1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2021 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <net/mac80211.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <asm/unaligned.h> 25 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "tkip.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* 37 * monitor mode reception 38 * 39 * This function cleans up the SKB, i.e. it removes all the stuff 40 * only useful for monitoring. 41 */ 42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 43 unsigned int present_fcs_len, 44 unsigned int rtap_space) 45 { 46 struct ieee80211_hdr *hdr; 47 unsigned int hdrlen; 48 __le16 fc; 49 50 if (present_fcs_len) 51 __pskb_trim(skb, skb->len - present_fcs_len); 52 __pskb_pull(skb, rtap_space); 53 54 hdr = (void *)skb->data; 55 fc = hdr->frame_control; 56 57 /* 58 * Remove the HT-Control field (if present) on management 59 * frames after we've sent the frame to monitoring. We 60 * (currently) don't need it, and don't properly parse 61 * frames with it present, due to the assumption of a 62 * fixed management header length. 63 */ 64 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 65 return skb; 66 67 hdrlen = ieee80211_hdrlen(fc); 68 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 69 70 if (!pskb_may_pull(skb, hdrlen)) { 71 dev_kfree_skb(skb); 72 return NULL; 73 } 74 75 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 76 hdrlen - IEEE80211_HT_CTL_LEN); 77 __pskb_pull(skb, IEEE80211_HT_CTL_LEN); 78 79 return skb; 80 } 81 82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 83 unsigned int rtap_space) 84 { 85 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 86 struct ieee80211_hdr *hdr; 87 88 hdr = (void *)(skb->data + rtap_space); 89 90 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 91 RX_FLAG_FAILED_PLCP_CRC | 92 RX_FLAG_ONLY_MONITOR | 93 RX_FLAG_NO_PSDU)) 94 return true; 95 96 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 97 return true; 98 99 if (ieee80211_is_ctl(hdr->frame_control) && 100 !ieee80211_is_pspoll(hdr->frame_control) && 101 !ieee80211_is_back_req(hdr->frame_control)) 102 return true; 103 104 return false; 105 } 106 107 static int 108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 109 struct ieee80211_rx_status *status, 110 struct sk_buff *skb) 111 { 112 int len; 113 114 /* always present fields */ 115 len = sizeof(struct ieee80211_radiotap_header) + 8; 116 117 /* allocate extra bitmaps */ 118 if (status->chains) 119 len += 4 * hweight8(status->chains); 120 /* vendor presence bitmap */ 121 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 122 len += 4; 123 124 if (ieee80211_have_rx_timestamp(status)) { 125 len = ALIGN(len, 8); 126 len += 8; 127 } 128 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 129 len += 1; 130 131 /* antenna field, if we don't have per-chain info */ 132 if (!status->chains) 133 len += 1; 134 135 /* padding for RX_FLAGS if necessary */ 136 len = ALIGN(len, 2); 137 138 if (status->encoding == RX_ENC_HT) /* HT info */ 139 len += 3; 140 141 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 142 len = ALIGN(len, 4); 143 len += 8; 144 } 145 146 if (status->encoding == RX_ENC_VHT) { 147 len = ALIGN(len, 2); 148 len += 12; 149 } 150 151 if (local->hw.radiotap_timestamp.units_pos >= 0) { 152 len = ALIGN(len, 8); 153 len += 12; 154 } 155 156 if (status->encoding == RX_ENC_HE && 157 status->flag & RX_FLAG_RADIOTAP_HE) { 158 len = ALIGN(len, 2); 159 len += 12; 160 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 161 } 162 163 if (status->encoding == RX_ENC_HE && 164 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 165 len = ALIGN(len, 2); 166 len += 12; 167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 168 } 169 170 if (status->flag & RX_FLAG_NO_PSDU) 171 len += 1; 172 173 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 174 len = ALIGN(len, 2); 175 len += 4; 176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 177 } 178 179 if (status->chains) { 180 /* antenna and antenna signal fields */ 181 len += 2 * hweight8(status->chains); 182 } 183 184 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 185 struct ieee80211_vendor_radiotap *rtap; 186 int vendor_data_offset = 0; 187 188 /* 189 * The position to look at depends on the existence (or non- 190 * existence) of other elements, so take that into account... 191 */ 192 if (status->flag & RX_FLAG_RADIOTAP_HE) 193 vendor_data_offset += 194 sizeof(struct ieee80211_radiotap_he); 195 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 196 vendor_data_offset += 197 sizeof(struct ieee80211_radiotap_he_mu); 198 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 199 vendor_data_offset += 200 sizeof(struct ieee80211_radiotap_lsig); 201 202 rtap = (void *)&skb->data[vendor_data_offset]; 203 204 /* alignment for fixed 6-byte vendor data header */ 205 len = ALIGN(len, 2); 206 /* vendor data header */ 207 len += 6; 208 if (WARN_ON(rtap->align == 0)) 209 rtap->align = 1; 210 len = ALIGN(len, rtap->align); 211 len += rtap->len + rtap->pad; 212 } 213 214 return len; 215 } 216 217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 218 struct sta_info *sta, 219 struct sk_buff *skb) 220 { 221 skb_queue_tail(&sdata->skb_queue, skb); 222 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 223 if (sta) 224 sta->deflink.rx_stats.packets++; 225 } 226 227 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 228 struct sta_info *sta, 229 struct sk_buff *skb) 230 { 231 skb->protocol = 0; 232 __ieee80211_queue_skb_to_iface(sdata, sta, skb); 233 } 234 235 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 236 struct sk_buff *skb, 237 int rtap_space) 238 { 239 struct { 240 struct ieee80211_hdr_3addr hdr; 241 u8 category; 242 u8 action_code; 243 } __packed __aligned(2) action; 244 245 if (!sdata) 246 return; 247 248 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 249 250 if (skb->len < rtap_space + sizeof(action) + 251 VHT_MUMIMO_GROUPS_DATA_LEN) 252 return; 253 254 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 255 return; 256 257 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 258 259 if (!ieee80211_is_action(action.hdr.frame_control)) 260 return; 261 262 if (action.category != WLAN_CATEGORY_VHT) 263 return; 264 265 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 266 return; 267 268 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 269 return; 270 271 skb = skb_copy(skb, GFP_ATOMIC); 272 if (!skb) 273 return; 274 275 ieee80211_queue_skb_to_iface(sdata, NULL, skb); 276 } 277 278 /* 279 * ieee80211_add_rx_radiotap_header - add radiotap header 280 * 281 * add a radiotap header containing all the fields which the hardware provided. 282 */ 283 static void 284 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 285 struct sk_buff *skb, 286 struct ieee80211_rate *rate, 287 int rtap_len, bool has_fcs) 288 { 289 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 290 struct ieee80211_radiotap_header *rthdr; 291 unsigned char *pos; 292 __le32 *it_present; 293 u32 it_present_val; 294 u16 rx_flags = 0; 295 u16 channel_flags = 0; 296 int mpdulen, chain; 297 unsigned long chains = status->chains; 298 struct ieee80211_vendor_radiotap rtap = {}; 299 struct ieee80211_radiotap_he he = {}; 300 struct ieee80211_radiotap_he_mu he_mu = {}; 301 struct ieee80211_radiotap_lsig lsig = {}; 302 303 if (status->flag & RX_FLAG_RADIOTAP_HE) { 304 he = *(struct ieee80211_radiotap_he *)skb->data; 305 skb_pull(skb, sizeof(he)); 306 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 307 } 308 309 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 310 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 311 skb_pull(skb, sizeof(he_mu)); 312 } 313 314 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 315 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 316 skb_pull(skb, sizeof(lsig)); 317 } 318 319 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 320 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 321 /* rtap.len and rtap.pad are undone immediately */ 322 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 323 } 324 325 mpdulen = skb->len; 326 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 327 mpdulen += FCS_LEN; 328 329 rthdr = skb_push(skb, rtap_len); 330 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 331 it_present = &rthdr->it_present; 332 333 /* radiotap header, set always present flags */ 334 rthdr->it_len = cpu_to_le16(rtap_len); 335 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 336 BIT(IEEE80211_RADIOTAP_CHANNEL) | 337 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 338 339 if (!status->chains) 340 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 341 342 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 343 it_present_val |= 344 BIT(IEEE80211_RADIOTAP_EXT) | 345 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 346 put_unaligned_le32(it_present_val, it_present); 347 it_present++; 348 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 349 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 350 } 351 352 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 353 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 354 BIT(IEEE80211_RADIOTAP_EXT); 355 put_unaligned_le32(it_present_val, it_present); 356 it_present++; 357 it_present_val = rtap.present; 358 } 359 360 put_unaligned_le32(it_present_val, it_present); 361 362 /* This references through an offset into it_optional[] rather 363 * than via it_present otherwise later uses of pos will cause 364 * the compiler to think we have walked past the end of the 365 * struct member. 366 */ 367 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 368 369 /* the order of the following fields is important */ 370 371 /* IEEE80211_RADIOTAP_TSFT */ 372 if (ieee80211_have_rx_timestamp(status)) { 373 /* padding */ 374 while ((pos - (u8 *)rthdr) & 7) 375 *pos++ = 0; 376 put_unaligned_le64( 377 ieee80211_calculate_rx_timestamp(local, status, 378 mpdulen, 0), 379 pos); 380 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 381 pos += 8; 382 } 383 384 /* IEEE80211_RADIOTAP_FLAGS */ 385 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 386 *pos |= IEEE80211_RADIOTAP_F_FCS; 387 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 388 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 389 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 390 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 391 pos++; 392 393 /* IEEE80211_RADIOTAP_RATE */ 394 if (!rate || status->encoding != RX_ENC_LEGACY) { 395 /* 396 * Without rate information don't add it. If we have, 397 * MCS information is a separate field in radiotap, 398 * added below. The byte here is needed as padding 399 * for the channel though, so initialise it to 0. 400 */ 401 *pos = 0; 402 } else { 403 int shift = 0; 404 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 405 if (status->bw == RATE_INFO_BW_10) 406 shift = 1; 407 else if (status->bw == RATE_INFO_BW_5) 408 shift = 2; 409 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 410 } 411 pos++; 412 413 /* IEEE80211_RADIOTAP_CHANNEL */ 414 /* TODO: frequency offset in KHz */ 415 put_unaligned_le16(status->freq, pos); 416 pos += 2; 417 if (status->bw == RATE_INFO_BW_10) 418 channel_flags |= IEEE80211_CHAN_HALF; 419 else if (status->bw == RATE_INFO_BW_5) 420 channel_flags |= IEEE80211_CHAN_QUARTER; 421 422 if (status->band == NL80211_BAND_5GHZ || 423 status->band == NL80211_BAND_6GHZ) 424 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 425 else if (status->encoding != RX_ENC_LEGACY) 426 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 427 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 428 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 429 else if (rate) 430 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 431 else 432 channel_flags |= IEEE80211_CHAN_2GHZ; 433 put_unaligned_le16(channel_flags, pos); 434 pos += 2; 435 436 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 437 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 438 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 439 *pos = status->signal; 440 rthdr->it_present |= 441 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 442 pos++; 443 } 444 445 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 446 447 if (!status->chains) { 448 /* IEEE80211_RADIOTAP_ANTENNA */ 449 *pos = status->antenna; 450 pos++; 451 } 452 453 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 454 455 /* IEEE80211_RADIOTAP_RX_FLAGS */ 456 /* ensure 2 byte alignment for the 2 byte field as required */ 457 if ((pos - (u8 *)rthdr) & 1) 458 *pos++ = 0; 459 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 460 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 461 put_unaligned_le16(rx_flags, pos); 462 pos += 2; 463 464 if (status->encoding == RX_ENC_HT) { 465 unsigned int stbc; 466 467 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 468 *pos = local->hw.radiotap_mcs_details; 469 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 470 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; 471 if (status->enc_flags & RX_ENC_FLAG_LDPC) 472 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; 473 pos++; 474 *pos = 0; 475 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 476 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 477 if (status->bw == RATE_INFO_BW_40) 478 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 479 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 480 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 481 if (status->enc_flags & RX_ENC_FLAG_LDPC) 482 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 483 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 484 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 485 pos++; 486 *pos++ = status->rate_idx; 487 } 488 489 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 490 u16 flags = 0; 491 492 /* ensure 4 byte alignment */ 493 while ((pos - (u8 *)rthdr) & 3) 494 pos++; 495 rthdr->it_present |= 496 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 497 put_unaligned_le32(status->ampdu_reference, pos); 498 pos += 4; 499 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 500 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 501 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 502 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 503 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 504 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 505 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 506 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 507 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 508 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 509 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 510 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 511 put_unaligned_le16(flags, pos); 512 pos += 2; 513 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 514 *pos++ = status->ampdu_delimiter_crc; 515 else 516 *pos++ = 0; 517 *pos++ = 0; 518 } 519 520 if (status->encoding == RX_ENC_VHT) { 521 u16 known = local->hw.radiotap_vht_details; 522 523 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 524 put_unaligned_le16(known, pos); 525 pos += 2; 526 /* flags */ 527 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 528 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 529 /* in VHT, STBC is binary */ 530 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 531 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 532 if (status->enc_flags & RX_ENC_FLAG_BF) 533 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 534 pos++; 535 /* bandwidth */ 536 switch (status->bw) { 537 case RATE_INFO_BW_80: 538 *pos++ = 4; 539 break; 540 case RATE_INFO_BW_160: 541 *pos++ = 11; 542 break; 543 case RATE_INFO_BW_40: 544 *pos++ = 1; 545 break; 546 default: 547 *pos++ = 0; 548 } 549 /* MCS/NSS */ 550 *pos = (status->rate_idx << 4) | status->nss; 551 pos += 4; 552 /* coding field */ 553 if (status->enc_flags & RX_ENC_FLAG_LDPC) 554 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 555 pos++; 556 /* group ID */ 557 pos++; 558 /* partial_aid */ 559 pos += 2; 560 } 561 562 if (local->hw.radiotap_timestamp.units_pos >= 0) { 563 u16 accuracy = 0; 564 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 565 566 rthdr->it_present |= 567 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 568 569 /* ensure 8 byte alignment */ 570 while ((pos - (u8 *)rthdr) & 7) 571 pos++; 572 573 put_unaligned_le64(status->device_timestamp, pos); 574 pos += sizeof(u64); 575 576 if (local->hw.radiotap_timestamp.accuracy >= 0) { 577 accuracy = local->hw.radiotap_timestamp.accuracy; 578 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 579 } 580 put_unaligned_le16(accuracy, pos); 581 pos += sizeof(u16); 582 583 *pos++ = local->hw.radiotap_timestamp.units_pos; 584 *pos++ = flags; 585 } 586 587 if (status->encoding == RX_ENC_HE && 588 status->flag & RX_FLAG_RADIOTAP_HE) { 589 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 590 591 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 592 he.data6 |= HE_PREP(DATA6_NSTS, 593 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 594 status->enc_flags)); 595 he.data3 |= HE_PREP(DATA3_STBC, 1); 596 } else { 597 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 598 } 599 600 #define CHECK_GI(s) \ 601 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 602 (int)NL80211_RATE_INFO_HE_GI_##s) 603 604 CHECK_GI(0_8); 605 CHECK_GI(1_6); 606 CHECK_GI(3_2); 607 608 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 609 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 610 he.data3 |= HE_PREP(DATA3_CODING, 611 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 612 613 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 614 615 switch (status->bw) { 616 case RATE_INFO_BW_20: 617 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 618 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 619 break; 620 case RATE_INFO_BW_40: 621 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 622 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 623 break; 624 case RATE_INFO_BW_80: 625 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 626 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 627 break; 628 case RATE_INFO_BW_160: 629 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 630 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 631 break; 632 case RATE_INFO_BW_HE_RU: 633 #define CHECK_RU_ALLOC(s) \ 634 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 635 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 636 637 CHECK_RU_ALLOC(26); 638 CHECK_RU_ALLOC(52); 639 CHECK_RU_ALLOC(106); 640 CHECK_RU_ALLOC(242); 641 CHECK_RU_ALLOC(484); 642 CHECK_RU_ALLOC(996); 643 CHECK_RU_ALLOC(2x996); 644 645 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 646 status->he_ru + 4); 647 break; 648 default: 649 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 650 } 651 652 /* ensure 2 byte alignment */ 653 while ((pos - (u8 *)rthdr) & 1) 654 pos++; 655 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 656 memcpy(pos, &he, sizeof(he)); 657 pos += sizeof(he); 658 } 659 660 if (status->encoding == RX_ENC_HE && 661 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 662 /* ensure 2 byte alignment */ 663 while ((pos - (u8 *)rthdr) & 1) 664 pos++; 665 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 666 memcpy(pos, &he_mu, sizeof(he_mu)); 667 pos += sizeof(he_mu); 668 } 669 670 if (status->flag & RX_FLAG_NO_PSDU) { 671 rthdr->it_present |= 672 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 673 *pos++ = status->zero_length_psdu_type; 674 } 675 676 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 677 /* ensure 2 byte alignment */ 678 while ((pos - (u8 *)rthdr) & 1) 679 pos++; 680 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 681 memcpy(pos, &lsig, sizeof(lsig)); 682 pos += sizeof(lsig); 683 } 684 685 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 686 *pos++ = status->chain_signal[chain]; 687 *pos++ = chain; 688 } 689 690 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 691 /* ensure 2 byte alignment for the vendor field as required */ 692 if ((pos - (u8 *)rthdr) & 1) 693 *pos++ = 0; 694 *pos++ = rtap.oui[0]; 695 *pos++ = rtap.oui[1]; 696 *pos++ = rtap.oui[2]; 697 *pos++ = rtap.subns; 698 put_unaligned_le16(rtap.len, pos); 699 pos += 2; 700 /* align the actual payload as requested */ 701 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 702 *pos++ = 0; 703 /* data (and possible padding) already follows */ 704 } 705 } 706 707 static struct sk_buff * 708 ieee80211_make_monitor_skb(struct ieee80211_local *local, 709 struct sk_buff **origskb, 710 struct ieee80211_rate *rate, 711 int rtap_space, bool use_origskb) 712 { 713 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 714 int rt_hdrlen, needed_headroom; 715 struct sk_buff *skb; 716 717 /* room for the radiotap header based on driver features */ 718 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 719 needed_headroom = rt_hdrlen - rtap_space; 720 721 if (use_origskb) { 722 /* only need to expand headroom if necessary */ 723 skb = *origskb; 724 *origskb = NULL; 725 726 /* 727 * This shouldn't trigger often because most devices have an 728 * RX header they pull before we get here, and that should 729 * be big enough for our radiotap information. We should 730 * probably export the length to drivers so that we can have 731 * them allocate enough headroom to start with. 732 */ 733 if (skb_headroom(skb) < needed_headroom && 734 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 735 dev_kfree_skb(skb); 736 return NULL; 737 } 738 } else { 739 /* 740 * Need to make a copy and possibly remove radiotap header 741 * and FCS from the original. 