate_idx; 3986 if (status->encoding != RX_ENC_LEGACY) 3987 rate_idx = 0; /* TODO: HT/VHT rates */ 3988 else 3989 rate_idx = status->rate_idx; 3990 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3991 BIT(rate_idx)); 3992 } 3993 return true; 3994 case NL80211_IFTYPE_OCB: 3995 if (!bssid) 3996 return false; 3997 if (!ieee80211_is_data_present(hdr->frame_control)) 3998 return false; 3999 if (!is_broadcast_ether_addr(bssid)) 4000 return false; 4001 if (!multicast && 4002 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4003 return false; 4004 if (!rx->sta) { 4005 int rate_idx; 4006 if (status->encoding != RX_ENC_LEGACY) 4007 rate_idx = 0; /* TODO: HT rates */ 4008 else 4009 rate_idx = status->rate_idx; 4010 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4011 BIT(rate_idx)); 4012 } 4013 return true; 4014 case NL80211_IFTYPE_MESH_POINT: 4015 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4016 return false; 4017 if (multicast) 4018 return true; 4019 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4020 case NL80211_IFTYPE_AP_VLAN: 4021 case NL80211_IFTYPE_AP: 4022 if (!bssid) 4023 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4024 4025 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 4026 /* 4027 * Accept public action frames even when the 4028 * BSSID doesn't match, this is used for P2P 4029 * and location updates. Note that mac80211 4030 * itself never looks at these frames. 4031 */ 4032 if (!multicast && 4033 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4034 return false; 4035 if (ieee80211_is_public_action(hdr, skb->len)) 4036 return true; 4037 return ieee80211_is_beacon(hdr->frame_control); 4038 } 4039 4040 if (!ieee80211_has_tods(hdr->frame_control)) { 4041 /* ignore data frames to TDLS-peers */ 4042 if (ieee80211_is_data(hdr->frame_control)) 4043 return false; 4044 /* ignore action frames to TDLS-peers */ 4045 if (ieee80211_is_action(hdr->frame_control) && 4046 !is_broadcast_ether_addr(bssid) && 4047 !ether_addr_equal(bssid, hdr->addr1)) 4048 return false; 4049 } 4050 4051 /* 4052 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4053 * the BSSID - we've checked that already but may have accepted 4054 * the wildcard (ff:ff:ff:ff:ff:ff). 4055 * 4056 * It also says: 4057 * The BSSID of the Data frame is determined as follows: 4058 * a) If the STA is contained within an AP or is associated 4059 * with an AP, the BSSID is the address currently in use 4060 * by the STA contained in the AP. 4061 * 4062 * So we should not accept data frames with an address that's 4063 * multicast. 4064 * 4065 * Accepting it also opens a security problem because stations 4066 * could encrypt it with the GTK and inject traffic that way. 4067 */ 4068 if (ieee80211_is_data(hdr->frame_control) && multicast) 4069 return false; 4070 4071 return true; 4072 case NL80211_IFTYPE_P2P_DEVICE: 4073 return ieee80211_is_public_action(hdr, skb->len) || 4074 ieee80211_is_probe_req(hdr->frame_control) || 4075 ieee80211_is_probe_resp(hdr->frame_control) || 4076 ieee80211_is_beacon(hdr->frame_control); 4077 case NL80211_IFTYPE_NAN: 4078 /* Currently no frames on NAN interface are allowed */ 4079 return false; 4080 default: 4081 break; 4082 } 4083 4084 WARN_ON_ONCE(1); 4085 return false; 4086 } 4087 4088 void ieee80211_check_fast_rx(struct sta_info *sta) 4089 { 4090 struct ieee80211_sub_if_data *sdata = sta->sdata; 4091 struct ieee80211_local *local = sdata->local; 4092 struct ieee80211_key *key; 4093 struct ieee80211_fast_rx fastrx = { 4094 .dev = sdata->dev, 4095 .vif_type = sdata->vif.type, 4096 .control_port_protocol = sdata->control_port_protocol, 4097 }, *old, *new = NULL; 4098 bool set_offload = false; 4099 bool assign = false; 4100 bool offload; 4101 4102 /* use sparse to check that we don't return without updating */ 4103 __acquire(check_fast_rx); 4104 4105 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4106 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4107 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4108 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4109 4110 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4111 4112 /* fast-rx doesn't do reordering */ 4113 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4114 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4115 goto clear; 4116 4117 switch (sdata->vif.type) { 