xref: /openbmc/linux/net/mac80211/rx.c (revision d2999e1b)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23 
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33 
34 /*
35  * monitor mode reception
36  *
37  * This function cleans up the SKB, i.e. it removes all the stuff
38  * only useful for monitoring.
39  */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 					   struct sk_buff *skb)
42 {
43 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
44 		if (likely(skb->len > FCS_LEN))
45 			__pskb_trim(skb, skb->len - FCS_LEN);
46 		else {
47 			/* driver bug */
48 			WARN_ON(1);
49 			dev_kfree_skb(skb);
50 			return NULL;
51 		}
52 	}
53 
54 	return skb;
55 }
56 
57 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len)
58 {
59 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
60 	struct ieee80211_hdr *hdr = (void *)skb->data;
61 
62 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
63 			    RX_FLAG_FAILED_PLCP_CRC |
64 			    RX_FLAG_AMPDU_IS_ZEROLEN))
65 		return true;
66 
67 	if (unlikely(skb->len < 16 + present_fcs_len))
68 		return true;
69 
70 	if (ieee80211_is_ctl(hdr->frame_control) &&
71 	    !ieee80211_is_pspoll(hdr->frame_control) &&
72 	    !ieee80211_is_back_req(hdr->frame_control))
73 		return true;
74 
75 	return false;
76 }
77 
78 static int
79 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
80 			    struct ieee80211_rx_status *status)
81 {
82 	int len;
83 
84 	/* always present fields */
85 	len = sizeof(struct ieee80211_radiotap_header) + 8;
86 
87 	/* allocate extra bitmaps */
88 	if (status->chains)
89 		len += 4 * hweight8(status->chains);
90 
91 	if (ieee80211_have_rx_timestamp(status)) {
92 		len = ALIGN(len, 8);
93 		len += 8;
94 	}
95 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
96 		len += 1;
97 
98 	/* antenna field, if we don't have per-chain info */
99 	if (!status->chains)
100 		len += 1;
101 
102 	/* padding for RX_FLAGS if necessary */
103 	len = ALIGN(len, 2);
104 
105 	if (status->flag & RX_FLAG_HT) /* HT info */
106 		len += 3;
107 
108 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
109 		len = ALIGN(len, 4);
110 		len += 8;
111 	}
112 
113 	if (status->flag & RX_FLAG_VHT) {
114 		len = ALIGN(len, 2);
115 		len += 12;
116 	}
117 
118 	if (status->chains) {
119 		/* antenna and antenna signal fields */
120 		len += 2 * hweight8(status->chains);
121 	}
122 
123 	return len;
124 }
125 
126 /*
127  * ieee80211_add_rx_radiotap_header - add radiotap header
128  *
129  * add a radiotap header containing all the fields which the hardware provided.
130  */
131 static void
132 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
133 				 struct sk_buff *skb,
134 				 struct ieee80211_rate *rate,
135 				 int rtap_len, bool has_fcs)
136 {
137 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
138 	struct ieee80211_radiotap_header *rthdr;
139 	unsigned char *pos;
140 	__le32 *it_present;
141 	u32 it_present_val;
142 	u16 rx_flags = 0;
143 	u16 channel_flags = 0;
144 	int mpdulen, chain;
145 	unsigned long chains = status->chains;
146 
147 	mpdulen = skb->len;
148 	if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
149 		mpdulen += FCS_LEN;
150 
151 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
152 	memset(rthdr, 0, rtap_len);
153 	it_present = &rthdr->it_present;
154 
155 	/* radiotap header, set always present flags */
156 	rthdr->it_len = cpu_to_le16(rtap_len);
157 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
158 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
159 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
160 
161 	if (!status->chains)
162 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
163 
164 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
165 		it_present_val |=
166 			BIT(IEEE80211_RADIOTAP_EXT) |
167 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
168 		put_unaligned_le32(it_present_val, it_present);
169 		it_present++;
170 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
171 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
172 	}
173 
174 	put_unaligned_le32(it_present_val, it_present);
175 
176 	pos = (void *)(it_present + 1);
177 
178 	/* the order of the following fields is important */
179 
180 	/* IEEE80211_RADIOTAP_TSFT */
181 	if (ieee80211_have_rx_timestamp(status)) {
182 		/* padding */
183 		while ((pos - (u8 *)rthdr) & 7)
184 			*pos++ = 0;
185 		put_unaligned_le64(
186 			ieee80211_calculate_rx_timestamp(local, status,
187 							 mpdulen, 0),
188 			pos);
189 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
190 		pos += 8;
191 	}
192 
193 	/* IEEE80211_RADIOTAP_FLAGS */
194 	if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
195 		*pos |= IEEE80211_RADIOTAP_F_FCS;
196 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
197 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
198 	if (status->flag & RX_FLAG_SHORTPRE)
199 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
200 	pos++;
201 
202 	/* IEEE80211_RADIOTAP_RATE */
203 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
204 		/*
205 		 * Without rate information don't add it. If we have,
206 		 * MCS information is a separate field in radiotap,
207 		 * added below. The byte here is needed as padding
208 		 * for the channel though, so initialise it to 0.
209 		 */
210 		*pos = 0;
211 	} else {
212 		int shift = 0;
213 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
214 		if (status->flag & RX_FLAG_10MHZ)
215 			shift = 1;
216 		else if (status->flag & RX_FLAG_5MHZ)
217 			shift = 2;
218 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
219 	}
220 	pos++;
221 
222 	/* IEEE80211_RADIOTAP_CHANNEL */
223 	put_unaligned_le16(status->freq, pos);
224 	pos += 2;
225 	if (status->flag & RX_FLAG_10MHZ)
226 		channel_flags |= IEEE80211_CHAN_HALF;
227 	else if (status->flag & RX_FLAG_5MHZ)
228 		channel_flags |= IEEE80211_CHAN_QUARTER;
229 
230 	if (status->band == IEEE80211_BAND_5GHZ)
231 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
232 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
233 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
234 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
235 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
236 	else if (rate)
237 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
238 	else
239 		channel_flags |= IEEE80211_CHAN_2GHZ;
240 	put_unaligned_le16(channel_flags, pos);
241 	pos += 2;
242 
243 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
244 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
245 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
246 		*pos = status->signal;
247 		rthdr->it_present |=
248 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
249 		pos++;
250 	}
251 
252 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
253 
254 	if (!status->chains) {
255 		/* IEEE80211_RADIOTAP_ANTENNA */
256 		*pos = status->antenna;
257 		pos++;
258 	}
259 
260 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
261 
262 	/* IEEE80211_RADIOTAP_RX_FLAGS */
263 	/* ensure 2 byte alignment for the 2 byte field as required */
264 	if ((pos - (u8 *)rthdr) & 1)
265 		*pos++ = 0;
266 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
267 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
268 	put_unaligned_le16(rx_flags, pos);
269 	pos += 2;
270 
271 	if (status->flag & RX_FLAG_HT) {
272 		unsigned int stbc;
273 
274 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
275 		*pos++ = local->hw.radiotap_mcs_details;
276 		*pos = 0;
277 		if (status->flag & RX_FLAG_SHORT_GI)
278 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
279 		if (status->flag & RX_FLAG_40MHZ)
280 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
281 		if (status->flag & RX_FLAG_HT_GF)
282 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
283 		if (status->flag & RX_FLAG_LDPC)
284 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
285 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
286 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
287 		pos++;
288 		*pos++ = status->rate_idx;
289 	}
290 
291 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
292 		u16 flags = 0;
293 
294 		/* ensure 4 byte alignment */
295 		while ((pos - (u8 *)rthdr) & 3)
296 			pos++;
297 		rthdr->it_present |=
298 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
299 		put_unaligned_le32(status->ampdu_reference, pos);
300 		pos += 4;
301 		if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
302 			flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
303 		if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
304 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
305 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
306 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
307 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
308 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
309 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
310 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
311 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
312 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
313 		put_unaligned_le16(flags, pos);
314 		pos += 2;
315 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
316 			*pos++ = status->ampdu_delimiter_crc;
317 		else
318 			*pos++ = 0;
319 		*pos++ = 0;
320 	}
321 
322 	if (status->flag & RX_FLAG_VHT) {
323 		u16 known = local->hw.radiotap_vht_details;
324 
325 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
326 		/* known field - how to handle 80+80? */
327 		if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
328 			known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
329 		put_unaligned_le16(known, pos);
330 		pos += 2;
331 		/* flags */
332 		if (status->flag & RX_FLAG_SHORT_GI)
333 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
334 		/* in VHT, STBC is binary */
335 		if (status->flag & RX_FLAG_STBC_MASK)
336 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
337 		if (status->vht_flag & RX_VHT_FLAG_BF)
338 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
339 		pos++;
340 		/* bandwidth */
341 		if (status->vht_flag & RX_VHT_FLAG_80MHZ)
342 			*pos++ = 4;
343 		else if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
344 			*pos++ = 0; /* marked not known above */
345 		else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
346 			*pos++ = 11;
347 		else if (status->flag & RX_FLAG_40MHZ)
348 			*pos++ = 1;
349 		else /* 20 MHz */
350 			*pos++ = 0;
351 		/* MCS/NSS */
352 		*pos = (status->rate_idx << 4) | status->vht_nss;
353 		pos += 4;
354 		/* coding field */
355 		if (status->flag & RX_FLAG_LDPC)
356 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
357 		pos++;
358 		/* group ID */
359 		pos++;
360 		/* partial_aid */
361 		pos += 2;
362 	}
363 
364 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
365 		*pos++ = status->chain_signal[chain];
366 		*pos++ = chain;
367 	}
368 }
369 
370 /*
371  * This function copies a received frame to all monitor interfaces and
372  * returns a cleaned-up SKB that no longer includes the FCS nor the
373  * radiotap header the driver might have added.
374  */
375 static struct sk_buff *
376 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
377 		     struct ieee80211_rate *rate)
378 {
379 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
380 	struct ieee80211_sub_if_data *sdata;
381 	int needed_headroom;
382 	struct sk_buff *skb, *skb2;
383 	struct net_device *prev_dev = NULL;
384 	int present_fcs_len = 0;
385 
386 	/*
387 	 * First, we may need to make a copy of the skb because
388 	 *  (1) we need to modify it for radiotap (if not present), and
389 	 *  (2) the other RX handlers will modify the skb we got.
390 	 *
391 	 * We don't need to, of course, if we aren't going to return
392 	 * the SKB because it has a bad FCS/PLCP checksum.
393 	 */
394 
395 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
396 		present_fcs_len = FCS_LEN;
397 
398 	/* ensure hdr->frame_control is in skb head */
399 	if (!pskb_may_pull(origskb, 2)) {
400 		dev_kfree_skb(origskb);
401 		return NULL;
402 	}
403 
404 	if (!local->monitors) {
405 		if (should_drop_frame(origskb, present_fcs_len)) {
406 			dev_kfree_skb(origskb);
407 			return NULL;
408 		}
409 
410 		return remove_monitor_info(local, origskb);
411 	}
412 
413 	/* room for the radiotap header based on driver features */
414 	needed_headroom = ieee80211_rx_radiotap_space(local, status);
415 
416 	if (should_drop_frame(origskb, present_fcs_len)) {
417 		/* only need to expand headroom if necessary */
418 		skb = origskb;
419 		origskb = NULL;
420 
421 		/*
422 		 * This shouldn't trigger often because most devices have an
423 		 * RX header they pull before we get here, and that should
424 		 * be big enough for our radiotap information. We should
425 		 * probably export the length to drivers so that we can have
426 		 * them allocate enough headroom to start with.
427 		 */
428 		if (skb_headroom(skb) < needed_headroom &&
429 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
430 			dev_kfree_skb(skb);
431 			return NULL;
432 		}
433 	} else {
434 		/*
435 		 * Need to make a copy and possibly remove radiotap header
436 		 * and FCS from the original.