742 */ 743 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 744 0, GFP_ATOMIC); 745 746 if (!skb) 747 return NULL; 748 } 749 750 /* prepend radiotap information */ 751 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 752 753 skb_reset_mac_header(skb); 754 skb->ip_summed = CHECKSUM_UNNECESSARY; 755 skb->pkt_type = PACKET_OTHERHOST; 756 skb->protocol = htons(ETH_P_802_2); 757 758 return skb; 759 } 760 761 /* 762 * This function copies a received frame to all monitor interfaces and 763 * returns a cleaned-up SKB that no longer includes the FCS nor the 764 * radiotap header the driver might have added. 765 */ 766 static struct sk_buff * 767 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 768 struct ieee80211_rate *rate) 769 { 770 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 771 struct ieee80211_sub_if_data *sdata; 772 struct sk_buff *monskb = NULL; 773 int present_fcs_len = 0; 774 unsigned int rtap_space = 0; 775 struct ieee80211_sub_if_data *monitor_sdata = 776 rcu_dereference(local->monitor_sdata); 777 bool only_monitor = false; 778 unsigned int min_head_len; 779 780 if (status->flag & RX_FLAG_RADIOTAP_HE) 781 rtap_space += sizeof(struct ieee80211_radiotap_he); 782 783 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 784 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 785 786 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 787 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 788 789 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 790 struct ieee80211_vendor_radiotap *rtap = 791 (void *)(origskb->data + rtap_space); 792 793 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 794 } 795 796 min_head_len = rtap_space; 797 798 /* 799 * First, we may need to make a copy of the skb because 800 * (1) we need to modify it for radiotap (if not present), and 801 * (2) the other RX handlers will modify the skb we got. 802 * 803 * We don't need to, of course, if we aren't going to return 804 * the SKB because it has a bad FCS/PLCP checksum. 805 */ 806 807 if (!(status->flag & RX_FLAG_NO_PSDU)) { 808 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 809 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 810 /* driver bug */ 811 WARN_ON(1); 812 dev_kfree_skb(origskb); 813 return NULL; 814 } 815 present_fcs_len = FCS_LEN; 816 } 817 818 /* also consider the hdr->frame_control */ 819 min_head_len += 2; 820 } 821 822 /* ensure that the expected data elements are in skb head */ 823 if (!pskb_may_pull(origskb, min_head_len)) { 824 dev_kfree_skb(origskb); 825 return NULL; 826 } 827 828 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 829 830 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 831 if (only_monitor) { 832 dev_kfree_skb(origskb); 833 return NULL; 834 } 835 836 return ieee80211_clean_skb(origskb, present_fcs_len, 837 rtap_space); 838 } 839 840 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 841 842 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 843 bool last_monitor = list_is_last(&sdata->u.mntr.list, 844 &local->mon_list); 845 846 if (!monskb) 847 monskb = ieee80211_make_monitor_skb(local, &origskb, 848 rate, rtap_space, 849 only_monitor && 850 last_monitor); 851 852 if (monskb) { 853 struct sk_buff *skb; 854 855 if (last_monitor) { 856 skb = monskb; 857 monskb = NULL; 858 } else { 859 skb = skb_clone(monskb, GFP_ATOMIC); 860 } 861 862 if (skb) { 863 skb->dev = sdata->dev; 864 dev_sw_netstats_rx_add(skb->dev, skb->len); 865 netif_receive_skb(skb); 866 } 867 } 868 869 if (last_monitor) 870 break; 871 } 872 873 /* this happens if last_monitor was erroneously false */ 874 dev_kfree_skb(monskb); 875 876 /* ditto */ 877 if (!origskb) 878 return NULL; 879 880 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 881 } 882 883 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 884 { 885 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 886 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 887 int tid, seqno_idx, security_idx; 888 889 /* does the frame have a qos control field? */ 890 if (ieee80211_is_data_qos(hdr->frame_control)) { 891 u8 *qc = ieee80211_get_qos_ctl(hdr); 892 /* frame has qos control */ 893 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 894 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 895 status->rx_flags |= IEEE80211_RX_AMSDU; 896 897 seqno_idx = tid; 898 security_idx = tid; 899 } else { 900 /* 901 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 902 * 903 * Sequence numbers for management frames, QoS data 904 * frames with a broadcast/multicast address in the 905 * Address 1 field, and all non-QoS data frames sent 906 * by QoS STAs are assigned using an additional single 907 * modulo-4096 counter, [...] 908 * 909 * We also use that counter for non-QoS STAs. 910 */ 911 seqno_idx = IEEE80211_NUM_TIDS; 912 security_idx = 0; 913 if (ieee80211_is_mgmt(hdr->frame_control)) 914 security_idx = IEEE80211_NUM_TIDS; 915 tid = 0; 916 } 917 918 rx->seqno_idx = seqno_idx; 919 rx->security_idx = security_idx; 920 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 921 * For now, set skb->priority to 0 for other cases. */ 922 rx->skb->priority = (tid > 7) ? 0 : tid; 923 } 924 925 /** 926 * DOC: Packet alignment 927 * 928 * Drivers always need to pass packets that are aligned to two-byte boundaries 929 * to the stack. 930 * 931 * Additionally, should, if possible, align the payload data in a way that 932 * guarantees that the contained IP header is aligned to a four-byte 933 * boundary. In the case of regular frames, this simply means aligning the 934 * payload to a four-byte boundary (because either the IP header is directly 935 * contained, or IV/RFC1042 headers that have a length divisible by four are 936 * in front of it). If the payload data is not properly aligned and the 937 * architecture doesn't support efficient unaligned operations, mac80211 938 * will align the data. 939 * 940 * With A-MSDU frames, however, the payload data address must yield two modulo 941 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 942 * push the IP header further back to a multiple of four again. Thankfully, the 943 * specs were sane enough this time around to require padding each A-MSDU 944 * subframe to a length that is a multiple of four. 945 * 946 * Padding like Atheros hardware adds which is between the 802.11 header and 947 * the payload is not supported, the driver is required to move the 802.11 948 * header to be directly in front of the payload in that case. 949 */ 950 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 951 { 952 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 953 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 954 #endif 955 } 956 957 958 /* rx handlers */ 959 960 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 961 { 962 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 963 964 if (is_multicast_ether_addr(hdr->addr1)) 965 return 0; 966 967 return ieee80211_is_robust_mgmt_frame(skb); 968 } 969 970 971 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 972 { 973 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 974 975 if (!is_multicast_ether_addr(hdr->addr1)) 976 return 0; 977 978 return ieee80211_is_robust_mgmt_frame(skb); 979 } 980 981 982 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 983 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 984 { 985 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 986 struct ieee80211_mmie *mmie; 987 struct ieee80211_mmie_16 *mmie16; 988 989 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 990 return -1; 991 992 if (!ieee80211_is_robust_mgmt_frame(skb) && 993 !ieee80211_is_beacon(hdr->frame_control)) 994 return -1; /* not a robust management frame */ 995 996 mmie = (struct ieee80211_mmie *) 997 (skb->data + skb->len - sizeof(*mmie)); 998 if (mmie->element_id == WLAN_EID_MMIE && 999 mmie->length == sizeof(*mmie) - 2) 1000 return le16_to_cpu(mmie->key_id); 1001 1002 mmie16 = (struct ieee80211_mmie_16 *) 1003 (skb->data + skb->len - sizeof(*mmie16)); 1004 if (skb->len >= 24 + sizeof(*mmie16) && 1005 mmie16->element_id == WLAN_EID_MMIE && 1006 mmie16->length == sizeof(*mmie16) - 2) 1007 return le16_to_cpu(mmie16->key_id); 1008 1009 return -1; 1010 } 1011 1012 static int ieee80211_get_keyid(struct sk_buff *skb, 1013 const struct ieee80211_cipher_scheme *cs) 1014 { 1015 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1016 __le16 fc; 1017 int hdrlen; 1018 int minlen; 1019 u8 key_idx_off; 1020 u8 key_idx_shift; 1021 u8 keyid; 1022 1023 fc = hdr->frame_control; 1024 hdrlen = ieee80211_hdrlen(fc); 1025 1026 if (cs) { 1027 minlen = hdrlen + cs->hdr_len; 1028 key_idx_off = hdrlen + cs->key_idx_off; 1029 key_idx_shift = cs->key_idx_shift; 1030 } else { 1031 /* WEP, TKIP, CCMP and GCMP */ 1032 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1033 key_idx_off = hdrlen + 3; 1034 key_idx_shift = 6; 1035 } 1036 1037 if (unlikely(skb->len < minlen)) 1038 return -EINVAL; 1039 1040 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1041 1042 if (cs) 1043 keyid &= cs->key_idx_mask; 1044 keyid >>= key_idx_shift; 1045 1046 /* cs could use more than the usual two bits for the keyid */ 1047 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1048 return -EINVAL; 1049 1050 return keyid; 1051 } 1052 1053 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1054 { 1055 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1056 char *dev_addr = rx->sdata->vif.addr; 1057 1058 if (ieee80211_is_data(hdr->frame_control)) { 1059 if (is_multicast_ether_addr(hdr->addr1)) { 1060 if (ieee80211_has_tods(hdr->frame_control) || 1061 !ieee80211_has_fromds(hdr->frame_control)) 1062 return RX_DROP_MONITOR; 1063 if (ether_addr_equal(hdr->addr3, dev_addr)) 1064 return RX_DROP_MONITOR; 1065 } else { 1066 if (!ieee80211_has_a4(hdr->frame_control)) 1067 return RX_DROP_MONITOR; 1068 if (ether_addr_equal(hdr->addr4, dev_addr)) 1069 return RX_DROP_MONITOR; 1070 } 1071 } 1072 1073 /* If there is not an established peer link and this is not a peer link 1074 * establisment frame, beacon or probe, drop the frame. 1075 */ 1076 1077 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1078 struct ieee80211_mgmt *mgmt; 1079 1080 if (!ieee80211_is_mgmt(hdr->frame_control)) 1081 return RX_DROP_MONITOR; 1082 1083 if (ieee80211_is_action(hdr->frame_control)) { 1084 u8 category; 1085 1086 /* make sure category field is present */ 1087 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1088 return RX_DROP_MONITOR; 1089 1090 mgmt = (struct ieee80211_mgmt *)hdr; 1091 category = mgmt->u.action.category; 1092 if (category != WLAN_CATEGORY_MESH_ACTION && 1093 category != WLAN_CATEGORY_SELF_PROTECTED) 1094 return RX_DROP_MONITOR; 1095 return RX_CONTINUE; 1096 } 1097 1098 if (ieee80211_is_probe_req(hdr->frame_control) || 1099 ieee80211_is_probe_resp(hdr->frame_control) || 1100 ieee80211_is_beacon(hdr->frame_control) || 1101 ieee80211_is_auth(hdr->frame_control)) 1102 return RX_CONTINUE; 1103 1104 return RX_DROP_MONITOR; 1105 } 1106 1107 return RX_CONTINUE; 1108 } 1109 1110 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1111 int index) 1112 { 1113 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1114 struct sk_buff *tail = skb_peek_tail(frames); 1115 struct ieee80211_rx_status *status; 1116 1117 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1118 return true; 1119 1120 if (!tail) 1121 return false; 1122 1123 status = IEEE80211_SKB_RXCB(tail); 1124 if (status->flag & RX_FLAG_AMSDU_MORE) 1125 return false; 1126 1127 return true; 1128 } 1129 1130 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1131 struct tid_ampdu_rx *tid_agg_rx, 1132 int index, 1133 struct sk_buff_head *frames) 1134 { 1135 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1136 struct sk_buff *skb; 1137 struct ieee80211_rx_status *status; 1138 1139 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1140 1141 if (skb_queue_empty(skb_list)) 1142 goto no_frame; 1143 1144 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1145 __skb_queue_purge(skb_list); 1146 goto no_frame; 1147 } 1148 1149 /* release frames from the reorder ring buffer */ 1150 tid_agg_rx->stored_mpdu_num--; 1151 while ((skb = __skb_dequeue(skb_list))) { 1152 status = IEEE80211_SKB_RXCB(skb); 1153 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1154 __skb_queue_tail(frames, skb); 1155 } 1156 1157 no_frame: 1158 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1159 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1160 } 1161 1162 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1163 struct tid_ampdu_rx *tid_agg_rx, 1164 u16 head_seq_num, 1165 struct sk_buff_head *frames) 1166 { 1167 int index; 1168 1169 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1170 1171 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1172 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1173 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1174 frames); 1175 } 1176 } 1177 1178 /* 1179 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1180 * the skb was added to the buffer longer than this time ago, the earlier 1181 * frames that have not yet been received are assumed to be lost and the skb 1182 * can be released for processing. This may also release other skb's from the 1183 * reorder buffer if there are no additional gaps between the frames. 1184 * 1185 * Callers must hold tid_agg_rx->reorder_lock. 1186 */ 1187 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1188 1189 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1190 struct tid_ampdu_rx *tid_agg_rx, 1191 struct sk_buff_head *frames) 1192 { 1193 int index, i, j; 1194 1195 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1196 1197 /* release the buffer until next missing frame */ 1198 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1199 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1200 tid_agg_rx->stored_mpdu_num) { 1201 /* 1202 * No buffers ready to be released, but check whether any 1203 * frames in the reorder buffer have timed out. 1204 */ 1205 int skipped = 1; 1206 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1207 j = (j + 1) % tid_agg_rx->buf_size) { 1208 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1209 skipped++; 1210 continue; 1211 } 1212 if (skipped && 1213 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1214 HT_RX_REORDER_BUF_TIMEOUT)) 1215 goto set_release_timer; 1216 1217 /* don't leave incomplete A-MSDUs around */ 1218 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1219 i = (i + 1) % tid_agg_rx->buf_size) 1220 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1221 1222 ht_dbg_ratelimited(sdata, 1223 "release an RX reorder frame due to timeout on earlier frames\n"); 1224 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1225 frames); 1226 1227 /* 1228 * Increment the head seq# also for the skipped slots. 1229 */ 1230 tid_agg_rx->head_seq_num = 1231 (tid_agg_rx->head_seq_num + 1232 skipped) & IEEE80211_SN_MASK; 1233 skipped = 0; 1234 } 1235 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1236 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1237 frames); 1238 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1239 } 1240 1241 if (tid_agg_rx->stored_mpdu_num) { 1242 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1243 1244 for (; j != (index - 1) % tid_agg_rx->buf_size; 1245 j = (j + 1) % tid_agg_rx->buf_size) { 1246 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1247 break; 1248 } 1249 1250 set_release_timer: 1251 1252 if (!tid_agg_rx->removed) 1253 mod_timer(&tid_agg_rx->reorder_timer, 1254 tid_agg_rx->reorder_time[j] + 1 + 1255 HT_RX_REORDER_BUF_TIMEOUT); 1256 } else { 1257 del_timer(&tid_agg_rx->reorder_timer); 1258 } 1259 } 1260 1261 /* 1262 * As this function belongs to the RX path it must be under 1263 * rcu_read_lock protection. It returns false if the frame 1264 * can be processed immediately, true if it was consumed. 1265 */ 1266 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1267 struct tid_ampdu_rx *tid_agg_rx, 1268 struct sk_buff *skb, 1269 struct sk_buff_head *frames) 1270 { 1271 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1272 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1273 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1274 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1275 u16 head_seq_num, buf_size; 1276 int index; 1277 bool ret = true; 1278 1279 spin_lock(&tid_agg_rx->reorder_lock); 1280 1281 /* 1282 * Offloaded BA sessions have no known starting sequence number so pick 1283 * one from first Rxed frame for this tid after BA was started. 1284 */ 1285 if (unlikely(tid_agg_rx->auto_seq)) { 1286 tid_agg_rx->auto_seq = false; 1287 tid_agg_rx->ssn = mpdu_seq_num; 1288 tid_agg_rx->head_seq_num = mpdu_seq_num; 1289 } 1290 1291 buf_size = tid_agg_rx->buf_size; 1292 head_seq_num = tid_agg_rx->head_seq_num; 1293 1294 /* 1295 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1296 * be reordered. 