4118 case NL80211_IFTYPE_STATION: 4119 if (sta->sta.tdls) { 4120 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4121 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4122 fastrx.expected_ds_bits = 0; 4123 } else { 4124 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4125 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4126 fastrx.expected_ds_bits = 4127 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4128 } 4129 4130 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4131 fastrx.expected_ds_bits |= 4132 cpu_to_le16(IEEE80211_FCTL_TODS); 4133 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4134 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4135 } 4136 4137 if (!sdata->u.mgd.powersave) 4138 break; 4139 4140 /* software powersave is a huge mess, avoid all of it */ 4141 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4142 goto clear; 4143 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4144 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4145 goto clear; 4146 break; 4147 case NL80211_IFTYPE_AP_VLAN: 4148 case NL80211_IFTYPE_AP: 4149 /* parallel-rx requires this, at least with calls to 4150 * ieee80211_sta_ps_transition() 4151 */ 4152 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4153 goto clear; 4154 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4155 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4156 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4157 4158 fastrx.internal_forward = 4159 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4160 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4161 !sdata->u.vlan.sta); 4162 4163 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4164 sdata->u.vlan.sta) { 4165 fastrx.expected_ds_bits |= 4166 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4167 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4168 fastrx.internal_forward = 0; 4169 } 4170 4171 break; 4172 default: 4173 goto clear; 4174 } 4175 4176 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4177 goto clear; 4178 4179 rcu_read_lock(); 4180 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4181 if (!key) 4182 key = rcu_dereference(sdata->default_unicast_key); 4183 if (key) { 4184 switch (key->conf.cipher) { 4185 case WLAN_CIPHER_SUITE_TKIP: 4186 /* we don't want to deal with MMIC in fast-rx */ 4187 goto clear_rcu; 4188 case WLAN_CIPHER_SUITE_CCMP: 4189 case WLAN_CIPHER_SUITE_CCMP_256: 4190 case WLAN_CIPHER_SUITE_GCMP: 4191 case WLAN_CIPHER_SUITE_GCMP_256: 4192 break; 4193 default: 4194 /* We also don't want to deal with 4195 * WEP or cipher scheme. 4196 */ 4197 goto clear_rcu; 4198 } 4199 4200 fastrx.key = true; 4201 fastrx.icv_len = key->conf.icv_len; 4202 } 4203 4204 assign = true; 4205 clear_rcu: 4206 rcu_read_unlock(); 4207 clear: 4208 __release(check_fast_rx); 4209 4210 if (assign) 4211 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4212 4213 offload = assign && 4214 (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED); 4215 4216 if (offload) 4217 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4218 else 4219 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4220 4221 if (set_offload) 4222 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4223 4224 spin_lock_bh(&sta->lock); 4225 old = rcu_dereference_protected(sta->fast_rx, true); 4226 rcu_assign_pointer(sta->fast_rx, new); 4227 spin_unlock_bh(&sta->lock); 4228 4229 if (old) 4230 kfree_rcu(old, rcu_head); 4231 } 4232 4233 void ieee80211_clear_fast_rx(struct sta_info *sta) 4234 { 4235 struct ieee80211_fast_rx *old; 4236 4237 spin_lock_bh(&sta->lock); 4238 old = rcu_dereference_protected(sta->fast_rx, true); 4239 RCU_INIT_POINTER(sta->fast_rx, NULL); 4240 spin_unlock_bh(&sta->lock); 4241 4242 if (old) 4243 kfree_rcu(old, rcu_head); 4244 } 4245 4246 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4247 { 4248 struct ieee80211_local *local = sdata->local; 4249 struct sta_info *sta; 4250 4251 lockdep_assert_held(&local->sta_mtx); 4252 4253 list_for_each_entry(sta, &local->sta_list, list) { 4254 if (sdata != sta->sdata && 4255 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4256 continue; 4257 ieee80211_check_fast_rx(sta); 4258 } 4259 } 4260 4261 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4262 { 4263 struct ieee80211_local *local = sdata->local; 4264 4265 