437 		 */
438 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
439 
440 		origskb = remove_monitor_info(local, origskb);
441 
442 		if (!skb)
443 			return origskb;
444 	}
445 
446 	/* prepend radiotap information */
447 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
448 					 true);
449 
450 	skb_reset_mac_header(skb);
451 	skb->ip_summed = CHECKSUM_UNNECESSARY;
452 	skb->pkt_type = PACKET_OTHERHOST;
453 	skb->protocol = htons(ETH_P_802_2);
454 
455 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
456 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
457 			continue;
458 
459 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
460 			continue;
461 
462 		if (!ieee80211_sdata_running(sdata))
463 			continue;
464 
465 		if (prev_dev) {
466 			skb2 = skb_clone(skb, GFP_ATOMIC);
467 			if (skb2) {
468 				skb2->dev = prev_dev;
469 				netif_receive_skb(skb2);
470 			}
471 		}
472 
473 		prev_dev = sdata->dev;
474 		sdata->dev->stats.rx_packets++;
475 		sdata->dev->stats.rx_bytes += skb->len;
476 	}
477 
478 	if (prev_dev) {
479 		skb->dev = prev_dev;
480 		netif_receive_skb(skb);
481 	} else
482 		dev_kfree_skb(skb);
483 
484 	return origskb;
485 }
486 
487 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
488 {
489 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
490 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
491 	int tid, seqno_idx, security_idx;
492 
493 	/* does the frame have a qos control field? */
494 	if (ieee80211_is_data_qos(hdr->frame_control)) {
495 		u8 *qc = ieee80211_get_qos_ctl(hdr);
496 		/* frame has qos control */
497 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
498 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
499 			status->rx_flags |= IEEE80211_RX_AMSDU;
500 
501 		seqno_idx = tid;
502 		security_idx = tid;
503 	} else {
504 		/*
505 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
506 		 *
507 		 *	Sequence numbers for management frames, QoS data
508 		 *	frames with a broadcast/multicast address in the
509 		 *	Address 1 field, and all non-QoS data frames sent
510 		 *	by QoS STAs are assigned using an additional single
511 		 *	modulo-4096 counter, [...]
512 		 *
513 		 * We also use that counter for non-QoS STAs.
514 		 */
515 		seqno_idx = IEEE80211_NUM_TIDS;
516 		security_idx = 0;
517 		if (ieee80211_is_mgmt(hdr->frame_control))
518 			security_idx = IEEE80211_NUM_TIDS;
519 		tid = 0;
520 	}
521 
522 	rx->seqno_idx = seqno_idx;
523 	rx->security_idx = security_idx;
524 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
525 	 * For now, set skb->priority to 0 for other cases. */
526 	rx->skb->priority = (tid > 7) ? 0 : tid;
527 }
528 
529 /**
530  * DOC: Packet alignment
531  *
532  * Drivers always need to pass packets that are aligned to two-byte boundaries
533  * to the stack.
534  *
535  * Additionally, should, if possible, align the payload data in a way that
536  * guarantees that the contained IP header is aligned to a four-byte
537  * boundary. In the case of regular frames, this simply means aligning the
538  * payload to a four-byte boundary (because either the IP header is directly
539  * contained, or IV/RFC1042 headers that have a length divisible by four are
540  * in front of it).  If the payload data is not properly aligned and the
541  * architecture doesn't support efficient unaligned operations, mac80211
542  * will align the data.
543  *
544  * With A-MSDU frames, however, the payload data address must yield two modulo
545  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
546  * push the IP header further back to a multiple of four again. Thankfully, the
547  * specs were sane enough this time around to require padding each A-MSDU
548  * subframe to a length that is a multiple of four.
549  *
550  * Padding like Atheros hardware adds which is between the 802.11 header and
551  * the payload is not supported, the driver is required to move the 802.11
552  * header to be directly in front of the payload in that case.
553  */
554 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
555 {
556 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
557 	WARN_ONCE((unsigned long)rx->skb->data & 1,
558 		  "unaligned packet at 0x%p\n", rx->skb->data);
559 #endif
560 }
561 
562 
563 /* rx handlers */
564 
565 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
566 {
567 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
568 
569 	if (is_multicast_ether_addr(hdr->addr1))
570 		return 0;
571 
572 	return ieee80211_is_robust_mgmt_frame(skb);
573 }
574 
575 
576 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
577 {
578 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
579 
580 	if (!is_multicast_ether_addr(hdr->addr1))
581 		return 0;
582 
583 	return ieee80211_is_robust_mgmt_frame(skb);
584 }
585 
586 
587 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
588 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
589 {
590 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
591 	struct ieee80211_mmie *mmie;
592 
593 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
594 		return -1;
595 
596 	if (!ieee80211_is_robust_mgmt_frame(skb))
597 		return -1; /* not a robust management frame */
598 
599 	mmie = (struct ieee80211_mmie *)
600 		(skb->data + skb->len - sizeof(*mmie));
601 	if (mmie->element_id != WLAN_EID_MMIE ||
602 	    mmie->length != sizeof(*mmie) - 2)
603 		return -1;
604 
605 	return le16_to_cpu(mmie->key_id);
606 }
607 
608 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
609 				 struct sk_buff *skb)
610 {
611 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
612 	__le16 fc;
613 	int hdrlen;
614 	u8 keyid;
615 
616 	fc = hdr->frame_control;
617 	hdrlen = ieee80211_hdrlen(fc);
618 
619 	if (skb->len < hdrlen + cs->hdr_len)
620 		return -EINVAL;
621 
622 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
623 	keyid &= cs->key_idx_mask;
624 	keyid >>= cs->key_idx_shift;
625 
626 	return keyid;
627 }
628 
629 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
630 {
631 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
632 	char *dev_addr = rx->sdata->vif.addr;
633 
634 	if (ieee80211_is_data(hdr->frame_control)) {
635 		if (is_multicast_ether_addr(hdr->addr1)) {
636 			if (ieee80211_has_tods(hdr->frame_control) ||
637 			    !ieee80211_has_fromds(hdr->frame_control))
638 				return RX_DROP_MONITOR;
639 			if (ether_addr_equal(hdr->addr3, dev_addr))
640 				return RX_DROP_MONITOR;
641 		} else {
642 			if (!ieee80211_has_a4(hdr->frame_control))
643 				return RX_DROP_MONITOR;
644 			if (ether_addr_equal(hdr->addr4, dev_addr))
645 				return RX_DROP_MONITOR;
646 		}
647 	}
648 
649 	/* If there is not an established peer link and this is not a peer link
650 	 * establisment frame, beacon or probe, drop the frame.
651 	 */
652 
653 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
654 		struct ieee80211_mgmt *mgmt;
655 
656 		if (!ieee80211_is_mgmt(hdr->frame_control))
657 			return RX_DROP_MONITOR;
658 
659 		if (ieee80211_is_action(hdr->frame_control)) {
660 			u8 category;
661 
662 			/* make sure category field is present */
663 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
664 				return RX_DROP_MONITOR;
665 
666 			mgmt = (struct ieee80211_mgmt *)hdr;
667 			category = mgmt->u.action.category;
668 			if (category != WLAN_CATEGORY_MESH_ACTION &&
669 			    category != WLAN_CATEGORY_SELF_PROTECTED)
670 				return RX_DROP_MONITOR;
671 			return RX_CONTINUE;
672 		}
673 
674 		if (ieee80211_is_probe_req(hdr->frame_control) ||
675 		    ieee80211_is_probe_resp(hdr->frame_control) ||
676 		    ieee80211_is_beacon(hdr->frame_control) ||
677 		    ieee80211_is_auth(hdr->frame_control))
678 			return RX_CONTINUE;
679 
680 		return RX_DROP_MONITOR;
681 	}
682 
683 	return RX_CONTINUE;
684 }
685 
686 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
687 					    struct tid_ampdu_rx *tid_agg_rx,
688 					    int index,
689 					    struct sk_buff_head *frames)
690 {
691 	struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
692 	struct ieee80211_rx_status *status;
693 
694 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
695 
696 	if (!skb)
697 		goto no_frame;
698 
699 	/* release the frame from the reorder ring buffer */
700 	tid_agg_rx->stored_mpdu_num--;
701 	tid_agg_rx->reorder_buf[index] = NULL;
702 	status = IEEE80211_SKB_RXCB(skb);
703 	status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
704 	__skb_queue_tail(frames, skb);
705 
706 no_frame:
707 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
708 }
709 
710 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
711 					     struct tid_ampdu_rx *tid_agg_rx,
712 					     u16 head_seq_num,
713 					     struct sk_buff_head *frames)
714 {
715 	int index;
716 
717 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
718 
719 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
720 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
721 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
722 						frames);
723 	}
724 }
725 
726 /*
727  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
728  * the skb was added to the buffer longer than this time ago, the earlier
729  * frames that have not yet been received are assumed to be lost and the skb
730  * can be released for processing. This may also release other skb's from the
731  * reorder buffer if there are no additional gaps between the frames.
732  *
733  * Callers must hold tid_agg_rx->reorder_lock.
734  */
735 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
736 
737 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
738 					  struct tid_ampdu_rx *tid_agg_rx,
739 					  struct sk_buff_head *frames)
740 {
741 	int index, j;
742 
743 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
744 
745 	/* release the buffer until next missing frame */
746 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
747 	if (!tid_agg_rx->reorder_buf[index] &&
748 	    tid_agg_rx->stored_mpdu_num) {
749 		/*
750 		 * No buffers ready to be released, but check whether any
751 		 * frames in the reorder buffer have timed out.
752 		 */
753 		int skipped = 1;
754 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
755 		     j = (j + 1) % tid_agg_rx->buf_size) {
756 			if (!tid_agg_rx->reorder_buf[j]) {
757 				skipped++;
758 				continue;
759 			}
760 			if (skipped &&
761 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
762 					HT_RX_REORDER_BUF_TIMEOUT))
763 				goto set_release_timer;
764 
765 			ht_dbg_ratelimited(sdata,
766 					   "release an RX reorder frame due to timeout on earlier frames\n");
767 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
768 							frames);
769 
770 			/*
771 			 * Increment the head seq# also for the skipped slots.
772 			 */
773 			tid_agg_rx->head_seq_num =
774 				(tid_agg_rx->head_seq_num +
775 				 skipped) & IEEE80211_SN_MASK;
776 			skipped = 0;
777 		}
778 	} else while (tid_agg_rx->reorder_buf[index]) {
779 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
780 						frames);
781 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
782 	}
783 
784 	if (tid_agg_rx->stored_mpdu_num) {
785 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
786 
787 		for (; j != (index - 1) % tid_agg_rx->buf_size;
788 		     j = (j + 1) % tid_agg_rx->buf_size) {
789 			if (tid_agg_rx->reorder_buf[j])
790 				break;
791 		}
792 
793  set_release_timer:
794 
795 		mod_timer(&tid_agg_rx->reorder_timer,
796 			  tid_agg_rx->reorder_time[j] + 1 +
797 			  HT_RX_REORDER_BUF_TIMEOUT);
798 	} else {
799 		del_timer(&tid_agg_rx->reorder_timer);
800 	}
801 }
802 
803 /*
804  * As this function belongs to the RX path it must be under
805  * rcu_read_lock protection. It returns false if the frame
806  * can be processed immediately, true if it was consumed.
807  */
808 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
809 					     struct tid_ampdu_rx *tid_agg_rx,
810 					     struct sk_buff *skb,
811 					     struct sk_buff_head *frames)
812 {
813 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
814 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
815 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
816 	u16 head_seq_num, buf_size;
817 	int index;
818 	bool ret = true;
819 
820 	spin_lock(&tid_agg_rx->reorder_lock);
821 
822 	buf_size = tid_agg_rx->buf_size;
823 	head_seq_num = tid_agg_rx->head_seq_num;
824 
825 	/* frame with out of date sequence number */
826 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
827 		dev_kfree_skb(skb);
828 		goto out;
829 	}
830 
831 	/*
832 	 * If frame the sequence number exceeds our buffering window
833 	 * size release some previous frames to make room for this one.
834 	 */
835 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
836 		head_seq_num = ieee80211_sn_inc(
837 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
838 		/* release stored frames up to new head to stack */
839 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
840 						 head_seq_num, frames);
841 	}
842 
843 	/* Now the new frame is always in the range of the reordering buffer */
844 
845 	index = mpdu_seq_num % tid_agg_rx->buf_size;
846 
847 	/* check if we already stored this frame */
848 	if (tid_agg_rx->reorder_buf[index]) {
849 		dev_kfree_skb(skb);
850 		goto out;
851 	}
852 
853 	/*
854 	 * If the current MPDU is in the right order and nothing else
855 	 * is stored we can process it directly, no need to buffer it.
856 	 * If it is first but there's something stored, we may be able
857 	 * to release frames after this one.
858 	 */
859 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
860 	    tid_agg_rx->stored_mpdu_num == 0) {
861 		tid_agg_rx->head_seq_num =
862 			ieee80211_sn_inc(tid_agg_rx->head_seq_num);
863 		ret = false;
864 		goto out;
865 	}
866 
867 	/* put the frame in the reordering buffer */
868 	tid_agg_rx->reorder_buf[index] = skb;
869 	tid_agg_rx->reorder_time[index] = jiffies;
870 	tid_agg_rx->stored_mpdu_num++;
871 	ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
872 
873  out:
874 	spin_unlock(&tid_agg_rx->reorder_lock);
875 	return ret;
876 }
877 
878 /*
879  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
880  * true if the MPDU was buffered, false if it should be processed.