1297 */ 1298 if (unlikely(!tid_agg_rx->started)) { 1299 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1300 ret = false; 1301 goto out; 1302 } 1303 tid_agg_rx->started = true; 1304 } 1305 1306 /* frame with out of date sequence number */ 1307 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1308 dev_kfree_skb(skb); 1309 goto out; 1310 } 1311 1312 /* 1313 * If frame the sequence number exceeds our buffering window 1314 * size release some previous frames to make room for this one. 1315 */ 1316 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1317 head_seq_num = ieee80211_sn_inc( 1318 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1319 /* release stored frames up to new head to stack */ 1320 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1321 head_seq_num, frames); 1322 } 1323 1324 /* Now the new frame is always in the range of the reordering buffer */ 1325 1326 index = mpdu_seq_num % tid_agg_rx->buf_size; 1327 1328 /* check if we already stored this frame */ 1329 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1330 dev_kfree_skb(skb); 1331 goto out; 1332 } 1333 1334 /* 1335 * If the current MPDU is in the right order and nothing else 1336 * is stored we can process it directly, no need to buffer it. 1337 * If it is first but there's something stored, we may be able 1338 * to release frames after this one. 1339 */ 1340 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1341 tid_agg_rx->stored_mpdu_num == 0) { 1342 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1343 tid_agg_rx->head_seq_num = 1344 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1345 ret = false; 1346 goto out; 1347 } 1348 1349 /* put the frame in the reordering buffer */ 1350 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1351 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1352 tid_agg_rx->reorder_time[index] = jiffies; 1353 tid_agg_rx->stored_mpdu_num++; 1354 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1355 } 1356 1357 out: 1358 spin_unlock(&tid_agg_rx->reorder_lock); 1359 return ret; 1360 } 1361 1362 /* 1363 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1364 * true if the MPDU was buffered, false if it should be processed. 1365 */ 1366 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1367 struct sk_buff_head *frames) 1368 { 1369 struct sk_buff *skb = rx->skb; 1370 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1371 struct sta_info *sta = rx->sta; 1372 struct tid_ampdu_rx *tid_agg_rx; 1373 u16 sc; 1374 u8 tid, ack_policy; 1375 1376 if (!ieee80211_is_data_qos(hdr->frame_control) || 1377 is_multicast_ether_addr(hdr->addr1)) 1378 goto dont_reorder; 1379 1380 /* 1381 * filter the QoS data rx stream according to 1382 * STA/TID and check if this STA/TID is on aggregation 1383 */ 1384 1385 if (!sta) 1386 goto dont_reorder; 1387 1388 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1389 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1390 tid = ieee80211_get_tid(hdr); 1391 1392 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1393 if (!tid_agg_rx) { 1394 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1395 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1396 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1397 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1398 WLAN_BACK_RECIPIENT, 1399 WLAN_REASON_QSTA_REQUIRE_SETUP); 1400 goto dont_reorder; 1401 } 1402 1403 /* qos null data frames are excluded */ 1404 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1405 goto dont_reorder; 1406 1407 /* not part of a BA session */ 1408 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) 1409 goto dont_reorder; 1410 1411 /* new, potentially un-ordered, ampdu frame - process it */ 1412 1413 /* reset session timer */ 1414 if (tid_agg_rx->timeout) 1415 tid_agg_rx->last_rx = jiffies; 1416 1417 /* if this mpdu is fragmented - terminate rx aggregation session */ 1418 sc = le16_to_cpu(hdr->seq_ctrl); 1419 if (sc & IEEE80211_SCTL_FRAG) { 1420 ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb); 1421 return; 1422 } 1423 1424 /* 1425 * No locking needed -- we will only ever process one 1426 * RX packet at a time, and thus own tid_agg_rx. All 1427 * other code manipulating it needs to (and does) make 1428 * sure that we cannot get to it any more before doing 1429 * anything with it. 1430 */ 1431 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1432 frames)) 1433 return; 1434 1435 dont_reorder: 1436 __skb_queue_tail(frames, skb); 1437 } 1438 1439 static ieee80211_rx_result debug_noinline 1440 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1441 { 1442 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1443 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1444 1445 if (status->flag & RX_FLAG_DUP_VALIDATED) 1446 return RX_CONTINUE; 1447 1448 /* 1449 * Drop duplicate 802.11 retransmissions 1450 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1451 */ 1452 1453 if (rx->skb->len < 24) 1454 return RX_CONTINUE; 1455 1456 if (ieee80211_is_ctl(hdr->frame_control) || 1457 ieee80211_is_any_nullfunc(hdr->frame_control) || 1458 is_multicast_ether_addr(hdr->addr1)) 1459 return RX_CONTINUE; 1460 1461 if (!rx->sta) 1462 return RX_CONTINUE; 1463 1464 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1465 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1466 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1467 rx->sta->deflink.rx_stats.num_duplicates++; 1468 return RX_DROP_UNUSABLE; 1469 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1470 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1471 } 1472 1473 return RX_CONTINUE; 1474 } 1475 1476 static ieee80211_rx_result debug_noinline 1477 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1478 { 1479 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1480 1481 /* Drop disallowed frame classes based on STA auth/assoc state; 1482 * IEEE 802.11, Chap 5.5. 1483 * 1484 * mac80211 filters only based on association state, i.e. it drops 1485 * Class 3 frames from not associated stations. hostapd sends 1486 * deauth/disassoc frames when needed. In addition, hostapd is 1487 * responsible for filtering on both auth and assoc states. 1488 */ 1489 1490 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1491 return ieee80211_rx_mesh_check(rx); 1492 1493 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1494 ieee80211_is_pspoll(hdr->frame_control)) && 1495 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1496 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1497 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1498 /* 1499 * accept port control frames from the AP even when it's not 1500 * yet marked ASSOC to prevent a race where we don't set the 1501 * assoc bit quickly enough before it sends the first frame 1502 */ 1503 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1504 ieee80211_is_data_present(hdr->frame_control)) { 1505 unsigned int hdrlen; 1506 __be16 ethertype; 1507 1508 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1509 1510 if (rx->skb->len < hdrlen + 8) 1511 return RX_DROP_MONITOR; 1512 1513 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1514 if (ethertype == rx->sdata->control_port_protocol) 1515 return RX_CONTINUE; 1516 } 1517 1518 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1519 cfg80211_rx_spurious_frame(rx->sdata->dev, 1520 hdr->addr2, 1521 GFP_ATOMIC)) 1522 return RX_DROP_UNUSABLE; 1523 1524 return RX_DROP_MONITOR; 1525 } 1526 1527 return RX_CONTINUE; 1528 } 1529 1530 1531 static ieee80211_rx_result debug_noinline 1532 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1533 { 1534 struct ieee80211_local *local; 1535 struct ieee80211_hdr *hdr; 1536 struct sk_buff *skb; 1537 1538 local = rx->local; 1539 skb = rx->skb; 1540 hdr = (struct ieee80211_hdr *) skb->data; 1541 1542 if (!local->pspolling) 1543 return RX_CONTINUE; 1544 1545 if (!ieee80211_has_fromds(hdr->frame_control)) 1546 /* this is not from AP */ 1547 return RX_CONTINUE; 1548 1549 if (!ieee80211_is_data(hdr->frame_control)) 1550 return RX_CONTINUE; 1551 1552 if (!ieee80211_has_moredata(hdr->frame_control)) { 1553 /* AP has no more frames buffered for us */ 1554 local->pspolling = false; 1555 return RX_CONTINUE; 1556 } 1557 1558 /* more data bit is set, let's request a new frame from the AP */ 1559 ieee80211_send_pspoll(local, rx->sdata); 1560 1561 return RX_CONTINUE; 1562 } 1563 1564 static void sta_ps_start(struct sta_info *sta) 1565 { 1566 struct ieee80211_sub_if_data *sdata = sta->sdata; 1567 struct ieee80211_local *local = sdata->local; 1568 struct ps_data *ps; 1569 int tid; 1570 1571 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1572 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1573 ps = &sdata->bss->ps; 1574 else 1575 return; 1576 1577 atomic_inc(&ps->num_sta_ps); 1578 set_sta_flag(sta, WLAN_STA_PS_STA); 1579 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1580 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1581 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1582 sta->sta.addr, sta->sta.aid); 1583 1584 ieee80211_clear_fast_xmit(sta); 1585 1586 if (!sta->sta.txq[0]) 1587 return; 1588 1589 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1590 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1591 1592 ieee80211_unschedule_txq(&local->hw, txq, false); 1593 1594 if (txq_has_queue(txq)) 1595 set_bit(tid, &sta->txq_buffered_tids); 1596 else 1597 clear_bit(tid, &sta->txq_buffered_tids); 1598 } 1599 } 1600 1601 static void sta_ps_end(struct sta_info *sta) 1602 { 1603 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1604 sta->sta.addr, sta->sta.aid); 1605 1606 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1607 /* 1608 * Clear the flag only if the other one is still set 1609 * so that the TX path won't start TX'ing new frames 1610 * directly ... In the case that the driver flag isn't 1611 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1612 */ 1613 clear_sta_flag(sta, WLAN_STA_PS_STA); 1614 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1615 sta->sta.addr, sta->sta.aid); 1616 return; 1617 } 1618 1619 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1620 clear_sta_flag(sta, WLAN_STA_PS_STA); 1621 ieee80211_sta_ps_deliver_wakeup(sta); 1622 } 1623 1624 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1625 { 1626 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1627 bool in_ps; 1628 1629 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1630 1631 /* Don't let the same PS state be set twice */ 1632 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1633 if ((start && in_ps) || (!start && !in_ps)) 1634 return -EINVAL; 1635 1636 if (start) 1637 sta_ps_start(sta); 1638 else 1639 sta_ps_end(sta); 1640 1641 return 0; 1642 } 1643 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1644 1645 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1646 { 1647 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1648 1649 if (test_sta_flag(sta, WLAN_STA_SP)) 1650 return; 1651 1652 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1653 ieee80211_sta_ps_deliver_poll_response(sta); 1654 else 1655 set_sta_flag(sta, WLAN_STA_PSPOLL); 1656 } 1657 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1658 1659 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1660 { 1661 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1662 int ac = ieee80211_ac_from_tid(tid); 1663 1664 /* 1665 * If this AC is not trigger-enabled do nothing unless the 1666 * driver is calling us after it already checked. 1667 * 1668 * NB: This could/should check a separate bitmap of trigger- 1669 * enabled queues, but for now we only implement uAPSD w/o 1670 * TSPEC changes to the ACs, so they're always the same. 1671 */ 1672 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1673 tid != IEEE80211_NUM_TIDS) 1674 return; 1675 1676 /* if we are in a service period, do nothing */ 1677 if (test_sta_flag(sta, WLAN_STA_SP)) 1678 return; 1679 1680 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1681 ieee80211_sta_ps_deliver_uapsd(sta); 1682 else 1683 set_sta_flag(sta, WLAN_STA_UAPSD); 1684 } 1685 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1686 1687 static ieee80211_rx_result debug_noinline 1688 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1689 { 1690 struct ieee80211_sub_if_data *sdata = rx->sdata; 1691 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1692 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1693 1694 if (!rx->sta) 1695 return RX_CONTINUE; 1696 1697 if (sdata->vif.type != NL80211_IFTYPE_AP && 1698 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1699 return RX_CONTINUE; 1700 1701 /* 1702 * The device handles station powersave, so don't do anything about 1703 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1704 * it to mac80211 since they're handled.) 1705 */ 1706 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1707 return RX_CONTINUE; 1708 1709 /* 1710 * Don't do anything if the station isn't already asleep. In 1711 * the uAPSD case, the station will probably be marked asleep, 1712 * in the PS-Poll case the station must be confused ... 1713 */ 1714 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1715 return RX_CONTINUE; 1716 1717 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1718 ieee80211_sta_pspoll(&rx->sta->sta); 1719 1720 /* Free PS Poll skb here instead of returning RX_DROP that would 1721 * count as an dropped frame. */ 1722 dev_kfree_skb(rx->skb); 1723 1724 return RX_QUEUED; 1725 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1726 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1727 ieee80211_has_pm(hdr->frame_control) && 1728 (ieee80211_is_data_qos(hdr->frame_control) || 1729 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1730 u8 tid = ieee80211_get_tid(hdr); 1731 1732 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1733 } 1734 1735 return RX_CONTINUE; 1736 } 1737 1738 static ieee80211_rx_result debug_noinline 1739 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1740 { 1741 struct sta_info *sta = rx->sta; 1742 struct sk_buff *skb = rx->skb; 1743 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1744 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1745 int i; 1746 1747 if (!sta) 1748 return RX_CONTINUE; 1749 1750 /* 1751 * Update last_rx only for IBSS packets which are for the current 1752 * BSSID and for station already AUTHORIZED to avoid keeping the 1753 * current IBSS network alive in cases where other STAs start 1754 * using different BSSID. This will also give the station another 1755 * chance to restart the authentication/authorization in case 1756 * something went wrong the first time. 1757 */ 1758 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1759 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1760 NL80211_IFTYPE_ADHOC); 1761 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1762 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1763 sta->deflink.rx_stats.last_rx = jiffies; 1764 if (ieee80211_is_data(hdr->frame_control) && 1765 !is_multicast_ether_addr(hdr->addr1)) 1766 sta->deflink.rx_stats.last_rate = 1767 sta_stats_encode_rate(status); 1768 } 1769 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1770 sta->deflink.rx_stats.last_rx = jiffies; 1771 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1772 !is_multicast_ether_addr(hdr->addr1)) { 1773 /* 1774 * Mesh beacons will update last_rx when if they are found to 1775 * match the current local configuration when processed. 1776 */ 1777 sta->deflink.rx_stats.last_rx = jiffies; 1778 if (ieee80211_is_data(hdr->frame_control)) 1779 sta->deflink.rx_stats.last_rate = sta_stats_encode_rate(status); 1780 } 1781 1782 sta->deflink.rx_stats.fragments++; 1783 1784 u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp); 1785 sta->deflink.rx_stats.bytes += rx->skb->len; 1786 u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp); 1787 1788 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1789 sta->deflink.rx_stats.last_signal = status->signal; 1790 ewma_signal_add(&sta->deflink.rx_stats_avg.signal, 1791 -status->signal); 1792 } 1793 1794 if (status->chains) { 1795 sta->deflink.rx_stats.chains = status->chains; 1796 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1797 int signal = status->chain_signal[i]; 1798 1799 if (!(status->chains & BIT(i))) 1800 continue; 1801 1802 sta->deflink.rx_stats.chain_signal_last[i] = signal; 1803 ewma_signal_add(&sta->deflink.rx_stats_avg.chain_signal[i], 1804 -signal); 1805 } 1806 } 1807 1808 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1809 return RX_CONTINUE; 1810 1811 /* 1812 * Change STA power saving mode only at the end of a frame 1813 * exchange sequence, and only for a data or management 1814 * frame as specified in IEEE 802.11-2016 11.2.3.2 1815 */ 1816 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1817 !ieee80211_has_morefrags(hdr->frame_control) && 1818 !is_multicast_ether_addr(hdr->addr1) && 1819 (ieee80211_is_mgmt(hdr->frame_control) || 1820 ieee80211_is_data(hdr->frame_control)) && 1821 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1822 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1823 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1824 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1825 if (!ieee80211_has_pm(hdr->frame_control)) 1826 sta_ps_end(sta); 1827 } else { 1828 if (ieee80211_has_pm(hdr->frame_control)) 1829 sta_ps_start(sta); 1830 } 1831 } 1832 1833 /* mesh power save support */ 1834 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1835 ieee80211_mps_rx_h_sta_process(sta, hdr); 1836 1837 /* 1838 * Drop (qos-)data::nullfunc frames silently, since they 1839 * are used only to control station power saving mode. 1840 */ 1841 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1842 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1843 1844 /* 1845 * If we receive a 4-addr nullfunc frame from a STA 1846 * that was not moved to a 4-addr STA vlan yet send 1847 * the event to userspace and for older hostapd drop 1848 * the frame to the monitor interface. 1849 */ 1850 if (ieee80211_has_a4(hdr->frame_control) && 1851 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1852 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1853 !rx->sdata->u.vlan.sta))) { 1854 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1855 cfg80211_rx_unexpected_4addr_frame( 1856 rx->sdata->dev, sta->sta.addr, 1857 GFP_ATOMIC); 1858 return RX_DROP_MONITOR; 1859 } 1860 /* 1861 * Update counter and free packet here to avoid 1862 * counting this as a dropped packed. 1863 */ 1864 sta->deflink.rx_stats.packets++; 1865 dev_kfree_skb(rx->skb); 1866 return RX_QUEUED; 1867 } 1868 1869 return RX_CONTINUE; 1870 } /* ieee80211_rx_h_sta_process */ 1871 1872 static struct ieee80211_key * 1873 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1874 { 1875 struct ieee80211_key *key = NULL; 1876 struct ieee80211_sub_if_data *sdata = rx->sdata; 1877 int idx2; 1878 1879 /* Make sure key gets set if either BIGTK key index is set so that 1880 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1881 * Beacon frames and Beacon frames that claim to use another BIGTK key 1882 * index (i.e., a key that we do not have). 