mutex_lock(&local->sta_mtx); 4266 __ieee80211_check_fast_rx_iface(sdata); 4267 mutex_unlock(&local->sta_mtx); 4268 } 4269 4270 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4271 struct ieee80211_fast_rx *fast_rx, 4272 int orig_len) 4273 { 4274 struct ieee80211_sta_rx_stats *stats; 4275 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4276 struct sta_info *sta = rx->sta; 4277 struct sk_buff *skb = rx->skb; 4278 void *sa = skb->data + ETH_ALEN; 4279 void *da = skb->data; 4280 4281 stats = &sta->rx_stats; 4282 if (fast_rx->uses_rss) 4283 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4284 4285 /* statistics part of ieee80211_rx_h_sta_process() */ 4286 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4287 stats->last_signal = status->signal; 4288 if (!fast_rx->uses_rss) 4289 ewma_signal_add(&sta->rx_stats_avg.signal, 4290 -status->signal); 4291 } 4292 4293 if (status->chains) { 4294 int i; 4295 4296 stats->chains = status->chains; 4297 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4298 int signal = status->chain_signal[i]; 4299 4300 if (!(status->chains & BIT(i))) 4301 continue; 4302 4303 stats->chain_signal_last[i] = signal; 4304 if (!fast_rx->uses_rss) 4305 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4306 -signal); 4307 } 4308 } 4309 /* end of statistics */ 4310 4311 stats->last_rx = jiffies; 4312 stats->last_rate = sta_stats_encode_rate(status); 4313 4314 stats->fragments++; 4315 stats->packets++; 4316 4317 skb->dev = fast_rx->dev; 4318 4319 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4320 4321 /* The seqno index has the same property as needed 4322 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4323 * for non-QoS-data frames. Here we know it's a data 4324 * frame, so count MSDUs. 4325 */ 4326 u64_stats_update_begin(&stats->syncp); 4327 stats->msdu[rx->seqno_idx]++; 4328 stats->bytes += orig_len; 4329 u64_stats_update_end(&stats->syncp); 4330 4331 if (fast_rx->internal_forward) { 4332 struct sk_buff *xmit_skb = NULL; 4333 if (is_multicast_ether_addr(da)) { 4334 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4335 } else if (!ether_addr_equal(da, sa) && 4336 sta_info_get(rx->sdata, da)) { 4337 xmit_skb = skb; 4338 skb = NULL; 4339 } 4340 4341 if (xmit_skb) { 4342 /* 4343 * Send to wireless media and increase priority by 256 4344 * to keep the received priority instead of 4345 * reclassifying the frame (see cfg80211_classify8021d). 4346 */ 4347 xmit_skb->priority += 256; 4348 xmit_skb->protocol = htons(ETH_P_802_3); 4349 skb_reset_network_header(xmit_skb); 4350 skb_reset_mac_header(xmit_skb); 4351 dev_queue_xmit(xmit_skb); 4352 } 4353 4354 if (!skb) 4355 return; 4356 } 4357 4358 /* deliver to local stack */ 4359 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4360 memset(skb->cb, 0, sizeof(skb->cb)); 4361 if (rx->list) 4362 list_add_tail(&skb->list, rx->list); 4363 else 4364 netif_receive_skb(skb); 4365 4366 } 4367 4368 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4369 struct ieee80211_fast_rx *fast_rx) 4370 { 4371 struct sk_buff *skb = rx->skb; 4372 struct ieee80211_hdr *hdr = (void *)skb->data; 4373 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4374 struct sta_info *sta = rx->sta; 4375 int orig_len = skb->len; 4376 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4377 int snap_offs = hdrlen; 4378 struct { 4379 u8 snap[sizeof(rfc1042_header)]; 4380 __be16 proto; 4381 } *payload __aligned(2); 4382 struct { 4383 u8 da[ETH_ALEN]; 4384 u8 sa[ETH_ALEN]; 4385 } addrs __aligned(2); 4386 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4387 4388 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4389 * to a common data structure; drivers can implement that per queue 4390 * but we don't have that information in mac80211 4391 */ 4392 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4393 return false; 4394 4395 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4396 4397 /* If using encryption, we also need to have: 4398 * - PN_VALIDATED: similar, but the implementation is tricky 4399 * - DECRYPTED: necessary for PN_VALIDATED 4400 */ 4401 if (fast_rx->key && 4402 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4403 return false; 4404 4405 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4406 return false; 4407 4408 if (unlikely(ieee80211_is_frag(hdr))) 4409 return false; 4410 4411 /* Since our interface address cannot be multicast, this 4412 * implicitly also rejects multicast frames without the 4413 * explicit check. 