881  */
882 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
883 				       struct sk_buff_head *frames)
884 {
885 	struct sk_buff *skb = rx->skb;
886 	struct ieee80211_local *local = rx->local;
887 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
888 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
889 	struct sta_info *sta = rx->sta;
890 	struct tid_ampdu_rx *tid_agg_rx;
891 	u16 sc;
892 	u8 tid, ack_policy;
893 
894 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
895 	    is_multicast_ether_addr(hdr->addr1))
896 		goto dont_reorder;
897 
898 	/*
899 	 * filter the QoS data rx stream according to
900 	 * STA/TID and check if this STA/TID is on aggregation
901 	 */
902 
903 	if (!sta)
904 		goto dont_reorder;
905 
906 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
907 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
908 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
909 
910 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
911 	if (!tid_agg_rx)
912 		goto dont_reorder;
913 
914 	/* qos null data frames are excluded */
915 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
916 		goto dont_reorder;
917 
918 	/* not part of a BA session */
919 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
920 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
921 		goto dont_reorder;
922 
923 	/* not actually part of this BA session */
924 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
925 		goto dont_reorder;
926 
927 	/* new, potentially un-ordered, ampdu frame - process it */
928 
929 	/* reset session timer */
930 	if (tid_agg_rx->timeout)
931 		tid_agg_rx->last_rx = jiffies;
932 
933 	/* if this mpdu is fragmented - terminate rx aggregation session */
934 	sc = le16_to_cpu(hdr->seq_ctrl);
935 	if (sc & IEEE80211_SCTL_FRAG) {
936 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
937 		skb_queue_tail(&rx->sdata->skb_queue, skb);
938 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
939 		return;
940 	}
941 
942 	/*
943 	 * No locking needed -- we will only ever process one
944 	 * RX packet at a time, and thus own tid_agg_rx. All
945 	 * other code manipulating it needs to (and does) make
946 	 * sure that we cannot get to it any more before doing
947 	 * anything with it.
948 	 */
949 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
950 					     frames))
951 		return;
952 
953  dont_reorder:
954 	__skb_queue_tail(frames, skb);
955 }
956 
957 static ieee80211_rx_result debug_noinline
958 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
959 {
960 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
961 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
962 
963 	/*
964 	 * Drop duplicate 802.11 retransmissions
965 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
966 	 */
967 	if (rx->skb->len >= 24 && rx->sta &&
968 	    !ieee80211_is_ctl(hdr->frame_control) &&
969 	    !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
970 	    !is_multicast_ether_addr(hdr->addr1)) {
971 		if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
972 			     rx->sta->last_seq_ctrl[rx->seqno_idx] ==
973 			     hdr->seq_ctrl)) {
974 			if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
975 				rx->local->dot11FrameDuplicateCount++;
976 				rx->sta->num_duplicates++;
977 			}
978 			return RX_DROP_UNUSABLE;
979 		} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
980 			rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
981 		}
982 	}
983 
984 	if (unlikely(rx->skb->len < 16)) {
985 		I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
986 		return RX_DROP_MONITOR;
987 	}
988 
989 	/* Drop disallowed frame classes based on STA auth/assoc state;
990 	 * IEEE 802.11, Chap 5.5.
991 	 *
992 	 * mac80211 filters only based on association state, i.e. it drops
993 	 * Class 3 frames from not associated stations. hostapd sends
994 	 * deauth/disassoc frames when needed. In addition, hostapd is
995 	 * responsible for filtering on both auth and assoc states.
996 	 */
997 
998 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
999 		return ieee80211_rx_mesh_check(rx);
1000 
1001 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1002 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1003 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1004 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1005 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1006 		/*
1007 		 * accept port control frames from the AP even when it's not
1008 		 * yet marked ASSOC to prevent a race where we don't set the
1009 		 * assoc bit quickly enough before it sends the first frame
1010 		 */
1011 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1012 		    ieee80211_is_data_present(hdr->frame_control)) {
1013 			unsigned int hdrlen;
1014 			__be16 ethertype;
1015 
1016 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1017 
1018 			if (rx->skb->len < hdrlen + 8)
1019 				return RX_DROP_MONITOR;
1020 
1021 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1022 			if (ethertype == rx->sdata->control_port_protocol)
1023 				return RX_CONTINUE;
1024 		}
1025 
1026 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1027 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1028 					       hdr->addr2,
1029 					       GFP_ATOMIC))
1030 			return RX_DROP_UNUSABLE;
1031 
1032 		return RX_DROP_MONITOR;
1033 	}
1034 
1035 	return RX_CONTINUE;
1036 }
1037 
1038 
1039 static ieee80211_rx_result debug_noinline
1040 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1041 {
1042 	struct ieee80211_local *local;
1043 	struct ieee80211_hdr *hdr;
1044 	struct sk_buff *skb;
1045 
1046 	local = rx->local;
1047 	skb = rx->skb;
1048 	hdr = (struct ieee80211_hdr *) skb->data;
1049 
1050 	if (!local->pspolling)
1051 		return RX_CONTINUE;
1052 
1053 	if (!ieee80211_has_fromds(hdr->frame_control))
1054 		/* this is not from AP */
1055 		return RX_CONTINUE;
1056 
1057 	if (!ieee80211_is_data(hdr->frame_control))
1058 		return RX_CONTINUE;
1059 
1060 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1061 		/* AP has no more frames buffered for us */
1062 		local->pspolling = false;
1063 		return RX_CONTINUE;
1064 	}
1065 
1066 	/* more data bit is set, let's request a new frame from the AP */
1067 	ieee80211_send_pspoll(local, rx->sdata);
1068 
1069 	return RX_CONTINUE;
1070 }
1071 
1072 static void sta_ps_start(struct sta_info *sta)
1073 {
1074 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1075 	struct ieee80211_local *local = sdata->local;
1076 	struct ps_data *ps;
1077 
1078 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1079 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1080 		ps = &sdata->bss->ps;
1081 	else
1082 		return;
1083 
1084 	atomic_inc(&ps->num_sta_ps);
1085 	set_sta_flag(sta, WLAN_STA_PS_STA);
1086 	if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1087 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1088 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1089 	       sta->sta.addr, sta->sta.aid);
1090 }
1091 
1092 static void sta_ps_end(struct sta_info *sta)
1093 {
1094 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1095 	       sta->sta.addr, sta->sta.aid);
1096 
1097 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1098 		/*
1099 		 * Clear the flag only if the other one is still set
1100 		 * so that the TX path won't start TX'ing new frames
1101 		 * directly ... In the case that the driver flag isn't
1102 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1103 		 */
1104 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1105 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1106 		       sta->sta.addr, sta->sta.aid);
1107 		return;
1108 	}
1109 
1110 	ieee80211_sta_ps_deliver_wakeup(sta);
1111 }
1112 
1113 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1114 {
1115 	struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1116 	bool in_ps;
1117 
1118 	WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1119 
1120 	/* Don't let the same PS state be set twice */
1121 	in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1122 	if ((start && in_ps) || (!start && !in_ps))
1123 		return -EINVAL;
1124 
1125 	if (start)
1126 		sta_ps_start(sta_inf);
1127 	else
1128 		sta_ps_end(sta_inf);
1129 
1130 	return 0;
1131 }
1132 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1133 
1134 static ieee80211_rx_result debug_noinline
1135 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1136 {
1137 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1138 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1139 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1140 	int tid, ac;
1141 
1142 	if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1143 		return RX_CONTINUE;
1144 
1145 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1146 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1147 		return RX_CONTINUE;
1148 
1149 	/*
1150 	 * The device handles station powersave, so don't do anything about
1151 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1152 	 * it to mac80211 since they're handled.)
1153 	 */
1154 	if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1155 		return RX_CONTINUE;
1156 
1157 	/*
1158 	 * Don't do anything if the station isn't already asleep. In
1159 	 * the uAPSD case, the station will probably be marked asleep,
1160 	 * in the PS-Poll case the station must be confused ...
1161 	 */
1162 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1163 		return RX_CONTINUE;
1164 
1165 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1166 		if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1167 			if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1168 				ieee80211_sta_ps_deliver_poll_response(rx->sta);
1169 			else
1170 				set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1171 		}
1172 
1173 		/* Free PS Poll skb here instead of returning RX_DROP that would
1174 		 * count as an dropped frame. */
1175 		dev_kfree_skb(rx->skb);
1176 
1177 		return RX_QUEUED;
1178 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1179 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1180 		   ieee80211_has_pm(hdr->frame_control) &&
1181 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1182 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1183 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1184 		ac = ieee802_1d_to_ac[tid & 7];
1185 
1186 		/*
1187 		 * If this AC is not trigger-enabled do nothing.
1188 		 *
1189 		 * NB: This could/should check a separate bitmap of trigger-
1190 		 * enabled queues, but for now we only implement uAPSD w/o
1191 		 * TSPEC changes to the ACs, so they're always the same.
1192 		 */
1193 		if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1194 			return RX_CONTINUE;
1195 
1196 		/* if we are in a service period, do nothing */
1197 		if (test_sta_flag(rx->sta, WLAN_STA_SP))
1198 			return RX_CONTINUE;
1199 
1200 		if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1201 			ieee80211_sta_ps_deliver_uapsd(rx->sta);
1202 		else
1203 			set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1204 	}
1205 
1206 	return RX_CONTINUE;
1207 }
1208 
1209 static ieee80211_rx_result debug_noinline
1210 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1211 {
1212 	struct sta_info *sta = rx->sta;
1213 	struct sk_buff *skb = rx->skb;
1214 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1215 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1216 	int i;
1217 
1218 	if (!sta)
1219 		return RX_CONTINUE;
1220 
1221 	/*
1222 	 * Update last_rx only for IBSS packets which are for the current
1223 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1224 	 * current IBSS network alive in cases where other STAs start
1225 	 * using different BSSID. This will also give the station another
1226 	 * chance to restart the authentication/authorization in case
1227 	 * something went wrong the first time.
1228 	 */
1229 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1230 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1231 						NL80211_IFTYPE_ADHOC);
1232 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1233 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1234 			sta->last_rx = jiffies;
1235 			if (ieee80211_is_data(hdr->frame_control) &&
1236 			    !is_multicast_ether_addr(hdr->addr1)) {
1237 				sta->last_rx_rate_idx = status->rate_idx;
1238 				sta->last_rx_rate_flag = status->flag;
1239 				sta->last_rx_rate_vht_flag = status->vht_flag;
1240 				sta->last_rx_rate_vht_nss = status->vht_nss;
1241 			}
1242 		}
1243 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1244 		/*
1245 		 * Mesh beacons will update last_rx when if they are found to
1246 		 * match the current local configuration when processed.
1247 		 */
1248 		sta->last_rx = jiffies;
1249 		if (ieee80211_is_data(hdr->frame_control)) {
1250 			sta->last_rx_rate_idx = status->rate_idx;
1251 			sta->last_rx_rate_flag = status->flag;
1252 			sta->last_rx_rate_vht_flag = status->vht_flag;
1253 			sta->last_rx_rate_vht_nss = status->vht_nss;
1254 		}
1255 	}
1256 
1257 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1258 		return RX_CONTINUE;
1259 
1260 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1261 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1262 
1263 	sta->rx_fragments++;
1264 	sta->rx_bytes += rx->skb->len;
1265 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1266 		sta->last_signal = status->signal;
1267 		ewma_add(&sta->avg_signal, -status->signal);
1268 	}
1269 
1270 	if (status->chains) {
1271 		sta->chains = status->chains;
1272 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1273 			int signal = status->chain_signal[i];
1274 
1275 			if (!(status->chains & BIT(i)))
1276 				continue;
1277 
1278 			sta->chain_signal_last[i] = signal;
1279 			ewma_add(&sta->chain_signal_avg[i], -signal);
1280 		}
1281 	}
1282 
1283 	/*
1284 	 * Change STA power saving mode only at the end of a frame
1285 	 * exchange sequence.
1286 	 */
1287 	if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1288 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1289 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1290 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1291 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1292 	    /* PM bit is only checked in frames where it isn't reserved,
1293 	     * in AP mode it's reserved in non-bufferable management frames
1294 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1295 	     */
1296 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1297 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1298 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1299 			if (!ieee80211_has_pm(hdr->frame_control))
1300 				sta_ps_end(sta);
1301 		} else {
1302 			if (ieee80211_has_pm(hdr->frame_control))
1303 				sta_ps_start(sta);
1304 		}
1305 	}
1306 
1307 	/* mesh power save support */
1308 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1309 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1310 
1311 	/*
1312 	 * Drop (qos-)data::nullfunc frames silently, since they
1313 	 * are used only to control station power saving mode.
1314 	 */
1315 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1316 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1317 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1318 
1319 		/*
1320 		 * If we receive a 4-addr nullfunc frame from a STA
1321 		 * that was not moved to a 4-addr STA vlan yet send
1322 		 * the event to userspace and for older hostapd drop
1323 		 * the frame to the monitor interface.