1883 */ 1884 1885 if (idx < 0) { 1886 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1887 idx2 = idx + 1; 1888 } else { 1889 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1890 idx2 = idx + 1; 1891 else 1892 idx2 = idx - 1; 1893 } 1894 1895 if (rx->sta) 1896 key = rcu_dereference(rx->sta->deflink.gtk[idx]); 1897 if (!key) 1898 key = rcu_dereference(sdata->keys[idx]); 1899 if (!key && rx->sta) 1900 key = rcu_dereference(rx->sta->deflink.gtk[idx2]); 1901 if (!key) 1902 key = rcu_dereference(sdata->keys[idx2]); 1903 1904 return key; 1905 } 1906 1907 static ieee80211_rx_result debug_noinline 1908 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1909 { 1910 struct sk_buff *skb = rx->skb; 1911 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1912 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1913 int keyidx; 1914 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1915 struct ieee80211_key *sta_ptk = NULL; 1916 struct ieee80211_key *ptk_idx = NULL; 1917 int mmie_keyidx = -1; 1918 __le16 fc; 1919 const struct ieee80211_cipher_scheme *cs = NULL; 1920 1921 if (ieee80211_is_ext(hdr->frame_control)) 1922 return RX_CONTINUE; 1923 1924 /* 1925 * Key selection 101 1926 * 1927 * There are five types of keys: 1928 * - GTK (group keys) 1929 * - IGTK (group keys for management frames) 1930 * - BIGTK (group keys for Beacon frames) 1931 * - PTK (pairwise keys) 1932 * - STK (station-to-station pairwise keys) 1933 * 1934 * When selecting a key, we have to distinguish between multicast 1935 * (including broadcast) and unicast frames, the latter can only 1936 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1937 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1938 * then unicast frames can also use key indices like GTKs. Hence, if we 1939 * don't have a PTK/STK we check the key index for a WEP key. 1940 * 1941 * Note that in a regular BSS, multicast frames are sent by the 1942 * AP only, associated stations unicast the frame to the AP first 1943 * which then multicasts it on their behalf. 1944 * 1945 * There is also a slight problem in IBSS mode: GTKs are negotiated 1946 * with each station, that is something we don't currently handle. 1947 * The spec seems to expect that one negotiates the same key with 1948 * every station but there's no such requirement; VLANs could be 1949 * possible. 1950 */ 1951 1952 /* start without a key */ 1953 rx->key = NULL; 1954 fc = hdr->frame_control; 1955 1956 if (rx->sta) { 1957 int keyid = rx->sta->ptk_idx; 1958 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1959 1960 if (ieee80211_has_protected(fc) && 1961 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1962 cs = rx->sta->cipher_scheme; 1963 keyid = ieee80211_get_keyid(rx->skb, cs); 1964 1965 if (unlikely(keyid < 0)) 1966 return RX_DROP_UNUSABLE; 1967 1968 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1969 } 1970 } 1971 1972 if (!ieee80211_has_protected(fc)) 1973 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1974 1975 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1976 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1977 if ((status->flag & RX_FLAG_DECRYPTED) && 1978 (status->flag & RX_FLAG_IV_STRIPPED)) 1979 return RX_CONTINUE; 1980 /* Skip decryption if the frame is not protected. */ 1981 if (!ieee80211_has_protected(fc)) 1982 return RX_CONTINUE; 1983 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1984 /* Broadcast/multicast robust management frame / BIP */ 1985 if ((status->flag & RX_FLAG_DECRYPTED) && 1986 (status->flag & RX_FLAG_IV_STRIPPED)) 1987 return RX_CONTINUE; 1988 1989 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1990 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1991 NUM_DEFAULT_BEACON_KEYS) { 1992 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1993 skb->data, 1994 skb->len); 1995 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1996 } 1997 1998 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1999 if (!rx->key) 2000 return RX_CONTINUE; /* Beacon protection not in use */ 2001 } else if (mmie_keyidx >= 0) { 2002 /* Broadcast/multicast robust management frame / BIP */ 2003 if ((status->flag & RX_FLAG_DECRYPTED) && 2004 (status->flag & RX_FLAG_IV_STRIPPED)) 2005 return RX_CONTINUE; 2006 2007 if (mmie_keyidx < NUM_DEFAULT_KEYS || 2008 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 2009 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2010 if (rx->sta) { 2011 if (ieee80211_is_group_privacy_action(skb) && 2012 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2013 return RX_DROP_MONITOR; 2014 2015 rx->key = rcu_dereference(rx->sta->deflink.gtk[mmie_keyidx]); 2016 } 2017 if (!rx->key) 2018 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 2019 } else if (!ieee80211_has_protected(fc)) { 2020 /* 2021 * The frame was not protected, so skip decryption. However, we 2022 * need to set rx->key if there is a key that could have been 2023 * used so that the frame may be dropped if encryption would 2024 * have been expected. 2025 */ 2026 struct ieee80211_key *key = NULL; 2027 struct ieee80211_sub_if_data *sdata = rx->sdata; 2028 int i; 2029 2030 if (ieee80211_is_beacon(fc)) { 2031 key = ieee80211_rx_get_bigtk(rx, -1); 2032 } else if (ieee80211_is_mgmt(fc) && 2033 is_multicast_ether_addr(hdr->addr1)) { 2034 key = rcu_dereference(rx->sdata->default_mgmt_key); 2035 } else { 2036 if (rx->sta) { 2037 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2038 key = rcu_dereference(rx->sta->deflink.gtk[i]); 2039 if (key) 2040 break; 2041 } 2042 } 2043 if (!key) { 2044 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2045 key = rcu_dereference(sdata->keys[i]); 2046 if (key) 2047 break; 2048 } 2049 } 2050 } 2051 if (key) 2052 rx->key = key; 2053 return RX_CONTINUE; 2054 } else { 2055 /* 2056 * The device doesn't give us the IV so we won't be 2057 * able to look up the key. That's ok though, we 2058 * don't need to decrypt the frame, we just won't 2059 * be able to keep statistics accurate. 2060 * Except for key threshold notifications, should 2061 * we somehow allow the driver to tell us which key 2062 * the hardware used if this flag is set? 2063 */ 2064 if ((status->flag & RX_FLAG_DECRYPTED) && 2065 (status->flag & RX_FLAG_IV_STRIPPED)) 2066 return RX_CONTINUE; 2067 2068 keyidx = ieee80211_get_keyid(rx->skb, cs); 2069 2070 if (unlikely(keyidx < 0)) 2071 return RX_DROP_UNUSABLE; 2072 2073 /* check per-station GTK first, if multicast packet */ 2074 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2075 rx->key = rcu_dereference(rx->sta->deflink.gtk[keyidx]); 2076 2077 /* if not found, try default key */ 2078 if (!rx->key) { 2079 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2080 2081 /* 2082 * RSNA-protected unicast frames should always be 2083 * sent with pairwise or station-to-station keys, 2084 * but for WEP we allow using a key index as well. 2085 */ 2086 if (rx->key && 2087 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2088 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2089 !is_multicast_ether_addr(hdr->addr1)) 2090 rx->key = NULL; 2091 } 2092 } 2093 2094 if (rx->key) { 2095 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2096 return RX_DROP_MONITOR; 2097 2098 /* TODO: add threshold stuff again */ 2099 } else { 2100 return RX_DROP_MONITOR; 2101 } 2102 2103 switch (rx->key->conf.cipher) { 2104 case WLAN_CIPHER_SUITE_WEP40: 2105 case WLAN_CIPHER_SUITE_WEP104: 2106 result = ieee80211_crypto_wep_decrypt(rx); 2107 break; 2108 case WLAN_CIPHER_SUITE_TKIP: 2109 result = ieee80211_crypto_tkip_decrypt(rx); 2110 break; 2111 case WLAN_CIPHER_SUITE_CCMP: 2112 result = ieee80211_crypto_ccmp_decrypt( 2113 rx, IEEE80211_CCMP_MIC_LEN); 2114 break; 2115 case WLAN_CIPHER_SUITE_CCMP_256: 2116 result = ieee80211_crypto_ccmp_decrypt( 2117 rx, IEEE80211_CCMP_256_MIC_LEN); 2118 break; 2119 case WLAN_CIPHER_SUITE_AES_CMAC: 2120 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2121 break; 2122 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2123 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2124 break; 2125 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2126 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2127 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2128 break; 2129 case WLAN_CIPHER_SUITE_GCMP: 2130 case WLAN_CIPHER_SUITE_GCMP_256: 2131 result = ieee80211_crypto_gcmp_decrypt(rx); 2132 break; 2133 default: 2134 result = ieee80211_crypto_hw_decrypt(rx); 2135 } 2136 2137 /* the hdr variable is invalid after the decrypt handlers */ 2138 2139 /* either the frame has been decrypted or will be dropped */ 2140 status->flag |= RX_FLAG_DECRYPTED; 2141 2142 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) 2143 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2144 skb->data, skb->len); 2145 2146 return result; 2147 } 2148 2149 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2150 { 2151 int i; 2152 2153 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2154 skb_queue_head_init(&cache->entries[i].skb_list); 2155 } 2156 2157 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2158 { 2159 int i; 2160 2161 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2162 __skb_queue_purge(&cache->entries[i].skb_list); 2163 } 2164 2165 static inline struct ieee80211_fragment_entry * 2166 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2167 unsigned int frag, unsigned int seq, int rx_queue, 2168 struct sk_buff **skb) 2169 { 2170 struct ieee80211_fragment_entry *entry; 2171 2172 entry = &cache->entries[cache->next++]; 2173 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2174 cache->next = 0; 2175 2176 __skb_queue_purge(&entry->skb_list); 2177 2178 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2179 *skb = NULL; 2180 entry->first_frag_time = jiffies; 2181 entry->seq = seq; 2182 entry->rx_queue = rx_queue; 2183 entry->last_frag = frag; 2184 entry->check_sequential_pn = false; 2185 entry->extra_len = 0; 2186 2187 return entry; 2188 } 2189 2190 static inline struct ieee80211_fragment_entry * 2191 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2192 unsigned int frag, unsigned int seq, 2193 int rx_queue, struct ieee80211_hdr *hdr) 2194 { 2195 struct ieee80211_fragment_entry *entry; 2196 int i, idx; 2197 2198 idx = cache->next; 2199 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2200 struct ieee80211_hdr *f_hdr; 2201 struct sk_buff *f_skb; 2202 2203 idx--; 2204 if (idx < 0) 2205 idx = IEEE80211_FRAGMENT_MAX - 1; 2206 2207 entry = &cache->entries[idx]; 2208 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2209 entry->rx_queue != rx_queue || 2210 entry->last_frag + 1 != frag) 2211 continue; 2212 2213 f_skb = __skb_peek(&entry->skb_list); 2214 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2215 2216 /* 2217 * Check ftype and addresses are equal, else check next fragment 2218 */ 2219 if (((hdr->frame_control ^ f_hdr->frame_control) & 2220 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2221 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2222 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2223 continue; 2224 2225 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2226 __skb_queue_purge(&entry->skb_list); 2227 continue; 2228 } 2229 return entry; 2230 } 2231 2232 return NULL; 2233 } 2234 2235 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2236 { 2237 return rx->key && 2238 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2239 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2240 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2241 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2242 ieee80211_has_protected(fc); 2243 } 2244 2245 static ieee80211_rx_result debug_noinline 2246 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2247 { 2248 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2249 struct ieee80211_hdr *hdr; 2250 u16 sc; 2251 __le16 fc; 2252 unsigned int frag, seq; 2253 struct ieee80211_fragment_entry *entry; 2254 struct sk_buff *skb; 2255 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2256 2257 hdr = (struct ieee80211_hdr *)rx->skb->data; 2258 fc = hdr->frame_control; 2259 2260 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2261 return RX_CONTINUE; 2262 2263 sc = le16_to_cpu(hdr->seq_ctrl); 2264 frag = sc & IEEE80211_SCTL_FRAG; 2265 2266 if (rx->sta) 2267 cache = &rx->sta->frags; 2268 2269 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2270 goto out; 2271 2272 if (is_multicast_ether_addr(hdr->addr1)) 2273 return RX_DROP_MONITOR; 2274 2275 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2276 2277 if (skb_linearize(rx->skb)) 2278 return RX_DROP_UNUSABLE; 2279 2280 /* 2281 * skb_linearize() might change the skb->data and 2282 * previously cached variables (in this case, hdr) need to 2283 * be refreshed with the new data. 2284 */ 2285 hdr = (struct ieee80211_hdr *)rx->skb->data; 2286 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2287 2288 if (frag == 0) { 2289 /* This is the first fragment of a new frame. */ 2290 entry = ieee80211_reassemble_add(cache, frag, seq, 2291 rx->seqno_idx, &(rx->skb)); 2292 if (requires_sequential_pn(rx, fc)) { 2293 int queue = rx->security_idx; 2294 2295 /* Store CCMP/GCMP PN so that we can verify that the 2296 * next fragment has a sequential PN value. 2297 */ 2298 entry->check_sequential_pn = true; 2299 entry->is_protected = true; 2300 entry->key_color = rx->key->color; 2301 memcpy(entry->last_pn, 2302 rx->key->u.ccmp.rx_pn[queue], 2303 IEEE80211_CCMP_PN_LEN); 2304 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2305 u.ccmp.rx_pn) != 2306 offsetof(struct ieee80211_key, 2307 u.gcmp.rx_pn)); 2308 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2309 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2310 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2311 IEEE80211_GCMP_PN_LEN); 2312 } else if (rx->key && 2313 (ieee80211_has_protected(fc) || 2314 (status->flag & RX_FLAG_DECRYPTED))) { 2315 entry->is_protected = true; 2316 entry->key_color = rx->key->color; 2317 } 2318 return RX_QUEUED; 2319 } 2320 2321 /* This is a fragment for a frame that should already be pending in 2322 * fragment cache. Add this fragment to the end of the pending entry. 2323 */ 2324 entry = ieee80211_reassemble_find(cache, frag, seq, 2325 rx->seqno_idx, hdr); 2326 if (!entry) { 2327 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2328 return RX_DROP_MONITOR; 2329 } 2330 2331 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2332 * MPDU PN values are not incrementing in steps of 1." 2333 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2334 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2335 */ 2336 if (entry->check_sequential_pn) { 2337 int i; 2338 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2339 2340 if (!requires_sequential_pn(rx, fc)) 2341 return RX_DROP_UNUSABLE; 2342 2343 /* Prevent mixed key and fragment cache attacks */ 2344 if (entry->key_color != rx->key->color) 2345 return RX_DROP_UNUSABLE; 2346 2347 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2348 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2349 pn[i]++; 2350 if (pn[i]) 2351 break; 2352 } 2353 2354 rpn = rx->ccm_gcm.pn; 2355 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2356 return RX_DROP_UNUSABLE; 2357 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2358 } else if (entry->is_protected && 2359 (!rx->key || 2360 (!ieee80211_has_protected(fc) && 2361 !(status->flag & RX_FLAG_DECRYPTED)) || 2362 rx->key->color != entry->key_color)) { 2363 /* Drop this as a mixed key or fragment cache attack, even 2364 * if for TKIP Michael MIC should protect us, and WEP is a 2365 * lost cause anyway. 2366 */ 2367 return RX_DROP_UNUSABLE; 2368 } else if (entry->is_protected && rx->key && 2369 entry->key_color != rx->key->color && 2370 (status->flag & RX_FLAG_DECRYPTED)) { 2371 return RX_DROP_UNUSABLE; 2372 } 2373 2374 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2375 __skb_queue_tail(&entry->skb_list, rx->skb); 2376 entry->last_frag = frag; 2377 entry->extra_len += rx->skb->len; 2378 if (ieee80211_has_morefrags(fc)) { 2379 rx->skb = NULL; 2380 return RX_QUEUED; 2381 } 2382 2383 rx->skb = __skb_dequeue(&entry->skb_list); 2384 if (skb_tailroom(rx->skb) < entry->extra_len) { 2385 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2386 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2387 GFP_ATOMIC))) { 2388 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2389 __skb_queue_purge(&entry->skb_list); 2390 return RX_DROP_UNUSABLE; 2391 } 2392 } 2393 while ((skb = __skb_dequeue(&entry->skb_list))) { 2394 skb_put_data(rx->skb, skb->data, skb->len); 2395 dev_kfree_skb(skb); 2396 } 2397 2398 out: 2399 ieee80211_led_rx(rx->local); 2400 if (rx->sta) 2401 rx->sta->deflink.rx_stats.packets++; 2402 return RX_CONTINUE; 2403 } 2404 2405 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2406 { 2407 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2408 return -EACCES; 2409 2410 return 0; 2411 } 2412 2413 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2414 { 2415 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 2416 struct sk_buff *skb = rx->skb; 2417 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2418 2419 /* 2420 * Pass through unencrypted frames if the hardware has 2421 * decrypted them already. 2422 */ 2423 if (status->flag & RX_FLAG_DECRYPTED) 2424 return 0; 2425 2426 /* check mesh EAPOL frames first */ 2427 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && 2428 ieee80211_is_data(fc))) { 2429 struct ieee80211s_hdr *mesh_hdr; 2430 u16 hdr_len = ieee80211_hdrlen(fc); 2431 u16 ethertype_offset; 2432 __be16 ethertype; 2433 2434 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) 2435 goto drop_check; 2436 2437 /* make sure fixed part of mesh header is there, also checks skb len */ 2438 if (!pskb_may_pull(rx->skb, hdr_len + 6)) 2439 goto drop_check; 2440 2441 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); 2442 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + 2443 sizeof(rfc1042_header); 2444 2445 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && 2446 ethertype == rx->sdata->control_port_protocol) 2447 return 0; 2448 } 2449 2450 drop_check: 2451 /* Drop unencrypted frames if key is set. */ 2452 if (unlikely(!ieee80211_has_protected(fc) && 2453 !ieee80211_is_any_nullfunc(fc) && 2454 ieee80211_is_data(fc) && rx->key)) 2455 return -EACCES; 2456 2457 return 0; 2458 } 2459 2460 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2461 { 2462 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2463 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2464 __le16 fc = hdr->frame_control; 2465 2466 /* 2467 * Pass through unencrypted frames if the hardware has 2468 * decrypted them already. 