4414 * 4415 * We shouldn't get any *data* frames not addressed to us 4416 * (AP mode will accept multicast *management* frames), but 4417 * punting here will make it go through the full checks in 4418 * ieee80211_accept_frame(). 4419 */ 4420 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4421 return false; 4422 4423 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4424 IEEE80211_FCTL_TODS)) != 4425 fast_rx->expected_ds_bits) 4426 return false; 4427 4428 /* assign the key to drop unencrypted frames (later) 4429 * and strip the IV/MIC if necessary 4430 */ 4431 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4432 /* GCMP header length is the same */ 4433 snap_offs += IEEE80211_CCMP_HDR_LEN; 4434 } 4435 4436 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4437 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4438 goto drop; 4439 4440 payload = (void *)(skb->data + snap_offs); 4441 4442 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4443 return false; 4444 4445 /* Don't handle these here since they require special code. 4446 * Accept AARP and IPX even though they should come with a 4447 * bridge-tunnel header - but if we get them this way then 4448 * there's little point in discarding them. 4449 */ 4450 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4451 payload->proto == fast_rx->control_port_protocol)) 4452 return false; 4453 } 4454 4455 /* after this point, don't punt to the slowpath! */ 4456 4457 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4458 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4459 goto drop; 4460 4461 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4462 goto drop; 4463 4464 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4465 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4466 RX_QUEUED) 4467 goto drop; 4468 4469 return true; 4470 } 4471 4472 /* do the header conversion - first grab the addresses */ 4473 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4474 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4475 /* remove the SNAP but leave the ethertype */ 4476 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4477 /* push the addresses in front */ 4478 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4479 4480 ieee80211_rx_8023(rx, fast_rx, orig_len); 4481 4482 return true; 4483 drop: 4484 dev_kfree_skb(skb); 4485 if (fast_rx->uses_rss) 4486 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4487 4488 stats->dropped++; 4489 return true; 4490 } 4491 4492 /* 4493 * This function returns whether or not the SKB 4494 * was destined for RX processing or not, which, 4495 * if consume is true, is equivalent to whether 4496 * or not the skb was consumed. 4497 */ 4498 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4499 struct sk_buff *skb, bool consume) 4500 { 4501 struct ieee80211_local *local = rx->local; 4502 struct ieee80211_sub_if_data *sdata = rx->sdata; 4503 4504 rx->skb = skb; 4505 4506 /* See if we can do fast-rx; if we have to copy we already lost, 4507 * so punt in that case. We should never have to deliver a data 4508 * frame to multiple interfaces anyway. 4509 * 4510 * We skip the ieee80211_accept_frame() call and do the necessary 4511 * checking inside ieee80211_invoke_fast_rx(). 4512 */ 4513 if (consume && rx->sta) { 4514 struct ieee80211_fast_rx *fast_rx; 4515 4516 fast_rx = rcu_dereference(rx->sta->fast_rx); 4517 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4518 return true; 4519 } 4520 4521 if (!ieee80211_accept_frame(rx)) 4522 return false; 4523 4524 if (!consume) { 4525 skb = skb_copy(skb, GFP_ATOMIC); 4526 if (!skb) { 4527 if (net_ratelimit()) 4528 wiphy_debug(local->hw.wiphy, 4529 "failed to copy skb for %s\n", 4530 sdata->name); 4531 return true; 4532 } 4533 4534 rx->skb = skb; 4535 } 4536 4537 ieee80211_invoke_rx_handlers(rx); 4538 return true; 4539 } 4540 4541 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 4542 struct ieee80211_sta *pubsta, 4543 struct sk_buff *skb, 4544 struct list_head *list) 4545 { 4546 struct ieee80211_local *local = hw_to_local(hw); 4547 struct ieee80211_fast_rx *fast_rx; 4548 struct ieee80211_rx_data rx; 4549 4550 memset(&rx, 0, sizeof(rx)); 4551 rx.skb = skb; 4552 