1324 		 */
1325 		if (ieee80211_has_a4(hdr->frame_control) &&
1326 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1327 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1328 		      !rx->sdata->u.vlan.sta))) {
1329 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1330 				cfg80211_rx_unexpected_4addr_frame(
1331 					rx->sdata->dev, sta->sta.addr,
1332 					GFP_ATOMIC);
1333 			return RX_DROP_MONITOR;
1334 		}
1335 		/*
1336 		 * Update counter and free packet here to avoid
1337 		 * counting this as a dropped packed.
1338 		 */
1339 		sta->rx_packets++;
1340 		dev_kfree_skb(rx->skb);
1341 		return RX_QUEUED;
1342 	}
1343 
1344 	return RX_CONTINUE;
1345 } /* ieee80211_rx_h_sta_process */
1346 
1347 static ieee80211_rx_result debug_noinline
1348 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1349 {
1350 	struct sk_buff *skb = rx->skb;
1351 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1352 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1353 	int keyidx;
1354 	int hdrlen;
1355 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1356 	struct ieee80211_key *sta_ptk = NULL;
1357 	int mmie_keyidx = -1;
1358 	__le16 fc;
1359 	const struct ieee80211_cipher_scheme *cs = NULL;
1360 
1361 	/*
1362 	 * Key selection 101
1363 	 *
1364 	 * There are four types of keys:
1365 	 *  - GTK (group keys)
1366 	 *  - IGTK (group keys for management frames)
1367 	 *  - PTK (pairwise keys)
1368 	 *  - STK (station-to-station pairwise keys)
1369 	 *
1370 	 * When selecting a key, we have to distinguish between multicast
1371 	 * (including broadcast) and unicast frames, the latter can only
1372 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1373 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1374 	 * unicast frames can also use key indices like GTKs. Hence, if we
1375 	 * don't have a PTK/STK we check the key index for a WEP key.
1376 	 *
1377 	 * Note that in a regular BSS, multicast frames are sent by the
1378 	 * AP only, associated stations unicast the frame to the AP first
1379 	 * which then multicasts it on their behalf.
1380 	 *
1381 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1382 	 * with each station, that is something we don't currently handle.
1383 	 * The spec seems to expect that one negotiates the same key with
1384 	 * every station but there's no such requirement; VLANs could be
1385 	 * possible.
1386 	 */
1387 
1388 	/*
1389 	 * No point in finding a key and decrypting if the frame is neither
1390 	 * addressed to us nor a multicast frame.
1391 	 */
1392 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1393 		return RX_CONTINUE;
1394 
1395 	/* start without a key */
1396 	rx->key = NULL;
1397 	fc = hdr->frame_control;
1398 
1399 	if (rx->sta) {
1400 		int keyid = rx->sta->ptk_idx;
1401 
1402 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1403 			cs = rx->sta->cipher_scheme;
1404 			keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1405 			if (unlikely(keyid < 0))
1406 				return RX_DROP_UNUSABLE;
1407 		}
1408 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1409 	}
1410 
1411 	if (!ieee80211_has_protected(fc))
1412 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1413 
1414 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1415 		rx->key = sta_ptk;
1416 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1417 		    (status->flag & RX_FLAG_IV_STRIPPED))
1418 			return RX_CONTINUE;
1419 		/* Skip decryption if the frame is not protected. */
1420 		if (!ieee80211_has_protected(fc))
1421 			return RX_CONTINUE;
1422 	} else if (mmie_keyidx >= 0) {
1423 		/* Broadcast/multicast robust management frame / BIP */
1424 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1425 		    (status->flag & RX_FLAG_IV_STRIPPED))
1426 			return RX_CONTINUE;
1427 
1428 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1429 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1430 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1431 		if (rx->sta)
1432 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1433 		if (!rx->key)
1434 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1435 	} else if (!ieee80211_has_protected(fc)) {
1436 		/*
1437 		 * The frame was not protected, so skip decryption. However, we
1438 		 * need to set rx->key if there is a key that could have been
1439 		 * used so that the frame may be dropped if encryption would
1440 		 * have been expected.
1441 		 */
1442 		struct ieee80211_key *key = NULL;
1443 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1444 		int i;
1445 
1446 		if (ieee80211_is_mgmt(fc) &&
1447 		    is_multicast_ether_addr(hdr->addr1) &&
1448 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1449 			rx->key = key;
1450 		else {
1451 			if (rx->sta) {
1452 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1453 					key = rcu_dereference(rx->sta->gtk[i]);
1454 					if (key)
1455 						break;
1456 				}
1457 			}
1458 			if (!key) {
1459 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1460 					key = rcu_dereference(sdata->keys[i]);
1461 					if (key)
1462 						break;
1463 				}
1464 			}
1465 			if (key)
1466 				rx->key = key;
1467 		}
1468 		return RX_CONTINUE;
1469 	} else {
1470 		u8 keyid;
1471 
1472 		/*
1473 		 * The device doesn't give us the IV so we won't be
1474 		 * able to look up the key. That's ok though, we
1475 		 * don't need to decrypt the frame, we just won't
1476 		 * be able to keep statistics accurate.
1477 		 * Except for key threshold notifications, should
1478 		 * we somehow allow the driver to tell us which key
1479 		 * the hardware used if this flag is set?
1480 		 */
1481 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1482 		    (status->flag & RX_FLAG_IV_STRIPPED))
1483 			return RX_CONTINUE;
1484 
1485 		hdrlen = ieee80211_hdrlen(fc);
1486 
1487 		if (cs) {
1488 			keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1489 
1490 			if (unlikely(keyidx < 0))
1491 				return RX_DROP_UNUSABLE;
1492 		} else {
1493 			if (rx->skb->len < 8 + hdrlen)
1494 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1495 			/*
1496 			 * no need to call ieee80211_wep_get_keyidx,
1497 			 * it verifies a bunch of things we've done already
1498 			 */
1499 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1500 			keyidx = keyid >> 6;
1501 		}
1502 
1503 		/* check per-station GTK first, if multicast packet */
1504 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1505 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1506 
1507 		/* if not found, try default key */
1508 		if (!rx->key) {
1509 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1510 
1511 			/*
1512 			 * RSNA-protected unicast frames should always be
1513 			 * sent with pairwise or station-to-station keys,
1514 			 * but for WEP we allow using a key index as well.
1515 			 */
1516 			if (rx->key &&
1517 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1518 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1519 			    !is_multicast_ether_addr(hdr->addr1))
1520 				rx->key = NULL;
1521 		}
1522 	}
1523 
1524 	if (rx->key) {
1525 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1526 			return RX_DROP_MONITOR;
1527 
1528 		rx->key->tx_rx_count++;
1529 		/* TODO: add threshold stuff again */
1530 	} else {
1531 		return RX_DROP_MONITOR;
1532 	}
1533 
1534 	switch (rx->key->conf.cipher) {
1535 	case WLAN_CIPHER_SUITE_WEP40:
1536 	case WLAN_CIPHER_SUITE_WEP104:
1537 		result = ieee80211_crypto_wep_decrypt(rx);
1538 		break;
1539 	case WLAN_CIPHER_SUITE_TKIP:
1540 		result = ieee80211_crypto_tkip_decrypt(rx);
1541 		break;
1542 	case WLAN_CIPHER_SUITE_CCMP:
1543 		result = ieee80211_crypto_ccmp_decrypt(rx);
1544 		break;
1545 	case WLAN_CIPHER_SUITE_AES_CMAC:
1546 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1547 		break;
1548 	default:
1549 		result = ieee80211_crypto_hw_decrypt(rx);
1550 	}
1551 
1552 	/* the hdr variable is invalid after the decrypt handlers */
1553 
1554 	/* either the frame has been decrypted or will be dropped */
1555 	status->flag |= RX_FLAG_DECRYPTED;
1556 
1557 	return result;
1558 }
1559 
1560 static inline struct ieee80211_fragment_entry *
1561 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1562 			 unsigned int frag, unsigned int seq, int rx_queue,
1563 			 struct sk_buff **skb)
1564 {
1565 	struct ieee80211_fragment_entry *entry;
1566 
1567 	entry = &sdata->fragments[sdata->fragment_next++];
1568 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1569 		sdata->fragment_next = 0;
1570 
1571 	if (!skb_queue_empty(&entry->skb_list))
1572 		__skb_queue_purge(&entry->skb_list);
1573 
1574 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1575 	*skb = NULL;
1576 	entry->first_frag_time = jiffies;
1577 	entry->seq = seq;
1578 	entry->rx_queue = rx_queue;
1579 	entry->last_frag = frag;
1580 	entry->ccmp = 0;
1581 	entry->extra_len = 0;
1582 
1583 	return entry;
1584 }
1585 
1586 static inline struct ieee80211_fragment_entry *
1587 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1588 			  unsigned int frag, unsigned int seq,
1589 			  int rx_queue, struct ieee80211_hdr *hdr)
1590 {
1591 	struct ieee80211_fragment_entry *entry;
1592 	int i, idx;
1593 
1594 	idx = sdata->fragment_next;
1595 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1596 		struct ieee80211_hdr *f_hdr;
1597 
1598 		idx--;
1599 		if (idx < 0)
1600 			idx = IEEE80211_FRAGMENT_MAX - 1;
1601 
1602 		entry = &sdata->fragments[idx];
1603 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1604 		    entry->rx_queue != rx_queue ||
1605 		    entry->last_frag + 1 != frag)
1606 			continue;
1607 
1608 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1609 
1610 		/*
1611 		 * Check ftype and addresses are equal, else check next fragment
1612 		 */
1613 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1614 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1615 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1616 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1617 			continue;
1618 
1619 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1620 			__skb_queue_purge(&entry->skb_list);
1621 			continue;
1622 		}
1623 		return entry;
1624 	}
1625 
1626 	return NULL;
1627 }
1628 
1629 static ieee80211_rx_result debug_noinline
1630 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1631 {
1632 	struct ieee80211_hdr *hdr;
1633 	u16 sc;
1634 	__le16 fc;
1635 	unsigned int frag, seq;
1636 	struct ieee80211_fragment_entry *entry;
1637 	struct sk_buff *skb;
1638 	struct ieee80211_rx_status *status;
1639 
1640 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1641 	fc = hdr->frame_control;
1642 
1643 	if (ieee80211_is_ctl(fc))
1644 		return RX_CONTINUE;
1645 
1646 	sc = le16_to_cpu(hdr->seq_ctrl);
1647 	frag = sc & IEEE80211_SCTL_FRAG;
1648 
1649 	if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1650 		   is_multicast_ether_addr(hdr->addr1))) {
1651 		/* not fragmented */
1652 		goto out;
1653 	}
1654 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1655 
1656 	if (skb_linearize(rx->skb))
1657 		return RX_DROP_UNUSABLE;
1658 
1659 	/*
1660 	 *  skb_linearize() might change the skb->data and
1661 	 *  previously cached variables (in this case, hdr) need to
1662 	 *  be refreshed with the new data.
1663 	 */
1664 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1665 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1666 
1667 	if (frag == 0) {
1668 		/* This is the first fragment of a new frame. */
1669 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1670 						 rx->seqno_idx, &(rx->skb));
1671 		if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1672 		    ieee80211_has_protected(fc)) {
1673 			int queue = rx->security_idx;
1674 			/* Store CCMP PN so that we can verify that the next
1675 			 * fragment has a sequential PN value. */
1676 			entry->ccmp = 1;
1677 			memcpy(entry->last_pn,
1678 			       rx->key->u.ccmp.rx_pn[queue],
1679 			       IEEE80211_CCMP_PN_LEN);
1680 		}
1681 		return RX_QUEUED;
1682 	}
1683 
1684 	/* This is a fragment for a frame that should already be pending in
1685 	 * fragment cache. Add this fragment to the end of the pending entry.
1686 	 */
1687 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1688 					  rx->seqno_idx, hdr);
1689 	if (!entry) {
1690 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1691 		return RX_DROP_MONITOR;
1692 	}
1693 
1694 	/* Verify that MPDUs within one MSDU have sequential PN values.