2469 */ 2470 if (status->flag & RX_FLAG_DECRYPTED) 2471 return 0; 2472 2473 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2474 if (unlikely(!ieee80211_has_protected(fc) && 2475 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2476 rx->key)) { 2477 if (ieee80211_is_deauth(fc) || 2478 ieee80211_is_disassoc(fc)) 2479 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2480 rx->skb->data, 2481 rx->skb->len); 2482 return -EACCES; 2483 } 2484 /* BIP does not use Protected field, so need to check MMIE */ 2485 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2486 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2487 if (ieee80211_is_deauth(fc) || 2488 ieee80211_is_disassoc(fc)) 2489 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2490 rx->skb->data, 2491 rx->skb->len); 2492 return -EACCES; 2493 } 2494 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2495 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2496 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2497 rx->skb->data, 2498 rx->skb->len); 2499 return -EACCES; 2500 } 2501 /* 2502 * When using MFP, Action frames are not allowed prior to 2503 * having configured keys. 2504 */ 2505 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2506 ieee80211_is_robust_mgmt_frame(rx->skb))) 2507 return -EACCES; 2508 } 2509 2510 return 0; 2511 } 2512 2513 static int 2514 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2515 { 2516 struct ieee80211_sub_if_data *sdata = rx->sdata; 2517 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2518 bool check_port_control = false; 2519 struct ethhdr *ehdr; 2520 int ret; 2521 2522 *port_control = false; 2523 if (ieee80211_has_a4(hdr->frame_control) && 2524 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2525 return -1; 2526 2527 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2528 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2529 2530 if (!sdata->u.mgd.use_4addr) 2531 return -1; 2532 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2533 check_port_control = true; 2534 } 2535 2536 if (is_multicast_ether_addr(hdr->addr1) && 2537 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2538 return -1; 2539 2540 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2541 if (ret < 0) 2542 return ret; 2543 2544 ehdr = (struct ethhdr *) rx->skb->data; 2545 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2546 *port_control = true; 2547 else if (check_port_control) 2548 return -1; 2549 2550 return 0; 2551 } 2552 2553 /* 2554 * requires that rx->skb is a frame with ethernet header 2555 */ 2556 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2557 { 2558 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2559 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2560 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2561 2562 /* 2563 * Allow EAPOL frames to us/the PAE group address regardless of 2564 * whether the frame was encrypted or not, and always disallow 2565 * all other destination addresses for them. 2566 */ 2567 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2568 return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2569 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2570 2571 if (ieee80211_802_1x_port_control(rx) || 2572 ieee80211_drop_unencrypted(rx, fc)) 2573 return false; 2574 2575 return true; 2576 } 2577 2578 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2579 struct ieee80211_rx_data *rx) 2580 { 2581 struct ieee80211_sub_if_data *sdata = rx->sdata; 2582 struct net_device *dev = sdata->dev; 2583 2584 if (unlikely((skb->protocol == sdata->control_port_protocol || 2585 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2586 !sdata->control_port_no_preauth)) && 2587 sdata->control_port_over_nl80211)) { 2588 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2589 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2590 2591 cfg80211_rx_control_port(dev, skb, noencrypt); 2592 dev_kfree_skb(skb); 2593 } else { 2594 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2595 2596 memset(skb->cb, 0, sizeof(skb->cb)); 2597 2598 /* 2599 * 802.1X over 802.11 requires that the authenticator address 2600 * be used for EAPOL frames. However, 802.1X allows the use of 2601 * the PAE group address instead. If the interface is part of 2602 * a bridge and we pass the frame with the PAE group address, 2603 * then the bridge will forward it to the network (even if the 2604 * client was not associated yet), which isn't supposed to 2605 * happen. 2606 * To avoid that, rewrite the destination address to our own 2607 * address, so that the authenticator (e.g. hostapd) will see 2608 * the frame, but bridge won't forward it anywhere else. Note 2609 * that due to earlier filtering, the only other address can 2610 * be the PAE group address, unless the hardware allowed them 2611 * through in 802.3 offloaded mode. 2612 */ 2613 if (unlikely(skb->protocol == sdata->control_port_protocol && 2614 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2615 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2616 2617 /* deliver to local stack */ 2618 if (rx->list) 2619 list_add_tail(&skb->list, rx->list); 2620 else 2621 netif_receive_skb(skb); 2622 } 2623 } 2624 2625 /* 2626 * requires that rx->skb is a frame with ethernet header 2627 */ 2628 static void 2629 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2630 { 2631 struct ieee80211_sub_if_data *sdata = rx->sdata; 2632 struct net_device *dev = sdata->dev; 2633 struct sk_buff *skb, *xmit_skb; 2634 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2635 struct sta_info *dsta; 2636 2637 skb = rx->skb; 2638 xmit_skb = NULL; 2639 2640 dev_sw_netstats_rx_add(dev, skb->len); 2641 2642 if (rx->sta) { 2643 /* The seqno index has the same property as needed 2644 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2645 * for non-QoS-data frames. Here we know it's a data 2646 * frame, so count MSDUs. 2647 */ 2648 u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp); 2649 rx->sta->deflink.rx_stats.msdu[rx->seqno_idx]++; 2650 u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp); 2651 } 2652 2653 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2654 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2655 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2656 ehdr->h_proto != rx->sdata->control_port_protocol && 2657 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2658 if (is_multicast_ether_addr(ehdr->h_dest) && 2659 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2660 /* 2661 * send multicast frames both to higher layers in 2662 * local net stack and back to the wireless medium 2663 */ 2664 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2665 if (!xmit_skb) 2666 net_info_ratelimited("%s: failed to clone multicast frame\n", 2667 dev->name); 2668 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2669 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2670 dsta = sta_info_get(sdata, ehdr->h_dest); 2671 if (dsta) { 2672 /* 2673 * The destination station is associated to 2674 * this AP (in this VLAN), so send the frame 2675 * directly to it and do not pass it to local 2676 * net stack. 2677 */ 2678 xmit_skb = skb; 2679 skb = NULL; 2680 } 2681 } 2682 } 2683 2684 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2685 if (skb) { 2686 /* 'align' will only take the values 0 or 2 here since all 2687 * frames are required to be aligned to 2-byte boundaries 2688 * when being passed to mac80211; the code here works just 2689 * as well if that isn't true, but mac80211 assumes it can 2690 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2691 */ 2692 int align; 2693 2694 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2695 if (align) { 2696 if (WARN_ON(skb_headroom(skb) < 3)) { 2697 dev_kfree_skb(skb); 2698 skb = NULL; 2699 } else { 2700 u8 *data = skb->data; 2701 size_t len = skb_headlen(skb); 2702 skb->data -= align; 2703 memmove(skb->data, data, len); 2704 skb_set_tail_pointer(skb, len); 2705 } 2706 } 2707 } 2708 #endif 2709 2710 if (skb) { 2711 skb->protocol = eth_type_trans(skb, dev); 2712 ieee80211_deliver_skb_to_local_stack(skb, rx); 2713 } 2714 2715 if (xmit_skb) { 2716 /* 2717 * Send to wireless media and increase priority by 256 to 2718 * keep the received priority instead of reclassifying 2719 * the frame (see cfg80211_classify8021d). 2720 */ 2721 xmit_skb->priority += 256; 2722 xmit_skb->protocol = htons(ETH_P_802_3); 2723 skb_reset_network_header(xmit_skb); 2724 skb_reset_mac_header(xmit_skb); 2725 dev_queue_xmit(xmit_skb); 2726 } 2727 } 2728 2729 static ieee80211_rx_result debug_noinline 2730 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2731 { 2732 struct net_device *dev = rx->sdata->dev; 2733 struct sk_buff *skb = rx->skb; 2734 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2735 __le16 fc = hdr->frame_control; 2736 struct sk_buff_head frame_list; 2737 struct ethhdr ethhdr; 2738 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2739 2740 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2741 check_da = NULL; 2742 check_sa = NULL; 2743 } else switch (rx->sdata->vif.type) { 2744 case NL80211_IFTYPE_AP: 2745 case NL80211_IFTYPE_AP_VLAN: 2746 check_da = NULL; 2747 break; 2748 case NL80211_IFTYPE_STATION: 2749 if (!rx->sta || 2750 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2751 check_sa = NULL; 2752 break; 2753 case NL80211_IFTYPE_MESH_POINT: 2754 check_sa = NULL; 2755 break; 2756 default: 2757 break; 2758 } 2759 2760 skb->dev = dev; 2761 __skb_queue_head_init(&frame_list); 2762 2763 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2764 rx->sdata->vif.addr, 2765 rx->sdata->vif.type, 2766 data_offset, true)) 2767 return RX_DROP_UNUSABLE; 2768 2769 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2770 rx->sdata->vif.type, 2771 rx->local->hw.extra_tx_headroom, 2772 check_da, check_sa); 2773 2774 while (!skb_queue_empty(&frame_list)) { 2775 rx->skb = __skb_dequeue(&frame_list); 2776 2777 if (!ieee80211_frame_allowed(rx, fc)) { 2778 dev_kfree_skb(rx->skb); 2779 continue; 2780 } 2781 2782 ieee80211_deliver_skb(rx); 2783 } 2784 2785 return RX_QUEUED; 2786 } 2787 2788 static ieee80211_rx_result debug_noinline 2789 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2790 { 2791 struct sk_buff *skb = rx->skb; 2792 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2793 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2794 __le16 fc = hdr->frame_control; 2795 2796 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2797 return RX_CONTINUE; 2798 2799 if (unlikely(!ieee80211_is_data(fc))) 2800 return RX_CONTINUE; 2801 2802 if (unlikely(!ieee80211_is_data_present(fc))) 2803 return RX_DROP_MONITOR; 2804 2805 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2806 switch (rx->sdata->vif.type) { 2807 case NL80211_IFTYPE_AP_VLAN: 2808 if (!rx->sdata->u.vlan.sta) 2809 return RX_DROP_UNUSABLE; 2810 break; 2811 case NL80211_IFTYPE_STATION: 2812 if (!rx->sdata->u.mgd.use_4addr) 2813 return RX_DROP_UNUSABLE; 2814 break; 2815 default: 2816 return RX_DROP_UNUSABLE; 2817 } 2818 } 2819 2820 if (is_multicast_ether_addr(hdr->addr1)) 2821 return RX_DROP_UNUSABLE; 2822 2823 if (rx->key) { 2824 /* 2825 * We should not receive A-MSDUs on pre-HT connections, 2826 * and HT connections cannot use old ciphers. Thus drop 2827 * them, as in those cases we couldn't even have SPP 2828 * A-MSDUs or such. 2829 */ 2830 switch (rx->key->conf.cipher) { 2831 case WLAN_CIPHER_SUITE_WEP40: 2832 case WLAN_CIPHER_SUITE_WEP104: 2833 case WLAN_CIPHER_SUITE_TKIP: 2834 return RX_DROP_UNUSABLE; 2835 default: 2836 break; 2837 } 2838 } 2839 2840 return __ieee80211_rx_h_amsdu(rx, 0); 2841 } 2842 2843 #ifdef CONFIG_MAC80211_MESH 2844 static ieee80211_rx_result 2845 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2846 { 2847 struct ieee80211_hdr *fwd_hdr, *hdr; 2848 struct ieee80211_tx_info *info; 2849 struct ieee80211s_hdr *mesh_hdr; 2850 struct sk_buff *skb = rx->skb, *fwd_skb; 2851 struct ieee80211_local *local = rx->local; 2852 struct ieee80211_sub_if_data *sdata = rx->sdata; 2853 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2854 u16 ac, q, hdrlen; 2855 int tailroom = 0; 2856 2857 hdr = (struct ieee80211_hdr *) skb->data; 2858 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2859 2860 /* make sure fixed part of mesh header is there, also checks skb len */ 2861 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2862 return RX_DROP_MONITOR; 2863 2864 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2865 2866 /* make sure full mesh header is there, also checks skb len */ 2867 if (!pskb_may_pull(rx->skb, 2868 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2869 return RX_DROP_MONITOR; 2870 2871 /* reload pointers */ 2872 hdr = (struct ieee80211_hdr *) skb->data; 2873 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2874 2875 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2876 return RX_DROP_MONITOR; 2877 2878 /* frame is in RMC, don't forward */ 2879 if (ieee80211_is_data(hdr->frame_control) && 2880 is_multicast_ether_addr(hdr->addr1) && 2881 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2882 return RX_DROP_MONITOR; 2883 2884 if (!ieee80211_is_data(hdr->frame_control)) 2885 return RX_CONTINUE; 2886 2887 if (!mesh_hdr->ttl) 2888 return RX_DROP_MONITOR; 2889 2890 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2891 struct mesh_path *mppath; 2892 char *proxied_addr; 2893 char *mpp_addr; 2894 2895 if (is_multicast_ether_addr(hdr->addr1)) { 2896 mpp_addr = hdr->addr3; 2897 proxied_addr = mesh_hdr->eaddr1; 2898 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2899 MESH_FLAGS_AE_A5_A6) { 2900 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2901 mpp_addr = hdr->addr4; 2902 proxied_addr = mesh_hdr->eaddr2; 2903 } else { 2904 return RX_DROP_MONITOR; 2905 } 2906 2907 rcu_read_lock(); 2908 mppath = mpp_path_lookup(sdata, proxied_addr); 2909 if (!mppath) { 2910 mpp_path_add(sdata, proxied_addr, mpp_addr); 2911 } else { 2912 spin_lock_bh(&mppath->state_lock); 2913 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2914 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2915 mppath->exp_time = jiffies; 2916 spin_unlock_bh(&mppath->state_lock); 2917 } 2918 rcu_read_unlock(); 2919 } 2920 2921 /* Frame has reached destination. Don't forward */ 2922 if (!is_multicast_ether_addr(hdr->addr1) && 2923 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2924 return RX_CONTINUE; 2925 2926 ac = ieee802_1d_to_ac[skb->priority]; 2927 q = sdata->vif.hw_queue[ac]; 2928 if (ieee80211_queue_stopped(&local->hw, q)) { 2929 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2930 return RX_DROP_MONITOR; 2931 } 2932 skb_set_queue_mapping(skb, ac); 2933 2934 if (!--mesh_hdr->ttl) { 2935 if (!is_multicast_ether_addr(hdr->addr1)) 2936 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2937 dropped_frames_ttl); 2938 goto out; 2939 } 2940 2941 if (!ifmsh->mshcfg.dot11MeshForwarding) 2942 goto out; 2943 2944 if (sdata->crypto_tx_tailroom_needed_cnt) 2945 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2946 2947 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2948 sdata->encrypt_headroom, 2949 tailroom, GFP_ATOMIC); 2950 if (!fwd_skb) 2951 goto out; 2952 2953 fwd_skb->dev = sdata->dev; 2954 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2955 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2956 info = IEEE80211_SKB_CB(fwd_skb); 2957 memset(info, 0, sizeof(*info)); 2958 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2959 info->control.vif = &rx->sdata->vif; 2960 info->control.jiffies = jiffies; 2961 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2962 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2963 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2964 /* update power mode indication when forwarding */ 2965 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2966 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2967 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2968 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2969 } else { 2970 /* unable to resolve next hop */ 2971 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2972 fwd_hdr->addr3, 0, 2973 WLAN_REASON_MESH_PATH_NOFORWARD, 2974 fwd_hdr->addr2); 2975 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2976 kfree_skb(fwd_skb); 2977 return RX_DROP_MONITOR; 2978 } 2979 2980 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2981 ieee80211_add_pending_skb(local, fwd_skb); 2982 out: 2983 if (is_multicast_ether_addr(hdr->addr1)) 2984 return RX_CONTINUE; 2985 return RX_DROP_MONITOR; 2986 } 2987 #endif 2988 2989 static ieee80211_rx_result debug_noinline 2990 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2991 { 2992 struct ieee80211_sub_if_data *sdata = rx->sdata; 2993 struct ieee80211_local *local = rx->local; 2994 struct net_device *dev = sdata->dev; 2995 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2996 __le16 fc = hdr->frame_control; 2997 bool port_control; 2998 int err; 2999 3000 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 3001 return RX_CONTINUE; 3002 3003 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3004 return RX_DROP_MONITOR; 3005 3006 /* 3007 * Send unexpected-4addr-frame event to hostapd. For older versions, 3008 * also drop the frame to cooked monitor interfaces. 3009 */ 3010 if (ieee80211_has_a4(hdr->frame_control) && 3011 sdata->vif.type == NL80211_IFTYPE_AP) { 3012 if (rx->sta && 3013 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3014 cfg80211_rx_unexpected_4addr_frame( 3015 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3016 return RX_DROP_MONITOR; 3017 } 3018 3019 err = __ieee80211_data_to_8023(rx, &port_control); 3020 if (unlikely(err)) 3021 return RX_DROP_UNUSABLE; 3022 3023 if (!ieee80211_frame_allowed(rx, fc)) 3024 return RX_DROP_MONITOR; 3025 3026 /* directly handle TDLS channel switch requests/responses */ 3027 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3028 cpu_to_be16(ETH_P_TDLS))) { 3029 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3030 3031 if (pskb_may_pull(rx->skb, 3032 offsetof(struct ieee80211_tdls_data, u)) && 3033 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3034 tf->category == WLAN_CATEGORY_TDLS && 3035 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3036 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3037 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3038 __ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3039 return RX_QUEUED; 3040 } 3041 } 3042 3043 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3044 unlikely(port_control) && sdata->bss) { 3045 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3046 u.ap); 3047 dev = sdata->dev; 3048 rx->sdata = sdata; 3049 } 3050 3051 rx->skb->dev = dev; 3052 3053 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3054 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3055 !is_multicast_ether_addr( 3056 ((struct ethhdr *)rx->skb->data)->h_dest) && 3057 (!local->scanning && 3058 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3059 mod_timer(&local->dynamic_ps_timer, jiffies + 3060 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3061 3062 ieee80211_deliver_skb(rx); 3063 3064 return RX_QUEUED; 3065 } 3066 3067 static ieee80211_rx_result debug_noinline 3068 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3069 { 3070 struct sk_buff *skb = rx->skb; 3071 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3072 struct tid_ampdu_rx *tid_agg_rx; 3073 u16 start_seq_num; 3074 u16 tid; 3075 3076 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3077 return RX_CONTINUE; 3078 3079 if (ieee80211_is_back_req(bar->frame_control)) { 3080 struct { 3081 __le16 control, start_seq_num; 3082 } __packed bar_data; 3083 struct ieee80211_event event = { 3084 .type = BAR_RX_EVENT, 3085 }; 3086 3087 if (!rx->sta) 3088 return RX_DROP_MONITOR; 3089 3090 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3091 &bar_data, sizeof(bar_data))) 3092 return RX_DROP_MONITOR; 3093 3094 tid = le16_to_cpu(bar_data.control) >> 12; 3095 3096 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3097 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3098 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3099 WLAN_BACK_RECIPIENT, 3100 WLAN_REASON_QSTA_REQUIRE_SETUP); 3101 3102 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3103 if (!tid_agg_rx) 3104 return RX_DROP_MONITOR; 3105 3106 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3107 event.u.ba.tid = tid; 3108 event.u.ba.ssn = start_seq_num; 3109 event.u.ba.sta = &rx->sta->sta; 3110 3111 /* reset session timer */ 3112 if (tid_agg_rx->timeout) 3113 mod_timer(&tid_agg_rx->session_timer, 3114 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3115 3116 spin_lock(&tid_agg_rx->reorder_lock); 3117 /* release stored frames up to start of BAR */ 3118 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3119 start_seq_num, frames); 3120 spin_unlock(&tid_agg_rx->reorder_lock); 3121 3122 drv_event_callback(rx->local, rx->sdata, &event); 3123 3124 kfree_skb(skb); 3125 return RX_QUEUED; 3126 } 3127 3128 /* 3129 * After this point, we only want management frames, 3130 * so we can drop all remaining control frames to 3131 * cooked monitor interfaces. 