rx.local = local; 4553 rx.list = list; 4554 4555 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4556 4557 /* drop frame if too short for header */ 4558 if (skb->len < sizeof(struct ethhdr)) 4559 goto drop; 4560 4561 if (!pubsta) 4562 goto drop; 4563 4564 rx.sta = container_of(pubsta, struct sta_info, sta); 4565 rx.sdata = rx.sta->sdata; 4566 4567 fast_rx = rcu_dereference(rx.sta->fast_rx); 4568 if (!fast_rx) 4569 goto drop; 4570 4571 ieee80211_rx_8023(&rx, fast_rx, skb->len); 4572 return; 4573 4574 drop: 4575 dev_kfree_skb(skb); 4576 } 4577 4578 /* 4579 * This is the actual Rx frames handler. as it belongs to Rx path it must 4580 * be called with rcu_read_lock protection. 4581 */ 4582 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4583 struct ieee80211_sta *pubsta, 4584 struct sk_buff *skb, 4585 struct list_head *list) 4586 { 4587 struct ieee80211_local *local = hw_to_local(hw); 4588 struct ieee80211_sub_if_data *sdata; 4589 struct ieee80211_hdr *hdr; 4590 __le16 fc; 4591 struct ieee80211_rx_data rx; 4592 struct ieee80211_sub_if_data *prev; 4593 struct rhlist_head *tmp; 4594 int err = 0; 4595 4596 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4597 memset(&rx, 0, sizeof(rx)); 4598 rx.skb = skb; 4599 rx.local = local; 4600 rx.list = list; 4601 4602 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4603 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4604 4605 if (ieee80211_is_mgmt(fc)) { 4606 /* drop frame if too short for header */ 4607 if (skb->len < ieee80211_hdrlen(fc)) 4608 err = -ENOBUFS; 4609 else 4610 err = skb_linearize(skb); 4611 } else { 4612 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4613 } 4614 4615 if (err) { 4616 dev_kfree_skb(skb); 4617 return; 4618 } 4619 4620 hdr = (struct ieee80211_hdr *)skb->data; 4621 ieee80211_parse_qos(&rx); 4622 ieee80211_verify_alignment(&rx); 4623 4624 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4625 ieee80211_is_beacon(hdr->frame_control) || 4626 ieee80211_is_s1g_beacon(hdr->frame_control))) 4627 ieee80211_scan_rx(local, skb); 4628 4629 if (ieee80211_is_data(fc)) { 4630 struct sta_info *sta, *prev_sta; 4631 4632 if (pubsta) { 4633 rx.sta = container_of(pubsta, struct sta_info, sta); 4634 rx.sdata = rx.sta->sdata; 4635 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4636 return; 4637 goto out; 4638 } 4639 4640 prev_sta = NULL; 4641 4642 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4643 if (!prev_sta) { 4644 prev_sta = sta; 4645 continue; 4646 } 4647 4648 rx.sta = prev_sta; 4649 rx.sdata = prev_sta->sdata; 4650 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4651 4652 prev_sta = sta; 4653 } 4654 4655 if (prev_sta) { 4656 rx.sta = prev_sta; 4657 rx.sdata = prev_sta->sdata; 4658 4659 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4660 return; 4661 goto out; 4662 } 4663 } 4664 4665 prev = NULL; 4666 4667 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4668 if (!ieee80211_sdata_running(sdata)) 4669 continue; 4670 4671 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4672 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4673 continue; 4674 4675 /* 4676 * frame is destined for this interface, but if it's 4677 * not also for the previous one we handle that after 4678 * the loop to avoid copying the SKB once too much 4679 */ 4680 4681 if (!prev) { 4682 prev = sdata; 4683 continue; 4684 } 4685 4686 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4687 rx.sdata = prev; 4688 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4689 4690 prev = sdata; 4691 } 4692 4693 if (prev) { 4694 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4695 rx.sdata = prev; 4696 4697 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4698 return; 4699 } 4700 4701 out: 4702 dev_kfree_skb(skb); 4703 } 4704 4705 /* 4706 * This is the receive path handler. It is called by a low level driver when an 4707 * 802.11 MPDU is received from the hardware. 