1695 	 * (IEEE 802.11i, 8.3.3.4.5) */
1696 	if (entry->ccmp) {
1697 		int i;
1698 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1699 		int queue;
1700 		if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1701 			return RX_DROP_UNUSABLE;
1702 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1703 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1704 			pn[i]++;
1705 			if (pn[i])
1706 				break;
1707 		}
1708 		queue = rx->security_idx;
1709 		rpn = rx->key->u.ccmp.rx_pn[queue];
1710 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1711 			return RX_DROP_UNUSABLE;
1712 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1713 	}
1714 
1715 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1716 	__skb_queue_tail(&entry->skb_list, rx->skb);
1717 	entry->last_frag = frag;
1718 	entry->extra_len += rx->skb->len;
1719 	if (ieee80211_has_morefrags(fc)) {
1720 		rx->skb = NULL;
1721 		return RX_QUEUED;
1722 	}
1723 
1724 	rx->skb = __skb_dequeue(&entry->skb_list);
1725 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1726 		I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1727 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1728 					      GFP_ATOMIC))) {
1729 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1730 			__skb_queue_purge(&entry->skb_list);
1731 			return RX_DROP_UNUSABLE;
1732 		}
1733 	}
1734 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1735 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1736 		dev_kfree_skb(skb);
1737 	}
1738 
1739 	/* Complete frame has been reassembled - process it now */
1740 	status = IEEE80211_SKB_RXCB(rx->skb);
1741 	status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1742 
1743  out:
1744 	if (rx->sta)
1745 		rx->sta->rx_packets++;
1746 	if (is_multicast_ether_addr(hdr->addr1))
1747 		rx->local->dot11MulticastReceivedFrameCount++;
1748 	else
1749 		ieee80211_led_rx(rx->local);
1750 	return RX_CONTINUE;
1751 }
1752 
1753 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1754 {
1755 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1756 		return -EACCES;
1757 
1758 	return 0;
1759 }
1760 
1761 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1762 {
1763 	struct sk_buff *skb = rx->skb;
1764 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1765 
1766 	/*
1767 	 * Pass through unencrypted frames if the hardware has
1768 	 * decrypted them already.
1769 	 */
1770 	if (status->flag & RX_FLAG_DECRYPTED)
1771 		return 0;
1772 
1773 	/* Drop unencrypted frames if key is set. */
1774 	if (unlikely(!ieee80211_has_protected(fc) &&
1775 		     !ieee80211_is_nullfunc(fc) &&
1776 		     ieee80211_is_data(fc) &&
1777 		     (rx->key || rx->sdata->drop_unencrypted)))
1778 		return -EACCES;
1779 
1780 	return 0;
1781 }
1782 
1783 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1784 {
1785 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1786 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1787 	__le16 fc = hdr->frame_control;
1788 
1789 	/*
1790 	 * Pass through unencrypted frames if the hardware has
1791 	 * decrypted them already.
1792 	 */
1793 	if (status->flag & RX_FLAG_DECRYPTED)
1794 		return 0;
1795 
1796 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1797 		if (unlikely(!ieee80211_has_protected(fc) &&
1798 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1799 			     rx->key)) {
1800 			if (ieee80211_is_deauth(fc) ||
1801 			    ieee80211_is_disassoc(fc))
1802 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1803 							     rx->skb->data,
1804 							     rx->skb->len);
1805 			return -EACCES;
1806 		}
1807 		/* BIP does not use Protected field, so need to check MMIE */
1808 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1809 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1810 			if (ieee80211_is_deauth(fc) ||
1811 			    ieee80211_is_disassoc(fc))
1812 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1813 							     rx->skb->data,
1814 							     rx->skb->len);
1815 			return -EACCES;
1816 		}
1817 		/*
1818 		 * When using MFP, Action frames are not allowed prior to
1819 		 * having configured keys.
1820 		 */
1821 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1822 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
1823 			return -EACCES;
1824 	}
1825 
1826 	return 0;
1827 }
1828 
1829 static int
1830 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1831 {
1832 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1833 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1834 	bool check_port_control = false;
1835 	struct ethhdr *ehdr;
1836 	int ret;
1837 
1838 	*port_control = false;
1839 	if (ieee80211_has_a4(hdr->frame_control) &&
1840 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1841 		return -1;
1842 
1843 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1844 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1845 
1846 		if (!sdata->u.mgd.use_4addr)
1847 			return -1;
1848 		else
1849 			check_port_control = true;
1850 	}
1851 
1852 	if (is_multicast_ether_addr(hdr->addr1) &&
1853 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1854 		return -1;
1855 
1856 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1857 	if (ret < 0)
1858 		return ret;
1859 
1860 	ehdr = (struct ethhdr *) rx->skb->data;
1861 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
1862 		*port_control = true;
1863 	else if (check_port_control)
1864 		return -1;
1865 
1866 	return 0;
1867 }
1868 
1869 /*
1870  * requires that rx->skb is a frame with ethernet header
1871  */
1872 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1873 {
1874 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1875 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1876 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1877 
1878 	/*
1879 	 * Allow EAPOL frames to us/the PAE group address regardless
1880 	 * of whether the frame was encrypted or not.
1881 	 */
1882 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1883 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1884 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1885 		return true;
1886 
1887 	if (ieee80211_802_1x_port_control(rx) ||
1888 	    ieee80211_drop_unencrypted(rx, fc))
1889 		return false;
1890 
1891 	return true;
1892 }
1893 
1894 /*
1895  * requires that rx->skb is a frame with ethernet header
1896  */
1897 static void
1898 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1899 {
1900 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1901 	struct net_device *dev = sdata->dev;
1902 	struct sk_buff *skb, *xmit_skb;
1903 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1904 	struct sta_info *dsta;
1905 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1906 
1907 	skb = rx->skb;
1908 	xmit_skb = NULL;
1909 
1910 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1911 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1912 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1913 	    (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1914 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1915 		if (is_multicast_ether_addr(ehdr->h_dest)) {
1916 			/*
1917 			 * send multicast frames both to higher layers in
1918 			 * local net stack and back to the wireless medium
1919 			 */
1920 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
1921 			if (!xmit_skb)
1922 				net_info_ratelimited("%s: failed to clone multicast frame\n",
1923 						    dev->name);
1924 		} else {
1925 			dsta = sta_info_get(sdata, skb->data);
1926 			if (dsta) {
1927 				/*
1928 				 * The destination station is associated to
1929 				 * this AP (in this VLAN), so send the frame
1930 				 * directly to it and do not pass it to local
1931 				 * net stack.
1932 				 */
1933 				xmit_skb = skb;
1934 				skb = NULL;
1935 			}
1936 		}
1937 	}
1938 
1939 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1940 	if (skb) {
1941 		/* 'align' will only take the values 0 or 2 here since all
1942 		 * frames are required to be aligned to 2-byte boundaries
1943 		 * when being passed to mac80211; the code here works just
1944 		 * as well if that isn't true, but mac80211 assumes it can
1945 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
1946 		 */
1947 		int align;
1948 
1949 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
1950 		if (align) {
1951 			if (WARN_ON(skb_headroom(skb) < 3)) {
1952 				dev_kfree_skb(skb);
1953 				skb = NULL;
1954 			} else {
1955 				u8 *data = skb->data;
1956 				size_t len = skb_headlen(skb);
1957 				skb->data -= align;
1958 				memmove(skb->data, data, len);
1959 				skb_set_tail_pointer(skb, len);
1960 			}
1961 		}
1962 	}
1963 #endif
1964 
1965 	if (skb) {
1966 		/* deliver to local stack */
1967 		skb->protocol = eth_type_trans(skb, dev);
1968 		memset(skb->cb, 0, sizeof(skb->cb));
1969 		if (rx->local->napi)
1970 			napi_gro_receive(rx->local->napi, skb);
1971 		else
1972 			netif_receive_skb(skb);
1973 	}
1974 
1975 	if (xmit_skb) {
1976 		/*
1977 		 * Send to wireless media and increase priority by 256 to
1978 		 * keep the received priority instead of reclassifying
1979 		 * the frame (see cfg80211_classify8021d).
1980 		 */
1981 		xmit_skb->priority += 256;
1982 		xmit_skb->protocol = htons(ETH_P_802_3);
1983 		skb_reset_network_header(xmit_skb);
1984 		skb_reset_mac_header(xmit_skb);
1985 		dev_queue_xmit(xmit_skb);
1986 	}
1987 }
1988 
1989 static ieee80211_rx_result debug_noinline
1990 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1991 {
1992 	struct net_device *dev = rx->sdata->dev;
1993 	struct sk_buff *skb = rx->skb;
1994 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1995 	__le16 fc = hdr->frame_control;
1996 	struct sk_buff_head frame_list;
1997 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1998 
1999 	if (unlikely(!ieee80211_is_data(fc)))
2000 		return RX_CONTINUE;
2001 
2002 	if (unlikely(!ieee80211_is_data_present(fc)))
2003 		return RX_DROP_MONITOR;
2004 
2005 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2006 		return RX_CONTINUE;
2007 
2008 	if (ieee80211_has_a4(hdr->frame_control) &&
2009 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2010 	    !rx->sdata->u.vlan.sta)
2011 		return RX_DROP_UNUSABLE;
2012 
2013 	if (is_multicast_ether_addr(hdr->addr1) &&
2014 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2015 	      rx->sdata->u.vlan.sta) ||
2016 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2017 	      rx->sdata->u.mgd.use_4addr)))
2018 		return RX_DROP_UNUSABLE;
2019 
2020 	skb->dev = dev;
2021 	__skb_queue_head_init(&frame_list);
2022 
2023 	if (skb_linearize(skb))
2024 		return RX_DROP_UNUSABLE;
2025 
2026 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2027 				 rx->sdata->vif.type,
2028 				 rx->local->hw.extra_tx_headroom, true);
2029 
2030 	while (!skb_queue_empty(&frame_list)) {
2031 		rx->skb = __skb_dequeue(&frame_list);
2032 
2033 		if (!ieee80211_frame_allowed(rx, fc)) {
2034 			dev_kfree_skb(rx->skb);
2035 			continue;
2036 		}
2037 		dev->stats.rx_packets++;
2038 		dev->stats.rx_bytes += rx->skb->len;
2039 
2040 		ieee80211_deliver_skb(rx);
2041 	}
2042 
2043 	return RX_QUEUED;
2044 }
2045 
2046 #ifdef CONFIG_MAC80211_MESH
2047 static ieee80211_rx_result
2048 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2049 {
2050 	struct ieee80211_hdr *fwd_hdr, *hdr;
2051 	struct ieee80211_tx_info *info;
2052 	struct ieee80211s_hdr *mesh_hdr;
2053 	struct sk_buff *skb = rx->skb, *fwd_skb;
2054 	struct ieee80211_local *local = rx->local;
2055 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2056 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2057 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2058 	u16 q, hdrlen;
2059 
2060 	hdr = (struct ieee80211_hdr *) skb->data;
2061 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2062 
2063 	/* make sure fixed part of mesh header is there, also checks skb len */
2064 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2065 		return RX_DROP_MONITOR;
2066 
2067 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2068 
2069 	/* make sure full mesh header is there, also checks skb len */
2070 	if (!pskb_may_pull(rx->skb,
2071 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2072 		return RX_DROP_MONITOR;
2073 
2074 	/* reload pointers */
2075 	hdr = (struct ieee80211_hdr *) skb->data;
2076 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2077 
2078 	/* frame is in RMC, don't forward */
2079 	if (ieee80211_is_data(hdr->frame_control) &&
2080 	    is_multicast_ether_addr(hdr->addr1) &&
2081 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2082 		return RX_DROP_MONITOR;
2083 
2084 	if (!ieee80211_is_data(hdr->frame_control) ||
2085 	    !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2086 		return RX_CONTINUE;
2087 
2088 	if (!mesh_hdr->ttl)
2089 		return RX_DROP_MONITOR;
2090 
2091 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2092 		struct mesh_path *mppath;
2093 		char *proxied_addr;
2094 		char *mpp_addr;
2095 
2096 		if (is_multicast_ether_addr(hdr->addr1)) {
2097 			mpp_addr = hdr->addr3;
2098 			proxied_addr = mesh_hdr->eaddr1;
2099 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2100 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2101 			mpp_addr = hdr->addr4;
2102 			proxied_addr = mesh_hdr->eaddr2;
2103 		} else {
2104 			return RX_DROP_MONITOR;
2105 		}
2106 
2107 		rcu_read_lock();
2108 		mppath = mpp_path_lookup(sdata, proxied_addr);
2109 		if (!mppath) {
2110 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2111 		} else {
2112 			spin_lock_bh(&mppath->state_lock);
2113 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2114 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2115 			spin_unlock_bh(&mppath->state_lock);
2116 		}
2117 		rcu_read_unlock();
2118 	}
2119 
2120 	/* Frame has reached destination.  Don't forward */
2121 	if (!is_multicast_ether_addr(hdr->addr1) &&
2122 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2123 		return RX_CONTINUE;
2124 
2125 	q = ieee80211_select_queue_80211(sdata, skb, hdr);
2126 	if (ieee80211_queue_stopped(&local->hw, q)) {
2127 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2128 		return RX_DROP_MONITOR;
2129 	}
2130 	skb_set_queue_mapping(skb, q);
2131 
2132 	if (!--mesh_hdr->ttl) {
2133 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2134 		goto out;
2135 	}
2136 
2137 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2138 		goto out;
2139 
2140 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
2141 	if (!fwd_skb) {
2142 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2143 				    sdata->name);
2144 		goto out;
2145 	}
2146 
2147 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2148 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2149 	info = IEEE80211_SKB_CB(fwd_skb);
2150 	memset(info, 0, sizeof(*info));
2151 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2152 	info->control.vif = &rx->sdata->vif;
2153 	info->control.jiffies = jiffies;
2154 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2155 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2156 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2157 		/* update power mode indication when forwarding */
2158 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2159 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2160 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2161 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2162 	} else {
2163 		/* unable to resolve next hop */
2164 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2165 				   fwd_hdr->addr3, 0,
2166 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2167 				   fwd_hdr->addr2);
2168 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2169 		kfree_skb(fwd_skb);
2170 		return RX_DROP_MONITOR;
2171 	}
2172 
2173 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2174 	ieee80211_add_pending_skb(local, fwd_skb);
2175  out:
2176 	if (is_multicast_ether_addr(hdr->addr1) ||
2177 	    sdata->dev->flags & IFF_PROMISC)
2178 		return RX_CONTINUE;
2179 	else
2180 		return RX_DROP_MONITOR;
2181 }
2182 #endif
2183 
2184 static ieee80211_rx_result debug_noinline
2185 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2186 {
2187 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2188 	struct ieee80211_local *local = rx->local;
2189 	struct net_device *dev = sdata->dev;
2190 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2191 	__le16 fc = hdr->frame_control;
2192 	bool port_control;
2193 	int err;
2194 
2195 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2196 		return RX_CONTINUE;
2197 
2198 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2199 		return RX_DROP_MONITOR;
2200 
2201 	/*
2202 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2203 	 * also drop the frame to cooked monitor interfaces.