3132 */ 3133 return RX_DROP_MONITOR; 3134 } 3135 3136 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3137 struct ieee80211_mgmt *mgmt, 3138 size_t len) 3139 { 3140 struct ieee80211_local *local = sdata->local; 3141 struct sk_buff *skb; 3142 struct ieee80211_mgmt *resp; 3143 3144 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3145 /* Not to own unicast address */ 3146 return; 3147 } 3148 3149 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 3150 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 3151 /* Not from the current AP or not associated yet. */ 3152 return; 3153 } 3154 3155 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3156 /* Too short SA Query request frame */ 3157 return; 3158 } 3159 3160 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3161 if (skb == NULL) 3162 return; 3163 3164 skb_reserve(skb, local->hw.extra_tx_headroom); 3165 resp = skb_put_zero(skb, 24); 3166 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3167 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3168 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 3169 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3170 IEEE80211_STYPE_ACTION); 3171 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3172 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3173 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3174 memcpy(resp->u.action.u.sa_query.trans_id, 3175 mgmt->u.action.u.sa_query.trans_id, 3176 WLAN_SA_QUERY_TR_ID_LEN); 3177 3178 ieee80211_tx_skb(sdata, skb); 3179 } 3180 3181 static void 3182 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx) 3183 { 3184 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3185 const struct element *ie; 3186 size_t baselen; 3187 3188 if (!wiphy_ext_feature_isset(rx->local->hw.wiphy, 3189 NL80211_EXT_FEATURE_BSS_COLOR)) 3190 return; 3191 3192 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION)) 3193 return; 3194 3195 if (rx->sdata->vif.csa_active) 3196 return; 3197 3198 baselen = mgmt->u.beacon.variable - rx->skb->data; 3199 if (baselen > rx->skb->len) 3200 return; 3201 3202 ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 3203 mgmt->u.beacon.variable, 3204 rx->skb->len - baselen); 3205 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) && 3206 ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) { 3207 struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf; 3208 const struct ieee80211_he_operation *he_oper; 3209 u8 color; 3210 3211 he_oper = (void *)(ie->data + 1); 3212 if (le32_get_bits(he_oper->he_oper_params, 3213 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED)) 3214 return; 3215 3216 color = le32_get_bits(he_oper->he_oper_params, 3217 IEEE80211_HE_OPERATION_BSS_COLOR_MASK); 3218 if (color == bss_conf->he_bss_color.color) 3219 ieeee80211_obss_color_collision_notify(&rx->sdata->vif, 3220 BIT_ULL(color)); 3221 } 3222 } 3223 3224 static ieee80211_rx_result debug_noinline 3225 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3226 { 3227 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3228 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3229 3230 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3231 return RX_CONTINUE; 3232 3233 /* 3234 * From here on, look only at management frames. 3235 * Data and control frames are already handled, 3236 * and unknown (reserved) frames are useless. 3237 */ 3238 if (rx->skb->len < 24) 3239 return RX_DROP_MONITOR; 3240 3241 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3242 return RX_DROP_MONITOR; 3243 3244 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3245 ieee80211_is_beacon(mgmt->frame_control) && 3246 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3247 int sig = 0; 3248 3249 /* sw bss color collision detection */ 3250 ieee80211_rx_check_bss_color_collision(rx); 3251 3252 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3253 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3254 sig = status->signal; 3255 3256 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3257 rx->skb->data, rx->skb->len, 3258 ieee80211_rx_status_to_khz(status), 3259 sig); 3260 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3261 } 3262 3263 if (ieee80211_drop_unencrypted_mgmt(rx)) 3264 return RX_DROP_UNUSABLE; 3265 3266 return RX_CONTINUE; 3267 } 3268 3269 static bool 3270 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3271 { 3272 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3273 struct ieee80211_sub_if_data *sdata = rx->sdata; 3274 3275 /* TWT actions are only supported in AP for the moment */ 3276 if (sdata->vif.type != NL80211_IFTYPE_AP) 3277 return false; 3278 3279 if (!rx->local->ops->add_twt_setup) 3280 return false; 3281 3282 if (!sdata->vif.bss_conf.twt_responder) 3283 return false; 3284 3285 if (!rx->sta) 3286 return false; 3287 3288 switch (mgmt->u.action.u.s1g.action_code) { 3289 case WLAN_S1G_TWT_SETUP: { 3290 struct ieee80211_twt_setup *twt; 3291 3292 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3293 1 + /* action code */ 3294 sizeof(struct ieee80211_twt_setup) + 3295 2 /* TWT req_type agrt */) 3296 break; 3297 3298 twt = (void *)mgmt->u.action.u.s1g.variable; 3299 if (twt->element_id != WLAN_EID_S1G_TWT) 3300 break; 3301 3302 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3303 4 + /* action code + token + tlv */ 3304 twt->length) 3305 break; 3306 3307 return true; /* queue the frame */ 3308 } 3309 case WLAN_S1G_TWT_TEARDOWN: 3310 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3311 break; 3312 3313 return true; /* queue the frame */ 3314 default: 3315 break; 3316 } 3317 3318 return false; 3319 } 3320 3321 static ieee80211_rx_result debug_noinline 3322 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3323 { 3324 struct ieee80211_local *local = rx->local; 3325 struct ieee80211_sub_if_data *sdata = rx->sdata; 3326 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3327 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3328 int len = rx->skb->len; 3329 3330 if (!ieee80211_is_action(mgmt->frame_control)) 3331 return RX_CONTINUE; 3332 3333 /* drop too small frames */ 3334 if (len < IEEE80211_MIN_ACTION_SIZE) 3335 return RX_DROP_UNUSABLE; 3336 3337 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3338 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3339 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3340 return RX_DROP_UNUSABLE; 3341 3342 switch (mgmt->u.action.category) { 3343 case WLAN_CATEGORY_HT: 3344 /* reject HT action frames from stations not supporting HT */ 3345 if (!rx->sta->sta.deflink.ht_cap.ht_supported) 3346 goto invalid; 3347 3348 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3349 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3350 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3351 sdata->vif.type != NL80211_IFTYPE_AP && 3352 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3353 break; 3354 3355 /* verify action & smps_control/chanwidth are present */ 3356 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3357 goto invalid; 3358 3359 switch (mgmt->u.action.u.ht_smps.action) { 3360 case WLAN_HT_ACTION_SMPS: { 3361 struct ieee80211_supported_band *sband; 3362 enum ieee80211_smps_mode smps_mode; 3363 struct sta_opmode_info sta_opmode = {}; 3364 3365 if (sdata->vif.type != NL80211_IFTYPE_AP && 3366 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3367 goto handled; 3368 3369 /* convert to HT capability */ 3370 switch (mgmt->u.action.u.ht_smps.smps_control) { 3371 case WLAN_HT_SMPS_CONTROL_DISABLED: 3372 smps_mode = IEEE80211_SMPS_OFF; 3373 break; 3374 case WLAN_HT_SMPS_CONTROL_STATIC: 3375 smps_mode = IEEE80211_SMPS_STATIC; 3376 break; 3377 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3378 smps_mode = IEEE80211_SMPS_DYNAMIC; 3379 break; 3380 default: 3381 goto invalid; 3382 } 3383 3384 /* if no change do nothing */ 3385 if (rx->sta->sta.smps_mode == smps_mode) 3386 goto handled; 3387 rx->sta->sta.smps_mode = smps_mode; 3388 sta_opmode.smps_mode = 3389 ieee80211_smps_mode_to_smps_mode(smps_mode); 3390 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3391 3392 sband = rx->local->hw.wiphy->bands[status->band]; 3393 3394 rate_control_rate_update(local, sband, rx->sta, 3395 IEEE80211_RC_SMPS_CHANGED); 3396 cfg80211_sta_opmode_change_notify(sdata->dev, 3397 rx->sta->addr, 3398 &sta_opmode, 3399 GFP_ATOMIC); 3400 goto handled; 3401 } 3402 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3403 struct ieee80211_supported_band *sband; 3404 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3405 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3406 struct sta_opmode_info sta_opmode = {}; 3407 3408 /* If it doesn't support 40 MHz it can't change ... */ 3409 if (!(rx->sta->sta.deflink.ht_cap.cap & 3410 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3411 goto handled; 3412 3413 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3414 max_bw = IEEE80211_STA_RX_BW_20; 3415 else 3416 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3417 3418 /* set cur_max_bandwidth and recalc sta bw */ 3419 rx->sta->deflink.cur_max_bandwidth = max_bw; 3420 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3421 3422 if (rx->sta->sta.deflink.bandwidth == new_bw) 3423 goto handled; 3424 3425 rx->sta->sta.deflink.bandwidth = new_bw; 3426 sband = rx->local->hw.wiphy->bands[status->band]; 3427 sta_opmode.bw = 3428 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3429 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3430 3431 rate_control_rate_update(local, sband, rx->sta, 3432 IEEE80211_RC_BW_CHANGED); 3433 cfg80211_sta_opmode_change_notify(sdata->dev, 3434 rx->sta->addr, 3435 &sta_opmode, 3436 GFP_ATOMIC); 3437 goto handled; 3438 } 3439 default: 3440 goto invalid; 3441 } 3442 3443 break; 3444 case WLAN_CATEGORY_PUBLIC: 3445 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3446 goto invalid; 3447 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3448 break; 3449 if (!rx->sta) 3450 break; 3451 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3452 break; 3453 if (mgmt->u.action.u.ext_chan_switch.action_code != 3454 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3455 break; 3456 if (len < offsetof(struct ieee80211_mgmt, 3457 u.action.u.ext_chan_switch.variable)) 3458 goto invalid; 3459 goto queue; 3460 case WLAN_CATEGORY_VHT: 3461 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3462 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3463 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3464 sdata->vif.type != NL80211_IFTYPE_AP && 3465 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3466 break; 3467 3468 /* verify action code is present */ 3469 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3470 goto invalid; 3471 3472 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3473 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3474 /* verify opmode is present */ 3475 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3476 goto invalid; 3477 goto queue; 3478 } 3479 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3480 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3481 goto invalid; 3482 goto queue; 3483 } 3484 default: 3485 break; 3486 } 3487 break; 3488 case WLAN_CATEGORY_BACK: 3489 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3490 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3491 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3492 sdata->vif.type != NL80211_IFTYPE_AP && 3493 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3494 break; 3495 3496 /* verify action_code is present */ 3497 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3498 break; 3499 3500 switch (mgmt->u.action.u.addba_req.action_code) { 3501 case WLAN_ACTION_ADDBA_REQ: 3502 if (len < (IEEE80211_MIN_ACTION_SIZE + 3503 sizeof(mgmt->u.action.u.addba_req))) 3504 goto invalid; 3505 break; 3506 case WLAN_ACTION_ADDBA_RESP: 3507 if (len < (IEEE80211_MIN_ACTION_SIZE + 3508 sizeof(mgmt->u.action.u.addba_resp))) 3509 goto invalid; 3510 break; 3511 case WLAN_ACTION_DELBA: 3512 if (len < (IEEE80211_MIN_ACTION_SIZE + 3513 sizeof(mgmt->u.action.u.delba))) 3514 goto invalid; 3515 break; 3516 default: 3517 goto invalid; 3518 } 3519 3520 goto queue; 3521 case WLAN_CATEGORY_SPECTRUM_MGMT: 3522 /* verify action_code is present */ 3523 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3524 break; 3525 3526 switch (mgmt->u.action.u.measurement.action_code) { 3527 case WLAN_ACTION_SPCT_MSR_REQ: 3528 if (status->band != NL80211_BAND_5GHZ) 3529 break; 3530 3531 if (len < (IEEE80211_MIN_ACTION_SIZE + 3532 sizeof(mgmt->u.action.u.measurement))) 3533 break; 3534 3535 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3536 break; 3537 3538 ieee80211_process_measurement_req(sdata, mgmt, len); 3539 goto handled; 3540 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3541 u8 *bssid; 3542 if (len < (IEEE80211_MIN_ACTION_SIZE + 3543 sizeof(mgmt->u.action.u.chan_switch))) 3544 break; 3545 3546 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3547 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3548 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3549 break; 3550 3551 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3552 bssid = sdata->u.mgd.bssid; 3553 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3554 bssid = sdata->u.ibss.bssid; 3555 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3556 bssid = mgmt->sa; 3557 else 3558 break; 3559 3560 if (!ether_addr_equal(mgmt->bssid, bssid)) 3561 break; 3562 3563 goto queue; 3564 } 3565 } 3566 break; 3567 case WLAN_CATEGORY_SELF_PROTECTED: 3568 if (len < (IEEE80211_MIN_ACTION_SIZE + 3569 sizeof(mgmt->u.action.u.self_prot.action_code))) 3570 break; 3571 3572 switch (mgmt->u.action.u.self_prot.action_code) { 3573 case WLAN_SP_MESH_PEERING_OPEN: 3574 case WLAN_SP_MESH_PEERING_CLOSE: 3575 case WLAN_SP_MESH_PEERING_CONFIRM: 3576 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3577 goto invalid; 3578 if (sdata->u.mesh.user_mpm) 3579 /* userspace handles this frame */ 3580 break; 3581 goto queue; 3582 case WLAN_SP_MGK_INFORM: 3583 case WLAN_SP_MGK_ACK: 3584 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3585 goto invalid; 3586 break; 3587 } 3588 break; 3589 case WLAN_CATEGORY_MESH_ACTION: 3590 if (len < (IEEE80211_MIN_ACTION_SIZE + 3591 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3592 break; 3593 3594 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3595 break; 3596 if (mesh_action_is_path_sel(mgmt) && 3597 !mesh_path_sel_is_hwmp(sdata)) 3598 break; 3599 goto queue; 3600 case WLAN_CATEGORY_S1G: 3601 switch (mgmt->u.action.u.s1g.action_code) { 3602 case WLAN_S1G_TWT_SETUP: 3603 case WLAN_S1G_TWT_TEARDOWN: 3604 if (ieee80211_process_rx_twt_action(rx)) 3605 goto queue; 3606 break; 3607 default: 3608 break; 3609 } 3610 break; 3611 } 3612 3613 return RX_CONTINUE; 3614 3615 invalid: 3616 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3617 /* will return in the next handlers */ 3618 return RX_CONTINUE; 3619 3620 handled: 3621 if (rx->sta) 3622 rx->sta->deflink.rx_stats.packets++; 3623 dev_kfree_skb(rx->skb); 3624 return RX_QUEUED; 3625 3626 queue: 3627 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3628 return RX_QUEUED; 3629 } 3630 3631 static ieee80211_rx_result debug_noinline 3632 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3633 { 3634 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3635 int sig = 0; 3636 3637 /* skip known-bad action frames and return them in the next handler */ 3638 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3639 return RX_CONTINUE; 3640 3641 /* 3642 * Getting here means the kernel doesn't know how to handle 3643 * it, but maybe userspace does ... include returned frames 3644 * so userspace can register for those to know whether ones 3645 * it transmitted were processed or returned. 3646 */ 3647 3648 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3649 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3650 sig = status->signal; 3651 3652 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev, 3653 ieee80211_rx_status_to_khz(status), sig, 3654 rx->skb->data, rx->skb->len, 0)) { 3655 if (rx->sta) 3656 rx->sta->deflink.rx_stats.packets++; 3657 dev_kfree_skb(rx->skb); 3658 return RX_QUEUED; 3659 } 3660 3661 return RX_CONTINUE; 3662 } 3663 3664 static ieee80211_rx_result debug_noinline 3665 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3666 { 3667 struct ieee80211_sub_if_data *sdata = rx->sdata; 3668 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3669 int len = rx->skb->len; 3670 3671 if (!ieee80211_is_action(mgmt->frame_control)) 3672 return RX_CONTINUE; 3673 3674 switch (mgmt->u.action.category) { 3675 case WLAN_CATEGORY_SA_QUERY: 3676 if (len < (IEEE80211_MIN_ACTION_SIZE + 3677 sizeof(mgmt->u.action.u.sa_query))) 3678 break; 3679 3680 switch (mgmt->u.action.u.sa_query.action) { 3681 case WLAN_ACTION_SA_QUERY_REQUEST: 3682 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3683 break; 3684 ieee80211_process_sa_query_req(sdata, mgmt, len); 3685 goto handled; 3686 } 3687 break; 3688 } 3689 3690 return RX_CONTINUE; 3691 3692 handled: 3693 if (rx->sta) 3694 rx->sta->deflink.rx_stats.packets++; 3695 dev_kfree_skb(rx->skb); 3696 return RX_QUEUED; 3697 } 3698 3699 static ieee80211_rx_result debug_noinline 3700 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3701 { 3702 struct ieee80211_local *local = rx->local; 3703 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3704 struct sk_buff *nskb; 3705 struct ieee80211_sub_if_data *sdata = rx->sdata; 3706 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3707 3708 if (!ieee80211_is_action(mgmt->frame_control)) 3709 return RX_CONTINUE; 3710 3711 /* 3712 * For AP mode, hostapd is responsible for handling any action 3713 * frames that we didn't handle, including returning unknown 3714 * ones. For all other modes we will return them to the sender, 3715 * setting the 0x80 bit in the action category, as required by 3716 * 802.11-2012 9.24.4. 3717 * Newer versions of hostapd shall also use the management frame 3718 * registration mechanisms, but older ones still use cooked 3719 * monitor interfaces so push all frames there. 