4708 */ 4709 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4710 struct sk_buff *skb, struct list_head *list) 4711 { 4712 struct ieee80211_local *local = hw_to_local(hw); 4713 struct ieee80211_rate *rate = NULL; 4714 struct ieee80211_supported_band *sband; 4715 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4716 4717 WARN_ON_ONCE(softirq_count() == 0); 4718 4719 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4720 goto drop; 4721 4722 sband = local->hw.wiphy->bands[status->band]; 4723 if (WARN_ON(!sband)) 4724 goto drop; 4725 4726 /* 4727 * If we're suspending, it is possible although not too likely 4728 * that we'd be receiving frames after having already partially 4729 * quiesced the stack. We can't process such frames then since 4730 * that might, for example, cause stations to be added or other 4731 * driver callbacks be invoked. 4732 */ 4733 if (unlikely(local->quiescing || local->suspended)) 4734 goto drop; 4735 4736 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4737 if (unlikely(local->in_reconfig)) 4738 goto drop; 4739 4740 /* 4741 * The same happens when we're not even started, 4742 * but that's worth a warning. 4743 */ 4744 if (WARN_ON(!local->started)) 4745 goto drop; 4746 4747 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4748 /* 4749 * Validate the rate, unless a PLCP error means that 4750 * we probably can't have a valid rate here anyway. 4751 */ 4752 4753 switch (status->encoding) { 4754 case RX_ENC_HT: 4755 /* 4756 * rate_idx is MCS index, which can be [0-76] 4757 * as documented on: 4758 * 4759 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 4760 * 4761 * Anything else would be some sort of driver or 4762 * hardware error. The driver should catch hardware 4763 * errors. 4764 */ 4765 if (WARN(status->rate_idx > 76, 4766 "Rate marked as an HT rate but passed " 4767 "status->rate_idx is not " 4768 "an MCS index [0-76]: %d (0x%02x)\n", 4769 status->rate_idx, 4770 status->rate_idx)) 4771 goto drop; 4772 break; 4773 case RX_ENC_VHT: 4774 if (WARN_ONCE(status->rate_idx > 9 || 4775 !status->nss || 4776 status->nss > 8, 4777 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4778 status->rate_idx, status->nss)) 4779 goto drop; 4780 break; 4781 case RX_ENC_HE: 4782 if (WARN_ONCE(status->rate_idx > 11 || 4783 !status->nss || 4784 status->nss > 8, 4785 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4786 status->rate_idx, status->nss)) 4787 goto drop; 4788 break; 4789 default: 4790 WARN_ON_ONCE(1); 4791 fallthrough; 4792 case RX_ENC_LEGACY: 4793 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4794 goto drop; 4795 rate = &sband->bitrates[status->rate_idx]; 4796 } 4797 } 4798 4799 status->rx_flags = 0; 4800 4801 kcov_remote_start_common(skb_get_kcov_handle(skb)); 4802 4803 /* 4804 * Frames with failed FCS/PLCP checksum are not returned, 4805 * all other frames are returned without radiotap header 4806 * if it was previously present. 4807 * Also, frames with less than 16 bytes are dropped. 4808 */ 4809 if (!(status->flag & RX_FLAG_8023)) 4810 skb = ieee80211_rx_monitor(local, skb, rate); 4811 if (skb) { 4812 ieee80211_tpt_led_trig_rx(local, 4813 ((struct ieee80211_hdr *)skb->data)->frame_control, 4814 skb->len); 4815 4816 if (status->flag & RX_FLAG_8023) 4817 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 4818 else 4819 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 4820 } 4821 4822 kcov_remote_stop(); 4823 return; 4824 drop: 4825 kfree_skb(skb); 4826 } 4827 EXPORT_SYMBOL(ieee80211_rx_list); 4828 4829 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4830 struct sk_buff *skb, struct napi_struct *napi) 4831 { 4832 struct sk_buff *tmp; 4833 LIST_HEAD(list); 4834 4835 4836 /* 4837 * key references and virtual interfaces are protected using RCU 4838 * and this requires that we are in a read-side RCU section during 4839 * receive processing 4840 */ 4841 rcu_read_lock(); 4842 ieee80211_rx_list(hw, pubsta, skb, &list); 4843 rcu_read_unlock(); 4844 4845 if (!napi) { 4846 netif_receive_skb_list(&list); 4847 return; 4848 } 4849 4850 list_for_each_entry_safe(skb, tmp, &list, list) { 4851 skb_list_del_init(skb); 4852 napi_gro_receive(napi, skb); 4853 } 4854 } 4855 EXPORT_SYMBOL(ieee80211_rx_napi); 4856 4857 /* This is a version of the rx handler that can be called from hard irq 4858 * context. Post the skb on the queue and schedule the tasklet */ 4859 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4860 { 4861 struct ieee80211_local *local = hw_to_local(hw); 4862 4863 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4864 4865 skb->pkt_type = IEEE80211_RX_MSG; 4866 skb_queue_tail(&local->skb_queue, skb); 4867 tasklet_schedule(&local->tasklet); 4868 } 4869 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4870