2204 	 */
2205 	if (ieee80211_has_a4(hdr->frame_control) &&
2206 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2207 		if (rx->sta &&
2208 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2209 			cfg80211_rx_unexpected_4addr_frame(
2210 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2211 		return RX_DROP_MONITOR;
2212 	}
2213 
2214 	err = __ieee80211_data_to_8023(rx, &port_control);
2215 	if (unlikely(err))
2216 		return RX_DROP_UNUSABLE;
2217 
2218 	if (!ieee80211_frame_allowed(rx, fc))
2219 		return RX_DROP_MONITOR;
2220 
2221 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2222 	    unlikely(port_control) && sdata->bss) {
2223 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2224 				     u.ap);
2225 		dev = sdata->dev;
2226 		rx->sdata = sdata;
2227 	}
2228 
2229 	rx->skb->dev = dev;
2230 
2231 	dev->stats.rx_packets++;
2232 	dev->stats.rx_bytes += rx->skb->len;
2233 
2234 	if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2235 	    !is_multicast_ether_addr(
2236 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2237 	    (!local->scanning &&
2238 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2239 			mod_timer(&local->dynamic_ps_timer, jiffies +
2240 			 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2241 	}
2242 
2243 	ieee80211_deliver_skb(rx);
2244 
2245 	return RX_QUEUED;
2246 }
2247 
2248 static ieee80211_rx_result debug_noinline
2249 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2250 {
2251 	struct sk_buff *skb = rx->skb;
2252 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2253 	struct tid_ampdu_rx *tid_agg_rx;
2254 	u16 start_seq_num;
2255 	u16 tid;
2256 
2257 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2258 		return RX_CONTINUE;
2259 
2260 	if (ieee80211_is_back_req(bar->frame_control)) {
2261 		struct {
2262 			__le16 control, start_seq_num;
2263 		} __packed bar_data;
2264 
2265 		if (!rx->sta)
2266 			return RX_DROP_MONITOR;
2267 
2268 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2269 				  &bar_data, sizeof(bar_data)))
2270 			return RX_DROP_MONITOR;
2271 
2272 		tid = le16_to_cpu(bar_data.control) >> 12;
2273 
2274 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2275 		if (!tid_agg_rx)
2276 			return RX_DROP_MONITOR;
2277 
2278 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2279 
2280 		/* reset session timer */
2281 		if (tid_agg_rx->timeout)
2282 			mod_timer(&tid_agg_rx->session_timer,
2283 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2284 
2285 		spin_lock(&tid_agg_rx->reorder_lock);
2286 		/* release stored frames up to start of BAR */
2287 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2288 						 start_seq_num, frames);
2289 		spin_unlock(&tid_agg_rx->reorder_lock);
2290 
2291 		kfree_skb(skb);
2292 		return RX_QUEUED;
2293 	}
2294 
2295 	/*
2296 	 * After this point, we only want management frames,
2297 	 * so we can drop all remaining control frames to
2298 	 * cooked monitor interfaces.
2299 	 */
2300 	return RX_DROP_MONITOR;
2301 }
2302 
2303 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2304 					   struct ieee80211_mgmt *mgmt,
2305 					   size_t len)
2306 {
2307 	struct ieee80211_local *local = sdata->local;
2308 	struct sk_buff *skb;
2309 	struct ieee80211_mgmt *resp;
2310 
2311 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2312 		/* Not to own unicast address */
2313 		return;
2314 	}
2315 
2316 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2317 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2318 		/* Not from the current AP or not associated yet. */
2319 		return;
2320 	}
2321 
2322 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2323 		/* Too short SA Query request frame */
2324 		return;
2325 	}
2326 
2327 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2328 	if (skb == NULL)
2329 		return;
2330 
2331 	skb_reserve(skb, local->hw.extra_tx_headroom);
2332 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2333 	memset(resp, 0, 24);
2334 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2335 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2336 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2337 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2338 					  IEEE80211_STYPE_ACTION);
2339 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2340 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2341 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2342 	memcpy(resp->u.action.u.sa_query.trans_id,
2343 	       mgmt->u.action.u.sa_query.trans_id,
2344 	       WLAN_SA_QUERY_TR_ID_LEN);
2345 
2346 	ieee80211_tx_skb(sdata, skb);
2347 }
2348 
2349 static ieee80211_rx_result debug_noinline
2350 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2351 {
2352 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2353 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2354 
2355 	/*
2356 	 * From here on, look only at management frames.
2357 	 * Data and control frames are already handled,
2358 	 * and unknown (reserved) frames are useless.
2359 	 */
2360 	if (rx->skb->len < 24)
2361 		return RX_DROP_MONITOR;
2362 
2363 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2364 		return RX_DROP_MONITOR;
2365 
2366 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2367 	    ieee80211_is_beacon(mgmt->frame_control) &&
2368 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2369 		int sig = 0;
2370 
2371 		if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2372 			sig = status->signal;
2373 
2374 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2375 					    rx->skb->data, rx->skb->len,
2376 					    status->freq, sig);
2377 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2378 	}
2379 
2380 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2381 		return RX_DROP_MONITOR;
2382 
2383 	if (ieee80211_drop_unencrypted_mgmt(rx))
2384 		return RX_DROP_UNUSABLE;
2385 
2386 	return RX_CONTINUE;
2387 }
2388 
2389 static ieee80211_rx_result debug_noinline
2390 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2391 {
2392 	struct ieee80211_local *local = rx->local;
2393 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2394 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2395 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2396 	int len = rx->skb->len;
2397 
2398 	if (!ieee80211_is_action(mgmt->frame_control))
2399 		return RX_CONTINUE;
2400 
2401 	/* drop too small frames */
2402 	if (len < IEEE80211_MIN_ACTION_SIZE)
2403 		return RX_DROP_UNUSABLE;
2404 
2405 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2406 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2407 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2408 		return RX_DROP_UNUSABLE;
2409 
2410 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2411 		return RX_DROP_UNUSABLE;
2412 
2413 	switch (mgmt->u.action.category) {
2414 	case WLAN_CATEGORY_HT:
2415 		/* reject HT action frames from stations not supporting HT */
2416 		if (!rx->sta->sta.ht_cap.ht_supported)
2417 			goto invalid;
2418 
2419 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2420 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2421 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2422 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2423 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2424 			break;
2425 
2426 		/* verify action & smps_control/chanwidth are present */
2427 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2428 			goto invalid;
2429 
2430 		switch (mgmt->u.action.u.ht_smps.action) {
2431 		case WLAN_HT_ACTION_SMPS: {
2432 			struct ieee80211_supported_band *sband;
2433 			enum ieee80211_smps_mode smps_mode;
2434 
2435 			/* convert to HT capability */
2436 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2437 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2438 				smps_mode = IEEE80211_SMPS_OFF;
2439 				break;
2440 			case WLAN_HT_SMPS_CONTROL_STATIC:
2441 				smps_mode = IEEE80211_SMPS_STATIC;
2442 				break;
2443 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2444 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2445 				break;
2446 			default:
2447 				goto invalid;
2448 			}
2449 
2450 			/* if no change do nothing */
2451 			if (rx->sta->sta.smps_mode == smps_mode)
2452 				goto handled;
2453 			rx->sta->sta.smps_mode = smps_mode;
2454 
2455 			sband = rx->local->hw.wiphy->bands[status->band];
2456 
2457 			rate_control_rate_update(local, sband, rx->sta,
2458 						 IEEE80211_RC_SMPS_CHANGED);
2459 			goto handled;
2460 		}
2461 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2462 			struct ieee80211_supported_band *sband;
2463 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2464 			enum ieee80211_sta_rx_bandwidth new_bw;
2465 
2466 			/* If it doesn't support 40 MHz it can't change ... */
2467 			if (!(rx->sta->sta.ht_cap.cap &
2468 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2469 				goto handled;
2470 
2471 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2472 				new_bw = IEEE80211_STA_RX_BW_20;
2473 			else
2474 				new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2475 
2476 			if (rx->sta->sta.bandwidth == new_bw)
2477 				goto handled;
2478 
2479 			sband = rx->local->hw.wiphy->bands[status->band];
2480 
2481 			rate_control_rate_update(local, sband, rx->sta,
2482 						 IEEE80211_RC_BW_CHANGED);
2483 			goto handled;
2484 		}
2485 		default:
2486 			goto invalid;
2487 		}
2488 
2489 		break;
2490 	case WLAN_CATEGORY_PUBLIC:
2491 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2492 			goto invalid;
2493 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2494 			break;
2495 		if (!rx->sta)
2496 			break;
2497 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2498 			break;
2499 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2500 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2501 			break;
2502 		if (len < offsetof(struct ieee80211_mgmt,
2503 				   u.action.u.ext_chan_switch.variable))
2504 			goto invalid;
2505 		goto queue;
2506 	case WLAN_CATEGORY_VHT:
2507 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2508 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2509 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2510 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2511 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2512 			break;
2513 
2514 		/* verify action code is present */
2515 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2516 			goto invalid;
2517 
2518 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2519 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2520 			u8 opmode;
2521 
2522 			/* verify opmode is present */
2523 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2524 				goto invalid;
2525 
2526 			opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2527 
2528 			ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2529 						    opmode, status->band,
2530 						    false);
2531 			goto handled;
2532 		}
2533 		default:
2534 			break;
2535 		}
2536 		break;
2537 	case WLAN_CATEGORY_BACK:
2538 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2539 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2540 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2541 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2542 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2543 			break;
2544 
2545 		/* verify action_code is present */
2546 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2547 			break;
2548 
2549 		switch (mgmt->u.action.u.addba_req.action_code) {
2550 		case WLAN_ACTION_ADDBA_REQ:
2551 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2552 				   sizeof(mgmt->u.action.u.addba_req)))
2553 				goto invalid;
2554 			break;
2555 		case WLAN_ACTION_ADDBA_RESP:
2556 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2557 				   sizeof(mgmt->u.action.u.addba_resp)))
2558 				goto invalid;
2559 			break;
2560 		case WLAN_ACTION_DELBA:
2561 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2562 				   sizeof(mgmt->u.action.u.delba)))
2563 				goto invalid;
2564 			break;
2565 		default:
2566 			goto invalid;
2567 		}
2568 
2569 		goto queue;
2570 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2571 		/* verify action_code is present */
2572 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2573 			break;
2574 
2575 		switch (mgmt->u.action.u.measurement.action_code) {
2576 		case WLAN_ACTION_SPCT_MSR_REQ:
2577 			if (status->band != IEEE80211_BAND_5GHZ)
2578 				break;
2579 
2580 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2581 				   sizeof(mgmt->u.action.u.measurement)))
2582 				break;
2583 
2584 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2585 				break;
2586 
2587 			ieee80211_process_measurement_req(sdata, mgmt, len);
2588 			goto handled;
2589 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2590 			u8 *bssid;
2591 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2592 				   sizeof(mgmt->u.action.u.chan_switch)))
2593 				break;
2594 
2595 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2596 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2597 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2598 				break;
2599 
2600 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2601 				bssid = sdata->u.mgd.bssid;
2602 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2603 				bssid = sdata->u.ibss.bssid;
2604 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2605 				bssid = mgmt->sa;
2606 			else
2607 				break;
2608 
2609 			if (!ether_addr_equal(mgmt->bssid, bssid))
2610 				break;
2611 
2612 			goto queue;
2613 			}
2614 		}
2615 		break;
2616 	case WLAN_CATEGORY_SA_QUERY:
2617 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2618 			   sizeof(mgmt->u.action.u.sa_query)))
2619 			break;
2620 
2621 		switch (mgmt->u.action.u.sa_query.action) {
2622 		case WLAN_ACTION_SA_QUERY_REQUEST:
2623 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2624 				break;
2625 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2626 			goto handled;
2627 		}
2628 		break;
2629 	case WLAN_CATEGORY_SELF_PROTECTED:
2630 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2631 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2632 			break;
2633 
2634 		switch (mgmt->u.action.u.self_prot.action_code) {
2635 		case WLAN_SP_MESH_PEERING_OPEN:
2636 		case WLAN_SP_MESH_PEERING_CLOSE:
2637 		case WLAN_SP_MESH_PEERING_CONFIRM:
2638 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2639 				goto invalid;
2640 			if (sdata->u.mesh.user_mpm)
2641 				/* userspace handles this frame */
2642 				break;
2643 			goto queue;
2644 		case WLAN_SP_MGK_INFORM:
2645 		case WLAN_SP_MGK_ACK:
2646 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2647 				goto invalid;
2648 			break;
2649 		}
2650 		break;
2651 	case WLAN_CATEGORY_MESH_ACTION:
2652 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2653 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
2654 			break;
2655 
2656 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2657 			break;
2658 		if (mesh_action_is_path_sel(mgmt) &&
2659 		    !mesh_path_sel_is_hwmp(sdata))
2660 			break;
2661 		goto queue;
2662 	}
2663 
2664 	return RX_CONTINUE;
2665 
2666  invalid:
2667 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2668 	/* will return in the next handlers */
2669 	return RX_CONTINUE;
2670 
2671  handled:
2672 	if (rx->sta)
2673 		rx->sta->rx_packets++;
2674 	dev_kfree_skb(rx->skb);
2675 	return RX_QUEUED;
2676 
2677  queue:
2678 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2679 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2680 	ieee80211_queue_work(&local->hw, &sdata->work);
2681 	if (rx->sta)
2682 		rx->sta->rx_packets++;
2683 	return RX_QUEUED;
2684 }
2685 
2686 static ieee80211_rx_result debug_noinline
2687 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2688 {
2689 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2690 	int sig = 0;
2691 
2692 	/* skip known-bad action frames and return them in the next handler */
2693 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2694 		return RX_CONTINUE;
2695 
2696 	/*
2697 	 * Getting here means the kernel doesn't know how to handle
2698 	 * it, but maybe userspace does ... include returned frames
2699 	 * so userspace can register for those to know whether ones
2700 	 * it transmitted were processed or returned.