3720 */ 3721 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3722 (sdata->vif.type == NL80211_IFTYPE_AP || 3723 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3724 return RX_DROP_MONITOR; 3725 3726 if (is_multicast_ether_addr(mgmt->da)) 3727 return RX_DROP_MONITOR; 3728 3729 /* do not return rejected action frames */ 3730 if (mgmt->u.action.category & 0x80) 3731 return RX_DROP_UNUSABLE; 3732 3733 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3734 GFP_ATOMIC); 3735 if (nskb) { 3736 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3737 3738 nmgmt->u.action.category |= 0x80; 3739 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3740 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3741 3742 memset(nskb->cb, 0, sizeof(nskb->cb)); 3743 3744 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3745 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3746 3747 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3748 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3749 IEEE80211_TX_CTL_NO_CCK_RATE; 3750 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3751 info->hw_queue = 3752 local->hw.offchannel_tx_hw_queue; 3753 } 3754 3755 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3756 status->band); 3757 } 3758 dev_kfree_skb(rx->skb); 3759 return RX_QUEUED; 3760 } 3761 3762 static ieee80211_rx_result debug_noinline 3763 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3764 { 3765 struct ieee80211_sub_if_data *sdata = rx->sdata; 3766 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3767 3768 if (!ieee80211_is_ext(hdr->frame_control)) 3769 return RX_CONTINUE; 3770 3771 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3772 return RX_DROP_MONITOR; 3773 3774 /* for now only beacons are ext, so queue them */ 3775 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3776 3777 return RX_QUEUED; 3778 } 3779 3780 static ieee80211_rx_result debug_noinline 3781 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3782 { 3783 struct ieee80211_sub_if_data *sdata = rx->sdata; 3784 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3785 __le16 stype; 3786 3787 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3788 3789 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3790 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3791 sdata->vif.type != NL80211_IFTYPE_OCB && 3792 sdata->vif.type != NL80211_IFTYPE_STATION) 3793 return RX_DROP_MONITOR; 3794 3795 switch (stype) { 3796 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3797 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3798 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3799 /* process for all: mesh, mlme, ibss */ 3800 break; 3801 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3802 if (is_multicast_ether_addr(mgmt->da) && 3803 !is_broadcast_ether_addr(mgmt->da)) 3804 return RX_DROP_MONITOR; 3805 3806 /* process only for station/IBSS */ 3807 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3808 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3809 return RX_DROP_MONITOR; 3810 break; 3811 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3812 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3813 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3814 if (is_multicast_ether_addr(mgmt->da) && 3815 !is_broadcast_ether_addr(mgmt->da)) 3816 return RX_DROP_MONITOR; 3817 3818 /* process only for station */ 3819 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3820 return RX_DROP_MONITOR; 3821 break; 3822 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3823 /* process only for ibss and mesh */ 3824 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3825 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3826 return RX_DROP_MONITOR; 3827 break; 3828 default: 3829 return RX_DROP_MONITOR; 3830 } 3831 3832 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb); 3833 3834 return RX_QUEUED; 3835 } 3836 3837 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3838 struct ieee80211_rate *rate) 3839 { 3840 struct ieee80211_sub_if_data *sdata; 3841 struct ieee80211_local *local = rx->local; 3842 struct sk_buff *skb = rx->skb, *skb2; 3843 struct net_device *prev_dev = NULL; 3844 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3845 int needed_headroom; 3846 3847 /* 3848 * If cooked monitor has been processed already, then 3849 * don't do it again. If not, set the flag. 3850 */ 3851 if (rx->flags & IEEE80211_RX_CMNTR) 3852 goto out_free_skb; 3853 rx->flags |= IEEE80211_RX_CMNTR; 3854 3855 /* If there are no cooked monitor interfaces, just free the SKB */ 3856 if (!local->cooked_mntrs) 3857 goto out_free_skb; 3858 3859 /* vendor data is long removed here */ 3860 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3861 /* room for the radiotap header based on driver features */ 3862 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3863 3864 if (skb_headroom(skb) < needed_headroom && 3865 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3866 goto out_free_skb; 3867 3868 /* prepend radiotap information */ 3869 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3870 false); 3871 3872 skb_reset_mac_header(skb); 3873 skb->ip_summed = CHECKSUM_UNNECESSARY; 3874 skb->pkt_type = PACKET_OTHERHOST; 3875 skb->protocol = htons(ETH_P_802_2); 3876 3877 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3878 if (!ieee80211_sdata_running(sdata)) 3879 continue; 3880 3881 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3882 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3883 continue; 3884 3885 if (prev_dev) { 3886 skb2 = skb_clone(skb, GFP_ATOMIC); 3887 if (skb2) { 3888 skb2->dev = prev_dev; 3889 netif_receive_skb(skb2); 3890 } 3891 } 3892 3893 prev_dev = sdata->dev; 3894 dev_sw_netstats_rx_add(sdata->dev, skb->len); 3895 } 3896 3897 if (prev_dev) { 3898 skb->dev = prev_dev; 3899 netif_receive_skb(skb); 3900 return; 3901 } 3902 3903 out_free_skb: 3904 dev_kfree_skb(skb); 3905 } 3906 3907 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3908 ieee80211_rx_result res) 3909 { 3910 switch (res) { 3911 case RX_DROP_MONITOR: 3912 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3913 if (rx->sta) 3914 rx->sta->deflink.rx_stats.dropped++; 3915 fallthrough; 3916 case RX_CONTINUE: { 3917 struct ieee80211_rate *rate = NULL; 3918 struct ieee80211_supported_band *sband; 3919 struct ieee80211_rx_status *status; 3920 3921 status = IEEE80211_SKB_RXCB((rx->skb)); 3922 3923 sband = rx->local->hw.wiphy->bands[status->band]; 3924 if (status->encoding == RX_ENC_LEGACY) 3925 rate = &sband->bitrates[status->rate_idx]; 3926 3927 ieee80211_rx_cooked_monitor(rx, rate); 3928 break; 3929 } 3930 case RX_DROP_UNUSABLE: 3931 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3932 if (rx->sta) 3933 rx->sta->deflink.rx_stats.dropped++; 3934 dev_kfree_skb(rx->skb); 3935 break; 3936 case RX_QUEUED: 3937 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3938 break; 3939 } 3940 } 3941 3942 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3943 struct sk_buff_head *frames) 3944 { 3945 ieee80211_rx_result res = RX_DROP_MONITOR; 3946 struct sk_buff *skb; 3947 3948 #define CALL_RXH(rxh) \ 3949 do { \ 3950 res = rxh(rx); \ 3951 if (res != RX_CONTINUE) \ 3952 goto rxh_next; \ 3953 } while (0) 3954 3955 /* Lock here to avoid hitting all of the data used in the RX 3956 * path (e.g. key data, station data, ...) concurrently when 3957 * a frame is released from the reorder buffer due to timeout 3958 * from the timer, potentially concurrently with RX from the 3959 * driver. 3960 */ 3961 spin_lock_bh(&rx->local->rx_path_lock); 3962 3963 while ((skb = __skb_dequeue(frames))) { 3964 /* 3965 * all the other fields are valid across frames 3966 * that belong to an aMPDU since they are on the 3967 * same TID from the same station 3968 */ 3969 rx->skb = skb; 3970 3971 CALL_RXH(ieee80211_rx_h_check_more_data); 3972 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3973 CALL_RXH(ieee80211_rx_h_sta_process); 3974 CALL_RXH(ieee80211_rx_h_decrypt); 3975 CALL_RXH(ieee80211_rx_h_defragment); 3976 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3977 /* must be after MMIC verify so header is counted in MPDU mic */ 3978 #ifdef CONFIG_MAC80211_MESH 3979 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3980 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3981 #endif 3982 CALL_RXH(ieee80211_rx_h_amsdu); 3983 CALL_RXH(ieee80211_rx_h_data); 3984 3985 /* special treatment -- needs the queue */ 3986 res = ieee80211_rx_h_ctrl(rx, frames); 3987 if (res != RX_CONTINUE) 3988 goto rxh_next; 3989 3990 CALL_RXH(ieee80211_rx_h_mgmt_check); 3991 CALL_RXH(ieee80211_rx_h_action); 3992 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3993 CALL_RXH(ieee80211_rx_h_action_post_userspace); 3994 CALL_RXH(ieee80211_rx_h_action_return); 3995 CALL_RXH(ieee80211_rx_h_ext); 3996 CALL_RXH(ieee80211_rx_h_mgmt); 3997 3998 rxh_next: 3999 ieee80211_rx_handlers_result(rx, res); 4000 4001 #undef CALL_RXH 4002 } 4003 4004 spin_unlock_bh(&rx->local->rx_path_lock); 4005 } 4006 4007 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 4008 { 4009 struct sk_buff_head reorder_release; 4010 ieee80211_rx_result res = RX_DROP_MONITOR; 4011 4012 __skb_queue_head_init(&reorder_release); 4013 4014 #define CALL_RXH(rxh) \ 4015 do { \ 4016 res = rxh(rx); \ 4017 if (res != RX_CONTINUE) \ 4018 goto rxh_next; \ 4019 } while (0) 4020 4021 CALL_RXH(ieee80211_rx_h_check_dup); 4022 CALL_RXH(ieee80211_rx_h_check); 4023 4024 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 4025 4026 ieee80211_rx_handlers(rx, &reorder_release); 4027 return; 4028 4029 rxh_next: 4030 ieee80211_rx_handlers_result(rx, res); 4031 4032 #undef CALL_RXH 4033 } 4034 4035 /* 4036 * This function makes calls into the RX path, therefore 4037 * it has to be invoked under RCU read lock. 4038 */ 4039 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 4040 { 4041 struct sk_buff_head frames; 4042 struct ieee80211_rx_data rx = { 4043 .sta = sta, 4044 .sdata = sta->sdata, 4045 .local = sta->local, 4046 /* This is OK -- must be QoS data frame */ 4047 .security_idx = tid, 4048 .seqno_idx = tid, 4049 }; 4050 struct tid_ampdu_rx *tid_agg_rx; 4051 4052 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4053 if (!tid_agg_rx) 4054 return; 4055 4056 __skb_queue_head_init(&frames); 4057 4058 spin_lock(&tid_agg_rx->reorder_lock); 4059 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4060 spin_unlock(&tid_agg_rx->reorder_lock); 4061 4062 if (!skb_queue_empty(&frames)) { 4063 struct ieee80211_event event = { 4064 .type = BA_FRAME_TIMEOUT, 4065 .u.ba.tid = tid, 4066 .u.ba.sta = &sta->sta, 4067 }; 4068 drv_event_callback(rx.local, rx.sdata, &event); 4069 } 4070 4071 ieee80211_rx_handlers(&rx, &frames); 4072 } 4073 4074 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4075 u16 ssn, u64 filtered, 4076 u16 received_mpdus) 4077 { 4078 struct sta_info *sta; 4079 struct tid_ampdu_rx *tid_agg_rx; 4080 struct sk_buff_head frames; 4081 struct ieee80211_rx_data rx = { 4082 /* This is OK -- must be QoS data frame */ 4083 .security_idx = tid, 4084 .seqno_idx = tid, 4085 }; 4086 int i, diff; 4087 4088 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4089 return; 4090 4091 __skb_queue_head_init(&frames); 4092 4093 sta = container_of(pubsta, struct sta_info, sta); 4094 4095 rx.sta = sta; 4096 rx.sdata = sta->sdata; 4097 rx.local = sta->local; 4098 4099 rcu_read_lock(); 4100 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4101 if (!tid_agg_rx) 4102 goto out; 4103 4104 spin_lock_bh(&tid_agg_rx->reorder_lock); 4105 4106 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4107 int release; 4108 4109 /* release all frames in the reorder buffer */ 4110 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4111 IEEE80211_SN_MODULO; 4112 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4113 release, &frames); 4114 /* update ssn to match received ssn */ 4115 tid_agg_rx->head_seq_num = ssn; 4116 } else { 4117 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4118 &frames); 4119 } 4120 4121 /* handle the case that received ssn is behind the mac ssn. 4122 * it can be tid_agg_rx->buf_size behind and still be valid */ 4123 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4124 if (diff >= tid_agg_rx->buf_size) { 4125 tid_agg_rx->reorder_buf_filtered = 0; 4126 goto release; 4127 } 4128 filtered = filtered >> diff; 4129 ssn += diff; 4130 4131 /* update bitmap */ 4132 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4133 int index = (ssn + i) % tid_agg_rx->buf_size; 4134 4135 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4136 if (filtered & BIT_ULL(i)) 4137 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4138 } 4139 4140 /* now process also frames that the filter marking released */ 4141 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4142 4143 release: 4144 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4145 4146 ieee80211_rx_handlers(&rx, &frames); 4147 4148 out: 4149 rcu_read_unlock(); 4150 } 4151 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4152 4153 /* main receive path */ 4154 4155 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4156 { 4157 struct ieee80211_sub_if_data *sdata = rx->sdata; 4158 struct sk_buff *skb = rx->skb; 4159 struct ieee80211_hdr *hdr = (void *)skb->data; 4160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4161 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4162 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4163 ieee80211_is_s1g_beacon(hdr->frame_control); 4164 4165 switch (sdata->vif.type) { 4166 case NL80211_IFTYPE_STATION: 4167 if (!bssid && !sdata->u.mgd.use_4addr) 4168 return false; 4169 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4170 return false; 4171 if (multicast) 4172 return true; 4173 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4174 case NL80211_IFTYPE_ADHOC: 4175 if (!bssid) 4176 return false; 4177 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4178 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4179 !is_valid_ether_addr(hdr->addr2)) 4180 return false; 4181 if (ieee80211_is_beacon(hdr->frame_control)) 4182 return true; 4183 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4184 return false; 4185 if (!multicast && 4186 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4187 return false; 4188 if (!rx->sta) { 4189 int rate_idx; 4190 if (status->encoding != RX_ENC_LEGACY) 4191 rate_idx = 0; /* TODO: HT/VHT rates */ 4192 else 4193 rate_idx = status->rate_idx; 4194 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4195 BIT(rate_idx)); 4196 } 4197 return true; 4198 case NL80211_IFTYPE_OCB: 4199 if (!bssid) 4200 return false; 4201 if (!ieee80211_is_data_present(hdr->frame_control)) 4202 return false; 4203 if (!is_broadcast_ether_addr(bssid)) 4204 return false; 4205 if (!multicast && 4206 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4207 return false; 4208 if (!rx->sta) { 4209 int rate_idx; 4210 if (status->encoding != RX_ENC_LEGACY) 4211 rate_idx = 0; /* TODO: HT rates */ 4212 else 4213 rate_idx = status->rate_idx; 4214 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4215 BIT(rate_idx)); 4216 } 4217 return true; 4218 case NL80211_IFTYPE_MESH_POINT: 4219 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4220 return false; 4221 if (multicast) 4222 return true; 4223 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4224 case NL80211_IFTYPE_AP_VLAN: 4225 case NL80211_IFTYPE_AP: 4226 if (!bssid) 4227 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4228 4229 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 4230 /* 4231 * Accept public action frames even when the 4232 * BSSID doesn't match, this is used for P2P 4233 * and location updates. Note that mac80211 4234 * itself never looks at these frames. 4235 */ 4236 if (!multicast && 4237 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4238 return false; 4239 if (ieee80211_is_public_action(hdr, skb->len)) 4240 return true; 4241 return ieee80211_is_beacon(hdr->frame_control); 4242 } 4243 4244 if (!ieee80211_has_tods(hdr->frame_control)) { 4245 /* ignore data frames to TDLS-peers */ 4246 if (ieee80211_is_data(hdr->frame_control)) 4247 return false; 4248 /* ignore action frames to TDLS-peers */ 4249 if (ieee80211_is_action(hdr->frame_control) && 4250 !is_broadcast_ether_addr(bssid) && 4251 !ether_addr_equal(bssid, hdr->addr1)) 4252 return false; 4253 } 4254 4255 /* 4256 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4257 * the BSSID - we've checked that already but may have accepted 4258 * the wildcard (ff:ff:ff:ff:ff:ff). 4259 * 4260 * It also says: 4261 * The BSSID of the Data frame is determined as follows: 4262 * a) If the STA is contained within an AP or is associated 4263 * with an AP, the BSSID is the address currently in use 4264 * by the STA contained in the AP. 4265 * 4266 * So we should not accept data frames with an address that's 4267 * multicast. 4268 * 4269 * Accepting it also opens a security problem because stations 4270 * could encrypt it with the GTK and inject traffic that way. 4271 */ 4272 if (ieee80211_is_data(hdr->frame_control) && multicast) 4273 return false; 4274 4275 return true; 4276 case NL80211_IFTYPE_P2P_DEVICE: 4277 return ieee80211_is_public_action(hdr, skb->len) || 4278 ieee80211_is_probe_req(hdr->frame_control) || 4279 ieee80211_is_probe_resp(hdr->frame_control) || 4280 ieee80211_is_beacon(hdr->frame_control); 4281 case NL80211_IFTYPE_NAN: 4282 /* Currently no frames on NAN interface are allowed */ 4283 return false; 4284 default: 4285 break; 4286 } 4287 4288 WARN_ON_ONCE(1); 4289 return false; 4290 } 4291 4292 void ieee80211_check_fast_rx(struct sta_info *sta) 4293 { 4294 struct ieee80211_sub_if_data *sdata = sta->sdata; 4295 struct ieee80211_local *local = sdata->local; 4296 struct ieee80211_key *key; 4297 struct ieee80211_fast_rx fastrx = { 4298 .dev = sdata->dev, 4299 .vif_type = sdata->vif.type, 4300 .control_port_protocol = sdata->control_port_protocol, 4301 }, *old, *new = NULL; 4302 bool set_offload = false; 4303 bool assign = false; 4304 bool offload; 4305 4306 /* use sparse to check that we don't return without updating */ 4307 __acquire(check_fast_rx); 4308 4309 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4310 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4311 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4312 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4313 4314 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4315 4316 /* fast-rx doesn't do reordering */ 4317 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4318 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4319 goto clear; 4320 4321 switch (sdata->vif.type) { 4322 case NL80211_IFTYPE_STATION: 4323 if (sta->sta.tdls) { 4324 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4325 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4326 fastrx.expected_ds_bits = 0; 4327 } else { 4328 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4329 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4330 fastrx.expected_ds_bits = 4331 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4332 } 4333 4334 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4335 fastrx.expected_ds_bits |= 4336 cpu_to_le16(IEEE80211_FCTL_TODS); 4337 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4338 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4339 } 4340 4341 if (!sdata->u.mgd.powersave) 4342 break; 4343 4344 /* software powersave is a huge mess, avoid all of it */ 4345 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4346 goto clear; 4347 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4348 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4349 goto clear; 4350 break; 4351 case NL80211_IFTYPE_AP_VLAN: 4352 case NL80211_IFTYPE_AP: 4353 /* parallel-rx requires this, at least with calls to 4354 * ieee80211_sta_ps_transition() 4355 */ 4356 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4357 goto clear; 4358 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4359 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4360 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4361 4362 fastrx.internal_forward = 4363 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4364 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4365 !sdata->u.vlan.sta); 4366 4367 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4368 sdata->u.vlan.sta) { 4369 fastrx.expected_ds_bits |= 4370 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4371 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4372 fastrx.internal_forward = 0; 4373 } 4374 4375 break; 4376 default: 4377 goto clear; 4378 } 4379 4380 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4381 goto clear; 4382 4383 rcu_read_lock(); 4384 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4385 if (!key) 4386 key = rcu_dereference(sdata->default_unicast_key); 4387 if (key) { 4388 switch (key->conf.cipher) { 4389 case WLAN_CIPHER_SUITE_TKIP: 4390 /* we don't want to deal with MMIC in fast-rx */ 4391 goto clear_rcu; 4392 case WLAN_CIPHER_SUITE_CCMP: 4393 case WLAN_CIPHER_SUITE_CCMP_256: 4394 case WLAN_CIPHER_SUITE_GCMP: 4395 case WLAN_CIPHER_SUITE_GCMP_256: 4396 break; 4397 default: 4398 /* We also don't want to deal with 4399 * WEP or cipher scheme. 