2701 	 */
2702 
2703 	if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2704 		sig = status->signal;
2705 
2706 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2707 			     rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) {
2708 		if (rx->sta)
2709 			rx->sta->rx_packets++;
2710 		dev_kfree_skb(rx->skb);
2711 		return RX_QUEUED;
2712 	}
2713 
2714 	return RX_CONTINUE;
2715 }
2716 
2717 static ieee80211_rx_result debug_noinline
2718 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2719 {
2720 	struct ieee80211_local *local = rx->local;
2721 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2722 	struct sk_buff *nskb;
2723 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2724 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2725 
2726 	if (!ieee80211_is_action(mgmt->frame_control))
2727 		return RX_CONTINUE;
2728 
2729 	/*
2730 	 * For AP mode, hostapd is responsible for handling any action
2731 	 * frames that we didn't handle, including returning unknown
2732 	 * ones. For all other modes we will return them to the sender,
2733 	 * setting the 0x80 bit in the action category, as required by
2734 	 * 802.11-2012 9.24.4.
2735 	 * Newer versions of hostapd shall also use the management frame
2736 	 * registration mechanisms, but older ones still use cooked
2737 	 * monitor interfaces so push all frames there.
2738 	 */
2739 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2740 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
2741 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2742 		return RX_DROP_MONITOR;
2743 
2744 	if (is_multicast_ether_addr(mgmt->da))
2745 		return RX_DROP_MONITOR;
2746 
2747 	/* do not return rejected action frames */
2748 	if (mgmt->u.action.category & 0x80)
2749 		return RX_DROP_UNUSABLE;
2750 
2751 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2752 			       GFP_ATOMIC);
2753 	if (nskb) {
2754 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2755 
2756 		nmgmt->u.action.category |= 0x80;
2757 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2758 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2759 
2760 		memset(nskb->cb, 0, sizeof(nskb->cb));
2761 
2762 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2763 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2764 
2765 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2766 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2767 				      IEEE80211_TX_CTL_NO_CCK_RATE;
2768 			if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2769 				info->hw_queue =
2770 					local->hw.offchannel_tx_hw_queue;
2771 		}
2772 
2773 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2774 					    status->band);
2775 	}
2776 	dev_kfree_skb(rx->skb);
2777 	return RX_QUEUED;
2778 }
2779 
2780 static ieee80211_rx_result debug_noinline
2781 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2782 {
2783 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2784 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2785 	__le16 stype;
2786 
2787 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2788 
2789 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2790 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2791 	    sdata->vif.type != NL80211_IFTYPE_STATION)
2792 		return RX_DROP_MONITOR;
2793 
2794 	switch (stype) {
2795 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
2796 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
2797 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2798 		/* process for all: mesh, mlme, ibss */
2799 		break;
2800 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2801 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2802 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2803 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2804 		if (is_multicast_ether_addr(mgmt->da) &&
2805 		    !is_broadcast_ether_addr(mgmt->da))
2806 			return RX_DROP_MONITOR;
2807 
2808 		/* process only for station */
2809 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2810 			return RX_DROP_MONITOR;
2811 		break;
2812 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2813 		/* process only for ibss and mesh */
2814 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2815 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2816 			return RX_DROP_MONITOR;
2817 		break;
2818 	default:
2819 		return RX_DROP_MONITOR;
2820 	}
2821 
2822 	/* queue up frame and kick off work to process it */
2823 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2824 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2825 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
2826 	if (rx->sta)
2827 		rx->sta->rx_packets++;
2828 
2829 	return RX_QUEUED;
2830 }
2831 
2832 /* TODO: use IEEE80211_RX_FRAGMENTED */
2833 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2834 					struct ieee80211_rate *rate)
2835 {
2836 	struct ieee80211_sub_if_data *sdata;
2837 	struct ieee80211_local *local = rx->local;
2838 	struct sk_buff *skb = rx->skb, *skb2;
2839 	struct net_device *prev_dev = NULL;
2840 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2841 	int needed_headroom;
2842 
2843 	/*
2844 	 * If cooked monitor has been processed already, then
2845 	 * don't do it again. If not, set the flag.
2846 	 */
2847 	if (rx->flags & IEEE80211_RX_CMNTR)
2848 		goto out_free_skb;
2849 	rx->flags |= IEEE80211_RX_CMNTR;
2850 
2851 	/* If there are no cooked monitor interfaces, just free the SKB */
2852 	if (!local->cooked_mntrs)
2853 		goto out_free_skb;
2854 
2855 	/* room for the radiotap header based on driver features */
2856 	needed_headroom = ieee80211_rx_radiotap_space(local, status);
2857 
2858 	if (skb_headroom(skb) < needed_headroom &&
2859 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2860 		goto out_free_skb;
2861 
2862 	/* prepend radiotap information */
2863 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2864 					 false);
2865 
2866 	skb_set_mac_header(skb, 0);
2867 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2868 	skb->pkt_type = PACKET_OTHERHOST;
2869 	skb->protocol = htons(ETH_P_802_2);
2870 
2871 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2872 		if (!ieee80211_sdata_running(sdata))
2873 			continue;
2874 
2875 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2876 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2877 			continue;
2878 
2879 		if (prev_dev) {
2880 			skb2 = skb_clone(skb, GFP_ATOMIC);
2881 			if (skb2) {
2882 				skb2->dev = prev_dev;
2883 				netif_receive_skb(skb2);
2884 			}
2885 		}
2886 
2887 		prev_dev = sdata->dev;
2888 		sdata->dev->stats.rx_packets++;
2889 		sdata->dev->stats.rx_bytes += skb->len;
2890 	}
2891 
2892 	if (prev_dev) {
2893 		skb->dev = prev_dev;
2894 		netif_receive_skb(skb);
2895 		return;
2896 	}
2897 
2898  out_free_skb:
2899 	dev_kfree_skb(skb);
2900 }
2901 
2902 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2903 					 ieee80211_rx_result res)
2904 {
2905 	switch (res) {
2906 	case RX_DROP_MONITOR:
2907 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2908 		if (rx->sta)
2909 			rx->sta->rx_dropped++;
2910 		/* fall through */
2911 	case RX_CONTINUE: {
2912 		struct ieee80211_rate *rate = NULL;
2913 		struct ieee80211_supported_band *sband;
2914 		struct ieee80211_rx_status *status;
2915 
2916 		status = IEEE80211_SKB_RXCB((rx->skb));
2917 
2918 		sband = rx->local->hw.wiphy->bands[status->band];
2919 		if (!(status->flag & RX_FLAG_HT) &&
2920 		    !(status->flag & RX_FLAG_VHT))
2921 			rate = &sband->bitrates[status->rate_idx];
2922 
2923 		ieee80211_rx_cooked_monitor(rx, rate);
2924 		break;
2925 		}
2926 	case RX_DROP_UNUSABLE:
2927 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2928 		if (rx->sta)
2929 			rx->sta->rx_dropped++;
2930 		dev_kfree_skb(rx->skb);
2931 		break;
2932 	case RX_QUEUED:
2933 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2934 		break;
2935 	}
2936 }
2937 
2938 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2939 				  struct sk_buff_head *frames)
2940 {
2941 	ieee80211_rx_result res = RX_DROP_MONITOR;
2942 	struct sk_buff *skb;
2943 
2944 #define CALL_RXH(rxh)			\
2945 	do {				\
2946 		res = rxh(rx);		\
2947 		if (res != RX_CONTINUE)	\
2948 			goto rxh_next;  \
2949 	} while (0);
2950 
2951 	spin_lock_bh(&rx->local->rx_path_lock);
2952 
2953 	while ((skb = __skb_dequeue(frames))) {
2954 		/*
2955 		 * all the other fields are valid across frames
2956 		 * that belong to an aMPDU since they are on the
2957 		 * same TID from the same station
2958 		 */
2959 		rx->skb = skb;
2960 
2961 		CALL_RXH(ieee80211_rx_h_check_more_data)
2962 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2963 		CALL_RXH(ieee80211_rx_h_sta_process)
2964 		CALL_RXH(ieee80211_rx_h_decrypt)
2965 		CALL_RXH(ieee80211_rx_h_defragment)
2966 		CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2967 		/* must be after MMIC verify so header is counted in MPDU mic */
2968 #ifdef CONFIG_MAC80211_MESH
2969 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2970 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
2971 #endif
2972 		CALL_RXH(ieee80211_rx_h_amsdu)
2973 		CALL_RXH(ieee80211_rx_h_data)
2974 
2975 		/* special treatment -- needs the queue */
2976 		res = ieee80211_rx_h_ctrl(rx, frames);
2977 		if (res != RX_CONTINUE)
2978 			goto rxh_next;
2979 
2980 		CALL_RXH(ieee80211_rx_h_mgmt_check)
2981 		CALL_RXH(ieee80211_rx_h_action)
2982 		CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2983 		CALL_RXH(ieee80211_rx_h_action_return)
2984 		CALL_RXH(ieee80211_rx_h_mgmt)
2985 
2986  rxh_next:
2987 		ieee80211_rx_handlers_result(rx, res);
2988 
2989 #undef CALL_RXH
2990 	}
2991 
2992 	spin_unlock_bh(&rx->local->rx_path_lock);
2993 }
2994 
2995 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2996 {
2997 	struct sk_buff_head reorder_release;
2998 	ieee80211_rx_result res = RX_DROP_MONITOR;
2999 
3000 	__skb_queue_head_init(&reorder_release);
3001 
3002 #define CALL_RXH(rxh)			\
3003 	do {				\
3004 		res = rxh(rx);		\
3005 		if (res != RX_CONTINUE)	\
3006 			goto rxh_next;  \
3007 	} while (0);
3008 
3009 	CALL_RXH(ieee80211_rx_h_check)
3010 
3011 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3012 
3013 	ieee80211_rx_handlers(rx, &reorder_release);
3014 	return;
3015 
3016  rxh_next:
3017 	ieee80211_rx_handlers_result(rx, res);
3018 
3019 #undef CALL_RXH
3020 }
3021 
3022 /*
3023  * This function makes calls into the RX path, therefore
3024  * it has to be invoked under RCU read lock.
3025  */
3026 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3027 {
3028 	struct sk_buff_head frames;
3029 	struct ieee80211_rx_data rx = {
3030 		.sta = sta,
3031 		.sdata = sta->sdata,
3032 		.local = sta->local,
3033 		/* This is OK -- must be QoS data frame */
3034 		.security_idx = tid,
3035 		.seqno_idx = tid,
3036 		.flags = 0,
3037 	};
3038 	struct tid_ampdu_rx *tid_agg_rx;
3039 
3040 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3041 	if (!tid_agg_rx)
3042 		return;
3043 
3044 	__skb_queue_head_init(&frames);
3045 
3046 	spin_lock(&tid_agg_rx->reorder_lock);
3047 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3048 	spin_unlock(&tid_agg_rx->reorder_lock);
3049 
3050 	ieee80211_rx_handlers(&rx, &frames);
3051 }
3052 
3053 /* main receive path */
3054 
3055 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3056 				 struct ieee80211_hdr *hdr)
3057 {
3058 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3059 	struct sk_buff *skb = rx->skb;
3060 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3061 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3062 	int multicast = is_multicast_ether_addr(hdr->addr1);
3063 
3064 	switch (sdata->vif.type) {
3065 	case NL80211_IFTYPE_STATION:
3066 		if (!bssid && !sdata->u.mgd.use_4addr)
3067 			return false;
3068 		if (!multicast &&
3069 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3070 			if (!(sdata->dev->flags & IFF_PROMISC) ||
3071 			    sdata->u.mgd.use_4addr)
3072 				return false;
3073 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3074 		}
3075 		break;
3076 	case NL80211_IFTYPE_ADHOC:
3077 		if (!bssid)
3078 			return false;
3079 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3080 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3081 			return false;
3082 		if (ieee80211_is_beacon(hdr->frame_control)) {
3083 			return true;
3084 		} else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3085 			return false;
3086 		} else if (!multicast &&
3087 			   !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3088 			if (!(sdata->dev->flags & IFF_PROMISC))
3089 				return false;
3090 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3091 		} else if (!rx->sta) {
3092 			int rate_idx;
3093 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3094 				rate_idx = 0; /* TODO: HT/VHT rates */
3095 			else
3096 				rate_idx = status->rate_idx;
3097 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3098 						 BIT(rate_idx));
3099 		}
3100 		break;
3101 	case NL80211_IFTYPE_MESH_POINT:
3102 		if (!multicast &&
3103 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3104 			if (!(sdata->dev->flags & IFF_PROMISC))
3105 				return false;
3106 
3107 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3108 		}
3109 		break;
3110 	case NL80211_IFTYPE_AP_VLAN:
3111 	case NL80211_IFTYPE_AP:
3112 		if (!bssid) {
3113 			if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3114 				return false;
3115 		} else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3116 			/*
3117 			 * Accept public action frames even when the
3118 			 * BSSID doesn't match, this is used for P2P
3119 			 * and location updates. Note that mac80211
3120 			 * itself never looks at these frames.
3121 			 */
3122 			if (!multicast &&
3123 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3124 				return false;
3125 			if (ieee80211_is_public_action(hdr, skb->len))
3126 				return true;
3127 			if (!ieee80211_is_beacon(hdr->frame_control))
3128 				return false;
3129 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3130 		}
3131 		break;
3132 	case NL80211_IFTYPE_WDS:
3133 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3134 			return false;
3135 		if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3136 			return false;
3137 		break;
3138 	case NL80211_IFTYPE_P2P_DEVICE:
3139 		if (!ieee80211_is_public_action(hdr, skb->len) &&
3140 		    !ieee80211_is_probe_req(hdr->frame_control) &&
3141 		    !ieee80211_is_probe_resp(hdr->frame_control) &&
3142 		    !ieee80211_is_beacon(hdr->frame_control))
3143 			return false;
3144 		if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3145 		    !multicast)
3146 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3147 		break;
3148 	default:
3149 		/* should never get here */
3150 		WARN_ON_ONCE(1);
3151 		break;
3152 	}
3153 
3154 	return true;
3155 }
3156 
3157 /*
3158  * This function returns whether or not the SKB
3159  * was destined for RX processing or not, which,
3160  * if consume is true, is equivalent to whether
3161  * or not the skb was consumed.
3162  */
3163 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3164 					    struct sk_buff *skb, bool consume)
3165 {
3166 	struct ieee80211_local *local = rx->local;
3167 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3168 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3169 	struct ieee80211_hdr *hdr = (void *)skb->data;
3170 
3171 	rx->skb = skb;
3172 	status->rx_flags |= IEEE80211_RX_RA_MATCH;
3173 
3174 	if (!prepare_for_handlers(rx, hdr))
3175 		return false;
3176 
3177 	if (!consume) {
3178 		skb = skb_copy(skb, GFP_ATOMIC);
3179 		if (!skb) {
3180 			if (net_ratelimit())
3181 				wiphy_debug(local->hw.wiphy,
3182 					"failed to copy skb for %s\n",
3183 					sdata->name);
3184 			return true;
3185 		}
3186 
3187 		rx->skb = skb;
3188 	}
3189 
3190 	ieee80211_invoke_rx_handlers(rx);
3191 	return true;
3192 }
3193 
3194 /*
3195  * This is the actual Rx frames handler. as it belongs to Rx path it must
3196  * be called with rcu_read_lock protection.
3197  */
3198 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3199 					 struct sk_buff *skb)
3200 {
3201 	struct ieee80211_local *local = hw_to_local(hw);
3202 	struct ieee80211_sub_if_data *sdata;
3203 	struct ieee80211_hdr *hdr;
3204 	__le16 fc;
3205 	struct ieee80211_rx_data rx;
3206 	struct ieee80211_sub_if_data *prev;
3207 	struct sta_info *sta, *tmp, *prev_sta;
3208 	int err = 0;
3209 
3210 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3211 	memset(&rx, 0, sizeof(rx));
3212 	rx.skb = skb;
3213 	rx.local = local;
3214 
3215 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3216 		local->dot11ReceivedFragmentCount++;
3217 
3218 	if (ieee80211_is_mgmt(fc)) {
3219 		/* drop frame if too short for header */
3220 		if (skb->len < ieee80211_hdrlen(fc))
3221 			err = -ENOBUFS;
3222 		else
3223 			err = skb_linearize(skb);
3224 	} else {
3225 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3226 	}
3227 
3228 	if (err) {
3229 		dev_kfree_skb(skb);
3230 		return;
3231 	}
3232 
3233 	hdr = (struct ieee80211_hdr *)skb->data;
3234 	ieee80211_parse_qos(&rx);
3235 	ieee80211_verify_alignment(&rx);
3236 
3237 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3238 		     ieee80211_is_beacon(hdr->frame_control)))
3239 		ieee80211_scan_rx(local, skb);
3240 
3241 	if (ieee80211_is_data(fc)) {
3242 		prev_sta = NULL;
3243 
3244 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
3245 			if (!prev_sta) {
3246 				prev_sta = sta;
3247 				continue;
3248 			}
3249 
3250 			rx.sta = prev_sta;
3251 			rx.sdata = prev_sta->sdata;
3252 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
3253 
3254 			prev_sta = sta;
3255 		}
3256 
3257 		if (prev_sta) {
3258 			rx.sta = prev_sta;
3259 			rx.sdata = prev_sta->sdata;
3260 
3261 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3262 				return;
3263 			goto out;
3264 		}
3265 	}
3266 
3267 	prev = NULL;
3268 
3269 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3270 		if (!ieee80211_sdata_running(sdata))
3271 			continue;
3272 
3273 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3274 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3275 			continue;
3276 
3277 		/*
3278 		 * frame is destined for this interface, but if it's
3279 		 * not also for the previous one we handle that after
3280 		 * the loop to avoid copying the SKB once too much
3281 		 */
3282 
3283 		if (!prev) {
3284 			prev = sdata;
3285 			continue;
3286 		}
3287 
3288 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3289 		rx.sdata = prev;
3290 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
3291 
3292 		prev = sdata;
3293 	}
3294 
3295 	if (prev) {
3296 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3297 		rx.sdata = prev;
3298 
3299 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3300 			return;
3301 	}
3302 
3303  out:
3304 	dev_kfree_skb(skb);
3305 }
3306 
3307 /*
3308  * This is the receive path handler. It is called by a low level driver when an
3309  * 802.11 MPDU is received from the hardware.
3310  */
3311 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3312 {
3313 	struct ieee80211_local *local = hw_to_local(hw);
3314 	struct ieee80211_rate *rate = NULL;
3315 	struct ieee80211_supported_band *sband;
3316 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3317 
3318 	WARN_ON_ONCE(softirq_count() == 0);
3319 
3320 	if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3321 		goto drop;
3322 
3323 	sband = local->hw.wiphy->bands[status->band];
3324 	if (WARN_ON(!sband))
3325 		goto drop;
3326 
3327 	/*
3328 	 * If we're suspending, it is possible although not too likely
3329 	 * that we'd be receiving frames after having already partially
3330 	 * quiesced the stack. We can't process such frames then since
3331 	 * that might, for example, cause stations to be added or other
3332 	 * driver callbacks be invoked.
3333 	 */
3334 	if (unlikely(local->quiescing || local->suspended))
3335 		goto drop;
3336 
3337 	/* We might be during a HW reconfig, prevent Rx for the same reason */
3338 	if (unlikely(local->in_reconfig))
3339 		goto drop;
3340 
3341 	/*
3342 	 * The same happens when we're not even started,
3343 	 * but that's worth a warning.
3344 	 */
3345 	if (WARN_ON(!local->started))
3346 		goto drop;
3347 
3348 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3349 		/*
3350 		 * Validate the rate, unless a PLCP error means that
3351 		 * we probably can't have a valid rate here anyway.
3352 		 */
3353 
3354 		if (status->flag & RX_FLAG_HT) {
3355 			/*
3356 			 * rate_idx is MCS index, which can be [0-76]
3357 			 * as documented on:
3358 			 *
3359 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3360 			 *
3361 			 * Anything else would be some sort of driver or
3362 			 * hardware error. The driver should catch hardware
3363 			 * errors.
3364 			 */
3365 			if (WARN(status->rate_idx > 76,
3366 				 "Rate marked as an HT rate but passed "
3367 				 "status->rate_idx is not "
3368 				 "an MCS index [0-76]: %d (0x%02x)\n",
3369 				 status->rate_idx,
3370 				 status->rate_idx))
3371 				goto drop;
3372 		} else if (status->flag & RX_FLAG_VHT) {
3373 			if (WARN_ONCE(status->rate_idx > 9 ||
3374 				      !status->vht_nss ||
3375 				      status->vht_nss > 8,
3376 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3377 				      status->rate_idx, status->vht_nss))
3378 				goto drop;
3379 		} else {
3380 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3381 				goto drop;
3382 			rate = &sband->bitrates[status->rate_idx];
3383 		}
3384 	}
3385 
3386 	status->rx_flags = 0;
3387 
3388 	/*
3389 	 * key references and virtual interfaces are protected using RCU
3390 	 * and this requires that we are in a read-side RCU section during
3391 	 * receive processing
3392 	 */
3393 	rcu_read_lock();
3394 
3395 	/*
3396 	 * Frames with failed FCS/PLCP checksum are not returned,
3397 	 * all other frames are returned without radiotap header
3398 	 * if it was previously present.
3399 	 * Also, frames with less than 16 bytes are dropped.
3400 	 */
3401 	skb = ieee80211_rx_monitor(local, skb, rate);
3402 	if (!skb) {
3403 		rcu_read_unlock();
3404 		return;
3405 	}
3406 
3407 	ieee80211_tpt_led_trig_rx(local,
3408 			((struct ieee80211_hdr *)skb->data)->frame_control,
3409 			skb->len);
3410 	__ieee80211_rx_handle_packet(hw, skb);
3411 
3412 	rcu_read_unlock();
3413 
3414 	return;
3415  drop:
3416 	kfree_skb(skb);
3417 }
3418 EXPORT_SYMBOL(ieee80211_rx);
3419 
3420 /* This is a version of the rx handler that can be called from hard irq
3421  * context. Post the skb on the queue and schedule the tasklet */
3422 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3423 {
3424 	struct ieee80211_local *local = hw_to_local(hw);
3425 
3426 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3427 
3428 	skb->pkt_type = IEEE80211_RX_MSG;
3429 	skb_queue_tail(&local->skb_queue, skb);
3430 	tasklet_schedule(&local->tasklet);
3431 }
3432 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
3433