4400 */ 4401 goto clear_rcu; 4402 } 4403 4404 fastrx.key = true; 4405 fastrx.icv_len = key->conf.icv_len; 4406 } 4407 4408 assign = true; 4409 clear_rcu: 4410 rcu_read_unlock(); 4411 clear: 4412 __release(check_fast_rx); 4413 4414 if (assign) 4415 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4416 4417 offload = assign && 4418 (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED); 4419 4420 if (offload) 4421 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4422 else 4423 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4424 4425 if (set_offload) 4426 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4427 4428 spin_lock_bh(&sta->lock); 4429 old = rcu_dereference_protected(sta->fast_rx, true); 4430 rcu_assign_pointer(sta->fast_rx, new); 4431 spin_unlock_bh(&sta->lock); 4432 4433 if (old) 4434 kfree_rcu(old, rcu_head); 4435 } 4436 4437 void ieee80211_clear_fast_rx(struct sta_info *sta) 4438 { 4439 struct ieee80211_fast_rx *old; 4440 4441 spin_lock_bh(&sta->lock); 4442 old = rcu_dereference_protected(sta->fast_rx, true); 4443 RCU_INIT_POINTER(sta->fast_rx, NULL); 4444 spin_unlock_bh(&sta->lock); 4445 4446 if (old) 4447 kfree_rcu(old, rcu_head); 4448 } 4449 4450 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4451 { 4452 struct ieee80211_local *local = sdata->local; 4453 struct sta_info *sta; 4454 4455 lockdep_assert_held(&local->sta_mtx); 4456 4457 list_for_each_entry(sta, &local->sta_list, list) { 4458 if (sdata != sta->sdata && 4459 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4460 continue; 4461 ieee80211_check_fast_rx(sta); 4462 } 4463 } 4464 4465 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4466 { 4467 struct ieee80211_local *local = sdata->local; 4468 4469 mutex_lock(&local->sta_mtx); 4470 __ieee80211_check_fast_rx_iface(sdata); 4471 mutex_unlock(&local->sta_mtx); 4472 } 4473 4474 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4475 struct ieee80211_fast_rx *fast_rx, 4476 int orig_len) 4477 { 4478 struct ieee80211_sta_rx_stats *stats; 4479 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4480 struct sta_info *sta = rx->sta; 4481 struct sk_buff *skb = rx->skb; 4482 void *sa = skb->data + ETH_ALEN; 4483 void *da = skb->data; 4484 4485 stats = &sta->deflink.rx_stats; 4486 if (fast_rx->uses_rss) 4487 stats = this_cpu_ptr(sta->deflink.pcpu_rx_stats); 4488 4489 /* statistics part of ieee80211_rx_h_sta_process() */ 4490 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4491 stats->last_signal = status->signal; 4492 if (!fast_rx->uses_rss) 4493 ewma_signal_add(&sta->deflink.rx_stats_avg.signal, 4494 -status->signal); 4495 } 4496 4497 if (status->chains) { 4498 int i; 4499 4500 stats->chains = status->chains; 4501 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4502 int signal = status->chain_signal[i]; 4503 4504 if (!(status->chains & BIT(i))) 4505 continue; 4506 4507 stats->chain_signal_last[i] = signal; 4508 if (!fast_rx->uses_rss) 4509 ewma_signal_add(&sta->deflink.rx_stats_avg.chain_signal[i], 4510 -signal); 4511 } 4512 } 4513 /* end of statistics */ 4514 4515 stats->last_rx = jiffies; 4516 stats->last_rate = sta_stats_encode_rate(status); 4517 4518 stats->fragments++; 4519 stats->packets++; 4520 4521 skb->dev = fast_rx->dev; 4522 4523 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4524 4525 /* The seqno index has the same property as needed 4526 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4527 * for non-QoS-data frames. Here we know it's a data 4528 * frame, so count MSDUs. 4529 */ 4530 u64_stats_update_begin(&stats->syncp); 4531 stats->msdu[rx->seqno_idx]++; 4532 stats->bytes += orig_len; 4533 u64_stats_update_end(&stats->syncp); 4534 4535 if (fast_rx->internal_forward) { 4536 struct sk_buff *xmit_skb = NULL; 4537 if (is_multicast_ether_addr(da)) { 4538 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4539 } else if (!ether_addr_equal(da, sa) && 4540 sta_info_get(rx->sdata, da)) { 4541 xmit_skb = skb; 4542 skb = NULL; 4543 } 4544 4545 if (xmit_skb) { 4546 /* 4547 * Send to wireless media and increase priority by 256 4548 * to keep the received priority instead of 4549 * reclassifying the frame (see cfg80211_classify8021d). 4550 */ 4551 xmit_skb->priority += 256; 4552 xmit_skb->protocol = htons(ETH_P_802_3); 4553 skb_reset_network_header(xmit_skb); 4554 skb_reset_mac_header(xmit_skb); 4555 dev_queue_xmit(xmit_skb); 4556 } 4557 4558 if (!skb) 4559 return; 4560 } 4561 4562 /* deliver to local stack */ 4563 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4564 ieee80211_deliver_skb_to_local_stack(skb, rx); 4565 } 4566 4567 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4568 struct ieee80211_fast_rx *fast_rx) 4569 { 4570 struct sk_buff *skb = rx->skb; 4571 struct ieee80211_hdr *hdr = (void *)skb->data; 4572 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4573 struct sta_info *sta = rx->sta; 4574 int orig_len = skb->len; 4575 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4576 int snap_offs = hdrlen; 4577 struct { 4578 u8 snap[sizeof(rfc1042_header)]; 4579 __be16 proto; 4580 } *payload __aligned(2); 4581 struct { 4582 u8 da[ETH_ALEN]; 4583 u8 sa[ETH_ALEN]; 4584 } addrs __aligned(2); 4585 struct ieee80211_sta_rx_stats *stats = &sta->deflink.rx_stats; 4586 4587 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4588 * to a common data structure; drivers can implement that per queue 4589 * but we don't have that information in mac80211 4590 */ 4591 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4592 return false; 4593 4594 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4595 4596 /* If using encryption, we also need to have: 4597 * - PN_VALIDATED: similar, but the implementation is tricky 4598 * - DECRYPTED: necessary for PN_VALIDATED 4599 */ 4600 if (fast_rx->key && 4601 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4602 return false; 4603 4604 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4605 return false; 4606 4607 if (unlikely(ieee80211_is_frag(hdr))) 4608 return false; 4609 4610 /* Since our interface address cannot be multicast, this 4611 * implicitly also rejects multicast frames without the 4612 * explicit check. 4613 * 4614 * We shouldn't get any *data* frames not addressed to us 4615 * (AP mode will accept multicast *management* frames), but 4616 * punting here will make it go through the full checks in 4617 * ieee80211_accept_frame(). 4618 */ 4619 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4620 return false; 4621 4622 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4623 IEEE80211_FCTL_TODS)) != 4624 fast_rx->expected_ds_bits) 4625 return false; 4626 4627 /* assign the key to drop unencrypted frames (later) 4628 * and strip the IV/MIC if necessary 4629 */ 4630 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4631 /* GCMP header length is the same */ 4632 snap_offs += IEEE80211_CCMP_HDR_LEN; 4633 } 4634 4635 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4636 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4637 goto drop; 4638 4639 payload = (void *)(skb->data + snap_offs); 4640 4641 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4642 return false; 4643 4644 /* Don't handle these here since they require special code. 4645 * Accept AARP and IPX even though they should come with a 4646 * bridge-tunnel header - but if we get them this way then 4647 * there's little point in discarding them. 4648 */ 4649 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4650 payload->proto == fast_rx->control_port_protocol)) 4651 return false; 4652 } 4653 4654 /* after this point, don't punt to the slowpath! */ 4655 4656 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4657 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4658 goto drop; 4659 4660 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4661 goto drop; 4662 4663 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4664 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4665 RX_QUEUED) 4666 goto drop; 4667 4668 return true; 4669 } 4670 4671 /* do the header conversion - first grab the addresses */ 4672 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4673 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4674 skb_postpull_rcsum(skb, skb->data + snap_offs, 4675 sizeof(rfc1042_header) + 2); 4676 /* remove the SNAP but leave the ethertype */ 4677 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4678 /* push the addresses in front */ 4679 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4680 4681 ieee80211_rx_8023(rx, fast_rx, orig_len); 4682 4683 return true; 4684 drop: 4685 dev_kfree_skb(skb); 4686 if (fast_rx->uses_rss) 4687 stats = this_cpu_ptr(sta->deflink.pcpu_rx_stats); 4688 4689 stats->dropped++; 4690 return true; 4691 } 4692 4693 /* 4694 * This function returns whether or not the SKB 4695 * was destined for RX processing or not, which, 4696 * if consume is true, is equivalent to whether 4697 * or not the skb was consumed. 4698 */ 4699 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4700 struct sk_buff *skb, bool consume) 4701 { 4702 struct ieee80211_local *local = rx->local; 4703 struct ieee80211_sub_if_data *sdata = rx->sdata; 4704 4705 rx->skb = skb; 4706 4707 /* See if we can do fast-rx; if we have to copy we already lost, 4708 * so punt in that case. We should never have to deliver a data 4709 * frame to multiple interfaces anyway. 4710 * 4711 * We skip the ieee80211_accept_frame() call and do the necessary 4712 * checking inside ieee80211_invoke_fast_rx(). 4713 */ 4714 if (consume && rx->sta) { 4715 struct ieee80211_fast_rx *fast_rx; 4716 4717 fast_rx = rcu_dereference(rx->sta->fast_rx); 4718 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4719 return true; 4720 } 4721 4722 if (!ieee80211_accept_frame(rx)) 4723 return false; 4724 4725 if (!consume) { 4726 skb = skb_copy(skb, GFP_ATOMIC); 4727 if (!skb) { 4728 if (net_ratelimit()) 4729 wiphy_debug(local->hw.wiphy, 4730 "failed to copy skb for %s\n", 4731 sdata->name); 4732 return true; 4733 } 4734 4735 rx->skb = skb; 4736 } 4737 4738 ieee80211_invoke_rx_handlers(rx); 4739 return true; 4740 } 4741 4742 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 4743 struct ieee80211_sta *pubsta, 4744 struct sk_buff *skb, 4745 struct list_head *list) 4746 { 4747 struct ieee80211_local *local = hw_to_local(hw); 4748 struct ieee80211_fast_rx *fast_rx; 4749 struct ieee80211_rx_data rx; 4750 4751 memset(&rx, 0, sizeof(rx)); 4752 rx.skb = skb; 4753 rx.local = local; 4754 rx.list = list; 4755 4756 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4757 4758 /* drop frame if too short for header */ 4759 if (skb->len < sizeof(struct ethhdr)) 4760 goto drop; 4761 4762 if (!pubsta) 4763 goto drop; 4764 4765 rx.sta = container_of(pubsta, struct sta_info, sta); 4766 rx.sdata = rx.sta->sdata; 4767 4768 fast_rx = rcu_dereference(rx.sta->fast_rx); 4769 if (!fast_rx) 4770 goto drop; 4771 4772 ieee80211_rx_8023(&rx, fast_rx, skb->len); 4773 return; 4774 4775 drop: 4776 dev_kfree_skb(skb); 4777 } 4778 4779 /* 4780 * This is the actual Rx frames handler. as it belongs to Rx path it must 4781 * be called with rcu_read_lock protection. 4782 */ 4783 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4784 struct ieee80211_sta *pubsta, 4785 struct sk_buff *skb, 4786 struct list_head *list) 4787 { 4788 struct ieee80211_local *local = hw_to_local(hw); 4789 struct ieee80211_sub_if_data *sdata; 4790 struct ieee80211_hdr *hdr; 4791 __le16 fc; 4792 struct ieee80211_rx_data rx; 4793 struct ieee80211_sub_if_data *prev; 4794 struct rhlist_head *tmp; 4795 int err = 0; 4796 4797 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4798 memset(&rx, 0, sizeof(rx)); 4799 rx.skb = skb; 4800 rx.local = local; 4801 rx.list = list; 4802 4803 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4804 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4805 4806 if (ieee80211_is_mgmt(fc)) { 4807 /* drop frame if too short for header */ 4808 if (skb->len < ieee80211_hdrlen(fc)) 4809 err = -ENOBUFS; 4810 else 4811 err = skb_linearize(skb); 4812 } else { 4813 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4814 } 4815 4816 if (err) { 4817 dev_kfree_skb(skb); 4818 return; 4819 } 4820 4821 hdr = (struct ieee80211_hdr *)skb->data; 4822 ieee80211_parse_qos(&rx); 4823 ieee80211_verify_alignment(&rx); 4824 4825 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4826 ieee80211_is_beacon(hdr->frame_control) || 4827 ieee80211_is_s1g_beacon(hdr->frame_control))) 4828 ieee80211_scan_rx(local, skb); 4829 4830 if (ieee80211_is_data(fc)) { 4831 struct sta_info *sta, *prev_sta; 4832 4833 if (pubsta) { 4834 rx.sta = container_of(pubsta, struct sta_info, sta); 4835 rx.sdata = rx.sta->sdata; 4836 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4837 return; 4838 goto out; 4839 } 4840 4841 prev_sta = NULL; 4842 4843 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4844 if (!prev_sta) { 4845 prev_sta = sta; 4846 continue; 4847 } 4848 4849 rx.sta = prev_sta; 4850 rx.sdata = prev_sta->sdata; 4851 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4852 4853 prev_sta = sta; 4854 } 4855 4856 if (prev_sta) { 4857 rx.sta = prev_sta; 4858 rx.sdata = prev_sta->sdata; 4859 4860 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4861 return; 4862 goto out; 4863 } 4864 } 4865 4866 prev = NULL; 4867 4868 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4869 if (!ieee80211_sdata_running(sdata)) 4870 continue; 4871 4872 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4873 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4874 continue; 4875 4876 /* 4877 * frame is destined for this interface, but if it's 4878 * not also for the previous one we handle that after 4879 * the loop to avoid copying the SKB once too much 4880 */ 4881 4882 if (!prev) { 4883 prev = sdata; 4884 continue; 4885 } 4886 4887 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4888 rx.sdata = prev; 4889 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4890 4891 prev = sdata; 4892 } 4893 4894 if (prev) { 4895 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4896 rx.sdata = prev; 4897 4898 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4899 return; 4900 } 4901 4902 out: 4903 dev_kfree_skb(skb); 4904 } 4905 4906 /* 4907 * This is the receive path handler. It is called by a low level driver when an 4908 * 802.11 MPDU is received from the hardware. 4909 */ 4910 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4911 struct sk_buff *skb, struct list_head *list) 4912 { 4913 struct ieee80211_local *local = hw_to_local(hw); 4914 struct ieee80211_rate *rate = NULL; 4915 struct ieee80211_supported_band *sband; 4916 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4917 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 4918 4919 WARN_ON_ONCE(softirq_count() == 0); 4920 4921 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4922 goto drop; 4923 4924 sband = local->hw.wiphy->bands[status->band]; 4925 if (WARN_ON(!sband)) 4926 goto drop; 4927 4928 /* 4929 * If we're suspending, it is possible although not too likely 4930 * that we'd be receiving frames after having already partially 4931 * quiesced the stack. We can't process such frames then since 4932 * that might, for example, cause stations to be added or other 4933 * driver callbacks be invoked. 4934 */ 4935 if (unlikely(local->quiescing || local->suspended)) 4936 goto drop; 4937 4938 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4939 if (unlikely(local->in_reconfig)) 4940 goto drop; 4941 4942 /* 4943 * The same happens when we're not even started, 4944 * but that's worth a warning. 4945 */ 4946 if (WARN_ON(!local->started)) 4947 goto drop; 4948 4949 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4950 /* 4951 * Validate the rate, unless a PLCP error means that 4952 * we probably can't have a valid rate here anyway. 4953 */ 4954 4955 switch (status->encoding) { 4956 case RX_ENC_HT: 4957 /* 4958 * rate_idx is MCS index, which can be [0-76] 4959 * as documented on: 4960 * 4961 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 4962 * 4963 * Anything else would be some sort of driver or 4964 * hardware error. The driver should catch hardware 4965 * errors. 4966 */ 4967 if (WARN(status->rate_idx > 76, 4968 "Rate marked as an HT rate but passed " 4969 "status->rate_idx is not " 4970 "an MCS index [0-76]: %d (0x%02x)\n", 4971 status->rate_idx, 4972 status->rate_idx)) 4973 goto drop; 4974 break; 4975 case RX_ENC_VHT: 4976 if (WARN_ONCE(status->rate_idx > 11 || 4977 !status->nss || 4978 status->nss > 8, 4979 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4980 status->rate_idx, status->nss)) 4981 goto drop; 4982 break; 4983 case RX_ENC_HE: 4984 if (WARN_ONCE(status->rate_idx > 11 || 4985 !status->nss || 4986 status->nss > 8, 4987 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4988 status->rate_idx, status->nss)) 4989 goto drop; 4990 break; 4991 default: 4992 WARN_ON_ONCE(1); 4993 fallthrough; 4994 case RX_ENC_LEGACY: 4995 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4996 goto drop; 4997 rate = &sband->bitrates[status->rate_idx]; 4998 } 4999 } 5000 5001 status->rx_flags = 0; 5002 5003 kcov_remote_start_common(skb_get_kcov_handle(skb)); 5004 5005 /* 5006 * Frames with failed FCS/PLCP checksum are not returned, 5007 * all other frames are returned without radiotap header 5008 * if it was previously present. 5009 * Also, frames with less than 16 bytes are dropped. 5010 */ 5011 if (!(status->flag & RX_FLAG_8023)) 5012 skb = ieee80211_rx_monitor(local, skb, rate); 5013 if (skb) { 5014 if ((status->flag & RX_FLAG_8023) || 5015 ieee80211_is_data_present(hdr->frame_control)) 5016 ieee80211_tpt_led_trig_rx(local, skb->len); 5017 5018 if (status->flag & RX_FLAG_8023) 5019 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 5020 else 5021 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 5022 } 5023 5024 kcov_remote_stop(); 5025 return; 5026 drop: 5027 kfree_skb(skb); 5028 } 5029 EXPORT_SYMBOL(ieee80211_rx_list); 5030 5031 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5032 struct sk_buff *skb, struct napi_struct *napi) 5033 { 5034 struct sk_buff *tmp; 5035 LIST_HEAD(list); 5036 5037 5038 /* 5039 * key references and virtual interfaces are protected using RCU 5040 * and this requires that we are in a read-side RCU section during 5041 * receive processing 5042 */ 5043 rcu_read_lock(); 5044 ieee80211_rx_list(hw, pubsta, skb, &list); 5045 rcu_read_unlock(); 5046 5047 if (!napi) { 5048 netif_receive_skb_list(&list); 5049 return; 5050 } 5051 5052 list_for_each_entry_safe(skb, tmp, &list, list) { 5053 skb_list_del_init(skb); 5054 napi_gro_receive(napi, skb); 5055 } 5056 } 5057 EXPORT_SYMBOL(ieee80211_rx_napi); 5058 5059 /* This is a version of the rx handler that can be called from hard irq 5060 * context. Post the skb on the queue and schedule the tasklet */ 5061 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5062 { 5063 struct ieee80211_local *local = hw_to_local(hw); 5064 5065 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5066 5067 skb->pkt_type = IEEE80211_RX_MSG; 5068 skb_queue_tail(&local->skb_queue, skb); 5069 tasklet_schedule(&local->tasklet); 5070 } 5071 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5072